1 /* 2 * Tty buffer allocation management 3 */ 4 5 #include <linux/types.h> 6 #include <linux/errno.h> 7 #include <linux/tty.h> 8 #include <linux/tty_driver.h> 9 #include <linux/tty_flip.h> 10 #include <linux/timer.h> 11 #include <linux/string.h> 12 #include <linux/slab.h> 13 #include <linux/sched.h> 14 #include <linux/wait.h> 15 #include <linux/bitops.h> 16 #include <linux/delay.h> 17 #include <linux/module.h> 18 #include <linux/ratelimit.h> 19 20 21 #define MIN_TTYB_SIZE 256 22 #define TTYB_ALIGN_MASK 255 23 24 /* 25 * Byte threshold to limit memory consumption for flip buffers. 26 * The actual memory limit is > 2x this amount. 27 */ 28 #define TTYB_DEFAULT_MEM_LIMIT 65536 29 30 /* 31 * We default to dicing tty buffer allocations to this many characters 32 * in order to avoid multiple page allocations. We know the size of 33 * tty_buffer itself but it must also be taken into account that the 34 * the buffer is 256 byte aligned. See tty_buffer_find for the allocation 35 * logic this must match 36 */ 37 38 #define TTY_BUFFER_PAGE (((PAGE_SIZE - sizeof(struct tty_buffer)) / 2) & ~0xFF) 39 40 41 /** 42 * tty_buffer_lock_exclusive - gain exclusive access to buffer 43 * tty_buffer_unlock_exclusive - release exclusive access 44 * 45 * @port - tty_port owning the flip buffer 46 * 47 * Guarantees safe use of the line discipline's receive_buf() method by 48 * excluding the buffer work and any pending flush from using the flip 49 * buffer. Data can continue to be added concurrently to the flip buffer 50 * from the driver side. 51 * 52 * On release, the buffer work is restarted if there is data in the 53 * flip buffer 54 */ 55 56 void tty_buffer_lock_exclusive(struct tty_port *port) 57 { 58 struct tty_bufhead *buf = &port->buf; 59 60 atomic_inc(&buf->priority); 61 mutex_lock(&buf->lock); 62 } 63 EXPORT_SYMBOL_GPL(tty_buffer_lock_exclusive); 64 65 void tty_buffer_unlock_exclusive(struct tty_port *port) 66 { 67 struct tty_bufhead *buf = &port->buf; 68 int restart; 69 70 restart = buf->head->commit != buf->head->read; 71 72 atomic_dec(&buf->priority); 73 mutex_unlock(&buf->lock); 74 if (restart) 75 queue_work(system_unbound_wq, &buf->work); 76 } 77 EXPORT_SYMBOL_GPL(tty_buffer_unlock_exclusive); 78 79 /** 80 * tty_buffer_space_avail - return unused buffer space 81 * @port - tty_port owning the flip buffer 82 * 83 * Returns the # of bytes which can be written by the driver without 84 * reaching the buffer limit. 85 * 86 * Note: this does not guarantee that memory is available to write 87 * the returned # of bytes (use tty_prepare_flip_string_xxx() to 88 * pre-allocate if memory guarantee is required). 89 */ 90 91 int tty_buffer_space_avail(struct tty_port *port) 92 { 93 int space = port->buf.mem_limit - atomic_read(&port->buf.mem_used); 94 return max(space, 0); 95 } 96 EXPORT_SYMBOL_GPL(tty_buffer_space_avail); 97 98 static void tty_buffer_reset(struct tty_buffer *p, size_t size) 99 { 100 p->used = 0; 101 p->size = size; 102 p->next = NULL; 103 p->commit = 0; 104 p->read = 0; 105 p->flags = 0; 106 } 107 108 /** 109 * tty_buffer_free_all - free buffers used by a tty 110 * @tty: tty to free from 111 * 112 * Remove all the buffers pending on a tty whether queued with data 113 * or in the free ring. Must be called when the tty is no longer in use 114 */ 115 116 void tty_buffer_free_all(struct tty_port *port) 117 { 118 struct tty_bufhead *buf = &port->buf; 119 struct tty_buffer *p, *next; 120 struct llist_node *llist; 121 122 while ((p = buf->head) != NULL) { 123 buf->head = p->next; 124 if (p->size > 0) 125 kfree(p); 126 } 127 llist = llist_del_all(&buf->free); 128 llist_for_each_entry_safe(p, next, llist, free) 129 kfree(p); 130 131 tty_buffer_reset(&buf->sentinel, 0); 132 buf->head = &buf->sentinel; 133 buf->tail = &buf->sentinel; 134 135 atomic_set(&buf->mem_used, 0); 136 } 137 138 /** 139 * tty_buffer_alloc - allocate a tty buffer 140 * @tty: tty device 141 * @size: desired size (characters) 142 * 143 * Allocate a new tty buffer to hold the desired number of characters. 144 * We round our buffers off in 256 character chunks to get better 145 * allocation behaviour. 146 * Return NULL if out of memory or the allocation would exceed the 147 * per device queue 148 */ 149 150 static struct tty_buffer *tty_buffer_alloc(struct tty_port *port, size_t size) 151 { 152 struct llist_node *free; 153 struct tty_buffer *p; 154 155 /* Round the buffer size out */ 156 size = __ALIGN_MASK(size, TTYB_ALIGN_MASK); 157 158 if (size <= MIN_TTYB_SIZE) { 159 free = llist_del_first(&port->buf.free); 160 if (free) { 161 p = llist_entry(free, struct tty_buffer, free); 162 goto found; 163 } 164 } 165 166 /* Should possibly check if this fails for the largest buffer we 167 have queued and recycle that ? */ 168 if (atomic_read(&port->buf.mem_used) > port->buf.mem_limit) 169 return NULL; 170 p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC); 171 if (p == NULL) 172 return NULL; 173 174 found: 175 tty_buffer_reset(p, size); 176 atomic_add(size, &port->buf.mem_used); 177 return p; 178 } 179 180 /** 181 * tty_buffer_free - free a tty buffer 182 * @tty: tty owning the buffer 183 * @b: the buffer to free 184 * 185 * Free a tty buffer, or add it to the free list according to our 186 * internal strategy 187 */ 188 189 static void tty_buffer_free(struct tty_port *port, struct tty_buffer *b) 190 { 191 struct tty_bufhead *buf = &port->buf; 192 193 /* Dumb strategy for now - should keep some stats */ 194 WARN_ON(atomic_sub_return(b->size, &buf->mem_used) < 0); 195 196 if (b->size > MIN_TTYB_SIZE) 197 kfree(b); 198 else if (b->size > 0) 199 llist_add(&b->free, &buf->free); 200 } 201 202 /** 203 * tty_buffer_flush - flush full tty buffers 204 * @tty: tty to flush 205 * 206 * flush all the buffers containing receive data. 207 * 208 * Locking: takes buffer lock to ensure single-threaded flip buffer 209 * 'consumer' 210 */ 211 212 void tty_buffer_flush(struct tty_struct *tty) 213 { 214 struct tty_port *port = tty->port; 215 struct tty_bufhead *buf = &port->buf; 216 struct tty_buffer *next; 217 218 atomic_inc(&buf->priority); 219 220 mutex_lock(&buf->lock); 221 while ((next = buf->head->next) != NULL) { 222 tty_buffer_free(port, buf->head); 223 buf->head = next; 224 } 225 buf->head->read = buf->head->commit; 226 atomic_dec(&buf->priority); 227 mutex_unlock(&buf->lock); 228 } 229 230 /** 231 * tty_buffer_request_room - grow tty buffer if needed 232 * @tty: tty structure 233 * @size: size desired 234 * @flags: buffer flags if new buffer allocated (default = 0) 235 * 236 * Make at least size bytes of linear space available for the tty 237 * buffer. If we fail return the size we managed to find. 238 * 239 * Will change over to a new buffer if the current buffer is encoded as 240 * TTY_NORMAL (so has no flags buffer) and the new buffer requires 241 * a flags buffer. 242 */ 243 static int __tty_buffer_request_room(struct tty_port *port, size_t size, 244 int flags) 245 { 246 struct tty_bufhead *buf = &port->buf; 247 struct tty_buffer *b, *n; 248 int left, change; 249 250 b = buf->tail; 251 if (b->flags & TTYB_NORMAL) 252 left = 2 * b->size - b->used; 253 else 254 left = b->size - b->used; 255 256 change = (b->flags & TTYB_NORMAL) && (~flags & TTYB_NORMAL); 257 if (change || left < size) { 258 /* This is the slow path - looking for new buffers to use */ 259 if ((n = tty_buffer_alloc(port, size)) != NULL) { 260 n->flags = flags; 261 buf->tail = n; 262 b->commit = b->used; 263 /* paired w/ barrier in flush_to_ldisc(); ensures the 264 * latest commit value can be read before the head is 265 * advanced to the next buffer 266 */ 267 smp_wmb(); 268 b->next = n; 269 } else if (change) 270 size = 0; 271 else 272 size = left; 273 } 274 return size; 275 } 276 277 int tty_buffer_request_room(struct tty_port *port, size_t size) 278 { 279 return __tty_buffer_request_room(port, size, 0); 280 } 281 EXPORT_SYMBOL_GPL(tty_buffer_request_room); 282 283 /** 284 * tty_insert_flip_string_fixed_flag - Add characters to the tty buffer 285 * @port: tty port 286 * @chars: characters 287 * @flag: flag value for each character 288 * @size: size 289 * 290 * Queue a series of bytes to the tty buffering. All the characters 291 * passed are marked with the supplied flag. Returns the number added. 292 */ 293 294 int tty_insert_flip_string_fixed_flag(struct tty_port *port, 295 const unsigned char *chars, char flag, size_t size) 296 { 297 int copied = 0; 298 do { 299 int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE); 300 int flags = (flag == TTY_NORMAL) ? TTYB_NORMAL : 0; 301 int space = __tty_buffer_request_room(port, goal, flags); 302 struct tty_buffer *tb = port->buf.tail; 303 if (unlikely(space == 0)) 304 break; 305 memcpy(char_buf_ptr(tb, tb->used), chars, space); 306 if (~tb->flags & TTYB_NORMAL) 307 memset(flag_buf_ptr(tb, tb->used), flag, space); 308 tb->used += space; 309 copied += space; 310 chars += space; 311 /* There is a small chance that we need to split the data over 312 several buffers. If this is the case we must loop */ 313 } while (unlikely(size > copied)); 314 return copied; 315 } 316 EXPORT_SYMBOL(tty_insert_flip_string_fixed_flag); 317 318 /** 319 * tty_insert_flip_string_flags - Add characters to the tty buffer 320 * @port: tty port 321 * @chars: characters 322 * @flags: flag bytes 323 * @size: size 324 * 325 * Queue a series of bytes to the tty buffering. For each character 326 * the flags array indicates the status of the character. Returns the 327 * number added. 328 */ 329 330 int tty_insert_flip_string_flags(struct tty_port *port, 331 const unsigned char *chars, const char *flags, size_t size) 332 { 333 int copied = 0; 334 do { 335 int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE); 336 int space = tty_buffer_request_room(port, goal); 337 struct tty_buffer *tb = port->buf.tail; 338 if (unlikely(space == 0)) 339 break; 340 memcpy(char_buf_ptr(tb, tb->used), chars, space); 341 memcpy(flag_buf_ptr(tb, tb->used), flags, space); 342 tb->used += space; 343 copied += space; 344 chars += space; 345 flags += space; 346 /* There is a small chance that we need to split the data over 347 several buffers. If this is the case we must loop */ 348 } while (unlikely(size > copied)); 349 return copied; 350 } 351 EXPORT_SYMBOL(tty_insert_flip_string_flags); 352 353 /** 354 * tty_schedule_flip - push characters to ldisc 355 * @port: tty port to push from 356 * 357 * Takes any pending buffers and transfers their ownership to the 358 * ldisc side of the queue. It then schedules those characters for 359 * processing by the line discipline. 360 */ 361 362 void tty_schedule_flip(struct tty_port *port) 363 { 364 struct tty_bufhead *buf = &port->buf; 365 366 buf->tail->commit = buf->tail->used; 367 schedule_work(&buf->work); 368 } 369 EXPORT_SYMBOL(tty_schedule_flip); 370 371 /** 372 * tty_prepare_flip_string - make room for characters 373 * @port: tty port 374 * @chars: return pointer for character write area 375 * @size: desired size 376 * 377 * Prepare a block of space in the buffer for data. Returns the length 378 * available and buffer pointer to the space which is now allocated and 379 * accounted for as ready for normal characters. This is used for drivers 380 * that need their own block copy routines into the buffer. There is no 381 * guarantee the buffer is a DMA target! 382 */ 383 384 int tty_prepare_flip_string(struct tty_port *port, unsigned char **chars, 385 size_t size) 386 { 387 int space = __tty_buffer_request_room(port, size, TTYB_NORMAL); 388 if (likely(space)) { 389 struct tty_buffer *tb = port->buf.tail; 390 *chars = char_buf_ptr(tb, tb->used); 391 if (~tb->flags & TTYB_NORMAL) 392 memset(flag_buf_ptr(tb, tb->used), TTY_NORMAL, space); 393 tb->used += space; 394 } 395 return space; 396 } 397 EXPORT_SYMBOL_GPL(tty_prepare_flip_string); 398 399 400 static int 401 receive_buf(struct tty_struct *tty, struct tty_buffer *head, int count) 402 { 403 struct tty_ldisc *disc = tty->ldisc; 404 unsigned char *p = char_buf_ptr(head, head->read); 405 char *f = NULL; 406 407 if (~head->flags & TTYB_NORMAL) 408 f = flag_buf_ptr(head, head->read); 409 410 if (disc->ops->receive_buf2) 411 count = disc->ops->receive_buf2(tty, p, f, count); 412 else { 413 count = min_t(int, count, tty->receive_room); 414 if (count) 415 disc->ops->receive_buf(tty, p, f, count); 416 } 417 head->read += count; 418 return count; 419 } 420 421 /** 422 * flush_to_ldisc 423 * @work: tty structure passed from work queue. 424 * 425 * This routine is called out of the software interrupt to flush data 426 * from the buffer chain to the line discipline. 427 * 428 * The receive_buf method is single threaded for each tty instance. 429 * 430 * Locking: takes buffer lock to ensure single-threaded flip buffer 431 * 'consumer' 432 */ 433 434 static void flush_to_ldisc(struct work_struct *work) 435 { 436 struct tty_port *port = container_of(work, struct tty_port, buf.work); 437 struct tty_bufhead *buf = &port->buf; 438 struct tty_struct *tty; 439 struct tty_ldisc *disc; 440 441 tty = port->itty; 442 if (tty == NULL) 443 return; 444 445 disc = tty_ldisc_ref(tty); 446 if (disc == NULL) 447 return; 448 449 mutex_lock(&buf->lock); 450 451 while (1) { 452 struct tty_buffer *head = buf->head; 453 struct tty_buffer *next; 454 int count; 455 456 /* Ldisc or user is trying to gain exclusive access */ 457 if (atomic_read(&buf->priority)) 458 break; 459 460 next = head->next; 461 /* paired w/ barrier in __tty_buffer_request_room(); 462 * ensures commit value read is not stale if the head 463 * is advancing to the next buffer 464 */ 465 smp_rmb(); 466 count = head->commit - head->read; 467 if (!count) { 468 if (next == NULL) 469 break; 470 buf->head = next; 471 tty_buffer_free(port, head); 472 continue; 473 } 474 475 count = receive_buf(tty, head, count); 476 if (!count) 477 break; 478 } 479 480 mutex_unlock(&buf->lock); 481 482 tty_ldisc_deref(disc); 483 } 484 485 /** 486 * tty_flush_to_ldisc 487 * @tty: tty to push 488 * 489 * Push the terminal flip buffers to the line discipline. 490 * 491 * Must not be called from IRQ context. 492 */ 493 void tty_flush_to_ldisc(struct tty_struct *tty) 494 { 495 flush_work(&tty->port->buf.work); 496 } 497 498 /** 499 * tty_flip_buffer_push - terminal 500 * @port: tty port to push 501 * 502 * Queue a push of the terminal flip buffers to the line discipline. 503 * Can be called from IRQ/atomic context. 504 * 505 * In the event of the queue being busy for flipping the work will be 506 * held off and retried later. 507 */ 508 509 void tty_flip_buffer_push(struct tty_port *port) 510 { 511 tty_schedule_flip(port); 512 } 513 EXPORT_SYMBOL(tty_flip_buffer_push); 514 515 /** 516 * tty_buffer_init - prepare a tty buffer structure 517 * @tty: tty to initialise 518 * 519 * Set up the initial state of the buffer management for a tty device. 520 * Must be called before the other tty buffer functions are used. 521 */ 522 523 void tty_buffer_init(struct tty_port *port) 524 { 525 struct tty_bufhead *buf = &port->buf; 526 527 mutex_init(&buf->lock); 528 tty_buffer_reset(&buf->sentinel, 0); 529 buf->head = &buf->sentinel; 530 buf->tail = &buf->sentinel; 531 init_llist_head(&buf->free); 532 atomic_set(&buf->mem_used, 0); 533 atomic_set(&buf->priority, 0); 534 INIT_WORK(&buf->work, flush_to_ldisc); 535 buf->mem_limit = TTYB_DEFAULT_MEM_LIMIT; 536 } 537 538 /** 539 * tty_buffer_set_limit - change the tty buffer memory limit 540 * @port: tty port to change 541 * 542 * Change the tty buffer memory limit. 543 * Must be called before the other tty buffer functions are used. 544 */ 545 546 int tty_buffer_set_limit(struct tty_port *port, int limit) 547 { 548 if (limit < MIN_TTYB_SIZE) 549 return -EINVAL; 550 port->buf.mem_limit = limit; 551 return 0; 552 } 553 EXPORT_SYMBOL_GPL(tty_buffer_set_limit); 554