1 // SPDX-License-Identifier: GPL-1.0+ 2 /* 3 * Device driver for Microgate SyncLink GT serial adapters. 4 * 5 * written by Paul Fulghum for Microgate Corporation 6 * paulkf@microgate.com 7 * 8 * Microgate and SyncLink are trademarks of Microgate Corporation 9 * 10 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 11 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 12 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 13 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, 14 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 15 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 16 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 17 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 18 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 19 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 20 * OF THE POSSIBILITY OF SUCH DAMAGE. 21 */ 22 23 /* 24 * DEBUG OUTPUT DEFINITIONS 25 * 26 * uncomment lines below to enable specific types of debug output 27 * 28 * DBGINFO information - most verbose output 29 * DBGERR serious errors 30 * DBGBH bottom half service routine debugging 31 * DBGISR interrupt service routine debugging 32 * DBGDATA output receive and transmit data 33 * DBGTBUF output transmit DMA buffers and registers 34 * DBGRBUF output receive DMA buffers and registers 35 */ 36 37 #define DBGINFO(fmt) if (debug_level >= DEBUG_LEVEL_INFO) printk fmt 38 #define DBGERR(fmt) if (debug_level >= DEBUG_LEVEL_ERROR) printk fmt 39 #define DBGBH(fmt) if (debug_level >= DEBUG_LEVEL_BH) printk fmt 40 #define DBGISR(fmt) if (debug_level >= DEBUG_LEVEL_ISR) printk fmt 41 #define DBGDATA(info, buf, size, label) if (debug_level >= DEBUG_LEVEL_DATA) trace_block((info), (buf), (size), (label)) 42 /*#define DBGTBUF(info) dump_tbufs(info)*/ 43 /*#define DBGRBUF(info) dump_rbufs(info)*/ 44 45 46 #include <linux/module.h> 47 #include <linux/errno.h> 48 #include <linux/signal.h> 49 #include <linux/sched.h> 50 #include <linux/timer.h> 51 #include <linux/interrupt.h> 52 #include <linux/pci.h> 53 #include <linux/tty.h> 54 #include <linux/tty_flip.h> 55 #include <linux/serial.h> 56 #include <linux/major.h> 57 #include <linux/string.h> 58 #include <linux/fcntl.h> 59 #include <linux/ptrace.h> 60 #include <linux/ioport.h> 61 #include <linux/mm.h> 62 #include <linux/seq_file.h> 63 #include <linux/slab.h> 64 #include <linux/netdevice.h> 65 #include <linux/vmalloc.h> 66 #include <linux/init.h> 67 #include <linux/delay.h> 68 #include <linux/ioctl.h> 69 #include <linux/termios.h> 70 #include <linux/bitops.h> 71 #include <linux/workqueue.h> 72 #include <linux/hdlc.h> 73 #include <linux/synclink.h> 74 75 #include <asm/io.h> 76 #include <asm/irq.h> 77 #include <asm/dma.h> 78 #include <asm/types.h> 79 #include <linux/uaccess.h> 80 81 #if defined(CONFIG_HDLC) || (defined(CONFIG_HDLC_MODULE) && defined(CONFIG_SYNCLINK_GT_MODULE)) 82 #define SYNCLINK_GENERIC_HDLC 1 83 #else 84 #define SYNCLINK_GENERIC_HDLC 0 85 #endif 86 87 /* 88 * module identification 89 */ 90 static char *driver_name = "SyncLink GT"; 91 static char *slgt_driver_name = "synclink_gt"; 92 static char *tty_dev_prefix = "ttySLG"; 93 MODULE_LICENSE("GPL"); 94 #define MGSL_MAGIC 0x5401 95 #define MAX_DEVICES 32 96 97 static const struct pci_device_id pci_table[] = { 98 {PCI_VENDOR_ID_MICROGATE, SYNCLINK_GT_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID,}, 99 {PCI_VENDOR_ID_MICROGATE, SYNCLINK_GT2_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID,}, 100 {PCI_VENDOR_ID_MICROGATE, SYNCLINK_GT4_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID,}, 101 {PCI_VENDOR_ID_MICROGATE, SYNCLINK_AC_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID,}, 102 {0,}, /* terminate list */ 103 }; 104 MODULE_DEVICE_TABLE(pci, pci_table); 105 106 static int init_one(struct pci_dev *dev,const struct pci_device_id *ent); 107 static void remove_one(struct pci_dev *dev); 108 static struct pci_driver pci_driver = { 109 .name = "synclink_gt", 110 .id_table = pci_table, 111 .probe = init_one, 112 .remove = remove_one, 113 }; 114 115 static bool pci_registered; 116 117 /* 118 * module configuration and status 119 */ 120 static struct slgt_info *slgt_device_list; 121 static int slgt_device_count; 122 123 static int ttymajor; 124 static int debug_level; 125 static int maxframe[MAX_DEVICES]; 126 127 module_param(ttymajor, int, 0); 128 module_param(debug_level, int, 0); 129 module_param_array(maxframe, int, NULL, 0); 130 131 MODULE_PARM_DESC(ttymajor, "TTY major device number override: 0=auto assigned"); 132 MODULE_PARM_DESC(debug_level, "Debug syslog output: 0=disabled, 1 to 5=increasing detail"); 133 MODULE_PARM_DESC(maxframe, "Maximum frame size used by device (4096 to 65535)"); 134 135 /* 136 * tty support and callbacks 137 */ 138 static struct tty_driver *serial_driver; 139 140 static void wait_until_sent(struct tty_struct *tty, int timeout); 141 static void flush_buffer(struct tty_struct *tty); 142 static void tx_release(struct tty_struct *tty); 143 144 /* 145 * generic HDLC support 146 */ 147 #define dev_to_port(D) (dev_to_hdlc(D)->priv) 148 149 150 /* 151 * device specific structures, macros and functions 152 */ 153 154 #define SLGT_MAX_PORTS 4 155 #define SLGT_REG_SIZE 256 156 157 /* 158 * conditional wait facility 159 */ 160 struct cond_wait { 161 struct cond_wait *next; 162 wait_queue_head_t q; 163 wait_queue_entry_t wait; 164 unsigned int data; 165 }; 166 static void flush_cond_wait(struct cond_wait **head); 167 168 /* 169 * DMA buffer descriptor and access macros 170 */ 171 struct slgt_desc 172 { 173 __le16 count; 174 __le16 status; 175 __le32 pbuf; /* physical address of data buffer */ 176 __le32 next; /* physical address of next descriptor */ 177 178 /* driver book keeping */ 179 char *buf; /* virtual address of data buffer */ 180 unsigned int pdesc; /* physical address of this descriptor */ 181 dma_addr_t buf_dma_addr; 182 unsigned short buf_count; 183 }; 184 185 #define set_desc_buffer(a,b) (a).pbuf = cpu_to_le32((unsigned int)(b)) 186 #define set_desc_next(a,b) (a).next = cpu_to_le32((unsigned int)(b)) 187 #define set_desc_count(a,b)(a).count = cpu_to_le16((unsigned short)(b)) 188 #define set_desc_eof(a,b) (a).status = cpu_to_le16((b) ? (le16_to_cpu((a).status) | BIT0) : (le16_to_cpu((a).status) & ~BIT0)) 189 #define set_desc_status(a, b) (a).status = cpu_to_le16((unsigned short)(b)) 190 #define desc_count(a) (le16_to_cpu((a).count)) 191 #define desc_status(a) (le16_to_cpu((a).status)) 192 #define desc_complete(a) (le16_to_cpu((a).status) & BIT15) 193 #define desc_eof(a) (le16_to_cpu((a).status) & BIT2) 194 #define desc_crc_error(a) (le16_to_cpu((a).status) & BIT1) 195 #define desc_abort(a) (le16_to_cpu((a).status) & BIT0) 196 #define desc_residue(a) ((le16_to_cpu((a).status) & 0x38) >> 3) 197 198 struct _input_signal_events { 199 int ri_up; 200 int ri_down; 201 int dsr_up; 202 int dsr_down; 203 int dcd_up; 204 int dcd_down; 205 int cts_up; 206 int cts_down; 207 }; 208 209 /* 210 * device instance data structure 211 */ 212 struct slgt_info { 213 void *if_ptr; /* General purpose pointer (used by SPPP) */ 214 struct tty_port port; 215 216 struct slgt_info *next_device; /* device list link */ 217 218 int magic; 219 220 char device_name[25]; 221 struct pci_dev *pdev; 222 223 int port_count; /* count of ports on adapter */ 224 int adapter_num; /* adapter instance number */ 225 int port_num; /* port instance number */ 226 227 /* array of pointers to port contexts on this adapter */ 228 struct slgt_info *port_array[SLGT_MAX_PORTS]; 229 230 int line; /* tty line instance number */ 231 232 struct mgsl_icount icount; 233 234 int timeout; 235 int x_char; /* xon/xoff character */ 236 unsigned int read_status_mask; 237 unsigned int ignore_status_mask; 238 239 wait_queue_head_t status_event_wait_q; 240 wait_queue_head_t event_wait_q; 241 struct timer_list tx_timer; 242 struct timer_list rx_timer; 243 244 unsigned int gpio_present; 245 struct cond_wait *gpio_wait_q; 246 247 spinlock_t lock; /* spinlock for synchronizing with ISR */ 248 249 struct work_struct task; 250 u32 pending_bh; 251 bool bh_requested; 252 bool bh_running; 253 254 int isr_overflow; 255 bool irq_requested; /* true if IRQ requested */ 256 bool irq_occurred; /* for diagnostics use */ 257 258 /* device configuration */ 259 260 unsigned int bus_type; 261 unsigned int irq_level; 262 unsigned long irq_flags; 263 264 unsigned char __iomem * reg_addr; /* memory mapped registers address */ 265 u32 phys_reg_addr; 266 bool reg_addr_requested; 267 268 MGSL_PARAMS params; /* communications parameters */ 269 u32 idle_mode; 270 u32 max_frame_size; /* as set by device config */ 271 272 unsigned int rbuf_fill_level; 273 unsigned int rx_pio; 274 unsigned int if_mode; 275 unsigned int base_clock; 276 unsigned int xsync; 277 unsigned int xctrl; 278 279 /* device status */ 280 281 bool rx_enabled; 282 bool rx_restart; 283 284 bool tx_enabled; 285 bool tx_active; 286 287 unsigned char signals; /* serial signal states */ 288 int init_error; /* initialization error */ 289 290 unsigned char *tx_buf; 291 int tx_count; 292 293 char *flag_buf; 294 bool drop_rts_on_tx_done; 295 struct _input_signal_events input_signal_events; 296 297 int dcd_chkcount; /* check counts to prevent */ 298 int cts_chkcount; /* too many IRQs if a signal */ 299 int dsr_chkcount; /* is floating */ 300 int ri_chkcount; 301 302 char *bufs; /* virtual address of DMA buffer lists */ 303 dma_addr_t bufs_dma_addr; /* physical address of buffer descriptors */ 304 305 unsigned int rbuf_count; 306 struct slgt_desc *rbufs; 307 unsigned int rbuf_current; 308 unsigned int rbuf_index; 309 unsigned int rbuf_fill_index; 310 unsigned short rbuf_fill_count; 311 312 unsigned int tbuf_count; 313 struct slgt_desc *tbufs; 314 unsigned int tbuf_current; 315 unsigned int tbuf_start; 316 317 unsigned char *tmp_rbuf; 318 unsigned int tmp_rbuf_count; 319 320 /* SPPP/Cisco HDLC device parts */ 321 322 int netcount; 323 spinlock_t netlock; 324 #if SYNCLINK_GENERIC_HDLC 325 struct net_device *netdev; 326 #endif 327 328 }; 329 330 static MGSL_PARAMS default_params = { 331 .mode = MGSL_MODE_HDLC, 332 .loopback = 0, 333 .flags = HDLC_FLAG_UNDERRUN_ABORT15, 334 .encoding = HDLC_ENCODING_NRZI_SPACE, 335 .clock_speed = 0, 336 .addr_filter = 0xff, 337 .crc_type = HDLC_CRC_16_CCITT, 338 .preamble_length = HDLC_PREAMBLE_LENGTH_8BITS, 339 .preamble = HDLC_PREAMBLE_PATTERN_NONE, 340 .data_rate = 9600, 341 .data_bits = 8, 342 .stop_bits = 1, 343 .parity = ASYNC_PARITY_NONE 344 }; 345 346 347 #define BH_RECEIVE 1 348 #define BH_TRANSMIT 2 349 #define BH_STATUS 4 350 #define IO_PIN_SHUTDOWN_LIMIT 100 351 352 #define DMABUFSIZE 256 353 #define DESC_LIST_SIZE 4096 354 355 #define MASK_PARITY BIT1 356 #define MASK_FRAMING BIT0 357 #define MASK_BREAK BIT14 358 #define MASK_OVERRUN BIT4 359 360 #define GSR 0x00 /* global status */ 361 #define JCR 0x04 /* JTAG control */ 362 #define IODR 0x08 /* GPIO direction */ 363 #define IOER 0x0c /* GPIO interrupt enable */ 364 #define IOVR 0x10 /* GPIO value */ 365 #define IOSR 0x14 /* GPIO interrupt status */ 366 #define TDR 0x80 /* tx data */ 367 #define RDR 0x80 /* rx data */ 368 #define TCR 0x82 /* tx control */ 369 #define TIR 0x84 /* tx idle */ 370 #define TPR 0x85 /* tx preamble */ 371 #define RCR 0x86 /* rx control */ 372 #define VCR 0x88 /* V.24 control */ 373 #define CCR 0x89 /* clock control */ 374 #define BDR 0x8a /* baud divisor */ 375 #define SCR 0x8c /* serial control */ 376 #define SSR 0x8e /* serial status */ 377 #define RDCSR 0x90 /* rx DMA control/status */ 378 #define TDCSR 0x94 /* tx DMA control/status */ 379 #define RDDAR 0x98 /* rx DMA descriptor address */ 380 #define TDDAR 0x9c /* tx DMA descriptor address */ 381 #define XSR 0x40 /* extended sync pattern */ 382 #define XCR 0x44 /* extended control */ 383 384 #define RXIDLE BIT14 385 #define RXBREAK BIT14 386 #define IRQ_TXDATA BIT13 387 #define IRQ_TXIDLE BIT12 388 #define IRQ_TXUNDER BIT11 /* HDLC */ 389 #define IRQ_RXDATA BIT10 390 #define IRQ_RXIDLE BIT9 /* HDLC */ 391 #define IRQ_RXBREAK BIT9 /* async */ 392 #define IRQ_RXOVER BIT8 393 #define IRQ_DSR BIT7 394 #define IRQ_CTS BIT6 395 #define IRQ_DCD BIT5 396 #define IRQ_RI BIT4 397 #define IRQ_ALL 0x3ff0 398 #define IRQ_MASTER BIT0 399 400 #define slgt_irq_on(info, mask) \ 401 wr_reg16((info), SCR, (unsigned short)(rd_reg16((info), SCR) | (mask))) 402 #define slgt_irq_off(info, mask) \ 403 wr_reg16((info), SCR, (unsigned short)(rd_reg16((info), SCR) & ~(mask))) 404 405 static __u8 rd_reg8(struct slgt_info *info, unsigned int addr); 406 static void wr_reg8(struct slgt_info *info, unsigned int addr, __u8 value); 407 static __u16 rd_reg16(struct slgt_info *info, unsigned int addr); 408 static void wr_reg16(struct slgt_info *info, unsigned int addr, __u16 value); 409 static __u32 rd_reg32(struct slgt_info *info, unsigned int addr); 410 static void wr_reg32(struct slgt_info *info, unsigned int addr, __u32 value); 411 412 static void msc_set_vcr(struct slgt_info *info); 413 414 static int startup(struct slgt_info *info); 415 static int block_til_ready(struct tty_struct *tty, struct file * filp,struct slgt_info *info); 416 static void shutdown(struct slgt_info *info); 417 static void program_hw(struct slgt_info *info); 418 static void change_params(struct slgt_info *info); 419 420 static int adapter_test(struct slgt_info *info); 421 422 static void reset_port(struct slgt_info *info); 423 static void async_mode(struct slgt_info *info); 424 static void sync_mode(struct slgt_info *info); 425 426 static void rx_stop(struct slgt_info *info); 427 static void rx_start(struct slgt_info *info); 428 static void reset_rbufs(struct slgt_info *info); 429 static void free_rbufs(struct slgt_info *info, unsigned int first, unsigned int last); 430 static bool rx_get_frame(struct slgt_info *info); 431 static bool rx_get_buf(struct slgt_info *info); 432 433 static void tx_start(struct slgt_info *info); 434 static void tx_stop(struct slgt_info *info); 435 static void tx_set_idle(struct slgt_info *info); 436 static unsigned int tbuf_bytes(struct slgt_info *info); 437 static void reset_tbufs(struct slgt_info *info); 438 static void tdma_reset(struct slgt_info *info); 439 static bool tx_load(struct slgt_info *info, const char *buf, unsigned int count); 440 441 static void get_signals(struct slgt_info *info); 442 static void set_signals(struct slgt_info *info); 443 static void set_rate(struct slgt_info *info, u32 data_rate); 444 445 static void bh_transmit(struct slgt_info *info); 446 static void isr_txeom(struct slgt_info *info, unsigned short status); 447 448 static void tx_timeout(struct timer_list *t); 449 static void rx_timeout(struct timer_list *t); 450 451 /* 452 * ioctl handlers 453 */ 454 static int get_stats(struct slgt_info *info, struct mgsl_icount __user *user_icount); 455 static int get_params(struct slgt_info *info, MGSL_PARAMS __user *params); 456 static int set_params(struct slgt_info *info, MGSL_PARAMS __user *params); 457 static int get_txidle(struct slgt_info *info, int __user *idle_mode); 458 static int set_txidle(struct slgt_info *info, int idle_mode); 459 static int tx_enable(struct slgt_info *info, int enable); 460 static int tx_abort(struct slgt_info *info); 461 static int rx_enable(struct slgt_info *info, int enable); 462 static int modem_input_wait(struct slgt_info *info,int arg); 463 static int wait_mgsl_event(struct slgt_info *info, int __user *mask_ptr); 464 static int get_interface(struct slgt_info *info, int __user *if_mode); 465 static int set_interface(struct slgt_info *info, int if_mode); 466 static int set_gpio(struct slgt_info *info, struct gpio_desc __user *gpio); 467 static int get_gpio(struct slgt_info *info, struct gpio_desc __user *gpio); 468 static int wait_gpio(struct slgt_info *info, struct gpio_desc __user *gpio); 469 static int get_xsync(struct slgt_info *info, int __user *if_mode); 470 static int set_xsync(struct slgt_info *info, int if_mode); 471 static int get_xctrl(struct slgt_info *info, int __user *if_mode); 472 static int set_xctrl(struct slgt_info *info, int if_mode); 473 474 /* 475 * driver functions 476 */ 477 static void release_resources(struct slgt_info *info); 478 479 /* 480 * DEBUG OUTPUT CODE 481 */ 482 #ifndef DBGINFO 483 #define DBGINFO(fmt) 484 #endif 485 #ifndef DBGERR 486 #define DBGERR(fmt) 487 #endif 488 #ifndef DBGBH 489 #define DBGBH(fmt) 490 #endif 491 #ifndef DBGISR 492 #define DBGISR(fmt) 493 #endif 494 495 #ifdef DBGDATA 496 static void trace_block(struct slgt_info *info, const char *data, int count, const char *label) 497 { 498 int i; 499 int linecount; 500 printk("%s %s data:\n",info->device_name, label); 501 while(count) { 502 linecount = (count > 16) ? 16 : count; 503 for(i=0; i < linecount; i++) 504 printk("%02X ",(unsigned char)data[i]); 505 for(;i<17;i++) 506 printk(" "); 507 for(i=0;i<linecount;i++) { 508 if (data[i]>=040 && data[i]<=0176) 509 printk("%c",data[i]); 510 else 511 printk("."); 512 } 513 printk("\n"); 514 data += linecount; 515 count -= linecount; 516 } 517 } 518 #else 519 #define DBGDATA(info, buf, size, label) 520 #endif 521 522 #ifdef DBGTBUF 523 static void dump_tbufs(struct slgt_info *info) 524 { 525 int i; 526 printk("tbuf_current=%d\n", info->tbuf_current); 527 for (i=0 ; i < info->tbuf_count ; i++) { 528 printk("%d: count=%04X status=%04X\n", 529 i, le16_to_cpu(info->tbufs[i].count), le16_to_cpu(info->tbufs[i].status)); 530 } 531 } 532 #else 533 #define DBGTBUF(info) 534 #endif 535 536 #ifdef DBGRBUF 537 static void dump_rbufs(struct slgt_info *info) 538 { 539 int i; 540 printk("rbuf_current=%d\n", info->rbuf_current); 541 for (i=0 ; i < info->rbuf_count ; i++) { 542 printk("%d: count=%04X status=%04X\n", 543 i, le16_to_cpu(info->rbufs[i].count), le16_to_cpu(info->rbufs[i].status)); 544 } 545 } 546 #else 547 #define DBGRBUF(info) 548 #endif 549 550 static inline int sanity_check(struct slgt_info *info, char *devname, const char *name) 551 { 552 #ifdef SANITY_CHECK 553 if (!info) { 554 printk("null struct slgt_info for (%s) in %s\n", devname, name); 555 return 1; 556 } 557 if (info->magic != MGSL_MAGIC) { 558 printk("bad magic number struct slgt_info (%s) in %s\n", devname, name); 559 return 1; 560 } 561 #else 562 if (!info) 563 return 1; 564 #endif 565 return 0; 566 } 567 568 /* 569 * line discipline callback wrappers 570 * 571 * The wrappers maintain line discipline references 572 * while calling into the line discipline. 573 * 574 * ldisc_receive_buf - pass receive data to line discipline 575 */ 576 static void ldisc_receive_buf(struct tty_struct *tty, 577 const __u8 *data, char *flags, int count) 578 { 579 struct tty_ldisc *ld; 580 if (!tty) 581 return; 582 ld = tty_ldisc_ref(tty); 583 if (ld) { 584 if (ld->ops->receive_buf) 585 ld->ops->receive_buf(tty, data, flags, count); 586 tty_ldisc_deref(ld); 587 } 588 } 589 590 /* tty callbacks */ 591 592 static int open(struct tty_struct *tty, struct file *filp) 593 { 594 struct slgt_info *info; 595 int retval, line; 596 unsigned long flags; 597 598 line = tty->index; 599 if (line >= slgt_device_count) { 600 DBGERR(("%s: open with invalid line #%d.\n", driver_name, line)); 601 return -ENODEV; 602 } 603 604 info = slgt_device_list; 605 while(info && info->line != line) 606 info = info->next_device; 607 if (sanity_check(info, tty->name, "open")) 608 return -ENODEV; 609 if (info->init_error) { 610 DBGERR(("%s init error=%d\n", info->device_name, info->init_error)); 611 return -ENODEV; 612 } 613 614 tty->driver_data = info; 615 info->port.tty = tty; 616 617 DBGINFO(("%s open, old ref count = %d\n", info->device_name, info->port.count)); 618 619 mutex_lock(&info->port.mutex); 620 621 spin_lock_irqsave(&info->netlock, flags); 622 if (info->netcount) { 623 retval = -EBUSY; 624 spin_unlock_irqrestore(&info->netlock, flags); 625 mutex_unlock(&info->port.mutex); 626 goto cleanup; 627 } 628 info->port.count++; 629 spin_unlock_irqrestore(&info->netlock, flags); 630 631 if (info->port.count == 1) { 632 /* 1st open on this device, init hardware */ 633 retval = startup(info); 634 if (retval < 0) { 635 mutex_unlock(&info->port.mutex); 636 goto cleanup; 637 } 638 } 639 mutex_unlock(&info->port.mutex); 640 retval = block_til_ready(tty, filp, info); 641 if (retval) { 642 DBGINFO(("%s block_til_ready rc=%d\n", info->device_name, retval)); 643 goto cleanup; 644 } 645 646 retval = 0; 647 648 cleanup: 649 if (retval) { 650 if (tty->count == 1) 651 info->port.tty = NULL; /* tty layer will release tty struct */ 652 if(info->port.count) 653 info->port.count--; 654 } 655 656 DBGINFO(("%s open rc=%d\n", info->device_name, retval)); 657 return retval; 658 } 659 660 static void close(struct tty_struct *tty, struct file *filp) 661 { 662 struct slgt_info *info = tty->driver_data; 663 664 if (sanity_check(info, tty->name, "close")) 665 return; 666 DBGINFO(("%s close entry, count=%d\n", info->device_name, info->port.count)); 667 668 if (tty_port_close_start(&info->port, tty, filp) == 0) 669 goto cleanup; 670 671 mutex_lock(&info->port.mutex); 672 if (tty_port_initialized(&info->port)) 673 wait_until_sent(tty, info->timeout); 674 flush_buffer(tty); 675 tty_ldisc_flush(tty); 676 677 shutdown(info); 678 mutex_unlock(&info->port.mutex); 679 680 tty_port_close_end(&info->port, tty); 681 info->port.tty = NULL; 682 cleanup: 683 DBGINFO(("%s close exit, count=%d\n", tty->driver->name, info->port.count)); 684 } 685 686 static void hangup(struct tty_struct *tty) 687 { 688 struct slgt_info *info = tty->driver_data; 689 unsigned long flags; 690 691 if (sanity_check(info, tty->name, "hangup")) 692 return; 693 DBGINFO(("%s hangup\n", info->device_name)); 694 695 flush_buffer(tty); 696 697 mutex_lock(&info->port.mutex); 698 shutdown(info); 699 700 spin_lock_irqsave(&info->port.lock, flags); 701 info->port.count = 0; 702 info->port.tty = NULL; 703 spin_unlock_irqrestore(&info->port.lock, flags); 704 tty_port_set_active(&info->port, 0); 705 mutex_unlock(&info->port.mutex); 706 707 wake_up_interruptible(&info->port.open_wait); 708 } 709 710 static void set_termios(struct tty_struct *tty, struct ktermios *old_termios) 711 { 712 struct slgt_info *info = tty->driver_data; 713 unsigned long flags; 714 715 DBGINFO(("%s set_termios\n", tty->driver->name)); 716 717 change_params(info); 718 719 /* Handle transition to B0 status */ 720 if ((old_termios->c_cflag & CBAUD) && !C_BAUD(tty)) { 721 info->signals &= ~(SerialSignal_RTS | SerialSignal_DTR); 722 spin_lock_irqsave(&info->lock,flags); 723 set_signals(info); 724 spin_unlock_irqrestore(&info->lock,flags); 725 } 726 727 /* Handle transition away from B0 status */ 728 if (!(old_termios->c_cflag & CBAUD) && C_BAUD(tty)) { 729 info->signals |= SerialSignal_DTR; 730 if (!C_CRTSCTS(tty) || !tty_throttled(tty)) 731 info->signals |= SerialSignal_RTS; 732 spin_lock_irqsave(&info->lock,flags); 733 set_signals(info); 734 spin_unlock_irqrestore(&info->lock,flags); 735 } 736 737 /* Handle turning off CRTSCTS */ 738 if ((old_termios->c_cflag & CRTSCTS) && !C_CRTSCTS(tty)) { 739 tty->hw_stopped = 0; 740 tx_release(tty); 741 } 742 } 743 744 static void update_tx_timer(struct slgt_info *info) 745 { 746 /* 747 * use worst case speed of 1200bps to calculate transmit timeout 748 * based on data in buffers (tbuf_bytes) and FIFO (128 bytes) 749 */ 750 if (info->params.mode == MGSL_MODE_HDLC) { 751 int timeout = (tbuf_bytes(info) * 7) + 1000; 752 mod_timer(&info->tx_timer, jiffies + msecs_to_jiffies(timeout)); 753 } 754 } 755 756 static int write(struct tty_struct *tty, 757 const unsigned char *buf, int count) 758 { 759 int ret = 0; 760 struct slgt_info *info = tty->driver_data; 761 unsigned long flags; 762 763 if (sanity_check(info, tty->name, "write")) 764 return -EIO; 765 766 DBGINFO(("%s write count=%d\n", info->device_name, count)); 767 768 if (!info->tx_buf || (count > info->max_frame_size)) 769 return -EIO; 770 771 if (!count || tty->stopped || tty->hw_stopped) 772 return 0; 773 774 spin_lock_irqsave(&info->lock, flags); 775 776 if (info->tx_count) { 777 /* send accumulated data from send_char() */ 778 if (!tx_load(info, info->tx_buf, info->tx_count)) 779 goto cleanup; 780 info->tx_count = 0; 781 } 782 783 if (tx_load(info, buf, count)) 784 ret = count; 785 786 cleanup: 787 spin_unlock_irqrestore(&info->lock, flags); 788 DBGINFO(("%s write rc=%d\n", info->device_name, ret)); 789 return ret; 790 } 791 792 static int put_char(struct tty_struct *tty, unsigned char ch) 793 { 794 struct slgt_info *info = tty->driver_data; 795 unsigned long flags; 796 int ret = 0; 797 798 if (sanity_check(info, tty->name, "put_char")) 799 return 0; 800 DBGINFO(("%s put_char(%d)\n", info->device_name, ch)); 801 if (!info->tx_buf) 802 return 0; 803 spin_lock_irqsave(&info->lock,flags); 804 if (info->tx_count < info->max_frame_size) { 805 info->tx_buf[info->tx_count++] = ch; 806 ret = 1; 807 } 808 spin_unlock_irqrestore(&info->lock,flags); 809 return ret; 810 } 811 812 static void send_xchar(struct tty_struct *tty, char ch) 813 { 814 struct slgt_info *info = tty->driver_data; 815 unsigned long flags; 816 817 if (sanity_check(info, tty->name, "send_xchar")) 818 return; 819 DBGINFO(("%s send_xchar(%d)\n", info->device_name, ch)); 820 info->x_char = ch; 821 if (ch) { 822 spin_lock_irqsave(&info->lock,flags); 823 if (!info->tx_enabled) 824 tx_start(info); 825 spin_unlock_irqrestore(&info->lock,flags); 826 } 827 } 828 829 static void wait_until_sent(struct tty_struct *tty, int timeout) 830 { 831 struct slgt_info *info = tty->driver_data; 832 unsigned long orig_jiffies, char_time; 833 834 if (!info ) 835 return; 836 if (sanity_check(info, tty->name, "wait_until_sent")) 837 return; 838 DBGINFO(("%s wait_until_sent entry\n", info->device_name)); 839 if (!tty_port_initialized(&info->port)) 840 goto exit; 841 842 orig_jiffies = jiffies; 843 844 /* Set check interval to 1/5 of estimated time to 845 * send a character, and make it at least 1. The check 846 * interval should also be less than the timeout. 847 * Note: use tight timings here to satisfy the NIST-PCTS. 848 */ 849 850 if (info->params.data_rate) { 851 char_time = info->timeout/(32 * 5); 852 if (!char_time) 853 char_time++; 854 } else 855 char_time = 1; 856 857 if (timeout) 858 char_time = min_t(unsigned long, char_time, timeout); 859 860 while (info->tx_active) { 861 msleep_interruptible(jiffies_to_msecs(char_time)); 862 if (signal_pending(current)) 863 break; 864 if (timeout && time_after(jiffies, orig_jiffies + timeout)) 865 break; 866 } 867 exit: 868 DBGINFO(("%s wait_until_sent exit\n", info->device_name)); 869 } 870 871 static int write_room(struct tty_struct *tty) 872 { 873 struct slgt_info *info = tty->driver_data; 874 int ret; 875 876 if (sanity_check(info, tty->name, "write_room")) 877 return 0; 878 ret = (info->tx_active) ? 0 : HDLC_MAX_FRAME_SIZE; 879 DBGINFO(("%s write_room=%d\n", info->device_name, ret)); 880 return ret; 881 } 882 883 static void flush_chars(struct tty_struct *tty) 884 { 885 struct slgt_info *info = tty->driver_data; 886 unsigned long flags; 887 888 if (sanity_check(info, tty->name, "flush_chars")) 889 return; 890 DBGINFO(("%s flush_chars entry tx_count=%d\n", info->device_name, info->tx_count)); 891 892 if (info->tx_count <= 0 || tty->stopped || 893 tty->hw_stopped || !info->tx_buf) 894 return; 895 896 DBGINFO(("%s flush_chars start transmit\n", info->device_name)); 897 898 spin_lock_irqsave(&info->lock,flags); 899 if (info->tx_count && tx_load(info, info->tx_buf, info->tx_count)) 900 info->tx_count = 0; 901 spin_unlock_irqrestore(&info->lock,flags); 902 } 903 904 static void flush_buffer(struct tty_struct *tty) 905 { 906 struct slgt_info *info = tty->driver_data; 907 unsigned long flags; 908 909 if (sanity_check(info, tty->name, "flush_buffer")) 910 return; 911 DBGINFO(("%s flush_buffer\n", info->device_name)); 912 913 spin_lock_irqsave(&info->lock, flags); 914 info->tx_count = 0; 915 spin_unlock_irqrestore(&info->lock, flags); 916 917 tty_wakeup(tty); 918 } 919 920 /* 921 * throttle (stop) transmitter 922 */ 923 static void tx_hold(struct tty_struct *tty) 924 { 925 struct slgt_info *info = tty->driver_data; 926 unsigned long flags; 927 928 if (sanity_check(info, tty->name, "tx_hold")) 929 return; 930 DBGINFO(("%s tx_hold\n", info->device_name)); 931 spin_lock_irqsave(&info->lock,flags); 932 if (info->tx_enabled && info->params.mode == MGSL_MODE_ASYNC) 933 tx_stop(info); 934 spin_unlock_irqrestore(&info->lock,flags); 935 } 936 937 /* 938 * release (start) transmitter 939 */ 940 static void tx_release(struct tty_struct *tty) 941 { 942 struct slgt_info *info = tty->driver_data; 943 unsigned long flags; 944 945 if (sanity_check(info, tty->name, "tx_release")) 946 return; 947 DBGINFO(("%s tx_release\n", info->device_name)); 948 spin_lock_irqsave(&info->lock, flags); 949 if (info->tx_count && tx_load(info, info->tx_buf, info->tx_count)) 950 info->tx_count = 0; 951 spin_unlock_irqrestore(&info->lock, flags); 952 } 953 954 /* 955 * Service an IOCTL request 956 * 957 * Arguments 958 * 959 * tty pointer to tty instance data 960 * cmd IOCTL command code 961 * arg command argument/context 962 * 963 * Return 0 if success, otherwise error code 964 */ 965 static int ioctl(struct tty_struct *tty, 966 unsigned int cmd, unsigned long arg) 967 { 968 struct slgt_info *info = tty->driver_data; 969 void __user *argp = (void __user *)arg; 970 int ret; 971 972 if (sanity_check(info, tty->name, "ioctl")) 973 return -ENODEV; 974 DBGINFO(("%s ioctl() cmd=%08X\n", info->device_name, cmd)); 975 976 if (cmd != TIOCMIWAIT) { 977 if (tty_io_error(tty)) 978 return -EIO; 979 } 980 981 switch (cmd) { 982 case MGSL_IOCWAITEVENT: 983 return wait_mgsl_event(info, argp); 984 case TIOCMIWAIT: 985 return modem_input_wait(info,(int)arg); 986 case MGSL_IOCSGPIO: 987 return set_gpio(info, argp); 988 case MGSL_IOCGGPIO: 989 return get_gpio(info, argp); 990 case MGSL_IOCWAITGPIO: 991 return wait_gpio(info, argp); 992 case MGSL_IOCGXSYNC: 993 return get_xsync(info, argp); 994 case MGSL_IOCSXSYNC: 995 return set_xsync(info, (int)arg); 996 case MGSL_IOCGXCTRL: 997 return get_xctrl(info, argp); 998 case MGSL_IOCSXCTRL: 999 return set_xctrl(info, (int)arg); 1000 } 1001 mutex_lock(&info->port.mutex); 1002 switch (cmd) { 1003 case MGSL_IOCGPARAMS: 1004 ret = get_params(info, argp); 1005 break; 1006 case MGSL_IOCSPARAMS: 1007 ret = set_params(info, argp); 1008 break; 1009 case MGSL_IOCGTXIDLE: 1010 ret = get_txidle(info, argp); 1011 break; 1012 case MGSL_IOCSTXIDLE: 1013 ret = set_txidle(info, (int)arg); 1014 break; 1015 case MGSL_IOCTXENABLE: 1016 ret = tx_enable(info, (int)arg); 1017 break; 1018 case MGSL_IOCRXENABLE: 1019 ret = rx_enable(info, (int)arg); 1020 break; 1021 case MGSL_IOCTXABORT: 1022 ret = tx_abort(info); 1023 break; 1024 case MGSL_IOCGSTATS: 1025 ret = get_stats(info, argp); 1026 break; 1027 case MGSL_IOCGIF: 1028 ret = get_interface(info, argp); 1029 break; 1030 case MGSL_IOCSIF: 1031 ret = set_interface(info,(int)arg); 1032 break; 1033 default: 1034 ret = -ENOIOCTLCMD; 1035 } 1036 mutex_unlock(&info->port.mutex); 1037 return ret; 1038 } 1039 1040 static int get_icount(struct tty_struct *tty, 1041 struct serial_icounter_struct *icount) 1042 1043 { 1044 struct slgt_info *info = tty->driver_data; 1045 struct mgsl_icount cnow; /* kernel counter temps */ 1046 unsigned long flags; 1047 1048 spin_lock_irqsave(&info->lock,flags); 1049 cnow = info->icount; 1050 spin_unlock_irqrestore(&info->lock,flags); 1051 1052 icount->cts = cnow.cts; 1053 icount->dsr = cnow.dsr; 1054 icount->rng = cnow.rng; 1055 icount->dcd = cnow.dcd; 1056 icount->rx = cnow.rx; 1057 icount->tx = cnow.tx; 1058 icount->frame = cnow.frame; 1059 icount->overrun = cnow.overrun; 1060 icount->parity = cnow.parity; 1061 icount->brk = cnow.brk; 1062 icount->buf_overrun = cnow.buf_overrun; 1063 1064 return 0; 1065 } 1066 1067 /* 1068 * support for 32 bit ioctl calls on 64 bit systems 1069 */ 1070 #ifdef CONFIG_COMPAT 1071 static long get_params32(struct slgt_info *info, struct MGSL_PARAMS32 __user *user_params) 1072 { 1073 struct MGSL_PARAMS32 tmp_params; 1074 1075 DBGINFO(("%s get_params32\n", info->device_name)); 1076 memset(&tmp_params, 0, sizeof(tmp_params)); 1077 tmp_params.mode = (compat_ulong_t)info->params.mode; 1078 tmp_params.loopback = info->params.loopback; 1079 tmp_params.flags = info->params.flags; 1080 tmp_params.encoding = info->params.encoding; 1081 tmp_params.clock_speed = (compat_ulong_t)info->params.clock_speed; 1082 tmp_params.addr_filter = info->params.addr_filter; 1083 tmp_params.crc_type = info->params.crc_type; 1084 tmp_params.preamble_length = info->params.preamble_length; 1085 tmp_params.preamble = info->params.preamble; 1086 tmp_params.data_rate = (compat_ulong_t)info->params.data_rate; 1087 tmp_params.data_bits = info->params.data_bits; 1088 tmp_params.stop_bits = info->params.stop_bits; 1089 tmp_params.parity = info->params.parity; 1090 if (copy_to_user(user_params, &tmp_params, sizeof(struct MGSL_PARAMS32))) 1091 return -EFAULT; 1092 return 0; 1093 } 1094 1095 static long set_params32(struct slgt_info *info, struct MGSL_PARAMS32 __user *new_params) 1096 { 1097 struct MGSL_PARAMS32 tmp_params; 1098 1099 DBGINFO(("%s set_params32\n", info->device_name)); 1100 if (copy_from_user(&tmp_params, new_params, sizeof(struct MGSL_PARAMS32))) 1101 return -EFAULT; 1102 1103 spin_lock(&info->lock); 1104 if (tmp_params.mode == MGSL_MODE_BASE_CLOCK) { 1105 info->base_clock = tmp_params.clock_speed; 1106 } else { 1107 info->params.mode = tmp_params.mode; 1108 info->params.loopback = tmp_params.loopback; 1109 info->params.flags = tmp_params.flags; 1110 info->params.encoding = tmp_params.encoding; 1111 info->params.clock_speed = tmp_params.clock_speed; 1112 info->params.addr_filter = tmp_params.addr_filter; 1113 info->params.crc_type = tmp_params.crc_type; 1114 info->params.preamble_length = tmp_params.preamble_length; 1115 info->params.preamble = tmp_params.preamble; 1116 info->params.data_rate = tmp_params.data_rate; 1117 info->params.data_bits = tmp_params.data_bits; 1118 info->params.stop_bits = tmp_params.stop_bits; 1119 info->params.parity = tmp_params.parity; 1120 } 1121 spin_unlock(&info->lock); 1122 1123 program_hw(info); 1124 1125 return 0; 1126 } 1127 1128 static long slgt_compat_ioctl(struct tty_struct *tty, 1129 unsigned int cmd, unsigned long arg) 1130 { 1131 struct slgt_info *info = tty->driver_data; 1132 int rc; 1133 1134 if (sanity_check(info, tty->name, "compat_ioctl")) 1135 return -ENODEV; 1136 DBGINFO(("%s compat_ioctl() cmd=%08X\n", info->device_name, cmd)); 1137 1138 switch (cmd) { 1139 case MGSL_IOCSPARAMS32: 1140 rc = set_params32(info, compat_ptr(arg)); 1141 break; 1142 1143 case MGSL_IOCGPARAMS32: 1144 rc = get_params32(info, compat_ptr(arg)); 1145 break; 1146 1147 case MGSL_IOCGPARAMS: 1148 case MGSL_IOCSPARAMS: 1149 case MGSL_IOCGTXIDLE: 1150 case MGSL_IOCGSTATS: 1151 case MGSL_IOCWAITEVENT: 1152 case MGSL_IOCGIF: 1153 case MGSL_IOCSGPIO: 1154 case MGSL_IOCGGPIO: 1155 case MGSL_IOCWAITGPIO: 1156 case MGSL_IOCGXSYNC: 1157 case MGSL_IOCGXCTRL: 1158 rc = ioctl(tty, cmd, (unsigned long)compat_ptr(arg)); 1159 break; 1160 default: 1161 rc = ioctl(tty, cmd, arg); 1162 } 1163 DBGINFO(("%s compat_ioctl() cmd=%08X rc=%d\n", info->device_name, cmd, rc)); 1164 return rc; 1165 } 1166 #else 1167 #define slgt_compat_ioctl NULL 1168 #endif /* ifdef CONFIG_COMPAT */ 1169 1170 /* 1171 * proc fs support 1172 */ 1173 static inline void line_info(struct seq_file *m, struct slgt_info *info) 1174 { 1175 char stat_buf[30]; 1176 unsigned long flags; 1177 1178 seq_printf(m, "%s: IO=%08X IRQ=%d MaxFrameSize=%u\n", 1179 info->device_name, info->phys_reg_addr, 1180 info->irq_level, info->max_frame_size); 1181 1182 /* output current serial signal states */ 1183 spin_lock_irqsave(&info->lock,flags); 1184 get_signals(info); 1185 spin_unlock_irqrestore(&info->lock,flags); 1186 1187 stat_buf[0] = 0; 1188 stat_buf[1] = 0; 1189 if (info->signals & SerialSignal_RTS) 1190 strcat(stat_buf, "|RTS"); 1191 if (info->signals & SerialSignal_CTS) 1192 strcat(stat_buf, "|CTS"); 1193 if (info->signals & SerialSignal_DTR) 1194 strcat(stat_buf, "|DTR"); 1195 if (info->signals & SerialSignal_DSR) 1196 strcat(stat_buf, "|DSR"); 1197 if (info->signals & SerialSignal_DCD) 1198 strcat(stat_buf, "|CD"); 1199 if (info->signals & SerialSignal_RI) 1200 strcat(stat_buf, "|RI"); 1201 1202 if (info->params.mode != MGSL_MODE_ASYNC) { 1203 seq_printf(m, "\tHDLC txok:%d rxok:%d", 1204 info->icount.txok, info->icount.rxok); 1205 if (info->icount.txunder) 1206 seq_printf(m, " txunder:%d", info->icount.txunder); 1207 if (info->icount.txabort) 1208 seq_printf(m, " txabort:%d", info->icount.txabort); 1209 if (info->icount.rxshort) 1210 seq_printf(m, " rxshort:%d", info->icount.rxshort); 1211 if (info->icount.rxlong) 1212 seq_printf(m, " rxlong:%d", info->icount.rxlong); 1213 if (info->icount.rxover) 1214 seq_printf(m, " rxover:%d", info->icount.rxover); 1215 if (info->icount.rxcrc) 1216 seq_printf(m, " rxcrc:%d", info->icount.rxcrc); 1217 } else { 1218 seq_printf(m, "\tASYNC tx:%d rx:%d", 1219 info->icount.tx, info->icount.rx); 1220 if (info->icount.frame) 1221 seq_printf(m, " fe:%d", info->icount.frame); 1222 if (info->icount.parity) 1223 seq_printf(m, " pe:%d", info->icount.parity); 1224 if (info->icount.brk) 1225 seq_printf(m, " brk:%d", info->icount.brk); 1226 if (info->icount.overrun) 1227 seq_printf(m, " oe:%d", info->icount.overrun); 1228 } 1229 1230 /* Append serial signal status to end */ 1231 seq_printf(m, " %s\n", stat_buf+1); 1232 1233 seq_printf(m, "\ttxactive=%d bh_req=%d bh_run=%d pending_bh=%x\n", 1234 info->tx_active,info->bh_requested,info->bh_running, 1235 info->pending_bh); 1236 } 1237 1238 /* Called to print information about devices 1239 */ 1240 static int synclink_gt_proc_show(struct seq_file *m, void *v) 1241 { 1242 struct slgt_info *info; 1243 1244 seq_puts(m, "synclink_gt driver\n"); 1245 1246 info = slgt_device_list; 1247 while( info ) { 1248 line_info(m, info); 1249 info = info->next_device; 1250 } 1251 return 0; 1252 } 1253 1254 /* 1255 * return count of bytes in transmit buffer 1256 */ 1257 static int chars_in_buffer(struct tty_struct *tty) 1258 { 1259 struct slgt_info *info = tty->driver_data; 1260 int count; 1261 if (sanity_check(info, tty->name, "chars_in_buffer")) 1262 return 0; 1263 count = tbuf_bytes(info); 1264 DBGINFO(("%s chars_in_buffer()=%d\n", info->device_name, count)); 1265 return count; 1266 } 1267 1268 /* 1269 * signal remote device to throttle send data (our receive data) 1270 */ 1271 static void throttle(struct tty_struct * tty) 1272 { 1273 struct slgt_info *info = tty->driver_data; 1274 unsigned long flags; 1275 1276 if (sanity_check(info, tty->name, "throttle")) 1277 return; 1278 DBGINFO(("%s throttle\n", info->device_name)); 1279 if (I_IXOFF(tty)) 1280 send_xchar(tty, STOP_CHAR(tty)); 1281 if (C_CRTSCTS(tty)) { 1282 spin_lock_irqsave(&info->lock,flags); 1283 info->signals &= ~SerialSignal_RTS; 1284 set_signals(info); 1285 spin_unlock_irqrestore(&info->lock,flags); 1286 } 1287 } 1288 1289 /* 1290 * signal remote device to stop throttling send data (our receive data) 1291 */ 1292 static void unthrottle(struct tty_struct * tty) 1293 { 1294 struct slgt_info *info = tty->driver_data; 1295 unsigned long flags; 1296 1297 if (sanity_check(info, tty->name, "unthrottle")) 1298 return; 1299 DBGINFO(("%s unthrottle\n", info->device_name)); 1300 if (I_IXOFF(tty)) { 1301 if (info->x_char) 1302 info->x_char = 0; 1303 else 1304 send_xchar(tty, START_CHAR(tty)); 1305 } 1306 if (C_CRTSCTS(tty)) { 1307 spin_lock_irqsave(&info->lock,flags); 1308 info->signals |= SerialSignal_RTS; 1309 set_signals(info); 1310 spin_unlock_irqrestore(&info->lock,flags); 1311 } 1312 } 1313 1314 /* 1315 * set or clear transmit break condition 1316 * break_state -1=set break condition, 0=clear 1317 */ 1318 static int set_break(struct tty_struct *tty, int break_state) 1319 { 1320 struct slgt_info *info = tty->driver_data; 1321 unsigned short value; 1322 unsigned long flags; 1323 1324 if (sanity_check(info, tty->name, "set_break")) 1325 return -EINVAL; 1326 DBGINFO(("%s set_break(%d)\n", info->device_name, break_state)); 1327 1328 spin_lock_irqsave(&info->lock,flags); 1329 value = rd_reg16(info, TCR); 1330 if (break_state == -1) 1331 value |= BIT6; 1332 else 1333 value &= ~BIT6; 1334 wr_reg16(info, TCR, value); 1335 spin_unlock_irqrestore(&info->lock,flags); 1336 return 0; 1337 } 1338 1339 #if SYNCLINK_GENERIC_HDLC 1340 1341 /** 1342 * hdlcdev_attach - called by generic HDLC layer when protocol selected (PPP, frame relay, etc.) 1343 * @dev: pointer to network device structure 1344 * @encoding: serial encoding setting 1345 * @parity: FCS setting 1346 * 1347 * Set encoding and frame check sequence (FCS) options. 1348 * 1349 * Return: 0 if success, otherwise error code 1350 */ 1351 static int hdlcdev_attach(struct net_device *dev, unsigned short encoding, 1352 unsigned short parity) 1353 { 1354 struct slgt_info *info = dev_to_port(dev); 1355 unsigned char new_encoding; 1356 unsigned short new_crctype; 1357 1358 /* return error if TTY interface open */ 1359 if (info->port.count) 1360 return -EBUSY; 1361 1362 DBGINFO(("%s hdlcdev_attach\n", info->device_name)); 1363 1364 switch (encoding) 1365 { 1366 case ENCODING_NRZ: new_encoding = HDLC_ENCODING_NRZ; break; 1367 case ENCODING_NRZI: new_encoding = HDLC_ENCODING_NRZI_SPACE; break; 1368 case ENCODING_FM_MARK: new_encoding = HDLC_ENCODING_BIPHASE_MARK; break; 1369 case ENCODING_FM_SPACE: new_encoding = HDLC_ENCODING_BIPHASE_SPACE; break; 1370 case ENCODING_MANCHESTER: new_encoding = HDLC_ENCODING_BIPHASE_LEVEL; break; 1371 default: return -EINVAL; 1372 } 1373 1374 switch (parity) 1375 { 1376 case PARITY_NONE: new_crctype = HDLC_CRC_NONE; break; 1377 case PARITY_CRC16_PR1_CCITT: new_crctype = HDLC_CRC_16_CCITT; break; 1378 case PARITY_CRC32_PR1_CCITT: new_crctype = HDLC_CRC_32_CCITT; break; 1379 default: return -EINVAL; 1380 } 1381 1382 info->params.encoding = new_encoding; 1383 info->params.crc_type = new_crctype; 1384 1385 /* if network interface up, reprogram hardware */ 1386 if (info->netcount) 1387 program_hw(info); 1388 1389 return 0; 1390 } 1391 1392 /** 1393 * hdlcdev_xmit - called by generic HDLC layer to send a frame 1394 * @skb: socket buffer containing HDLC frame 1395 * @dev: pointer to network device structure 1396 */ 1397 static netdev_tx_t hdlcdev_xmit(struct sk_buff *skb, 1398 struct net_device *dev) 1399 { 1400 struct slgt_info *info = dev_to_port(dev); 1401 unsigned long flags; 1402 1403 DBGINFO(("%s hdlc_xmit\n", dev->name)); 1404 1405 if (!skb->len) 1406 return NETDEV_TX_OK; 1407 1408 /* stop sending until this frame completes */ 1409 netif_stop_queue(dev); 1410 1411 /* update network statistics */ 1412 dev->stats.tx_packets++; 1413 dev->stats.tx_bytes += skb->len; 1414 1415 /* save start time for transmit timeout detection */ 1416 netif_trans_update(dev); 1417 1418 spin_lock_irqsave(&info->lock, flags); 1419 tx_load(info, skb->data, skb->len); 1420 spin_unlock_irqrestore(&info->lock, flags); 1421 1422 /* done with socket buffer, so free it */ 1423 dev_kfree_skb(skb); 1424 1425 return NETDEV_TX_OK; 1426 } 1427 1428 /** 1429 * hdlcdev_open - called by network layer when interface enabled 1430 * @dev: pointer to network device structure 1431 * 1432 * Claim resources and initialize hardware. 1433 * 1434 * Return: 0 if success, otherwise error code 1435 */ 1436 static int hdlcdev_open(struct net_device *dev) 1437 { 1438 struct slgt_info *info = dev_to_port(dev); 1439 int rc; 1440 unsigned long flags; 1441 1442 if (!try_module_get(THIS_MODULE)) 1443 return -EBUSY; 1444 1445 DBGINFO(("%s hdlcdev_open\n", dev->name)); 1446 1447 /* generic HDLC layer open processing */ 1448 rc = hdlc_open(dev); 1449 if (rc) 1450 return rc; 1451 1452 /* arbitrate between network and tty opens */ 1453 spin_lock_irqsave(&info->netlock, flags); 1454 if (info->port.count != 0 || info->netcount != 0) { 1455 DBGINFO(("%s hdlc_open busy\n", dev->name)); 1456 spin_unlock_irqrestore(&info->netlock, flags); 1457 return -EBUSY; 1458 } 1459 info->netcount=1; 1460 spin_unlock_irqrestore(&info->netlock, flags); 1461 1462 /* claim resources and init adapter */ 1463 if ((rc = startup(info)) != 0) { 1464 spin_lock_irqsave(&info->netlock, flags); 1465 info->netcount=0; 1466 spin_unlock_irqrestore(&info->netlock, flags); 1467 return rc; 1468 } 1469 1470 /* assert RTS and DTR, apply hardware settings */ 1471 info->signals |= SerialSignal_RTS | SerialSignal_DTR; 1472 program_hw(info); 1473 1474 /* enable network layer transmit */ 1475 netif_trans_update(dev); 1476 netif_start_queue(dev); 1477 1478 /* inform generic HDLC layer of current DCD status */ 1479 spin_lock_irqsave(&info->lock, flags); 1480 get_signals(info); 1481 spin_unlock_irqrestore(&info->lock, flags); 1482 if (info->signals & SerialSignal_DCD) 1483 netif_carrier_on(dev); 1484 else 1485 netif_carrier_off(dev); 1486 return 0; 1487 } 1488 1489 /** 1490 * hdlcdev_close - called by network layer when interface is disabled 1491 * @dev: pointer to network device structure 1492 * 1493 * Shutdown hardware and release resources. 1494 * 1495 * Return: 0 if success, otherwise error code 1496 */ 1497 static int hdlcdev_close(struct net_device *dev) 1498 { 1499 struct slgt_info *info = dev_to_port(dev); 1500 unsigned long flags; 1501 1502 DBGINFO(("%s hdlcdev_close\n", dev->name)); 1503 1504 netif_stop_queue(dev); 1505 1506 /* shutdown adapter and release resources */ 1507 shutdown(info); 1508 1509 hdlc_close(dev); 1510 1511 spin_lock_irqsave(&info->netlock, flags); 1512 info->netcount=0; 1513 spin_unlock_irqrestore(&info->netlock, flags); 1514 1515 module_put(THIS_MODULE); 1516 return 0; 1517 } 1518 1519 /** 1520 * hdlcdev_ioctl - called by network layer to process IOCTL call to network device 1521 * @dev: pointer to network device structure 1522 * @ifr: pointer to network interface request structure 1523 * @cmd: IOCTL command code 1524 * 1525 * Return: 0 if success, otherwise error code 1526 */ 1527 static int hdlcdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 1528 { 1529 const size_t size = sizeof(sync_serial_settings); 1530 sync_serial_settings new_line; 1531 sync_serial_settings __user *line = ifr->ifr_settings.ifs_ifsu.sync; 1532 struct slgt_info *info = dev_to_port(dev); 1533 unsigned int flags; 1534 1535 DBGINFO(("%s hdlcdev_ioctl\n", dev->name)); 1536 1537 /* return error if TTY interface open */ 1538 if (info->port.count) 1539 return -EBUSY; 1540 1541 if (cmd != SIOCWANDEV) 1542 return hdlc_ioctl(dev, ifr, cmd); 1543 1544 memset(&new_line, 0, sizeof(new_line)); 1545 1546 switch(ifr->ifr_settings.type) { 1547 case IF_GET_IFACE: /* return current sync_serial_settings */ 1548 1549 ifr->ifr_settings.type = IF_IFACE_SYNC_SERIAL; 1550 if (ifr->ifr_settings.size < size) { 1551 ifr->ifr_settings.size = size; /* data size wanted */ 1552 return -ENOBUFS; 1553 } 1554 1555 flags = info->params.flags & (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_RXC_DPLL | 1556 HDLC_FLAG_RXC_BRG | HDLC_FLAG_RXC_TXCPIN | 1557 HDLC_FLAG_TXC_TXCPIN | HDLC_FLAG_TXC_DPLL | 1558 HDLC_FLAG_TXC_BRG | HDLC_FLAG_TXC_RXCPIN); 1559 1560 switch (flags){ 1561 case (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_TXCPIN): new_line.clock_type = CLOCK_EXT; break; 1562 case (HDLC_FLAG_RXC_BRG | HDLC_FLAG_TXC_BRG): new_line.clock_type = CLOCK_INT; break; 1563 case (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_BRG): new_line.clock_type = CLOCK_TXINT; break; 1564 case (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_RXCPIN): new_line.clock_type = CLOCK_TXFROMRX; break; 1565 default: new_line.clock_type = CLOCK_DEFAULT; 1566 } 1567 1568 new_line.clock_rate = info->params.clock_speed; 1569 new_line.loopback = info->params.loopback ? 1:0; 1570 1571 if (copy_to_user(line, &new_line, size)) 1572 return -EFAULT; 1573 return 0; 1574 1575 case IF_IFACE_SYNC_SERIAL: /* set sync_serial_settings */ 1576 1577 if(!capable(CAP_NET_ADMIN)) 1578 return -EPERM; 1579 if (copy_from_user(&new_line, line, size)) 1580 return -EFAULT; 1581 1582 switch (new_line.clock_type) 1583 { 1584 case CLOCK_EXT: flags = HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_TXCPIN; break; 1585 case CLOCK_TXFROMRX: flags = HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_RXCPIN; break; 1586 case CLOCK_INT: flags = HDLC_FLAG_RXC_BRG | HDLC_FLAG_TXC_BRG; break; 1587 case CLOCK_TXINT: flags = HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_BRG; break; 1588 case CLOCK_DEFAULT: flags = info->params.flags & 1589 (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_RXC_DPLL | 1590 HDLC_FLAG_RXC_BRG | HDLC_FLAG_RXC_TXCPIN | 1591 HDLC_FLAG_TXC_TXCPIN | HDLC_FLAG_TXC_DPLL | 1592 HDLC_FLAG_TXC_BRG | HDLC_FLAG_TXC_RXCPIN); break; 1593 default: return -EINVAL; 1594 } 1595 1596 if (new_line.loopback != 0 && new_line.loopback != 1) 1597 return -EINVAL; 1598 1599 info->params.flags &= ~(HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_RXC_DPLL | 1600 HDLC_FLAG_RXC_BRG | HDLC_FLAG_RXC_TXCPIN | 1601 HDLC_FLAG_TXC_TXCPIN | HDLC_FLAG_TXC_DPLL | 1602 HDLC_FLAG_TXC_BRG | HDLC_FLAG_TXC_RXCPIN); 1603 info->params.flags |= flags; 1604 1605 info->params.loopback = new_line.loopback; 1606 1607 if (flags & (HDLC_FLAG_RXC_BRG | HDLC_FLAG_TXC_BRG)) 1608 info->params.clock_speed = new_line.clock_rate; 1609 else 1610 info->params.clock_speed = 0; 1611 1612 /* if network interface up, reprogram hardware */ 1613 if (info->netcount) 1614 program_hw(info); 1615 return 0; 1616 1617 default: 1618 return hdlc_ioctl(dev, ifr, cmd); 1619 } 1620 } 1621 1622 /** 1623 * hdlcdev_tx_timeout - called by network layer when transmit timeout is detected 1624 * @dev: pointer to network device structure 1625 * @txqueue: unused 1626 */ 1627 static void hdlcdev_tx_timeout(struct net_device *dev, unsigned int txqueue) 1628 { 1629 struct slgt_info *info = dev_to_port(dev); 1630 unsigned long flags; 1631 1632 DBGINFO(("%s hdlcdev_tx_timeout\n", dev->name)); 1633 1634 dev->stats.tx_errors++; 1635 dev->stats.tx_aborted_errors++; 1636 1637 spin_lock_irqsave(&info->lock,flags); 1638 tx_stop(info); 1639 spin_unlock_irqrestore(&info->lock,flags); 1640 1641 netif_wake_queue(dev); 1642 } 1643 1644 /** 1645 * hdlcdev_tx_done - called by device driver when transmit completes 1646 * @info: pointer to device instance information 1647 * 1648 * Reenable network layer transmit if stopped. 1649 */ 1650 static void hdlcdev_tx_done(struct slgt_info *info) 1651 { 1652 if (netif_queue_stopped(info->netdev)) 1653 netif_wake_queue(info->netdev); 1654 } 1655 1656 /** 1657 * hdlcdev_rx - called by device driver when frame received 1658 * @info: pointer to device instance information 1659 * @buf: pointer to buffer contianing frame data 1660 * @size: count of data bytes in buf 1661 * 1662 * Pass frame to network layer. 1663 */ 1664 static void hdlcdev_rx(struct slgt_info *info, char *buf, int size) 1665 { 1666 struct sk_buff *skb = dev_alloc_skb(size); 1667 struct net_device *dev = info->netdev; 1668 1669 DBGINFO(("%s hdlcdev_rx\n", dev->name)); 1670 1671 if (skb == NULL) { 1672 DBGERR(("%s: can't alloc skb, drop packet\n", dev->name)); 1673 dev->stats.rx_dropped++; 1674 return; 1675 } 1676 1677 skb_put_data(skb, buf, size); 1678 1679 skb->protocol = hdlc_type_trans(skb, dev); 1680 1681 dev->stats.rx_packets++; 1682 dev->stats.rx_bytes += size; 1683 1684 netif_rx(skb); 1685 } 1686 1687 static const struct net_device_ops hdlcdev_ops = { 1688 .ndo_open = hdlcdev_open, 1689 .ndo_stop = hdlcdev_close, 1690 .ndo_start_xmit = hdlc_start_xmit, 1691 .ndo_do_ioctl = hdlcdev_ioctl, 1692 .ndo_tx_timeout = hdlcdev_tx_timeout, 1693 }; 1694 1695 /** 1696 * hdlcdev_init - called by device driver when adding device instance 1697 * @info: pointer to device instance information 1698 * 1699 * Do generic HDLC initialization. 1700 * 1701 * Return: 0 if success, otherwise error code 1702 */ 1703 static int hdlcdev_init(struct slgt_info *info) 1704 { 1705 int rc; 1706 struct net_device *dev; 1707 hdlc_device *hdlc; 1708 1709 /* allocate and initialize network and HDLC layer objects */ 1710 1711 dev = alloc_hdlcdev(info); 1712 if (!dev) { 1713 printk(KERN_ERR "%s hdlc device alloc failure\n", info->device_name); 1714 return -ENOMEM; 1715 } 1716 1717 /* for network layer reporting purposes only */ 1718 dev->mem_start = info->phys_reg_addr; 1719 dev->mem_end = info->phys_reg_addr + SLGT_REG_SIZE - 1; 1720 dev->irq = info->irq_level; 1721 1722 /* network layer callbacks and settings */ 1723 dev->netdev_ops = &hdlcdev_ops; 1724 dev->watchdog_timeo = 10 * HZ; 1725 dev->tx_queue_len = 50; 1726 1727 /* generic HDLC layer callbacks and settings */ 1728 hdlc = dev_to_hdlc(dev); 1729 hdlc->attach = hdlcdev_attach; 1730 hdlc->xmit = hdlcdev_xmit; 1731 1732 /* register objects with HDLC layer */ 1733 rc = register_hdlc_device(dev); 1734 if (rc) { 1735 printk(KERN_WARNING "%s:unable to register hdlc device\n",__FILE__); 1736 free_netdev(dev); 1737 return rc; 1738 } 1739 1740 info->netdev = dev; 1741 return 0; 1742 } 1743 1744 /** 1745 * hdlcdev_exit - called by device driver when removing device instance 1746 * @info: pointer to device instance information 1747 * 1748 * Do generic HDLC cleanup. 1749 */ 1750 static void hdlcdev_exit(struct slgt_info *info) 1751 { 1752 unregister_hdlc_device(info->netdev); 1753 free_netdev(info->netdev); 1754 info->netdev = NULL; 1755 } 1756 1757 #endif /* ifdef CONFIG_HDLC */ 1758 1759 /* 1760 * get async data from rx DMA buffers 1761 */ 1762 static void rx_async(struct slgt_info *info) 1763 { 1764 struct mgsl_icount *icount = &info->icount; 1765 unsigned int start, end; 1766 unsigned char *p; 1767 unsigned char status; 1768 struct slgt_desc *bufs = info->rbufs; 1769 int i, count; 1770 int chars = 0; 1771 int stat; 1772 unsigned char ch; 1773 1774 start = end = info->rbuf_current; 1775 1776 while(desc_complete(bufs[end])) { 1777 count = desc_count(bufs[end]) - info->rbuf_index; 1778 p = bufs[end].buf + info->rbuf_index; 1779 1780 DBGISR(("%s rx_async count=%d\n", info->device_name, count)); 1781 DBGDATA(info, p, count, "rx"); 1782 1783 for(i=0 ; i < count; i+=2, p+=2) { 1784 ch = *p; 1785 icount->rx++; 1786 1787 stat = 0; 1788 1789 status = *(p + 1) & (BIT1 + BIT0); 1790 if (status) { 1791 if (status & BIT1) 1792 icount->parity++; 1793 else if (status & BIT0) 1794 icount->frame++; 1795 /* discard char if tty control flags say so */ 1796 if (status & info->ignore_status_mask) 1797 continue; 1798 if (status & BIT1) 1799 stat = TTY_PARITY; 1800 else if (status & BIT0) 1801 stat = TTY_FRAME; 1802 } 1803 tty_insert_flip_char(&info->port, ch, stat); 1804 chars++; 1805 } 1806 1807 if (i < count) { 1808 /* receive buffer not completed */ 1809 info->rbuf_index += i; 1810 mod_timer(&info->rx_timer, jiffies + 1); 1811 break; 1812 } 1813 1814 info->rbuf_index = 0; 1815 free_rbufs(info, end, end); 1816 1817 if (++end == info->rbuf_count) 1818 end = 0; 1819 1820 /* if entire list searched then no frame available */ 1821 if (end == start) 1822 break; 1823 } 1824 1825 if (chars) 1826 tty_flip_buffer_push(&info->port); 1827 } 1828 1829 /* 1830 * return next bottom half action to perform 1831 */ 1832 static int bh_action(struct slgt_info *info) 1833 { 1834 unsigned long flags; 1835 int rc; 1836 1837 spin_lock_irqsave(&info->lock,flags); 1838 1839 if (info->pending_bh & BH_RECEIVE) { 1840 info->pending_bh &= ~BH_RECEIVE; 1841 rc = BH_RECEIVE; 1842 } else if (info->pending_bh & BH_TRANSMIT) { 1843 info->pending_bh &= ~BH_TRANSMIT; 1844 rc = BH_TRANSMIT; 1845 } else if (info->pending_bh & BH_STATUS) { 1846 info->pending_bh &= ~BH_STATUS; 1847 rc = BH_STATUS; 1848 } else { 1849 /* Mark BH routine as complete */ 1850 info->bh_running = false; 1851 info->bh_requested = false; 1852 rc = 0; 1853 } 1854 1855 spin_unlock_irqrestore(&info->lock,flags); 1856 1857 return rc; 1858 } 1859 1860 /* 1861 * perform bottom half processing 1862 */ 1863 static void bh_handler(struct work_struct *work) 1864 { 1865 struct slgt_info *info = container_of(work, struct slgt_info, task); 1866 int action; 1867 1868 info->bh_running = true; 1869 1870 while((action = bh_action(info))) { 1871 switch (action) { 1872 case BH_RECEIVE: 1873 DBGBH(("%s bh receive\n", info->device_name)); 1874 switch(info->params.mode) { 1875 case MGSL_MODE_ASYNC: 1876 rx_async(info); 1877 break; 1878 case MGSL_MODE_HDLC: 1879 while(rx_get_frame(info)); 1880 break; 1881 case MGSL_MODE_RAW: 1882 case MGSL_MODE_MONOSYNC: 1883 case MGSL_MODE_BISYNC: 1884 case MGSL_MODE_XSYNC: 1885 while(rx_get_buf(info)); 1886 break; 1887 } 1888 /* restart receiver if rx DMA buffers exhausted */ 1889 if (info->rx_restart) 1890 rx_start(info); 1891 break; 1892 case BH_TRANSMIT: 1893 bh_transmit(info); 1894 break; 1895 case BH_STATUS: 1896 DBGBH(("%s bh status\n", info->device_name)); 1897 info->ri_chkcount = 0; 1898 info->dsr_chkcount = 0; 1899 info->dcd_chkcount = 0; 1900 info->cts_chkcount = 0; 1901 break; 1902 default: 1903 DBGBH(("%s unknown action\n", info->device_name)); 1904 break; 1905 } 1906 } 1907 DBGBH(("%s bh_handler exit\n", info->device_name)); 1908 } 1909 1910 static void bh_transmit(struct slgt_info *info) 1911 { 1912 struct tty_struct *tty = info->port.tty; 1913 1914 DBGBH(("%s bh_transmit\n", info->device_name)); 1915 if (tty) 1916 tty_wakeup(tty); 1917 } 1918 1919 static void dsr_change(struct slgt_info *info, unsigned short status) 1920 { 1921 if (status & BIT3) { 1922 info->signals |= SerialSignal_DSR; 1923 info->input_signal_events.dsr_up++; 1924 } else { 1925 info->signals &= ~SerialSignal_DSR; 1926 info->input_signal_events.dsr_down++; 1927 } 1928 DBGISR(("dsr_change %s signals=%04X\n", info->device_name, info->signals)); 1929 if ((info->dsr_chkcount)++ == IO_PIN_SHUTDOWN_LIMIT) { 1930 slgt_irq_off(info, IRQ_DSR); 1931 return; 1932 } 1933 info->icount.dsr++; 1934 wake_up_interruptible(&info->status_event_wait_q); 1935 wake_up_interruptible(&info->event_wait_q); 1936 info->pending_bh |= BH_STATUS; 1937 } 1938 1939 static void cts_change(struct slgt_info *info, unsigned short status) 1940 { 1941 if (status & BIT2) { 1942 info->signals |= SerialSignal_CTS; 1943 info->input_signal_events.cts_up++; 1944 } else { 1945 info->signals &= ~SerialSignal_CTS; 1946 info->input_signal_events.cts_down++; 1947 } 1948 DBGISR(("cts_change %s signals=%04X\n", info->device_name, info->signals)); 1949 if ((info->cts_chkcount)++ == IO_PIN_SHUTDOWN_LIMIT) { 1950 slgt_irq_off(info, IRQ_CTS); 1951 return; 1952 } 1953 info->icount.cts++; 1954 wake_up_interruptible(&info->status_event_wait_q); 1955 wake_up_interruptible(&info->event_wait_q); 1956 info->pending_bh |= BH_STATUS; 1957 1958 if (tty_port_cts_enabled(&info->port)) { 1959 if (info->port.tty) { 1960 if (info->port.tty->hw_stopped) { 1961 if (info->signals & SerialSignal_CTS) { 1962 info->port.tty->hw_stopped = 0; 1963 info->pending_bh |= BH_TRANSMIT; 1964 return; 1965 } 1966 } else { 1967 if (!(info->signals & SerialSignal_CTS)) 1968 info->port.tty->hw_stopped = 1; 1969 } 1970 } 1971 } 1972 } 1973 1974 static void dcd_change(struct slgt_info *info, unsigned short status) 1975 { 1976 if (status & BIT1) { 1977 info->signals |= SerialSignal_DCD; 1978 info->input_signal_events.dcd_up++; 1979 } else { 1980 info->signals &= ~SerialSignal_DCD; 1981 info->input_signal_events.dcd_down++; 1982 } 1983 DBGISR(("dcd_change %s signals=%04X\n", info->device_name, info->signals)); 1984 if ((info->dcd_chkcount)++ == IO_PIN_SHUTDOWN_LIMIT) { 1985 slgt_irq_off(info, IRQ_DCD); 1986 return; 1987 } 1988 info->icount.dcd++; 1989 #if SYNCLINK_GENERIC_HDLC 1990 if (info->netcount) { 1991 if (info->signals & SerialSignal_DCD) 1992 netif_carrier_on(info->netdev); 1993 else 1994 netif_carrier_off(info->netdev); 1995 } 1996 #endif 1997 wake_up_interruptible(&info->status_event_wait_q); 1998 wake_up_interruptible(&info->event_wait_q); 1999 info->pending_bh |= BH_STATUS; 2000 2001 if (tty_port_check_carrier(&info->port)) { 2002 if (info->signals & SerialSignal_DCD) 2003 wake_up_interruptible(&info->port.open_wait); 2004 else { 2005 if (info->port.tty) 2006 tty_hangup(info->port.tty); 2007 } 2008 } 2009 } 2010 2011 static void ri_change(struct slgt_info *info, unsigned short status) 2012 { 2013 if (status & BIT0) { 2014 info->signals |= SerialSignal_RI; 2015 info->input_signal_events.ri_up++; 2016 } else { 2017 info->signals &= ~SerialSignal_RI; 2018 info->input_signal_events.ri_down++; 2019 } 2020 DBGISR(("ri_change %s signals=%04X\n", info->device_name, info->signals)); 2021 if ((info->ri_chkcount)++ == IO_PIN_SHUTDOWN_LIMIT) { 2022 slgt_irq_off(info, IRQ_RI); 2023 return; 2024 } 2025 info->icount.rng++; 2026 wake_up_interruptible(&info->status_event_wait_q); 2027 wake_up_interruptible(&info->event_wait_q); 2028 info->pending_bh |= BH_STATUS; 2029 } 2030 2031 static void isr_rxdata(struct slgt_info *info) 2032 { 2033 unsigned int count = info->rbuf_fill_count; 2034 unsigned int i = info->rbuf_fill_index; 2035 unsigned short reg; 2036 2037 while (rd_reg16(info, SSR) & IRQ_RXDATA) { 2038 reg = rd_reg16(info, RDR); 2039 DBGISR(("isr_rxdata %s RDR=%04X\n", info->device_name, reg)); 2040 if (desc_complete(info->rbufs[i])) { 2041 /* all buffers full */ 2042 rx_stop(info); 2043 info->rx_restart = true; 2044 continue; 2045 } 2046 info->rbufs[i].buf[count++] = (unsigned char)reg; 2047 /* async mode saves status byte to buffer for each data byte */ 2048 if (info->params.mode == MGSL_MODE_ASYNC) 2049 info->rbufs[i].buf[count++] = (unsigned char)(reg >> 8); 2050 if (count == info->rbuf_fill_level || (reg & BIT10)) { 2051 /* buffer full or end of frame */ 2052 set_desc_count(info->rbufs[i], count); 2053 set_desc_status(info->rbufs[i], BIT15 | (reg >> 8)); 2054 info->rbuf_fill_count = count = 0; 2055 if (++i == info->rbuf_count) 2056 i = 0; 2057 info->pending_bh |= BH_RECEIVE; 2058 } 2059 } 2060 2061 info->rbuf_fill_index = i; 2062 info->rbuf_fill_count = count; 2063 } 2064 2065 static void isr_serial(struct slgt_info *info) 2066 { 2067 unsigned short status = rd_reg16(info, SSR); 2068 2069 DBGISR(("%s isr_serial status=%04X\n", info->device_name, status)); 2070 2071 wr_reg16(info, SSR, status); /* clear pending */ 2072 2073 info->irq_occurred = true; 2074 2075 if (info->params.mode == MGSL_MODE_ASYNC) { 2076 if (status & IRQ_TXIDLE) { 2077 if (info->tx_active) 2078 isr_txeom(info, status); 2079 } 2080 if (info->rx_pio && (status & IRQ_RXDATA)) 2081 isr_rxdata(info); 2082 if ((status & IRQ_RXBREAK) && (status & RXBREAK)) { 2083 info->icount.brk++; 2084 /* process break detection if tty control allows */ 2085 if (info->port.tty) { 2086 if (!(status & info->ignore_status_mask)) { 2087 if (info->read_status_mask & MASK_BREAK) { 2088 tty_insert_flip_char(&info->port, 0, TTY_BREAK); 2089 if (info->port.flags & ASYNC_SAK) 2090 do_SAK(info->port.tty); 2091 } 2092 } 2093 } 2094 } 2095 } else { 2096 if (status & (IRQ_TXIDLE + IRQ_TXUNDER)) 2097 isr_txeom(info, status); 2098 if (info->rx_pio && (status & IRQ_RXDATA)) 2099 isr_rxdata(info); 2100 if (status & IRQ_RXIDLE) { 2101 if (status & RXIDLE) 2102 info->icount.rxidle++; 2103 else 2104 info->icount.exithunt++; 2105 wake_up_interruptible(&info->event_wait_q); 2106 } 2107 2108 if (status & IRQ_RXOVER) 2109 rx_start(info); 2110 } 2111 2112 if (status & IRQ_DSR) 2113 dsr_change(info, status); 2114 if (status & IRQ_CTS) 2115 cts_change(info, status); 2116 if (status & IRQ_DCD) 2117 dcd_change(info, status); 2118 if (status & IRQ_RI) 2119 ri_change(info, status); 2120 } 2121 2122 static void isr_rdma(struct slgt_info *info) 2123 { 2124 unsigned int status = rd_reg32(info, RDCSR); 2125 2126 DBGISR(("%s isr_rdma status=%08x\n", info->device_name, status)); 2127 2128 /* RDCSR (rx DMA control/status) 2129 * 2130 * 31..07 reserved 2131 * 06 save status byte to DMA buffer 2132 * 05 error 2133 * 04 eol (end of list) 2134 * 03 eob (end of buffer) 2135 * 02 IRQ enable 2136 * 01 reset 2137 * 00 enable 2138 */ 2139 wr_reg32(info, RDCSR, status); /* clear pending */ 2140 2141 if (status & (BIT5 + BIT4)) { 2142 DBGISR(("%s isr_rdma rx_restart=1\n", info->device_name)); 2143 info->rx_restart = true; 2144 } 2145 info->pending_bh |= BH_RECEIVE; 2146 } 2147 2148 static void isr_tdma(struct slgt_info *info) 2149 { 2150 unsigned int status = rd_reg32(info, TDCSR); 2151 2152 DBGISR(("%s isr_tdma status=%08x\n", info->device_name, status)); 2153 2154 /* TDCSR (tx DMA control/status) 2155 * 2156 * 31..06 reserved 2157 * 05 error 2158 * 04 eol (end of list) 2159 * 03 eob (end of buffer) 2160 * 02 IRQ enable 2161 * 01 reset 2162 * 00 enable 2163 */ 2164 wr_reg32(info, TDCSR, status); /* clear pending */ 2165 2166 if (status & (BIT5 + BIT4 + BIT3)) { 2167 // another transmit buffer has completed 2168 // run bottom half to get more send data from user 2169 info->pending_bh |= BH_TRANSMIT; 2170 } 2171 } 2172 2173 /* 2174 * return true if there are unsent tx DMA buffers, otherwise false 2175 * 2176 * if there are unsent buffers then info->tbuf_start 2177 * is set to index of first unsent buffer 2178 */ 2179 static bool unsent_tbufs(struct slgt_info *info) 2180 { 2181 unsigned int i = info->tbuf_current; 2182 bool rc = false; 2183 2184 /* 2185 * search backwards from last loaded buffer (precedes tbuf_current) 2186 * for first unsent buffer (desc_count > 0) 2187 */ 2188 2189 do { 2190 if (i) 2191 i--; 2192 else 2193 i = info->tbuf_count - 1; 2194 if (!desc_count(info->tbufs[i])) 2195 break; 2196 info->tbuf_start = i; 2197 rc = true; 2198 } while (i != info->tbuf_current); 2199 2200 return rc; 2201 } 2202 2203 static void isr_txeom(struct slgt_info *info, unsigned short status) 2204 { 2205 DBGISR(("%s txeom status=%04x\n", info->device_name, status)); 2206 2207 slgt_irq_off(info, IRQ_TXDATA + IRQ_TXIDLE + IRQ_TXUNDER); 2208 tdma_reset(info); 2209 if (status & IRQ_TXUNDER) { 2210 unsigned short val = rd_reg16(info, TCR); 2211 wr_reg16(info, TCR, (unsigned short)(val | BIT2)); /* set reset bit */ 2212 wr_reg16(info, TCR, val); /* clear reset bit */ 2213 } 2214 2215 if (info->tx_active) { 2216 if (info->params.mode != MGSL_MODE_ASYNC) { 2217 if (status & IRQ_TXUNDER) 2218 info->icount.txunder++; 2219 else if (status & IRQ_TXIDLE) 2220 info->icount.txok++; 2221 } 2222 2223 if (unsent_tbufs(info)) { 2224 tx_start(info); 2225 update_tx_timer(info); 2226 return; 2227 } 2228 info->tx_active = false; 2229 2230 del_timer(&info->tx_timer); 2231 2232 if (info->params.mode != MGSL_MODE_ASYNC && info->drop_rts_on_tx_done) { 2233 info->signals &= ~SerialSignal_RTS; 2234 info->drop_rts_on_tx_done = false; 2235 set_signals(info); 2236 } 2237 2238 #if SYNCLINK_GENERIC_HDLC 2239 if (info->netcount) 2240 hdlcdev_tx_done(info); 2241 else 2242 #endif 2243 { 2244 if (info->port.tty && (info->port.tty->stopped || info->port.tty->hw_stopped)) { 2245 tx_stop(info); 2246 return; 2247 } 2248 info->pending_bh |= BH_TRANSMIT; 2249 } 2250 } 2251 } 2252 2253 static void isr_gpio(struct slgt_info *info, unsigned int changed, unsigned int state) 2254 { 2255 struct cond_wait *w, *prev; 2256 2257 /* wake processes waiting for specific transitions */ 2258 for (w = info->gpio_wait_q, prev = NULL ; w != NULL ; w = w->next) { 2259 if (w->data & changed) { 2260 w->data = state; 2261 wake_up_interruptible(&w->q); 2262 if (prev != NULL) 2263 prev->next = w->next; 2264 else 2265 info->gpio_wait_q = w->next; 2266 } else 2267 prev = w; 2268 } 2269 } 2270 2271 /* interrupt service routine 2272 * 2273 * irq interrupt number 2274 * dev_id device ID supplied during interrupt registration 2275 */ 2276 static irqreturn_t slgt_interrupt(int dummy, void *dev_id) 2277 { 2278 struct slgt_info *info = dev_id; 2279 unsigned int gsr; 2280 unsigned int i; 2281 2282 DBGISR(("slgt_interrupt irq=%d entry\n", info->irq_level)); 2283 2284 while((gsr = rd_reg32(info, GSR) & 0xffffff00)) { 2285 DBGISR(("%s gsr=%08x\n", info->device_name, gsr)); 2286 info->irq_occurred = true; 2287 for(i=0; i < info->port_count ; i++) { 2288 if (info->port_array[i] == NULL) 2289 continue; 2290 spin_lock(&info->port_array[i]->lock); 2291 if (gsr & (BIT8 << i)) 2292 isr_serial(info->port_array[i]); 2293 if (gsr & (BIT16 << (i*2))) 2294 isr_rdma(info->port_array[i]); 2295 if (gsr & (BIT17 << (i*2))) 2296 isr_tdma(info->port_array[i]); 2297 spin_unlock(&info->port_array[i]->lock); 2298 } 2299 } 2300 2301 if (info->gpio_present) { 2302 unsigned int state; 2303 unsigned int changed; 2304 spin_lock(&info->lock); 2305 while ((changed = rd_reg32(info, IOSR)) != 0) { 2306 DBGISR(("%s iosr=%08x\n", info->device_name, changed)); 2307 /* read latched state of GPIO signals */ 2308 state = rd_reg32(info, IOVR); 2309 /* clear pending GPIO interrupt bits */ 2310 wr_reg32(info, IOSR, changed); 2311 for (i=0 ; i < info->port_count ; i++) { 2312 if (info->port_array[i] != NULL) 2313 isr_gpio(info->port_array[i], changed, state); 2314 } 2315 } 2316 spin_unlock(&info->lock); 2317 } 2318 2319 for(i=0; i < info->port_count ; i++) { 2320 struct slgt_info *port = info->port_array[i]; 2321 if (port == NULL) 2322 continue; 2323 spin_lock(&port->lock); 2324 if ((port->port.count || port->netcount) && 2325 port->pending_bh && !port->bh_running && 2326 !port->bh_requested) { 2327 DBGISR(("%s bh queued\n", port->device_name)); 2328 schedule_work(&port->task); 2329 port->bh_requested = true; 2330 } 2331 spin_unlock(&port->lock); 2332 } 2333 2334 DBGISR(("slgt_interrupt irq=%d exit\n", info->irq_level)); 2335 return IRQ_HANDLED; 2336 } 2337 2338 static int startup(struct slgt_info *info) 2339 { 2340 DBGINFO(("%s startup\n", info->device_name)); 2341 2342 if (tty_port_initialized(&info->port)) 2343 return 0; 2344 2345 if (!info->tx_buf) { 2346 info->tx_buf = kmalloc(info->max_frame_size, GFP_KERNEL); 2347 if (!info->tx_buf) { 2348 DBGERR(("%s can't allocate tx buffer\n", info->device_name)); 2349 return -ENOMEM; 2350 } 2351 } 2352 2353 info->pending_bh = 0; 2354 2355 memset(&info->icount, 0, sizeof(info->icount)); 2356 2357 /* program hardware for current parameters */ 2358 change_params(info); 2359 2360 if (info->port.tty) 2361 clear_bit(TTY_IO_ERROR, &info->port.tty->flags); 2362 2363 tty_port_set_initialized(&info->port, 1); 2364 2365 return 0; 2366 } 2367 2368 /* 2369 * called by close() and hangup() to shutdown hardware 2370 */ 2371 static void shutdown(struct slgt_info *info) 2372 { 2373 unsigned long flags; 2374 2375 if (!tty_port_initialized(&info->port)) 2376 return; 2377 2378 DBGINFO(("%s shutdown\n", info->device_name)); 2379 2380 /* clear status wait queue because status changes */ 2381 /* can't happen after shutting down the hardware */ 2382 wake_up_interruptible(&info->status_event_wait_q); 2383 wake_up_interruptible(&info->event_wait_q); 2384 2385 del_timer_sync(&info->tx_timer); 2386 del_timer_sync(&info->rx_timer); 2387 2388 kfree(info->tx_buf); 2389 info->tx_buf = NULL; 2390 2391 spin_lock_irqsave(&info->lock,flags); 2392 2393 tx_stop(info); 2394 rx_stop(info); 2395 2396 slgt_irq_off(info, IRQ_ALL | IRQ_MASTER); 2397 2398 if (!info->port.tty || info->port.tty->termios.c_cflag & HUPCL) { 2399 info->signals &= ~(SerialSignal_RTS | SerialSignal_DTR); 2400 set_signals(info); 2401 } 2402 2403 flush_cond_wait(&info->gpio_wait_q); 2404 2405 spin_unlock_irqrestore(&info->lock,flags); 2406 2407 if (info->port.tty) 2408 set_bit(TTY_IO_ERROR, &info->port.tty->flags); 2409 2410 tty_port_set_initialized(&info->port, 0); 2411 } 2412 2413 static void program_hw(struct slgt_info *info) 2414 { 2415 unsigned long flags; 2416 2417 spin_lock_irqsave(&info->lock,flags); 2418 2419 rx_stop(info); 2420 tx_stop(info); 2421 2422 if (info->params.mode != MGSL_MODE_ASYNC || 2423 info->netcount) 2424 sync_mode(info); 2425 else 2426 async_mode(info); 2427 2428 set_signals(info); 2429 2430 info->dcd_chkcount = 0; 2431 info->cts_chkcount = 0; 2432 info->ri_chkcount = 0; 2433 info->dsr_chkcount = 0; 2434 2435 slgt_irq_on(info, IRQ_DCD | IRQ_CTS | IRQ_DSR | IRQ_RI); 2436 get_signals(info); 2437 2438 if (info->netcount || 2439 (info->port.tty && info->port.tty->termios.c_cflag & CREAD)) 2440 rx_start(info); 2441 2442 spin_unlock_irqrestore(&info->lock,flags); 2443 } 2444 2445 /* 2446 * reconfigure adapter based on new parameters 2447 */ 2448 static void change_params(struct slgt_info *info) 2449 { 2450 unsigned cflag; 2451 int bits_per_char; 2452 2453 if (!info->port.tty) 2454 return; 2455 DBGINFO(("%s change_params\n", info->device_name)); 2456 2457 cflag = info->port.tty->termios.c_cflag; 2458 2459 /* if B0 rate (hangup) specified then negate RTS and DTR */ 2460 /* otherwise assert RTS and DTR */ 2461 if (cflag & CBAUD) 2462 info->signals |= SerialSignal_RTS | SerialSignal_DTR; 2463 else 2464 info->signals &= ~(SerialSignal_RTS | SerialSignal_DTR); 2465 2466 /* byte size and parity */ 2467 2468 switch (cflag & CSIZE) { 2469 case CS5: info->params.data_bits = 5; break; 2470 case CS6: info->params.data_bits = 6; break; 2471 case CS7: info->params.data_bits = 7; break; 2472 case CS8: info->params.data_bits = 8; break; 2473 default: info->params.data_bits = 7; break; 2474 } 2475 2476 info->params.stop_bits = (cflag & CSTOPB) ? 2 : 1; 2477 2478 if (cflag & PARENB) 2479 info->params.parity = (cflag & PARODD) ? ASYNC_PARITY_ODD : ASYNC_PARITY_EVEN; 2480 else 2481 info->params.parity = ASYNC_PARITY_NONE; 2482 2483 /* calculate number of jiffies to transmit a full 2484 * FIFO (32 bytes) at specified data rate 2485 */ 2486 bits_per_char = info->params.data_bits + 2487 info->params.stop_bits + 1; 2488 2489 info->params.data_rate = tty_get_baud_rate(info->port.tty); 2490 2491 if (info->params.data_rate) { 2492 info->timeout = (32*HZ*bits_per_char) / 2493 info->params.data_rate; 2494 } 2495 info->timeout += HZ/50; /* Add .02 seconds of slop */ 2496 2497 tty_port_set_cts_flow(&info->port, cflag & CRTSCTS); 2498 tty_port_set_check_carrier(&info->port, ~cflag & CLOCAL); 2499 2500 /* process tty input control flags */ 2501 2502 info->read_status_mask = IRQ_RXOVER; 2503 if (I_INPCK(info->port.tty)) 2504 info->read_status_mask |= MASK_PARITY | MASK_FRAMING; 2505 if (I_BRKINT(info->port.tty) || I_PARMRK(info->port.tty)) 2506 info->read_status_mask |= MASK_BREAK; 2507 if (I_IGNPAR(info->port.tty)) 2508 info->ignore_status_mask |= MASK_PARITY | MASK_FRAMING; 2509 if (I_IGNBRK(info->port.tty)) { 2510 info->ignore_status_mask |= MASK_BREAK; 2511 /* If ignoring parity and break indicators, ignore 2512 * overruns too. (For real raw support). 2513 */ 2514 if (I_IGNPAR(info->port.tty)) 2515 info->ignore_status_mask |= MASK_OVERRUN; 2516 } 2517 2518 program_hw(info); 2519 } 2520 2521 static int get_stats(struct slgt_info *info, struct mgsl_icount __user *user_icount) 2522 { 2523 DBGINFO(("%s get_stats\n", info->device_name)); 2524 if (!user_icount) { 2525 memset(&info->icount, 0, sizeof(info->icount)); 2526 } else { 2527 if (copy_to_user(user_icount, &info->icount, sizeof(struct mgsl_icount))) 2528 return -EFAULT; 2529 } 2530 return 0; 2531 } 2532 2533 static int get_params(struct slgt_info *info, MGSL_PARAMS __user *user_params) 2534 { 2535 DBGINFO(("%s get_params\n", info->device_name)); 2536 if (copy_to_user(user_params, &info->params, sizeof(MGSL_PARAMS))) 2537 return -EFAULT; 2538 return 0; 2539 } 2540 2541 static int set_params(struct slgt_info *info, MGSL_PARAMS __user *new_params) 2542 { 2543 unsigned long flags; 2544 MGSL_PARAMS tmp_params; 2545 2546 DBGINFO(("%s set_params\n", info->device_name)); 2547 if (copy_from_user(&tmp_params, new_params, sizeof(MGSL_PARAMS))) 2548 return -EFAULT; 2549 2550 spin_lock_irqsave(&info->lock, flags); 2551 if (tmp_params.mode == MGSL_MODE_BASE_CLOCK) 2552 info->base_clock = tmp_params.clock_speed; 2553 else 2554 memcpy(&info->params, &tmp_params, sizeof(MGSL_PARAMS)); 2555 spin_unlock_irqrestore(&info->lock, flags); 2556 2557 program_hw(info); 2558 2559 return 0; 2560 } 2561 2562 static int get_txidle(struct slgt_info *info, int __user *idle_mode) 2563 { 2564 DBGINFO(("%s get_txidle=%d\n", info->device_name, info->idle_mode)); 2565 if (put_user(info->idle_mode, idle_mode)) 2566 return -EFAULT; 2567 return 0; 2568 } 2569 2570 static int set_txidle(struct slgt_info *info, int idle_mode) 2571 { 2572 unsigned long flags; 2573 DBGINFO(("%s set_txidle(%d)\n", info->device_name, idle_mode)); 2574 spin_lock_irqsave(&info->lock,flags); 2575 info->idle_mode = idle_mode; 2576 if (info->params.mode != MGSL_MODE_ASYNC) 2577 tx_set_idle(info); 2578 spin_unlock_irqrestore(&info->lock,flags); 2579 return 0; 2580 } 2581 2582 static int tx_enable(struct slgt_info *info, int enable) 2583 { 2584 unsigned long flags; 2585 DBGINFO(("%s tx_enable(%d)\n", info->device_name, enable)); 2586 spin_lock_irqsave(&info->lock,flags); 2587 if (enable) { 2588 if (!info->tx_enabled) 2589 tx_start(info); 2590 } else { 2591 if (info->tx_enabled) 2592 tx_stop(info); 2593 } 2594 spin_unlock_irqrestore(&info->lock,flags); 2595 return 0; 2596 } 2597 2598 /* 2599 * abort transmit HDLC frame 2600 */ 2601 static int tx_abort(struct slgt_info *info) 2602 { 2603 unsigned long flags; 2604 DBGINFO(("%s tx_abort\n", info->device_name)); 2605 spin_lock_irqsave(&info->lock,flags); 2606 tdma_reset(info); 2607 spin_unlock_irqrestore(&info->lock,flags); 2608 return 0; 2609 } 2610 2611 static int rx_enable(struct slgt_info *info, int enable) 2612 { 2613 unsigned long flags; 2614 unsigned int rbuf_fill_level; 2615 DBGINFO(("%s rx_enable(%08x)\n", info->device_name, enable)); 2616 spin_lock_irqsave(&info->lock,flags); 2617 /* 2618 * enable[31..16] = receive DMA buffer fill level 2619 * 0 = noop (leave fill level unchanged) 2620 * fill level must be multiple of 4 and <= buffer size 2621 */ 2622 rbuf_fill_level = ((unsigned int)enable) >> 16; 2623 if (rbuf_fill_level) { 2624 if ((rbuf_fill_level > DMABUFSIZE) || (rbuf_fill_level % 4)) { 2625 spin_unlock_irqrestore(&info->lock, flags); 2626 return -EINVAL; 2627 } 2628 info->rbuf_fill_level = rbuf_fill_level; 2629 if (rbuf_fill_level < 128) 2630 info->rx_pio = 1; /* PIO mode */ 2631 else 2632 info->rx_pio = 0; /* DMA mode */ 2633 rx_stop(info); /* restart receiver to use new fill level */ 2634 } 2635 2636 /* 2637 * enable[1..0] = receiver enable command 2638 * 0 = disable 2639 * 1 = enable 2640 * 2 = enable or force hunt mode if already enabled 2641 */ 2642 enable &= 3; 2643 if (enable) { 2644 if (!info->rx_enabled) 2645 rx_start(info); 2646 else if (enable == 2) { 2647 /* force hunt mode (write 1 to RCR[3]) */ 2648 wr_reg16(info, RCR, rd_reg16(info, RCR) | BIT3); 2649 } 2650 } else { 2651 if (info->rx_enabled) 2652 rx_stop(info); 2653 } 2654 spin_unlock_irqrestore(&info->lock,flags); 2655 return 0; 2656 } 2657 2658 /* 2659 * wait for specified event to occur 2660 */ 2661 static int wait_mgsl_event(struct slgt_info *info, int __user *mask_ptr) 2662 { 2663 unsigned long flags; 2664 int s; 2665 int rc=0; 2666 struct mgsl_icount cprev, cnow; 2667 int events; 2668 int mask; 2669 struct _input_signal_events oldsigs, newsigs; 2670 DECLARE_WAITQUEUE(wait, current); 2671 2672 if (get_user(mask, mask_ptr)) 2673 return -EFAULT; 2674 2675 DBGINFO(("%s wait_mgsl_event(%d)\n", info->device_name, mask)); 2676 2677 spin_lock_irqsave(&info->lock,flags); 2678 2679 /* return immediately if state matches requested events */ 2680 get_signals(info); 2681 s = info->signals; 2682 2683 events = mask & 2684 ( ((s & SerialSignal_DSR) ? MgslEvent_DsrActive:MgslEvent_DsrInactive) + 2685 ((s & SerialSignal_DCD) ? MgslEvent_DcdActive:MgslEvent_DcdInactive) + 2686 ((s & SerialSignal_CTS) ? MgslEvent_CtsActive:MgslEvent_CtsInactive) + 2687 ((s & SerialSignal_RI) ? MgslEvent_RiActive :MgslEvent_RiInactive) ); 2688 if (events) { 2689 spin_unlock_irqrestore(&info->lock,flags); 2690 goto exit; 2691 } 2692 2693 /* save current irq counts */ 2694 cprev = info->icount; 2695 oldsigs = info->input_signal_events; 2696 2697 /* enable hunt and idle irqs if needed */ 2698 if (mask & (MgslEvent_ExitHuntMode+MgslEvent_IdleReceived)) { 2699 unsigned short val = rd_reg16(info, SCR); 2700 if (!(val & IRQ_RXIDLE)) 2701 wr_reg16(info, SCR, (unsigned short)(val | IRQ_RXIDLE)); 2702 } 2703 2704 set_current_state(TASK_INTERRUPTIBLE); 2705 add_wait_queue(&info->event_wait_q, &wait); 2706 2707 spin_unlock_irqrestore(&info->lock,flags); 2708 2709 for(;;) { 2710 schedule(); 2711 if (signal_pending(current)) { 2712 rc = -ERESTARTSYS; 2713 break; 2714 } 2715 2716 /* get current irq counts */ 2717 spin_lock_irqsave(&info->lock,flags); 2718 cnow = info->icount; 2719 newsigs = info->input_signal_events; 2720 set_current_state(TASK_INTERRUPTIBLE); 2721 spin_unlock_irqrestore(&info->lock,flags); 2722 2723 /* if no change, wait aborted for some reason */ 2724 if (newsigs.dsr_up == oldsigs.dsr_up && 2725 newsigs.dsr_down == oldsigs.dsr_down && 2726 newsigs.dcd_up == oldsigs.dcd_up && 2727 newsigs.dcd_down == oldsigs.dcd_down && 2728 newsigs.cts_up == oldsigs.cts_up && 2729 newsigs.cts_down == oldsigs.cts_down && 2730 newsigs.ri_up == oldsigs.ri_up && 2731 newsigs.ri_down == oldsigs.ri_down && 2732 cnow.exithunt == cprev.exithunt && 2733 cnow.rxidle == cprev.rxidle) { 2734 rc = -EIO; 2735 break; 2736 } 2737 2738 events = mask & 2739 ( (newsigs.dsr_up != oldsigs.dsr_up ? MgslEvent_DsrActive:0) + 2740 (newsigs.dsr_down != oldsigs.dsr_down ? MgslEvent_DsrInactive:0) + 2741 (newsigs.dcd_up != oldsigs.dcd_up ? MgslEvent_DcdActive:0) + 2742 (newsigs.dcd_down != oldsigs.dcd_down ? MgslEvent_DcdInactive:0) + 2743 (newsigs.cts_up != oldsigs.cts_up ? MgslEvent_CtsActive:0) + 2744 (newsigs.cts_down != oldsigs.cts_down ? MgslEvent_CtsInactive:0) + 2745 (newsigs.ri_up != oldsigs.ri_up ? MgslEvent_RiActive:0) + 2746 (newsigs.ri_down != oldsigs.ri_down ? MgslEvent_RiInactive:0) + 2747 (cnow.exithunt != cprev.exithunt ? MgslEvent_ExitHuntMode:0) + 2748 (cnow.rxidle != cprev.rxidle ? MgslEvent_IdleReceived:0) ); 2749 if (events) 2750 break; 2751 2752 cprev = cnow; 2753 oldsigs = newsigs; 2754 } 2755 2756 remove_wait_queue(&info->event_wait_q, &wait); 2757 set_current_state(TASK_RUNNING); 2758 2759 2760 if (mask & (MgslEvent_ExitHuntMode + MgslEvent_IdleReceived)) { 2761 spin_lock_irqsave(&info->lock,flags); 2762 if (!waitqueue_active(&info->event_wait_q)) { 2763 /* disable enable exit hunt mode/idle rcvd IRQs */ 2764 wr_reg16(info, SCR, 2765 (unsigned short)(rd_reg16(info, SCR) & ~IRQ_RXIDLE)); 2766 } 2767 spin_unlock_irqrestore(&info->lock,flags); 2768 } 2769 exit: 2770 if (rc == 0) 2771 rc = put_user(events, mask_ptr); 2772 return rc; 2773 } 2774 2775 static int get_interface(struct slgt_info *info, int __user *if_mode) 2776 { 2777 DBGINFO(("%s get_interface=%x\n", info->device_name, info->if_mode)); 2778 if (put_user(info->if_mode, if_mode)) 2779 return -EFAULT; 2780 return 0; 2781 } 2782 2783 static int set_interface(struct slgt_info *info, int if_mode) 2784 { 2785 unsigned long flags; 2786 unsigned short val; 2787 2788 DBGINFO(("%s set_interface=%x)\n", info->device_name, if_mode)); 2789 spin_lock_irqsave(&info->lock,flags); 2790 info->if_mode = if_mode; 2791 2792 msc_set_vcr(info); 2793 2794 /* TCR (tx control) 07 1=RTS driver control */ 2795 val = rd_reg16(info, TCR); 2796 if (info->if_mode & MGSL_INTERFACE_RTS_EN) 2797 val |= BIT7; 2798 else 2799 val &= ~BIT7; 2800 wr_reg16(info, TCR, val); 2801 2802 spin_unlock_irqrestore(&info->lock,flags); 2803 return 0; 2804 } 2805 2806 static int get_xsync(struct slgt_info *info, int __user *xsync) 2807 { 2808 DBGINFO(("%s get_xsync=%x\n", info->device_name, info->xsync)); 2809 if (put_user(info->xsync, xsync)) 2810 return -EFAULT; 2811 return 0; 2812 } 2813 2814 /* 2815 * set extended sync pattern (1 to 4 bytes) for extended sync mode 2816 * 2817 * sync pattern is contained in least significant bytes of value 2818 * most significant byte of sync pattern is oldest (1st sent/detected) 2819 */ 2820 static int set_xsync(struct slgt_info *info, int xsync) 2821 { 2822 unsigned long flags; 2823 2824 DBGINFO(("%s set_xsync=%x)\n", info->device_name, xsync)); 2825 spin_lock_irqsave(&info->lock, flags); 2826 info->xsync = xsync; 2827 wr_reg32(info, XSR, xsync); 2828 spin_unlock_irqrestore(&info->lock, flags); 2829 return 0; 2830 } 2831 2832 static int get_xctrl(struct slgt_info *info, int __user *xctrl) 2833 { 2834 DBGINFO(("%s get_xctrl=%x\n", info->device_name, info->xctrl)); 2835 if (put_user(info->xctrl, xctrl)) 2836 return -EFAULT; 2837 return 0; 2838 } 2839 2840 /* 2841 * set extended control options 2842 * 2843 * xctrl[31:19] reserved, must be zero 2844 * xctrl[18:17] extended sync pattern length in bytes 2845 * 00 = 1 byte in xsr[7:0] 2846 * 01 = 2 bytes in xsr[15:0] 2847 * 10 = 3 bytes in xsr[23:0] 2848 * 11 = 4 bytes in xsr[31:0] 2849 * xctrl[16] 1 = enable terminal count, 0=disabled 2850 * xctrl[15:0] receive terminal count for fixed length packets 2851 * value is count minus one (0 = 1 byte packet) 2852 * when terminal count is reached, receiver 2853 * automatically returns to hunt mode and receive 2854 * FIFO contents are flushed to DMA buffers with 2855 * end of frame (EOF) status 2856 */ 2857 static int set_xctrl(struct slgt_info *info, int xctrl) 2858 { 2859 unsigned long flags; 2860 2861 DBGINFO(("%s set_xctrl=%x)\n", info->device_name, xctrl)); 2862 spin_lock_irqsave(&info->lock, flags); 2863 info->xctrl = xctrl; 2864 wr_reg32(info, XCR, xctrl); 2865 spin_unlock_irqrestore(&info->lock, flags); 2866 return 0; 2867 } 2868 2869 /* 2870 * set general purpose IO pin state and direction 2871 * 2872 * user_gpio fields: 2873 * state each bit indicates a pin state 2874 * smask set bit indicates pin state to set 2875 * dir each bit indicates a pin direction (0=input, 1=output) 2876 * dmask set bit indicates pin direction to set 2877 */ 2878 static int set_gpio(struct slgt_info *info, struct gpio_desc __user *user_gpio) 2879 { 2880 unsigned long flags; 2881 struct gpio_desc gpio; 2882 __u32 data; 2883 2884 if (!info->gpio_present) 2885 return -EINVAL; 2886 if (copy_from_user(&gpio, user_gpio, sizeof(gpio))) 2887 return -EFAULT; 2888 DBGINFO(("%s set_gpio state=%08x smask=%08x dir=%08x dmask=%08x\n", 2889 info->device_name, gpio.state, gpio.smask, 2890 gpio.dir, gpio.dmask)); 2891 2892 spin_lock_irqsave(&info->port_array[0]->lock, flags); 2893 if (gpio.dmask) { 2894 data = rd_reg32(info, IODR); 2895 data |= gpio.dmask & gpio.dir; 2896 data &= ~(gpio.dmask & ~gpio.dir); 2897 wr_reg32(info, IODR, data); 2898 } 2899 if (gpio.smask) { 2900 data = rd_reg32(info, IOVR); 2901 data |= gpio.smask & gpio.state; 2902 data &= ~(gpio.smask & ~gpio.state); 2903 wr_reg32(info, IOVR, data); 2904 } 2905 spin_unlock_irqrestore(&info->port_array[0]->lock, flags); 2906 2907 return 0; 2908 } 2909 2910 /* 2911 * get general purpose IO pin state and direction 2912 */ 2913 static int get_gpio(struct slgt_info *info, struct gpio_desc __user *user_gpio) 2914 { 2915 struct gpio_desc gpio; 2916 if (!info->gpio_present) 2917 return -EINVAL; 2918 gpio.state = rd_reg32(info, IOVR); 2919 gpio.smask = 0xffffffff; 2920 gpio.dir = rd_reg32(info, IODR); 2921 gpio.dmask = 0xffffffff; 2922 if (copy_to_user(user_gpio, &gpio, sizeof(gpio))) 2923 return -EFAULT; 2924 DBGINFO(("%s get_gpio state=%08x dir=%08x\n", 2925 info->device_name, gpio.state, gpio.dir)); 2926 return 0; 2927 } 2928 2929 /* 2930 * conditional wait facility 2931 */ 2932 static void init_cond_wait(struct cond_wait *w, unsigned int data) 2933 { 2934 init_waitqueue_head(&w->q); 2935 init_waitqueue_entry(&w->wait, current); 2936 w->data = data; 2937 } 2938 2939 static void add_cond_wait(struct cond_wait **head, struct cond_wait *w) 2940 { 2941 set_current_state(TASK_INTERRUPTIBLE); 2942 add_wait_queue(&w->q, &w->wait); 2943 w->next = *head; 2944 *head = w; 2945 } 2946 2947 static void remove_cond_wait(struct cond_wait **head, struct cond_wait *cw) 2948 { 2949 struct cond_wait *w, *prev; 2950 remove_wait_queue(&cw->q, &cw->wait); 2951 set_current_state(TASK_RUNNING); 2952 for (w = *head, prev = NULL ; w != NULL ; prev = w, w = w->next) { 2953 if (w == cw) { 2954 if (prev != NULL) 2955 prev->next = w->next; 2956 else 2957 *head = w->next; 2958 break; 2959 } 2960 } 2961 } 2962 2963 static void flush_cond_wait(struct cond_wait **head) 2964 { 2965 while (*head != NULL) { 2966 wake_up_interruptible(&(*head)->q); 2967 *head = (*head)->next; 2968 } 2969 } 2970 2971 /* 2972 * wait for general purpose I/O pin(s) to enter specified state 2973 * 2974 * user_gpio fields: 2975 * state - bit indicates target pin state 2976 * smask - set bit indicates watched pin 2977 * 2978 * The wait ends when at least one watched pin enters the specified 2979 * state. When 0 (no error) is returned, user_gpio->state is set to the 2980 * state of all GPIO pins when the wait ends. 2981 * 2982 * Note: Each pin may be a dedicated input, dedicated output, or 2983 * configurable input/output. The number and configuration of pins 2984 * varies with the specific adapter model. Only input pins (dedicated 2985 * or configured) can be monitored with this function. 2986 */ 2987 static int wait_gpio(struct slgt_info *info, struct gpio_desc __user *user_gpio) 2988 { 2989 unsigned long flags; 2990 int rc = 0; 2991 struct gpio_desc gpio; 2992 struct cond_wait wait; 2993 u32 state; 2994 2995 if (!info->gpio_present) 2996 return -EINVAL; 2997 if (copy_from_user(&gpio, user_gpio, sizeof(gpio))) 2998 return -EFAULT; 2999 DBGINFO(("%s wait_gpio() state=%08x smask=%08x\n", 3000 info->device_name, gpio.state, gpio.smask)); 3001 /* ignore output pins identified by set IODR bit */ 3002 if ((gpio.smask &= ~rd_reg32(info, IODR)) == 0) 3003 return -EINVAL; 3004 init_cond_wait(&wait, gpio.smask); 3005 3006 spin_lock_irqsave(&info->port_array[0]->lock, flags); 3007 /* enable interrupts for watched pins */ 3008 wr_reg32(info, IOER, rd_reg32(info, IOER) | gpio.smask); 3009 /* get current pin states */ 3010 state = rd_reg32(info, IOVR); 3011 3012 if (gpio.smask & ~(state ^ gpio.state)) { 3013 /* already in target state */ 3014 gpio.state = state; 3015 } else { 3016 /* wait for target state */ 3017 add_cond_wait(&info->gpio_wait_q, &wait); 3018 spin_unlock_irqrestore(&info->port_array[0]->lock, flags); 3019 schedule(); 3020 if (signal_pending(current)) 3021 rc = -ERESTARTSYS; 3022 else 3023 gpio.state = wait.data; 3024 spin_lock_irqsave(&info->port_array[0]->lock, flags); 3025 remove_cond_wait(&info->gpio_wait_q, &wait); 3026 } 3027 3028 /* disable all GPIO interrupts if no waiting processes */ 3029 if (info->gpio_wait_q == NULL) 3030 wr_reg32(info, IOER, 0); 3031 spin_unlock_irqrestore(&info->port_array[0]->lock, flags); 3032 3033 if ((rc == 0) && copy_to_user(user_gpio, &gpio, sizeof(gpio))) 3034 rc = -EFAULT; 3035 return rc; 3036 } 3037 3038 static int modem_input_wait(struct slgt_info *info,int arg) 3039 { 3040 unsigned long flags; 3041 int rc; 3042 struct mgsl_icount cprev, cnow; 3043 DECLARE_WAITQUEUE(wait, current); 3044 3045 /* save current irq counts */ 3046 spin_lock_irqsave(&info->lock,flags); 3047 cprev = info->icount; 3048 add_wait_queue(&info->status_event_wait_q, &wait); 3049 set_current_state(TASK_INTERRUPTIBLE); 3050 spin_unlock_irqrestore(&info->lock,flags); 3051 3052 for(;;) { 3053 schedule(); 3054 if (signal_pending(current)) { 3055 rc = -ERESTARTSYS; 3056 break; 3057 } 3058 3059 /* get new irq counts */ 3060 spin_lock_irqsave(&info->lock,flags); 3061 cnow = info->icount; 3062 set_current_state(TASK_INTERRUPTIBLE); 3063 spin_unlock_irqrestore(&info->lock,flags); 3064 3065 /* if no change, wait aborted for some reason */ 3066 if (cnow.rng == cprev.rng && cnow.dsr == cprev.dsr && 3067 cnow.dcd == cprev.dcd && cnow.cts == cprev.cts) { 3068 rc = -EIO; 3069 break; 3070 } 3071 3072 /* check for change in caller specified modem input */ 3073 if ((arg & TIOCM_RNG && cnow.rng != cprev.rng) || 3074 (arg & TIOCM_DSR && cnow.dsr != cprev.dsr) || 3075 (arg & TIOCM_CD && cnow.dcd != cprev.dcd) || 3076 (arg & TIOCM_CTS && cnow.cts != cprev.cts)) { 3077 rc = 0; 3078 break; 3079 } 3080 3081 cprev = cnow; 3082 } 3083 remove_wait_queue(&info->status_event_wait_q, &wait); 3084 set_current_state(TASK_RUNNING); 3085 return rc; 3086 } 3087 3088 /* 3089 * return state of serial control and status signals 3090 */ 3091 static int tiocmget(struct tty_struct *tty) 3092 { 3093 struct slgt_info *info = tty->driver_data; 3094 unsigned int result; 3095 unsigned long flags; 3096 3097 spin_lock_irqsave(&info->lock,flags); 3098 get_signals(info); 3099 spin_unlock_irqrestore(&info->lock,flags); 3100 3101 result = ((info->signals & SerialSignal_RTS) ? TIOCM_RTS:0) + 3102 ((info->signals & SerialSignal_DTR) ? TIOCM_DTR:0) + 3103 ((info->signals & SerialSignal_DCD) ? TIOCM_CAR:0) + 3104 ((info->signals & SerialSignal_RI) ? TIOCM_RNG:0) + 3105 ((info->signals & SerialSignal_DSR) ? TIOCM_DSR:0) + 3106 ((info->signals & SerialSignal_CTS) ? TIOCM_CTS:0); 3107 3108 DBGINFO(("%s tiocmget value=%08X\n", info->device_name, result)); 3109 return result; 3110 } 3111 3112 /* 3113 * set modem control signals (DTR/RTS) 3114 * 3115 * cmd signal command: TIOCMBIS = set bit TIOCMBIC = clear bit 3116 * TIOCMSET = set/clear signal values 3117 * value bit mask for command 3118 */ 3119 static int tiocmset(struct tty_struct *tty, 3120 unsigned int set, unsigned int clear) 3121 { 3122 struct slgt_info *info = tty->driver_data; 3123 unsigned long flags; 3124 3125 DBGINFO(("%s tiocmset(%x,%x)\n", info->device_name, set, clear)); 3126 3127 if (set & TIOCM_RTS) 3128 info->signals |= SerialSignal_RTS; 3129 if (set & TIOCM_DTR) 3130 info->signals |= SerialSignal_DTR; 3131 if (clear & TIOCM_RTS) 3132 info->signals &= ~SerialSignal_RTS; 3133 if (clear & TIOCM_DTR) 3134 info->signals &= ~SerialSignal_DTR; 3135 3136 spin_lock_irqsave(&info->lock,flags); 3137 set_signals(info); 3138 spin_unlock_irqrestore(&info->lock,flags); 3139 return 0; 3140 } 3141 3142 static int carrier_raised(struct tty_port *port) 3143 { 3144 unsigned long flags; 3145 struct slgt_info *info = container_of(port, struct slgt_info, port); 3146 3147 spin_lock_irqsave(&info->lock,flags); 3148 get_signals(info); 3149 spin_unlock_irqrestore(&info->lock,flags); 3150 return (info->signals & SerialSignal_DCD) ? 1 : 0; 3151 } 3152 3153 static void dtr_rts(struct tty_port *port, int on) 3154 { 3155 unsigned long flags; 3156 struct slgt_info *info = container_of(port, struct slgt_info, port); 3157 3158 spin_lock_irqsave(&info->lock,flags); 3159 if (on) 3160 info->signals |= SerialSignal_RTS | SerialSignal_DTR; 3161 else 3162 info->signals &= ~(SerialSignal_RTS | SerialSignal_DTR); 3163 set_signals(info); 3164 spin_unlock_irqrestore(&info->lock,flags); 3165 } 3166 3167 3168 /* 3169 * block current process until the device is ready to open 3170 */ 3171 static int block_til_ready(struct tty_struct *tty, struct file *filp, 3172 struct slgt_info *info) 3173 { 3174 DECLARE_WAITQUEUE(wait, current); 3175 int retval; 3176 bool do_clocal = false; 3177 unsigned long flags; 3178 int cd; 3179 struct tty_port *port = &info->port; 3180 3181 DBGINFO(("%s block_til_ready\n", tty->driver->name)); 3182 3183 if (filp->f_flags & O_NONBLOCK || tty_io_error(tty)) { 3184 /* nonblock mode is set or port is not enabled */ 3185 tty_port_set_active(port, 1); 3186 return 0; 3187 } 3188 3189 if (C_CLOCAL(tty)) 3190 do_clocal = true; 3191 3192 /* Wait for carrier detect and the line to become 3193 * free (i.e., not in use by the callout). While we are in 3194 * this loop, port->count is dropped by one, so that 3195 * close() knows when to free things. We restore it upon 3196 * exit, either normal or abnormal. 3197 */ 3198 3199 retval = 0; 3200 add_wait_queue(&port->open_wait, &wait); 3201 3202 spin_lock_irqsave(&info->lock, flags); 3203 port->count--; 3204 spin_unlock_irqrestore(&info->lock, flags); 3205 port->blocked_open++; 3206 3207 while (1) { 3208 if (C_BAUD(tty) && tty_port_initialized(port)) 3209 tty_port_raise_dtr_rts(port); 3210 3211 set_current_state(TASK_INTERRUPTIBLE); 3212 3213 if (tty_hung_up_p(filp) || !tty_port_initialized(port)) { 3214 retval = (port->flags & ASYNC_HUP_NOTIFY) ? 3215 -EAGAIN : -ERESTARTSYS; 3216 break; 3217 } 3218 3219 cd = tty_port_carrier_raised(port); 3220 if (do_clocal || cd) 3221 break; 3222 3223 if (signal_pending(current)) { 3224 retval = -ERESTARTSYS; 3225 break; 3226 } 3227 3228 DBGINFO(("%s block_til_ready wait\n", tty->driver->name)); 3229 tty_unlock(tty); 3230 schedule(); 3231 tty_lock(tty); 3232 } 3233 3234 set_current_state(TASK_RUNNING); 3235 remove_wait_queue(&port->open_wait, &wait); 3236 3237 if (!tty_hung_up_p(filp)) 3238 port->count++; 3239 port->blocked_open--; 3240 3241 if (!retval) 3242 tty_port_set_active(port, 1); 3243 3244 DBGINFO(("%s block_til_ready ready, rc=%d\n", tty->driver->name, retval)); 3245 return retval; 3246 } 3247 3248 /* 3249 * allocate buffers used for calling line discipline receive_buf 3250 * directly in synchronous mode 3251 * note: add 5 bytes to max frame size to allow appending 3252 * 32-bit CRC and status byte when configured to do so 3253 */ 3254 static int alloc_tmp_rbuf(struct slgt_info *info) 3255 { 3256 info->tmp_rbuf = kmalloc(info->max_frame_size + 5, GFP_KERNEL); 3257 if (info->tmp_rbuf == NULL) 3258 return -ENOMEM; 3259 /* unused flag buffer to satisfy receive_buf calling interface */ 3260 info->flag_buf = kzalloc(info->max_frame_size + 5, GFP_KERNEL); 3261 if (!info->flag_buf) { 3262 kfree(info->tmp_rbuf); 3263 info->tmp_rbuf = NULL; 3264 return -ENOMEM; 3265 } 3266 return 0; 3267 } 3268 3269 static void free_tmp_rbuf(struct slgt_info *info) 3270 { 3271 kfree(info->tmp_rbuf); 3272 info->tmp_rbuf = NULL; 3273 kfree(info->flag_buf); 3274 info->flag_buf = NULL; 3275 } 3276 3277 /* 3278 * allocate DMA descriptor lists. 3279 */ 3280 static int alloc_desc(struct slgt_info *info) 3281 { 3282 unsigned int i; 3283 unsigned int pbufs; 3284 3285 /* allocate memory to hold descriptor lists */ 3286 info->bufs = dma_alloc_coherent(&info->pdev->dev, DESC_LIST_SIZE, 3287 &info->bufs_dma_addr, GFP_KERNEL); 3288 if (info->bufs == NULL) 3289 return -ENOMEM; 3290 3291 info->rbufs = (struct slgt_desc*)info->bufs; 3292 info->tbufs = ((struct slgt_desc*)info->bufs) + info->rbuf_count; 3293 3294 pbufs = (unsigned int)info->bufs_dma_addr; 3295 3296 /* 3297 * Build circular lists of descriptors 3298 */ 3299 3300 for (i=0; i < info->rbuf_count; i++) { 3301 /* physical address of this descriptor */ 3302 info->rbufs[i].pdesc = pbufs + (i * sizeof(struct slgt_desc)); 3303 3304 /* physical address of next descriptor */ 3305 if (i == info->rbuf_count - 1) 3306 info->rbufs[i].next = cpu_to_le32(pbufs); 3307 else 3308 info->rbufs[i].next = cpu_to_le32(pbufs + ((i+1) * sizeof(struct slgt_desc))); 3309 set_desc_count(info->rbufs[i], DMABUFSIZE); 3310 } 3311 3312 for (i=0; i < info->tbuf_count; i++) { 3313 /* physical address of this descriptor */ 3314 info->tbufs[i].pdesc = pbufs + ((info->rbuf_count + i) * sizeof(struct slgt_desc)); 3315 3316 /* physical address of next descriptor */ 3317 if (i == info->tbuf_count - 1) 3318 info->tbufs[i].next = cpu_to_le32(pbufs + info->rbuf_count * sizeof(struct slgt_desc)); 3319 else 3320 info->tbufs[i].next = cpu_to_le32(pbufs + ((info->rbuf_count + i + 1) * sizeof(struct slgt_desc))); 3321 } 3322 3323 return 0; 3324 } 3325 3326 static void free_desc(struct slgt_info *info) 3327 { 3328 if (info->bufs != NULL) { 3329 dma_free_coherent(&info->pdev->dev, DESC_LIST_SIZE, 3330 info->bufs, info->bufs_dma_addr); 3331 info->bufs = NULL; 3332 info->rbufs = NULL; 3333 info->tbufs = NULL; 3334 } 3335 } 3336 3337 static int alloc_bufs(struct slgt_info *info, struct slgt_desc *bufs, int count) 3338 { 3339 int i; 3340 for (i=0; i < count; i++) { 3341 bufs[i].buf = dma_alloc_coherent(&info->pdev->dev, DMABUFSIZE, 3342 &bufs[i].buf_dma_addr, GFP_KERNEL); 3343 if (!bufs[i].buf) 3344 return -ENOMEM; 3345 bufs[i].pbuf = cpu_to_le32((unsigned int)bufs[i].buf_dma_addr); 3346 } 3347 return 0; 3348 } 3349 3350 static void free_bufs(struct slgt_info *info, struct slgt_desc *bufs, int count) 3351 { 3352 int i; 3353 for (i=0; i < count; i++) { 3354 if (bufs[i].buf == NULL) 3355 continue; 3356 dma_free_coherent(&info->pdev->dev, DMABUFSIZE, bufs[i].buf, 3357 bufs[i].buf_dma_addr); 3358 bufs[i].buf = NULL; 3359 } 3360 } 3361 3362 static int alloc_dma_bufs(struct slgt_info *info) 3363 { 3364 info->rbuf_count = 32; 3365 info->tbuf_count = 32; 3366 3367 if (alloc_desc(info) < 0 || 3368 alloc_bufs(info, info->rbufs, info->rbuf_count) < 0 || 3369 alloc_bufs(info, info->tbufs, info->tbuf_count) < 0 || 3370 alloc_tmp_rbuf(info) < 0) { 3371 DBGERR(("%s DMA buffer alloc fail\n", info->device_name)); 3372 return -ENOMEM; 3373 } 3374 reset_rbufs(info); 3375 return 0; 3376 } 3377 3378 static void free_dma_bufs(struct slgt_info *info) 3379 { 3380 if (info->bufs) { 3381 free_bufs(info, info->rbufs, info->rbuf_count); 3382 free_bufs(info, info->tbufs, info->tbuf_count); 3383 free_desc(info); 3384 } 3385 free_tmp_rbuf(info); 3386 } 3387 3388 static int claim_resources(struct slgt_info *info) 3389 { 3390 if (request_mem_region(info->phys_reg_addr, SLGT_REG_SIZE, "synclink_gt") == NULL) { 3391 DBGERR(("%s reg addr conflict, addr=%08X\n", 3392 info->device_name, info->phys_reg_addr)); 3393 info->init_error = DiagStatus_AddressConflict; 3394 goto errout; 3395 } 3396 else 3397 info->reg_addr_requested = true; 3398 3399 info->reg_addr = ioremap(info->phys_reg_addr, SLGT_REG_SIZE); 3400 if (!info->reg_addr) { 3401 DBGERR(("%s can't map device registers, addr=%08X\n", 3402 info->device_name, info->phys_reg_addr)); 3403 info->init_error = DiagStatus_CantAssignPciResources; 3404 goto errout; 3405 } 3406 return 0; 3407 3408 errout: 3409 release_resources(info); 3410 return -ENODEV; 3411 } 3412 3413 static void release_resources(struct slgt_info *info) 3414 { 3415 if (info->irq_requested) { 3416 free_irq(info->irq_level, info); 3417 info->irq_requested = false; 3418 } 3419 3420 if (info->reg_addr_requested) { 3421 release_mem_region(info->phys_reg_addr, SLGT_REG_SIZE); 3422 info->reg_addr_requested = false; 3423 } 3424 3425 if (info->reg_addr) { 3426 iounmap(info->reg_addr); 3427 info->reg_addr = NULL; 3428 } 3429 } 3430 3431 /* Add the specified device instance data structure to the 3432 * global linked list of devices and increment the device count. 3433 */ 3434 static void add_device(struct slgt_info *info) 3435 { 3436 char *devstr; 3437 3438 info->next_device = NULL; 3439 info->line = slgt_device_count; 3440 sprintf(info->device_name, "%s%d", tty_dev_prefix, info->line); 3441 3442 if (info->line < MAX_DEVICES) { 3443 if (maxframe[info->line]) 3444 info->max_frame_size = maxframe[info->line]; 3445 } 3446 3447 slgt_device_count++; 3448 3449 if (!slgt_device_list) 3450 slgt_device_list = info; 3451 else { 3452 struct slgt_info *current_dev = slgt_device_list; 3453 while(current_dev->next_device) 3454 current_dev = current_dev->next_device; 3455 current_dev->next_device = info; 3456 } 3457 3458 if (info->max_frame_size < 4096) 3459 info->max_frame_size = 4096; 3460 else if (info->max_frame_size > 65535) 3461 info->max_frame_size = 65535; 3462 3463 switch(info->pdev->device) { 3464 case SYNCLINK_GT_DEVICE_ID: 3465 devstr = "GT"; 3466 break; 3467 case SYNCLINK_GT2_DEVICE_ID: 3468 devstr = "GT2"; 3469 break; 3470 case SYNCLINK_GT4_DEVICE_ID: 3471 devstr = "GT4"; 3472 break; 3473 case SYNCLINK_AC_DEVICE_ID: 3474 devstr = "AC"; 3475 info->params.mode = MGSL_MODE_ASYNC; 3476 break; 3477 default: 3478 devstr = "(unknown model)"; 3479 } 3480 printk("SyncLink %s %s IO=%08x IRQ=%d MaxFrameSize=%u\n", 3481 devstr, info->device_name, info->phys_reg_addr, 3482 info->irq_level, info->max_frame_size); 3483 3484 #if SYNCLINK_GENERIC_HDLC 3485 hdlcdev_init(info); 3486 #endif 3487 } 3488 3489 static const struct tty_port_operations slgt_port_ops = { 3490 .carrier_raised = carrier_raised, 3491 .dtr_rts = dtr_rts, 3492 }; 3493 3494 /* 3495 * allocate device instance structure, return NULL on failure 3496 */ 3497 static struct slgt_info *alloc_dev(int adapter_num, int port_num, struct pci_dev *pdev) 3498 { 3499 struct slgt_info *info; 3500 3501 info = kzalloc(sizeof(struct slgt_info), GFP_KERNEL); 3502 3503 if (!info) { 3504 DBGERR(("%s device alloc failed adapter=%d port=%d\n", 3505 driver_name, adapter_num, port_num)); 3506 } else { 3507 tty_port_init(&info->port); 3508 info->port.ops = &slgt_port_ops; 3509 info->magic = MGSL_MAGIC; 3510 INIT_WORK(&info->task, bh_handler); 3511 info->max_frame_size = 4096; 3512 info->base_clock = 14745600; 3513 info->rbuf_fill_level = DMABUFSIZE; 3514 init_waitqueue_head(&info->status_event_wait_q); 3515 init_waitqueue_head(&info->event_wait_q); 3516 spin_lock_init(&info->netlock); 3517 memcpy(&info->params,&default_params,sizeof(MGSL_PARAMS)); 3518 info->idle_mode = HDLC_TXIDLE_FLAGS; 3519 info->adapter_num = adapter_num; 3520 info->port_num = port_num; 3521 3522 timer_setup(&info->tx_timer, tx_timeout, 0); 3523 timer_setup(&info->rx_timer, rx_timeout, 0); 3524 3525 /* Copy configuration info to device instance data */ 3526 info->pdev = pdev; 3527 info->irq_level = pdev->irq; 3528 info->phys_reg_addr = pci_resource_start(pdev,0); 3529 3530 info->bus_type = MGSL_BUS_TYPE_PCI; 3531 info->irq_flags = IRQF_SHARED; 3532 3533 info->init_error = -1; /* assume error, set to 0 on successful init */ 3534 } 3535 3536 return info; 3537 } 3538 3539 static void device_init(int adapter_num, struct pci_dev *pdev) 3540 { 3541 struct slgt_info *port_array[SLGT_MAX_PORTS]; 3542 int i; 3543 int port_count = 1; 3544 3545 if (pdev->device == SYNCLINK_GT2_DEVICE_ID) 3546 port_count = 2; 3547 else if (pdev->device == SYNCLINK_GT4_DEVICE_ID) 3548 port_count = 4; 3549 3550 /* allocate device instances for all ports */ 3551 for (i=0; i < port_count; ++i) { 3552 port_array[i] = alloc_dev(adapter_num, i, pdev); 3553 if (port_array[i] == NULL) { 3554 for (--i; i >= 0; --i) { 3555 tty_port_destroy(&port_array[i]->port); 3556 kfree(port_array[i]); 3557 } 3558 return; 3559 } 3560 } 3561 3562 /* give copy of port_array to all ports and add to device list */ 3563 for (i=0; i < port_count; ++i) { 3564 memcpy(port_array[i]->port_array, port_array, sizeof(port_array)); 3565 add_device(port_array[i]); 3566 port_array[i]->port_count = port_count; 3567 spin_lock_init(&port_array[i]->lock); 3568 } 3569 3570 /* Allocate and claim adapter resources */ 3571 if (!claim_resources(port_array[0])) { 3572 3573 alloc_dma_bufs(port_array[0]); 3574 3575 /* copy resource information from first port to others */ 3576 for (i = 1; i < port_count; ++i) { 3577 port_array[i]->irq_level = port_array[0]->irq_level; 3578 port_array[i]->reg_addr = port_array[0]->reg_addr; 3579 alloc_dma_bufs(port_array[i]); 3580 } 3581 3582 if (request_irq(port_array[0]->irq_level, 3583 slgt_interrupt, 3584 port_array[0]->irq_flags, 3585 port_array[0]->device_name, 3586 port_array[0]) < 0) { 3587 DBGERR(("%s request_irq failed IRQ=%d\n", 3588 port_array[0]->device_name, 3589 port_array[0]->irq_level)); 3590 } else { 3591 port_array[0]->irq_requested = true; 3592 adapter_test(port_array[0]); 3593 for (i=1 ; i < port_count ; i++) { 3594 port_array[i]->init_error = port_array[0]->init_error; 3595 port_array[i]->gpio_present = port_array[0]->gpio_present; 3596 } 3597 } 3598 } 3599 3600 for (i = 0; i < port_count; ++i) { 3601 struct slgt_info *info = port_array[i]; 3602 tty_port_register_device(&info->port, serial_driver, info->line, 3603 &info->pdev->dev); 3604 } 3605 } 3606 3607 static int init_one(struct pci_dev *dev, 3608 const struct pci_device_id *ent) 3609 { 3610 if (pci_enable_device(dev)) { 3611 printk("error enabling pci device %p\n", dev); 3612 return -EIO; 3613 } 3614 pci_set_master(dev); 3615 device_init(slgt_device_count, dev); 3616 return 0; 3617 } 3618 3619 static void remove_one(struct pci_dev *dev) 3620 { 3621 } 3622 3623 static const struct tty_operations ops = { 3624 .open = open, 3625 .close = close, 3626 .write = write, 3627 .put_char = put_char, 3628 .flush_chars = flush_chars, 3629 .write_room = write_room, 3630 .chars_in_buffer = chars_in_buffer, 3631 .flush_buffer = flush_buffer, 3632 .ioctl = ioctl, 3633 .compat_ioctl = slgt_compat_ioctl, 3634 .throttle = throttle, 3635 .unthrottle = unthrottle, 3636 .send_xchar = send_xchar, 3637 .break_ctl = set_break, 3638 .wait_until_sent = wait_until_sent, 3639 .set_termios = set_termios, 3640 .stop = tx_hold, 3641 .start = tx_release, 3642 .hangup = hangup, 3643 .tiocmget = tiocmget, 3644 .tiocmset = tiocmset, 3645 .get_icount = get_icount, 3646 .proc_show = synclink_gt_proc_show, 3647 }; 3648 3649 static void slgt_cleanup(void) 3650 { 3651 struct slgt_info *info; 3652 struct slgt_info *tmp; 3653 3654 printk(KERN_INFO "unload %s\n", driver_name); 3655 3656 if (serial_driver) { 3657 for (info=slgt_device_list ; info != NULL ; info=info->next_device) 3658 tty_unregister_device(serial_driver, info->line); 3659 tty_unregister_driver(serial_driver); 3660 put_tty_driver(serial_driver); 3661 } 3662 3663 /* reset devices */ 3664 info = slgt_device_list; 3665 while(info) { 3666 reset_port(info); 3667 info = info->next_device; 3668 } 3669 3670 /* release devices */ 3671 info = slgt_device_list; 3672 while(info) { 3673 #if SYNCLINK_GENERIC_HDLC 3674 hdlcdev_exit(info); 3675 #endif 3676 free_dma_bufs(info); 3677 free_tmp_rbuf(info); 3678 if (info->port_num == 0) 3679 release_resources(info); 3680 tmp = info; 3681 info = info->next_device; 3682 tty_port_destroy(&tmp->port); 3683 kfree(tmp); 3684 } 3685 3686 if (pci_registered) 3687 pci_unregister_driver(&pci_driver); 3688 } 3689 3690 /* 3691 * Driver initialization entry point. 3692 */ 3693 static int __init slgt_init(void) 3694 { 3695 int rc; 3696 3697 printk(KERN_INFO "%s\n", driver_name); 3698 3699 serial_driver = alloc_tty_driver(MAX_DEVICES); 3700 if (!serial_driver) { 3701 printk("%s can't allocate tty driver\n", driver_name); 3702 return -ENOMEM; 3703 } 3704 3705 /* Initialize the tty_driver structure */ 3706 3707 serial_driver->driver_name = slgt_driver_name; 3708 serial_driver->name = tty_dev_prefix; 3709 serial_driver->major = ttymajor; 3710 serial_driver->minor_start = 64; 3711 serial_driver->type = TTY_DRIVER_TYPE_SERIAL; 3712 serial_driver->subtype = SERIAL_TYPE_NORMAL; 3713 serial_driver->init_termios = tty_std_termios; 3714 serial_driver->init_termios.c_cflag = 3715 B9600 | CS8 | CREAD | HUPCL | CLOCAL; 3716 serial_driver->init_termios.c_ispeed = 9600; 3717 serial_driver->init_termios.c_ospeed = 9600; 3718 serial_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV; 3719 tty_set_operations(serial_driver, &ops); 3720 if ((rc = tty_register_driver(serial_driver)) < 0) { 3721 DBGERR(("%s can't register serial driver\n", driver_name)); 3722 put_tty_driver(serial_driver); 3723 serial_driver = NULL; 3724 goto error; 3725 } 3726 3727 printk(KERN_INFO "%s, tty major#%d\n", 3728 driver_name, serial_driver->major); 3729 3730 slgt_device_count = 0; 3731 if ((rc = pci_register_driver(&pci_driver)) < 0) { 3732 printk("%s pci_register_driver error=%d\n", driver_name, rc); 3733 goto error; 3734 } 3735 pci_registered = true; 3736 3737 if (!slgt_device_list) 3738 printk("%s no devices found\n",driver_name); 3739 3740 return 0; 3741 3742 error: 3743 slgt_cleanup(); 3744 return rc; 3745 } 3746 3747 static void __exit slgt_exit(void) 3748 { 3749 slgt_cleanup(); 3750 } 3751 3752 module_init(slgt_init); 3753 module_exit(slgt_exit); 3754 3755 /* 3756 * register access routines 3757 */ 3758 3759 #define CALC_REGADDR() \ 3760 unsigned long reg_addr = ((unsigned long)info->reg_addr) + addr; \ 3761 if (addr >= 0x80) \ 3762 reg_addr += (info->port_num) * 32; \ 3763 else if (addr >= 0x40) \ 3764 reg_addr += (info->port_num) * 16; 3765 3766 static __u8 rd_reg8(struct slgt_info *info, unsigned int addr) 3767 { 3768 CALC_REGADDR(); 3769 return readb((void __iomem *)reg_addr); 3770 } 3771 3772 static void wr_reg8(struct slgt_info *info, unsigned int addr, __u8 value) 3773 { 3774 CALC_REGADDR(); 3775 writeb(value, (void __iomem *)reg_addr); 3776 } 3777 3778 static __u16 rd_reg16(struct slgt_info *info, unsigned int addr) 3779 { 3780 CALC_REGADDR(); 3781 return readw((void __iomem *)reg_addr); 3782 } 3783 3784 static void wr_reg16(struct slgt_info *info, unsigned int addr, __u16 value) 3785 { 3786 CALC_REGADDR(); 3787 writew(value, (void __iomem *)reg_addr); 3788 } 3789 3790 static __u32 rd_reg32(struct slgt_info *info, unsigned int addr) 3791 { 3792 CALC_REGADDR(); 3793 return readl((void __iomem *)reg_addr); 3794 } 3795 3796 static void wr_reg32(struct slgt_info *info, unsigned int addr, __u32 value) 3797 { 3798 CALC_REGADDR(); 3799 writel(value, (void __iomem *)reg_addr); 3800 } 3801 3802 static void rdma_reset(struct slgt_info *info) 3803 { 3804 unsigned int i; 3805 3806 /* set reset bit */ 3807 wr_reg32(info, RDCSR, BIT1); 3808 3809 /* wait for enable bit cleared */ 3810 for(i=0 ; i < 1000 ; i++) 3811 if (!(rd_reg32(info, RDCSR) & BIT0)) 3812 break; 3813 } 3814 3815 static void tdma_reset(struct slgt_info *info) 3816 { 3817 unsigned int i; 3818 3819 /* set reset bit */ 3820 wr_reg32(info, TDCSR, BIT1); 3821 3822 /* wait for enable bit cleared */ 3823 for(i=0 ; i < 1000 ; i++) 3824 if (!(rd_reg32(info, TDCSR) & BIT0)) 3825 break; 3826 } 3827 3828 /* 3829 * enable internal loopback 3830 * TxCLK and RxCLK are generated from BRG 3831 * and TxD is looped back to RxD internally. 3832 */ 3833 static void enable_loopback(struct slgt_info *info) 3834 { 3835 /* SCR (serial control) BIT2=loopback enable */ 3836 wr_reg16(info, SCR, (unsigned short)(rd_reg16(info, SCR) | BIT2)); 3837 3838 if (info->params.mode != MGSL_MODE_ASYNC) { 3839 /* CCR (clock control) 3840 * 07..05 tx clock source (010 = BRG) 3841 * 04..02 rx clock source (010 = BRG) 3842 * 01 auxclk enable (0 = disable) 3843 * 00 BRG enable (1 = enable) 3844 * 3845 * 0100 1001 3846 */ 3847 wr_reg8(info, CCR, 0x49); 3848 3849 /* set speed if available, otherwise use default */ 3850 if (info->params.clock_speed) 3851 set_rate(info, info->params.clock_speed); 3852 else 3853 set_rate(info, 3686400); 3854 } 3855 } 3856 3857 /* 3858 * set baud rate generator to specified rate 3859 */ 3860 static void set_rate(struct slgt_info *info, u32 rate) 3861 { 3862 unsigned int div; 3863 unsigned int osc = info->base_clock; 3864 3865 /* div = osc/rate - 1 3866 * 3867 * Round div up if osc/rate is not integer to 3868 * force to next slowest rate. 3869 */ 3870 3871 if (rate) { 3872 div = osc/rate; 3873 if (!(osc % rate) && div) 3874 div--; 3875 wr_reg16(info, BDR, (unsigned short)div); 3876 } 3877 } 3878 3879 static void rx_stop(struct slgt_info *info) 3880 { 3881 unsigned short val; 3882 3883 /* disable and reset receiver */ 3884 val = rd_reg16(info, RCR) & ~BIT1; /* clear enable bit */ 3885 wr_reg16(info, RCR, (unsigned short)(val | BIT2)); /* set reset bit */ 3886 wr_reg16(info, RCR, val); /* clear reset bit */ 3887 3888 slgt_irq_off(info, IRQ_RXOVER + IRQ_RXDATA + IRQ_RXIDLE); 3889 3890 /* clear pending rx interrupts */ 3891 wr_reg16(info, SSR, IRQ_RXIDLE + IRQ_RXOVER); 3892 3893 rdma_reset(info); 3894 3895 info->rx_enabled = false; 3896 info->rx_restart = false; 3897 } 3898 3899 static void rx_start(struct slgt_info *info) 3900 { 3901 unsigned short val; 3902 3903 slgt_irq_off(info, IRQ_RXOVER + IRQ_RXDATA); 3904 3905 /* clear pending rx overrun IRQ */ 3906 wr_reg16(info, SSR, IRQ_RXOVER); 3907 3908 /* reset and disable receiver */ 3909 val = rd_reg16(info, RCR) & ~BIT1; /* clear enable bit */ 3910 wr_reg16(info, RCR, (unsigned short)(val | BIT2)); /* set reset bit */ 3911 wr_reg16(info, RCR, val); /* clear reset bit */ 3912 3913 rdma_reset(info); 3914 reset_rbufs(info); 3915 3916 if (info->rx_pio) { 3917 /* rx request when rx FIFO not empty */ 3918 wr_reg16(info, SCR, (unsigned short)(rd_reg16(info, SCR) & ~BIT14)); 3919 slgt_irq_on(info, IRQ_RXDATA); 3920 if (info->params.mode == MGSL_MODE_ASYNC) { 3921 /* enable saving of rx status */ 3922 wr_reg32(info, RDCSR, BIT6); 3923 } 3924 } else { 3925 /* rx request when rx FIFO half full */ 3926 wr_reg16(info, SCR, (unsigned short)(rd_reg16(info, SCR) | BIT14)); 3927 /* set 1st descriptor address */ 3928 wr_reg32(info, RDDAR, info->rbufs[0].pdesc); 3929 3930 if (info->params.mode != MGSL_MODE_ASYNC) { 3931 /* enable rx DMA and DMA interrupt */ 3932 wr_reg32(info, RDCSR, (BIT2 + BIT0)); 3933 } else { 3934 /* enable saving of rx status, rx DMA and DMA interrupt */ 3935 wr_reg32(info, RDCSR, (BIT6 + BIT2 + BIT0)); 3936 } 3937 } 3938 3939 slgt_irq_on(info, IRQ_RXOVER); 3940 3941 /* enable receiver */ 3942 wr_reg16(info, RCR, (unsigned short)(rd_reg16(info, RCR) | BIT1)); 3943 3944 info->rx_restart = false; 3945 info->rx_enabled = true; 3946 } 3947 3948 static void tx_start(struct slgt_info *info) 3949 { 3950 if (!info->tx_enabled) { 3951 wr_reg16(info, TCR, 3952 (unsigned short)((rd_reg16(info, TCR) | BIT1) & ~BIT2)); 3953 info->tx_enabled = true; 3954 } 3955 3956 if (desc_count(info->tbufs[info->tbuf_start])) { 3957 info->drop_rts_on_tx_done = false; 3958 3959 if (info->params.mode != MGSL_MODE_ASYNC) { 3960 if (info->params.flags & HDLC_FLAG_AUTO_RTS) { 3961 get_signals(info); 3962 if (!(info->signals & SerialSignal_RTS)) { 3963 info->signals |= SerialSignal_RTS; 3964 set_signals(info); 3965 info->drop_rts_on_tx_done = true; 3966 } 3967 } 3968 3969 slgt_irq_off(info, IRQ_TXDATA); 3970 slgt_irq_on(info, IRQ_TXUNDER + IRQ_TXIDLE); 3971 /* clear tx idle and underrun status bits */ 3972 wr_reg16(info, SSR, (unsigned short)(IRQ_TXIDLE + IRQ_TXUNDER)); 3973 } else { 3974 slgt_irq_off(info, IRQ_TXDATA); 3975 slgt_irq_on(info, IRQ_TXIDLE); 3976 /* clear tx idle status bit */ 3977 wr_reg16(info, SSR, IRQ_TXIDLE); 3978 } 3979 /* set 1st descriptor address and start DMA */ 3980 wr_reg32(info, TDDAR, info->tbufs[info->tbuf_start].pdesc); 3981 wr_reg32(info, TDCSR, BIT2 + BIT0); 3982 info->tx_active = true; 3983 } 3984 } 3985 3986 static void tx_stop(struct slgt_info *info) 3987 { 3988 unsigned short val; 3989 3990 del_timer(&info->tx_timer); 3991 3992 tdma_reset(info); 3993 3994 /* reset and disable transmitter */ 3995 val = rd_reg16(info, TCR) & ~BIT1; /* clear enable bit */ 3996 wr_reg16(info, TCR, (unsigned short)(val | BIT2)); /* set reset bit */ 3997 3998 slgt_irq_off(info, IRQ_TXDATA + IRQ_TXIDLE + IRQ_TXUNDER); 3999 4000 /* clear tx idle and underrun status bit */ 4001 wr_reg16(info, SSR, (unsigned short)(IRQ_TXIDLE + IRQ_TXUNDER)); 4002 4003 reset_tbufs(info); 4004 4005 info->tx_enabled = false; 4006 info->tx_active = false; 4007 } 4008 4009 static void reset_port(struct slgt_info *info) 4010 { 4011 if (!info->reg_addr) 4012 return; 4013 4014 tx_stop(info); 4015 rx_stop(info); 4016 4017 info->signals &= ~(SerialSignal_RTS | SerialSignal_DTR); 4018 set_signals(info); 4019 4020 slgt_irq_off(info, IRQ_ALL | IRQ_MASTER); 4021 } 4022 4023 static void reset_adapter(struct slgt_info *info) 4024 { 4025 int i; 4026 for (i=0; i < info->port_count; ++i) { 4027 if (info->port_array[i]) 4028 reset_port(info->port_array[i]); 4029 } 4030 } 4031 4032 static void async_mode(struct slgt_info *info) 4033 { 4034 unsigned short val; 4035 4036 slgt_irq_off(info, IRQ_ALL | IRQ_MASTER); 4037 tx_stop(info); 4038 rx_stop(info); 4039 4040 /* TCR (tx control) 4041 * 4042 * 15..13 mode, 010=async 4043 * 12..10 encoding, 000=NRZ 4044 * 09 parity enable 4045 * 08 1=odd parity, 0=even parity 4046 * 07 1=RTS driver control 4047 * 06 1=break enable 4048 * 05..04 character length 4049 * 00=5 bits 4050 * 01=6 bits 4051 * 10=7 bits 4052 * 11=8 bits 4053 * 03 0=1 stop bit, 1=2 stop bits 4054 * 02 reset 4055 * 01 enable 4056 * 00 auto-CTS enable 4057 */ 4058 val = 0x4000; 4059 4060 if (info->if_mode & MGSL_INTERFACE_RTS_EN) 4061 val |= BIT7; 4062 4063 if (info->params.parity != ASYNC_PARITY_NONE) { 4064 val |= BIT9; 4065 if (info->params.parity == ASYNC_PARITY_ODD) 4066 val |= BIT8; 4067 } 4068 4069 switch (info->params.data_bits) 4070 { 4071 case 6: val |= BIT4; break; 4072 case 7: val |= BIT5; break; 4073 case 8: val |= BIT5 + BIT4; break; 4074 } 4075 4076 if (info->params.stop_bits != 1) 4077 val |= BIT3; 4078 4079 if (info->params.flags & HDLC_FLAG_AUTO_CTS) 4080 val |= BIT0; 4081 4082 wr_reg16(info, TCR, val); 4083 4084 /* RCR (rx control) 4085 * 4086 * 15..13 mode, 010=async 4087 * 12..10 encoding, 000=NRZ 4088 * 09 parity enable 4089 * 08 1=odd parity, 0=even parity 4090 * 07..06 reserved, must be 0 4091 * 05..04 character length 4092 * 00=5 bits 4093 * 01=6 bits 4094 * 10=7 bits 4095 * 11=8 bits 4096 * 03 reserved, must be zero 4097 * 02 reset 4098 * 01 enable 4099 * 00 auto-DCD enable 4100 */ 4101 val = 0x4000; 4102 4103 if (info->params.parity != ASYNC_PARITY_NONE) { 4104 val |= BIT9; 4105 if (info->params.parity == ASYNC_PARITY_ODD) 4106 val |= BIT8; 4107 } 4108 4109 switch (info->params.data_bits) 4110 { 4111 case 6: val |= BIT4; break; 4112 case 7: val |= BIT5; break; 4113 case 8: val |= BIT5 + BIT4; break; 4114 } 4115 4116 if (info->params.flags & HDLC_FLAG_AUTO_DCD) 4117 val |= BIT0; 4118 4119 wr_reg16(info, RCR, val); 4120 4121 /* CCR (clock control) 4122 * 4123 * 07..05 011 = tx clock source is BRG/16 4124 * 04..02 010 = rx clock source is BRG 4125 * 01 0 = auxclk disabled 4126 * 00 1 = BRG enabled 4127 * 4128 * 0110 1001 4129 */ 4130 wr_reg8(info, CCR, 0x69); 4131 4132 msc_set_vcr(info); 4133 4134 /* SCR (serial control) 4135 * 4136 * 15 1=tx req on FIFO half empty 4137 * 14 1=rx req on FIFO half full 4138 * 13 tx data IRQ enable 4139 * 12 tx idle IRQ enable 4140 * 11 rx break on IRQ enable 4141 * 10 rx data IRQ enable 4142 * 09 rx break off IRQ enable 4143 * 08 overrun IRQ enable 4144 * 07 DSR IRQ enable 4145 * 06 CTS IRQ enable 4146 * 05 DCD IRQ enable 4147 * 04 RI IRQ enable 4148 * 03 0=16x sampling, 1=8x sampling 4149 * 02 1=txd->rxd internal loopback enable 4150 * 01 reserved, must be zero 4151 * 00 1=master IRQ enable 4152 */ 4153 val = BIT15 + BIT14 + BIT0; 4154 /* JCR[8] : 1 = x8 async mode feature available */ 4155 if ((rd_reg32(info, JCR) & BIT8) && info->params.data_rate && 4156 ((info->base_clock < (info->params.data_rate * 16)) || 4157 (info->base_clock % (info->params.data_rate * 16)))) { 4158 /* use 8x sampling */ 4159 val |= BIT3; 4160 set_rate(info, info->params.data_rate * 8); 4161 } else { 4162 /* use 16x sampling */ 4163 set_rate(info, info->params.data_rate * 16); 4164 } 4165 wr_reg16(info, SCR, val); 4166 4167 slgt_irq_on(info, IRQ_RXBREAK | IRQ_RXOVER); 4168 4169 if (info->params.loopback) 4170 enable_loopback(info); 4171 } 4172 4173 static void sync_mode(struct slgt_info *info) 4174 { 4175 unsigned short val; 4176 4177 slgt_irq_off(info, IRQ_ALL | IRQ_MASTER); 4178 tx_stop(info); 4179 rx_stop(info); 4180 4181 /* TCR (tx control) 4182 * 4183 * 15..13 mode 4184 * 000=HDLC/SDLC 4185 * 001=raw bit synchronous 4186 * 010=asynchronous/isochronous 4187 * 011=monosync byte synchronous 4188 * 100=bisync byte synchronous 4189 * 101=xsync byte synchronous 4190 * 12..10 encoding 4191 * 09 CRC enable 4192 * 08 CRC32 4193 * 07 1=RTS driver control 4194 * 06 preamble enable 4195 * 05..04 preamble length 4196 * 03 share open/close flag 4197 * 02 reset 4198 * 01 enable 4199 * 00 auto-CTS enable 4200 */ 4201 val = BIT2; 4202 4203 switch(info->params.mode) { 4204 case MGSL_MODE_XSYNC: 4205 val |= BIT15 + BIT13; 4206 break; 4207 case MGSL_MODE_MONOSYNC: val |= BIT14 + BIT13; break; 4208 case MGSL_MODE_BISYNC: val |= BIT15; break; 4209 case MGSL_MODE_RAW: val |= BIT13; break; 4210 } 4211 if (info->if_mode & MGSL_INTERFACE_RTS_EN) 4212 val |= BIT7; 4213 4214 switch(info->params.encoding) 4215 { 4216 case HDLC_ENCODING_NRZB: val |= BIT10; break; 4217 case HDLC_ENCODING_NRZI_MARK: val |= BIT11; break; 4218 case HDLC_ENCODING_NRZI: val |= BIT11 + BIT10; break; 4219 case HDLC_ENCODING_BIPHASE_MARK: val |= BIT12; break; 4220 case HDLC_ENCODING_BIPHASE_SPACE: val |= BIT12 + BIT10; break; 4221 case HDLC_ENCODING_BIPHASE_LEVEL: val |= BIT12 + BIT11; break; 4222 case HDLC_ENCODING_DIFF_BIPHASE_LEVEL: val |= BIT12 + BIT11 + BIT10; break; 4223 } 4224 4225 switch (info->params.crc_type & HDLC_CRC_MASK) 4226 { 4227 case HDLC_CRC_16_CCITT: val |= BIT9; break; 4228 case HDLC_CRC_32_CCITT: val |= BIT9 + BIT8; break; 4229 } 4230 4231 if (info->params.preamble != HDLC_PREAMBLE_PATTERN_NONE) 4232 val |= BIT6; 4233 4234 switch (info->params.preamble_length) 4235 { 4236 case HDLC_PREAMBLE_LENGTH_16BITS: val |= BIT5; break; 4237 case HDLC_PREAMBLE_LENGTH_32BITS: val |= BIT4; break; 4238 case HDLC_PREAMBLE_LENGTH_64BITS: val |= BIT5 + BIT4; break; 4239 } 4240 4241 if (info->params.flags & HDLC_FLAG_AUTO_CTS) 4242 val |= BIT0; 4243 4244 wr_reg16(info, TCR, val); 4245 4246 /* TPR (transmit preamble) */ 4247 4248 switch (info->params.preamble) 4249 { 4250 case HDLC_PREAMBLE_PATTERN_FLAGS: val = 0x7e; break; 4251 case HDLC_PREAMBLE_PATTERN_ONES: val = 0xff; break; 4252 case HDLC_PREAMBLE_PATTERN_ZEROS: val = 0x00; break; 4253 case HDLC_PREAMBLE_PATTERN_10: val = 0x55; break; 4254 case HDLC_PREAMBLE_PATTERN_01: val = 0xaa; break; 4255 default: val = 0x7e; break; 4256 } 4257 wr_reg8(info, TPR, (unsigned char)val); 4258 4259 /* RCR (rx control) 4260 * 4261 * 15..13 mode 4262 * 000=HDLC/SDLC 4263 * 001=raw bit synchronous 4264 * 010=asynchronous/isochronous 4265 * 011=monosync byte synchronous 4266 * 100=bisync byte synchronous 4267 * 101=xsync byte synchronous 4268 * 12..10 encoding 4269 * 09 CRC enable 4270 * 08 CRC32 4271 * 07..03 reserved, must be 0 4272 * 02 reset 4273 * 01 enable 4274 * 00 auto-DCD enable 4275 */ 4276 val = 0; 4277 4278 switch(info->params.mode) { 4279 case MGSL_MODE_XSYNC: 4280 val |= BIT15 + BIT13; 4281 break; 4282 case MGSL_MODE_MONOSYNC: val |= BIT14 + BIT13; break; 4283 case MGSL_MODE_BISYNC: val |= BIT15; break; 4284 case MGSL_MODE_RAW: val |= BIT13; break; 4285 } 4286 4287 switch(info->params.encoding) 4288 { 4289 case HDLC_ENCODING_NRZB: val |= BIT10; break; 4290 case HDLC_ENCODING_NRZI_MARK: val |= BIT11; break; 4291 case HDLC_ENCODING_NRZI: val |= BIT11 + BIT10; break; 4292 case HDLC_ENCODING_BIPHASE_MARK: val |= BIT12; break; 4293 case HDLC_ENCODING_BIPHASE_SPACE: val |= BIT12 + BIT10; break; 4294 case HDLC_ENCODING_BIPHASE_LEVEL: val |= BIT12 + BIT11; break; 4295 case HDLC_ENCODING_DIFF_BIPHASE_LEVEL: val |= BIT12 + BIT11 + BIT10; break; 4296 } 4297 4298 switch (info->params.crc_type & HDLC_CRC_MASK) 4299 { 4300 case HDLC_CRC_16_CCITT: val |= BIT9; break; 4301 case HDLC_CRC_32_CCITT: val |= BIT9 + BIT8; break; 4302 } 4303 4304 if (info->params.flags & HDLC_FLAG_AUTO_DCD) 4305 val |= BIT0; 4306 4307 wr_reg16(info, RCR, val); 4308 4309 /* CCR (clock control) 4310 * 4311 * 07..05 tx clock source 4312 * 04..02 rx clock source 4313 * 01 auxclk enable 4314 * 00 BRG enable 4315 */ 4316 val = 0; 4317 4318 if (info->params.flags & HDLC_FLAG_TXC_BRG) 4319 { 4320 // when RxC source is DPLL, BRG generates 16X DPLL 4321 // reference clock, so take TxC from BRG/16 to get 4322 // transmit clock at actual data rate 4323 if (info->params.flags & HDLC_FLAG_RXC_DPLL) 4324 val |= BIT6 + BIT5; /* 011, txclk = BRG/16 */ 4325 else 4326 val |= BIT6; /* 010, txclk = BRG */ 4327 } 4328 else if (info->params.flags & HDLC_FLAG_TXC_DPLL) 4329 val |= BIT7; /* 100, txclk = DPLL Input */ 4330 else if (info->params.flags & HDLC_FLAG_TXC_RXCPIN) 4331 val |= BIT5; /* 001, txclk = RXC Input */ 4332 4333 if (info->params.flags & HDLC_FLAG_RXC_BRG) 4334 val |= BIT3; /* 010, rxclk = BRG */ 4335 else if (info->params.flags & HDLC_FLAG_RXC_DPLL) 4336 val |= BIT4; /* 100, rxclk = DPLL */ 4337 else if (info->params.flags & HDLC_FLAG_RXC_TXCPIN) 4338 val |= BIT2; /* 001, rxclk = TXC Input */ 4339 4340 if (info->params.clock_speed) 4341 val |= BIT1 + BIT0; 4342 4343 wr_reg8(info, CCR, (unsigned char)val); 4344 4345 if (info->params.flags & (HDLC_FLAG_TXC_DPLL + HDLC_FLAG_RXC_DPLL)) 4346 { 4347 // program DPLL mode 4348 switch(info->params.encoding) 4349 { 4350 case HDLC_ENCODING_BIPHASE_MARK: 4351 case HDLC_ENCODING_BIPHASE_SPACE: 4352 val = BIT7; break; 4353 case HDLC_ENCODING_BIPHASE_LEVEL: 4354 case HDLC_ENCODING_DIFF_BIPHASE_LEVEL: 4355 val = BIT7 + BIT6; break; 4356 default: val = BIT6; // NRZ encodings 4357 } 4358 wr_reg16(info, RCR, (unsigned short)(rd_reg16(info, RCR) | val)); 4359 4360 // DPLL requires a 16X reference clock from BRG 4361 set_rate(info, info->params.clock_speed * 16); 4362 } 4363 else 4364 set_rate(info, info->params.clock_speed); 4365 4366 tx_set_idle(info); 4367 4368 msc_set_vcr(info); 4369 4370 /* SCR (serial control) 4371 * 4372 * 15 1=tx req on FIFO half empty 4373 * 14 1=rx req on FIFO half full 4374 * 13 tx data IRQ enable 4375 * 12 tx idle IRQ enable 4376 * 11 underrun IRQ enable 4377 * 10 rx data IRQ enable 4378 * 09 rx idle IRQ enable 4379 * 08 overrun IRQ enable 4380 * 07 DSR IRQ enable 4381 * 06 CTS IRQ enable 4382 * 05 DCD IRQ enable 4383 * 04 RI IRQ enable 4384 * 03 reserved, must be zero 4385 * 02 1=txd->rxd internal loopback enable 4386 * 01 reserved, must be zero 4387 * 00 1=master IRQ enable 4388 */ 4389 wr_reg16(info, SCR, BIT15 + BIT14 + BIT0); 4390 4391 if (info->params.loopback) 4392 enable_loopback(info); 4393 } 4394 4395 /* 4396 * set transmit idle mode 4397 */ 4398 static void tx_set_idle(struct slgt_info *info) 4399 { 4400 unsigned char val; 4401 unsigned short tcr; 4402 4403 /* if preamble enabled (tcr[6] == 1) then tx idle size = 8 bits 4404 * else tcr[5:4] = tx idle size: 00 = 8 bits, 01 = 16 bits 4405 */ 4406 tcr = rd_reg16(info, TCR); 4407 if (info->idle_mode & HDLC_TXIDLE_CUSTOM_16) { 4408 /* disable preamble, set idle size to 16 bits */ 4409 tcr = (tcr & ~(BIT6 + BIT5)) | BIT4; 4410 /* MSB of 16 bit idle specified in tx preamble register (TPR) */ 4411 wr_reg8(info, TPR, (unsigned char)((info->idle_mode >> 8) & 0xff)); 4412 } else if (!(tcr & BIT6)) { 4413 /* preamble is disabled, set idle size to 8 bits */ 4414 tcr &= ~(BIT5 + BIT4); 4415 } 4416 wr_reg16(info, TCR, tcr); 4417 4418 if (info->idle_mode & (HDLC_TXIDLE_CUSTOM_8 | HDLC_TXIDLE_CUSTOM_16)) { 4419 /* LSB of custom tx idle specified in tx idle register */ 4420 val = (unsigned char)(info->idle_mode & 0xff); 4421 } else { 4422 /* standard 8 bit idle patterns */ 4423 switch(info->idle_mode) 4424 { 4425 case HDLC_TXIDLE_FLAGS: val = 0x7e; break; 4426 case HDLC_TXIDLE_ALT_ZEROS_ONES: 4427 case HDLC_TXIDLE_ALT_MARK_SPACE: val = 0xaa; break; 4428 case HDLC_TXIDLE_ZEROS: 4429 case HDLC_TXIDLE_SPACE: val = 0x00; break; 4430 default: val = 0xff; 4431 } 4432 } 4433 4434 wr_reg8(info, TIR, val); 4435 } 4436 4437 /* 4438 * get state of V24 status (input) signals 4439 */ 4440 static void get_signals(struct slgt_info *info) 4441 { 4442 unsigned short status = rd_reg16(info, SSR); 4443 4444 /* clear all serial signals except RTS and DTR */ 4445 info->signals &= SerialSignal_RTS | SerialSignal_DTR; 4446 4447 if (status & BIT3) 4448 info->signals |= SerialSignal_DSR; 4449 if (status & BIT2) 4450 info->signals |= SerialSignal_CTS; 4451 if (status & BIT1) 4452 info->signals |= SerialSignal_DCD; 4453 if (status & BIT0) 4454 info->signals |= SerialSignal_RI; 4455 } 4456 4457 /* 4458 * set V.24 Control Register based on current configuration 4459 */ 4460 static void msc_set_vcr(struct slgt_info *info) 4461 { 4462 unsigned char val = 0; 4463 4464 /* VCR (V.24 control) 4465 * 4466 * 07..04 serial IF select 4467 * 03 DTR 4468 * 02 RTS 4469 * 01 LL 4470 * 00 RL 4471 */ 4472 4473 switch(info->if_mode & MGSL_INTERFACE_MASK) 4474 { 4475 case MGSL_INTERFACE_RS232: 4476 val |= BIT5; /* 0010 */ 4477 break; 4478 case MGSL_INTERFACE_V35: 4479 val |= BIT7 + BIT6 + BIT5; /* 1110 */ 4480 break; 4481 case MGSL_INTERFACE_RS422: 4482 val |= BIT6; /* 0100 */ 4483 break; 4484 } 4485 4486 if (info->if_mode & MGSL_INTERFACE_MSB_FIRST) 4487 val |= BIT4; 4488 if (info->signals & SerialSignal_DTR) 4489 val |= BIT3; 4490 if (info->signals & SerialSignal_RTS) 4491 val |= BIT2; 4492 if (info->if_mode & MGSL_INTERFACE_LL) 4493 val |= BIT1; 4494 if (info->if_mode & MGSL_INTERFACE_RL) 4495 val |= BIT0; 4496 wr_reg8(info, VCR, val); 4497 } 4498 4499 /* 4500 * set state of V24 control (output) signals 4501 */ 4502 static void set_signals(struct slgt_info *info) 4503 { 4504 unsigned char val = rd_reg8(info, VCR); 4505 if (info->signals & SerialSignal_DTR) 4506 val |= BIT3; 4507 else 4508 val &= ~BIT3; 4509 if (info->signals & SerialSignal_RTS) 4510 val |= BIT2; 4511 else 4512 val &= ~BIT2; 4513 wr_reg8(info, VCR, val); 4514 } 4515 4516 /* 4517 * free range of receive DMA buffers (i to last) 4518 */ 4519 static void free_rbufs(struct slgt_info *info, unsigned int i, unsigned int last) 4520 { 4521 int done = 0; 4522 4523 while(!done) { 4524 /* reset current buffer for reuse */ 4525 info->rbufs[i].status = 0; 4526 set_desc_count(info->rbufs[i], info->rbuf_fill_level); 4527 if (i == last) 4528 done = 1; 4529 if (++i == info->rbuf_count) 4530 i = 0; 4531 } 4532 info->rbuf_current = i; 4533 } 4534 4535 /* 4536 * mark all receive DMA buffers as free 4537 */ 4538 static void reset_rbufs(struct slgt_info *info) 4539 { 4540 free_rbufs(info, 0, info->rbuf_count - 1); 4541 info->rbuf_fill_index = 0; 4542 info->rbuf_fill_count = 0; 4543 } 4544 4545 /* 4546 * pass receive HDLC frame to upper layer 4547 * 4548 * return true if frame available, otherwise false 4549 */ 4550 static bool rx_get_frame(struct slgt_info *info) 4551 { 4552 unsigned int start, end; 4553 unsigned short status; 4554 unsigned int framesize = 0; 4555 unsigned long flags; 4556 struct tty_struct *tty = info->port.tty; 4557 unsigned char addr_field = 0xff; 4558 unsigned int crc_size = 0; 4559 4560 switch (info->params.crc_type & HDLC_CRC_MASK) { 4561 case HDLC_CRC_16_CCITT: crc_size = 2; break; 4562 case HDLC_CRC_32_CCITT: crc_size = 4; break; 4563 } 4564 4565 check_again: 4566 4567 framesize = 0; 4568 addr_field = 0xff; 4569 start = end = info->rbuf_current; 4570 4571 for (;;) { 4572 if (!desc_complete(info->rbufs[end])) 4573 goto cleanup; 4574 4575 if (framesize == 0 && info->params.addr_filter != 0xff) 4576 addr_field = info->rbufs[end].buf[0]; 4577 4578 framesize += desc_count(info->rbufs[end]); 4579 4580 if (desc_eof(info->rbufs[end])) 4581 break; 4582 4583 if (++end == info->rbuf_count) 4584 end = 0; 4585 4586 if (end == info->rbuf_current) { 4587 if (info->rx_enabled){ 4588 spin_lock_irqsave(&info->lock,flags); 4589 rx_start(info); 4590 spin_unlock_irqrestore(&info->lock,flags); 4591 } 4592 goto cleanup; 4593 } 4594 } 4595 4596 /* status 4597 * 4598 * 15 buffer complete 4599 * 14..06 reserved 4600 * 05..04 residue 4601 * 02 eof (end of frame) 4602 * 01 CRC error 4603 * 00 abort 4604 */ 4605 status = desc_status(info->rbufs[end]); 4606 4607 /* ignore CRC bit if not using CRC (bit is undefined) */ 4608 if ((info->params.crc_type & HDLC_CRC_MASK) == HDLC_CRC_NONE) 4609 status &= ~BIT1; 4610 4611 if (framesize == 0 || 4612 (addr_field != 0xff && addr_field != info->params.addr_filter)) { 4613 free_rbufs(info, start, end); 4614 goto check_again; 4615 } 4616 4617 if (framesize < (2 + crc_size) || status & BIT0) { 4618 info->icount.rxshort++; 4619 framesize = 0; 4620 } else if (status & BIT1) { 4621 info->icount.rxcrc++; 4622 if (!(info->params.crc_type & HDLC_CRC_RETURN_EX)) 4623 framesize = 0; 4624 } 4625 4626 #if SYNCLINK_GENERIC_HDLC 4627 if (framesize == 0) { 4628 info->netdev->stats.rx_errors++; 4629 info->netdev->stats.rx_frame_errors++; 4630 } 4631 #endif 4632 4633 DBGBH(("%s rx frame status=%04X size=%d\n", 4634 info->device_name, status, framesize)); 4635 DBGDATA(info, info->rbufs[start].buf, min_t(int, framesize, info->rbuf_fill_level), "rx"); 4636 4637 if (framesize) { 4638 if (!(info->params.crc_type & HDLC_CRC_RETURN_EX)) { 4639 framesize -= crc_size; 4640 crc_size = 0; 4641 } 4642 4643 if (framesize > info->max_frame_size + crc_size) 4644 info->icount.rxlong++; 4645 else { 4646 /* copy dma buffer(s) to contiguous temp buffer */ 4647 int copy_count = framesize; 4648 int i = start; 4649 unsigned char *p = info->tmp_rbuf; 4650 info->tmp_rbuf_count = framesize; 4651 4652 info->icount.rxok++; 4653 4654 while(copy_count) { 4655 int partial_count = min_t(int, copy_count, info->rbuf_fill_level); 4656 memcpy(p, info->rbufs[i].buf, partial_count); 4657 p += partial_count; 4658 copy_count -= partial_count; 4659 if (++i == info->rbuf_count) 4660 i = 0; 4661 } 4662 4663 if (info->params.crc_type & HDLC_CRC_RETURN_EX) { 4664 *p = (status & BIT1) ? RX_CRC_ERROR : RX_OK; 4665 framesize++; 4666 } 4667 4668 #if SYNCLINK_GENERIC_HDLC 4669 if (info->netcount) 4670 hdlcdev_rx(info,info->tmp_rbuf, framesize); 4671 else 4672 #endif 4673 ldisc_receive_buf(tty, info->tmp_rbuf, info->flag_buf, framesize); 4674 } 4675 } 4676 free_rbufs(info, start, end); 4677 return true; 4678 4679 cleanup: 4680 return false; 4681 } 4682 4683 /* 4684 * pass receive buffer (RAW synchronous mode) to tty layer 4685 * return true if buffer available, otherwise false 4686 */ 4687 static bool rx_get_buf(struct slgt_info *info) 4688 { 4689 unsigned int i = info->rbuf_current; 4690 unsigned int count; 4691 4692 if (!desc_complete(info->rbufs[i])) 4693 return false; 4694 count = desc_count(info->rbufs[i]); 4695 switch(info->params.mode) { 4696 case MGSL_MODE_MONOSYNC: 4697 case MGSL_MODE_BISYNC: 4698 case MGSL_MODE_XSYNC: 4699 /* ignore residue in byte synchronous modes */ 4700 if (desc_residue(info->rbufs[i])) 4701 count--; 4702 break; 4703 } 4704 DBGDATA(info, info->rbufs[i].buf, count, "rx"); 4705 DBGINFO(("rx_get_buf size=%d\n", count)); 4706 if (count) 4707 ldisc_receive_buf(info->port.tty, info->rbufs[i].buf, 4708 info->flag_buf, count); 4709 free_rbufs(info, i, i); 4710 return true; 4711 } 4712 4713 static void reset_tbufs(struct slgt_info *info) 4714 { 4715 unsigned int i; 4716 info->tbuf_current = 0; 4717 for (i=0 ; i < info->tbuf_count ; i++) { 4718 info->tbufs[i].status = 0; 4719 info->tbufs[i].count = 0; 4720 } 4721 } 4722 4723 /* 4724 * return number of free transmit DMA buffers 4725 */ 4726 static unsigned int free_tbuf_count(struct slgt_info *info) 4727 { 4728 unsigned int count = 0; 4729 unsigned int i = info->tbuf_current; 4730 4731 do 4732 { 4733 if (desc_count(info->tbufs[i])) 4734 break; /* buffer in use */ 4735 ++count; 4736 if (++i == info->tbuf_count) 4737 i=0; 4738 } while (i != info->tbuf_current); 4739 4740 /* if tx DMA active, last zero count buffer is in use */ 4741 if (count && (rd_reg32(info, TDCSR) & BIT0)) 4742 --count; 4743 4744 return count; 4745 } 4746 4747 /* 4748 * return number of bytes in unsent transmit DMA buffers 4749 * and the serial controller tx FIFO 4750 */ 4751 static unsigned int tbuf_bytes(struct slgt_info *info) 4752 { 4753 unsigned int total_count = 0; 4754 unsigned int i = info->tbuf_current; 4755 unsigned int reg_value; 4756 unsigned int count; 4757 unsigned int active_buf_count = 0; 4758 4759 /* 4760 * Add descriptor counts for all tx DMA buffers. 4761 * If count is zero (cleared by DMA controller after read), 4762 * the buffer is complete or is actively being read from. 4763 * 4764 * Record buf_count of last buffer with zero count starting 4765 * from current ring position. buf_count is mirror 4766 * copy of count and is not cleared by serial controller. 4767 * If DMA controller is active, that buffer is actively 4768 * being read so add to total. 4769 */ 4770 do { 4771 count = desc_count(info->tbufs[i]); 4772 if (count) 4773 total_count += count; 4774 else if (!total_count) 4775 active_buf_count = info->tbufs[i].buf_count; 4776 if (++i == info->tbuf_count) 4777 i = 0; 4778 } while (i != info->tbuf_current); 4779 4780 /* read tx DMA status register */ 4781 reg_value = rd_reg32(info, TDCSR); 4782 4783 /* if tx DMA active, last zero count buffer is in use */ 4784 if (reg_value & BIT0) 4785 total_count += active_buf_count; 4786 4787 /* add tx FIFO count = reg_value[15..8] */ 4788 total_count += (reg_value >> 8) & 0xff; 4789 4790 /* if transmitter active add one byte for shift register */ 4791 if (info->tx_active) 4792 total_count++; 4793 4794 return total_count; 4795 } 4796 4797 /* 4798 * load data into transmit DMA buffer ring and start transmitter if needed 4799 * return true if data accepted, otherwise false (buffers full) 4800 */ 4801 static bool tx_load(struct slgt_info *info, const char *buf, unsigned int size) 4802 { 4803 unsigned short count; 4804 unsigned int i; 4805 struct slgt_desc *d; 4806 4807 /* check required buffer space */ 4808 if (DIV_ROUND_UP(size, DMABUFSIZE) > free_tbuf_count(info)) 4809 return false; 4810 4811 DBGDATA(info, buf, size, "tx"); 4812 4813 /* 4814 * copy data to one or more DMA buffers in circular ring 4815 * tbuf_start = first buffer for this data 4816 * tbuf_current = next free buffer 4817 * 4818 * Copy all data before making data visible to DMA controller by 4819 * setting descriptor count of the first buffer. 4820 * This prevents an active DMA controller from reading the first DMA 4821 * buffers of a frame and stopping before the final buffers are filled. 4822 */ 4823 4824 info->tbuf_start = i = info->tbuf_current; 4825 4826 while (size) { 4827 d = &info->tbufs[i]; 4828 4829 count = (unsigned short)((size > DMABUFSIZE) ? DMABUFSIZE : size); 4830 memcpy(d->buf, buf, count); 4831 4832 size -= count; 4833 buf += count; 4834 4835 /* 4836 * set EOF bit for last buffer of HDLC frame or 4837 * for every buffer in raw mode 4838 */ 4839 if ((!size && info->params.mode == MGSL_MODE_HDLC) || 4840 info->params.mode == MGSL_MODE_RAW) 4841 set_desc_eof(*d, 1); 4842 else 4843 set_desc_eof(*d, 0); 4844 4845 /* set descriptor count for all but first buffer */ 4846 if (i != info->tbuf_start) 4847 set_desc_count(*d, count); 4848 d->buf_count = count; 4849 4850 if (++i == info->tbuf_count) 4851 i = 0; 4852 } 4853 4854 info->tbuf_current = i; 4855 4856 /* set first buffer count to make new data visible to DMA controller */ 4857 d = &info->tbufs[info->tbuf_start]; 4858 set_desc_count(*d, d->buf_count); 4859 4860 /* start transmitter if needed and update transmit timeout */ 4861 if (!info->tx_active) 4862 tx_start(info); 4863 update_tx_timer(info); 4864 4865 return true; 4866 } 4867 4868 static int register_test(struct slgt_info *info) 4869 { 4870 static unsigned short patterns[] = 4871 {0x0000, 0xffff, 0xaaaa, 0x5555, 0x6969, 0x9696}; 4872 static unsigned int count = ARRAY_SIZE(patterns); 4873 unsigned int i; 4874 int rc = 0; 4875 4876 for (i=0 ; i < count ; i++) { 4877 wr_reg16(info, TIR, patterns[i]); 4878 wr_reg16(info, BDR, patterns[(i+1)%count]); 4879 if ((rd_reg16(info, TIR) != patterns[i]) || 4880 (rd_reg16(info, BDR) != patterns[(i+1)%count])) { 4881 rc = -ENODEV; 4882 break; 4883 } 4884 } 4885 info->gpio_present = (rd_reg32(info, JCR) & BIT5) ? 1 : 0; 4886 info->init_error = rc ? 0 : DiagStatus_AddressFailure; 4887 return rc; 4888 } 4889 4890 static int irq_test(struct slgt_info *info) 4891 { 4892 unsigned long timeout; 4893 unsigned long flags; 4894 struct tty_struct *oldtty = info->port.tty; 4895 u32 speed = info->params.data_rate; 4896 4897 info->params.data_rate = 921600; 4898 info->port.tty = NULL; 4899 4900 spin_lock_irqsave(&info->lock, flags); 4901 async_mode(info); 4902 slgt_irq_on(info, IRQ_TXIDLE); 4903 4904 /* enable transmitter */ 4905 wr_reg16(info, TCR, 4906 (unsigned short)(rd_reg16(info, TCR) | BIT1)); 4907 4908 /* write one byte and wait for tx idle */ 4909 wr_reg16(info, TDR, 0); 4910 4911 /* assume failure */ 4912 info->init_error = DiagStatus_IrqFailure; 4913 info->irq_occurred = false; 4914 4915 spin_unlock_irqrestore(&info->lock, flags); 4916 4917 timeout=100; 4918 while(timeout-- && !info->irq_occurred) 4919 msleep_interruptible(10); 4920 4921 spin_lock_irqsave(&info->lock,flags); 4922 reset_port(info); 4923 spin_unlock_irqrestore(&info->lock,flags); 4924 4925 info->params.data_rate = speed; 4926 info->port.tty = oldtty; 4927 4928 info->init_error = info->irq_occurred ? 0 : DiagStatus_IrqFailure; 4929 return info->irq_occurred ? 0 : -ENODEV; 4930 } 4931 4932 static int loopback_test_rx(struct slgt_info *info) 4933 { 4934 unsigned char *src, *dest; 4935 int count; 4936 4937 if (desc_complete(info->rbufs[0])) { 4938 count = desc_count(info->rbufs[0]); 4939 src = info->rbufs[0].buf; 4940 dest = info->tmp_rbuf; 4941 4942 for( ; count ; count-=2, src+=2) { 4943 /* src=data byte (src+1)=status byte */ 4944 if (!(*(src+1) & (BIT9 + BIT8))) { 4945 *dest = *src; 4946 dest++; 4947 info->tmp_rbuf_count++; 4948 } 4949 } 4950 DBGDATA(info, info->tmp_rbuf, info->tmp_rbuf_count, "rx"); 4951 return 1; 4952 } 4953 return 0; 4954 } 4955 4956 static int loopback_test(struct slgt_info *info) 4957 { 4958 #define TESTFRAMESIZE 20 4959 4960 unsigned long timeout; 4961 u16 count; 4962 unsigned char buf[TESTFRAMESIZE]; 4963 int rc = -ENODEV; 4964 unsigned long flags; 4965 4966 struct tty_struct *oldtty = info->port.tty; 4967 MGSL_PARAMS params; 4968 4969 memcpy(¶ms, &info->params, sizeof(params)); 4970 4971 info->params.mode = MGSL_MODE_ASYNC; 4972 info->params.data_rate = 921600; 4973 info->params.loopback = 1; 4974 info->port.tty = NULL; 4975 4976 /* build and send transmit frame */ 4977 for (count = 0; count < TESTFRAMESIZE; ++count) 4978 buf[count] = (unsigned char)count; 4979 4980 info->tmp_rbuf_count = 0; 4981 memset(info->tmp_rbuf, 0, TESTFRAMESIZE); 4982 4983 /* program hardware for HDLC and enabled receiver */ 4984 spin_lock_irqsave(&info->lock,flags); 4985 async_mode(info); 4986 rx_start(info); 4987 tx_load(info, buf, count); 4988 spin_unlock_irqrestore(&info->lock, flags); 4989 4990 /* wait for receive complete */ 4991 for (timeout = 100; timeout; --timeout) { 4992 msleep_interruptible(10); 4993 if (loopback_test_rx(info)) { 4994 rc = 0; 4995 break; 4996 } 4997 } 4998 4999 /* verify received frame length and contents */ 5000 if (!rc && (info->tmp_rbuf_count != count || 5001 memcmp(buf, info->tmp_rbuf, count))) { 5002 rc = -ENODEV; 5003 } 5004 5005 spin_lock_irqsave(&info->lock,flags); 5006 reset_adapter(info); 5007 spin_unlock_irqrestore(&info->lock,flags); 5008 5009 memcpy(&info->params, ¶ms, sizeof(info->params)); 5010 info->port.tty = oldtty; 5011 5012 info->init_error = rc ? DiagStatus_DmaFailure : 0; 5013 return rc; 5014 } 5015 5016 static int adapter_test(struct slgt_info *info) 5017 { 5018 DBGINFO(("testing %s\n", info->device_name)); 5019 if (register_test(info) < 0) { 5020 printk("register test failure %s addr=%08X\n", 5021 info->device_name, info->phys_reg_addr); 5022 } else if (irq_test(info) < 0) { 5023 printk("IRQ test failure %s IRQ=%d\n", 5024 info->device_name, info->irq_level); 5025 } else if (loopback_test(info) < 0) { 5026 printk("loopback test failure %s\n", info->device_name); 5027 } 5028 return info->init_error; 5029 } 5030 5031 /* 5032 * transmit timeout handler 5033 */ 5034 static void tx_timeout(struct timer_list *t) 5035 { 5036 struct slgt_info *info = from_timer(info, t, tx_timer); 5037 unsigned long flags; 5038 5039 DBGINFO(("%s tx_timeout\n", info->device_name)); 5040 if(info->tx_active && info->params.mode == MGSL_MODE_HDLC) { 5041 info->icount.txtimeout++; 5042 } 5043 spin_lock_irqsave(&info->lock,flags); 5044 tx_stop(info); 5045 spin_unlock_irqrestore(&info->lock,flags); 5046 5047 #if SYNCLINK_GENERIC_HDLC 5048 if (info->netcount) 5049 hdlcdev_tx_done(info); 5050 else 5051 #endif 5052 bh_transmit(info); 5053 } 5054 5055 /* 5056 * receive buffer polling timer 5057 */ 5058 static void rx_timeout(struct timer_list *t) 5059 { 5060 struct slgt_info *info = from_timer(info, t, rx_timer); 5061 unsigned long flags; 5062 5063 DBGINFO(("%s rx_timeout\n", info->device_name)); 5064 spin_lock_irqsave(&info->lock, flags); 5065 info->pending_bh |= BH_RECEIVE; 5066 spin_unlock_irqrestore(&info->lock, flags); 5067 bh_handler(&info->task); 5068 } 5069 5070