xref: /openbmc/linux/drivers/tty/tty_buffer.c (revision b34e08d5)
1 /*
2  * Tty buffer allocation management
3  */
4 
5 #include <linux/types.h>
6 #include <linux/errno.h>
7 #include <linux/tty.h>
8 #include <linux/tty_driver.h>
9 #include <linux/tty_flip.h>
10 #include <linux/timer.h>
11 #include <linux/string.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/wait.h>
15 #include <linux/bitops.h>
16 #include <linux/delay.h>
17 #include <linux/module.h>
18 #include <linux/ratelimit.h>
19 
20 
21 #define MIN_TTYB_SIZE	256
22 #define TTYB_ALIGN_MASK	255
23 
24 /*
25  * Byte threshold to limit memory consumption for flip buffers.
26  * The actual memory limit is > 2x this amount.
27  */
28 #define TTYB_DEFAULT_MEM_LIMIT	65536
29 
30 /*
31  * We default to dicing tty buffer allocations to this many characters
32  * in order to avoid multiple page allocations. We know the size of
33  * tty_buffer itself but it must also be taken into account that the
34  * the buffer is 256 byte aligned. See tty_buffer_find for the allocation
35  * logic this must match
36  */
37 
38 #define TTY_BUFFER_PAGE	(((PAGE_SIZE - sizeof(struct tty_buffer)) / 2) & ~0xFF)
39 
40 
41 /**
42  *	tty_buffer_lock_exclusive	-	gain exclusive access to buffer
43  *	tty_buffer_unlock_exclusive	-	release exclusive access
44  *
45  *	@port - tty_port owning the flip buffer
46  *
47  *	Guarantees safe use of the line discipline's receive_buf() method by
48  *	excluding the buffer work and any pending flush from using the flip
49  *	buffer. Data can continue to be added concurrently to the flip buffer
50  *	from the driver side.
51  *
52  *	On release, the buffer work is restarted if there is data in the
53  *	flip buffer
54  */
55 
56 void tty_buffer_lock_exclusive(struct tty_port *port)
57 {
58 	struct tty_bufhead *buf = &port->buf;
59 
60 	atomic_inc(&buf->priority);
61 	mutex_lock(&buf->lock);
62 }
63 
64 void tty_buffer_unlock_exclusive(struct tty_port *port)
65 {
66 	struct tty_bufhead *buf = &port->buf;
67 	int restart;
68 
69 	restart = buf->head->commit != buf->head->read;
70 
71 	atomic_dec(&buf->priority);
72 	mutex_unlock(&buf->lock);
73 	if (restart)
74 		queue_work(system_unbound_wq, &buf->work);
75 }
76 
77 /**
78  *	tty_buffer_space_avail	-	return unused buffer space
79  *	@port - tty_port owning the flip buffer
80  *
81  *	Returns the # of bytes which can be written by the driver without
82  *	reaching the buffer limit.
83  *
84  *	Note: this does not guarantee that memory is available to write
85  *	the returned # of bytes (use tty_prepare_flip_string_xxx() to
86  *	pre-allocate if memory guarantee is required).
87  */
88 
89 int tty_buffer_space_avail(struct tty_port *port)
90 {
91 	int space = port->buf.mem_limit - atomic_read(&port->buf.mem_used);
92 	return max(space, 0);
93 }
94 EXPORT_SYMBOL_GPL(tty_buffer_space_avail);
95 
96 static void tty_buffer_reset(struct tty_buffer *p, size_t size)
97 {
98 	p->used = 0;
99 	p->size = size;
100 	p->next = NULL;
101 	p->commit = 0;
102 	p->read = 0;
103 	p->flags = 0;
104 }
105 
106 /**
107  *	tty_buffer_free_all		-	free buffers used by a tty
108  *	@tty: tty to free from
109  *
110  *	Remove all the buffers pending on a tty whether queued with data
111  *	or in the free ring. Must be called when the tty is no longer in use
112  */
113 
114 void tty_buffer_free_all(struct tty_port *port)
115 {
116 	struct tty_bufhead *buf = &port->buf;
117 	struct tty_buffer *p, *next;
118 	struct llist_node *llist;
119 
120 	while ((p = buf->head) != NULL) {
121 		buf->head = p->next;
122 		if (p->size > 0)
123 			kfree(p);
124 	}
125 	llist = llist_del_all(&buf->free);
126 	llist_for_each_entry_safe(p, next, llist, free)
127 		kfree(p);
128 
129 	tty_buffer_reset(&buf->sentinel, 0);
130 	buf->head = &buf->sentinel;
131 	buf->tail = &buf->sentinel;
132 
133 	atomic_set(&buf->mem_used, 0);
134 }
135 
136 /**
137  *	tty_buffer_alloc	-	allocate a tty buffer
138  *	@tty: tty device
139  *	@size: desired size (characters)
140  *
141  *	Allocate a new tty buffer to hold the desired number of characters.
142  *	We round our buffers off in 256 character chunks to get better
143  *	allocation behaviour.
144  *	Return NULL if out of memory or the allocation would exceed the
145  *	per device queue
146  */
147 
148 static struct tty_buffer *tty_buffer_alloc(struct tty_port *port, size_t size)
149 {
150 	struct llist_node *free;
151 	struct tty_buffer *p;
152 
153 	/* Round the buffer size out */
154 	size = __ALIGN_MASK(size, TTYB_ALIGN_MASK);
155 
156 	if (size <= MIN_TTYB_SIZE) {
157 		free = llist_del_first(&port->buf.free);
158 		if (free) {
159 			p = llist_entry(free, struct tty_buffer, free);
160 			goto found;
161 		}
162 	}
163 
164 	/* Should possibly check if this fails for the largest buffer we
165 	   have queued and recycle that ? */
166 	if (atomic_read(&port->buf.mem_used) > port->buf.mem_limit)
167 		return NULL;
168 	p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC);
169 	if (p == NULL)
170 		return NULL;
171 
172 found:
173 	tty_buffer_reset(p, size);
174 	atomic_add(size, &port->buf.mem_used);
175 	return p;
176 }
177 
178 /**
179  *	tty_buffer_free		-	free a tty buffer
180  *	@tty: tty owning the buffer
181  *	@b: the buffer to free
182  *
183  *	Free a tty buffer, or add it to the free list according to our
184  *	internal strategy
185  */
186 
187 static void tty_buffer_free(struct tty_port *port, struct tty_buffer *b)
188 {
189 	struct tty_bufhead *buf = &port->buf;
190 
191 	/* Dumb strategy for now - should keep some stats */
192 	WARN_ON(atomic_sub_return(b->size, &buf->mem_used) < 0);
193 
194 	if (b->size > MIN_TTYB_SIZE)
195 		kfree(b);
196 	else if (b->size > 0)
197 		llist_add(&b->free, &buf->free);
198 }
199 
200 /**
201  *	tty_buffer_flush		-	flush full tty buffers
202  *	@tty: tty to flush
203  *
204  *	flush all the buffers containing receive data.
205  *
206  *	Locking: takes buffer lock to ensure single-threaded flip buffer
207  *		 'consumer'
208  */
209 
210 void tty_buffer_flush(struct tty_struct *tty)
211 {
212 	struct tty_port *port = tty->port;
213 	struct tty_bufhead *buf = &port->buf;
214 	struct tty_buffer *next;
215 
216 	atomic_inc(&buf->priority);
217 
218 	mutex_lock(&buf->lock);
219 	while ((next = buf->head->next) != NULL) {
220 		tty_buffer_free(port, buf->head);
221 		buf->head = next;
222 	}
223 	buf->head->read = buf->head->commit;
224 	atomic_dec(&buf->priority);
225 	mutex_unlock(&buf->lock);
226 }
227 
228 /**
229  *	tty_buffer_request_room		-	grow tty buffer if needed
230  *	@tty: tty structure
231  *	@size: size desired
232  *	@flags: buffer flags if new buffer allocated (default = 0)
233  *
234  *	Make at least size bytes of linear space available for the tty
235  *	buffer. If we fail return the size we managed to find.
236  *
237  *	Will change over to a new buffer if the current buffer is encoded as
238  *	TTY_NORMAL (so has no flags buffer) and the new buffer requires
239  *	a flags buffer.
240  */
241 static int __tty_buffer_request_room(struct tty_port *port, size_t size,
242 				     int flags)
243 {
244 	struct tty_bufhead *buf = &port->buf;
245 	struct tty_buffer *b, *n;
246 	int left, change;
247 
248 	b = buf->tail;
249 	if (b->flags & TTYB_NORMAL)
250 		left = 2 * b->size - b->used;
251 	else
252 		left = b->size - b->used;
253 
254 	change = (b->flags & TTYB_NORMAL) && (~flags & TTYB_NORMAL);
255 	if (change || left < size) {
256 		/* This is the slow path - looking for new buffers to use */
257 		if ((n = tty_buffer_alloc(port, size)) != NULL) {
258 			n->flags = flags;
259 			buf->tail = n;
260 			b->commit = b->used;
261 			smp_mb();
262 			b->next = n;
263 		} else if (change)
264 			size = 0;
265 		else
266 			size = left;
267 	}
268 	return size;
269 }
270 
271 int tty_buffer_request_room(struct tty_port *port, size_t size)
272 {
273 	return __tty_buffer_request_room(port, size, 0);
274 }
275 EXPORT_SYMBOL_GPL(tty_buffer_request_room);
276 
277 /**
278  *	tty_insert_flip_string_fixed_flag - Add characters to the tty buffer
279  *	@port: tty port
280  *	@chars: characters
281  *	@flag: flag value for each character
282  *	@size: size
283  *
284  *	Queue a series of bytes to the tty buffering. All the characters
285  *	passed are marked with the supplied flag. Returns the number added.
286  */
287 
288 int tty_insert_flip_string_fixed_flag(struct tty_port *port,
289 		const unsigned char *chars, char flag, size_t size)
290 {
291 	int copied = 0;
292 	do {
293 		int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE);
294 		int flags = (flag == TTY_NORMAL) ? TTYB_NORMAL : 0;
295 		int space = __tty_buffer_request_room(port, goal, flags);
296 		struct tty_buffer *tb = port->buf.tail;
297 		if (unlikely(space == 0))
298 			break;
299 		memcpy(char_buf_ptr(tb, tb->used), chars, space);
300 		if (~tb->flags & TTYB_NORMAL)
301 			memset(flag_buf_ptr(tb, tb->used), flag, space);
302 		tb->used += space;
303 		copied += space;
304 		chars += space;
305 		/* There is a small chance that we need to split the data over
306 		   several buffers. If this is the case we must loop */
307 	} while (unlikely(size > copied));
308 	return copied;
309 }
310 EXPORT_SYMBOL(tty_insert_flip_string_fixed_flag);
311 
312 /**
313  *	tty_insert_flip_string_flags	-	Add characters to the tty buffer
314  *	@port: tty port
315  *	@chars: characters
316  *	@flags: flag bytes
317  *	@size: size
318  *
319  *	Queue a series of bytes to the tty buffering. For each character
320  *	the flags array indicates the status of the character. Returns the
321  *	number added.
322  */
323 
324 int tty_insert_flip_string_flags(struct tty_port *port,
325 		const unsigned char *chars, const char *flags, size_t size)
326 {
327 	int copied = 0;
328 	do {
329 		int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE);
330 		int space = tty_buffer_request_room(port, goal);
331 		struct tty_buffer *tb = port->buf.tail;
332 		if (unlikely(space == 0))
333 			break;
334 		memcpy(char_buf_ptr(tb, tb->used), chars, space);
335 		memcpy(flag_buf_ptr(tb, tb->used), flags, space);
336 		tb->used += space;
337 		copied += space;
338 		chars += space;
339 		flags += space;
340 		/* There is a small chance that we need to split the data over
341 		   several buffers. If this is the case we must loop */
342 	} while (unlikely(size > copied));
343 	return copied;
344 }
345 EXPORT_SYMBOL(tty_insert_flip_string_flags);
346 
347 /**
348  *	tty_schedule_flip	-	push characters to ldisc
349  *	@port: tty port to push from
350  *
351  *	Takes any pending buffers and transfers their ownership to the
352  *	ldisc side of the queue. It then schedules those characters for
353  *	processing by the line discipline.
354  */
355 
356 void tty_schedule_flip(struct tty_port *port)
357 {
358 	struct tty_bufhead *buf = &port->buf;
359 
360 	buf->tail->commit = buf->tail->used;
361 	schedule_work(&buf->work);
362 }
363 EXPORT_SYMBOL(tty_schedule_flip);
364 
365 /**
366  *	tty_prepare_flip_string		-	make room for characters
367  *	@port: tty port
368  *	@chars: return pointer for character write area
369  *	@size: desired size
370  *
371  *	Prepare a block of space in the buffer for data. Returns the length
372  *	available and buffer pointer to the space which is now allocated and
373  *	accounted for as ready for normal characters. This is used for drivers
374  *	that need their own block copy routines into the buffer. There is no
375  *	guarantee the buffer is a DMA target!
376  */
377 
378 int tty_prepare_flip_string(struct tty_port *port, unsigned char **chars,
379 		size_t size)
380 {
381 	int space = __tty_buffer_request_room(port, size, TTYB_NORMAL);
382 	if (likely(space)) {
383 		struct tty_buffer *tb = port->buf.tail;
384 		*chars = char_buf_ptr(tb, tb->used);
385 		if (~tb->flags & TTYB_NORMAL)
386 			memset(flag_buf_ptr(tb, tb->used), TTY_NORMAL, space);
387 		tb->used += space;
388 	}
389 	return space;
390 }
391 EXPORT_SYMBOL_GPL(tty_prepare_flip_string);
392 
393 
394 static int
395 receive_buf(struct tty_struct *tty, struct tty_buffer *head, int count)
396 {
397 	struct tty_ldisc *disc = tty->ldisc;
398 	unsigned char *p = char_buf_ptr(head, head->read);
399 	char	      *f = NULL;
400 
401 	if (~head->flags & TTYB_NORMAL)
402 		f = flag_buf_ptr(head, head->read);
403 
404 	if (disc->ops->receive_buf2)
405 		count = disc->ops->receive_buf2(tty, p, f, count);
406 	else {
407 		count = min_t(int, count, tty->receive_room);
408 		if (count)
409 			disc->ops->receive_buf(tty, p, f, count);
410 	}
411 	head->read += count;
412 	return count;
413 }
414 
415 /**
416  *	flush_to_ldisc
417  *	@work: tty structure passed from work queue.
418  *
419  *	This routine is called out of the software interrupt to flush data
420  *	from the buffer chain to the line discipline.
421  *
422  *	The receive_buf method is single threaded for each tty instance.
423  *
424  *	Locking: takes buffer lock to ensure single-threaded flip buffer
425  *		 'consumer'
426  */
427 
428 static void flush_to_ldisc(struct work_struct *work)
429 {
430 	struct tty_port *port = container_of(work, struct tty_port, buf.work);
431 	struct tty_bufhead *buf = &port->buf;
432 	struct tty_struct *tty;
433 	struct tty_ldisc *disc;
434 
435 	tty = port->itty;
436 	if (tty == NULL)
437 		return;
438 
439 	disc = tty_ldisc_ref(tty);
440 	if (disc == NULL)
441 		return;
442 
443 	mutex_lock(&buf->lock);
444 
445 	while (1) {
446 		struct tty_buffer *head = buf->head;
447 		int count;
448 
449 		/* Ldisc or user is trying to gain exclusive access */
450 		if (atomic_read(&buf->priority))
451 			break;
452 
453 		count = head->commit - head->read;
454 		if (!count) {
455 			if (head->next == NULL)
456 				break;
457 			buf->head = head->next;
458 			tty_buffer_free(port, head);
459 			continue;
460 		}
461 
462 		count = receive_buf(tty, head, count);
463 		if (!count)
464 			break;
465 	}
466 
467 	mutex_unlock(&buf->lock);
468 
469 	tty_ldisc_deref(disc);
470 }
471 
472 /**
473  *	tty_flush_to_ldisc
474  *	@tty: tty to push
475  *
476  *	Push the terminal flip buffers to the line discipline.
477  *
478  *	Must not be called from IRQ context.
479  */
480 void tty_flush_to_ldisc(struct tty_struct *tty)
481 {
482 	flush_work(&tty->port->buf.work);
483 }
484 
485 /**
486  *	tty_flip_buffer_push	-	terminal
487  *	@port: tty port to push
488  *
489  *	Queue a push of the terminal flip buffers to the line discipline.
490  *	Can be called from IRQ/atomic context.
491  *
492  *	In the event of the queue being busy for flipping the work will be
493  *	held off and retried later.
494  */
495 
496 void tty_flip_buffer_push(struct tty_port *port)
497 {
498 	tty_schedule_flip(port);
499 }
500 EXPORT_SYMBOL(tty_flip_buffer_push);
501 
502 /**
503  *	tty_buffer_init		-	prepare a tty buffer structure
504  *	@tty: tty to initialise
505  *
506  *	Set up the initial state of the buffer management for a tty device.
507  *	Must be called before the other tty buffer functions are used.
508  */
509 
510 void tty_buffer_init(struct tty_port *port)
511 {
512 	struct tty_bufhead *buf = &port->buf;
513 
514 	mutex_init(&buf->lock);
515 	tty_buffer_reset(&buf->sentinel, 0);
516 	buf->head = &buf->sentinel;
517 	buf->tail = &buf->sentinel;
518 	init_llist_head(&buf->free);
519 	atomic_set(&buf->mem_used, 0);
520 	atomic_set(&buf->priority, 0);
521 	INIT_WORK(&buf->work, flush_to_ldisc);
522 	buf->mem_limit = TTYB_DEFAULT_MEM_LIMIT;
523 }
524 
525 /**
526  *	tty_buffer_set_limit	-	change the tty buffer memory limit
527  *	@port: tty port to change
528  *
529  *	Change the tty buffer memory limit.
530  *	Must be called before the other tty buffer functions are used.
531  */
532 
533 int tty_buffer_set_limit(struct tty_port *port, int limit)
534 {
535 	if (limit < MIN_TTYB_SIZE)
536 		return -EINVAL;
537 	port->buf.mem_limit = limit;
538 	return 0;
539 }
540 EXPORT_SYMBOL_GPL(tty_buffer_set_limit);
541