1 /* 2 * Tty buffer allocation management 3 */ 4 5 #include <linux/types.h> 6 #include <linux/errno.h> 7 #include <linux/tty.h> 8 #include <linux/tty_driver.h> 9 #include <linux/tty_flip.h> 10 #include <linux/timer.h> 11 #include <linux/string.h> 12 #include <linux/slab.h> 13 #include <linux/sched.h> 14 #include <linux/wait.h> 15 #include <linux/bitops.h> 16 #include <linux/delay.h> 17 #include <linux/module.h> 18 #include <linux/ratelimit.h> 19 20 21 #define MIN_TTYB_SIZE 256 22 #define TTYB_ALIGN_MASK 255 23 24 /* 25 * Byte threshold to limit memory consumption for flip buffers. 26 * The actual memory limit is > 2x this amount. 27 */ 28 #define TTYB_DEFAULT_MEM_LIMIT 65536 29 30 /* 31 * We default to dicing tty buffer allocations to this many characters 32 * in order to avoid multiple page allocations. We know the size of 33 * tty_buffer itself but it must also be taken into account that the 34 * the buffer is 256 byte aligned. See tty_buffer_find for the allocation 35 * logic this must match 36 */ 37 38 #define TTY_BUFFER_PAGE (((PAGE_SIZE - sizeof(struct tty_buffer)) / 2) & ~0xFF) 39 40 41 /** 42 * tty_buffer_lock_exclusive - gain exclusive access to buffer 43 * tty_buffer_unlock_exclusive - release exclusive access 44 * 45 * @port - tty_port owning the flip buffer 46 * 47 * Guarantees safe use of the line discipline's receive_buf() method by 48 * excluding the buffer work and any pending flush from using the flip 49 * buffer. Data can continue to be added concurrently to the flip buffer 50 * from the driver side. 51 * 52 * On release, the buffer work is restarted if there is data in the 53 * flip buffer 54 */ 55 56 void tty_buffer_lock_exclusive(struct tty_port *port) 57 { 58 struct tty_bufhead *buf = &port->buf; 59 60 atomic_inc(&buf->priority); 61 mutex_lock(&buf->lock); 62 } 63 64 void tty_buffer_unlock_exclusive(struct tty_port *port) 65 { 66 struct tty_bufhead *buf = &port->buf; 67 int restart; 68 69 restart = buf->head->commit != buf->head->read; 70 71 atomic_dec(&buf->priority); 72 mutex_unlock(&buf->lock); 73 if (restart) 74 queue_work(system_unbound_wq, &buf->work); 75 } 76 77 /** 78 * tty_buffer_space_avail - return unused buffer space 79 * @port - tty_port owning the flip buffer 80 * 81 * Returns the # of bytes which can be written by the driver without 82 * reaching the buffer limit. 83 * 84 * Note: this does not guarantee that memory is available to write 85 * the returned # of bytes (use tty_prepare_flip_string_xxx() to 86 * pre-allocate if memory guarantee is required). 87 */ 88 89 int tty_buffer_space_avail(struct tty_port *port) 90 { 91 int space = port->buf.mem_limit - atomic_read(&port->buf.mem_used); 92 return max(space, 0); 93 } 94 EXPORT_SYMBOL_GPL(tty_buffer_space_avail); 95 96 static void tty_buffer_reset(struct tty_buffer *p, size_t size) 97 { 98 p->used = 0; 99 p->size = size; 100 p->next = NULL; 101 p->commit = 0; 102 p->read = 0; 103 p->flags = 0; 104 } 105 106 /** 107 * tty_buffer_free_all - free buffers used by a tty 108 * @tty: tty to free from 109 * 110 * Remove all the buffers pending on a tty whether queued with data 111 * or in the free ring. Must be called when the tty is no longer in use 112 */ 113 114 void tty_buffer_free_all(struct tty_port *port) 115 { 116 struct tty_bufhead *buf = &port->buf; 117 struct tty_buffer *p, *next; 118 struct llist_node *llist; 119 120 while ((p = buf->head) != NULL) { 121 buf->head = p->next; 122 if (p->size > 0) 123 kfree(p); 124 } 125 llist = llist_del_all(&buf->free); 126 llist_for_each_entry_safe(p, next, llist, free) 127 kfree(p); 128 129 tty_buffer_reset(&buf->sentinel, 0); 130 buf->head = &buf->sentinel; 131 buf->tail = &buf->sentinel; 132 133 atomic_set(&buf->mem_used, 0); 134 } 135 136 /** 137 * tty_buffer_alloc - allocate a tty buffer 138 * @tty: tty device 139 * @size: desired size (characters) 140 * 141 * Allocate a new tty buffer to hold the desired number of characters. 142 * We round our buffers off in 256 character chunks to get better 143 * allocation behaviour. 144 * Return NULL if out of memory or the allocation would exceed the 145 * per device queue 146 */ 147 148 static struct tty_buffer *tty_buffer_alloc(struct tty_port *port, size_t size) 149 { 150 struct llist_node *free; 151 struct tty_buffer *p; 152 153 /* Round the buffer size out */ 154 size = __ALIGN_MASK(size, TTYB_ALIGN_MASK); 155 156 if (size <= MIN_TTYB_SIZE) { 157 free = llist_del_first(&port->buf.free); 158 if (free) { 159 p = llist_entry(free, struct tty_buffer, free); 160 goto found; 161 } 162 } 163 164 /* Should possibly check if this fails for the largest buffer we 165 have queued and recycle that ? */ 166 if (atomic_read(&port->buf.mem_used) > port->buf.mem_limit) 167 return NULL; 168 p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC); 169 if (p == NULL) 170 return NULL; 171 172 found: 173 tty_buffer_reset(p, size); 174 atomic_add(size, &port->buf.mem_used); 175 return p; 176 } 177 178 /** 179 * tty_buffer_free - free a tty buffer 180 * @tty: tty owning the buffer 181 * @b: the buffer to free 182 * 183 * Free a tty buffer, or add it to the free list according to our 184 * internal strategy 185 */ 186 187 static void tty_buffer_free(struct tty_port *port, struct tty_buffer *b) 188 { 189 struct tty_bufhead *buf = &port->buf; 190 191 /* Dumb strategy for now - should keep some stats */ 192 WARN_ON(atomic_sub_return(b->size, &buf->mem_used) < 0); 193 194 if (b->size > MIN_TTYB_SIZE) 195 kfree(b); 196 else if (b->size > 0) 197 llist_add(&b->free, &buf->free); 198 } 199 200 /** 201 * tty_buffer_flush - flush full tty buffers 202 * @tty: tty to flush 203 * 204 * flush all the buffers containing receive data. 205 * 206 * Locking: takes buffer lock to ensure single-threaded flip buffer 207 * 'consumer' 208 */ 209 210 void tty_buffer_flush(struct tty_struct *tty) 211 { 212 struct tty_port *port = tty->port; 213 struct tty_bufhead *buf = &port->buf; 214 struct tty_buffer *next; 215 216 atomic_inc(&buf->priority); 217 218 mutex_lock(&buf->lock); 219 while ((next = buf->head->next) != NULL) { 220 tty_buffer_free(port, buf->head); 221 buf->head = next; 222 } 223 buf->head->read = buf->head->commit; 224 atomic_dec(&buf->priority); 225 mutex_unlock(&buf->lock); 226 } 227 228 /** 229 * tty_buffer_request_room - grow tty buffer if needed 230 * @tty: tty structure 231 * @size: size desired 232 * @flags: buffer flags if new buffer allocated (default = 0) 233 * 234 * Make at least size bytes of linear space available for the tty 235 * buffer. If we fail return the size we managed to find. 236 * 237 * Will change over to a new buffer if the current buffer is encoded as 238 * TTY_NORMAL (so has no flags buffer) and the new buffer requires 239 * a flags buffer. 240 */ 241 static int __tty_buffer_request_room(struct tty_port *port, size_t size, 242 int flags) 243 { 244 struct tty_bufhead *buf = &port->buf; 245 struct tty_buffer *b, *n; 246 int left, change; 247 248 b = buf->tail; 249 if (b->flags & TTYB_NORMAL) 250 left = 2 * b->size - b->used; 251 else 252 left = b->size - b->used; 253 254 change = (b->flags & TTYB_NORMAL) && (~flags & TTYB_NORMAL); 255 if (change || left < size) { 256 /* This is the slow path - looking for new buffers to use */ 257 if ((n = tty_buffer_alloc(port, size)) != NULL) { 258 n->flags = flags; 259 buf->tail = n; 260 b->commit = b->used; 261 smp_mb(); 262 b->next = n; 263 } else if (change) 264 size = 0; 265 else 266 size = left; 267 } 268 return size; 269 } 270 271 int tty_buffer_request_room(struct tty_port *port, size_t size) 272 { 273 return __tty_buffer_request_room(port, size, 0); 274 } 275 EXPORT_SYMBOL_GPL(tty_buffer_request_room); 276 277 /** 278 * tty_insert_flip_string_fixed_flag - Add characters to the tty buffer 279 * @port: tty port 280 * @chars: characters 281 * @flag: flag value for each character 282 * @size: size 283 * 284 * Queue a series of bytes to the tty buffering. All the characters 285 * passed are marked with the supplied flag. Returns the number added. 286 */ 287 288 int tty_insert_flip_string_fixed_flag(struct tty_port *port, 289 const unsigned char *chars, char flag, size_t size) 290 { 291 int copied = 0; 292 do { 293 int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE); 294 int flags = (flag == TTY_NORMAL) ? TTYB_NORMAL : 0; 295 int space = __tty_buffer_request_room(port, goal, flags); 296 struct tty_buffer *tb = port->buf.tail; 297 if (unlikely(space == 0)) 298 break; 299 memcpy(char_buf_ptr(tb, tb->used), chars, space); 300 if (~tb->flags & TTYB_NORMAL) 301 memset(flag_buf_ptr(tb, tb->used), flag, space); 302 tb->used += space; 303 copied += space; 304 chars += space; 305 /* There is a small chance that we need to split the data over 306 several buffers. If this is the case we must loop */ 307 } while (unlikely(size > copied)); 308 return copied; 309 } 310 EXPORT_SYMBOL(tty_insert_flip_string_fixed_flag); 311 312 /** 313 * tty_insert_flip_string_flags - Add characters to the tty buffer 314 * @port: tty port 315 * @chars: characters 316 * @flags: flag bytes 317 * @size: size 318 * 319 * Queue a series of bytes to the tty buffering. For each character 320 * the flags array indicates the status of the character. Returns the 321 * number added. 322 */ 323 324 int tty_insert_flip_string_flags(struct tty_port *port, 325 const unsigned char *chars, const char *flags, size_t size) 326 { 327 int copied = 0; 328 do { 329 int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE); 330 int space = tty_buffer_request_room(port, goal); 331 struct tty_buffer *tb = port->buf.tail; 332 if (unlikely(space == 0)) 333 break; 334 memcpy(char_buf_ptr(tb, tb->used), chars, space); 335 memcpy(flag_buf_ptr(tb, tb->used), flags, space); 336 tb->used += space; 337 copied += space; 338 chars += space; 339 flags += space; 340 /* There is a small chance that we need to split the data over 341 several buffers. If this is the case we must loop */ 342 } while (unlikely(size > copied)); 343 return copied; 344 } 345 EXPORT_SYMBOL(tty_insert_flip_string_flags); 346 347 /** 348 * tty_schedule_flip - push characters to ldisc 349 * @port: tty port to push from 350 * 351 * Takes any pending buffers and transfers their ownership to the 352 * ldisc side of the queue. It then schedules those characters for 353 * processing by the line discipline. 354 * Note that this function can only be used when the low_latency flag 355 * is unset. Otherwise the workqueue won't be flushed. 356 */ 357 358 void tty_schedule_flip(struct tty_port *port) 359 { 360 struct tty_bufhead *buf = &port->buf; 361 WARN_ON(port->low_latency); 362 363 buf->tail->commit = buf->tail->used; 364 schedule_work(&buf->work); 365 } 366 EXPORT_SYMBOL(tty_schedule_flip); 367 368 /** 369 * tty_prepare_flip_string - make room for characters 370 * @port: tty port 371 * @chars: return pointer for character write area 372 * @size: desired size 373 * 374 * Prepare a block of space in the buffer for data. Returns the length 375 * available and buffer pointer to the space which is now allocated and 376 * accounted for as ready for normal characters. This is used for drivers 377 * that need their own block copy routines into the buffer. There is no 378 * guarantee the buffer is a DMA target! 379 */ 380 381 int tty_prepare_flip_string(struct tty_port *port, unsigned char **chars, 382 size_t size) 383 { 384 int space = __tty_buffer_request_room(port, size, TTYB_NORMAL); 385 if (likely(space)) { 386 struct tty_buffer *tb = port->buf.tail; 387 *chars = char_buf_ptr(tb, tb->used); 388 if (~tb->flags & TTYB_NORMAL) 389 memset(flag_buf_ptr(tb, tb->used), TTY_NORMAL, space); 390 tb->used += space; 391 } 392 return space; 393 } 394 EXPORT_SYMBOL_GPL(tty_prepare_flip_string); 395 396 397 static int 398 receive_buf(struct tty_struct *tty, struct tty_buffer *head, int count) 399 { 400 struct tty_ldisc *disc = tty->ldisc; 401 unsigned char *p = char_buf_ptr(head, head->read); 402 char *f = NULL; 403 404 if (~head->flags & TTYB_NORMAL) 405 f = flag_buf_ptr(head, head->read); 406 407 if (disc->ops->receive_buf2) 408 count = disc->ops->receive_buf2(tty, p, f, count); 409 else { 410 count = min_t(int, count, tty->receive_room); 411 if (count) 412 disc->ops->receive_buf(tty, p, f, count); 413 } 414 head->read += count; 415 return count; 416 } 417 418 /** 419 * flush_to_ldisc 420 * @work: tty structure passed from work queue. 421 * 422 * This routine is called out of the software interrupt to flush data 423 * from the buffer chain to the line discipline. 424 * 425 * The receive_buf method is single threaded for each tty instance. 426 * 427 * Locking: takes buffer lock to ensure single-threaded flip buffer 428 * 'consumer' 429 */ 430 431 static void flush_to_ldisc(struct work_struct *work) 432 { 433 struct tty_port *port = container_of(work, struct tty_port, buf.work); 434 struct tty_bufhead *buf = &port->buf; 435 struct tty_struct *tty; 436 struct tty_ldisc *disc; 437 438 tty = port->itty; 439 if (tty == NULL) 440 return; 441 442 disc = tty_ldisc_ref(tty); 443 if (disc == NULL) 444 return; 445 446 mutex_lock(&buf->lock); 447 448 while (1) { 449 struct tty_buffer *head = buf->head; 450 int count; 451 452 /* Ldisc or user is trying to gain exclusive access */ 453 if (atomic_read(&buf->priority)) 454 break; 455 456 count = head->commit - head->read; 457 if (!count) { 458 if (head->next == NULL) 459 break; 460 buf->head = head->next; 461 tty_buffer_free(port, head); 462 continue; 463 } 464 465 count = receive_buf(tty, head, count); 466 if (!count) 467 break; 468 } 469 470 mutex_unlock(&buf->lock); 471 472 tty_ldisc_deref(disc); 473 } 474 475 /** 476 * tty_flush_to_ldisc 477 * @tty: tty to push 478 * 479 * Push the terminal flip buffers to the line discipline. 480 * 481 * Must not be called from IRQ context. 482 */ 483 void tty_flush_to_ldisc(struct tty_struct *tty) 484 { 485 if (!tty->port->low_latency) 486 flush_work(&tty->port->buf.work); 487 } 488 489 /** 490 * tty_flip_buffer_push - terminal 491 * @port: tty port to push 492 * 493 * Queue a push of the terminal flip buffers to the line discipline. This 494 * function must not be called from IRQ context if port->low_latency is 495 * set. 496 * 497 * In the event of the queue being busy for flipping the work will be 498 * held off and retried later. 499 */ 500 501 void tty_flip_buffer_push(struct tty_port *port) 502 { 503 struct tty_bufhead *buf = &port->buf; 504 505 buf->tail->commit = buf->tail->used; 506 507 if (port->low_latency) 508 flush_to_ldisc(&buf->work); 509 else 510 schedule_work(&buf->work); 511 } 512 EXPORT_SYMBOL(tty_flip_buffer_push); 513 514 /** 515 * tty_buffer_init - prepare a tty buffer structure 516 * @tty: tty to initialise 517 * 518 * Set up the initial state of the buffer management for a tty device. 519 * Must be called before the other tty buffer functions are used. 520 */ 521 522 void tty_buffer_init(struct tty_port *port) 523 { 524 struct tty_bufhead *buf = &port->buf; 525 526 mutex_init(&buf->lock); 527 tty_buffer_reset(&buf->sentinel, 0); 528 buf->head = &buf->sentinel; 529 buf->tail = &buf->sentinel; 530 init_llist_head(&buf->free); 531 atomic_set(&buf->mem_used, 0); 532 atomic_set(&buf->priority, 0); 533 INIT_WORK(&buf->work, flush_to_ldisc); 534 buf->mem_limit = TTYB_DEFAULT_MEM_LIMIT; 535 } 536 537 /** 538 * tty_buffer_set_limit - change the tty buffer memory limit 539 * @port: tty port to change 540 * 541 * Change the tty buffer memory limit. 542 * Must be called before the other tty buffer functions are used. 543 */ 544 545 int tty_buffer_set_limit(struct tty_port *port, int limit) 546 { 547 if (limit < MIN_TTYB_SIZE) 548 return -EINVAL; 549 port->buf.mem_limit = limit; 550 return 0; 551 } 552 EXPORT_SYMBOL_GPL(tty_buffer_set_limit); 553