xref: /openbmc/linux/drivers/tty/tty_buffer.c (revision 36bccb11)
1 /*
2  * Tty buffer allocation management
3  */
4 
5 #include <linux/types.h>
6 #include <linux/errno.h>
7 #include <linux/tty.h>
8 #include <linux/tty_driver.h>
9 #include <linux/tty_flip.h>
10 #include <linux/timer.h>
11 #include <linux/string.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/wait.h>
15 #include <linux/bitops.h>
16 #include <linux/delay.h>
17 #include <linux/module.h>
18 #include <linux/ratelimit.h>
19 
20 
21 #define MIN_TTYB_SIZE	256
22 #define TTYB_ALIGN_MASK	255
23 
24 /*
25  * Byte threshold to limit memory consumption for flip buffers.
26  * The actual memory limit is > 2x this amount.
27  */
28 #define TTYB_DEFAULT_MEM_LIMIT	65536
29 
30 /*
31  * We default to dicing tty buffer allocations to this many characters
32  * in order to avoid multiple page allocations. We know the size of
33  * tty_buffer itself but it must also be taken into account that the
34  * the buffer is 256 byte aligned. See tty_buffer_find for the allocation
35  * logic this must match
36  */
37 
38 #define TTY_BUFFER_PAGE	(((PAGE_SIZE - sizeof(struct tty_buffer)) / 2) & ~0xFF)
39 
40 
41 /**
42  *	tty_buffer_lock_exclusive	-	gain exclusive access to buffer
43  *	tty_buffer_unlock_exclusive	-	release exclusive access
44  *
45  *	@port - tty_port owning the flip buffer
46  *
47  *	Guarantees safe use of the line discipline's receive_buf() method by
48  *	excluding the buffer work and any pending flush from using the flip
49  *	buffer. Data can continue to be added concurrently to the flip buffer
50  *	from the driver side.
51  *
52  *	On release, the buffer work is restarted if there is data in the
53  *	flip buffer
54  */
55 
56 void tty_buffer_lock_exclusive(struct tty_port *port)
57 {
58 	struct tty_bufhead *buf = &port->buf;
59 
60 	atomic_inc(&buf->priority);
61 	mutex_lock(&buf->lock);
62 }
63 
64 void tty_buffer_unlock_exclusive(struct tty_port *port)
65 {
66 	struct tty_bufhead *buf = &port->buf;
67 	int restart;
68 
69 	restart = buf->head->commit != buf->head->read;
70 
71 	atomic_dec(&buf->priority);
72 	mutex_unlock(&buf->lock);
73 	if (restart)
74 		queue_work(system_unbound_wq, &buf->work);
75 }
76 
77 /**
78  *	tty_buffer_space_avail	-	return unused buffer space
79  *	@port - tty_port owning the flip buffer
80  *
81  *	Returns the # of bytes which can be written by the driver without
82  *	reaching the buffer limit.
83  *
84  *	Note: this does not guarantee that memory is available to write
85  *	the returned # of bytes (use tty_prepare_flip_string_xxx() to
86  *	pre-allocate if memory guarantee is required).
87  */
88 
89 int tty_buffer_space_avail(struct tty_port *port)
90 {
91 	int space = port->buf.mem_limit - atomic_read(&port->buf.mem_used);
92 	return max(space, 0);
93 }
94 EXPORT_SYMBOL_GPL(tty_buffer_space_avail);
95 
96 static void tty_buffer_reset(struct tty_buffer *p, size_t size)
97 {
98 	p->used = 0;
99 	p->size = size;
100 	p->next = NULL;
101 	p->commit = 0;
102 	p->read = 0;
103 	p->flags = 0;
104 }
105 
106 /**
107  *	tty_buffer_free_all		-	free buffers used by a tty
108  *	@tty: tty to free from
109  *
110  *	Remove all the buffers pending on a tty whether queued with data
111  *	or in the free ring. Must be called when the tty is no longer in use
112  */
113 
114 void tty_buffer_free_all(struct tty_port *port)
115 {
116 	struct tty_bufhead *buf = &port->buf;
117 	struct tty_buffer *p, *next;
118 	struct llist_node *llist;
119 
120 	while ((p = buf->head) != NULL) {
121 		buf->head = p->next;
122 		if (p->size > 0)
123 			kfree(p);
124 	}
125 	llist = llist_del_all(&buf->free);
126 	llist_for_each_entry_safe(p, next, llist, free)
127 		kfree(p);
128 
129 	tty_buffer_reset(&buf->sentinel, 0);
130 	buf->head = &buf->sentinel;
131 	buf->tail = &buf->sentinel;
132 
133 	atomic_set(&buf->mem_used, 0);
134 }
135 
136 /**
137  *	tty_buffer_alloc	-	allocate a tty buffer
138  *	@tty: tty device
139  *	@size: desired size (characters)
140  *
141  *	Allocate a new tty buffer to hold the desired number of characters.
142  *	We round our buffers off in 256 character chunks to get better
143  *	allocation behaviour.
144  *	Return NULL if out of memory or the allocation would exceed the
145  *	per device queue
146  */
147 
148 static struct tty_buffer *tty_buffer_alloc(struct tty_port *port, size_t size)
149 {
150 	struct llist_node *free;
151 	struct tty_buffer *p;
152 
153 	/* Round the buffer size out */
154 	size = __ALIGN_MASK(size, TTYB_ALIGN_MASK);
155 
156 	if (size <= MIN_TTYB_SIZE) {
157 		free = llist_del_first(&port->buf.free);
158 		if (free) {
159 			p = llist_entry(free, struct tty_buffer, free);
160 			goto found;
161 		}
162 	}
163 
164 	/* Should possibly check if this fails for the largest buffer we
165 	   have queued and recycle that ? */
166 	if (atomic_read(&port->buf.mem_used) > port->buf.mem_limit)
167 		return NULL;
168 	p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC);
169 	if (p == NULL)
170 		return NULL;
171 
172 found:
173 	tty_buffer_reset(p, size);
174 	atomic_add(size, &port->buf.mem_used);
175 	return p;
176 }
177 
178 /**
179  *	tty_buffer_free		-	free a tty buffer
180  *	@tty: tty owning the buffer
181  *	@b: the buffer to free
182  *
183  *	Free a tty buffer, or add it to the free list according to our
184  *	internal strategy
185  */
186 
187 static void tty_buffer_free(struct tty_port *port, struct tty_buffer *b)
188 {
189 	struct tty_bufhead *buf = &port->buf;
190 
191 	/* Dumb strategy for now - should keep some stats */
192 	WARN_ON(atomic_sub_return(b->size, &buf->mem_used) < 0);
193 
194 	if (b->size > MIN_TTYB_SIZE)
195 		kfree(b);
196 	else if (b->size > 0)
197 		llist_add(&b->free, &buf->free);
198 }
199 
200 /**
201  *	tty_buffer_flush		-	flush full tty buffers
202  *	@tty: tty to flush
203  *
204  *	flush all the buffers containing receive data.
205  *
206  *	Locking: takes buffer lock to ensure single-threaded flip buffer
207  *		 'consumer'
208  */
209 
210 void tty_buffer_flush(struct tty_struct *tty)
211 {
212 	struct tty_port *port = tty->port;
213 	struct tty_bufhead *buf = &port->buf;
214 	struct tty_buffer *next;
215 
216 	atomic_inc(&buf->priority);
217 
218 	mutex_lock(&buf->lock);
219 	while ((next = buf->head->next) != NULL) {
220 		tty_buffer_free(port, buf->head);
221 		buf->head = next;
222 	}
223 	buf->head->read = buf->head->commit;
224 	atomic_dec(&buf->priority);
225 	mutex_unlock(&buf->lock);
226 }
227 
228 /**
229  *	tty_buffer_request_room		-	grow tty buffer if needed
230  *	@tty: tty structure
231  *	@size: size desired
232  *	@flags: buffer flags if new buffer allocated (default = 0)
233  *
234  *	Make at least size bytes of linear space available for the tty
235  *	buffer. If we fail return the size we managed to find.
236  *
237  *	Will change over to a new buffer if the current buffer is encoded as
238  *	TTY_NORMAL (so has no flags buffer) and the new buffer requires
239  *	a flags buffer.
240  */
241 static int __tty_buffer_request_room(struct tty_port *port, size_t size,
242 				     int flags)
243 {
244 	struct tty_bufhead *buf = &port->buf;
245 	struct tty_buffer *b, *n;
246 	int left, change;
247 
248 	b = buf->tail;
249 	if (b->flags & TTYB_NORMAL)
250 		left = 2 * b->size - b->used;
251 	else
252 		left = b->size - b->used;
253 
254 	change = (b->flags & TTYB_NORMAL) && (~flags & TTYB_NORMAL);
255 	if (change || left < size) {
256 		/* This is the slow path - looking for new buffers to use */
257 		if ((n = tty_buffer_alloc(port, size)) != NULL) {
258 			n->flags = flags;
259 			buf->tail = n;
260 			b->commit = b->used;
261 			/* paired w/ barrier in flush_to_ldisc(); ensures the
262 			 * latest commit value can be read before the head is
263 			 * advanced to the next buffer
264 			 */
265 			smp_wmb();
266 			b->next = n;
267 		} else if (change)
268 			size = 0;
269 		else
270 			size = left;
271 	}
272 	return size;
273 }
274 
275 int tty_buffer_request_room(struct tty_port *port, size_t size)
276 {
277 	return __tty_buffer_request_room(port, size, 0);
278 }
279 EXPORT_SYMBOL_GPL(tty_buffer_request_room);
280 
281 /**
282  *	tty_insert_flip_string_fixed_flag - Add characters to the tty buffer
283  *	@port: tty port
284  *	@chars: characters
285  *	@flag: flag value for each character
286  *	@size: size
287  *
288  *	Queue a series of bytes to the tty buffering. All the characters
289  *	passed are marked with the supplied flag. Returns the number added.
290  */
291 
292 int tty_insert_flip_string_fixed_flag(struct tty_port *port,
293 		const unsigned char *chars, char flag, size_t size)
294 {
295 	int copied = 0;
296 	do {
297 		int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE);
298 		int flags = (flag == TTY_NORMAL) ? TTYB_NORMAL : 0;
299 		int space = __tty_buffer_request_room(port, goal, flags);
300 		struct tty_buffer *tb = port->buf.tail;
301 		if (unlikely(space == 0))
302 			break;
303 		memcpy(char_buf_ptr(tb, tb->used), chars, space);
304 		if (~tb->flags & TTYB_NORMAL)
305 			memset(flag_buf_ptr(tb, tb->used), flag, space);
306 		tb->used += space;
307 		copied += space;
308 		chars += space;
309 		/* There is a small chance that we need to split the data over
310 		   several buffers. If this is the case we must loop */
311 	} while (unlikely(size > copied));
312 	return copied;
313 }
314 EXPORT_SYMBOL(tty_insert_flip_string_fixed_flag);
315 
316 /**
317  *	tty_insert_flip_string_flags	-	Add characters to the tty buffer
318  *	@port: tty port
319  *	@chars: characters
320  *	@flags: flag bytes
321  *	@size: size
322  *
323  *	Queue a series of bytes to the tty buffering. For each character
324  *	the flags array indicates the status of the character. Returns the
325  *	number added.
326  */
327 
328 int tty_insert_flip_string_flags(struct tty_port *port,
329 		const unsigned char *chars, const char *flags, size_t size)
330 {
331 	int copied = 0;
332 	do {
333 		int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE);
334 		int space = tty_buffer_request_room(port, goal);
335 		struct tty_buffer *tb = port->buf.tail;
336 		if (unlikely(space == 0))
337 			break;
338 		memcpy(char_buf_ptr(tb, tb->used), chars, space);
339 		memcpy(flag_buf_ptr(tb, tb->used), flags, space);
340 		tb->used += space;
341 		copied += space;
342 		chars += space;
343 		flags += space;
344 		/* There is a small chance that we need to split the data over
345 		   several buffers. If this is the case we must loop */
346 	} while (unlikely(size > copied));
347 	return copied;
348 }
349 EXPORT_SYMBOL(tty_insert_flip_string_flags);
350 
351 /**
352  *	tty_schedule_flip	-	push characters to ldisc
353  *	@port: tty port to push from
354  *
355  *	Takes any pending buffers and transfers their ownership to the
356  *	ldisc side of the queue. It then schedules those characters for
357  *	processing by the line discipline.
358  */
359 
360 void tty_schedule_flip(struct tty_port *port)
361 {
362 	struct tty_bufhead *buf = &port->buf;
363 
364 	buf->tail->commit = buf->tail->used;
365 	schedule_work(&buf->work);
366 }
367 EXPORT_SYMBOL(tty_schedule_flip);
368 
369 /**
370  *	tty_prepare_flip_string		-	make room for characters
371  *	@port: tty port
372  *	@chars: return pointer for character write area
373  *	@size: desired size
374  *
375  *	Prepare a block of space in the buffer for data. Returns the length
376  *	available and buffer pointer to the space which is now allocated and
377  *	accounted for as ready for normal characters. This is used for drivers
378  *	that need their own block copy routines into the buffer. There is no
379  *	guarantee the buffer is a DMA target!
380  */
381 
382 int tty_prepare_flip_string(struct tty_port *port, unsigned char **chars,
383 		size_t size)
384 {
385 	int space = __tty_buffer_request_room(port, size, TTYB_NORMAL);
386 	if (likely(space)) {
387 		struct tty_buffer *tb = port->buf.tail;
388 		*chars = char_buf_ptr(tb, tb->used);
389 		if (~tb->flags & TTYB_NORMAL)
390 			memset(flag_buf_ptr(tb, tb->used), TTY_NORMAL, space);
391 		tb->used += space;
392 	}
393 	return space;
394 }
395 EXPORT_SYMBOL_GPL(tty_prepare_flip_string);
396 
397 
398 static int
399 receive_buf(struct tty_struct *tty, struct tty_buffer *head, int count)
400 {
401 	struct tty_ldisc *disc = tty->ldisc;
402 	unsigned char *p = char_buf_ptr(head, head->read);
403 	char	      *f = NULL;
404 
405 	if (~head->flags & TTYB_NORMAL)
406 		f = flag_buf_ptr(head, head->read);
407 
408 	if (disc->ops->receive_buf2)
409 		count = disc->ops->receive_buf2(tty, p, f, count);
410 	else {
411 		count = min_t(int, count, tty->receive_room);
412 		if (count)
413 			disc->ops->receive_buf(tty, p, f, count);
414 	}
415 	head->read += count;
416 	return count;
417 }
418 
419 /**
420  *	flush_to_ldisc
421  *	@work: tty structure passed from work queue.
422  *
423  *	This routine is called out of the software interrupt to flush data
424  *	from the buffer chain to the line discipline.
425  *
426  *	The receive_buf method is single threaded for each tty instance.
427  *
428  *	Locking: takes buffer lock to ensure single-threaded flip buffer
429  *		 'consumer'
430  */
431 
432 static void flush_to_ldisc(struct work_struct *work)
433 {
434 	struct tty_port *port = container_of(work, struct tty_port, buf.work);
435 	struct tty_bufhead *buf = &port->buf;
436 	struct tty_struct *tty;
437 	struct tty_ldisc *disc;
438 
439 	tty = port->itty;
440 	if (tty == NULL)
441 		return;
442 
443 	disc = tty_ldisc_ref(tty);
444 	if (disc == NULL)
445 		return;
446 
447 	mutex_lock(&buf->lock);
448 
449 	while (1) {
450 		struct tty_buffer *head = buf->head;
451 		struct tty_buffer *next;
452 		int count;
453 
454 		/* Ldisc or user is trying to gain exclusive access */
455 		if (atomic_read(&buf->priority))
456 			break;
457 
458 		next = head->next;
459 		/* paired w/ barrier in __tty_buffer_request_room();
460 		 * ensures commit value read is not stale if the head
461 		 * is advancing to the next buffer
462 		 */
463 		smp_rmb();
464 		count = head->commit - head->read;
465 		if (!count) {
466 			if (next == NULL)
467 				break;
468 			buf->head = next;
469 			tty_buffer_free(port, head);
470 			continue;
471 		}
472 
473 		count = receive_buf(tty, head, count);
474 		if (!count)
475 			break;
476 	}
477 
478 	mutex_unlock(&buf->lock);
479 
480 	tty_ldisc_deref(disc);
481 }
482 
483 /**
484  *	tty_flush_to_ldisc
485  *	@tty: tty to push
486  *
487  *	Push the terminal flip buffers to the line discipline.
488  *
489  *	Must not be called from IRQ context.
490  */
491 void tty_flush_to_ldisc(struct tty_struct *tty)
492 {
493 	flush_work(&tty->port->buf.work);
494 }
495 
496 /**
497  *	tty_flip_buffer_push	-	terminal
498  *	@port: tty port to push
499  *
500  *	Queue a push of the terminal flip buffers to the line discipline.
501  *	Can be called from IRQ/atomic context.
502  *
503  *	In the event of the queue being busy for flipping the work will be
504  *	held off and retried later.
505  */
506 
507 void tty_flip_buffer_push(struct tty_port *port)
508 {
509 	tty_schedule_flip(port);
510 }
511 EXPORT_SYMBOL(tty_flip_buffer_push);
512 
513 /**
514  *	tty_buffer_init		-	prepare a tty buffer structure
515  *	@tty: tty to initialise
516  *
517  *	Set up the initial state of the buffer management for a tty device.
518  *	Must be called before the other tty buffer functions are used.
519  */
520 
521 void tty_buffer_init(struct tty_port *port)
522 {
523 	struct tty_bufhead *buf = &port->buf;
524 
525 	mutex_init(&buf->lock);
526 	tty_buffer_reset(&buf->sentinel, 0);
527 	buf->head = &buf->sentinel;
528 	buf->tail = &buf->sentinel;
529 	init_llist_head(&buf->free);
530 	atomic_set(&buf->mem_used, 0);
531 	atomic_set(&buf->priority, 0);
532 	INIT_WORK(&buf->work, flush_to_ldisc);
533 	buf->mem_limit = TTYB_DEFAULT_MEM_LIMIT;
534 }
535 
536 /**
537  *	tty_buffer_set_limit	-	change the tty buffer memory limit
538  *	@port: tty port to change
539  *
540  *	Change the tty buffer memory limit.
541  *	Must be called before the other tty buffer functions are used.
542  */
543 
544 int tty_buffer_set_limit(struct tty_port *port, int limit)
545 {
546 	if (limit < MIN_TTYB_SIZE)
547 		return -EINVAL;
548 	port->buf.mem_limit = limit;
549 	return 0;
550 }
551 EXPORT_SYMBOL_GPL(tty_buffer_set_limit);
552