xref: /openbmc/linux/drivers/tty/serial/zs.c (revision ce932d0c5589e9766e089c22c66890dfc48fbd94)
1 /*
2  * zs.c: Serial port driver for IOASIC DECstations.
3  *
4  * Derived from drivers/sbus/char/sunserial.c by Paul Mackerras.
5  * Derived from drivers/macintosh/macserial.c by Harald Koerfgen.
6  *
7  * DECstation changes
8  * Copyright (C) 1998-2000 Harald Koerfgen
9  * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
10  *
11  * For the rest of the code the original Copyright applies:
12  * Copyright (C) 1996 Paul Mackerras (Paul.Mackerras@cs.anu.edu.au)
13  * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
14  *
15  *
16  * Note: for IOASIC systems the wiring is as follows:
17  *
18  * mouse/keyboard:
19  * DIN-7 MJ-4  signal        SCC
20  * 2     1     TxD       <-  A.TxD
21  * 3     4     RxD       ->  A.RxD
22  *
23  * EIA-232/EIA-423:
24  * DB-25 MMJ-6 signal        SCC
25  * 2     2     TxD       <-  B.TxD
26  * 3     5     RxD       ->  B.RxD
27  * 4           RTS       <- ~A.RTS
28  * 5           CTS       -> ~B.CTS
29  * 6     6     DSR       -> ~A.SYNC
30  * 8           CD        -> ~B.DCD
31  * 12          DSRS(DCE) -> ~A.CTS  (*)
32  * 15          TxC       ->  B.TxC
33  * 17          RxC       ->  B.RxC
34  * 20    1     DTR       <- ~A.DTR
35  * 22          RI        -> ~A.DCD
36  * 23          DSRS(DTE) <- ~B.RTS
37  *
38  * (*) EIA-232 defines the signal at this pin to be SCD, while DSRS(DCE)
39  *     is shared with DSRS(DTE) at pin 23.
40  *
41  * As you can immediately notice the wiring of the RTS, DTR and DSR signals
42  * is a bit odd.  This makes the handling of port B unnecessarily
43  * complicated and prevents the use of some automatic modes of operation.
44  */
45 
46 #if defined(CONFIG_SERIAL_ZS_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
47 #define SUPPORT_SYSRQ
48 #endif
49 
50 #include <linux/bug.h>
51 #include <linux/console.h>
52 #include <linux/delay.h>
53 #include <linux/errno.h>
54 #include <linux/init.h>
55 #include <linux/interrupt.h>
56 #include <linux/io.h>
57 #include <linux/ioport.h>
58 #include <linux/irqflags.h>
59 #include <linux/kernel.h>
60 #include <linux/major.h>
61 #include <linux/serial.h>
62 #include <linux/serial_core.h>
63 #include <linux/spinlock.h>
64 #include <linux/sysrq.h>
65 #include <linux/tty.h>
66 #include <linux/tty_flip.h>
67 #include <linux/types.h>
68 
69 #include <linux/atomic.h>
70 
71 #include <asm/dec/interrupts.h>
72 #include <asm/dec/ioasic_addrs.h>
73 #include <asm/dec/system.h>
74 
75 #include "zs.h"
76 
77 
78 MODULE_AUTHOR("Maciej W. Rozycki <macro@linux-mips.org>");
79 MODULE_DESCRIPTION("DECstation Z85C30 serial driver");
80 MODULE_LICENSE("GPL");
81 
82 
83 static char zs_name[] __initdata = "DECstation Z85C30 serial driver version ";
84 static char zs_version[] __initdata = "0.10";
85 
86 /*
87  * It would be nice to dynamically allocate everything that
88  * depends on ZS_NUM_SCCS, so we could support any number of
89  * Z85C30s, but for now...
90  */
91 #define ZS_NUM_SCCS	2		/* Max # of ZS chips supported.  */
92 #define ZS_NUM_CHAN	2		/* 2 channels per chip.  */
93 #define ZS_CHAN_A	0		/* Index of the channel A.  */
94 #define ZS_CHAN_B	1		/* Index of the channel B.  */
95 #define ZS_CHAN_IO_SIZE 8		/* IOMEM space size.  */
96 #define ZS_CHAN_IO_STRIDE 4		/* Register alignment.  */
97 #define ZS_CHAN_IO_OFFSET 1		/* The SCC resides on the high byte
98 					   of the 16-bit IOBUS.  */
99 #define ZS_CLOCK        7372800 	/* Z85C30 PCLK input clock rate.  */
100 
101 #define to_zport(uport) container_of(uport, struct zs_port, port)
102 
103 struct zs_parms {
104 	resource_size_t scc[ZS_NUM_SCCS];
105 	int irq[ZS_NUM_SCCS];
106 };
107 
108 static struct zs_scc zs_sccs[ZS_NUM_SCCS];
109 
110 static u8 zs_init_regs[ZS_NUM_REGS] __initdata = {
111 	0,				/* write 0 */
112 	PAR_SPEC,			/* write 1 */
113 	0,				/* write 2 */
114 	0,				/* write 3 */
115 	X16CLK | SB1,			/* write 4 */
116 	0,				/* write 5 */
117 	0, 0, 0,			/* write 6, 7, 8 */
118 	MIE | DLC | NV,			/* write 9 */
119 	NRZ,				/* write 10 */
120 	TCBR | RCBR,			/* write 11 */
121 	0, 0,				/* BRG time constant, write 12 + 13 */
122 	BRSRC | BRENABL,		/* write 14 */
123 	0,				/* write 15 */
124 };
125 
126 /*
127  * Debugging.
128  */
129 #undef ZS_DEBUG_REGS
130 
131 
132 /*
133  * Reading and writing Z85C30 registers.
134  */
135 static void recovery_delay(void)
136 {
137 	udelay(2);
138 }
139 
140 static u8 read_zsreg(struct zs_port *zport, int reg)
141 {
142 	void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET;
143 	u8 retval;
144 
145 	if (reg != 0) {
146 		writeb(reg & 0xf, control);
147 		fast_iob();
148 		recovery_delay();
149 	}
150 	retval = readb(control);
151 	recovery_delay();
152 	return retval;
153 }
154 
155 static void write_zsreg(struct zs_port *zport, int reg, u8 value)
156 {
157 	void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET;
158 
159 	if (reg != 0) {
160 		writeb(reg & 0xf, control);
161 		fast_iob(); recovery_delay();
162 	}
163 	writeb(value, control);
164 	fast_iob();
165 	recovery_delay();
166 	return;
167 }
168 
169 static u8 read_zsdata(struct zs_port *zport)
170 {
171 	void __iomem *data = zport->port.membase +
172 			     ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET;
173 	u8 retval;
174 
175 	retval = readb(data);
176 	recovery_delay();
177 	return retval;
178 }
179 
180 static void write_zsdata(struct zs_port *zport, u8 value)
181 {
182 	void __iomem *data = zport->port.membase +
183 			     ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET;
184 
185 	writeb(value, data);
186 	fast_iob();
187 	recovery_delay();
188 	return;
189 }
190 
191 #ifdef ZS_DEBUG_REGS
192 void zs_dump(void)
193 {
194 	struct zs_port *zport;
195 	int i, j;
196 
197 	for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) {
198 		zport = &zs_sccs[i / ZS_NUM_CHAN].zport[i % ZS_NUM_CHAN];
199 
200 		if (!zport->scc)
201 			continue;
202 
203 		for (j = 0; j < 16; j++)
204 			printk("W%-2d = 0x%02x\t", j, zport->regs[j]);
205 		printk("\n");
206 		for (j = 0; j < 16; j++)
207 			printk("R%-2d = 0x%02x\t", j, read_zsreg(zport, j));
208 		printk("\n\n");
209 	}
210 }
211 #endif
212 
213 
214 static void zs_spin_lock_cond_irq(spinlock_t *lock, int irq)
215 {
216 	if (irq)
217 		spin_lock_irq(lock);
218 	else
219 		spin_lock(lock);
220 }
221 
222 static void zs_spin_unlock_cond_irq(spinlock_t *lock, int irq)
223 {
224 	if (irq)
225 		spin_unlock_irq(lock);
226 	else
227 		spin_unlock(lock);
228 }
229 
230 static int zs_receive_drain(struct zs_port *zport)
231 {
232 	int loops = 10000;
233 
234 	while ((read_zsreg(zport, R0) & Rx_CH_AV) && --loops)
235 		read_zsdata(zport);
236 	return loops;
237 }
238 
239 static int zs_transmit_drain(struct zs_port *zport, int irq)
240 {
241 	struct zs_scc *scc = zport->scc;
242 	int loops = 10000;
243 
244 	while (!(read_zsreg(zport, R0) & Tx_BUF_EMP) && --loops) {
245 		zs_spin_unlock_cond_irq(&scc->zlock, irq);
246 		udelay(2);
247 		zs_spin_lock_cond_irq(&scc->zlock, irq);
248 	}
249 	return loops;
250 }
251 
252 static int zs_line_drain(struct zs_port *zport, int irq)
253 {
254 	struct zs_scc *scc = zport->scc;
255 	int loops = 10000;
256 
257 	while (!(read_zsreg(zport, R1) & ALL_SNT) && --loops) {
258 		zs_spin_unlock_cond_irq(&scc->zlock, irq);
259 		udelay(2);
260 		zs_spin_lock_cond_irq(&scc->zlock, irq);
261 	}
262 	return loops;
263 }
264 
265 
266 static void load_zsregs(struct zs_port *zport, u8 *regs, int irq)
267 {
268 	/* Let the current transmission finish.  */
269 	zs_line_drain(zport, irq);
270 	/* Load 'em up.  */
271 	write_zsreg(zport, R3, regs[3] & ~RxENABLE);
272 	write_zsreg(zport, R5, regs[5] & ~TxENAB);
273 	write_zsreg(zport, R4, regs[4]);
274 	write_zsreg(zport, R9, regs[9]);
275 	write_zsreg(zport, R1, regs[1]);
276 	write_zsreg(zport, R2, regs[2]);
277 	write_zsreg(zport, R10, regs[10]);
278 	write_zsreg(zport, R14, regs[14] & ~BRENABL);
279 	write_zsreg(zport, R11, regs[11]);
280 	write_zsreg(zport, R12, regs[12]);
281 	write_zsreg(zport, R13, regs[13]);
282 	write_zsreg(zport, R14, regs[14]);
283 	write_zsreg(zport, R15, regs[15]);
284 	if (regs[3] & RxENABLE)
285 		write_zsreg(zport, R3, regs[3]);
286 	if (regs[5] & TxENAB)
287 		write_zsreg(zport, R5, regs[5]);
288 	return;
289 }
290 
291 
292 /*
293  * Status handling routines.
294  */
295 
296 /*
297  * zs_tx_empty() -- get the transmitter empty status
298  *
299  * Purpose: Let user call ioctl() to get info when the UART physically
300  * 	    is emptied.  On bus types like RS485, the transmitter must
301  * 	    release the bus after transmitting.  This must be done when
302  * 	    the transmit shift register is empty, not be done when the
303  * 	    transmit holding register is empty.  This functionality
304  * 	    allows an RS485 driver to be written in user space.
305  */
306 static unsigned int zs_tx_empty(struct uart_port *uport)
307 {
308 	struct zs_port *zport = to_zport(uport);
309 	struct zs_scc *scc = zport->scc;
310 	unsigned long flags;
311 	u8 status;
312 
313 	spin_lock_irqsave(&scc->zlock, flags);
314 	status = read_zsreg(zport, R1);
315 	spin_unlock_irqrestore(&scc->zlock, flags);
316 
317 	return status & ALL_SNT ? TIOCSER_TEMT : 0;
318 }
319 
320 static unsigned int zs_raw_get_ab_mctrl(struct zs_port *zport_a,
321 					struct zs_port *zport_b)
322 {
323 	u8 status_a, status_b;
324 	unsigned int mctrl;
325 
326 	status_a = read_zsreg(zport_a, R0);
327 	status_b = read_zsreg(zport_b, R0);
328 
329 	mctrl = ((status_b & CTS) ? TIOCM_CTS : 0) |
330 		((status_b & DCD) ? TIOCM_CAR : 0) |
331 		((status_a & DCD) ? TIOCM_RNG : 0) |
332 		((status_a & SYNC_HUNT) ? TIOCM_DSR : 0);
333 
334 	return mctrl;
335 }
336 
337 static unsigned int zs_raw_get_mctrl(struct zs_port *zport)
338 {
339 	struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A];
340 
341 	return zport != zport_a ? zs_raw_get_ab_mctrl(zport_a, zport) : 0;
342 }
343 
344 static unsigned int zs_raw_xor_mctrl(struct zs_port *zport)
345 {
346 	struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A];
347 	unsigned int mmask, mctrl, delta;
348 	u8 mask_a, mask_b;
349 
350 	if (zport == zport_a)
351 		return 0;
352 
353 	mask_a = zport_a->regs[15];
354 	mask_b = zport->regs[15];
355 
356 	mmask = ((mask_b & CTSIE) ? TIOCM_CTS : 0) |
357 		((mask_b & DCDIE) ? TIOCM_CAR : 0) |
358 		((mask_a & DCDIE) ? TIOCM_RNG : 0) |
359 		((mask_a & SYNCIE) ? TIOCM_DSR : 0);
360 
361 	mctrl = zport->mctrl;
362 	if (mmask) {
363 		mctrl &= ~mmask;
364 		mctrl |= zs_raw_get_ab_mctrl(zport_a, zport) & mmask;
365 	}
366 
367 	delta = mctrl ^ zport->mctrl;
368 	if (delta)
369 		zport->mctrl = mctrl;
370 
371 	return delta;
372 }
373 
374 static unsigned int zs_get_mctrl(struct uart_port *uport)
375 {
376 	struct zs_port *zport = to_zport(uport);
377 	struct zs_scc *scc = zport->scc;
378 	unsigned int mctrl;
379 
380 	spin_lock(&scc->zlock);
381 	mctrl = zs_raw_get_mctrl(zport);
382 	spin_unlock(&scc->zlock);
383 
384 	return mctrl;
385 }
386 
387 static void zs_set_mctrl(struct uart_port *uport, unsigned int mctrl)
388 {
389 	struct zs_port *zport = to_zport(uport);
390 	struct zs_scc *scc = zport->scc;
391 	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
392 	u8 oldloop, newloop;
393 
394 	spin_lock(&scc->zlock);
395 	if (zport != zport_a) {
396 		if (mctrl & TIOCM_DTR)
397 			zport_a->regs[5] |= DTR;
398 		else
399 			zport_a->regs[5] &= ~DTR;
400 		if (mctrl & TIOCM_RTS)
401 			zport_a->regs[5] |= RTS;
402 		else
403 			zport_a->regs[5] &= ~RTS;
404 		write_zsreg(zport_a, R5, zport_a->regs[5]);
405 	}
406 
407 	/* Rarely modified, so don't poke at hardware unless necessary. */
408 	oldloop = zport->regs[14];
409 	newloop = oldloop;
410 	if (mctrl & TIOCM_LOOP)
411 		newloop |= LOOPBAK;
412 	else
413 		newloop &= ~LOOPBAK;
414 	if (newloop != oldloop) {
415 		zport->regs[14] = newloop;
416 		write_zsreg(zport, R14, zport->regs[14]);
417 	}
418 	spin_unlock(&scc->zlock);
419 }
420 
421 static void zs_raw_stop_tx(struct zs_port *zport)
422 {
423 	write_zsreg(zport, R0, RES_Tx_P);
424 	zport->tx_stopped = 1;
425 }
426 
427 static void zs_stop_tx(struct uart_port *uport)
428 {
429 	struct zs_port *zport = to_zport(uport);
430 	struct zs_scc *scc = zport->scc;
431 
432 	spin_lock(&scc->zlock);
433 	zs_raw_stop_tx(zport);
434 	spin_unlock(&scc->zlock);
435 }
436 
437 static void zs_raw_transmit_chars(struct zs_port *);
438 
439 static void zs_start_tx(struct uart_port *uport)
440 {
441 	struct zs_port *zport = to_zport(uport);
442 	struct zs_scc *scc = zport->scc;
443 
444 	spin_lock(&scc->zlock);
445 	if (zport->tx_stopped) {
446 		zs_transmit_drain(zport, 0);
447 		zport->tx_stopped = 0;
448 		zs_raw_transmit_chars(zport);
449 	}
450 	spin_unlock(&scc->zlock);
451 }
452 
453 static void zs_stop_rx(struct uart_port *uport)
454 {
455 	struct zs_port *zport = to_zport(uport);
456 	struct zs_scc *scc = zport->scc;
457 	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
458 
459 	spin_lock(&scc->zlock);
460 	zport->regs[15] &= ~BRKIE;
461 	zport->regs[1] &= ~(RxINT_MASK | TxINT_ENAB);
462 	zport->regs[1] |= RxINT_DISAB;
463 
464 	if (zport != zport_a) {
465 		/* A-side DCD tracks RI and SYNC tracks DSR.  */
466 		zport_a->regs[15] &= ~(DCDIE | SYNCIE);
467 		write_zsreg(zport_a, R15, zport_a->regs[15]);
468 		if (!(zport_a->regs[15] & BRKIE)) {
469 			zport_a->regs[1] &= ~EXT_INT_ENAB;
470 			write_zsreg(zport_a, R1, zport_a->regs[1]);
471 		}
472 
473 		/* This-side DCD tracks DCD and CTS tracks CTS.  */
474 		zport->regs[15] &= ~(DCDIE | CTSIE);
475 		zport->regs[1] &= ~EXT_INT_ENAB;
476 	} else {
477 		/* DCD tracks RI and SYNC tracks DSR for the B side.  */
478 		if (!(zport->regs[15] & (DCDIE | SYNCIE)))
479 			zport->regs[1] &= ~EXT_INT_ENAB;
480 	}
481 
482 	write_zsreg(zport, R15, zport->regs[15]);
483 	write_zsreg(zport, R1, zport->regs[1]);
484 	spin_unlock(&scc->zlock);
485 }
486 
487 static void zs_enable_ms(struct uart_port *uport)
488 {
489 	struct zs_port *zport = to_zport(uport);
490 	struct zs_scc *scc = zport->scc;
491 	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
492 
493 	if (zport == zport_a)
494 		return;
495 
496 	spin_lock(&scc->zlock);
497 
498 	/* Clear Ext interrupts if not being handled already.  */
499 	if (!(zport_a->regs[1] & EXT_INT_ENAB))
500 		write_zsreg(zport_a, R0, RES_EXT_INT);
501 
502 	/* A-side DCD tracks RI and SYNC tracks DSR.  */
503 	zport_a->regs[1] |= EXT_INT_ENAB;
504 	zport_a->regs[15] |= DCDIE | SYNCIE;
505 
506 	/* This-side DCD tracks DCD and CTS tracks CTS.  */
507 	zport->regs[15] |= DCDIE | CTSIE;
508 
509 	zs_raw_xor_mctrl(zport);
510 
511 	write_zsreg(zport_a, R1, zport_a->regs[1]);
512 	write_zsreg(zport_a, R15, zport_a->regs[15]);
513 	write_zsreg(zport, R15, zport->regs[15]);
514 	spin_unlock(&scc->zlock);
515 }
516 
517 static void zs_break_ctl(struct uart_port *uport, int break_state)
518 {
519 	struct zs_port *zport = to_zport(uport);
520 	struct zs_scc *scc = zport->scc;
521 	unsigned long flags;
522 
523 	spin_lock_irqsave(&scc->zlock, flags);
524 	if (break_state == -1)
525 		zport->regs[5] |= SND_BRK;
526 	else
527 		zport->regs[5] &= ~SND_BRK;
528 	write_zsreg(zport, R5, zport->regs[5]);
529 	spin_unlock_irqrestore(&scc->zlock, flags);
530 }
531 
532 
533 /*
534  * Interrupt handling routines.
535  */
536 #define Rx_BRK 0x0100			/* BREAK event software flag.  */
537 #define Rx_SYS 0x0200			/* SysRq event software flag.  */
538 
539 static void zs_receive_chars(struct zs_port *zport)
540 {
541 	struct uart_port *uport = &zport->port;
542 	struct zs_scc *scc = zport->scc;
543 	struct uart_icount *icount;
544 	unsigned int avail, status, ch, flag;
545 	int count;
546 
547 	for (count = 16; count; count--) {
548 		spin_lock(&scc->zlock);
549 		avail = read_zsreg(zport, R0) & Rx_CH_AV;
550 		spin_unlock(&scc->zlock);
551 		if (!avail)
552 			break;
553 
554 		spin_lock(&scc->zlock);
555 		status = read_zsreg(zport, R1) & (Rx_OVR | FRM_ERR | PAR_ERR);
556 		ch = read_zsdata(zport);
557 		spin_unlock(&scc->zlock);
558 
559 		flag = TTY_NORMAL;
560 
561 		icount = &uport->icount;
562 		icount->rx++;
563 
564 		/* Handle the null char got when BREAK is removed.  */
565 		if (!ch)
566 			status |= zport->tty_break;
567 		if (unlikely(status &
568 			     (Rx_OVR | FRM_ERR | PAR_ERR | Rx_SYS | Rx_BRK))) {
569 			zport->tty_break = 0;
570 
571 			/* Reset the error indication.  */
572 			if (status & (Rx_OVR | FRM_ERR | PAR_ERR)) {
573 				spin_lock(&scc->zlock);
574 				write_zsreg(zport, R0, ERR_RES);
575 				spin_unlock(&scc->zlock);
576 			}
577 
578 			if (status & (Rx_SYS | Rx_BRK)) {
579 				icount->brk++;
580 				/* SysRq discards the null char.  */
581 				if (status & Rx_SYS)
582 					continue;
583 			} else if (status & FRM_ERR)
584 				icount->frame++;
585 			else if (status & PAR_ERR)
586 				icount->parity++;
587 			if (status & Rx_OVR)
588 				icount->overrun++;
589 
590 			status &= uport->read_status_mask;
591 			if (status & Rx_BRK)
592 				flag = TTY_BREAK;
593 			else if (status & FRM_ERR)
594 				flag = TTY_FRAME;
595 			else if (status & PAR_ERR)
596 				flag = TTY_PARITY;
597 		}
598 
599 		if (uart_handle_sysrq_char(uport, ch))
600 			continue;
601 
602 		uart_insert_char(uport, status, Rx_OVR, ch, flag);
603 	}
604 
605 	tty_flip_buffer_push(uport->state->port.tty);
606 }
607 
608 static void zs_raw_transmit_chars(struct zs_port *zport)
609 {
610 	struct circ_buf *xmit = &zport->port.state->xmit;
611 
612 	/* XON/XOFF chars.  */
613 	if (zport->port.x_char) {
614 		write_zsdata(zport, zport->port.x_char);
615 		zport->port.icount.tx++;
616 		zport->port.x_char = 0;
617 		return;
618 	}
619 
620 	/* If nothing to do or stopped or hardware stopped.  */
621 	if (uart_circ_empty(xmit) || uart_tx_stopped(&zport->port)) {
622 		zs_raw_stop_tx(zport);
623 		return;
624 	}
625 
626 	/* Send char.  */
627 	write_zsdata(zport, xmit->buf[xmit->tail]);
628 	xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
629 	zport->port.icount.tx++;
630 
631 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
632 		uart_write_wakeup(&zport->port);
633 
634 	/* Are we are done?  */
635 	if (uart_circ_empty(xmit))
636 		zs_raw_stop_tx(zport);
637 }
638 
639 static void zs_transmit_chars(struct zs_port *zport)
640 {
641 	struct zs_scc *scc = zport->scc;
642 
643 	spin_lock(&scc->zlock);
644 	zs_raw_transmit_chars(zport);
645 	spin_unlock(&scc->zlock);
646 }
647 
648 static void zs_status_handle(struct zs_port *zport, struct zs_port *zport_a)
649 {
650 	struct uart_port *uport = &zport->port;
651 	struct zs_scc *scc = zport->scc;
652 	unsigned int delta;
653 	u8 status, brk;
654 
655 	spin_lock(&scc->zlock);
656 
657 	/* Get status from Read Register 0.  */
658 	status = read_zsreg(zport, R0);
659 
660 	if (zport->regs[15] & BRKIE) {
661 		brk = status & BRK_ABRT;
662 		if (brk && !zport->brk) {
663 			spin_unlock(&scc->zlock);
664 			if (uart_handle_break(uport))
665 				zport->tty_break = Rx_SYS;
666 			else
667 				zport->tty_break = Rx_BRK;
668 			spin_lock(&scc->zlock);
669 		}
670 		zport->brk = brk;
671 	}
672 
673 	if (zport != zport_a) {
674 		delta = zs_raw_xor_mctrl(zport);
675 		spin_unlock(&scc->zlock);
676 
677 		if (delta & TIOCM_CTS)
678 			uart_handle_cts_change(uport,
679 					       zport->mctrl & TIOCM_CTS);
680 		if (delta & TIOCM_CAR)
681 			uart_handle_dcd_change(uport,
682 					       zport->mctrl & TIOCM_CAR);
683 		if (delta & TIOCM_RNG)
684 			uport->icount.dsr++;
685 		if (delta & TIOCM_DSR)
686 			uport->icount.rng++;
687 
688 		if (delta)
689 			wake_up_interruptible(&uport->state->port.delta_msr_wait);
690 
691 		spin_lock(&scc->zlock);
692 	}
693 
694 	/* Clear the status condition...  */
695 	write_zsreg(zport, R0, RES_EXT_INT);
696 
697 	spin_unlock(&scc->zlock);
698 }
699 
700 /*
701  * This is the Z85C30 driver's generic interrupt routine.
702  */
703 static irqreturn_t zs_interrupt(int irq, void *dev_id)
704 {
705 	struct zs_scc *scc = dev_id;
706 	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
707 	struct zs_port *zport_b = &scc->zport[ZS_CHAN_B];
708 	irqreturn_t status = IRQ_NONE;
709 	u8 zs_intreg;
710 	int count;
711 
712 	/*
713 	 * NOTE: The read register 3, which holds the irq status,
714 	 *       does so for both channels on each chip.  Although
715 	 *       the status value itself must be read from the A
716 	 *       channel and is only valid when read from channel A.
717 	 *       Yes... broken hardware...
718 	 */
719 	for (count = 16; count; count--) {
720 		spin_lock(&scc->zlock);
721 		zs_intreg = read_zsreg(zport_a, R3);
722 		spin_unlock(&scc->zlock);
723 		if (!zs_intreg)
724 			break;
725 
726 		/*
727 		 * We do not like losing characters, so we prioritise
728 		 * interrupt sources a little bit differently than
729 		 * the SCC would, was it allowed to.
730 		 */
731 		if (zs_intreg & CHBRxIP)
732 			zs_receive_chars(zport_b);
733 		if (zs_intreg & CHARxIP)
734 			zs_receive_chars(zport_a);
735 		if (zs_intreg & CHBEXT)
736 			zs_status_handle(zport_b, zport_a);
737 		if (zs_intreg & CHAEXT)
738 			zs_status_handle(zport_a, zport_a);
739 		if (zs_intreg & CHBTxIP)
740 			zs_transmit_chars(zport_b);
741 		if (zs_intreg & CHATxIP)
742 			zs_transmit_chars(zport_a);
743 
744 		status = IRQ_HANDLED;
745 	}
746 
747 	return status;
748 }
749 
750 
751 /*
752  * Finally, routines used to initialize the serial port.
753  */
754 static int zs_startup(struct uart_port *uport)
755 {
756 	struct zs_port *zport = to_zport(uport);
757 	struct zs_scc *scc = zport->scc;
758 	unsigned long flags;
759 	int irq_guard;
760 	int ret;
761 
762 	irq_guard = atomic_add_return(1, &scc->irq_guard);
763 	if (irq_guard == 1) {
764 		ret = request_irq(zport->port.irq, zs_interrupt,
765 				  IRQF_SHARED, "scc", scc);
766 		if (ret) {
767 			atomic_add(-1, &scc->irq_guard);
768 			printk(KERN_ERR "zs: can't get irq %d\n",
769 			       zport->port.irq);
770 			return ret;
771 		}
772 	}
773 
774 	spin_lock_irqsave(&scc->zlock, flags);
775 
776 	/* Clear the receive FIFO.  */
777 	zs_receive_drain(zport);
778 
779 	/* Clear the interrupt registers.  */
780 	write_zsreg(zport, R0, ERR_RES);
781 	write_zsreg(zport, R0, RES_Tx_P);
782 	/* But Ext only if not being handled already.  */
783 	if (!(zport->regs[1] & EXT_INT_ENAB))
784 		write_zsreg(zport, R0, RES_EXT_INT);
785 
786 	/* Finally, enable sequencing and interrupts.  */
787 	zport->regs[1] &= ~RxINT_MASK;
788 	zport->regs[1] |= RxINT_ALL | TxINT_ENAB | EXT_INT_ENAB;
789 	zport->regs[3] |= RxENABLE;
790 	zport->regs[15] |= BRKIE;
791 	write_zsreg(zport, R1, zport->regs[1]);
792 	write_zsreg(zport, R3, zport->regs[3]);
793 	write_zsreg(zport, R5, zport->regs[5]);
794 	write_zsreg(zport, R15, zport->regs[15]);
795 
796 	/* Record the current state of RR0.  */
797 	zport->mctrl = zs_raw_get_mctrl(zport);
798 	zport->brk = read_zsreg(zport, R0) & BRK_ABRT;
799 
800 	zport->tx_stopped = 1;
801 
802 	spin_unlock_irqrestore(&scc->zlock, flags);
803 
804 	return 0;
805 }
806 
807 static void zs_shutdown(struct uart_port *uport)
808 {
809 	struct zs_port *zport = to_zport(uport);
810 	struct zs_scc *scc = zport->scc;
811 	unsigned long flags;
812 	int irq_guard;
813 
814 	spin_lock_irqsave(&scc->zlock, flags);
815 
816 	zport->regs[3] &= ~RxENABLE;
817 	write_zsreg(zport, R5, zport->regs[5]);
818 	write_zsreg(zport, R3, zport->regs[3]);
819 
820 	spin_unlock_irqrestore(&scc->zlock, flags);
821 
822 	irq_guard = atomic_add_return(-1, &scc->irq_guard);
823 	if (!irq_guard)
824 		free_irq(zport->port.irq, scc);
825 }
826 
827 
828 static void zs_reset(struct zs_port *zport)
829 {
830 	struct zs_scc *scc = zport->scc;
831 	int irq;
832 	unsigned long flags;
833 
834 	spin_lock_irqsave(&scc->zlock, flags);
835 	irq = !irqs_disabled_flags(flags);
836 	if (!scc->initialised) {
837 		/* Reset the pointer first, just in case...  */
838 		read_zsreg(zport, R0);
839 		/* And let the current transmission finish.  */
840 		zs_line_drain(zport, irq);
841 		write_zsreg(zport, R9, FHWRES);
842 		udelay(10);
843 		write_zsreg(zport, R9, 0);
844 		scc->initialised = 1;
845 	}
846 	load_zsregs(zport, zport->regs, irq);
847 	spin_unlock_irqrestore(&scc->zlock, flags);
848 }
849 
850 static void zs_set_termios(struct uart_port *uport, struct ktermios *termios,
851 			   struct ktermios *old_termios)
852 {
853 	struct zs_port *zport = to_zport(uport);
854 	struct zs_scc *scc = zport->scc;
855 	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
856 	int irq;
857 	unsigned int baud, brg;
858 	unsigned long flags;
859 
860 	spin_lock_irqsave(&scc->zlock, flags);
861 	irq = !irqs_disabled_flags(flags);
862 
863 	/* Byte size.  */
864 	zport->regs[3] &= ~RxNBITS_MASK;
865 	zport->regs[5] &= ~TxNBITS_MASK;
866 	switch (termios->c_cflag & CSIZE) {
867 	case CS5:
868 		zport->regs[3] |= Rx5;
869 		zport->regs[5] |= Tx5;
870 		break;
871 	case CS6:
872 		zport->regs[3] |= Rx6;
873 		zport->regs[5] |= Tx6;
874 		break;
875 	case CS7:
876 		zport->regs[3] |= Rx7;
877 		zport->regs[5] |= Tx7;
878 		break;
879 	case CS8:
880 	default:
881 		zport->regs[3] |= Rx8;
882 		zport->regs[5] |= Tx8;
883 		break;
884 	}
885 
886 	/* Parity and stop bits.  */
887 	zport->regs[4] &= ~(XCLK_MASK | SB_MASK | PAR_ENA | PAR_EVEN);
888 	if (termios->c_cflag & CSTOPB)
889 		zport->regs[4] |= SB2;
890 	else
891 		zport->regs[4] |= SB1;
892 	if (termios->c_cflag & PARENB)
893 		zport->regs[4] |= PAR_ENA;
894 	if (!(termios->c_cflag & PARODD))
895 		zport->regs[4] |= PAR_EVEN;
896 	switch (zport->clk_mode) {
897 	case 64:
898 		zport->regs[4] |= X64CLK;
899 		break;
900 	case 32:
901 		zport->regs[4] |= X32CLK;
902 		break;
903 	case 16:
904 		zport->regs[4] |= X16CLK;
905 		break;
906 	case 1:
907 		zport->regs[4] |= X1CLK;
908 		break;
909 	default:
910 		BUG();
911 	}
912 
913 	baud = uart_get_baud_rate(uport, termios, old_termios, 0,
914 				  uport->uartclk / zport->clk_mode / 4);
915 
916 	brg = ZS_BPS_TO_BRG(baud, uport->uartclk / zport->clk_mode);
917 	zport->regs[12] = brg & 0xff;
918 	zport->regs[13] = (brg >> 8) & 0xff;
919 
920 	uart_update_timeout(uport, termios->c_cflag, baud);
921 
922 	uport->read_status_mask = Rx_OVR;
923 	if (termios->c_iflag & INPCK)
924 		uport->read_status_mask |= FRM_ERR | PAR_ERR;
925 	if (termios->c_iflag & (BRKINT | PARMRK))
926 		uport->read_status_mask |= Rx_BRK;
927 
928 	uport->ignore_status_mask = 0;
929 	if (termios->c_iflag & IGNPAR)
930 		uport->ignore_status_mask |= FRM_ERR | PAR_ERR;
931 	if (termios->c_iflag & IGNBRK) {
932 		uport->ignore_status_mask |= Rx_BRK;
933 		if (termios->c_iflag & IGNPAR)
934 			uport->ignore_status_mask |= Rx_OVR;
935 	}
936 
937 	if (termios->c_cflag & CREAD)
938 		zport->regs[3] |= RxENABLE;
939 	else
940 		zport->regs[3] &= ~RxENABLE;
941 
942 	if (zport != zport_a) {
943 		if (!(termios->c_cflag & CLOCAL)) {
944 			zport->regs[15] |= DCDIE;
945 		} else
946 			zport->regs[15] &= ~DCDIE;
947 		if (termios->c_cflag & CRTSCTS) {
948 			zport->regs[15] |= CTSIE;
949 		} else
950 			zport->regs[15] &= ~CTSIE;
951 		zs_raw_xor_mctrl(zport);
952 	}
953 
954 	/* Load up the new values.  */
955 	load_zsregs(zport, zport->regs, irq);
956 
957 	spin_unlock_irqrestore(&scc->zlock, flags);
958 }
959 
960 /*
961  * Hack alert!
962  * Required solely so that the initial PROM-based console
963  * works undisturbed in parallel with this one.
964  */
965 static void zs_pm(struct uart_port *uport, unsigned int state,
966 		  unsigned int oldstate)
967 {
968 	struct zs_port *zport = to_zport(uport);
969 
970 	if (state < 3)
971 		zport->regs[5] |= TxENAB;
972 	else
973 		zport->regs[5] &= ~TxENAB;
974 	write_zsreg(zport, R5, zport->regs[5]);
975 }
976 
977 
978 static const char *zs_type(struct uart_port *uport)
979 {
980 	return "Z85C30 SCC";
981 }
982 
983 static void zs_release_port(struct uart_port *uport)
984 {
985 	iounmap(uport->membase);
986 	uport->membase = 0;
987 	release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE);
988 }
989 
990 static int zs_map_port(struct uart_port *uport)
991 {
992 	if (!uport->membase)
993 		uport->membase = ioremap_nocache(uport->mapbase,
994 						 ZS_CHAN_IO_SIZE);
995 	if (!uport->membase) {
996 		printk(KERN_ERR "zs: Cannot map MMIO\n");
997 		return -ENOMEM;
998 	}
999 	return 0;
1000 }
1001 
1002 static int zs_request_port(struct uart_port *uport)
1003 {
1004 	int ret;
1005 
1006 	if (!request_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE, "scc")) {
1007 		printk(KERN_ERR "zs: Unable to reserve MMIO resource\n");
1008 		return -EBUSY;
1009 	}
1010 	ret = zs_map_port(uport);
1011 	if (ret) {
1012 		release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE);
1013 		return ret;
1014 	}
1015 	return 0;
1016 }
1017 
1018 static void zs_config_port(struct uart_port *uport, int flags)
1019 {
1020 	struct zs_port *zport = to_zport(uport);
1021 
1022 	if (flags & UART_CONFIG_TYPE) {
1023 		if (zs_request_port(uport))
1024 			return;
1025 
1026 		uport->type = PORT_ZS;
1027 
1028 		zs_reset(zport);
1029 	}
1030 }
1031 
1032 static int zs_verify_port(struct uart_port *uport, struct serial_struct *ser)
1033 {
1034 	struct zs_port *zport = to_zport(uport);
1035 	int ret = 0;
1036 
1037 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_ZS)
1038 		ret = -EINVAL;
1039 	if (ser->irq != uport->irq)
1040 		ret = -EINVAL;
1041 	if (ser->baud_base != uport->uartclk / zport->clk_mode / 4)
1042 		ret = -EINVAL;
1043 	return ret;
1044 }
1045 
1046 
1047 static struct uart_ops zs_ops = {
1048 	.tx_empty	= zs_tx_empty,
1049 	.set_mctrl	= zs_set_mctrl,
1050 	.get_mctrl	= zs_get_mctrl,
1051 	.stop_tx	= zs_stop_tx,
1052 	.start_tx	= zs_start_tx,
1053 	.stop_rx	= zs_stop_rx,
1054 	.enable_ms	= zs_enable_ms,
1055 	.break_ctl	= zs_break_ctl,
1056 	.startup	= zs_startup,
1057 	.shutdown	= zs_shutdown,
1058 	.set_termios	= zs_set_termios,
1059 	.pm		= zs_pm,
1060 	.type		= zs_type,
1061 	.release_port	= zs_release_port,
1062 	.request_port	= zs_request_port,
1063 	.config_port	= zs_config_port,
1064 	.verify_port	= zs_verify_port,
1065 };
1066 
1067 /*
1068  * Initialize Z85C30 port structures.
1069  */
1070 static int __init zs_probe_sccs(void)
1071 {
1072 	static int probed;
1073 	struct zs_parms zs_parms;
1074 	int chip, side, irq;
1075 	int n_chips = 0;
1076 	int i;
1077 
1078 	if (probed)
1079 		return 0;
1080 
1081 	irq = dec_interrupt[DEC_IRQ_SCC0];
1082 	if (irq >= 0) {
1083 		zs_parms.scc[n_chips] = IOASIC_SCC0;
1084 		zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC0];
1085 		n_chips++;
1086 	}
1087 	irq = dec_interrupt[DEC_IRQ_SCC1];
1088 	if (irq >= 0) {
1089 		zs_parms.scc[n_chips] = IOASIC_SCC1;
1090 		zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC1];
1091 		n_chips++;
1092 	}
1093 	if (!n_chips)
1094 		return -ENXIO;
1095 
1096 	probed = 1;
1097 
1098 	for (chip = 0; chip < n_chips; chip++) {
1099 		spin_lock_init(&zs_sccs[chip].zlock);
1100 		for (side = 0; side < ZS_NUM_CHAN; side++) {
1101 			struct zs_port *zport = &zs_sccs[chip].zport[side];
1102 			struct uart_port *uport = &zport->port;
1103 
1104 			zport->scc	= &zs_sccs[chip];
1105 			zport->clk_mode	= 16;
1106 
1107 			uport->irq	= zs_parms.irq[chip];
1108 			uport->uartclk	= ZS_CLOCK;
1109 			uport->fifosize	= 1;
1110 			uport->iotype	= UPIO_MEM;
1111 			uport->flags	= UPF_BOOT_AUTOCONF;
1112 			uport->ops	= &zs_ops;
1113 			uport->line	= chip * ZS_NUM_CHAN + side;
1114 			uport->mapbase	= dec_kn_slot_base +
1115 					  zs_parms.scc[chip] +
1116 					  (side ^ ZS_CHAN_B) * ZS_CHAN_IO_SIZE;
1117 
1118 			for (i = 0; i < ZS_NUM_REGS; i++)
1119 				zport->regs[i] = zs_init_regs[i];
1120 		}
1121 	}
1122 
1123 	return 0;
1124 }
1125 
1126 
1127 #ifdef CONFIG_SERIAL_ZS_CONSOLE
1128 static void zs_console_putchar(struct uart_port *uport, int ch)
1129 {
1130 	struct zs_port *zport = to_zport(uport);
1131 	struct zs_scc *scc = zport->scc;
1132 	int irq;
1133 	unsigned long flags;
1134 
1135 	spin_lock_irqsave(&scc->zlock, flags);
1136 	irq = !irqs_disabled_flags(flags);
1137 	if (zs_transmit_drain(zport, irq))
1138 		write_zsdata(zport, ch);
1139 	spin_unlock_irqrestore(&scc->zlock, flags);
1140 }
1141 
1142 /*
1143  * Print a string to the serial port trying not to disturb
1144  * any possible real use of the port...
1145  */
1146 static void zs_console_write(struct console *co, const char *s,
1147 			     unsigned int count)
1148 {
1149 	int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN;
1150 	struct zs_port *zport = &zs_sccs[chip].zport[side];
1151 	struct zs_scc *scc = zport->scc;
1152 	unsigned long flags;
1153 	u8 txint, txenb;
1154 	int irq;
1155 
1156 	/* Disable transmit interrupts and enable the transmitter. */
1157 	spin_lock_irqsave(&scc->zlock, flags);
1158 	txint = zport->regs[1];
1159 	txenb = zport->regs[5];
1160 	if (txint & TxINT_ENAB) {
1161 		zport->regs[1] = txint & ~TxINT_ENAB;
1162 		write_zsreg(zport, R1, zport->regs[1]);
1163 	}
1164 	if (!(txenb & TxENAB)) {
1165 		zport->regs[5] = txenb | TxENAB;
1166 		write_zsreg(zport, R5, zport->regs[5]);
1167 	}
1168 	spin_unlock_irqrestore(&scc->zlock, flags);
1169 
1170 	uart_console_write(&zport->port, s, count, zs_console_putchar);
1171 
1172 	/* Restore transmit interrupts and the transmitter enable. */
1173 	spin_lock_irqsave(&scc->zlock, flags);
1174 	irq = !irqs_disabled_flags(flags);
1175 	zs_line_drain(zport, irq);
1176 	if (!(txenb & TxENAB)) {
1177 		zport->regs[5] &= ~TxENAB;
1178 		write_zsreg(zport, R5, zport->regs[5]);
1179 	}
1180 	if (txint & TxINT_ENAB) {
1181 		zport->regs[1] |= TxINT_ENAB;
1182 		write_zsreg(zport, R1, zport->regs[1]);
1183 	}
1184 	spin_unlock_irqrestore(&scc->zlock, flags);
1185 }
1186 
1187 /*
1188  * Setup serial console baud/bits/parity.  We do two things here:
1189  * - construct a cflag setting for the first uart_open()
1190  * - initialise the serial port
1191  * Return non-zero if we didn't find a serial port.
1192  */
1193 static int __init zs_console_setup(struct console *co, char *options)
1194 {
1195 	int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN;
1196 	struct zs_port *zport = &zs_sccs[chip].zport[side];
1197 	struct uart_port *uport = &zport->port;
1198 	int baud = 9600;
1199 	int bits = 8;
1200 	int parity = 'n';
1201 	int flow = 'n';
1202 	int ret;
1203 
1204 	ret = zs_map_port(uport);
1205 	if (ret)
1206 		return ret;
1207 
1208 	zs_reset(zport);
1209 	zs_pm(uport, 0, -1);
1210 
1211 	if (options)
1212 		uart_parse_options(options, &baud, &parity, &bits, &flow);
1213 	return uart_set_options(uport, co, baud, parity, bits, flow);
1214 }
1215 
1216 static struct uart_driver zs_reg;
1217 static struct console zs_console = {
1218 	.name	= "ttyS",
1219 	.write	= zs_console_write,
1220 	.device	= uart_console_device,
1221 	.setup	= zs_console_setup,
1222 	.flags	= CON_PRINTBUFFER,
1223 	.index	= -1,
1224 	.data	= &zs_reg,
1225 };
1226 
1227 /*
1228  *	Register console.
1229  */
1230 static int __init zs_serial_console_init(void)
1231 {
1232 	int ret;
1233 
1234 	ret = zs_probe_sccs();
1235 	if (ret)
1236 		return ret;
1237 	register_console(&zs_console);
1238 
1239 	return 0;
1240 }
1241 
1242 console_initcall(zs_serial_console_init);
1243 
1244 #define SERIAL_ZS_CONSOLE	&zs_console
1245 #else
1246 #define SERIAL_ZS_CONSOLE	NULL
1247 #endif /* CONFIG_SERIAL_ZS_CONSOLE */
1248 
1249 static struct uart_driver zs_reg = {
1250 	.owner			= THIS_MODULE,
1251 	.driver_name		= "serial",
1252 	.dev_name		= "ttyS",
1253 	.major			= TTY_MAJOR,
1254 	.minor			= 64,
1255 	.nr			= ZS_NUM_SCCS * ZS_NUM_CHAN,
1256 	.cons			= SERIAL_ZS_CONSOLE,
1257 };
1258 
1259 /* zs_init inits the driver. */
1260 static int __init zs_init(void)
1261 {
1262 	int i, ret;
1263 
1264 	pr_info("%s%s\n", zs_name, zs_version);
1265 
1266 	/* Find out how many Z85C30 SCCs we have.  */
1267 	ret = zs_probe_sccs();
1268 	if (ret)
1269 		return ret;
1270 
1271 	ret = uart_register_driver(&zs_reg);
1272 	if (ret)
1273 		return ret;
1274 
1275 	for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) {
1276 		struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN];
1277 		struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN];
1278 		struct uart_port *uport = &zport->port;
1279 
1280 		if (zport->scc)
1281 			uart_add_one_port(&zs_reg, uport);
1282 	}
1283 
1284 	return 0;
1285 }
1286 
1287 static void __exit zs_exit(void)
1288 {
1289 	int i;
1290 
1291 	for (i = ZS_NUM_SCCS * ZS_NUM_CHAN - 1; i >= 0; i--) {
1292 		struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN];
1293 		struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN];
1294 		struct uart_port *uport = &zport->port;
1295 
1296 		if (zport->scc)
1297 			uart_remove_one_port(&zs_reg, uport);
1298 	}
1299 
1300 	uart_unregister_driver(&zs_reg);
1301 }
1302 
1303 module_init(zs_init);
1304 module_exit(zs_exit);
1305