1 /* 2 * Device driver for Microgate SyncLink GT serial adapters. 3 * 4 * written by Paul Fulghum for Microgate Corporation 5 * paulkf@microgate.com 6 * 7 * Microgate and SyncLink are trademarks of Microgate Corporation 8 * 9 * This code is released under the GNU General Public License (GPL) 10 * 11 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 12 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 13 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 14 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, 15 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 16 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 17 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 18 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 19 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 20 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 21 * OF THE POSSIBILITY OF SUCH DAMAGE. 22 */ 23 24 /* 25 * DEBUG OUTPUT DEFINITIONS 26 * 27 * uncomment lines below to enable specific types of debug output 28 * 29 * DBGINFO information - most verbose output 30 * DBGERR serious errors 31 * DBGBH bottom half service routine debugging 32 * DBGISR interrupt service routine debugging 33 * DBGDATA output receive and transmit data 34 * DBGTBUF output transmit DMA buffers and registers 35 * DBGRBUF output receive DMA buffers and registers 36 */ 37 38 #define DBGINFO(fmt) if (debug_level >= DEBUG_LEVEL_INFO) printk fmt 39 #define DBGERR(fmt) if (debug_level >= DEBUG_LEVEL_ERROR) printk fmt 40 #define DBGBH(fmt) if (debug_level >= DEBUG_LEVEL_BH) printk fmt 41 #define DBGISR(fmt) if (debug_level >= DEBUG_LEVEL_ISR) printk fmt 42 #define DBGDATA(info, buf, size, label) if (debug_level >= DEBUG_LEVEL_DATA) trace_block((info), (buf), (size), (label)) 43 /*#define DBGTBUF(info) dump_tbufs(info)*/ 44 /*#define DBGRBUF(info) dump_rbufs(info)*/ 45 46 47 #include <linux/module.h> 48 #include <linux/errno.h> 49 #include <linux/signal.h> 50 #include <linux/sched.h> 51 #include <linux/timer.h> 52 #include <linux/interrupt.h> 53 #include <linux/pci.h> 54 #include <linux/tty.h> 55 #include <linux/tty_flip.h> 56 #include <linux/serial.h> 57 #include <linux/major.h> 58 #include <linux/string.h> 59 #include <linux/fcntl.h> 60 #include <linux/ptrace.h> 61 #include <linux/ioport.h> 62 #include <linux/mm.h> 63 #include <linux/seq_file.h> 64 #include <linux/slab.h> 65 #include <linux/netdevice.h> 66 #include <linux/vmalloc.h> 67 #include <linux/init.h> 68 #include <linux/delay.h> 69 #include <linux/ioctl.h> 70 #include <linux/termios.h> 71 #include <linux/bitops.h> 72 #include <linux/workqueue.h> 73 #include <linux/hdlc.h> 74 #include <linux/synclink.h> 75 76 #include <asm/io.h> 77 #include <asm/irq.h> 78 #include <asm/dma.h> 79 #include <asm/types.h> 80 #include <linux/uaccess.h> 81 82 #if defined(CONFIG_HDLC) || (defined(CONFIG_HDLC_MODULE) && defined(CONFIG_SYNCLINK_GT_MODULE)) 83 #define SYNCLINK_GENERIC_HDLC 1 84 #else 85 #define SYNCLINK_GENERIC_HDLC 0 86 #endif 87 88 /* 89 * module identification 90 */ 91 static char *driver_name = "SyncLink GT"; 92 static char *slgt_driver_name = "synclink_gt"; 93 static char *tty_dev_prefix = "ttySLG"; 94 MODULE_LICENSE("GPL"); 95 #define MGSL_MAGIC 0x5401 96 #define MAX_DEVICES 32 97 98 static const struct pci_device_id pci_table[] = { 99 {PCI_VENDOR_ID_MICROGATE, SYNCLINK_GT_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID,}, 100 {PCI_VENDOR_ID_MICROGATE, SYNCLINK_GT2_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID,}, 101 {PCI_VENDOR_ID_MICROGATE, SYNCLINK_GT4_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID,}, 102 {PCI_VENDOR_ID_MICROGATE, SYNCLINK_AC_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID,}, 103 {0,}, /* terminate list */ 104 }; 105 MODULE_DEVICE_TABLE(pci, pci_table); 106 107 static int init_one(struct pci_dev *dev,const struct pci_device_id *ent); 108 static void remove_one(struct pci_dev *dev); 109 static struct pci_driver pci_driver = { 110 .name = "synclink_gt", 111 .id_table = pci_table, 112 .probe = init_one, 113 .remove = remove_one, 114 }; 115 116 static bool pci_registered; 117 118 /* 119 * module configuration and status 120 */ 121 static struct slgt_info *slgt_device_list; 122 static int slgt_device_count; 123 124 static int ttymajor; 125 static int debug_level; 126 static int maxframe[MAX_DEVICES]; 127 128 module_param(ttymajor, int, 0); 129 module_param(debug_level, int, 0); 130 module_param_array(maxframe, int, NULL, 0); 131 132 MODULE_PARM_DESC(ttymajor, "TTY major device number override: 0=auto assigned"); 133 MODULE_PARM_DESC(debug_level, "Debug syslog output: 0=disabled, 1 to 5=increasing detail"); 134 MODULE_PARM_DESC(maxframe, "Maximum frame size used by device (4096 to 65535)"); 135 136 /* 137 * tty support and callbacks 138 */ 139 static struct tty_driver *serial_driver; 140 141 static int open(struct tty_struct *tty, struct file * filp); 142 static void close(struct tty_struct *tty, struct file * filp); 143 static void hangup(struct tty_struct *tty); 144 static void set_termios(struct tty_struct *tty, struct ktermios *old_termios); 145 146 static int write(struct tty_struct *tty, const unsigned char *buf, int count); 147 static int put_char(struct tty_struct *tty, unsigned char ch); 148 static void send_xchar(struct tty_struct *tty, char ch); 149 static void wait_until_sent(struct tty_struct *tty, int timeout); 150 static int write_room(struct tty_struct *tty); 151 static void flush_chars(struct tty_struct *tty); 152 static void flush_buffer(struct tty_struct *tty); 153 static void tx_hold(struct tty_struct *tty); 154 static void tx_release(struct tty_struct *tty); 155 156 static int ioctl(struct tty_struct *tty, unsigned int cmd, unsigned long arg); 157 static int chars_in_buffer(struct tty_struct *tty); 158 static void throttle(struct tty_struct * tty); 159 static void unthrottle(struct tty_struct * tty); 160 static int set_break(struct tty_struct *tty, int break_state); 161 162 /* 163 * generic HDLC support and callbacks 164 */ 165 #if SYNCLINK_GENERIC_HDLC 166 #define dev_to_port(D) (dev_to_hdlc(D)->priv) 167 static void hdlcdev_tx_done(struct slgt_info *info); 168 static void hdlcdev_rx(struct slgt_info *info, char *buf, int size); 169 static int hdlcdev_init(struct slgt_info *info); 170 static void hdlcdev_exit(struct slgt_info *info); 171 #endif 172 173 174 /* 175 * device specific structures, macros and functions 176 */ 177 178 #define SLGT_MAX_PORTS 4 179 #define SLGT_REG_SIZE 256 180 181 /* 182 * conditional wait facility 183 */ 184 struct cond_wait { 185 struct cond_wait *next; 186 wait_queue_head_t q; 187 wait_queue_entry_t wait; 188 unsigned int data; 189 }; 190 static void init_cond_wait(struct cond_wait *w, unsigned int data); 191 static void add_cond_wait(struct cond_wait **head, struct cond_wait *w); 192 static void remove_cond_wait(struct cond_wait **head, struct cond_wait *w); 193 static void flush_cond_wait(struct cond_wait **head); 194 195 /* 196 * DMA buffer descriptor and access macros 197 */ 198 struct slgt_desc 199 { 200 __le16 count; 201 __le16 status; 202 __le32 pbuf; /* physical address of data buffer */ 203 __le32 next; /* physical address of next descriptor */ 204 205 /* driver book keeping */ 206 char *buf; /* virtual address of data buffer */ 207 unsigned int pdesc; /* physical address of this descriptor */ 208 dma_addr_t buf_dma_addr; 209 unsigned short buf_count; 210 }; 211 212 #define set_desc_buffer(a,b) (a).pbuf = cpu_to_le32((unsigned int)(b)) 213 #define set_desc_next(a,b) (a).next = cpu_to_le32((unsigned int)(b)) 214 #define set_desc_count(a,b)(a).count = cpu_to_le16((unsigned short)(b)) 215 #define set_desc_eof(a,b) (a).status = cpu_to_le16((b) ? (le16_to_cpu((a).status) | BIT0) : (le16_to_cpu((a).status) & ~BIT0)) 216 #define set_desc_status(a, b) (a).status = cpu_to_le16((unsigned short)(b)) 217 #define desc_count(a) (le16_to_cpu((a).count)) 218 #define desc_status(a) (le16_to_cpu((a).status)) 219 #define desc_complete(a) (le16_to_cpu((a).status) & BIT15) 220 #define desc_eof(a) (le16_to_cpu((a).status) & BIT2) 221 #define desc_crc_error(a) (le16_to_cpu((a).status) & BIT1) 222 #define desc_abort(a) (le16_to_cpu((a).status) & BIT0) 223 #define desc_residue(a) ((le16_to_cpu((a).status) & 0x38) >> 3) 224 225 struct _input_signal_events { 226 int ri_up; 227 int ri_down; 228 int dsr_up; 229 int dsr_down; 230 int dcd_up; 231 int dcd_down; 232 int cts_up; 233 int cts_down; 234 }; 235 236 /* 237 * device instance data structure 238 */ 239 struct slgt_info { 240 void *if_ptr; /* General purpose pointer (used by SPPP) */ 241 struct tty_port port; 242 243 struct slgt_info *next_device; /* device list link */ 244 245 int magic; 246 247 char device_name[25]; 248 struct pci_dev *pdev; 249 250 int port_count; /* count of ports on adapter */ 251 int adapter_num; /* adapter instance number */ 252 int port_num; /* port instance number */ 253 254 /* array of pointers to port contexts on this adapter */ 255 struct slgt_info *port_array[SLGT_MAX_PORTS]; 256 257 int line; /* tty line instance number */ 258 259 struct mgsl_icount icount; 260 261 int timeout; 262 int x_char; /* xon/xoff character */ 263 unsigned int read_status_mask; 264 unsigned int ignore_status_mask; 265 266 wait_queue_head_t status_event_wait_q; 267 wait_queue_head_t event_wait_q; 268 struct timer_list tx_timer; 269 struct timer_list rx_timer; 270 271 unsigned int gpio_present; 272 struct cond_wait *gpio_wait_q; 273 274 spinlock_t lock; /* spinlock for synchronizing with ISR */ 275 276 struct work_struct task; 277 u32 pending_bh; 278 bool bh_requested; 279 bool bh_running; 280 281 int isr_overflow; 282 bool irq_requested; /* true if IRQ requested */ 283 bool irq_occurred; /* for diagnostics use */ 284 285 /* device configuration */ 286 287 unsigned int bus_type; 288 unsigned int irq_level; 289 unsigned long irq_flags; 290 291 unsigned char __iomem * reg_addr; /* memory mapped registers address */ 292 u32 phys_reg_addr; 293 bool reg_addr_requested; 294 295 MGSL_PARAMS params; /* communications parameters */ 296 u32 idle_mode; 297 u32 max_frame_size; /* as set by device config */ 298 299 unsigned int rbuf_fill_level; 300 unsigned int rx_pio; 301 unsigned int if_mode; 302 unsigned int base_clock; 303 unsigned int xsync; 304 unsigned int xctrl; 305 306 /* device status */ 307 308 bool rx_enabled; 309 bool rx_restart; 310 311 bool tx_enabled; 312 bool tx_active; 313 314 unsigned char signals; /* serial signal states */ 315 int init_error; /* initialization error */ 316 317 unsigned char *tx_buf; 318 int tx_count; 319 320 char *flag_buf; 321 bool drop_rts_on_tx_done; 322 struct _input_signal_events input_signal_events; 323 324 int dcd_chkcount; /* check counts to prevent */ 325 int cts_chkcount; /* too many IRQs if a signal */ 326 int dsr_chkcount; /* is floating */ 327 int ri_chkcount; 328 329 char *bufs; /* virtual address of DMA buffer lists */ 330 dma_addr_t bufs_dma_addr; /* physical address of buffer descriptors */ 331 332 unsigned int rbuf_count; 333 struct slgt_desc *rbufs; 334 unsigned int rbuf_current; 335 unsigned int rbuf_index; 336 unsigned int rbuf_fill_index; 337 unsigned short rbuf_fill_count; 338 339 unsigned int tbuf_count; 340 struct slgt_desc *tbufs; 341 unsigned int tbuf_current; 342 unsigned int tbuf_start; 343 344 unsigned char *tmp_rbuf; 345 unsigned int tmp_rbuf_count; 346 347 /* SPPP/Cisco HDLC device parts */ 348 349 int netcount; 350 spinlock_t netlock; 351 #if SYNCLINK_GENERIC_HDLC 352 struct net_device *netdev; 353 #endif 354 355 }; 356 357 static MGSL_PARAMS default_params = { 358 .mode = MGSL_MODE_HDLC, 359 .loopback = 0, 360 .flags = HDLC_FLAG_UNDERRUN_ABORT15, 361 .encoding = HDLC_ENCODING_NRZI_SPACE, 362 .clock_speed = 0, 363 .addr_filter = 0xff, 364 .crc_type = HDLC_CRC_16_CCITT, 365 .preamble_length = HDLC_PREAMBLE_LENGTH_8BITS, 366 .preamble = HDLC_PREAMBLE_PATTERN_NONE, 367 .data_rate = 9600, 368 .data_bits = 8, 369 .stop_bits = 1, 370 .parity = ASYNC_PARITY_NONE 371 }; 372 373 374 #define BH_RECEIVE 1 375 #define BH_TRANSMIT 2 376 #define BH_STATUS 4 377 #define IO_PIN_SHUTDOWN_LIMIT 100 378 379 #define DMABUFSIZE 256 380 #define DESC_LIST_SIZE 4096 381 382 #define MASK_PARITY BIT1 383 #define MASK_FRAMING BIT0 384 #define MASK_BREAK BIT14 385 #define MASK_OVERRUN BIT4 386 387 #define GSR 0x00 /* global status */ 388 #define JCR 0x04 /* JTAG control */ 389 #define IODR 0x08 /* GPIO direction */ 390 #define IOER 0x0c /* GPIO interrupt enable */ 391 #define IOVR 0x10 /* GPIO value */ 392 #define IOSR 0x14 /* GPIO interrupt status */ 393 #define TDR 0x80 /* tx data */ 394 #define RDR 0x80 /* rx data */ 395 #define TCR 0x82 /* tx control */ 396 #define TIR 0x84 /* tx idle */ 397 #define TPR 0x85 /* tx preamble */ 398 #define RCR 0x86 /* rx control */ 399 #define VCR 0x88 /* V.24 control */ 400 #define CCR 0x89 /* clock control */ 401 #define BDR 0x8a /* baud divisor */ 402 #define SCR 0x8c /* serial control */ 403 #define SSR 0x8e /* serial status */ 404 #define RDCSR 0x90 /* rx DMA control/status */ 405 #define TDCSR 0x94 /* tx DMA control/status */ 406 #define RDDAR 0x98 /* rx DMA descriptor address */ 407 #define TDDAR 0x9c /* tx DMA descriptor address */ 408 #define XSR 0x40 /* extended sync pattern */ 409 #define XCR 0x44 /* extended control */ 410 411 #define RXIDLE BIT14 412 #define RXBREAK BIT14 413 #define IRQ_TXDATA BIT13 414 #define IRQ_TXIDLE BIT12 415 #define IRQ_TXUNDER BIT11 /* HDLC */ 416 #define IRQ_RXDATA BIT10 417 #define IRQ_RXIDLE BIT9 /* HDLC */ 418 #define IRQ_RXBREAK BIT9 /* async */ 419 #define IRQ_RXOVER BIT8 420 #define IRQ_DSR BIT7 421 #define IRQ_CTS BIT6 422 #define IRQ_DCD BIT5 423 #define IRQ_RI BIT4 424 #define IRQ_ALL 0x3ff0 425 #define IRQ_MASTER BIT0 426 427 #define slgt_irq_on(info, mask) \ 428 wr_reg16((info), SCR, (unsigned short)(rd_reg16((info), SCR) | (mask))) 429 #define slgt_irq_off(info, mask) \ 430 wr_reg16((info), SCR, (unsigned short)(rd_reg16((info), SCR) & ~(mask))) 431 432 static __u8 rd_reg8(struct slgt_info *info, unsigned int addr); 433 static void wr_reg8(struct slgt_info *info, unsigned int addr, __u8 value); 434 static __u16 rd_reg16(struct slgt_info *info, unsigned int addr); 435 static void wr_reg16(struct slgt_info *info, unsigned int addr, __u16 value); 436 static __u32 rd_reg32(struct slgt_info *info, unsigned int addr); 437 static void wr_reg32(struct slgt_info *info, unsigned int addr, __u32 value); 438 439 static void msc_set_vcr(struct slgt_info *info); 440 441 static int startup(struct slgt_info *info); 442 static int block_til_ready(struct tty_struct *tty, struct file * filp,struct slgt_info *info); 443 static void shutdown(struct slgt_info *info); 444 static void program_hw(struct slgt_info *info); 445 static void change_params(struct slgt_info *info); 446 447 static int register_test(struct slgt_info *info); 448 static int irq_test(struct slgt_info *info); 449 static int loopback_test(struct slgt_info *info); 450 static int adapter_test(struct slgt_info *info); 451 452 static void reset_adapter(struct slgt_info *info); 453 static void reset_port(struct slgt_info *info); 454 static void async_mode(struct slgt_info *info); 455 static void sync_mode(struct slgt_info *info); 456 457 static void rx_stop(struct slgt_info *info); 458 static void rx_start(struct slgt_info *info); 459 static void reset_rbufs(struct slgt_info *info); 460 static void free_rbufs(struct slgt_info *info, unsigned int first, unsigned int last); 461 static void rdma_reset(struct slgt_info *info); 462 static bool rx_get_frame(struct slgt_info *info); 463 static bool rx_get_buf(struct slgt_info *info); 464 465 static void tx_start(struct slgt_info *info); 466 static void tx_stop(struct slgt_info *info); 467 static void tx_set_idle(struct slgt_info *info); 468 static unsigned int free_tbuf_count(struct slgt_info *info); 469 static unsigned int tbuf_bytes(struct slgt_info *info); 470 static void reset_tbufs(struct slgt_info *info); 471 static void tdma_reset(struct slgt_info *info); 472 static bool tx_load(struct slgt_info *info, const char *buf, unsigned int count); 473 474 static void get_signals(struct slgt_info *info); 475 static void set_signals(struct slgt_info *info); 476 static void enable_loopback(struct slgt_info *info); 477 static void set_rate(struct slgt_info *info, u32 data_rate); 478 479 static int bh_action(struct slgt_info *info); 480 static void bh_handler(struct work_struct *work); 481 static void bh_transmit(struct slgt_info *info); 482 static void isr_serial(struct slgt_info *info); 483 static void isr_rdma(struct slgt_info *info); 484 static void isr_txeom(struct slgt_info *info, unsigned short status); 485 static void isr_tdma(struct slgt_info *info); 486 487 static int alloc_dma_bufs(struct slgt_info *info); 488 static void free_dma_bufs(struct slgt_info *info); 489 static int alloc_desc(struct slgt_info *info); 490 static void free_desc(struct slgt_info *info); 491 static int alloc_bufs(struct slgt_info *info, struct slgt_desc *bufs, int count); 492 static void free_bufs(struct slgt_info *info, struct slgt_desc *bufs, int count); 493 494 static int alloc_tmp_rbuf(struct slgt_info *info); 495 static void free_tmp_rbuf(struct slgt_info *info); 496 497 static void tx_timeout(unsigned long context); 498 static void rx_timeout(unsigned long context); 499 500 /* 501 * ioctl handlers 502 */ 503 static int get_stats(struct slgt_info *info, struct mgsl_icount __user *user_icount); 504 static int get_params(struct slgt_info *info, MGSL_PARAMS __user *params); 505 static int set_params(struct slgt_info *info, MGSL_PARAMS __user *params); 506 static int get_txidle(struct slgt_info *info, int __user *idle_mode); 507 static int set_txidle(struct slgt_info *info, int idle_mode); 508 static int tx_enable(struct slgt_info *info, int enable); 509 static int tx_abort(struct slgt_info *info); 510 static int rx_enable(struct slgt_info *info, int enable); 511 static int modem_input_wait(struct slgt_info *info,int arg); 512 static int wait_mgsl_event(struct slgt_info *info, int __user *mask_ptr); 513 static int tiocmget(struct tty_struct *tty); 514 static int tiocmset(struct tty_struct *tty, 515 unsigned int set, unsigned int clear); 516 static int set_break(struct tty_struct *tty, int break_state); 517 static int get_interface(struct slgt_info *info, int __user *if_mode); 518 static int set_interface(struct slgt_info *info, int if_mode); 519 static int set_gpio(struct slgt_info *info, struct gpio_desc __user *gpio); 520 static int get_gpio(struct slgt_info *info, struct gpio_desc __user *gpio); 521 static int wait_gpio(struct slgt_info *info, struct gpio_desc __user *gpio); 522 static int get_xsync(struct slgt_info *info, int __user *if_mode); 523 static int set_xsync(struct slgt_info *info, int if_mode); 524 static int get_xctrl(struct slgt_info *info, int __user *if_mode); 525 static int set_xctrl(struct slgt_info *info, int if_mode); 526 527 /* 528 * driver functions 529 */ 530 static void add_device(struct slgt_info *info); 531 static void device_init(int adapter_num, struct pci_dev *pdev); 532 static int claim_resources(struct slgt_info *info); 533 static void release_resources(struct slgt_info *info); 534 535 /* 536 * DEBUG OUTPUT CODE 537 */ 538 #ifndef DBGINFO 539 #define DBGINFO(fmt) 540 #endif 541 #ifndef DBGERR 542 #define DBGERR(fmt) 543 #endif 544 #ifndef DBGBH 545 #define DBGBH(fmt) 546 #endif 547 #ifndef DBGISR 548 #define DBGISR(fmt) 549 #endif 550 551 #ifdef DBGDATA 552 static void trace_block(struct slgt_info *info, const char *data, int count, const char *label) 553 { 554 int i; 555 int linecount; 556 printk("%s %s data:\n",info->device_name, label); 557 while(count) { 558 linecount = (count > 16) ? 16 : count; 559 for(i=0; i < linecount; i++) 560 printk("%02X ",(unsigned char)data[i]); 561 for(;i<17;i++) 562 printk(" "); 563 for(i=0;i<linecount;i++) { 564 if (data[i]>=040 && data[i]<=0176) 565 printk("%c",data[i]); 566 else 567 printk("."); 568 } 569 printk("\n"); 570 data += linecount; 571 count -= linecount; 572 } 573 } 574 #else 575 #define DBGDATA(info, buf, size, label) 576 #endif 577 578 #ifdef DBGTBUF 579 static void dump_tbufs(struct slgt_info *info) 580 { 581 int i; 582 printk("tbuf_current=%d\n", info->tbuf_current); 583 for (i=0 ; i < info->tbuf_count ; i++) { 584 printk("%d: count=%04X status=%04X\n", 585 i, le16_to_cpu(info->tbufs[i].count), le16_to_cpu(info->tbufs[i].status)); 586 } 587 } 588 #else 589 #define DBGTBUF(info) 590 #endif 591 592 #ifdef DBGRBUF 593 static void dump_rbufs(struct slgt_info *info) 594 { 595 int i; 596 printk("rbuf_current=%d\n", info->rbuf_current); 597 for (i=0 ; i < info->rbuf_count ; i++) { 598 printk("%d: count=%04X status=%04X\n", 599 i, le16_to_cpu(info->rbufs[i].count), le16_to_cpu(info->rbufs[i].status)); 600 } 601 } 602 #else 603 #define DBGRBUF(info) 604 #endif 605 606 static inline int sanity_check(struct slgt_info *info, char *devname, const char *name) 607 { 608 #ifdef SANITY_CHECK 609 if (!info) { 610 printk("null struct slgt_info for (%s) in %s\n", devname, name); 611 return 1; 612 } 613 if (info->magic != MGSL_MAGIC) { 614 printk("bad magic number struct slgt_info (%s) in %s\n", devname, name); 615 return 1; 616 } 617 #else 618 if (!info) 619 return 1; 620 #endif 621 return 0; 622 } 623 624 /** 625 * line discipline callback wrappers 626 * 627 * The wrappers maintain line discipline references 628 * while calling into the line discipline. 629 * 630 * ldisc_receive_buf - pass receive data to line discipline 631 */ 632 static void ldisc_receive_buf(struct tty_struct *tty, 633 const __u8 *data, char *flags, int count) 634 { 635 struct tty_ldisc *ld; 636 if (!tty) 637 return; 638 ld = tty_ldisc_ref(tty); 639 if (ld) { 640 if (ld->ops->receive_buf) 641 ld->ops->receive_buf(tty, data, flags, count); 642 tty_ldisc_deref(ld); 643 } 644 } 645 646 /* tty callbacks */ 647 648 static int open(struct tty_struct *tty, struct file *filp) 649 { 650 struct slgt_info *info; 651 int retval, line; 652 unsigned long flags; 653 654 line = tty->index; 655 if (line >= slgt_device_count) { 656 DBGERR(("%s: open with invalid line #%d.\n", driver_name, line)); 657 return -ENODEV; 658 } 659 660 info = slgt_device_list; 661 while(info && info->line != line) 662 info = info->next_device; 663 if (sanity_check(info, tty->name, "open")) 664 return -ENODEV; 665 if (info->init_error) { 666 DBGERR(("%s init error=%d\n", info->device_name, info->init_error)); 667 return -ENODEV; 668 } 669 670 tty->driver_data = info; 671 info->port.tty = tty; 672 673 DBGINFO(("%s open, old ref count = %d\n", info->device_name, info->port.count)); 674 675 mutex_lock(&info->port.mutex); 676 info->port.low_latency = (info->port.flags & ASYNC_LOW_LATENCY) ? 1 : 0; 677 678 spin_lock_irqsave(&info->netlock, flags); 679 if (info->netcount) { 680 retval = -EBUSY; 681 spin_unlock_irqrestore(&info->netlock, flags); 682 mutex_unlock(&info->port.mutex); 683 goto cleanup; 684 } 685 info->port.count++; 686 spin_unlock_irqrestore(&info->netlock, flags); 687 688 if (info->port.count == 1) { 689 /* 1st open on this device, init hardware */ 690 retval = startup(info); 691 if (retval < 0) { 692 mutex_unlock(&info->port.mutex); 693 goto cleanup; 694 } 695 } 696 mutex_unlock(&info->port.mutex); 697 retval = block_til_ready(tty, filp, info); 698 if (retval) { 699 DBGINFO(("%s block_til_ready rc=%d\n", info->device_name, retval)); 700 goto cleanup; 701 } 702 703 retval = 0; 704 705 cleanup: 706 if (retval) { 707 if (tty->count == 1) 708 info->port.tty = NULL; /* tty layer will release tty struct */ 709 if(info->port.count) 710 info->port.count--; 711 } 712 713 DBGINFO(("%s open rc=%d\n", info->device_name, retval)); 714 return retval; 715 } 716 717 static void close(struct tty_struct *tty, struct file *filp) 718 { 719 struct slgt_info *info = tty->driver_data; 720 721 if (sanity_check(info, tty->name, "close")) 722 return; 723 DBGINFO(("%s close entry, count=%d\n", info->device_name, info->port.count)); 724 725 if (tty_port_close_start(&info->port, tty, filp) == 0) 726 goto cleanup; 727 728 mutex_lock(&info->port.mutex); 729 if (tty_port_initialized(&info->port)) 730 wait_until_sent(tty, info->timeout); 731 flush_buffer(tty); 732 tty_ldisc_flush(tty); 733 734 shutdown(info); 735 mutex_unlock(&info->port.mutex); 736 737 tty_port_close_end(&info->port, tty); 738 info->port.tty = NULL; 739 cleanup: 740 DBGINFO(("%s close exit, count=%d\n", tty->driver->name, info->port.count)); 741 } 742 743 static void hangup(struct tty_struct *tty) 744 { 745 struct slgt_info *info = tty->driver_data; 746 unsigned long flags; 747 748 if (sanity_check(info, tty->name, "hangup")) 749 return; 750 DBGINFO(("%s hangup\n", info->device_name)); 751 752 flush_buffer(tty); 753 754 mutex_lock(&info->port.mutex); 755 shutdown(info); 756 757 spin_lock_irqsave(&info->port.lock, flags); 758 info->port.count = 0; 759 info->port.tty = NULL; 760 spin_unlock_irqrestore(&info->port.lock, flags); 761 tty_port_set_active(&info->port, 0); 762 mutex_unlock(&info->port.mutex); 763 764 wake_up_interruptible(&info->port.open_wait); 765 } 766 767 static void set_termios(struct tty_struct *tty, struct ktermios *old_termios) 768 { 769 struct slgt_info *info = tty->driver_data; 770 unsigned long flags; 771 772 DBGINFO(("%s set_termios\n", tty->driver->name)); 773 774 change_params(info); 775 776 /* Handle transition to B0 status */ 777 if ((old_termios->c_cflag & CBAUD) && !C_BAUD(tty)) { 778 info->signals &= ~(SerialSignal_RTS | SerialSignal_DTR); 779 spin_lock_irqsave(&info->lock,flags); 780 set_signals(info); 781 spin_unlock_irqrestore(&info->lock,flags); 782 } 783 784 /* Handle transition away from B0 status */ 785 if (!(old_termios->c_cflag & CBAUD) && C_BAUD(tty)) { 786 info->signals |= SerialSignal_DTR; 787 if (!C_CRTSCTS(tty) || !tty_throttled(tty)) 788 info->signals |= SerialSignal_RTS; 789 spin_lock_irqsave(&info->lock,flags); 790 set_signals(info); 791 spin_unlock_irqrestore(&info->lock,flags); 792 } 793 794 /* Handle turning off CRTSCTS */ 795 if ((old_termios->c_cflag & CRTSCTS) && !C_CRTSCTS(tty)) { 796 tty->hw_stopped = 0; 797 tx_release(tty); 798 } 799 } 800 801 static void update_tx_timer(struct slgt_info *info) 802 { 803 /* 804 * use worst case speed of 1200bps to calculate transmit timeout 805 * based on data in buffers (tbuf_bytes) and FIFO (128 bytes) 806 */ 807 if (info->params.mode == MGSL_MODE_HDLC) { 808 int timeout = (tbuf_bytes(info) * 7) + 1000; 809 mod_timer(&info->tx_timer, jiffies + msecs_to_jiffies(timeout)); 810 } 811 } 812 813 static int write(struct tty_struct *tty, 814 const unsigned char *buf, int count) 815 { 816 int ret = 0; 817 struct slgt_info *info = tty->driver_data; 818 unsigned long flags; 819 820 if (sanity_check(info, tty->name, "write")) 821 return -EIO; 822 823 DBGINFO(("%s write count=%d\n", info->device_name, count)); 824 825 if (!info->tx_buf || (count > info->max_frame_size)) 826 return -EIO; 827 828 if (!count || tty->stopped || tty->hw_stopped) 829 return 0; 830 831 spin_lock_irqsave(&info->lock, flags); 832 833 if (info->tx_count) { 834 /* send accumulated data from send_char() */ 835 if (!tx_load(info, info->tx_buf, info->tx_count)) 836 goto cleanup; 837 info->tx_count = 0; 838 } 839 840 if (tx_load(info, buf, count)) 841 ret = count; 842 843 cleanup: 844 spin_unlock_irqrestore(&info->lock, flags); 845 DBGINFO(("%s write rc=%d\n", info->device_name, ret)); 846 return ret; 847 } 848 849 static int put_char(struct tty_struct *tty, unsigned char ch) 850 { 851 struct slgt_info *info = tty->driver_data; 852 unsigned long flags; 853 int ret = 0; 854 855 if (sanity_check(info, tty->name, "put_char")) 856 return 0; 857 DBGINFO(("%s put_char(%d)\n", info->device_name, ch)); 858 if (!info->tx_buf) 859 return 0; 860 spin_lock_irqsave(&info->lock,flags); 861 if (info->tx_count < info->max_frame_size) { 862 info->tx_buf[info->tx_count++] = ch; 863 ret = 1; 864 } 865 spin_unlock_irqrestore(&info->lock,flags); 866 return ret; 867 } 868 869 static void send_xchar(struct tty_struct *tty, char ch) 870 { 871 struct slgt_info *info = tty->driver_data; 872 unsigned long flags; 873 874 if (sanity_check(info, tty->name, "send_xchar")) 875 return; 876 DBGINFO(("%s send_xchar(%d)\n", info->device_name, ch)); 877 info->x_char = ch; 878 if (ch) { 879 spin_lock_irqsave(&info->lock,flags); 880 if (!info->tx_enabled) 881 tx_start(info); 882 spin_unlock_irqrestore(&info->lock,flags); 883 } 884 } 885 886 static void wait_until_sent(struct tty_struct *tty, int timeout) 887 { 888 struct slgt_info *info = tty->driver_data; 889 unsigned long orig_jiffies, char_time; 890 891 if (!info ) 892 return; 893 if (sanity_check(info, tty->name, "wait_until_sent")) 894 return; 895 DBGINFO(("%s wait_until_sent entry\n", info->device_name)); 896 if (!tty_port_initialized(&info->port)) 897 goto exit; 898 899 orig_jiffies = jiffies; 900 901 /* Set check interval to 1/5 of estimated time to 902 * send a character, and make it at least 1. The check 903 * interval should also be less than the timeout. 904 * Note: use tight timings here to satisfy the NIST-PCTS. 905 */ 906 907 if (info->params.data_rate) { 908 char_time = info->timeout/(32 * 5); 909 if (!char_time) 910 char_time++; 911 } else 912 char_time = 1; 913 914 if (timeout) 915 char_time = min_t(unsigned long, char_time, timeout); 916 917 while (info->tx_active) { 918 msleep_interruptible(jiffies_to_msecs(char_time)); 919 if (signal_pending(current)) 920 break; 921 if (timeout && time_after(jiffies, orig_jiffies + timeout)) 922 break; 923 } 924 exit: 925 DBGINFO(("%s wait_until_sent exit\n", info->device_name)); 926 } 927 928 static int write_room(struct tty_struct *tty) 929 { 930 struct slgt_info *info = tty->driver_data; 931 int ret; 932 933 if (sanity_check(info, tty->name, "write_room")) 934 return 0; 935 ret = (info->tx_active) ? 0 : HDLC_MAX_FRAME_SIZE; 936 DBGINFO(("%s write_room=%d\n", info->device_name, ret)); 937 return ret; 938 } 939 940 static void flush_chars(struct tty_struct *tty) 941 { 942 struct slgt_info *info = tty->driver_data; 943 unsigned long flags; 944 945 if (sanity_check(info, tty->name, "flush_chars")) 946 return; 947 DBGINFO(("%s flush_chars entry tx_count=%d\n", info->device_name, info->tx_count)); 948 949 if (info->tx_count <= 0 || tty->stopped || 950 tty->hw_stopped || !info->tx_buf) 951 return; 952 953 DBGINFO(("%s flush_chars start transmit\n", info->device_name)); 954 955 spin_lock_irqsave(&info->lock,flags); 956 if (info->tx_count && tx_load(info, info->tx_buf, info->tx_count)) 957 info->tx_count = 0; 958 spin_unlock_irqrestore(&info->lock,flags); 959 } 960 961 static void flush_buffer(struct tty_struct *tty) 962 { 963 struct slgt_info *info = tty->driver_data; 964 unsigned long flags; 965 966 if (sanity_check(info, tty->name, "flush_buffer")) 967 return; 968 DBGINFO(("%s flush_buffer\n", info->device_name)); 969 970 spin_lock_irqsave(&info->lock, flags); 971 info->tx_count = 0; 972 spin_unlock_irqrestore(&info->lock, flags); 973 974 tty_wakeup(tty); 975 } 976 977 /* 978 * throttle (stop) transmitter 979 */ 980 static void tx_hold(struct tty_struct *tty) 981 { 982 struct slgt_info *info = tty->driver_data; 983 unsigned long flags; 984 985 if (sanity_check(info, tty->name, "tx_hold")) 986 return; 987 DBGINFO(("%s tx_hold\n", info->device_name)); 988 spin_lock_irqsave(&info->lock,flags); 989 if (info->tx_enabled && info->params.mode == MGSL_MODE_ASYNC) 990 tx_stop(info); 991 spin_unlock_irqrestore(&info->lock,flags); 992 } 993 994 /* 995 * release (start) transmitter 996 */ 997 static void tx_release(struct tty_struct *tty) 998 { 999 struct slgt_info *info = tty->driver_data; 1000 unsigned long flags; 1001 1002 if (sanity_check(info, tty->name, "tx_release")) 1003 return; 1004 DBGINFO(("%s tx_release\n", info->device_name)); 1005 spin_lock_irqsave(&info->lock, flags); 1006 if (info->tx_count && tx_load(info, info->tx_buf, info->tx_count)) 1007 info->tx_count = 0; 1008 spin_unlock_irqrestore(&info->lock, flags); 1009 } 1010 1011 /* 1012 * Service an IOCTL request 1013 * 1014 * Arguments 1015 * 1016 * tty pointer to tty instance data 1017 * cmd IOCTL command code 1018 * arg command argument/context 1019 * 1020 * Return 0 if success, otherwise error code 1021 */ 1022 static int ioctl(struct tty_struct *tty, 1023 unsigned int cmd, unsigned long arg) 1024 { 1025 struct slgt_info *info = tty->driver_data; 1026 void __user *argp = (void __user *)arg; 1027 int ret; 1028 1029 if (sanity_check(info, tty->name, "ioctl")) 1030 return -ENODEV; 1031 DBGINFO(("%s ioctl() cmd=%08X\n", info->device_name, cmd)); 1032 1033 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) && 1034 (cmd != TIOCMIWAIT)) { 1035 if (tty_io_error(tty)) 1036 return -EIO; 1037 } 1038 1039 switch (cmd) { 1040 case MGSL_IOCWAITEVENT: 1041 return wait_mgsl_event(info, argp); 1042 case TIOCMIWAIT: 1043 return modem_input_wait(info,(int)arg); 1044 case MGSL_IOCSGPIO: 1045 return set_gpio(info, argp); 1046 case MGSL_IOCGGPIO: 1047 return get_gpio(info, argp); 1048 case MGSL_IOCWAITGPIO: 1049 return wait_gpio(info, argp); 1050 case MGSL_IOCGXSYNC: 1051 return get_xsync(info, argp); 1052 case MGSL_IOCSXSYNC: 1053 return set_xsync(info, (int)arg); 1054 case MGSL_IOCGXCTRL: 1055 return get_xctrl(info, argp); 1056 case MGSL_IOCSXCTRL: 1057 return set_xctrl(info, (int)arg); 1058 } 1059 mutex_lock(&info->port.mutex); 1060 switch (cmd) { 1061 case MGSL_IOCGPARAMS: 1062 ret = get_params(info, argp); 1063 break; 1064 case MGSL_IOCSPARAMS: 1065 ret = set_params(info, argp); 1066 break; 1067 case MGSL_IOCGTXIDLE: 1068 ret = get_txidle(info, argp); 1069 break; 1070 case MGSL_IOCSTXIDLE: 1071 ret = set_txidle(info, (int)arg); 1072 break; 1073 case MGSL_IOCTXENABLE: 1074 ret = tx_enable(info, (int)arg); 1075 break; 1076 case MGSL_IOCRXENABLE: 1077 ret = rx_enable(info, (int)arg); 1078 break; 1079 case MGSL_IOCTXABORT: 1080 ret = tx_abort(info); 1081 break; 1082 case MGSL_IOCGSTATS: 1083 ret = get_stats(info, argp); 1084 break; 1085 case MGSL_IOCGIF: 1086 ret = get_interface(info, argp); 1087 break; 1088 case MGSL_IOCSIF: 1089 ret = set_interface(info,(int)arg); 1090 break; 1091 default: 1092 ret = -ENOIOCTLCMD; 1093 } 1094 mutex_unlock(&info->port.mutex); 1095 return ret; 1096 } 1097 1098 static int get_icount(struct tty_struct *tty, 1099 struct serial_icounter_struct *icount) 1100 1101 { 1102 struct slgt_info *info = tty->driver_data; 1103 struct mgsl_icount cnow; /* kernel counter temps */ 1104 unsigned long flags; 1105 1106 spin_lock_irqsave(&info->lock,flags); 1107 cnow = info->icount; 1108 spin_unlock_irqrestore(&info->lock,flags); 1109 1110 icount->cts = cnow.cts; 1111 icount->dsr = cnow.dsr; 1112 icount->rng = cnow.rng; 1113 icount->dcd = cnow.dcd; 1114 icount->rx = cnow.rx; 1115 icount->tx = cnow.tx; 1116 icount->frame = cnow.frame; 1117 icount->overrun = cnow.overrun; 1118 icount->parity = cnow.parity; 1119 icount->brk = cnow.brk; 1120 icount->buf_overrun = cnow.buf_overrun; 1121 1122 return 0; 1123 } 1124 1125 /* 1126 * support for 32 bit ioctl calls on 64 bit systems 1127 */ 1128 #ifdef CONFIG_COMPAT 1129 static long get_params32(struct slgt_info *info, struct MGSL_PARAMS32 __user *user_params) 1130 { 1131 struct MGSL_PARAMS32 tmp_params; 1132 1133 DBGINFO(("%s get_params32\n", info->device_name)); 1134 memset(&tmp_params, 0, sizeof(tmp_params)); 1135 tmp_params.mode = (compat_ulong_t)info->params.mode; 1136 tmp_params.loopback = info->params.loopback; 1137 tmp_params.flags = info->params.flags; 1138 tmp_params.encoding = info->params.encoding; 1139 tmp_params.clock_speed = (compat_ulong_t)info->params.clock_speed; 1140 tmp_params.addr_filter = info->params.addr_filter; 1141 tmp_params.crc_type = info->params.crc_type; 1142 tmp_params.preamble_length = info->params.preamble_length; 1143 tmp_params.preamble = info->params.preamble; 1144 tmp_params.data_rate = (compat_ulong_t)info->params.data_rate; 1145 tmp_params.data_bits = info->params.data_bits; 1146 tmp_params.stop_bits = info->params.stop_bits; 1147 tmp_params.parity = info->params.parity; 1148 if (copy_to_user(user_params, &tmp_params, sizeof(struct MGSL_PARAMS32))) 1149 return -EFAULT; 1150 return 0; 1151 } 1152 1153 static long set_params32(struct slgt_info *info, struct MGSL_PARAMS32 __user *new_params) 1154 { 1155 struct MGSL_PARAMS32 tmp_params; 1156 1157 DBGINFO(("%s set_params32\n", info->device_name)); 1158 if (copy_from_user(&tmp_params, new_params, sizeof(struct MGSL_PARAMS32))) 1159 return -EFAULT; 1160 1161 spin_lock(&info->lock); 1162 if (tmp_params.mode == MGSL_MODE_BASE_CLOCK) { 1163 info->base_clock = tmp_params.clock_speed; 1164 } else { 1165 info->params.mode = tmp_params.mode; 1166 info->params.loopback = tmp_params.loopback; 1167 info->params.flags = tmp_params.flags; 1168 info->params.encoding = tmp_params.encoding; 1169 info->params.clock_speed = tmp_params.clock_speed; 1170 info->params.addr_filter = tmp_params.addr_filter; 1171 info->params.crc_type = tmp_params.crc_type; 1172 info->params.preamble_length = tmp_params.preamble_length; 1173 info->params.preamble = tmp_params.preamble; 1174 info->params.data_rate = tmp_params.data_rate; 1175 info->params.data_bits = tmp_params.data_bits; 1176 info->params.stop_bits = tmp_params.stop_bits; 1177 info->params.parity = tmp_params.parity; 1178 } 1179 spin_unlock(&info->lock); 1180 1181 program_hw(info); 1182 1183 return 0; 1184 } 1185 1186 static long slgt_compat_ioctl(struct tty_struct *tty, 1187 unsigned int cmd, unsigned long arg) 1188 { 1189 struct slgt_info *info = tty->driver_data; 1190 int rc = -ENOIOCTLCMD; 1191 1192 if (sanity_check(info, tty->name, "compat_ioctl")) 1193 return -ENODEV; 1194 DBGINFO(("%s compat_ioctl() cmd=%08X\n", info->device_name, cmd)); 1195 1196 switch (cmd) { 1197 1198 case MGSL_IOCSPARAMS32: 1199 rc = set_params32(info, compat_ptr(arg)); 1200 break; 1201 1202 case MGSL_IOCGPARAMS32: 1203 rc = get_params32(info, compat_ptr(arg)); 1204 break; 1205 1206 case MGSL_IOCGPARAMS: 1207 case MGSL_IOCSPARAMS: 1208 case MGSL_IOCGTXIDLE: 1209 case MGSL_IOCGSTATS: 1210 case MGSL_IOCWAITEVENT: 1211 case MGSL_IOCGIF: 1212 case MGSL_IOCSGPIO: 1213 case MGSL_IOCGGPIO: 1214 case MGSL_IOCWAITGPIO: 1215 case MGSL_IOCGXSYNC: 1216 case MGSL_IOCGXCTRL: 1217 case MGSL_IOCSTXIDLE: 1218 case MGSL_IOCTXENABLE: 1219 case MGSL_IOCRXENABLE: 1220 case MGSL_IOCTXABORT: 1221 case TIOCMIWAIT: 1222 case MGSL_IOCSIF: 1223 case MGSL_IOCSXSYNC: 1224 case MGSL_IOCSXCTRL: 1225 rc = ioctl(tty, cmd, arg); 1226 break; 1227 } 1228 1229 DBGINFO(("%s compat_ioctl() cmd=%08X rc=%d\n", info->device_name, cmd, rc)); 1230 return rc; 1231 } 1232 #else 1233 #define slgt_compat_ioctl NULL 1234 #endif /* ifdef CONFIG_COMPAT */ 1235 1236 /* 1237 * proc fs support 1238 */ 1239 static inline void line_info(struct seq_file *m, struct slgt_info *info) 1240 { 1241 char stat_buf[30]; 1242 unsigned long flags; 1243 1244 seq_printf(m, "%s: IO=%08X IRQ=%d MaxFrameSize=%u\n", 1245 info->device_name, info->phys_reg_addr, 1246 info->irq_level, info->max_frame_size); 1247 1248 /* output current serial signal states */ 1249 spin_lock_irqsave(&info->lock,flags); 1250 get_signals(info); 1251 spin_unlock_irqrestore(&info->lock,flags); 1252 1253 stat_buf[0] = 0; 1254 stat_buf[1] = 0; 1255 if (info->signals & SerialSignal_RTS) 1256 strcat(stat_buf, "|RTS"); 1257 if (info->signals & SerialSignal_CTS) 1258 strcat(stat_buf, "|CTS"); 1259 if (info->signals & SerialSignal_DTR) 1260 strcat(stat_buf, "|DTR"); 1261 if (info->signals & SerialSignal_DSR) 1262 strcat(stat_buf, "|DSR"); 1263 if (info->signals & SerialSignal_DCD) 1264 strcat(stat_buf, "|CD"); 1265 if (info->signals & SerialSignal_RI) 1266 strcat(stat_buf, "|RI"); 1267 1268 if (info->params.mode != MGSL_MODE_ASYNC) { 1269 seq_printf(m, "\tHDLC txok:%d rxok:%d", 1270 info->icount.txok, info->icount.rxok); 1271 if (info->icount.txunder) 1272 seq_printf(m, " txunder:%d", info->icount.txunder); 1273 if (info->icount.txabort) 1274 seq_printf(m, " txabort:%d", info->icount.txabort); 1275 if (info->icount.rxshort) 1276 seq_printf(m, " rxshort:%d", info->icount.rxshort); 1277 if (info->icount.rxlong) 1278 seq_printf(m, " rxlong:%d", info->icount.rxlong); 1279 if (info->icount.rxover) 1280 seq_printf(m, " rxover:%d", info->icount.rxover); 1281 if (info->icount.rxcrc) 1282 seq_printf(m, " rxcrc:%d", info->icount.rxcrc); 1283 } else { 1284 seq_printf(m, "\tASYNC tx:%d rx:%d", 1285 info->icount.tx, info->icount.rx); 1286 if (info->icount.frame) 1287 seq_printf(m, " fe:%d", info->icount.frame); 1288 if (info->icount.parity) 1289 seq_printf(m, " pe:%d", info->icount.parity); 1290 if (info->icount.brk) 1291 seq_printf(m, " brk:%d", info->icount.brk); 1292 if (info->icount.overrun) 1293 seq_printf(m, " oe:%d", info->icount.overrun); 1294 } 1295 1296 /* Append serial signal status to end */ 1297 seq_printf(m, " %s\n", stat_buf+1); 1298 1299 seq_printf(m, "\ttxactive=%d bh_req=%d bh_run=%d pending_bh=%x\n", 1300 info->tx_active,info->bh_requested,info->bh_running, 1301 info->pending_bh); 1302 } 1303 1304 /* Called to print information about devices 1305 */ 1306 static int synclink_gt_proc_show(struct seq_file *m, void *v) 1307 { 1308 struct slgt_info *info; 1309 1310 seq_puts(m, "synclink_gt driver\n"); 1311 1312 info = slgt_device_list; 1313 while( info ) { 1314 line_info(m, info); 1315 info = info->next_device; 1316 } 1317 return 0; 1318 } 1319 1320 static int synclink_gt_proc_open(struct inode *inode, struct file *file) 1321 { 1322 return single_open(file, synclink_gt_proc_show, NULL); 1323 } 1324 1325 static const struct file_operations synclink_gt_proc_fops = { 1326 .owner = THIS_MODULE, 1327 .open = synclink_gt_proc_open, 1328 .read = seq_read, 1329 .llseek = seq_lseek, 1330 .release = single_release, 1331 }; 1332 1333 /* 1334 * return count of bytes in transmit buffer 1335 */ 1336 static int chars_in_buffer(struct tty_struct *tty) 1337 { 1338 struct slgt_info *info = tty->driver_data; 1339 int count; 1340 if (sanity_check(info, tty->name, "chars_in_buffer")) 1341 return 0; 1342 count = tbuf_bytes(info); 1343 DBGINFO(("%s chars_in_buffer()=%d\n", info->device_name, count)); 1344 return count; 1345 } 1346 1347 /* 1348 * signal remote device to throttle send data (our receive data) 1349 */ 1350 static void throttle(struct tty_struct * tty) 1351 { 1352 struct slgt_info *info = tty->driver_data; 1353 unsigned long flags; 1354 1355 if (sanity_check(info, tty->name, "throttle")) 1356 return; 1357 DBGINFO(("%s throttle\n", info->device_name)); 1358 if (I_IXOFF(tty)) 1359 send_xchar(tty, STOP_CHAR(tty)); 1360 if (C_CRTSCTS(tty)) { 1361 spin_lock_irqsave(&info->lock,flags); 1362 info->signals &= ~SerialSignal_RTS; 1363 set_signals(info); 1364 spin_unlock_irqrestore(&info->lock,flags); 1365 } 1366 } 1367 1368 /* 1369 * signal remote device to stop throttling send data (our receive data) 1370 */ 1371 static void unthrottle(struct tty_struct * tty) 1372 { 1373 struct slgt_info *info = tty->driver_data; 1374 unsigned long flags; 1375 1376 if (sanity_check(info, tty->name, "unthrottle")) 1377 return; 1378 DBGINFO(("%s unthrottle\n", info->device_name)); 1379 if (I_IXOFF(tty)) { 1380 if (info->x_char) 1381 info->x_char = 0; 1382 else 1383 send_xchar(tty, START_CHAR(tty)); 1384 } 1385 if (C_CRTSCTS(tty)) { 1386 spin_lock_irqsave(&info->lock,flags); 1387 info->signals |= SerialSignal_RTS; 1388 set_signals(info); 1389 spin_unlock_irqrestore(&info->lock,flags); 1390 } 1391 } 1392 1393 /* 1394 * set or clear transmit break condition 1395 * break_state -1=set break condition, 0=clear 1396 */ 1397 static int set_break(struct tty_struct *tty, int break_state) 1398 { 1399 struct slgt_info *info = tty->driver_data; 1400 unsigned short value; 1401 unsigned long flags; 1402 1403 if (sanity_check(info, tty->name, "set_break")) 1404 return -EINVAL; 1405 DBGINFO(("%s set_break(%d)\n", info->device_name, break_state)); 1406 1407 spin_lock_irqsave(&info->lock,flags); 1408 value = rd_reg16(info, TCR); 1409 if (break_state == -1) 1410 value |= BIT6; 1411 else 1412 value &= ~BIT6; 1413 wr_reg16(info, TCR, value); 1414 spin_unlock_irqrestore(&info->lock,flags); 1415 return 0; 1416 } 1417 1418 #if SYNCLINK_GENERIC_HDLC 1419 1420 /** 1421 * called by generic HDLC layer when protocol selected (PPP, frame relay, etc.) 1422 * set encoding and frame check sequence (FCS) options 1423 * 1424 * dev pointer to network device structure 1425 * encoding serial encoding setting 1426 * parity FCS setting 1427 * 1428 * returns 0 if success, otherwise error code 1429 */ 1430 static int hdlcdev_attach(struct net_device *dev, unsigned short encoding, 1431 unsigned short parity) 1432 { 1433 struct slgt_info *info = dev_to_port(dev); 1434 unsigned char new_encoding; 1435 unsigned short new_crctype; 1436 1437 /* return error if TTY interface open */ 1438 if (info->port.count) 1439 return -EBUSY; 1440 1441 DBGINFO(("%s hdlcdev_attach\n", info->device_name)); 1442 1443 switch (encoding) 1444 { 1445 case ENCODING_NRZ: new_encoding = HDLC_ENCODING_NRZ; break; 1446 case ENCODING_NRZI: new_encoding = HDLC_ENCODING_NRZI_SPACE; break; 1447 case ENCODING_FM_MARK: new_encoding = HDLC_ENCODING_BIPHASE_MARK; break; 1448 case ENCODING_FM_SPACE: new_encoding = HDLC_ENCODING_BIPHASE_SPACE; break; 1449 case ENCODING_MANCHESTER: new_encoding = HDLC_ENCODING_BIPHASE_LEVEL; break; 1450 default: return -EINVAL; 1451 } 1452 1453 switch (parity) 1454 { 1455 case PARITY_NONE: new_crctype = HDLC_CRC_NONE; break; 1456 case PARITY_CRC16_PR1_CCITT: new_crctype = HDLC_CRC_16_CCITT; break; 1457 case PARITY_CRC32_PR1_CCITT: new_crctype = HDLC_CRC_32_CCITT; break; 1458 default: return -EINVAL; 1459 } 1460 1461 info->params.encoding = new_encoding; 1462 info->params.crc_type = new_crctype; 1463 1464 /* if network interface up, reprogram hardware */ 1465 if (info->netcount) 1466 program_hw(info); 1467 1468 return 0; 1469 } 1470 1471 /** 1472 * called by generic HDLC layer to send frame 1473 * 1474 * skb socket buffer containing HDLC frame 1475 * dev pointer to network device structure 1476 */ 1477 static netdev_tx_t hdlcdev_xmit(struct sk_buff *skb, 1478 struct net_device *dev) 1479 { 1480 struct slgt_info *info = dev_to_port(dev); 1481 unsigned long flags; 1482 1483 DBGINFO(("%s hdlc_xmit\n", dev->name)); 1484 1485 if (!skb->len) 1486 return NETDEV_TX_OK; 1487 1488 /* stop sending until this frame completes */ 1489 netif_stop_queue(dev); 1490 1491 /* update network statistics */ 1492 dev->stats.tx_packets++; 1493 dev->stats.tx_bytes += skb->len; 1494 1495 /* save start time for transmit timeout detection */ 1496 netif_trans_update(dev); 1497 1498 spin_lock_irqsave(&info->lock, flags); 1499 tx_load(info, skb->data, skb->len); 1500 spin_unlock_irqrestore(&info->lock, flags); 1501 1502 /* done with socket buffer, so free it */ 1503 dev_kfree_skb(skb); 1504 1505 return NETDEV_TX_OK; 1506 } 1507 1508 /** 1509 * called by network layer when interface enabled 1510 * claim resources and initialize hardware 1511 * 1512 * dev pointer to network device structure 1513 * 1514 * returns 0 if success, otherwise error code 1515 */ 1516 static int hdlcdev_open(struct net_device *dev) 1517 { 1518 struct slgt_info *info = dev_to_port(dev); 1519 int rc; 1520 unsigned long flags; 1521 1522 if (!try_module_get(THIS_MODULE)) 1523 return -EBUSY; 1524 1525 DBGINFO(("%s hdlcdev_open\n", dev->name)); 1526 1527 /* generic HDLC layer open processing */ 1528 rc = hdlc_open(dev); 1529 if (rc) 1530 return rc; 1531 1532 /* arbitrate between network and tty opens */ 1533 spin_lock_irqsave(&info->netlock, flags); 1534 if (info->port.count != 0 || info->netcount != 0) { 1535 DBGINFO(("%s hdlc_open busy\n", dev->name)); 1536 spin_unlock_irqrestore(&info->netlock, flags); 1537 return -EBUSY; 1538 } 1539 info->netcount=1; 1540 spin_unlock_irqrestore(&info->netlock, flags); 1541 1542 /* claim resources and init adapter */ 1543 if ((rc = startup(info)) != 0) { 1544 spin_lock_irqsave(&info->netlock, flags); 1545 info->netcount=0; 1546 spin_unlock_irqrestore(&info->netlock, flags); 1547 return rc; 1548 } 1549 1550 /* assert RTS and DTR, apply hardware settings */ 1551 info->signals |= SerialSignal_RTS | SerialSignal_DTR; 1552 program_hw(info); 1553 1554 /* enable network layer transmit */ 1555 netif_trans_update(dev); 1556 netif_start_queue(dev); 1557 1558 /* inform generic HDLC layer of current DCD status */ 1559 spin_lock_irqsave(&info->lock, flags); 1560 get_signals(info); 1561 spin_unlock_irqrestore(&info->lock, flags); 1562 if (info->signals & SerialSignal_DCD) 1563 netif_carrier_on(dev); 1564 else 1565 netif_carrier_off(dev); 1566 return 0; 1567 } 1568 1569 /** 1570 * called by network layer when interface is disabled 1571 * shutdown hardware and release resources 1572 * 1573 * dev pointer to network device structure 1574 * 1575 * returns 0 if success, otherwise error code 1576 */ 1577 static int hdlcdev_close(struct net_device *dev) 1578 { 1579 struct slgt_info *info = dev_to_port(dev); 1580 unsigned long flags; 1581 1582 DBGINFO(("%s hdlcdev_close\n", dev->name)); 1583 1584 netif_stop_queue(dev); 1585 1586 /* shutdown adapter and release resources */ 1587 shutdown(info); 1588 1589 hdlc_close(dev); 1590 1591 spin_lock_irqsave(&info->netlock, flags); 1592 info->netcount=0; 1593 spin_unlock_irqrestore(&info->netlock, flags); 1594 1595 module_put(THIS_MODULE); 1596 return 0; 1597 } 1598 1599 /** 1600 * called by network layer to process IOCTL call to network device 1601 * 1602 * dev pointer to network device structure 1603 * ifr pointer to network interface request structure 1604 * cmd IOCTL command code 1605 * 1606 * returns 0 if success, otherwise error code 1607 */ 1608 static int hdlcdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 1609 { 1610 const size_t size = sizeof(sync_serial_settings); 1611 sync_serial_settings new_line; 1612 sync_serial_settings __user *line = ifr->ifr_settings.ifs_ifsu.sync; 1613 struct slgt_info *info = dev_to_port(dev); 1614 unsigned int flags; 1615 1616 DBGINFO(("%s hdlcdev_ioctl\n", dev->name)); 1617 1618 /* return error if TTY interface open */ 1619 if (info->port.count) 1620 return -EBUSY; 1621 1622 if (cmd != SIOCWANDEV) 1623 return hdlc_ioctl(dev, ifr, cmd); 1624 1625 memset(&new_line, 0, sizeof(new_line)); 1626 1627 switch(ifr->ifr_settings.type) { 1628 case IF_GET_IFACE: /* return current sync_serial_settings */ 1629 1630 ifr->ifr_settings.type = IF_IFACE_SYNC_SERIAL; 1631 if (ifr->ifr_settings.size < size) { 1632 ifr->ifr_settings.size = size; /* data size wanted */ 1633 return -ENOBUFS; 1634 } 1635 1636 flags = info->params.flags & (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_RXC_DPLL | 1637 HDLC_FLAG_RXC_BRG | HDLC_FLAG_RXC_TXCPIN | 1638 HDLC_FLAG_TXC_TXCPIN | HDLC_FLAG_TXC_DPLL | 1639 HDLC_FLAG_TXC_BRG | HDLC_FLAG_TXC_RXCPIN); 1640 1641 switch (flags){ 1642 case (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_TXCPIN): new_line.clock_type = CLOCK_EXT; break; 1643 case (HDLC_FLAG_RXC_BRG | HDLC_FLAG_TXC_BRG): new_line.clock_type = CLOCK_INT; break; 1644 case (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_BRG): new_line.clock_type = CLOCK_TXINT; break; 1645 case (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_RXCPIN): new_line.clock_type = CLOCK_TXFROMRX; break; 1646 default: new_line.clock_type = CLOCK_DEFAULT; 1647 } 1648 1649 new_line.clock_rate = info->params.clock_speed; 1650 new_line.loopback = info->params.loopback ? 1:0; 1651 1652 if (copy_to_user(line, &new_line, size)) 1653 return -EFAULT; 1654 return 0; 1655 1656 case IF_IFACE_SYNC_SERIAL: /* set sync_serial_settings */ 1657 1658 if(!capable(CAP_NET_ADMIN)) 1659 return -EPERM; 1660 if (copy_from_user(&new_line, line, size)) 1661 return -EFAULT; 1662 1663 switch (new_line.clock_type) 1664 { 1665 case CLOCK_EXT: flags = HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_TXCPIN; break; 1666 case CLOCK_TXFROMRX: flags = HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_RXCPIN; break; 1667 case CLOCK_INT: flags = HDLC_FLAG_RXC_BRG | HDLC_FLAG_TXC_BRG; break; 1668 case CLOCK_TXINT: flags = HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_BRG; break; 1669 case CLOCK_DEFAULT: flags = info->params.flags & 1670 (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_RXC_DPLL | 1671 HDLC_FLAG_RXC_BRG | HDLC_FLAG_RXC_TXCPIN | 1672 HDLC_FLAG_TXC_TXCPIN | HDLC_FLAG_TXC_DPLL | 1673 HDLC_FLAG_TXC_BRG | HDLC_FLAG_TXC_RXCPIN); break; 1674 default: return -EINVAL; 1675 } 1676 1677 if (new_line.loopback != 0 && new_line.loopback != 1) 1678 return -EINVAL; 1679 1680 info->params.flags &= ~(HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_RXC_DPLL | 1681 HDLC_FLAG_RXC_BRG | HDLC_FLAG_RXC_TXCPIN | 1682 HDLC_FLAG_TXC_TXCPIN | HDLC_FLAG_TXC_DPLL | 1683 HDLC_FLAG_TXC_BRG | HDLC_FLAG_TXC_RXCPIN); 1684 info->params.flags |= flags; 1685 1686 info->params.loopback = new_line.loopback; 1687 1688 if (flags & (HDLC_FLAG_RXC_BRG | HDLC_FLAG_TXC_BRG)) 1689 info->params.clock_speed = new_line.clock_rate; 1690 else 1691 info->params.clock_speed = 0; 1692 1693 /* if network interface up, reprogram hardware */ 1694 if (info->netcount) 1695 program_hw(info); 1696 return 0; 1697 1698 default: 1699 return hdlc_ioctl(dev, ifr, cmd); 1700 } 1701 } 1702 1703 /** 1704 * called by network layer when transmit timeout is detected 1705 * 1706 * dev pointer to network device structure 1707 */ 1708 static void hdlcdev_tx_timeout(struct net_device *dev) 1709 { 1710 struct slgt_info *info = dev_to_port(dev); 1711 unsigned long flags; 1712 1713 DBGINFO(("%s hdlcdev_tx_timeout\n", dev->name)); 1714 1715 dev->stats.tx_errors++; 1716 dev->stats.tx_aborted_errors++; 1717 1718 spin_lock_irqsave(&info->lock,flags); 1719 tx_stop(info); 1720 spin_unlock_irqrestore(&info->lock,flags); 1721 1722 netif_wake_queue(dev); 1723 } 1724 1725 /** 1726 * called by device driver when transmit completes 1727 * reenable network layer transmit if stopped 1728 * 1729 * info pointer to device instance information 1730 */ 1731 static void hdlcdev_tx_done(struct slgt_info *info) 1732 { 1733 if (netif_queue_stopped(info->netdev)) 1734 netif_wake_queue(info->netdev); 1735 } 1736 1737 /** 1738 * called by device driver when frame received 1739 * pass frame to network layer 1740 * 1741 * info pointer to device instance information 1742 * buf pointer to buffer contianing frame data 1743 * size count of data bytes in buf 1744 */ 1745 static void hdlcdev_rx(struct slgt_info *info, char *buf, int size) 1746 { 1747 struct sk_buff *skb = dev_alloc_skb(size); 1748 struct net_device *dev = info->netdev; 1749 1750 DBGINFO(("%s hdlcdev_rx\n", dev->name)); 1751 1752 if (skb == NULL) { 1753 DBGERR(("%s: can't alloc skb, drop packet\n", dev->name)); 1754 dev->stats.rx_dropped++; 1755 return; 1756 } 1757 1758 skb_put_data(skb, buf, size); 1759 1760 skb->protocol = hdlc_type_trans(skb, dev); 1761 1762 dev->stats.rx_packets++; 1763 dev->stats.rx_bytes += size; 1764 1765 netif_rx(skb); 1766 } 1767 1768 static const struct net_device_ops hdlcdev_ops = { 1769 .ndo_open = hdlcdev_open, 1770 .ndo_stop = hdlcdev_close, 1771 .ndo_start_xmit = hdlc_start_xmit, 1772 .ndo_do_ioctl = hdlcdev_ioctl, 1773 .ndo_tx_timeout = hdlcdev_tx_timeout, 1774 }; 1775 1776 /** 1777 * called by device driver when adding device instance 1778 * do generic HDLC initialization 1779 * 1780 * info pointer to device instance information 1781 * 1782 * returns 0 if success, otherwise error code 1783 */ 1784 static int hdlcdev_init(struct slgt_info *info) 1785 { 1786 int rc; 1787 struct net_device *dev; 1788 hdlc_device *hdlc; 1789 1790 /* allocate and initialize network and HDLC layer objects */ 1791 1792 dev = alloc_hdlcdev(info); 1793 if (!dev) { 1794 printk(KERN_ERR "%s hdlc device alloc failure\n", info->device_name); 1795 return -ENOMEM; 1796 } 1797 1798 /* for network layer reporting purposes only */ 1799 dev->mem_start = info->phys_reg_addr; 1800 dev->mem_end = info->phys_reg_addr + SLGT_REG_SIZE - 1; 1801 dev->irq = info->irq_level; 1802 1803 /* network layer callbacks and settings */ 1804 dev->netdev_ops = &hdlcdev_ops; 1805 dev->watchdog_timeo = 10 * HZ; 1806 dev->tx_queue_len = 50; 1807 1808 /* generic HDLC layer callbacks and settings */ 1809 hdlc = dev_to_hdlc(dev); 1810 hdlc->attach = hdlcdev_attach; 1811 hdlc->xmit = hdlcdev_xmit; 1812 1813 /* register objects with HDLC layer */ 1814 rc = register_hdlc_device(dev); 1815 if (rc) { 1816 printk(KERN_WARNING "%s:unable to register hdlc device\n",__FILE__); 1817 free_netdev(dev); 1818 return rc; 1819 } 1820 1821 info->netdev = dev; 1822 return 0; 1823 } 1824 1825 /** 1826 * called by device driver when removing device instance 1827 * do generic HDLC cleanup 1828 * 1829 * info pointer to device instance information 1830 */ 1831 static void hdlcdev_exit(struct slgt_info *info) 1832 { 1833 unregister_hdlc_device(info->netdev); 1834 free_netdev(info->netdev); 1835 info->netdev = NULL; 1836 } 1837 1838 #endif /* ifdef CONFIG_HDLC */ 1839 1840 /* 1841 * get async data from rx DMA buffers 1842 */ 1843 static void rx_async(struct slgt_info *info) 1844 { 1845 struct mgsl_icount *icount = &info->icount; 1846 unsigned int start, end; 1847 unsigned char *p; 1848 unsigned char status; 1849 struct slgt_desc *bufs = info->rbufs; 1850 int i, count; 1851 int chars = 0; 1852 int stat; 1853 unsigned char ch; 1854 1855 start = end = info->rbuf_current; 1856 1857 while(desc_complete(bufs[end])) { 1858 count = desc_count(bufs[end]) - info->rbuf_index; 1859 p = bufs[end].buf + info->rbuf_index; 1860 1861 DBGISR(("%s rx_async count=%d\n", info->device_name, count)); 1862 DBGDATA(info, p, count, "rx"); 1863 1864 for(i=0 ; i < count; i+=2, p+=2) { 1865 ch = *p; 1866 icount->rx++; 1867 1868 stat = 0; 1869 1870 status = *(p + 1) & (BIT1 + BIT0); 1871 if (status) { 1872 if (status & BIT1) 1873 icount->parity++; 1874 else if (status & BIT0) 1875 icount->frame++; 1876 /* discard char if tty control flags say so */ 1877 if (status & info->ignore_status_mask) 1878 continue; 1879 if (status & BIT1) 1880 stat = TTY_PARITY; 1881 else if (status & BIT0) 1882 stat = TTY_FRAME; 1883 } 1884 tty_insert_flip_char(&info->port, ch, stat); 1885 chars++; 1886 } 1887 1888 if (i < count) { 1889 /* receive buffer not completed */ 1890 info->rbuf_index += i; 1891 mod_timer(&info->rx_timer, jiffies + 1); 1892 break; 1893 } 1894 1895 info->rbuf_index = 0; 1896 free_rbufs(info, end, end); 1897 1898 if (++end == info->rbuf_count) 1899 end = 0; 1900 1901 /* if entire list searched then no frame available */ 1902 if (end == start) 1903 break; 1904 } 1905 1906 if (chars) 1907 tty_flip_buffer_push(&info->port); 1908 } 1909 1910 /* 1911 * return next bottom half action to perform 1912 */ 1913 static int bh_action(struct slgt_info *info) 1914 { 1915 unsigned long flags; 1916 int rc; 1917 1918 spin_lock_irqsave(&info->lock,flags); 1919 1920 if (info->pending_bh & BH_RECEIVE) { 1921 info->pending_bh &= ~BH_RECEIVE; 1922 rc = BH_RECEIVE; 1923 } else if (info->pending_bh & BH_TRANSMIT) { 1924 info->pending_bh &= ~BH_TRANSMIT; 1925 rc = BH_TRANSMIT; 1926 } else if (info->pending_bh & BH_STATUS) { 1927 info->pending_bh &= ~BH_STATUS; 1928 rc = BH_STATUS; 1929 } else { 1930 /* Mark BH routine as complete */ 1931 info->bh_running = false; 1932 info->bh_requested = false; 1933 rc = 0; 1934 } 1935 1936 spin_unlock_irqrestore(&info->lock,flags); 1937 1938 return rc; 1939 } 1940 1941 /* 1942 * perform bottom half processing 1943 */ 1944 static void bh_handler(struct work_struct *work) 1945 { 1946 struct slgt_info *info = container_of(work, struct slgt_info, task); 1947 int action; 1948 1949 info->bh_running = true; 1950 1951 while((action = bh_action(info))) { 1952 switch (action) { 1953 case BH_RECEIVE: 1954 DBGBH(("%s bh receive\n", info->device_name)); 1955 switch(info->params.mode) { 1956 case MGSL_MODE_ASYNC: 1957 rx_async(info); 1958 break; 1959 case MGSL_MODE_HDLC: 1960 while(rx_get_frame(info)); 1961 break; 1962 case MGSL_MODE_RAW: 1963 case MGSL_MODE_MONOSYNC: 1964 case MGSL_MODE_BISYNC: 1965 case MGSL_MODE_XSYNC: 1966 while(rx_get_buf(info)); 1967 break; 1968 } 1969 /* restart receiver if rx DMA buffers exhausted */ 1970 if (info->rx_restart) 1971 rx_start(info); 1972 break; 1973 case BH_TRANSMIT: 1974 bh_transmit(info); 1975 break; 1976 case BH_STATUS: 1977 DBGBH(("%s bh status\n", info->device_name)); 1978 info->ri_chkcount = 0; 1979 info->dsr_chkcount = 0; 1980 info->dcd_chkcount = 0; 1981 info->cts_chkcount = 0; 1982 break; 1983 default: 1984 DBGBH(("%s unknown action\n", info->device_name)); 1985 break; 1986 } 1987 } 1988 DBGBH(("%s bh_handler exit\n", info->device_name)); 1989 } 1990 1991 static void bh_transmit(struct slgt_info *info) 1992 { 1993 struct tty_struct *tty = info->port.tty; 1994 1995 DBGBH(("%s bh_transmit\n", info->device_name)); 1996 if (tty) 1997 tty_wakeup(tty); 1998 } 1999 2000 static void dsr_change(struct slgt_info *info, unsigned short status) 2001 { 2002 if (status & BIT3) { 2003 info->signals |= SerialSignal_DSR; 2004 info->input_signal_events.dsr_up++; 2005 } else { 2006 info->signals &= ~SerialSignal_DSR; 2007 info->input_signal_events.dsr_down++; 2008 } 2009 DBGISR(("dsr_change %s signals=%04X\n", info->device_name, info->signals)); 2010 if ((info->dsr_chkcount)++ == IO_PIN_SHUTDOWN_LIMIT) { 2011 slgt_irq_off(info, IRQ_DSR); 2012 return; 2013 } 2014 info->icount.dsr++; 2015 wake_up_interruptible(&info->status_event_wait_q); 2016 wake_up_interruptible(&info->event_wait_q); 2017 info->pending_bh |= BH_STATUS; 2018 } 2019 2020 static void cts_change(struct slgt_info *info, unsigned short status) 2021 { 2022 if (status & BIT2) { 2023 info->signals |= SerialSignal_CTS; 2024 info->input_signal_events.cts_up++; 2025 } else { 2026 info->signals &= ~SerialSignal_CTS; 2027 info->input_signal_events.cts_down++; 2028 } 2029 DBGISR(("cts_change %s signals=%04X\n", info->device_name, info->signals)); 2030 if ((info->cts_chkcount)++ == IO_PIN_SHUTDOWN_LIMIT) { 2031 slgt_irq_off(info, IRQ_CTS); 2032 return; 2033 } 2034 info->icount.cts++; 2035 wake_up_interruptible(&info->status_event_wait_q); 2036 wake_up_interruptible(&info->event_wait_q); 2037 info->pending_bh |= BH_STATUS; 2038 2039 if (tty_port_cts_enabled(&info->port)) { 2040 if (info->port.tty) { 2041 if (info->port.tty->hw_stopped) { 2042 if (info->signals & SerialSignal_CTS) { 2043 info->port.tty->hw_stopped = 0; 2044 info->pending_bh |= BH_TRANSMIT; 2045 return; 2046 } 2047 } else { 2048 if (!(info->signals & SerialSignal_CTS)) 2049 info->port.tty->hw_stopped = 1; 2050 } 2051 } 2052 } 2053 } 2054 2055 static void dcd_change(struct slgt_info *info, unsigned short status) 2056 { 2057 if (status & BIT1) { 2058 info->signals |= SerialSignal_DCD; 2059 info->input_signal_events.dcd_up++; 2060 } else { 2061 info->signals &= ~SerialSignal_DCD; 2062 info->input_signal_events.dcd_down++; 2063 } 2064 DBGISR(("dcd_change %s signals=%04X\n", info->device_name, info->signals)); 2065 if ((info->dcd_chkcount)++ == IO_PIN_SHUTDOWN_LIMIT) { 2066 slgt_irq_off(info, IRQ_DCD); 2067 return; 2068 } 2069 info->icount.dcd++; 2070 #if SYNCLINK_GENERIC_HDLC 2071 if (info->netcount) { 2072 if (info->signals & SerialSignal_DCD) 2073 netif_carrier_on(info->netdev); 2074 else 2075 netif_carrier_off(info->netdev); 2076 } 2077 #endif 2078 wake_up_interruptible(&info->status_event_wait_q); 2079 wake_up_interruptible(&info->event_wait_q); 2080 info->pending_bh |= BH_STATUS; 2081 2082 if (tty_port_check_carrier(&info->port)) { 2083 if (info->signals & SerialSignal_DCD) 2084 wake_up_interruptible(&info->port.open_wait); 2085 else { 2086 if (info->port.tty) 2087 tty_hangup(info->port.tty); 2088 } 2089 } 2090 } 2091 2092 static void ri_change(struct slgt_info *info, unsigned short status) 2093 { 2094 if (status & BIT0) { 2095 info->signals |= SerialSignal_RI; 2096 info->input_signal_events.ri_up++; 2097 } else { 2098 info->signals &= ~SerialSignal_RI; 2099 info->input_signal_events.ri_down++; 2100 } 2101 DBGISR(("ri_change %s signals=%04X\n", info->device_name, info->signals)); 2102 if ((info->ri_chkcount)++ == IO_PIN_SHUTDOWN_LIMIT) { 2103 slgt_irq_off(info, IRQ_RI); 2104 return; 2105 } 2106 info->icount.rng++; 2107 wake_up_interruptible(&info->status_event_wait_q); 2108 wake_up_interruptible(&info->event_wait_q); 2109 info->pending_bh |= BH_STATUS; 2110 } 2111 2112 static void isr_rxdata(struct slgt_info *info) 2113 { 2114 unsigned int count = info->rbuf_fill_count; 2115 unsigned int i = info->rbuf_fill_index; 2116 unsigned short reg; 2117 2118 while (rd_reg16(info, SSR) & IRQ_RXDATA) { 2119 reg = rd_reg16(info, RDR); 2120 DBGISR(("isr_rxdata %s RDR=%04X\n", info->device_name, reg)); 2121 if (desc_complete(info->rbufs[i])) { 2122 /* all buffers full */ 2123 rx_stop(info); 2124 info->rx_restart = 1; 2125 continue; 2126 } 2127 info->rbufs[i].buf[count++] = (unsigned char)reg; 2128 /* async mode saves status byte to buffer for each data byte */ 2129 if (info->params.mode == MGSL_MODE_ASYNC) 2130 info->rbufs[i].buf[count++] = (unsigned char)(reg >> 8); 2131 if (count == info->rbuf_fill_level || (reg & BIT10)) { 2132 /* buffer full or end of frame */ 2133 set_desc_count(info->rbufs[i], count); 2134 set_desc_status(info->rbufs[i], BIT15 | (reg >> 8)); 2135 info->rbuf_fill_count = count = 0; 2136 if (++i == info->rbuf_count) 2137 i = 0; 2138 info->pending_bh |= BH_RECEIVE; 2139 } 2140 } 2141 2142 info->rbuf_fill_index = i; 2143 info->rbuf_fill_count = count; 2144 } 2145 2146 static void isr_serial(struct slgt_info *info) 2147 { 2148 unsigned short status = rd_reg16(info, SSR); 2149 2150 DBGISR(("%s isr_serial status=%04X\n", info->device_name, status)); 2151 2152 wr_reg16(info, SSR, status); /* clear pending */ 2153 2154 info->irq_occurred = true; 2155 2156 if (info->params.mode == MGSL_MODE_ASYNC) { 2157 if (status & IRQ_TXIDLE) { 2158 if (info->tx_active) 2159 isr_txeom(info, status); 2160 } 2161 if (info->rx_pio && (status & IRQ_RXDATA)) 2162 isr_rxdata(info); 2163 if ((status & IRQ_RXBREAK) && (status & RXBREAK)) { 2164 info->icount.brk++; 2165 /* process break detection if tty control allows */ 2166 if (info->port.tty) { 2167 if (!(status & info->ignore_status_mask)) { 2168 if (info->read_status_mask & MASK_BREAK) { 2169 tty_insert_flip_char(&info->port, 0, TTY_BREAK); 2170 if (info->port.flags & ASYNC_SAK) 2171 do_SAK(info->port.tty); 2172 } 2173 } 2174 } 2175 } 2176 } else { 2177 if (status & (IRQ_TXIDLE + IRQ_TXUNDER)) 2178 isr_txeom(info, status); 2179 if (info->rx_pio && (status & IRQ_RXDATA)) 2180 isr_rxdata(info); 2181 if (status & IRQ_RXIDLE) { 2182 if (status & RXIDLE) 2183 info->icount.rxidle++; 2184 else 2185 info->icount.exithunt++; 2186 wake_up_interruptible(&info->event_wait_q); 2187 } 2188 2189 if (status & IRQ_RXOVER) 2190 rx_start(info); 2191 } 2192 2193 if (status & IRQ_DSR) 2194 dsr_change(info, status); 2195 if (status & IRQ_CTS) 2196 cts_change(info, status); 2197 if (status & IRQ_DCD) 2198 dcd_change(info, status); 2199 if (status & IRQ_RI) 2200 ri_change(info, status); 2201 } 2202 2203 static void isr_rdma(struct slgt_info *info) 2204 { 2205 unsigned int status = rd_reg32(info, RDCSR); 2206 2207 DBGISR(("%s isr_rdma status=%08x\n", info->device_name, status)); 2208 2209 /* RDCSR (rx DMA control/status) 2210 * 2211 * 31..07 reserved 2212 * 06 save status byte to DMA buffer 2213 * 05 error 2214 * 04 eol (end of list) 2215 * 03 eob (end of buffer) 2216 * 02 IRQ enable 2217 * 01 reset 2218 * 00 enable 2219 */ 2220 wr_reg32(info, RDCSR, status); /* clear pending */ 2221 2222 if (status & (BIT5 + BIT4)) { 2223 DBGISR(("%s isr_rdma rx_restart=1\n", info->device_name)); 2224 info->rx_restart = true; 2225 } 2226 info->pending_bh |= BH_RECEIVE; 2227 } 2228 2229 static void isr_tdma(struct slgt_info *info) 2230 { 2231 unsigned int status = rd_reg32(info, TDCSR); 2232 2233 DBGISR(("%s isr_tdma status=%08x\n", info->device_name, status)); 2234 2235 /* TDCSR (tx DMA control/status) 2236 * 2237 * 31..06 reserved 2238 * 05 error 2239 * 04 eol (end of list) 2240 * 03 eob (end of buffer) 2241 * 02 IRQ enable 2242 * 01 reset 2243 * 00 enable 2244 */ 2245 wr_reg32(info, TDCSR, status); /* clear pending */ 2246 2247 if (status & (BIT5 + BIT4 + BIT3)) { 2248 // another transmit buffer has completed 2249 // run bottom half to get more send data from user 2250 info->pending_bh |= BH_TRANSMIT; 2251 } 2252 } 2253 2254 /* 2255 * return true if there are unsent tx DMA buffers, otherwise false 2256 * 2257 * if there are unsent buffers then info->tbuf_start 2258 * is set to index of first unsent buffer 2259 */ 2260 static bool unsent_tbufs(struct slgt_info *info) 2261 { 2262 unsigned int i = info->tbuf_current; 2263 bool rc = false; 2264 2265 /* 2266 * search backwards from last loaded buffer (precedes tbuf_current) 2267 * for first unsent buffer (desc_count > 0) 2268 */ 2269 2270 do { 2271 if (i) 2272 i--; 2273 else 2274 i = info->tbuf_count - 1; 2275 if (!desc_count(info->tbufs[i])) 2276 break; 2277 info->tbuf_start = i; 2278 rc = true; 2279 } while (i != info->tbuf_current); 2280 2281 return rc; 2282 } 2283 2284 static void isr_txeom(struct slgt_info *info, unsigned short status) 2285 { 2286 DBGISR(("%s txeom status=%04x\n", info->device_name, status)); 2287 2288 slgt_irq_off(info, IRQ_TXDATA + IRQ_TXIDLE + IRQ_TXUNDER); 2289 tdma_reset(info); 2290 if (status & IRQ_TXUNDER) { 2291 unsigned short val = rd_reg16(info, TCR); 2292 wr_reg16(info, TCR, (unsigned short)(val | BIT2)); /* set reset bit */ 2293 wr_reg16(info, TCR, val); /* clear reset bit */ 2294 } 2295 2296 if (info->tx_active) { 2297 if (info->params.mode != MGSL_MODE_ASYNC) { 2298 if (status & IRQ_TXUNDER) 2299 info->icount.txunder++; 2300 else if (status & IRQ_TXIDLE) 2301 info->icount.txok++; 2302 } 2303 2304 if (unsent_tbufs(info)) { 2305 tx_start(info); 2306 update_tx_timer(info); 2307 return; 2308 } 2309 info->tx_active = false; 2310 2311 del_timer(&info->tx_timer); 2312 2313 if (info->params.mode != MGSL_MODE_ASYNC && info->drop_rts_on_tx_done) { 2314 info->signals &= ~SerialSignal_RTS; 2315 info->drop_rts_on_tx_done = false; 2316 set_signals(info); 2317 } 2318 2319 #if SYNCLINK_GENERIC_HDLC 2320 if (info->netcount) 2321 hdlcdev_tx_done(info); 2322 else 2323 #endif 2324 { 2325 if (info->port.tty && (info->port.tty->stopped || info->port.tty->hw_stopped)) { 2326 tx_stop(info); 2327 return; 2328 } 2329 info->pending_bh |= BH_TRANSMIT; 2330 } 2331 } 2332 } 2333 2334 static void isr_gpio(struct slgt_info *info, unsigned int changed, unsigned int state) 2335 { 2336 struct cond_wait *w, *prev; 2337 2338 /* wake processes waiting for specific transitions */ 2339 for (w = info->gpio_wait_q, prev = NULL ; w != NULL ; w = w->next) { 2340 if (w->data & changed) { 2341 w->data = state; 2342 wake_up_interruptible(&w->q); 2343 if (prev != NULL) 2344 prev->next = w->next; 2345 else 2346 info->gpio_wait_q = w->next; 2347 } else 2348 prev = w; 2349 } 2350 } 2351 2352 /* interrupt service routine 2353 * 2354 * irq interrupt number 2355 * dev_id device ID supplied during interrupt registration 2356 */ 2357 static irqreturn_t slgt_interrupt(int dummy, void *dev_id) 2358 { 2359 struct slgt_info *info = dev_id; 2360 unsigned int gsr; 2361 unsigned int i; 2362 2363 DBGISR(("slgt_interrupt irq=%d entry\n", info->irq_level)); 2364 2365 while((gsr = rd_reg32(info, GSR) & 0xffffff00)) { 2366 DBGISR(("%s gsr=%08x\n", info->device_name, gsr)); 2367 info->irq_occurred = true; 2368 for(i=0; i < info->port_count ; i++) { 2369 if (info->port_array[i] == NULL) 2370 continue; 2371 spin_lock(&info->port_array[i]->lock); 2372 if (gsr & (BIT8 << i)) 2373 isr_serial(info->port_array[i]); 2374 if (gsr & (BIT16 << (i*2))) 2375 isr_rdma(info->port_array[i]); 2376 if (gsr & (BIT17 << (i*2))) 2377 isr_tdma(info->port_array[i]); 2378 spin_unlock(&info->port_array[i]->lock); 2379 } 2380 } 2381 2382 if (info->gpio_present) { 2383 unsigned int state; 2384 unsigned int changed; 2385 spin_lock(&info->lock); 2386 while ((changed = rd_reg32(info, IOSR)) != 0) { 2387 DBGISR(("%s iosr=%08x\n", info->device_name, changed)); 2388 /* read latched state of GPIO signals */ 2389 state = rd_reg32(info, IOVR); 2390 /* clear pending GPIO interrupt bits */ 2391 wr_reg32(info, IOSR, changed); 2392 for (i=0 ; i < info->port_count ; i++) { 2393 if (info->port_array[i] != NULL) 2394 isr_gpio(info->port_array[i], changed, state); 2395 } 2396 } 2397 spin_unlock(&info->lock); 2398 } 2399 2400 for(i=0; i < info->port_count ; i++) { 2401 struct slgt_info *port = info->port_array[i]; 2402 if (port == NULL) 2403 continue; 2404 spin_lock(&port->lock); 2405 if ((port->port.count || port->netcount) && 2406 port->pending_bh && !port->bh_running && 2407 !port->bh_requested) { 2408 DBGISR(("%s bh queued\n", port->device_name)); 2409 schedule_work(&port->task); 2410 port->bh_requested = true; 2411 } 2412 spin_unlock(&port->lock); 2413 } 2414 2415 DBGISR(("slgt_interrupt irq=%d exit\n", info->irq_level)); 2416 return IRQ_HANDLED; 2417 } 2418 2419 static int startup(struct slgt_info *info) 2420 { 2421 DBGINFO(("%s startup\n", info->device_name)); 2422 2423 if (tty_port_initialized(&info->port)) 2424 return 0; 2425 2426 if (!info->tx_buf) { 2427 info->tx_buf = kmalloc(info->max_frame_size, GFP_KERNEL); 2428 if (!info->tx_buf) { 2429 DBGERR(("%s can't allocate tx buffer\n", info->device_name)); 2430 return -ENOMEM; 2431 } 2432 } 2433 2434 info->pending_bh = 0; 2435 2436 memset(&info->icount, 0, sizeof(info->icount)); 2437 2438 /* program hardware for current parameters */ 2439 change_params(info); 2440 2441 if (info->port.tty) 2442 clear_bit(TTY_IO_ERROR, &info->port.tty->flags); 2443 2444 tty_port_set_initialized(&info->port, 1); 2445 2446 return 0; 2447 } 2448 2449 /* 2450 * called by close() and hangup() to shutdown hardware 2451 */ 2452 static void shutdown(struct slgt_info *info) 2453 { 2454 unsigned long flags; 2455 2456 if (!tty_port_initialized(&info->port)) 2457 return; 2458 2459 DBGINFO(("%s shutdown\n", info->device_name)); 2460 2461 /* clear status wait queue because status changes */ 2462 /* can't happen after shutting down the hardware */ 2463 wake_up_interruptible(&info->status_event_wait_q); 2464 wake_up_interruptible(&info->event_wait_q); 2465 2466 del_timer_sync(&info->tx_timer); 2467 del_timer_sync(&info->rx_timer); 2468 2469 kfree(info->tx_buf); 2470 info->tx_buf = NULL; 2471 2472 spin_lock_irqsave(&info->lock,flags); 2473 2474 tx_stop(info); 2475 rx_stop(info); 2476 2477 slgt_irq_off(info, IRQ_ALL | IRQ_MASTER); 2478 2479 if (!info->port.tty || info->port.tty->termios.c_cflag & HUPCL) { 2480 info->signals &= ~(SerialSignal_RTS | SerialSignal_DTR); 2481 set_signals(info); 2482 } 2483 2484 flush_cond_wait(&info->gpio_wait_q); 2485 2486 spin_unlock_irqrestore(&info->lock,flags); 2487 2488 if (info->port.tty) 2489 set_bit(TTY_IO_ERROR, &info->port.tty->flags); 2490 2491 tty_port_set_initialized(&info->port, 0); 2492 } 2493 2494 static void program_hw(struct slgt_info *info) 2495 { 2496 unsigned long flags; 2497 2498 spin_lock_irqsave(&info->lock,flags); 2499 2500 rx_stop(info); 2501 tx_stop(info); 2502 2503 if (info->params.mode != MGSL_MODE_ASYNC || 2504 info->netcount) 2505 sync_mode(info); 2506 else 2507 async_mode(info); 2508 2509 set_signals(info); 2510 2511 info->dcd_chkcount = 0; 2512 info->cts_chkcount = 0; 2513 info->ri_chkcount = 0; 2514 info->dsr_chkcount = 0; 2515 2516 slgt_irq_on(info, IRQ_DCD | IRQ_CTS | IRQ_DSR | IRQ_RI); 2517 get_signals(info); 2518 2519 if (info->netcount || 2520 (info->port.tty && info->port.tty->termios.c_cflag & CREAD)) 2521 rx_start(info); 2522 2523 spin_unlock_irqrestore(&info->lock,flags); 2524 } 2525 2526 /* 2527 * reconfigure adapter based on new parameters 2528 */ 2529 static void change_params(struct slgt_info *info) 2530 { 2531 unsigned cflag; 2532 int bits_per_char; 2533 2534 if (!info->port.tty) 2535 return; 2536 DBGINFO(("%s change_params\n", info->device_name)); 2537 2538 cflag = info->port.tty->termios.c_cflag; 2539 2540 /* if B0 rate (hangup) specified then negate RTS and DTR */ 2541 /* otherwise assert RTS and DTR */ 2542 if (cflag & CBAUD) 2543 info->signals |= SerialSignal_RTS | SerialSignal_DTR; 2544 else 2545 info->signals &= ~(SerialSignal_RTS | SerialSignal_DTR); 2546 2547 /* byte size and parity */ 2548 2549 switch (cflag & CSIZE) { 2550 case CS5: info->params.data_bits = 5; break; 2551 case CS6: info->params.data_bits = 6; break; 2552 case CS7: info->params.data_bits = 7; break; 2553 case CS8: info->params.data_bits = 8; break; 2554 default: info->params.data_bits = 7; break; 2555 } 2556 2557 info->params.stop_bits = (cflag & CSTOPB) ? 2 : 1; 2558 2559 if (cflag & PARENB) 2560 info->params.parity = (cflag & PARODD) ? ASYNC_PARITY_ODD : ASYNC_PARITY_EVEN; 2561 else 2562 info->params.parity = ASYNC_PARITY_NONE; 2563 2564 /* calculate number of jiffies to transmit a full 2565 * FIFO (32 bytes) at specified data rate 2566 */ 2567 bits_per_char = info->params.data_bits + 2568 info->params.stop_bits + 1; 2569 2570 info->params.data_rate = tty_get_baud_rate(info->port.tty); 2571 2572 if (info->params.data_rate) { 2573 info->timeout = (32*HZ*bits_per_char) / 2574 info->params.data_rate; 2575 } 2576 info->timeout += HZ/50; /* Add .02 seconds of slop */ 2577 2578 tty_port_set_cts_flow(&info->port, cflag & CRTSCTS); 2579 tty_port_set_check_carrier(&info->port, ~cflag & CLOCAL); 2580 2581 /* process tty input control flags */ 2582 2583 info->read_status_mask = IRQ_RXOVER; 2584 if (I_INPCK(info->port.tty)) 2585 info->read_status_mask |= MASK_PARITY | MASK_FRAMING; 2586 if (I_BRKINT(info->port.tty) || I_PARMRK(info->port.tty)) 2587 info->read_status_mask |= MASK_BREAK; 2588 if (I_IGNPAR(info->port.tty)) 2589 info->ignore_status_mask |= MASK_PARITY | MASK_FRAMING; 2590 if (I_IGNBRK(info->port.tty)) { 2591 info->ignore_status_mask |= MASK_BREAK; 2592 /* If ignoring parity and break indicators, ignore 2593 * overruns too. (For real raw support). 2594 */ 2595 if (I_IGNPAR(info->port.tty)) 2596 info->ignore_status_mask |= MASK_OVERRUN; 2597 } 2598 2599 program_hw(info); 2600 } 2601 2602 static int get_stats(struct slgt_info *info, struct mgsl_icount __user *user_icount) 2603 { 2604 DBGINFO(("%s get_stats\n", info->device_name)); 2605 if (!user_icount) { 2606 memset(&info->icount, 0, sizeof(info->icount)); 2607 } else { 2608 if (copy_to_user(user_icount, &info->icount, sizeof(struct mgsl_icount))) 2609 return -EFAULT; 2610 } 2611 return 0; 2612 } 2613 2614 static int get_params(struct slgt_info *info, MGSL_PARAMS __user *user_params) 2615 { 2616 DBGINFO(("%s get_params\n", info->device_name)); 2617 if (copy_to_user(user_params, &info->params, sizeof(MGSL_PARAMS))) 2618 return -EFAULT; 2619 return 0; 2620 } 2621 2622 static int set_params(struct slgt_info *info, MGSL_PARAMS __user *new_params) 2623 { 2624 unsigned long flags; 2625 MGSL_PARAMS tmp_params; 2626 2627 DBGINFO(("%s set_params\n", info->device_name)); 2628 if (copy_from_user(&tmp_params, new_params, sizeof(MGSL_PARAMS))) 2629 return -EFAULT; 2630 2631 spin_lock_irqsave(&info->lock, flags); 2632 if (tmp_params.mode == MGSL_MODE_BASE_CLOCK) 2633 info->base_clock = tmp_params.clock_speed; 2634 else 2635 memcpy(&info->params, &tmp_params, sizeof(MGSL_PARAMS)); 2636 spin_unlock_irqrestore(&info->lock, flags); 2637 2638 program_hw(info); 2639 2640 return 0; 2641 } 2642 2643 static int get_txidle(struct slgt_info *info, int __user *idle_mode) 2644 { 2645 DBGINFO(("%s get_txidle=%d\n", info->device_name, info->idle_mode)); 2646 if (put_user(info->idle_mode, idle_mode)) 2647 return -EFAULT; 2648 return 0; 2649 } 2650 2651 static int set_txidle(struct slgt_info *info, int idle_mode) 2652 { 2653 unsigned long flags; 2654 DBGINFO(("%s set_txidle(%d)\n", info->device_name, idle_mode)); 2655 spin_lock_irqsave(&info->lock,flags); 2656 info->idle_mode = idle_mode; 2657 if (info->params.mode != MGSL_MODE_ASYNC) 2658 tx_set_idle(info); 2659 spin_unlock_irqrestore(&info->lock,flags); 2660 return 0; 2661 } 2662 2663 static int tx_enable(struct slgt_info *info, int enable) 2664 { 2665 unsigned long flags; 2666 DBGINFO(("%s tx_enable(%d)\n", info->device_name, enable)); 2667 spin_lock_irqsave(&info->lock,flags); 2668 if (enable) { 2669 if (!info->tx_enabled) 2670 tx_start(info); 2671 } else { 2672 if (info->tx_enabled) 2673 tx_stop(info); 2674 } 2675 spin_unlock_irqrestore(&info->lock,flags); 2676 return 0; 2677 } 2678 2679 /* 2680 * abort transmit HDLC frame 2681 */ 2682 static int tx_abort(struct slgt_info *info) 2683 { 2684 unsigned long flags; 2685 DBGINFO(("%s tx_abort\n", info->device_name)); 2686 spin_lock_irqsave(&info->lock,flags); 2687 tdma_reset(info); 2688 spin_unlock_irqrestore(&info->lock,flags); 2689 return 0; 2690 } 2691 2692 static int rx_enable(struct slgt_info *info, int enable) 2693 { 2694 unsigned long flags; 2695 unsigned int rbuf_fill_level; 2696 DBGINFO(("%s rx_enable(%08x)\n", info->device_name, enable)); 2697 spin_lock_irqsave(&info->lock,flags); 2698 /* 2699 * enable[31..16] = receive DMA buffer fill level 2700 * 0 = noop (leave fill level unchanged) 2701 * fill level must be multiple of 4 and <= buffer size 2702 */ 2703 rbuf_fill_level = ((unsigned int)enable) >> 16; 2704 if (rbuf_fill_level) { 2705 if ((rbuf_fill_level > DMABUFSIZE) || (rbuf_fill_level % 4)) { 2706 spin_unlock_irqrestore(&info->lock, flags); 2707 return -EINVAL; 2708 } 2709 info->rbuf_fill_level = rbuf_fill_level; 2710 if (rbuf_fill_level < 128) 2711 info->rx_pio = 1; /* PIO mode */ 2712 else 2713 info->rx_pio = 0; /* DMA mode */ 2714 rx_stop(info); /* restart receiver to use new fill level */ 2715 } 2716 2717 /* 2718 * enable[1..0] = receiver enable command 2719 * 0 = disable 2720 * 1 = enable 2721 * 2 = enable or force hunt mode if already enabled 2722 */ 2723 enable &= 3; 2724 if (enable) { 2725 if (!info->rx_enabled) 2726 rx_start(info); 2727 else if (enable == 2) { 2728 /* force hunt mode (write 1 to RCR[3]) */ 2729 wr_reg16(info, RCR, rd_reg16(info, RCR) | BIT3); 2730 } 2731 } else { 2732 if (info->rx_enabled) 2733 rx_stop(info); 2734 } 2735 spin_unlock_irqrestore(&info->lock,flags); 2736 return 0; 2737 } 2738 2739 /* 2740 * wait for specified event to occur 2741 */ 2742 static int wait_mgsl_event(struct slgt_info *info, int __user *mask_ptr) 2743 { 2744 unsigned long flags; 2745 int s; 2746 int rc=0; 2747 struct mgsl_icount cprev, cnow; 2748 int events; 2749 int mask; 2750 struct _input_signal_events oldsigs, newsigs; 2751 DECLARE_WAITQUEUE(wait, current); 2752 2753 if (get_user(mask, mask_ptr)) 2754 return -EFAULT; 2755 2756 DBGINFO(("%s wait_mgsl_event(%d)\n", info->device_name, mask)); 2757 2758 spin_lock_irqsave(&info->lock,flags); 2759 2760 /* return immediately if state matches requested events */ 2761 get_signals(info); 2762 s = info->signals; 2763 2764 events = mask & 2765 ( ((s & SerialSignal_DSR) ? MgslEvent_DsrActive:MgslEvent_DsrInactive) + 2766 ((s & SerialSignal_DCD) ? MgslEvent_DcdActive:MgslEvent_DcdInactive) + 2767 ((s & SerialSignal_CTS) ? MgslEvent_CtsActive:MgslEvent_CtsInactive) + 2768 ((s & SerialSignal_RI) ? MgslEvent_RiActive :MgslEvent_RiInactive) ); 2769 if (events) { 2770 spin_unlock_irqrestore(&info->lock,flags); 2771 goto exit; 2772 } 2773 2774 /* save current irq counts */ 2775 cprev = info->icount; 2776 oldsigs = info->input_signal_events; 2777 2778 /* enable hunt and idle irqs if needed */ 2779 if (mask & (MgslEvent_ExitHuntMode+MgslEvent_IdleReceived)) { 2780 unsigned short val = rd_reg16(info, SCR); 2781 if (!(val & IRQ_RXIDLE)) 2782 wr_reg16(info, SCR, (unsigned short)(val | IRQ_RXIDLE)); 2783 } 2784 2785 set_current_state(TASK_INTERRUPTIBLE); 2786 add_wait_queue(&info->event_wait_q, &wait); 2787 2788 spin_unlock_irqrestore(&info->lock,flags); 2789 2790 for(;;) { 2791 schedule(); 2792 if (signal_pending(current)) { 2793 rc = -ERESTARTSYS; 2794 break; 2795 } 2796 2797 /* get current irq counts */ 2798 spin_lock_irqsave(&info->lock,flags); 2799 cnow = info->icount; 2800 newsigs = info->input_signal_events; 2801 set_current_state(TASK_INTERRUPTIBLE); 2802 spin_unlock_irqrestore(&info->lock,flags); 2803 2804 /* if no change, wait aborted for some reason */ 2805 if (newsigs.dsr_up == oldsigs.dsr_up && 2806 newsigs.dsr_down == oldsigs.dsr_down && 2807 newsigs.dcd_up == oldsigs.dcd_up && 2808 newsigs.dcd_down == oldsigs.dcd_down && 2809 newsigs.cts_up == oldsigs.cts_up && 2810 newsigs.cts_down == oldsigs.cts_down && 2811 newsigs.ri_up == oldsigs.ri_up && 2812 newsigs.ri_down == oldsigs.ri_down && 2813 cnow.exithunt == cprev.exithunt && 2814 cnow.rxidle == cprev.rxidle) { 2815 rc = -EIO; 2816 break; 2817 } 2818 2819 events = mask & 2820 ( (newsigs.dsr_up != oldsigs.dsr_up ? MgslEvent_DsrActive:0) + 2821 (newsigs.dsr_down != oldsigs.dsr_down ? MgslEvent_DsrInactive:0) + 2822 (newsigs.dcd_up != oldsigs.dcd_up ? MgslEvent_DcdActive:0) + 2823 (newsigs.dcd_down != oldsigs.dcd_down ? MgslEvent_DcdInactive:0) + 2824 (newsigs.cts_up != oldsigs.cts_up ? MgslEvent_CtsActive:0) + 2825 (newsigs.cts_down != oldsigs.cts_down ? MgslEvent_CtsInactive:0) + 2826 (newsigs.ri_up != oldsigs.ri_up ? MgslEvent_RiActive:0) + 2827 (newsigs.ri_down != oldsigs.ri_down ? MgslEvent_RiInactive:0) + 2828 (cnow.exithunt != cprev.exithunt ? MgslEvent_ExitHuntMode:0) + 2829 (cnow.rxidle != cprev.rxidle ? MgslEvent_IdleReceived:0) ); 2830 if (events) 2831 break; 2832 2833 cprev = cnow; 2834 oldsigs = newsigs; 2835 } 2836 2837 remove_wait_queue(&info->event_wait_q, &wait); 2838 set_current_state(TASK_RUNNING); 2839 2840 2841 if (mask & (MgslEvent_ExitHuntMode + MgslEvent_IdleReceived)) { 2842 spin_lock_irqsave(&info->lock,flags); 2843 if (!waitqueue_active(&info->event_wait_q)) { 2844 /* disable enable exit hunt mode/idle rcvd IRQs */ 2845 wr_reg16(info, SCR, 2846 (unsigned short)(rd_reg16(info, SCR) & ~IRQ_RXIDLE)); 2847 } 2848 spin_unlock_irqrestore(&info->lock,flags); 2849 } 2850 exit: 2851 if (rc == 0) 2852 rc = put_user(events, mask_ptr); 2853 return rc; 2854 } 2855 2856 static int get_interface(struct slgt_info *info, int __user *if_mode) 2857 { 2858 DBGINFO(("%s get_interface=%x\n", info->device_name, info->if_mode)); 2859 if (put_user(info->if_mode, if_mode)) 2860 return -EFAULT; 2861 return 0; 2862 } 2863 2864 static int set_interface(struct slgt_info *info, int if_mode) 2865 { 2866 unsigned long flags; 2867 unsigned short val; 2868 2869 DBGINFO(("%s set_interface=%x)\n", info->device_name, if_mode)); 2870 spin_lock_irqsave(&info->lock,flags); 2871 info->if_mode = if_mode; 2872 2873 msc_set_vcr(info); 2874 2875 /* TCR (tx control) 07 1=RTS driver control */ 2876 val = rd_reg16(info, TCR); 2877 if (info->if_mode & MGSL_INTERFACE_RTS_EN) 2878 val |= BIT7; 2879 else 2880 val &= ~BIT7; 2881 wr_reg16(info, TCR, val); 2882 2883 spin_unlock_irqrestore(&info->lock,flags); 2884 return 0; 2885 } 2886 2887 static int get_xsync(struct slgt_info *info, int __user *xsync) 2888 { 2889 DBGINFO(("%s get_xsync=%x\n", info->device_name, info->xsync)); 2890 if (put_user(info->xsync, xsync)) 2891 return -EFAULT; 2892 return 0; 2893 } 2894 2895 /* 2896 * set extended sync pattern (1 to 4 bytes) for extended sync mode 2897 * 2898 * sync pattern is contained in least significant bytes of value 2899 * most significant byte of sync pattern is oldest (1st sent/detected) 2900 */ 2901 static int set_xsync(struct slgt_info *info, int xsync) 2902 { 2903 unsigned long flags; 2904 2905 DBGINFO(("%s set_xsync=%x)\n", info->device_name, xsync)); 2906 spin_lock_irqsave(&info->lock, flags); 2907 info->xsync = xsync; 2908 wr_reg32(info, XSR, xsync); 2909 spin_unlock_irqrestore(&info->lock, flags); 2910 return 0; 2911 } 2912 2913 static int get_xctrl(struct slgt_info *info, int __user *xctrl) 2914 { 2915 DBGINFO(("%s get_xctrl=%x\n", info->device_name, info->xctrl)); 2916 if (put_user(info->xctrl, xctrl)) 2917 return -EFAULT; 2918 return 0; 2919 } 2920 2921 /* 2922 * set extended control options 2923 * 2924 * xctrl[31:19] reserved, must be zero 2925 * xctrl[18:17] extended sync pattern length in bytes 2926 * 00 = 1 byte in xsr[7:0] 2927 * 01 = 2 bytes in xsr[15:0] 2928 * 10 = 3 bytes in xsr[23:0] 2929 * 11 = 4 bytes in xsr[31:0] 2930 * xctrl[16] 1 = enable terminal count, 0=disabled 2931 * xctrl[15:0] receive terminal count for fixed length packets 2932 * value is count minus one (0 = 1 byte packet) 2933 * when terminal count is reached, receiver 2934 * automatically returns to hunt mode and receive 2935 * FIFO contents are flushed to DMA buffers with 2936 * end of frame (EOF) status 2937 */ 2938 static int set_xctrl(struct slgt_info *info, int xctrl) 2939 { 2940 unsigned long flags; 2941 2942 DBGINFO(("%s set_xctrl=%x)\n", info->device_name, xctrl)); 2943 spin_lock_irqsave(&info->lock, flags); 2944 info->xctrl = xctrl; 2945 wr_reg32(info, XCR, xctrl); 2946 spin_unlock_irqrestore(&info->lock, flags); 2947 return 0; 2948 } 2949 2950 /* 2951 * set general purpose IO pin state and direction 2952 * 2953 * user_gpio fields: 2954 * state each bit indicates a pin state 2955 * smask set bit indicates pin state to set 2956 * dir each bit indicates a pin direction (0=input, 1=output) 2957 * dmask set bit indicates pin direction to set 2958 */ 2959 static int set_gpio(struct slgt_info *info, struct gpio_desc __user *user_gpio) 2960 { 2961 unsigned long flags; 2962 struct gpio_desc gpio; 2963 __u32 data; 2964 2965 if (!info->gpio_present) 2966 return -EINVAL; 2967 if (copy_from_user(&gpio, user_gpio, sizeof(gpio))) 2968 return -EFAULT; 2969 DBGINFO(("%s set_gpio state=%08x smask=%08x dir=%08x dmask=%08x\n", 2970 info->device_name, gpio.state, gpio.smask, 2971 gpio.dir, gpio.dmask)); 2972 2973 spin_lock_irqsave(&info->port_array[0]->lock, flags); 2974 if (gpio.dmask) { 2975 data = rd_reg32(info, IODR); 2976 data |= gpio.dmask & gpio.dir; 2977 data &= ~(gpio.dmask & ~gpio.dir); 2978 wr_reg32(info, IODR, data); 2979 } 2980 if (gpio.smask) { 2981 data = rd_reg32(info, IOVR); 2982 data |= gpio.smask & gpio.state; 2983 data &= ~(gpio.smask & ~gpio.state); 2984 wr_reg32(info, IOVR, data); 2985 } 2986 spin_unlock_irqrestore(&info->port_array[0]->lock, flags); 2987 2988 return 0; 2989 } 2990 2991 /* 2992 * get general purpose IO pin state and direction 2993 */ 2994 static int get_gpio(struct slgt_info *info, struct gpio_desc __user *user_gpio) 2995 { 2996 struct gpio_desc gpio; 2997 if (!info->gpio_present) 2998 return -EINVAL; 2999 gpio.state = rd_reg32(info, IOVR); 3000 gpio.smask = 0xffffffff; 3001 gpio.dir = rd_reg32(info, IODR); 3002 gpio.dmask = 0xffffffff; 3003 if (copy_to_user(user_gpio, &gpio, sizeof(gpio))) 3004 return -EFAULT; 3005 DBGINFO(("%s get_gpio state=%08x dir=%08x\n", 3006 info->device_name, gpio.state, gpio.dir)); 3007 return 0; 3008 } 3009 3010 /* 3011 * conditional wait facility 3012 */ 3013 static void init_cond_wait(struct cond_wait *w, unsigned int data) 3014 { 3015 init_waitqueue_head(&w->q); 3016 init_waitqueue_entry(&w->wait, current); 3017 w->data = data; 3018 } 3019 3020 static void add_cond_wait(struct cond_wait **head, struct cond_wait *w) 3021 { 3022 set_current_state(TASK_INTERRUPTIBLE); 3023 add_wait_queue(&w->q, &w->wait); 3024 w->next = *head; 3025 *head = w; 3026 } 3027 3028 static void remove_cond_wait(struct cond_wait **head, struct cond_wait *cw) 3029 { 3030 struct cond_wait *w, *prev; 3031 remove_wait_queue(&cw->q, &cw->wait); 3032 set_current_state(TASK_RUNNING); 3033 for (w = *head, prev = NULL ; w != NULL ; prev = w, w = w->next) { 3034 if (w == cw) { 3035 if (prev != NULL) 3036 prev->next = w->next; 3037 else 3038 *head = w->next; 3039 break; 3040 } 3041 } 3042 } 3043 3044 static void flush_cond_wait(struct cond_wait **head) 3045 { 3046 while (*head != NULL) { 3047 wake_up_interruptible(&(*head)->q); 3048 *head = (*head)->next; 3049 } 3050 } 3051 3052 /* 3053 * wait for general purpose I/O pin(s) to enter specified state 3054 * 3055 * user_gpio fields: 3056 * state - bit indicates target pin state 3057 * smask - set bit indicates watched pin 3058 * 3059 * The wait ends when at least one watched pin enters the specified 3060 * state. When 0 (no error) is returned, user_gpio->state is set to the 3061 * state of all GPIO pins when the wait ends. 3062 * 3063 * Note: Each pin may be a dedicated input, dedicated output, or 3064 * configurable input/output. The number and configuration of pins 3065 * varies with the specific adapter model. Only input pins (dedicated 3066 * or configured) can be monitored with this function. 3067 */ 3068 static int wait_gpio(struct slgt_info *info, struct gpio_desc __user *user_gpio) 3069 { 3070 unsigned long flags; 3071 int rc = 0; 3072 struct gpio_desc gpio; 3073 struct cond_wait wait; 3074 u32 state; 3075 3076 if (!info->gpio_present) 3077 return -EINVAL; 3078 if (copy_from_user(&gpio, user_gpio, sizeof(gpio))) 3079 return -EFAULT; 3080 DBGINFO(("%s wait_gpio() state=%08x smask=%08x\n", 3081 info->device_name, gpio.state, gpio.smask)); 3082 /* ignore output pins identified by set IODR bit */ 3083 if ((gpio.smask &= ~rd_reg32(info, IODR)) == 0) 3084 return -EINVAL; 3085 init_cond_wait(&wait, gpio.smask); 3086 3087 spin_lock_irqsave(&info->port_array[0]->lock, flags); 3088 /* enable interrupts for watched pins */ 3089 wr_reg32(info, IOER, rd_reg32(info, IOER) | gpio.smask); 3090 /* get current pin states */ 3091 state = rd_reg32(info, IOVR); 3092 3093 if (gpio.smask & ~(state ^ gpio.state)) { 3094 /* already in target state */ 3095 gpio.state = state; 3096 } else { 3097 /* wait for target state */ 3098 add_cond_wait(&info->gpio_wait_q, &wait); 3099 spin_unlock_irqrestore(&info->port_array[0]->lock, flags); 3100 schedule(); 3101 if (signal_pending(current)) 3102 rc = -ERESTARTSYS; 3103 else 3104 gpio.state = wait.data; 3105 spin_lock_irqsave(&info->port_array[0]->lock, flags); 3106 remove_cond_wait(&info->gpio_wait_q, &wait); 3107 } 3108 3109 /* disable all GPIO interrupts if no waiting processes */ 3110 if (info->gpio_wait_q == NULL) 3111 wr_reg32(info, IOER, 0); 3112 spin_unlock_irqrestore(&info->port_array[0]->lock, flags); 3113 3114 if ((rc == 0) && copy_to_user(user_gpio, &gpio, sizeof(gpio))) 3115 rc = -EFAULT; 3116 return rc; 3117 } 3118 3119 static int modem_input_wait(struct slgt_info *info,int arg) 3120 { 3121 unsigned long flags; 3122 int rc; 3123 struct mgsl_icount cprev, cnow; 3124 DECLARE_WAITQUEUE(wait, current); 3125 3126 /* save current irq counts */ 3127 spin_lock_irqsave(&info->lock,flags); 3128 cprev = info->icount; 3129 add_wait_queue(&info->status_event_wait_q, &wait); 3130 set_current_state(TASK_INTERRUPTIBLE); 3131 spin_unlock_irqrestore(&info->lock,flags); 3132 3133 for(;;) { 3134 schedule(); 3135 if (signal_pending(current)) { 3136 rc = -ERESTARTSYS; 3137 break; 3138 } 3139 3140 /* get new irq counts */ 3141 spin_lock_irqsave(&info->lock,flags); 3142 cnow = info->icount; 3143 set_current_state(TASK_INTERRUPTIBLE); 3144 spin_unlock_irqrestore(&info->lock,flags); 3145 3146 /* if no change, wait aborted for some reason */ 3147 if (cnow.rng == cprev.rng && cnow.dsr == cprev.dsr && 3148 cnow.dcd == cprev.dcd && cnow.cts == cprev.cts) { 3149 rc = -EIO; 3150 break; 3151 } 3152 3153 /* check for change in caller specified modem input */ 3154 if ((arg & TIOCM_RNG && cnow.rng != cprev.rng) || 3155 (arg & TIOCM_DSR && cnow.dsr != cprev.dsr) || 3156 (arg & TIOCM_CD && cnow.dcd != cprev.dcd) || 3157 (arg & TIOCM_CTS && cnow.cts != cprev.cts)) { 3158 rc = 0; 3159 break; 3160 } 3161 3162 cprev = cnow; 3163 } 3164 remove_wait_queue(&info->status_event_wait_q, &wait); 3165 set_current_state(TASK_RUNNING); 3166 return rc; 3167 } 3168 3169 /* 3170 * return state of serial control and status signals 3171 */ 3172 static int tiocmget(struct tty_struct *tty) 3173 { 3174 struct slgt_info *info = tty->driver_data; 3175 unsigned int result; 3176 unsigned long flags; 3177 3178 spin_lock_irqsave(&info->lock,flags); 3179 get_signals(info); 3180 spin_unlock_irqrestore(&info->lock,flags); 3181 3182 result = ((info->signals & SerialSignal_RTS) ? TIOCM_RTS:0) + 3183 ((info->signals & SerialSignal_DTR) ? TIOCM_DTR:0) + 3184 ((info->signals & SerialSignal_DCD) ? TIOCM_CAR:0) + 3185 ((info->signals & SerialSignal_RI) ? TIOCM_RNG:0) + 3186 ((info->signals & SerialSignal_DSR) ? TIOCM_DSR:0) + 3187 ((info->signals & SerialSignal_CTS) ? TIOCM_CTS:0); 3188 3189 DBGINFO(("%s tiocmget value=%08X\n", info->device_name, result)); 3190 return result; 3191 } 3192 3193 /* 3194 * set modem control signals (DTR/RTS) 3195 * 3196 * cmd signal command: TIOCMBIS = set bit TIOCMBIC = clear bit 3197 * TIOCMSET = set/clear signal values 3198 * value bit mask for command 3199 */ 3200 static int tiocmset(struct tty_struct *tty, 3201 unsigned int set, unsigned int clear) 3202 { 3203 struct slgt_info *info = tty->driver_data; 3204 unsigned long flags; 3205 3206 DBGINFO(("%s tiocmset(%x,%x)\n", info->device_name, set, clear)); 3207 3208 if (set & TIOCM_RTS) 3209 info->signals |= SerialSignal_RTS; 3210 if (set & TIOCM_DTR) 3211 info->signals |= SerialSignal_DTR; 3212 if (clear & TIOCM_RTS) 3213 info->signals &= ~SerialSignal_RTS; 3214 if (clear & TIOCM_DTR) 3215 info->signals &= ~SerialSignal_DTR; 3216 3217 spin_lock_irqsave(&info->lock,flags); 3218 set_signals(info); 3219 spin_unlock_irqrestore(&info->lock,flags); 3220 return 0; 3221 } 3222 3223 static int carrier_raised(struct tty_port *port) 3224 { 3225 unsigned long flags; 3226 struct slgt_info *info = container_of(port, struct slgt_info, port); 3227 3228 spin_lock_irqsave(&info->lock,flags); 3229 get_signals(info); 3230 spin_unlock_irqrestore(&info->lock,flags); 3231 return (info->signals & SerialSignal_DCD) ? 1 : 0; 3232 } 3233 3234 static void dtr_rts(struct tty_port *port, int on) 3235 { 3236 unsigned long flags; 3237 struct slgt_info *info = container_of(port, struct slgt_info, port); 3238 3239 spin_lock_irqsave(&info->lock,flags); 3240 if (on) 3241 info->signals |= SerialSignal_RTS | SerialSignal_DTR; 3242 else 3243 info->signals &= ~(SerialSignal_RTS | SerialSignal_DTR); 3244 set_signals(info); 3245 spin_unlock_irqrestore(&info->lock,flags); 3246 } 3247 3248 3249 /* 3250 * block current process until the device is ready to open 3251 */ 3252 static int block_til_ready(struct tty_struct *tty, struct file *filp, 3253 struct slgt_info *info) 3254 { 3255 DECLARE_WAITQUEUE(wait, current); 3256 int retval; 3257 bool do_clocal = false; 3258 unsigned long flags; 3259 int cd; 3260 struct tty_port *port = &info->port; 3261 3262 DBGINFO(("%s block_til_ready\n", tty->driver->name)); 3263 3264 if (filp->f_flags & O_NONBLOCK || tty_io_error(tty)) { 3265 /* nonblock mode is set or port is not enabled */ 3266 tty_port_set_active(port, 1); 3267 return 0; 3268 } 3269 3270 if (C_CLOCAL(tty)) 3271 do_clocal = true; 3272 3273 /* Wait for carrier detect and the line to become 3274 * free (i.e., not in use by the callout). While we are in 3275 * this loop, port->count is dropped by one, so that 3276 * close() knows when to free things. We restore it upon 3277 * exit, either normal or abnormal. 3278 */ 3279 3280 retval = 0; 3281 add_wait_queue(&port->open_wait, &wait); 3282 3283 spin_lock_irqsave(&info->lock, flags); 3284 port->count--; 3285 spin_unlock_irqrestore(&info->lock, flags); 3286 port->blocked_open++; 3287 3288 while (1) { 3289 if (C_BAUD(tty) && tty_port_initialized(port)) 3290 tty_port_raise_dtr_rts(port); 3291 3292 set_current_state(TASK_INTERRUPTIBLE); 3293 3294 if (tty_hung_up_p(filp) || !tty_port_initialized(port)) { 3295 retval = (port->flags & ASYNC_HUP_NOTIFY) ? 3296 -EAGAIN : -ERESTARTSYS; 3297 break; 3298 } 3299 3300 cd = tty_port_carrier_raised(port); 3301 if (do_clocal || cd) 3302 break; 3303 3304 if (signal_pending(current)) { 3305 retval = -ERESTARTSYS; 3306 break; 3307 } 3308 3309 DBGINFO(("%s block_til_ready wait\n", tty->driver->name)); 3310 tty_unlock(tty); 3311 schedule(); 3312 tty_lock(tty); 3313 } 3314 3315 set_current_state(TASK_RUNNING); 3316 remove_wait_queue(&port->open_wait, &wait); 3317 3318 if (!tty_hung_up_p(filp)) 3319 port->count++; 3320 port->blocked_open--; 3321 3322 if (!retval) 3323 tty_port_set_active(port, 1); 3324 3325 DBGINFO(("%s block_til_ready ready, rc=%d\n", tty->driver->name, retval)); 3326 return retval; 3327 } 3328 3329 /* 3330 * allocate buffers used for calling line discipline receive_buf 3331 * directly in synchronous mode 3332 * note: add 5 bytes to max frame size to allow appending 3333 * 32-bit CRC and status byte when configured to do so 3334 */ 3335 static int alloc_tmp_rbuf(struct slgt_info *info) 3336 { 3337 info->tmp_rbuf = kmalloc(info->max_frame_size + 5, GFP_KERNEL); 3338 if (info->tmp_rbuf == NULL) 3339 return -ENOMEM; 3340 /* unused flag buffer to satisfy receive_buf calling interface */ 3341 info->flag_buf = kzalloc(info->max_frame_size + 5, GFP_KERNEL); 3342 if (!info->flag_buf) { 3343 kfree(info->tmp_rbuf); 3344 info->tmp_rbuf = NULL; 3345 return -ENOMEM; 3346 } 3347 return 0; 3348 } 3349 3350 static void free_tmp_rbuf(struct slgt_info *info) 3351 { 3352 kfree(info->tmp_rbuf); 3353 info->tmp_rbuf = NULL; 3354 kfree(info->flag_buf); 3355 info->flag_buf = NULL; 3356 } 3357 3358 /* 3359 * allocate DMA descriptor lists. 3360 */ 3361 static int alloc_desc(struct slgt_info *info) 3362 { 3363 unsigned int i; 3364 unsigned int pbufs; 3365 3366 /* allocate memory to hold descriptor lists */ 3367 info->bufs = pci_zalloc_consistent(info->pdev, DESC_LIST_SIZE, 3368 &info->bufs_dma_addr); 3369 if (info->bufs == NULL) 3370 return -ENOMEM; 3371 3372 info->rbufs = (struct slgt_desc*)info->bufs; 3373 info->tbufs = ((struct slgt_desc*)info->bufs) + info->rbuf_count; 3374 3375 pbufs = (unsigned int)info->bufs_dma_addr; 3376 3377 /* 3378 * Build circular lists of descriptors 3379 */ 3380 3381 for (i=0; i < info->rbuf_count; i++) { 3382 /* physical address of this descriptor */ 3383 info->rbufs[i].pdesc = pbufs + (i * sizeof(struct slgt_desc)); 3384 3385 /* physical address of next descriptor */ 3386 if (i == info->rbuf_count - 1) 3387 info->rbufs[i].next = cpu_to_le32(pbufs); 3388 else 3389 info->rbufs[i].next = cpu_to_le32(pbufs + ((i+1) * sizeof(struct slgt_desc))); 3390 set_desc_count(info->rbufs[i], DMABUFSIZE); 3391 } 3392 3393 for (i=0; i < info->tbuf_count; i++) { 3394 /* physical address of this descriptor */ 3395 info->tbufs[i].pdesc = pbufs + ((info->rbuf_count + i) * sizeof(struct slgt_desc)); 3396 3397 /* physical address of next descriptor */ 3398 if (i == info->tbuf_count - 1) 3399 info->tbufs[i].next = cpu_to_le32(pbufs + info->rbuf_count * sizeof(struct slgt_desc)); 3400 else 3401 info->tbufs[i].next = cpu_to_le32(pbufs + ((info->rbuf_count + i + 1) * sizeof(struct slgt_desc))); 3402 } 3403 3404 return 0; 3405 } 3406 3407 static void free_desc(struct slgt_info *info) 3408 { 3409 if (info->bufs != NULL) { 3410 pci_free_consistent(info->pdev, DESC_LIST_SIZE, info->bufs, info->bufs_dma_addr); 3411 info->bufs = NULL; 3412 info->rbufs = NULL; 3413 info->tbufs = NULL; 3414 } 3415 } 3416 3417 static int alloc_bufs(struct slgt_info *info, struct slgt_desc *bufs, int count) 3418 { 3419 int i; 3420 for (i=0; i < count; i++) { 3421 if ((bufs[i].buf = pci_alloc_consistent(info->pdev, DMABUFSIZE, &bufs[i].buf_dma_addr)) == NULL) 3422 return -ENOMEM; 3423 bufs[i].pbuf = cpu_to_le32((unsigned int)bufs[i].buf_dma_addr); 3424 } 3425 return 0; 3426 } 3427 3428 static void free_bufs(struct slgt_info *info, struct slgt_desc *bufs, int count) 3429 { 3430 int i; 3431 for (i=0; i < count; i++) { 3432 if (bufs[i].buf == NULL) 3433 continue; 3434 pci_free_consistent(info->pdev, DMABUFSIZE, bufs[i].buf, bufs[i].buf_dma_addr); 3435 bufs[i].buf = NULL; 3436 } 3437 } 3438 3439 static int alloc_dma_bufs(struct slgt_info *info) 3440 { 3441 info->rbuf_count = 32; 3442 info->tbuf_count = 32; 3443 3444 if (alloc_desc(info) < 0 || 3445 alloc_bufs(info, info->rbufs, info->rbuf_count) < 0 || 3446 alloc_bufs(info, info->tbufs, info->tbuf_count) < 0 || 3447 alloc_tmp_rbuf(info) < 0) { 3448 DBGERR(("%s DMA buffer alloc fail\n", info->device_name)); 3449 return -ENOMEM; 3450 } 3451 reset_rbufs(info); 3452 return 0; 3453 } 3454 3455 static void free_dma_bufs(struct slgt_info *info) 3456 { 3457 if (info->bufs) { 3458 free_bufs(info, info->rbufs, info->rbuf_count); 3459 free_bufs(info, info->tbufs, info->tbuf_count); 3460 free_desc(info); 3461 } 3462 free_tmp_rbuf(info); 3463 } 3464 3465 static int claim_resources(struct slgt_info *info) 3466 { 3467 if (request_mem_region(info->phys_reg_addr, SLGT_REG_SIZE, "synclink_gt") == NULL) { 3468 DBGERR(("%s reg addr conflict, addr=%08X\n", 3469 info->device_name, info->phys_reg_addr)); 3470 info->init_error = DiagStatus_AddressConflict; 3471 goto errout; 3472 } 3473 else 3474 info->reg_addr_requested = true; 3475 3476 info->reg_addr = ioremap_nocache(info->phys_reg_addr, SLGT_REG_SIZE); 3477 if (!info->reg_addr) { 3478 DBGERR(("%s can't map device registers, addr=%08X\n", 3479 info->device_name, info->phys_reg_addr)); 3480 info->init_error = DiagStatus_CantAssignPciResources; 3481 goto errout; 3482 } 3483 return 0; 3484 3485 errout: 3486 release_resources(info); 3487 return -ENODEV; 3488 } 3489 3490 static void release_resources(struct slgt_info *info) 3491 { 3492 if (info->irq_requested) { 3493 free_irq(info->irq_level, info); 3494 info->irq_requested = false; 3495 } 3496 3497 if (info->reg_addr_requested) { 3498 release_mem_region(info->phys_reg_addr, SLGT_REG_SIZE); 3499 info->reg_addr_requested = false; 3500 } 3501 3502 if (info->reg_addr) { 3503 iounmap(info->reg_addr); 3504 info->reg_addr = NULL; 3505 } 3506 } 3507 3508 /* Add the specified device instance data structure to the 3509 * global linked list of devices and increment the device count. 3510 */ 3511 static void add_device(struct slgt_info *info) 3512 { 3513 char *devstr; 3514 3515 info->next_device = NULL; 3516 info->line = slgt_device_count; 3517 sprintf(info->device_name, "%s%d", tty_dev_prefix, info->line); 3518 3519 if (info->line < MAX_DEVICES) { 3520 if (maxframe[info->line]) 3521 info->max_frame_size = maxframe[info->line]; 3522 } 3523 3524 slgt_device_count++; 3525 3526 if (!slgt_device_list) 3527 slgt_device_list = info; 3528 else { 3529 struct slgt_info *current_dev = slgt_device_list; 3530 while(current_dev->next_device) 3531 current_dev = current_dev->next_device; 3532 current_dev->next_device = info; 3533 } 3534 3535 if (info->max_frame_size < 4096) 3536 info->max_frame_size = 4096; 3537 else if (info->max_frame_size > 65535) 3538 info->max_frame_size = 65535; 3539 3540 switch(info->pdev->device) { 3541 case SYNCLINK_GT_DEVICE_ID: 3542 devstr = "GT"; 3543 break; 3544 case SYNCLINK_GT2_DEVICE_ID: 3545 devstr = "GT2"; 3546 break; 3547 case SYNCLINK_GT4_DEVICE_ID: 3548 devstr = "GT4"; 3549 break; 3550 case SYNCLINK_AC_DEVICE_ID: 3551 devstr = "AC"; 3552 info->params.mode = MGSL_MODE_ASYNC; 3553 break; 3554 default: 3555 devstr = "(unknown model)"; 3556 } 3557 printk("SyncLink %s %s IO=%08x IRQ=%d MaxFrameSize=%u\n", 3558 devstr, info->device_name, info->phys_reg_addr, 3559 info->irq_level, info->max_frame_size); 3560 3561 #if SYNCLINK_GENERIC_HDLC 3562 hdlcdev_init(info); 3563 #endif 3564 } 3565 3566 static const struct tty_port_operations slgt_port_ops = { 3567 .carrier_raised = carrier_raised, 3568 .dtr_rts = dtr_rts, 3569 }; 3570 3571 /* 3572 * allocate device instance structure, return NULL on failure 3573 */ 3574 static struct slgt_info *alloc_dev(int adapter_num, int port_num, struct pci_dev *pdev) 3575 { 3576 struct slgt_info *info; 3577 3578 info = kzalloc(sizeof(struct slgt_info), GFP_KERNEL); 3579 3580 if (!info) { 3581 DBGERR(("%s device alloc failed adapter=%d port=%d\n", 3582 driver_name, adapter_num, port_num)); 3583 } else { 3584 tty_port_init(&info->port); 3585 info->port.ops = &slgt_port_ops; 3586 info->magic = MGSL_MAGIC; 3587 INIT_WORK(&info->task, bh_handler); 3588 info->max_frame_size = 4096; 3589 info->base_clock = 14745600; 3590 info->rbuf_fill_level = DMABUFSIZE; 3591 info->port.close_delay = 5*HZ/10; 3592 info->port.closing_wait = 30*HZ; 3593 init_waitqueue_head(&info->status_event_wait_q); 3594 init_waitqueue_head(&info->event_wait_q); 3595 spin_lock_init(&info->netlock); 3596 memcpy(&info->params,&default_params,sizeof(MGSL_PARAMS)); 3597 info->idle_mode = HDLC_TXIDLE_FLAGS; 3598 info->adapter_num = adapter_num; 3599 info->port_num = port_num; 3600 3601 setup_timer(&info->tx_timer, tx_timeout, (unsigned long)info); 3602 setup_timer(&info->rx_timer, rx_timeout, (unsigned long)info); 3603 3604 /* Copy configuration info to device instance data */ 3605 info->pdev = pdev; 3606 info->irq_level = pdev->irq; 3607 info->phys_reg_addr = pci_resource_start(pdev,0); 3608 3609 info->bus_type = MGSL_BUS_TYPE_PCI; 3610 info->irq_flags = IRQF_SHARED; 3611 3612 info->init_error = -1; /* assume error, set to 0 on successful init */ 3613 } 3614 3615 return info; 3616 } 3617 3618 static void device_init(int adapter_num, struct pci_dev *pdev) 3619 { 3620 struct slgt_info *port_array[SLGT_MAX_PORTS]; 3621 int i; 3622 int port_count = 1; 3623 3624 if (pdev->device == SYNCLINK_GT2_DEVICE_ID) 3625 port_count = 2; 3626 else if (pdev->device == SYNCLINK_GT4_DEVICE_ID) 3627 port_count = 4; 3628 3629 /* allocate device instances for all ports */ 3630 for (i=0; i < port_count; ++i) { 3631 port_array[i] = alloc_dev(adapter_num, i, pdev); 3632 if (port_array[i] == NULL) { 3633 for (--i; i >= 0; --i) { 3634 tty_port_destroy(&port_array[i]->port); 3635 kfree(port_array[i]); 3636 } 3637 return; 3638 } 3639 } 3640 3641 /* give copy of port_array to all ports and add to device list */ 3642 for (i=0; i < port_count; ++i) { 3643 memcpy(port_array[i]->port_array, port_array, sizeof(port_array)); 3644 add_device(port_array[i]); 3645 port_array[i]->port_count = port_count; 3646 spin_lock_init(&port_array[i]->lock); 3647 } 3648 3649 /* Allocate and claim adapter resources */ 3650 if (!claim_resources(port_array[0])) { 3651 3652 alloc_dma_bufs(port_array[0]); 3653 3654 /* copy resource information from first port to others */ 3655 for (i = 1; i < port_count; ++i) { 3656 port_array[i]->irq_level = port_array[0]->irq_level; 3657 port_array[i]->reg_addr = port_array[0]->reg_addr; 3658 alloc_dma_bufs(port_array[i]); 3659 } 3660 3661 if (request_irq(port_array[0]->irq_level, 3662 slgt_interrupt, 3663 port_array[0]->irq_flags, 3664 port_array[0]->device_name, 3665 port_array[0]) < 0) { 3666 DBGERR(("%s request_irq failed IRQ=%d\n", 3667 port_array[0]->device_name, 3668 port_array[0]->irq_level)); 3669 } else { 3670 port_array[0]->irq_requested = true; 3671 adapter_test(port_array[0]); 3672 for (i=1 ; i < port_count ; i++) { 3673 port_array[i]->init_error = port_array[0]->init_error; 3674 port_array[i]->gpio_present = port_array[0]->gpio_present; 3675 } 3676 } 3677 } 3678 3679 for (i = 0; i < port_count; ++i) { 3680 struct slgt_info *info = port_array[i]; 3681 tty_port_register_device(&info->port, serial_driver, info->line, 3682 &info->pdev->dev); 3683 } 3684 } 3685 3686 static int init_one(struct pci_dev *dev, 3687 const struct pci_device_id *ent) 3688 { 3689 if (pci_enable_device(dev)) { 3690 printk("error enabling pci device %p\n", dev); 3691 return -EIO; 3692 } 3693 pci_set_master(dev); 3694 device_init(slgt_device_count, dev); 3695 return 0; 3696 } 3697 3698 static void remove_one(struct pci_dev *dev) 3699 { 3700 } 3701 3702 static const struct tty_operations ops = { 3703 .open = open, 3704 .close = close, 3705 .write = write, 3706 .put_char = put_char, 3707 .flush_chars = flush_chars, 3708 .write_room = write_room, 3709 .chars_in_buffer = chars_in_buffer, 3710 .flush_buffer = flush_buffer, 3711 .ioctl = ioctl, 3712 .compat_ioctl = slgt_compat_ioctl, 3713 .throttle = throttle, 3714 .unthrottle = unthrottle, 3715 .send_xchar = send_xchar, 3716 .break_ctl = set_break, 3717 .wait_until_sent = wait_until_sent, 3718 .set_termios = set_termios, 3719 .stop = tx_hold, 3720 .start = tx_release, 3721 .hangup = hangup, 3722 .tiocmget = tiocmget, 3723 .tiocmset = tiocmset, 3724 .get_icount = get_icount, 3725 .proc_fops = &synclink_gt_proc_fops, 3726 }; 3727 3728 static void slgt_cleanup(void) 3729 { 3730 int rc; 3731 struct slgt_info *info; 3732 struct slgt_info *tmp; 3733 3734 printk(KERN_INFO "unload %s\n", driver_name); 3735 3736 if (serial_driver) { 3737 for (info=slgt_device_list ; info != NULL ; info=info->next_device) 3738 tty_unregister_device(serial_driver, info->line); 3739 rc = tty_unregister_driver(serial_driver); 3740 if (rc) 3741 DBGERR(("tty_unregister_driver error=%d\n", rc)); 3742 put_tty_driver(serial_driver); 3743 } 3744 3745 /* reset devices */ 3746 info = slgt_device_list; 3747 while(info) { 3748 reset_port(info); 3749 info = info->next_device; 3750 } 3751 3752 /* release devices */ 3753 info = slgt_device_list; 3754 while(info) { 3755 #if SYNCLINK_GENERIC_HDLC 3756 hdlcdev_exit(info); 3757 #endif 3758 free_dma_bufs(info); 3759 free_tmp_rbuf(info); 3760 if (info->port_num == 0) 3761 release_resources(info); 3762 tmp = info; 3763 info = info->next_device; 3764 tty_port_destroy(&tmp->port); 3765 kfree(tmp); 3766 } 3767 3768 if (pci_registered) 3769 pci_unregister_driver(&pci_driver); 3770 } 3771 3772 /* 3773 * Driver initialization entry point. 3774 */ 3775 static int __init slgt_init(void) 3776 { 3777 int rc; 3778 3779 printk(KERN_INFO "%s\n", driver_name); 3780 3781 serial_driver = alloc_tty_driver(MAX_DEVICES); 3782 if (!serial_driver) { 3783 printk("%s can't allocate tty driver\n", driver_name); 3784 return -ENOMEM; 3785 } 3786 3787 /* Initialize the tty_driver structure */ 3788 3789 serial_driver->driver_name = slgt_driver_name; 3790 serial_driver->name = tty_dev_prefix; 3791 serial_driver->major = ttymajor; 3792 serial_driver->minor_start = 64; 3793 serial_driver->type = TTY_DRIVER_TYPE_SERIAL; 3794 serial_driver->subtype = SERIAL_TYPE_NORMAL; 3795 serial_driver->init_termios = tty_std_termios; 3796 serial_driver->init_termios.c_cflag = 3797 B9600 | CS8 | CREAD | HUPCL | CLOCAL; 3798 serial_driver->init_termios.c_ispeed = 9600; 3799 serial_driver->init_termios.c_ospeed = 9600; 3800 serial_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV; 3801 tty_set_operations(serial_driver, &ops); 3802 if ((rc = tty_register_driver(serial_driver)) < 0) { 3803 DBGERR(("%s can't register serial driver\n", driver_name)); 3804 put_tty_driver(serial_driver); 3805 serial_driver = NULL; 3806 goto error; 3807 } 3808 3809 printk(KERN_INFO "%s, tty major#%d\n", 3810 driver_name, serial_driver->major); 3811 3812 slgt_device_count = 0; 3813 if ((rc = pci_register_driver(&pci_driver)) < 0) { 3814 printk("%s pci_register_driver error=%d\n", driver_name, rc); 3815 goto error; 3816 } 3817 pci_registered = true; 3818 3819 if (!slgt_device_list) 3820 printk("%s no devices found\n",driver_name); 3821 3822 return 0; 3823 3824 error: 3825 slgt_cleanup(); 3826 return rc; 3827 } 3828 3829 static void __exit slgt_exit(void) 3830 { 3831 slgt_cleanup(); 3832 } 3833 3834 module_init(slgt_init); 3835 module_exit(slgt_exit); 3836 3837 /* 3838 * register access routines 3839 */ 3840 3841 #define CALC_REGADDR() \ 3842 unsigned long reg_addr = ((unsigned long)info->reg_addr) + addr; \ 3843 if (addr >= 0x80) \ 3844 reg_addr += (info->port_num) * 32; \ 3845 else if (addr >= 0x40) \ 3846 reg_addr += (info->port_num) * 16; 3847 3848 static __u8 rd_reg8(struct slgt_info *info, unsigned int addr) 3849 { 3850 CALC_REGADDR(); 3851 return readb((void __iomem *)reg_addr); 3852 } 3853 3854 static void wr_reg8(struct slgt_info *info, unsigned int addr, __u8 value) 3855 { 3856 CALC_REGADDR(); 3857 writeb(value, (void __iomem *)reg_addr); 3858 } 3859 3860 static __u16 rd_reg16(struct slgt_info *info, unsigned int addr) 3861 { 3862 CALC_REGADDR(); 3863 return readw((void __iomem *)reg_addr); 3864 } 3865 3866 static void wr_reg16(struct slgt_info *info, unsigned int addr, __u16 value) 3867 { 3868 CALC_REGADDR(); 3869 writew(value, (void __iomem *)reg_addr); 3870 } 3871 3872 static __u32 rd_reg32(struct slgt_info *info, unsigned int addr) 3873 { 3874 CALC_REGADDR(); 3875 return readl((void __iomem *)reg_addr); 3876 } 3877 3878 static void wr_reg32(struct slgt_info *info, unsigned int addr, __u32 value) 3879 { 3880 CALC_REGADDR(); 3881 writel(value, (void __iomem *)reg_addr); 3882 } 3883 3884 static void rdma_reset(struct slgt_info *info) 3885 { 3886 unsigned int i; 3887 3888 /* set reset bit */ 3889 wr_reg32(info, RDCSR, BIT1); 3890 3891 /* wait for enable bit cleared */ 3892 for(i=0 ; i < 1000 ; i++) 3893 if (!(rd_reg32(info, RDCSR) & BIT0)) 3894 break; 3895 } 3896 3897 static void tdma_reset(struct slgt_info *info) 3898 { 3899 unsigned int i; 3900 3901 /* set reset bit */ 3902 wr_reg32(info, TDCSR, BIT1); 3903 3904 /* wait for enable bit cleared */ 3905 for(i=0 ; i < 1000 ; i++) 3906 if (!(rd_reg32(info, TDCSR) & BIT0)) 3907 break; 3908 } 3909 3910 /* 3911 * enable internal loopback 3912 * TxCLK and RxCLK are generated from BRG 3913 * and TxD is looped back to RxD internally. 3914 */ 3915 static void enable_loopback(struct slgt_info *info) 3916 { 3917 /* SCR (serial control) BIT2=loopback enable */ 3918 wr_reg16(info, SCR, (unsigned short)(rd_reg16(info, SCR) | BIT2)); 3919 3920 if (info->params.mode != MGSL_MODE_ASYNC) { 3921 /* CCR (clock control) 3922 * 07..05 tx clock source (010 = BRG) 3923 * 04..02 rx clock source (010 = BRG) 3924 * 01 auxclk enable (0 = disable) 3925 * 00 BRG enable (1 = enable) 3926 * 3927 * 0100 1001 3928 */ 3929 wr_reg8(info, CCR, 0x49); 3930 3931 /* set speed if available, otherwise use default */ 3932 if (info->params.clock_speed) 3933 set_rate(info, info->params.clock_speed); 3934 else 3935 set_rate(info, 3686400); 3936 } 3937 } 3938 3939 /* 3940 * set baud rate generator to specified rate 3941 */ 3942 static void set_rate(struct slgt_info *info, u32 rate) 3943 { 3944 unsigned int div; 3945 unsigned int osc = info->base_clock; 3946 3947 /* div = osc/rate - 1 3948 * 3949 * Round div up if osc/rate is not integer to 3950 * force to next slowest rate. 3951 */ 3952 3953 if (rate) { 3954 div = osc/rate; 3955 if (!(osc % rate) && div) 3956 div--; 3957 wr_reg16(info, BDR, (unsigned short)div); 3958 } 3959 } 3960 3961 static void rx_stop(struct slgt_info *info) 3962 { 3963 unsigned short val; 3964 3965 /* disable and reset receiver */ 3966 val = rd_reg16(info, RCR) & ~BIT1; /* clear enable bit */ 3967 wr_reg16(info, RCR, (unsigned short)(val | BIT2)); /* set reset bit */ 3968 wr_reg16(info, RCR, val); /* clear reset bit */ 3969 3970 slgt_irq_off(info, IRQ_RXOVER + IRQ_RXDATA + IRQ_RXIDLE); 3971 3972 /* clear pending rx interrupts */ 3973 wr_reg16(info, SSR, IRQ_RXIDLE + IRQ_RXOVER); 3974 3975 rdma_reset(info); 3976 3977 info->rx_enabled = false; 3978 info->rx_restart = false; 3979 } 3980 3981 static void rx_start(struct slgt_info *info) 3982 { 3983 unsigned short val; 3984 3985 slgt_irq_off(info, IRQ_RXOVER + IRQ_RXDATA); 3986 3987 /* clear pending rx overrun IRQ */ 3988 wr_reg16(info, SSR, IRQ_RXOVER); 3989 3990 /* reset and disable receiver */ 3991 val = rd_reg16(info, RCR) & ~BIT1; /* clear enable bit */ 3992 wr_reg16(info, RCR, (unsigned short)(val | BIT2)); /* set reset bit */ 3993 wr_reg16(info, RCR, val); /* clear reset bit */ 3994 3995 rdma_reset(info); 3996 reset_rbufs(info); 3997 3998 if (info->rx_pio) { 3999 /* rx request when rx FIFO not empty */ 4000 wr_reg16(info, SCR, (unsigned short)(rd_reg16(info, SCR) & ~BIT14)); 4001 slgt_irq_on(info, IRQ_RXDATA); 4002 if (info->params.mode == MGSL_MODE_ASYNC) { 4003 /* enable saving of rx status */ 4004 wr_reg32(info, RDCSR, BIT6); 4005 } 4006 } else { 4007 /* rx request when rx FIFO half full */ 4008 wr_reg16(info, SCR, (unsigned short)(rd_reg16(info, SCR) | BIT14)); 4009 /* set 1st descriptor address */ 4010 wr_reg32(info, RDDAR, info->rbufs[0].pdesc); 4011 4012 if (info->params.mode != MGSL_MODE_ASYNC) { 4013 /* enable rx DMA and DMA interrupt */ 4014 wr_reg32(info, RDCSR, (BIT2 + BIT0)); 4015 } else { 4016 /* enable saving of rx status, rx DMA and DMA interrupt */ 4017 wr_reg32(info, RDCSR, (BIT6 + BIT2 + BIT0)); 4018 } 4019 } 4020 4021 slgt_irq_on(info, IRQ_RXOVER); 4022 4023 /* enable receiver */ 4024 wr_reg16(info, RCR, (unsigned short)(rd_reg16(info, RCR) | BIT1)); 4025 4026 info->rx_restart = false; 4027 info->rx_enabled = true; 4028 } 4029 4030 static void tx_start(struct slgt_info *info) 4031 { 4032 if (!info->tx_enabled) { 4033 wr_reg16(info, TCR, 4034 (unsigned short)((rd_reg16(info, TCR) | BIT1) & ~BIT2)); 4035 info->tx_enabled = true; 4036 } 4037 4038 if (desc_count(info->tbufs[info->tbuf_start])) { 4039 info->drop_rts_on_tx_done = false; 4040 4041 if (info->params.mode != MGSL_MODE_ASYNC) { 4042 if (info->params.flags & HDLC_FLAG_AUTO_RTS) { 4043 get_signals(info); 4044 if (!(info->signals & SerialSignal_RTS)) { 4045 info->signals |= SerialSignal_RTS; 4046 set_signals(info); 4047 info->drop_rts_on_tx_done = true; 4048 } 4049 } 4050 4051 slgt_irq_off(info, IRQ_TXDATA); 4052 slgt_irq_on(info, IRQ_TXUNDER + IRQ_TXIDLE); 4053 /* clear tx idle and underrun status bits */ 4054 wr_reg16(info, SSR, (unsigned short)(IRQ_TXIDLE + IRQ_TXUNDER)); 4055 } else { 4056 slgt_irq_off(info, IRQ_TXDATA); 4057 slgt_irq_on(info, IRQ_TXIDLE); 4058 /* clear tx idle status bit */ 4059 wr_reg16(info, SSR, IRQ_TXIDLE); 4060 } 4061 /* set 1st descriptor address and start DMA */ 4062 wr_reg32(info, TDDAR, info->tbufs[info->tbuf_start].pdesc); 4063 wr_reg32(info, TDCSR, BIT2 + BIT0); 4064 info->tx_active = true; 4065 } 4066 } 4067 4068 static void tx_stop(struct slgt_info *info) 4069 { 4070 unsigned short val; 4071 4072 del_timer(&info->tx_timer); 4073 4074 tdma_reset(info); 4075 4076 /* reset and disable transmitter */ 4077 val = rd_reg16(info, TCR) & ~BIT1; /* clear enable bit */ 4078 wr_reg16(info, TCR, (unsigned short)(val | BIT2)); /* set reset bit */ 4079 4080 slgt_irq_off(info, IRQ_TXDATA + IRQ_TXIDLE + IRQ_TXUNDER); 4081 4082 /* clear tx idle and underrun status bit */ 4083 wr_reg16(info, SSR, (unsigned short)(IRQ_TXIDLE + IRQ_TXUNDER)); 4084 4085 reset_tbufs(info); 4086 4087 info->tx_enabled = false; 4088 info->tx_active = false; 4089 } 4090 4091 static void reset_port(struct slgt_info *info) 4092 { 4093 if (!info->reg_addr) 4094 return; 4095 4096 tx_stop(info); 4097 rx_stop(info); 4098 4099 info->signals &= ~(SerialSignal_RTS | SerialSignal_DTR); 4100 set_signals(info); 4101 4102 slgt_irq_off(info, IRQ_ALL | IRQ_MASTER); 4103 } 4104 4105 static void reset_adapter(struct slgt_info *info) 4106 { 4107 int i; 4108 for (i=0; i < info->port_count; ++i) { 4109 if (info->port_array[i]) 4110 reset_port(info->port_array[i]); 4111 } 4112 } 4113 4114 static void async_mode(struct slgt_info *info) 4115 { 4116 unsigned short val; 4117 4118 slgt_irq_off(info, IRQ_ALL | IRQ_MASTER); 4119 tx_stop(info); 4120 rx_stop(info); 4121 4122 /* TCR (tx control) 4123 * 4124 * 15..13 mode, 010=async 4125 * 12..10 encoding, 000=NRZ 4126 * 09 parity enable 4127 * 08 1=odd parity, 0=even parity 4128 * 07 1=RTS driver control 4129 * 06 1=break enable 4130 * 05..04 character length 4131 * 00=5 bits 4132 * 01=6 bits 4133 * 10=7 bits 4134 * 11=8 bits 4135 * 03 0=1 stop bit, 1=2 stop bits 4136 * 02 reset 4137 * 01 enable 4138 * 00 auto-CTS enable 4139 */ 4140 val = 0x4000; 4141 4142 if (info->if_mode & MGSL_INTERFACE_RTS_EN) 4143 val |= BIT7; 4144 4145 if (info->params.parity != ASYNC_PARITY_NONE) { 4146 val |= BIT9; 4147 if (info->params.parity == ASYNC_PARITY_ODD) 4148 val |= BIT8; 4149 } 4150 4151 switch (info->params.data_bits) 4152 { 4153 case 6: val |= BIT4; break; 4154 case 7: val |= BIT5; break; 4155 case 8: val |= BIT5 + BIT4; break; 4156 } 4157 4158 if (info->params.stop_bits != 1) 4159 val |= BIT3; 4160 4161 if (info->params.flags & HDLC_FLAG_AUTO_CTS) 4162 val |= BIT0; 4163 4164 wr_reg16(info, TCR, val); 4165 4166 /* RCR (rx control) 4167 * 4168 * 15..13 mode, 010=async 4169 * 12..10 encoding, 000=NRZ 4170 * 09 parity enable 4171 * 08 1=odd parity, 0=even parity 4172 * 07..06 reserved, must be 0 4173 * 05..04 character length 4174 * 00=5 bits 4175 * 01=6 bits 4176 * 10=7 bits 4177 * 11=8 bits 4178 * 03 reserved, must be zero 4179 * 02 reset 4180 * 01 enable 4181 * 00 auto-DCD enable 4182 */ 4183 val = 0x4000; 4184 4185 if (info->params.parity != ASYNC_PARITY_NONE) { 4186 val |= BIT9; 4187 if (info->params.parity == ASYNC_PARITY_ODD) 4188 val |= BIT8; 4189 } 4190 4191 switch (info->params.data_bits) 4192 { 4193 case 6: val |= BIT4; break; 4194 case 7: val |= BIT5; break; 4195 case 8: val |= BIT5 + BIT4; break; 4196 } 4197 4198 if (info->params.flags & HDLC_FLAG_AUTO_DCD) 4199 val |= BIT0; 4200 4201 wr_reg16(info, RCR, val); 4202 4203 /* CCR (clock control) 4204 * 4205 * 07..05 011 = tx clock source is BRG/16 4206 * 04..02 010 = rx clock source is BRG 4207 * 01 0 = auxclk disabled 4208 * 00 1 = BRG enabled 4209 * 4210 * 0110 1001 4211 */ 4212 wr_reg8(info, CCR, 0x69); 4213 4214 msc_set_vcr(info); 4215 4216 /* SCR (serial control) 4217 * 4218 * 15 1=tx req on FIFO half empty 4219 * 14 1=rx req on FIFO half full 4220 * 13 tx data IRQ enable 4221 * 12 tx idle IRQ enable 4222 * 11 rx break on IRQ enable 4223 * 10 rx data IRQ enable 4224 * 09 rx break off IRQ enable 4225 * 08 overrun IRQ enable 4226 * 07 DSR IRQ enable 4227 * 06 CTS IRQ enable 4228 * 05 DCD IRQ enable 4229 * 04 RI IRQ enable 4230 * 03 0=16x sampling, 1=8x sampling 4231 * 02 1=txd->rxd internal loopback enable 4232 * 01 reserved, must be zero 4233 * 00 1=master IRQ enable 4234 */ 4235 val = BIT15 + BIT14 + BIT0; 4236 /* JCR[8] : 1 = x8 async mode feature available */ 4237 if ((rd_reg32(info, JCR) & BIT8) && info->params.data_rate && 4238 ((info->base_clock < (info->params.data_rate * 16)) || 4239 (info->base_clock % (info->params.data_rate * 16)))) { 4240 /* use 8x sampling */ 4241 val |= BIT3; 4242 set_rate(info, info->params.data_rate * 8); 4243 } else { 4244 /* use 16x sampling */ 4245 set_rate(info, info->params.data_rate * 16); 4246 } 4247 wr_reg16(info, SCR, val); 4248 4249 slgt_irq_on(info, IRQ_RXBREAK | IRQ_RXOVER); 4250 4251 if (info->params.loopback) 4252 enable_loopback(info); 4253 } 4254 4255 static void sync_mode(struct slgt_info *info) 4256 { 4257 unsigned short val; 4258 4259 slgt_irq_off(info, IRQ_ALL | IRQ_MASTER); 4260 tx_stop(info); 4261 rx_stop(info); 4262 4263 /* TCR (tx control) 4264 * 4265 * 15..13 mode 4266 * 000=HDLC/SDLC 4267 * 001=raw bit synchronous 4268 * 010=asynchronous/isochronous 4269 * 011=monosync byte synchronous 4270 * 100=bisync byte synchronous 4271 * 101=xsync byte synchronous 4272 * 12..10 encoding 4273 * 09 CRC enable 4274 * 08 CRC32 4275 * 07 1=RTS driver control 4276 * 06 preamble enable 4277 * 05..04 preamble length 4278 * 03 share open/close flag 4279 * 02 reset 4280 * 01 enable 4281 * 00 auto-CTS enable 4282 */ 4283 val = BIT2; 4284 4285 switch(info->params.mode) { 4286 case MGSL_MODE_XSYNC: 4287 val |= BIT15 + BIT13; 4288 break; 4289 case MGSL_MODE_MONOSYNC: val |= BIT14 + BIT13; break; 4290 case MGSL_MODE_BISYNC: val |= BIT15; break; 4291 case MGSL_MODE_RAW: val |= BIT13; break; 4292 } 4293 if (info->if_mode & MGSL_INTERFACE_RTS_EN) 4294 val |= BIT7; 4295 4296 switch(info->params.encoding) 4297 { 4298 case HDLC_ENCODING_NRZB: val |= BIT10; break; 4299 case HDLC_ENCODING_NRZI_MARK: val |= BIT11; break; 4300 case HDLC_ENCODING_NRZI: val |= BIT11 + BIT10; break; 4301 case HDLC_ENCODING_BIPHASE_MARK: val |= BIT12; break; 4302 case HDLC_ENCODING_BIPHASE_SPACE: val |= BIT12 + BIT10; break; 4303 case HDLC_ENCODING_BIPHASE_LEVEL: val |= BIT12 + BIT11; break; 4304 case HDLC_ENCODING_DIFF_BIPHASE_LEVEL: val |= BIT12 + BIT11 + BIT10; break; 4305 } 4306 4307 switch (info->params.crc_type & HDLC_CRC_MASK) 4308 { 4309 case HDLC_CRC_16_CCITT: val |= BIT9; break; 4310 case HDLC_CRC_32_CCITT: val |= BIT9 + BIT8; break; 4311 } 4312 4313 if (info->params.preamble != HDLC_PREAMBLE_PATTERN_NONE) 4314 val |= BIT6; 4315 4316 switch (info->params.preamble_length) 4317 { 4318 case HDLC_PREAMBLE_LENGTH_16BITS: val |= BIT5; break; 4319 case HDLC_PREAMBLE_LENGTH_32BITS: val |= BIT4; break; 4320 case HDLC_PREAMBLE_LENGTH_64BITS: val |= BIT5 + BIT4; break; 4321 } 4322 4323 if (info->params.flags & HDLC_FLAG_AUTO_CTS) 4324 val |= BIT0; 4325 4326 wr_reg16(info, TCR, val); 4327 4328 /* TPR (transmit preamble) */ 4329 4330 switch (info->params.preamble) 4331 { 4332 case HDLC_PREAMBLE_PATTERN_FLAGS: val = 0x7e; break; 4333 case HDLC_PREAMBLE_PATTERN_ONES: val = 0xff; break; 4334 case HDLC_PREAMBLE_PATTERN_ZEROS: val = 0x00; break; 4335 case HDLC_PREAMBLE_PATTERN_10: val = 0x55; break; 4336 case HDLC_PREAMBLE_PATTERN_01: val = 0xaa; break; 4337 default: val = 0x7e; break; 4338 } 4339 wr_reg8(info, TPR, (unsigned char)val); 4340 4341 /* RCR (rx control) 4342 * 4343 * 15..13 mode 4344 * 000=HDLC/SDLC 4345 * 001=raw bit synchronous 4346 * 010=asynchronous/isochronous 4347 * 011=monosync byte synchronous 4348 * 100=bisync byte synchronous 4349 * 101=xsync byte synchronous 4350 * 12..10 encoding 4351 * 09 CRC enable 4352 * 08 CRC32 4353 * 07..03 reserved, must be 0 4354 * 02 reset 4355 * 01 enable 4356 * 00 auto-DCD enable 4357 */ 4358 val = 0; 4359 4360 switch(info->params.mode) { 4361 case MGSL_MODE_XSYNC: 4362 val |= BIT15 + BIT13; 4363 break; 4364 case MGSL_MODE_MONOSYNC: val |= BIT14 + BIT13; break; 4365 case MGSL_MODE_BISYNC: val |= BIT15; break; 4366 case MGSL_MODE_RAW: val |= BIT13; break; 4367 } 4368 4369 switch(info->params.encoding) 4370 { 4371 case HDLC_ENCODING_NRZB: val |= BIT10; break; 4372 case HDLC_ENCODING_NRZI_MARK: val |= BIT11; break; 4373 case HDLC_ENCODING_NRZI: val |= BIT11 + BIT10; break; 4374 case HDLC_ENCODING_BIPHASE_MARK: val |= BIT12; break; 4375 case HDLC_ENCODING_BIPHASE_SPACE: val |= BIT12 + BIT10; break; 4376 case HDLC_ENCODING_BIPHASE_LEVEL: val |= BIT12 + BIT11; break; 4377 case HDLC_ENCODING_DIFF_BIPHASE_LEVEL: val |= BIT12 + BIT11 + BIT10; break; 4378 } 4379 4380 switch (info->params.crc_type & HDLC_CRC_MASK) 4381 { 4382 case HDLC_CRC_16_CCITT: val |= BIT9; break; 4383 case HDLC_CRC_32_CCITT: val |= BIT9 + BIT8; break; 4384 } 4385 4386 if (info->params.flags & HDLC_FLAG_AUTO_DCD) 4387 val |= BIT0; 4388 4389 wr_reg16(info, RCR, val); 4390 4391 /* CCR (clock control) 4392 * 4393 * 07..05 tx clock source 4394 * 04..02 rx clock source 4395 * 01 auxclk enable 4396 * 00 BRG enable 4397 */ 4398 val = 0; 4399 4400 if (info->params.flags & HDLC_FLAG_TXC_BRG) 4401 { 4402 // when RxC source is DPLL, BRG generates 16X DPLL 4403 // reference clock, so take TxC from BRG/16 to get 4404 // transmit clock at actual data rate 4405 if (info->params.flags & HDLC_FLAG_RXC_DPLL) 4406 val |= BIT6 + BIT5; /* 011, txclk = BRG/16 */ 4407 else 4408 val |= BIT6; /* 010, txclk = BRG */ 4409 } 4410 else if (info->params.flags & HDLC_FLAG_TXC_DPLL) 4411 val |= BIT7; /* 100, txclk = DPLL Input */ 4412 else if (info->params.flags & HDLC_FLAG_TXC_RXCPIN) 4413 val |= BIT5; /* 001, txclk = RXC Input */ 4414 4415 if (info->params.flags & HDLC_FLAG_RXC_BRG) 4416 val |= BIT3; /* 010, rxclk = BRG */ 4417 else if (info->params.flags & HDLC_FLAG_RXC_DPLL) 4418 val |= BIT4; /* 100, rxclk = DPLL */ 4419 else if (info->params.flags & HDLC_FLAG_RXC_TXCPIN) 4420 val |= BIT2; /* 001, rxclk = TXC Input */ 4421 4422 if (info->params.clock_speed) 4423 val |= BIT1 + BIT0; 4424 4425 wr_reg8(info, CCR, (unsigned char)val); 4426 4427 if (info->params.flags & (HDLC_FLAG_TXC_DPLL + HDLC_FLAG_RXC_DPLL)) 4428 { 4429 // program DPLL mode 4430 switch(info->params.encoding) 4431 { 4432 case HDLC_ENCODING_BIPHASE_MARK: 4433 case HDLC_ENCODING_BIPHASE_SPACE: 4434 val = BIT7; break; 4435 case HDLC_ENCODING_BIPHASE_LEVEL: 4436 case HDLC_ENCODING_DIFF_BIPHASE_LEVEL: 4437 val = BIT7 + BIT6; break; 4438 default: val = BIT6; // NRZ encodings 4439 } 4440 wr_reg16(info, RCR, (unsigned short)(rd_reg16(info, RCR) | val)); 4441 4442 // DPLL requires a 16X reference clock from BRG 4443 set_rate(info, info->params.clock_speed * 16); 4444 } 4445 else 4446 set_rate(info, info->params.clock_speed); 4447 4448 tx_set_idle(info); 4449 4450 msc_set_vcr(info); 4451 4452 /* SCR (serial control) 4453 * 4454 * 15 1=tx req on FIFO half empty 4455 * 14 1=rx req on FIFO half full 4456 * 13 tx data IRQ enable 4457 * 12 tx idle IRQ enable 4458 * 11 underrun IRQ enable 4459 * 10 rx data IRQ enable 4460 * 09 rx idle IRQ enable 4461 * 08 overrun IRQ enable 4462 * 07 DSR IRQ enable 4463 * 06 CTS IRQ enable 4464 * 05 DCD IRQ enable 4465 * 04 RI IRQ enable 4466 * 03 reserved, must be zero 4467 * 02 1=txd->rxd internal loopback enable 4468 * 01 reserved, must be zero 4469 * 00 1=master IRQ enable 4470 */ 4471 wr_reg16(info, SCR, BIT15 + BIT14 + BIT0); 4472 4473 if (info->params.loopback) 4474 enable_loopback(info); 4475 } 4476 4477 /* 4478 * set transmit idle mode 4479 */ 4480 static void tx_set_idle(struct slgt_info *info) 4481 { 4482 unsigned char val; 4483 unsigned short tcr; 4484 4485 /* if preamble enabled (tcr[6] == 1) then tx idle size = 8 bits 4486 * else tcr[5:4] = tx idle size: 00 = 8 bits, 01 = 16 bits 4487 */ 4488 tcr = rd_reg16(info, TCR); 4489 if (info->idle_mode & HDLC_TXIDLE_CUSTOM_16) { 4490 /* disable preamble, set idle size to 16 bits */ 4491 tcr = (tcr & ~(BIT6 + BIT5)) | BIT4; 4492 /* MSB of 16 bit idle specified in tx preamble register (TPR) */ 4493 wr_reg8(info, TPR, (unsigned char)((info->idle_mode >> 8) & 0xff)); 4494 } else if (!(tcr & BIT6)) { 4495 /* preamble is disabled, set idle size to 8 bits */ 4496 tcr &= ~(BIT5 + BIT4); 4497 } 4498 wr_reg16(info, TCR, tcr); 4499 4500 if (info->idle_mode & (HDLC_TXIDLE_CUSTOM_8 | HDLC_TXIDLE_CUSTOM_16)) { 4501 /* LSB of custom tx idle specified in tx idle register */ 4502 val = (unsigned char)(info->idle_mode & 0xff); 4503 } else { 4504 /* standard 8 bit idle patterns */ 4505 switch(info->idle_mode) 4506 { 4507 case HDLC_TXIDLE_FLAGS: val = 0x7e; break; 4508 case HDLC_TXIDLE_ALT_ZEROS_ONES: 4509 case HDLC_TXIDLE_ALT_MARK_SPACE: val = 0xaa; break; 4510 case HDLC_TXIDLE_ZEROS: 4511 case HDLC_TXIDLE_SPACE: val = 0x00; break; 4512 default: val = 0xff; 4513 } 4514 } 4515 4516 wr_reg8(info, TIR, val); 4517 } 4518 4519 /* 4520 * get state of V24 status (input) signals 4521 */ 4522 static void get_signals(struct slgt_info *info) 4523 { 4524 unsigned short status = rd_reg16(info, SSR); 4525 4526 /* clear all serial signals except RTS and DTR */ 4527 info->signals &= SerialSignal_RTS | SerialSignal_DTR; 4528 4529 if (status & BIT3) 4530 info->signals |= SerialSignal_DSR; 4531 if (status & BIT2) 4532 info->signals |= SerialSignal_CTS; 4533 if (status & BIT1) 4534 info->signals |= SerialSignal_DCD; 4535 if (status & BIT0) 4536 info->signals |= SerialSignal_RI; 4537 } 4538 4539 /* 4540 * set V.24 Control Register based on current configuration 4541 */ 4542 static void msc_set_vcr(struct slgt_info *info) 4543 { 4544 unsigned char val = 0; 4545 4546 /* VCR (V.24 control) 4547 * 4548 * 07..04 serial IF select 4549 * 03 DTR 4550 * 02 RTS 4551 * 01 LL 4552 * 00 RL 4553 */ 4554 4555 switch(info->if_mode & MGSL_INTERFACE_MASK) 4556 { 4557 case MGSL_INTERFACE_RS232: 4558 val |= BIT5; /* 0010 */ 4559 break; 4560 case MGSL_INTERFACE_V35: 4561 val |= BIT7 + BIT6 + BIT5; /* 1110 */ 4562 break; 4563 case MGSL_INTERFACE_RS422: 4564 val |= BIT6; /* 0100 */ 4565 break; 4566 } 4567 4568 if (info->if_mode & MGSL_INTERFACE_MSB_FIRST) 4569 val |= BIT4; 4570 if (info->signals & SerialSignal_DTR) 4571 val |= BIT3; 4572 if (info->signals & SerialSignal_RTS) 4573 val |= BIT2; 4574 if (info->if_mode & MGSL_INTERFACE_LL) 4575 val |= BIT1; 4576 if (info->if_mode & MGSL_INTERFACE_RL) 4577 val |= BIT0; 4578 wr_reg8(info, VCR, val); 4579 } 4580 4581 /* 4582 * set state of V24 control (output) signals 4583 */ 4584 static void set_signals(struct slgt_info *info) 4585 { 4586 unsigned char val = rd_reg8(info, VCR); 4587 if (info->signals & SerialSignal_DTR) 4588 val |= BIT3; 4589 else 4590 val &= ~BIT3; 4591 if (info->signals & SerialSignal_RTS) 4592 val |= BIT2; 4593 else 4594 val &= ~BIT2; 4595 wr_reg8(info, VCR, val); 4596 } 4597 4598 /* 4599 * free range of receive DMA buffers (i to last) 4600 */ 4601 static void free_rbufs(struct slgt_info *info, unsigned int i, unsigned int last) 4602 { 4603 int done = 0; 4604 4605 while(!done) { 4606 /* reset current buffer for reuse */ 4607 info->rbufs[i].status = 0; 4608 set_desc_count(info->rbufs[i], info->rbuf_fill_level); 4609 if (i == last) 4610 done = 1; 4611 if (++i == info->rbuf_count) 4612 i = 0; 4613 } 4614 info->rbuf_current = i; 4615 } 4616 4617 /* 4618 * mark all receive DMA buffers as free 4619 */ 4620 static void reset_rbufs(struct slgt_info *info) 4621 { 4622 free_rbufs(info, 0, info->rbuf_count - 1); 4623 info->rbuf_fill_index = 0; 4624 info->rbuf_fill_count = 0; 4625 } 4626 4627 /* 4628 * pass receive HDLC frame to upper layer 4629 * 4630 * return true if frame available, otherwise false 4631 */ 4632 static bool rx_get_frame(struct slgt_info *info) 4633 { 4634 unsigned int start, end; 4635 unsigned short status; 4636 unsigned int framesize = 0; 4637 unsigned long flags; 4638 struct tty_struct *tty = info->port.tty; 4639 unsigned char addr_field = 0xff; 4640 unsigned int crc_size = 0; 4641 4642 switch (info->params.crc_type & HDLC_CRC_MASK) { 4643 case HDLC_CRC_16_CCITT: crc_size = 2; break; 4644 case HDLC_CRC_32_CCITT: crc_size = 4; break; 4645 } 4646 4647 check_again: 4648 4649 framesize = 0; 4650 addr_field = 0xff; 4651 start = end = info->rbuf_current; 4652 4653 for (;;) { 4654 if (!desc_complete(info->rbufs[end])) 4655 goto cleanup; 4656 4657 if (framesize == 0 && info->params.addr_filter != 0xff) 4658 addr_field = info->rbufs[end].buf[0]; 4659 4660 framesize += desc_count(info->rbufs[end]); 4661 4662 if (desc_eof(info->rbufs[end])) 4663 break; 4664 4665 if (++end == info->rbuf_count) 4666 end = 0; 4667 4668 if (end == info->rbuf_current) { 4669 if (info->rx_enabled){ 4670 spin_lock_irqsave(&info->lock,flags); 4671 rx_start(info); 4672 spin_unlock_irqrestore(&info->lock,flags); 4673 } 4674 goto cleanup; 4675 } 4676 } 4677 4678 /* status 4679 * 4680 * 15 buffer complete 4681 * 14..06 reserved 4682 * 05..04 residue 4683 * 02 eof (end of frame) 4684 * 01 CRC error 4685 * 00 abort 4686 */ 4687 status = desc_status(info->rbufs[end]); 4688 4689 /* ignore CRC bit if not using CRC (bit is undefined) */ 4690 if ((info->params.crc_type & HDLC_CRC_MASK) == HDLC_CRC_NONE) 4691 status &= ~BIT1; 4692 4693 if (framesize == 0 || 4694 (addr_field != 0xff && addr_field != info->params.addr_filter)) { 4695 free_rbufs(info, start, end); 4696 goto check_again; 4697 } 4698 4699 if (framesize < (2 + crc_size) || status & BIT0) { 4700 info->icount.rxshort++; 4701 framesize = 0; 4702 } else if (status & BIT1) { 4703 info->icount.rxcrc++; 4704 if (!(info->params.crc_type & HDLC_CRC_RETURN_EX)) 4705 framesize = 0; 4706 } 4707 4708 #if SYNCLINK_GENERIC_HDLC 4709 if (framesize == 0) { 4710 info->netdev->stats.rx_errors++; 4711 info->netdev->stats.rx_frame_errors++; 4712 } 4713 #endif 4714 4715 DBGBH(("%s rx frame status=%04X size=%d\n", 4716 info->device_name, status, framesize)); 4717 DBGDATA(info, info->rbufs[start].buf, min_t(int, framesize, info->rbuf_fill_level), "rx"); 4718 4719 if (framesize) { 4720 if (!(info->params.crc_type & HDLC_CRC_RETURN_EX)) { 4721 framesize -= crc_size; 4722 crc_size = 0; 4723 } 4724 4725 if (framesize > info->max_frame_size + crc_size) 4726 info->icount.rxlong++; 4727 else { 4728 /* copy dma buffer(s) to contiguous temp buffer */ 4729 int copy_count = framesize; 4730 int i = start; 4731 unsigned char *p = info->tmp_rbuf; 4732 info->tmp_rbuf_count = framesize; 4733 4734 info->icount.rxok++; 4735 4736 while(copy_count) { 4737 int partial_count = min_t(int, copy_count, info->rbuf_fill_level); 4738 memcpy(p, info->rbufs[i].buf, partial_count); 4739 p += partial_count; 4740 copy_count -= partial_count; 4741 if (++i == info->rbuf_count) 4742 i = 0; 4743 } 4744 4745 if (info->params.crc_type & HDLC_CRC_RETURN_EX) { 4746 *p = (status & BIT1) ? RX_CRC_ERROR : RX_OK; 4747 framesize++; 4748 } 4749 4750 #if SYNCLINK_GENERIC_HDLC 4751 if (info->netcount) 4752 hdlcdev_rx(info,info->tmp_rbuf, framesize); 4753 else 4754 #endif 4755 ldisc_receive_buf(tty, info->tmp_rbuf, info->flag_buf, framesize); 4756 } 4757 } 4758 free_rbufs(info, start, end); 4759 return true; 4760 4761 cleanup: 4762 return false; 4763 } 4764 4765 /* 4766 * pass receive buffer (RAW synchronous mode) to tty layer 4767 * return true if buffer available, otherwise false 4768 */ 4769 static bool rx_get_buf(struct slgt_info *info) 4770 { 4771 unsigned int i = info->rbuf_current; 4772 unsigned int count; 4773 4774 if (!desc_complete(info->rbufs[i])) 4775 return false; 4776 count = desc_count(info->rbufs[i]); 4777 switch(info->params.mode) { 4778 case MGSL_MODE_MONOSYNC: 4779 case MGSL_MODE_BISYNC: 4780 case MGSL_MODE_XSYNC: 4781 /* ignore residue in byte synchronous modes */ 4782 if (desc_residue(info->rbufs[i])) 4783 count--; 4784 break; 4785 } 4786 DBGDATA(info, info->rbufs[i].buf, count, "rx"); 4787 DBGINFO(("rx_get_buf size=%d\n", count)); 4788 if (count) 4789 ldisc_receive_buf(info->port.tty, info->rbufs[i].buf, 4790 info->flag_buf, count); 4791 free_rbufs(info, i, i); 4792 return true; 4793 } 4794 4795 static void reset_tbufs(struct slgt_info *info) 4796 { 4797 unsigned int i; 4798 info->tbuf_current = 0; 4799 for (i=0 ; i < info->tbuf_count ; i++) { 4800 info->tbufs[i].status = 0; 4801 info->tbufs[i].count = 0; 4802 } 4803 } 4804 4805 /* 4806 * return number of free transmit DMA buffers 4807 */ 4808 static unsigned int free_tbuf_count(struct slgt_info *info) 4809 { 4810 unsigned int count = 0; 4811 unsigned int i = info->tbuf_current; 4812 4813 do 4814 { 4815 if (desc_count(info->tbufs[i])) 4816 break; /* buffer in use */ 4817 ++count; 4818 if (++i == info->tbuf_count) 4819 i=0; 4820 } while (i != info->tbuf_current); 4821 4822 /* if tx DMA active, last zero count buffer is in use */ 4823 if (count && (rd_reg32(info, TDCSR) & BIT0)) 4824 --count; 4825 4826 return count; 4827 } 4828 4829 /* 4830 * return number of bytes in unsent transmit DMA buffers 4831 * and the serial controller tx FIFO 4832 */ 4833 static unsigned int tbuf_bytes(struct slgt_info *info) 4834 { 4835 unsigned int total_count = 0; 4836 unsigned int i = info->tbuf_current; 4837 unsigned int reg_value; 4838 unsigned int count; 4839 unsigned int active_buf_count = 0; 4840 4841 /* 4842 * Add descriptor counts for all tx DMA buffers. 4843 * If count is zero (cleared by DMA controller after read), 4844 * the buffer is complete or is actively being read from. 4845 * 4846 * Record buf_count of last buffer with zero count starting 4847 * from current ring position. buf_count is mirror 4848 * copy of count and is not cleared by serial controller. 4849 * If DMA controller is active, that buffer is actively 4850 * being read so add to total. 4851 */ 4852 do { 4853 count = desc_count(info->tbufs[i]); 4854 if (count) 4855 total_count += count; 4856 else if (!total_count) 4857 active_buf_count = info->tbufs[i].buf_count; 4858 if (++i == info->tbuf_count) 4859 i = 0; 4860 } while (i != info->tbuf_current); 4861 4862 /* read tx DMA status register */ 4863 reg_value = rd_reg32(info, TDCSR); 4864 4865 /* if tx DMA active, last zero count buffer is in use */ 4866 if (reg_value & BIT0) 4867 total_count += active_buf_count; 4868 4869 /* add tx FIFO count = reg_value[15..8] */ 4870 total_count += (reg_value >> 8) & 0xff; 4871 4872 /* if transmitter active add one byte for shift register */ 4873 if (info->tx_active) 4874 total_count++; 4875 4876 return total_count; 4877 } 4878 4879 /* 4880 * load data into transmit DMA buffer ring and start transmitter if needed 4881 * return true if data accepted, otherwise false (buffers full) 4882 */ 4883 static bool tx_load(struct slgt_info *info, const char *buf, unsigned int size) 4884 { 4885 unsigned short count; 4886 unsigned int i; 4887 struct slgt_desc *d; 4888 4889 /* check required buffer space */ 4890 if (DIV_ROUND_UP(size, DMABUFSIZE) > free_tbuf_count(info)) 4891 return false; 4892 4893 DBGDATA(info, buf, size, "tx"); 4894 4895 /* 4896 * copy data to one or more DMA buffers in circular ring 4897 * tbuf_start = first buffer for this data 4898 * tbuf_current = next free buffer 4899 * 4900 * Copy all data before making data visible to DMA controller by 4901 * setting descriptor count of the first buffer. 4902 * This prevents an active DMA controller from reading the first DMA 4903 * buffers of a frame and stopping before the final buffers are filled. 4904 */ 4905 4906 info->tbuf_start = i = info->tbuf_current; 4907 4908 while (size) { 4909 d = &info->tbufs[i]; 4910 4911 count = (unsigned short)((size > DMABUFSIZE) ? DMABUFSIZE : size); 4912 memcpy(d->buf, buf, count); 4913 4914 size -= count; 4915 buf += count; 4916 4917 /* 4918 * set EOF bit for last buffer of HDLC frame or 4919 * for every buffer in raw mode 4920 */ 4921 if ((!size && info->params.mode == MGSL_MODE_HDLC) || 4922 info->params.mode == MGSL_MODE_RAW) 4923 set_desc_eof(*d, 1); 4924 else 4925 set_desc_eof(*d, 0); 4926 4927 /* set descriptor count for all but first buffer */ 4928 if (i != info->tbuf_start) 4929 set_desc_count(*d, count); 4930 d->buf_count = count; 4931 4932 if (++i == info->tbuf_count) 4933 i = 0; 4934 } 4935 4936 info->tbuf_current = i; 4937 4938 /* set first buffer count to make new data visible to DMA controller */ 4939 d = &info->tbufs[info->tbuf_start]; 4940 set_desc_count(*d, d->buf_count); 4941 4942 /* start transmitter if needed and update transmit timeout */ 4943 if (!info->tx_active) 4944 tx_start(info); 4945 update_tx_timer(info); 4946 4947 return true; 4948 } 4949 4950 static int register_test(struct slgt_info *info) 4951 { 4952 static unsigned short patterns[] = 4953 {0x0000, 0xffff, 0xaaaa, 0x5555, 0x6969, 0x9696}; 4954 static unsigned int count = ARRAY_SIZE(patterns); 4955 unsigned int i; 4956 int rc = 0; 4957 4958 for (i=0 ; i < count ; i++) { 4959 wr_reg16(info, TIR, patterns[i]); 4960 wr_reg16(info, BDR, patterns[(i+1)%count]); 4961 if ((rd_reg16(info, TIR) != patterns[i]) || 4962 (rd_reg16(info, BDR) != patterns[(i+1)%count])) { 4963 rc = -ENODEV; 4964 break; 4965 } 4966 } 4967 info->gpio_present = (rd_reg32(info, JCR) & BIT5) ? 1 : 0; 4968 info->init_error = rc ? 0 : DiagStatus_AddressFailure; 4969 return rc; 4970 } 4971 4972 static int irq_test(struct slgt_info *info) 4973 { 4974 unsigned long timeout; 4975 unsigned long flags; 4976 struct tty_struct *oldtty = info->port.tty; 4977 u32 speed = info->params.data_rate; 4978 4979 info->params.data_rate = 921600; 4980 info->port.tty = NULL; 4981 4982 spin_lock_irqsave(&info->lock, flags); 4983 async_mode(info); 4984 slgt_irq_on(info, IRQ_TXIDLE); 4985 4986 /* enable transmitter */ 4987 wr_reg16(info, TCR, 4988 (unsigned short)(rd_reg16(info, TCR) | BIT1)); 4989 4990 /* write one byte and wait for tx idle */ 4991 wr_reg16(info, TDR, 0); 4992 4993 /* assume failure */ 4994 info->init_error = DiagStatus_IrqFailure; 4995 info->irq_occurred = false; 4996 4997 spin_unlock_irqrestore(&info->lock, flags); 4998 4999 timeout=100; 5000 while(timeout-- && !info->irq_occurred) 5001 msleep_interruptible(10); 5002 5003 spin_lock_irqsave(&info->lock,flags); 5004 reset_port(info); 5005 spin_unlock_irqrestore(&info->lock,flags); 5006 5007 info->params.data_rate = speed; 5008 info->port.tty = oldtty; 5009 5010 info->init_error = info->irq_occurred ? 0 : DiagStatus_IrqFailure; 5011 return info->irq_occurred ? 0 : -ENODEV; 5012 } 5013 5014 static int loopback_test_rx(struct slgt_info *info) 5015 { 5016 unsigned char *src, *dest; 5017 int count; 5018 5019 if (desc_complete(info->rbufs[0])) { 5020 count = desc_count(info->rbufs[0]); 5021 src = info->rbufs[0].buf; 5022 dest = info->tmp_rbuf; 5023 5024 for( ; count ; count-=2, src+=2) { 5025 /* src=data byte (src+1)=status byte */ 5026 if (!(*(src+1) & (BIT9 + BIT8))) { 5027 *dest = *src; 5028 dest++; 5029 info->tmp_rbuf_count++; 5030 } 5031 } 5032 DBGDATA(info, info->tmp_rbuf, info->tmp_rbuf_count, "rx"); 5033 return 1; 5034 } 5035 return 0; 5036 } 5037 5038 static int loopback_test(struct slgt_info *info) 5039 { 5040 #define TESTFRAMESIZE 20 5041 5042 unsigned long timeout; 5043 u16 count = TESTFRAMESIZE; 5044 unsigned char buf[TESTFRAMESIZE]; 5045 int rc = -ENODEV; 5046 unsigned long flags; 5047 5048 struct tty_struct *oldtty = info->port.tty; 5049 MGSL_PARAMS params; 5050 5051 memcpy(¶ms, &info->params, sizeof(params)); 5052 5053 info->params.mode = MGSL_MODE_ASYNC; 5054 info->params.data_rate = 921600; 5055 info->params.loopback = 1; 5056 info->port.tty = NULL; 5057 5058 /* build and send transmit frame */ 5059 for (count = 0; count < TESTFRAMESIZE; ++count) 5060 buf[count] = (unsigned char)count; 5061 5062 info->tmp_rbuf_count = 0; 5063 memset(info->tmp_rbuf, 0, TESTFRAMESIZE); 5064 5065 /* program hardware for HDLC and enabled receiver */ 5066 spin_lock_irqsave(&info->lock,flags); 5067 async_mode(info); 5068 rx_start(info); 5069 tx_load(info, buf, count); 5070 spin_unlock_irqrestore(&info->lock, flags); 5071 5072 /* wait for receive complete */ 5073 for (timeout = 100; timeout; --timeout) { 5074 msleep_interruptible(10); 5075 if (loopback_test_rx(info)) { 5076 rc = 0; 5077 break; 5078 } 5079 } 5080 5081 /* verify received frame length and contents */ 5082 if (!rc && (info->tmp_rbuf_count != count || 5083 memcmp(buf, info->tmp_rbuf, count))) { 5084 rc = -ENODEV; 5085 } 5086 5087 spin_lock_irqsave(&info->lock,flags); 5088 reset_adapter(info); 5089 spin_unlock_irqrestore(&info->lock,flags); 5090 5091 memcpy(&info->params, ¶ms, sizeof(info->params)); 5092 info->port.tty = oldtty; 5093 5094 info->init_error = rc ? DiagStatus_DmaFailure : 0; 5095 return rc; 5096 } 5097 5098 static int adapter_test(struct slgt_info *info) 5099 { 5100 DBGINFO(("testing %s\n", info->device_name)); 5101 if (register_test(info) < 0) { 5102 printk("register test failure %s addr=%08X\n", 5103 info->device_name, info->phys_reg_addr); 5104 } else if (irq_test(info) < 0) { 5105 printk("IRQ test failure %s IRQ=%d\n", 5106 info->device_name, info->irq_level); 5107 } else if (loopback_test(info) < 0) { 5108 printk("loopback test failure %s\n", info->device_name); 5109 } 5110 return info->init_error; 5111 } 5112 5113 /* 5114 * transmit timeout handler 5115 */ 5116 static void tx_timeout(unsigned long context) 5117 { 5118 struct slgt_info *info = (struct slgt_info*)context; 5119 unsigned long flags; 5120 5121 DBGINFO(("%s tx_timeout\n", info->device_name)); 5122 if(info->tx_active && info->params.mode == MGSL_MODE_HDLC) { 5123 info->icount.txtimeout++; 5124 } 5125 spin_lock_irqsave(&info->lock,flags); 5126 tx_stop(info); 5127 spin_unlock_irqrestore(&info->lock,flags); 5128 5129 #if SYNCLINK_GENERIC_HDLC 5130 if (info->netcount) 5131 hdlcdev_tx_done(info); 5132 else 5133 #endif 5134 bh_transmit(info); 5135 } 5136 5137 /* 5138 * receive buffer polling timer 5139 */ 5140 static void rx_timeout(unsigned long context) 5141 { 5142 struct slgt_info *info = (struct slgt_info*)context; 5143 unsigned long flags; 5144 5145 DBGINFO(("%s rx_timeout\n", info->device_name)); 5146 spin_lock_irqsave(&info->lock, flags); 5147 info->pending_bh |= BH_RECEIVE; 5148 spin_unlock_irqrestore(&info->lock, flags); 5149 bh_handler(&info->task); 5150 } 5151 5152