1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * zs.c: Serial port driver for IOASIC DECstations. 4 * 5 * Derived from drivers/sbus/char/sunserial.c by Paul Mackerras. 6 * Derived from drivers/macintosh/macserial.c by Harald Koerfgen. 7 * 8 * DECstation changes 9 * Copyright (C) 1998-2000 Harald Koerfgen 10 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki 11 * 12 * For the rest of the code the original Copyright applies: 13 * Copyright (C) 1996 Paul Mackerras (Paul.Mackerras@cs.anu.edu.au) 14 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) 15 * 16 * 17 * Note: for IOASIC systems the wiring is as follows: 18 * 19 * mouse/keyboard: 20 * DIN-7 MJ-4 signal SCC 21 * 2 1 TxD <- A.TxD 22 * 3 4 RxD -> A.RxD 23 * 24 * EIA-232/EIA-423: 25 * DB-25 MMJ-6 signal SCC 26 * 2 2 TxD <- B.TxD 27 * 3 5 RxD -> B.RxD 28 * 4 RTS <- ~A.RTS 29 * 5 CTS -> ~B.CTS 30 * 6 6 DSR -> ~A.SYNC 31 * 8 CD -> ~B.DCD 32 * 12 DSRS(DCE) -> ~A.CTS (*) 33 * 15 TxC -> B.TxC 34 * 17 RxC -> B.RxC 35 * 20 1 DTR <- ~A.DTR 36 * 22 RI -> ~A.DCD 37 * 23 DSRS(DTE) <- ~B.RTS 38 * 39 * (*) EIA-232 defines the signal at this pin to be SCD, while DSRS(DCE) 40 * is shared with DSRS(DTE) at pin 23. 41 * 42 * As you can immediately notice the wiring of the RTS, DTR and DSR signals 43 * is a bit odd. This makes the handling of port B unnecessarily 44 * complicated and prevents the use of some automatic modes of operation. 45 */ 46 47 #include <linux/bug.h> 48 #include <linux/console.h> 49 #include <linux/delay.h> 50 #include <linux/errno.h> 51 #include <linux/init.h> 52 #include <linux/interrupt.h> 53 #include <linux/io.h> 54 #include <linux/ioport.h> 55 #include <linux/irqflags.h> 56 #include <linux/kernel.h> 57 #include <linux/module.h> 58 #include <linux/major.h> 59 #include <linux/serial.h> 60 #include <linux/serial_core.h> 61 #include <linux/spinlock.h> 62 #include <linux/sysrq.h> 63 #include <linux/tty.h> 64 #include <linux/tty_flip.h> 65 #include <linux/types.h> 66 67 #include <linux/atomic.h> 68 69 #include <asm/dec/interrupts.h> 70 #include <asm/dec/ioasic_addrs.h> 71 #include <asm/dec/system.h> 72 73 #include "zs.h" 74 75 76 MODULE_AUTHOR("Maciej W. Rozycki <macro@linux-mips.org>"); 77 MODULE_DESCRIPTION("DECstation Z85C30 serial driver"); 78 MODULE_LICENSE("GPL"); 79 80 81 static char zs_name[] __initdata = "DECstation Z85C30 serial driver version "; 82 static char zs_version[] __initdata = "0.10"; 83 84 /* 85 * It would be nice to dynamically allocate everything that 86 * depends on ZS_NUM_SCCS, so we could support any number of 87 * Z85C30s, but for now... 88 */ 89 #define ZS_NUM_SCCS 2 /* Max # of ZS chips supported. */ 90 #define ZS_NUM_CHAN 2 /* 2 channels per chip. */ 91 #define ZS_CHAN_A 0 /* Index of the channel A. */ 92 #define ZS_CHAN_B 1 /* Index of the channel B. */ 93 #define ZS_CHAN_IO_SIZE 8 /* IOMEM space size. */ 94 #define ZS_CHAN_IO_STRIDE 4 /* Register alignment. */ 95 #define ZS_CHAN_IO_OFFSET 1 /* The SCC resides on the high byte 96 of the 16-bit IOBUS. */ 97 #define ZS_CLOCK 7372800 /* Z85C30 PCLK input clock rate. */ 98 99 #define to_zport(uport) container_of(uport, struct zs_port, port) 100 101 struct zs_parms { 102 resource_size_t scc[ZS_NUM_SCCS]; 103 int irq[ZS_NUM_SCCS]; 104 }; 105 106 static struct zs_scc zs_sccs[ZS_NUM_SCCS]; 107 108 static u8 zs_init_regs[ZS_NUM_REGS] __initdata = { 109 0, /* write 0 */ 110 PAR_SPEC, /* write 1 */ 111 0, /* write 2 */ 112 0, /* write 3 */ 113 X16CLK | SB1, /* write 4 */ 114 0, /* write 5 */ 115 0, 0, 0, /* write 6, 7, 8 */ 116 MIE | DLC | NV, /* write 9 */ 117 NRZ, /* write 10 */ 118 TCBR | RCBR, /* write 11 */ 119 0, 0, /* BRG time constant, write 12 + 13 */ 120 BRSRC | BRENABL, /* write 14 */ 121 0, /* write 15 */ 122 }; 123 124 /* 125 * Debugging. 126 */ 127 #undef ZS_DEBUG_REGS 128 129 130 /* 131 * Reading and writing Z85C30 registers. 132 */ 133 static void recovery_delay(void) 134 { 135 udelay(2); 136 } 137 138 static u8 read_zsreg(struct zs_port *zport, int reg) 139 { 140 void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET; 141 u8 retval; 142 143 if (reg != 0) { 144 writeb(reg & 0xf, control); 145 fast_iob(); 146 recovery_delay(); 147 } 148 retval = readb(control); 149 recovery_delay(); 150 return retval; 151 } 152 153 static void write_zsreg(struct zs_port *zport, int reg, u8 value) 154 { 155 void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET; 156 157 if (reg != 0) { 158 writeb(reg & 0xf, control); 159 fast_iob(); recovery_delay(); 160 } 161 writeb(value, control); 162 fast_iob(); 163 recovery_delay(); 164 return; 165 } 166 167 static u8 read_zsdata(struct zs_port *zport) 168 { 169 void __iomem *data = zport->port.membase + 170 ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET; 171 u8 retval; 172 173 retval = readb(data); 174 recovery_delay(); 175 return retval; 176 } 177 178 static void write_zsdata(struct zs_port *zport, u8 value) 179 { 180 void __iomem *data = zport->port.membase + 181 ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET; 182 183 writeb(value, data); 184 fast_iob(); 185 recovery_delay(); 186 return; 187 } 188 189 #ifdef ZS_DEBUG_REGS 190 void zs_dump(void) 191 { 192 struct zs_port *zport; 193 int i, j; 194 195 for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) { 196 zport = &zs_sccs[i / ZS_NUM_CHAN].zport[i % ZS_NUM_CHAN]; 197 198 if (!zport->scc) 199 continue; 200 201 for (j = 0; j < 16; j++) 202 printk("W%-2d = 0x%02x\t", j, zport->regs[j]); 203 printk("\n"); 204 for (j = 0; j < 16; j++) 205 printk("R%-2d = 0x%02x\t", j, read_zsreg(zport, j)); 206 printk("\n\n"); 207 } 208 } 209 #endif 210 211 212 static void zs_spin_lock_cond_irq(spinlock_t *lock, int irq) 213 { 214 if (irq) 215 spin_lock_irq(lock); 216 else 217 spin_lock(lock); 218 } 219 220 static void zs_spin_unlock_cond_irq(spinlock_t *lock, int irq) 221 { 222 if (irq) 223 spin_unlock_irq(lock); 224 else 225 spin_unlock(lock); 226 } 227 228 static int zs_receive_drain(struct zs_port *zport) 229 { 230 int loops = 10000; 231 232 while ((read_zsreg(zport, R0) & Rx_CH_AV) && --loops) 233 read_zsdata(zport); 234 return loops; 235 } 236 237 static int zs_transmit_drain(struct zs_port *zport, int irq) 238 { 239 struct zs_scc *scc = zport->scc; 240 int loops = 10000; 241 242 while (!(read_zsreg(zport, R0) & Tx_BUF_EMP) && --loops) { 243 zs_spin_unlock_cond_irq(&scc->zlock, irq); 244 udelay(2); 245 zs_spin_lock_cond_irq(&scc->zlock, irq); 246 } 247 return loops; 248 } 249 250 static int zs_line_drain(struct zs_port *zport, int irq) 251 { 252 struct zs_scc *scc = zport->scc; 253 int loops = 10000; 254 255 while (!(read_zsreg(zport, R1) & ALL_SNT) && --loops) { 256 zs_spin_unlock_cond_irq(&scc->zlock, irq); 257 udelay(2); 258 zs_spin_lock_cond_irq(&scc->zlock, irq); 259 } 260 return loops; 261 } 262 263 264 static void load_zsregs(struct zs_port *zport, u8 *regs, int irq) 265 { 266 /* Let the current transmission finish. */ 267 zs_line_drain(zport, irq); 268 /* Load 'em up. */ 269 write_zsreg(zport, R3, regs[3] & ~RxENABLE); 270 write_zsreg(zport, R5, regs[5] & ~TxENAB); 271 write_zsreg(zport, R4, regs[4]); 272 write_zsreg(zport, R9, regs[9]); 273 write_zsreg(zport, R1, regs[1]); 274 write_zsreg(zport, R2, regs[2]); 275 write_zsreg(zport, R10, regs[10]); 276 write_zsreg(zport, R14, regs[14] & ~BRENABL); 277 write_zsreg(zport, R11, regs[11]); 278 write_zsreg(zport, R12, regs[12]); 279 write_zsreg(zport, R13, regs[13]); 280 write_zsreg(zport, R14, regs[14]); 281 write_zsreg(zport, R15, regs[15]); 282 if (regs[3] & RxENABLE) 283 write_zsreg(zport, R3, regs[3]); 284 if (regs[5] & TxENAB) 285 write_zsreg(zport, R5, regs[5]); 286 return; 287 } 288 289 290 /* 291 * Status handling routines. 292 */ 293 294 /* 295 * zs_tx_empty() -- get the transmitter empty status 296 * 297 * Purpose: Let user call ioctl() to get info when the UART physically 298 * is emptied. On bus types like RS485, the transmitter must 299 * release the bus after transmitting. This must be done when 300 * the transmit shift register is empty, not be done when the 301 * transmit holding register is empty. This functionality 302 * allows an RS485 driver to be written in user space. 303 */ 304 static unsigned int zs_tx_empty(struct uart_port *uport) 305 { 306 struct zs_port *zport = to_zport(uport); 307 struct zs_scc *scc = zport->scc; 308 unsigned long flags; 309 u8 status; 310 311 spin_lock_irqsave(&scc->zlock, flags); 312 status = read_zsreg(zport, R1); 313 spin_unlock_irqrestore(&scc->zlock, flags); 314 315 return status & ALL_SNT ? TIOCSER_TEMT : 0; 316 } 317 318 static unsigned int zs_raw_get_ab_mctrl(struct zs_port *zport_a, 319 struct zs_port *zport_b) 320 { 321 u8 status_a, status_b; 322 unsigned int mctrl; 323 324 status_a = read_zsreg(zport_a, R0); 325 status_b = read_zsreg(zport_b, R0); 326 327 mctrl = ((status_b & CTS) ? TIOCM_CTS : 0) | 328 ((status_b & DCD) ? TIOCM_CAR : 0) | 329 ((status_a & DCD) ? TIOCM_RNG : 0) | 330 ((status_a & SYNC_HUNT) ? TIOCM_DSR : 0); 331 332 return mctrl; 333 } 334 335 static unsigned int zs_raw_get_mctrl(struct zs_port *zport) 336 { 337 struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A]; 338 339 return zport != zport_a ? zs_raw_get_ab_mctrl(zport_a, zport) : 0; 340 } 341 342 static unsigned int zs_raw_xor_mctrl(struct zs_port *zport) 343 { 344 struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A]; 345 unsigned int mmask, mctrl, delta; 346 u8 mask_a, mask_b; 347 348 if (zport == zport_a) 349 return 0; 350 351 mask_a = zport_a->regs[15]; 352 mask_b = zport->regs[15]; 353 354 mmask = ((mask_b & CTSIE) ? TIOCM_CTS : 0) | 355 ((mask_b & DCDIE) ? TIOCM_CAR : 0) | 356 ((mask_a & DCDIE) ? TIOCM_RNG : 0) | 357 ((mask_a & SYNCIE) ? TIOCM_DSR : 0); 358 359 mctrl = zport->mctrl; 360 if (mmask) { 361 mctrl &= ~mmask; 362 mctrl |= zs_raw_get_ab_mctrl(zport_a, zport) & mmask; 363 } 364 365 delta = mctrl ^ zport->mctrl; 366 if (delta) 367 zport->mctrl = mctrl; 368 369 return delta; 370 } 371 372 static unsigned int zs_get_mctrl(struct uart_port *uport) 373 { 374 struct zs_port *zport = to_zport(uport); 375 struct zs_scc *scc = zport->scc; 376 unsigned int mctrl; 377 378 spin_lock(&scc->zlock); 379 mctrl = zs_raw_get_mctrl(zport); 380 spin_unlock(&scc->zlock); 381 382 return mctrl; 383 } 384 385 static void zs_set_mctrl(struct uart_port *uport, unsigned int mctrl) 386 { 387 struct zs_port *zport = to_zport(uport); 388 struct zs_scc *scc = zport->scc; 389 struct zs_port *zport_a = &scc->zport[ZS_CHAN_A]; 390 u8 oldloop, newloop; 391 392 spin_lock(&scc->zlock); 393 if (zport != zport_a) { 394 if (mctrl & TIOCM_DTR) 395 zport_a->regs[5] |= DTR; 396 else 397 zport_a->regs[5] &= ~DTR; 398 if (mctrl & TIOCM_RTS) 399 zport_a->regs[5] |= RTS; 400 else 401 zport_a->regs[5] &= ~RTS; 402 write_zsreg(zport_a, R5, zport_a->regs[5]); 403 } 404 405 /* Rarely modified, so don't poke at hardware unless necessary. */ 406 oldloop = zport->regs[14]; 407 newloop = oldloop; 408 if (mctrl & TIOCM_LOOP) 409 newloop |= LOOPBAK; 410 else 411 newloop &= ~LOOPBAK; 412 if (newloop != oldloop) { 413 zport->regs[14] = newloop; 414 write_zsreg(zport, R14, zport->regs[14]); 415 } 416 spin_unlock(&scc->zlock); 417 } 418 419 static void zs_raw_stop_tx(struct zs_port *zport) 420 { 421 write_zsreg(zport, R0, RES_Tx_P); 422 zport->tx_stopped = 1; 423 } 424 425 static void zs_stop_tx(struct uart_port *uport) 426 { 427 struct zs_port *zport = to_zport(uport); 428 struct zs_scc *scc = zport->scc; 429 430 spin_lock(&scc->zlock); 431 zs_raw_stop_tx(zport); 432 spin_unlock(&scc->zlock); 433 } 434 435 static void zs_raw_transmit_chars(struct zs_port *); 436 437 static void zs_start_tx(struct uart_port *uport) 438 { 439 struct zs_port *zport = to_zport(uport); 440 struct zs_scc *scc = zport->scc; 441 442 spin_lock(&scc->zlock); 443 if (zport->tx_stopped) { 444 zs_transmit_drain(zport, 0); 445 zport->tx_stopped = 0; 446 zs_raw_transmit_chars(zport); 447 } 448 spin_unlock(&scc->zlock); 449 } 450 451 static void zs_stop_rx(struct uart_port *uport) 452 { 453 struct zs_port *zport = to_zport(uport); 454 struct zs_scc *scc = zport->scc; 455 struct zs_port *zport_a = &scc->zport[ZS_CHAN_A]; 456 457 spin_lock(&scc->zlock); 458 zport->regs[15] &= ~BRKIE; 459 zport->regs[1] &= ~(RxINT_MASK | TxINT_ENAB); 460 zport->regs[1] |= RxINT_DISAB; 461 462 if (zport != zport_a) { 463 /* A-side DCD tracks RI and SYNC tracks DSR. */ 464 zport_a->regs[15] &= ~(DCDIE | SYNCIE); 465 write_zsreg(zport_a, R15, zport_a->regs[15]); 466 if (!(zport_a->regs[15] & BRKIE)) { 467 zport_a->regs[1] &= ~EXT_INT_ENAB; 468 write_zsreg(zport_a, R1, zport_a->regs[1]); 469 } 470 471 /* This-side DCD tracks DCD and CTS tracks CTS. */ 472 zport->regs[15] &= ~(DCDIE | CTSIE); 473 zport->regs[1] &= ~EXT_INT_ENAB; 474 } else { 475 /* DCD tracks RI and SYNC tracks DSR for the B side. */ 476 if (!(zport->regs[15] & (DCDIE | SYNCIE))) 477 zport->regs[1] &= ~EXT_INT_ENAB; 478 } 479 480 write_zsreg(zport, R15, zport->regs[15]); 481 write_zsreg(zport, R1, zport->regs[1]); 482 spin_unlock(&scc->zlock); 483 } 484 485 static void zs_enable_ms(struct uart_port *uport) 486 { 487 struct zs_port *zport = to_zport(uport); 488 struct zs_scc *scc = zport->scc; 489 struct zs_port *zport_a = &scc->zport[ZS_CHAN_A]; 490 491 if (zport == zport_a) 492 return; 493 494 spin_lock(&scc->zlock); 495 496 /* Clear Ext interrupts if not being handled already. */ 497 if (!(zport_a->regs[1] & EXT_INT_ENAB)) 498 write_zsreg(zport_a, R0, RES_EXT_INT); 499 500 /* A-side DCD tracks RI and SYNC tracks DSR. */ 501 zport_a->regs[1] |= EXT_INT_ENAB; 502 zport_a->regs[15] |= DCDIE | SYNCIE; 503 504 /* This-side DCD tracks DCD and CTS tracks CTS. */ 505 zport->regs[15] |= DCDIE | CTSIE; 506 507 zs_raw_xor_mctrl(zport); 508 509 write_zsreg(zport_a, R1, zport_a->regs[1]); 510 write_zsreg(zport_a, R15, zport_a->regs[15]); 511 write_zsreg(zport, R15, zport->regs[15]); 512 spin_unlock(&scc->zlock); 513 } 514 515 static void zs_break_ctl(struct uart_port *uport, int break_state) 516 { 517 struct zs_port *zport = to_zport(uport); 518 struct zs_scc *scc = zport->scc; 519 unsigned long flags; 520 521 spin_lock_irqsave(&scc->zlock, flags); 522 if (break_state == -1) 523 zport->regs[5] |= SND_BRK; 524 else 525 zport->regs[5] &= ~SND_BRK; 526 write_zsreg(zport, R5, zport->regs[5]); 527 spin_unlock_irqrestore(&scc->zlock, flags); 528 } 529 530 531 /* 532 * Interrupt handling routines. 533 */ 534 #define Rx_BRK 0x0100 /* BREAK event software flag. */ 535 #define Rx_SYS 0x0200 /* SysRq event software flag. */ 536 537 static void zs_receive_chars(struct zs_port *zport) 538 { 539 struct uart_port *uport = &zport->port; 540 struct zs_scc *scc = zport->scc; 541 struct uart_icount *icount; 542 unsigned int avail, status, ch, flag; 543 int count; 544 545 for (count = 16; count; count--) { 546 spin_lock(&scc->zlock); 547 avail = read_zsreg(zport, R0) & Rx_CH_AV; 548 spin_unlock(&scc->zlock); 549 if (!avail) 550 break; 551 552 spin_lock(&scc->zlock); 553 status = read_zsreg(zport, R1) & (Rx_OVR | FRM_ERR | PAR_ERR); 554 ch = read_zsdata(zport); 555 spin_unlock(&scc->zlock); 556 557 flag = TTY_NORMAL; 558 559 icount = &uport->icount; 560 icount->rx++; 561 562 /* Handle the null char got when BREAK is removed. */ 563 if (!ch) 564 status |= zport->tty_break; 565 if (unlikely(status & 566 (Rx_OVR | FRM_ERR | PAR_ERR | Rx_SYS | Rx_BRK))) { 567 zport->tty_break = 0; 568 569 /* Reset the error indication. */ 570 if (status & (Rx_OVR | FRM_ERR | PAR_ERR)) { 571 spin_lock(&scc->zlock); 572 write_zsreg(zport, R0, ERR_RES); 573 spin_unlock(&scc->zlock); 574 } 575 576 if (status & (Rx_SYS | Rx_BRK)) { 577 icount->brk++; 578 /* SysRq discards the null char. */ 579 if (status & Rx_SYS) 580 continue; 581 } else if (status & FRM_ERR) 582 icount->frame++; 583 else if (status & PAR_ERR) 584 icount->parity++; 585 if (status & Rx_OVR) 586 icount->overrun++; 587 588 status &= uport->read_status_mask; 589 if (status & Rx_BRK) 590 flag = TTY_BREAK; 591 else if (status & FRM_ERR) 592 flag = TTY_FRAME; 593 else if (status & PAR_ERR) 594 flag = TTY_PARITY; 595 } 596 597 if (uart_handle_sysrq_char(uport, ch)) 598 continue; 599 600 uart_insert_char(uport, status, Rx_OVR, ch, flag); 601 } 602 603 tty_flip_buffer_push(&uport->state->port); 604 } 605 606 static void zs_raw_transmit_chars(struct zs_port *zport) 607 { 608 struct circ_buf *xmit = &zport->port.state->xmit; 609 610 /* XON/XOFF chars. */ 611 if (zport->port.x_char) { 612 write_zsdata(zport, zport->port.x_char); 613 zport->port.icount.tx++; 614 zport->port.x_char = 0; 615 return; 616 } 617 618 /* If nothing to do or stopped or hardware stopped. */ 619 if (uart_circ_empty(xmit) || uart_tx_stopped(&zport->port)) { 620 zs_raw_stop_tx(zport); 621 return; 622 } 623 624 /* Send char. */ 625 write_zsdata(zport, xmit->buf[xmit->tail]); 626 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); 627 zport->port.icount.tx++; 628 629 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 630 uart_write_wakeup(&zport->port); 631 632 /* Are we are done? */ 633 if (uart_circ_empty(xmit)) 634 zs_raw_stop_tx(zport); 635 } 636 637 static void zs_transmit_chars(struct zs_port *zport) 638 { 639 struct zs_scc *scc = zport->scc; 640 641 spin_lock(&scc->zlock); 642 zs_raw_transmit_chars(zport); 643 spin_unlock(&scc->zlock); 644 } 645 646 static void zs_status_handle(struct zs_port *zport, struct zs_port *zport_a) 647 { 648 struct uart_port *uport = &zport->port; 649 struct zs_scc *scc = zport->scc; 650 unsigned int delta; 651 u8 status, brk; 652 653 spin_lock(&scc->zlock); 654 655 /* Get status from Read Register 0. */ 656 status = read_zsreg(zport, R0); 657 658 if (zport->regs[15] & BRKIE) { 659 brk = status & BRK_ABRT; 660 if (brk && !zport->brk) { 661 spin_unlock(&scc->zlock); 662 if (uart_handle_break(uport)) 663 zport->tty_break = Rx_SYS; 664 else 665 zport->tty_break = Rx_BRK; 666 spin_lock(&scc->zlock); 667 } 668 zport->brk = brk; 669 } 670 671 if (zport != zport_a) { 672 delta = zs_raw_xor_mctrl(zport); 673 spin_unlock(&scc->zlock); 674 675 if (delta & TIOCM_CTS) 676 uart_handle_cts_change(uport, 677 zport->mctrl & TIOCM_CTS); 678 if (delta & TIOCM_CAR) 679 uart_handle_dcd_change(uport, 680 zport->mctrl & TIOCM_CAR); 681 if (delta & TIOCM_RNG) 682 uport->icount.dsr++; 683 if (delta & TIOCM_DSR) 684 uport->icount.rng++; 685 686 if (delta) 687 wake_up_interruptible(&uport->state->port.delta_msr_wait); 688 689 spin_lock(&scc->zlock); 690 } 691 692 /* Clear the status condition... */ 693 write_zsreg(zport, R0, RES_EXT_INT); 694 695 spin_unlock(&scc->zlock); 696 } 697 698 /* 699 * This is the Z85C30 driver's generic interrupt routine. 700 */ 701 static irqreturn_t zs_interrupt(int irq, void *dev_id) 702 { 703 struct zs_scc *scc = dev_id; 704 struct zs_port *zport_a = &scc->zport[ZS_CHAN_A]; 705 struct zs_port *zport_b = &scc->zport[ZS_CHAN_B]; 706 irqreturn_t status = IRQ_NONE; 707 u8 zs_intreg; 708 int count; 709 710 /* 711 * NOTE: The read register 3, which holds the irq status, 712 * does so for both channels on each chip. Although 713 * the status value itself must be read from the A 714 * channel and is only valid when read from channel A. 715 * Yes... broken hardware... 716 */ 717 for (count = 16; count; count--) { 718 spin_lock(&scc->zlock); 719 zs_intreg = read_zsreg(zport_a, R3); 720 spin_unlock(&scc->zlock); 721 if (!zs_intreg) 722 break; 723 724 /* 725 * We do not like losing characters, so we prioritise 726 * interrupt sources a little bit differently than 727 * the SCC would, was it allowed to. 728 */ 729 if (zs_intreg & CHBRxIP) 730 zs_receive_chars(zport_b); 731 if (zs_intreg & CHARxIP) 732 zs_receive_chars(zport_a); 733 if (zs_intreg & CHBEXT) 734 zs_status_handle(zport_b, zport_a); 735 if (zs_intreg & CHAEXT) 736 zs_status_handle(zport_a, zport_a); 737 if (zs_intreg & CHBTxIP) 738 zs_transmit_chars(zport_b); 739 if (zs_intreg & CHATxIP) 740 zs_transmit_chars(zport_a); 741 742 status = IRQ_HANDLED; 743 } 744 745 return status; 746 } 747 748 749 /* 750 * Finally, routines used to initialize the serial port. 751 */ 752 static int zs_startup(struct uart_port *uport) 753 { 754 struct zs_port *zport = to_zport(uport); 755 struct zs_scc *scc = zport->scc; 756 unsigned long flags; 757 int irq_guard; 758 int ret; 759 760 irq_guard = atomic_add_return(1, &scc->irq_guard); 761 if (irq_guard == 1) { 762 ret = request_irq(zport->port.irq, zs_interrupt, 763 IRQF_SHARED, "scc", scc); 764 if (ret) { 765 atomic_add(-1, &scc->irq_guard); 766 printk(KERN_ERR "zs: can't get irq %d\n", 767 zport->port.irq); 768 return ret; 769 } 770 } 771 772 spin_lock_irqsave(&scc->zlock, flags); 773 774 /* Clear the receive FIFO. */ 775 zs_receive_drain(zport); 776 777 /* Clear the interrupt registers. */ 778 write_zsreg(zport, R0, ERR_RES); 779 write_zsreg(zport, R0, RES_Tx_P); 780 /* But Ext only if not being handled already. */ 781 if (!(zport->regs[1] & EXT_INT_ENAB)) 782 write_zsreg(zport, R0, RES_EXT_INT); 783 784 /* Finally, enable sequencing and interrupts. */ 785 zport->regs[1] &= ~RxINT_MASK; 786 zport->regs[1] |= RxINT_ALL | TxINT_ENAB | EXT_INT_ENAB; 787 zport->regs[3] |= RxENABLE; 788 zport->regs[15] |= BRKIE; 789 write_zsreg(zport, R1, zport->regs[1]); 790 write_zsreg(zport, R3, zport->regs[3]); 791 write_zsreg(zport, R5, zport->regs[5]); 792 write_zsreg(zport, R15, zport->regs[15]); 793 794 /* Record the current state of RR0. */ 795 zport->mctrl = zs_raw_get_mctrl(zport); 796 zport->brk = read_zsreg(zport, R0) & BRK_ABRT; 797 798 zport->tx_stopped = 1; 799 800 spin_unlock_irqrestore(&scc->zlock, flags); 801 802 return 0; 803 } 804 805 static void zs_shutdown(struct uart_port *uport) 806 { 807 struct zs_port *zport = to_zport(uport); 808 struct zs_scc *scc = zport->scc; 809 unsigned long flags; 810 int irq_guard; 811 812 spin_lock_irqsave(&scc->zlock, flags); 813 814 zport->regs[3] &= ~RxENABLE; 815 write_zsreg(zport, R5, zport->regs[5]); 816 write_zsreg(zport, R3, zport->regs[3]); 817 818 spin_unlock_irqrestore(&scc->zlock, flags); 819 820 irq_guard = atomic_add_return(-1, &scc->irq_guard); 821 if (!irq_guard) 822 free_irq(zport->port.irq, scc); 823 } 824 825 826 static void zs_reset(struct zs_port *zport) 827 { 828 struct zs_scc *scc = zport->scc; 829 int irq; 830 unsigned long flags; 831 832 spin_lock_irqsave(&scc->zlock, flags); 833 irq = !irqs_disabled_flags(flags); 834 if (!scc->initialised) { 835 /* Reset the pointer first, just in case... */ 836 read_zsreg(zport, R0); 837 /* And let the current transmission finish. */ 838 zs_line_drain(zport, irq); 839 write_zsreg(zport, R9, FHWRES); 840 udelay(10); 841 write_zsreg(zport, R9, 0); 842 scc->initialised = 1; 843 } 844 load_zsregs(zport, zport->regs, irq); 845 spin_unlock_irqrestore(&scc->zlock, flags); 846 } 847 848 static void zs_set_termios(struct uart_port *uport, struct ktermios *termios, 849 struct ktermios *old_termios) 850 { 851 struct zs_port *zport = to_zport(uport); 852 struct zs_scc *scc = zport->scc; 853 struct zs_port *zport_a = &scc->zport[ZS_CHAN_A]; 854 int irq; 855 unsigned int baud, brg; 856 unsigned long flags; 857 858 spin_lock_irqsave(&scc->zlock, flags); 859 irq = !irqs_disabled_flags(flags); 860 861 /* Byte size. */ 862 zport->regs[3] &= ~RxNBITS_MASK; 863 zport->regs[5] &= ~TxNBITS_MASK; 864 switch (termios->c_cflag & CSIZE) { 865 case CS5: 866 zport->regs[3] |= Rx5; 867 zport->regs[5] |= Tx5; 868 break; 869 case CS6: 870 zport->regs[3] |= Rx6; 871 zport->regs[5] |= Tx6; 872 break; 873 case CS7: 874 zport->regs[3] |= Rx7; 875 zport->regs[5] |= Tx7; 876 break; 877 case CS8: 878 default: 879 zport->regs[3] |= Rx8; 880 zport->regs[5] |= Tx8; 881 break; 882 } 883 884 /* Parity and stop bits. */ 885 zport->regs[4] &= ~(XCLK_MASK | SB_MASK | PAR_ENA | PAR_EVEN); 886 if (termios->c_cflag & CSTOPB) 887 zport->regs[4] |= SB2; 888 else 889 zport->regs[4] |= SB1; 890 if (termios->c_cflag & PARENB) 891 zport->regs[4] |= PAR_ENA; 892 if (!(termios->c_cflag & PARODD)) 893 zport->regs[4] |= PAR_EVEN; 894 switch (zport->clk_mode) { 895 case 64: 896 zport->regs[4] |= X64CLK; 897 break; 898 case 32: 899 zport->regs[4] |= X32CLK; 900 break; 901 case 16: 902 zport->regs[4] |= X16CLK; 903 break; 904 case 1: 905 zport->regs[4] |= X1CLK; 906 break; 907 default: 908 BUG(); 909 } 910 911 baud = uart_get_baud_rate(uport, termios, old_termios, 0, 912 uport->uartclk / zport->clk_mode / 4); 913 914 brg = ZS_BPS_TO_BRG(baud, uport->uartclk / zport->clk_mode); 915 zport->regs[12] = brg & 0xff; 916 zport->regs[13] = (brg >> 8) & 0xff; 917 918 uart_update_timeout(uport, termios->c_cflag, baud); 919 920 uport->read_status_mask = Rx_OVR; 921 if (termios->c_iflag & INPCK) 922 uport->read_status_mask |= FRM_ERR | PAR_ERR; 923 if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK)) 924 uport->read_status_mask |= Rx_BRK; 925 926 uport->ignore_status_mask = 0; 927 if (termios->c_iflag & IGNPAR) 928 uport->ignore_status_mask |= FRM_ERR | PAR_ERR; 929 if (termios->c_iflag & IGNBRK) { 930 uport->ignore_status_mask |= Rx_BRK; 931 if (termios->c_iflag & IGNPAR) 932 uport->ignore_status_mask |= Rx_OVR; 933 } 934 935 if (termios->c_cflag & CREAD) 936 zport->regs[3] |= RxENABLE; 937 else 938 zport->regs[3] &= ~RxENABLE; 939 940 if (zport != zport_a) { 941 if (!(termios->c_cflag & CLOCAL)) { 942 zport->regs[15] |= DCDIE; 943 } else 944 zport->regs[15] &= ~DCDIE; 945 if (termios->c_cflag & CRTSCTS) { 946 zport->regs[15] |= CTSIE; 947 } else 948 zport->regs[15] &= ~CTSIE; 949 zs_raw_xor_mctrl(zport); 950 } 951 952 /* Load up the new values. */ 953 load_zsregs(zport, zport->regs, irq); 954 955 spin_unlock_irqrestore(&scc->zlock, flags); 956 } 957 958 /* 959 * Hack alert! 960 * Required solely so that the initial PROM-based console 961 * works undisturbed in parallel with this one. 962 */ 963 static void zs_pm(struct uart_port *uport, unsigned int state, 964 unsigned int oldstate) 965 { 966 struct zs_port *zport = to_zport(uport); 967 968 if (state < 3) 969 zport->regs[5] |= TxENAB; 970 else 971 zport->regs[5] &= ~TxENAB; 972 write_zsreg(zport, R5, zport->regs[5]); 973 } 974 975 976 static const char *zs_type(struct uart_port *uport) 977 { 978 return "Z85C30 SCC"; 979 } 980 981 static void zs_release_port(struct uart_port *uport) 982 { 983 iounmap(uport->membase); 984 uport->membase = 0; 985 release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE); 986 } 987 988 static int zs_map_port(struct uart_port *uport) 989 { 990 if (!uport->membase) 991 uport->membase = ioremap(uport->mapbase, 992 ZS_CHAN_IO_SIZE); 993 if (!uport->membase) { 994 printk(KERN_ERR "zs: Cannot map MMIO\n"); 995 return -ENOMEM; 996 } 997 return 0; 998 } 999 1000 static int zs_request_port(struct uart_port *uport) 1001 { 1002 int ret; 1003 1004 if (!request_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE, "scc")) { 1005 printk(KERN_ERR "zs: Unable to reserve MMIO resource\n"); 1006 return -EBUSY; 1007 } 1008 ret = zs_map_port(uport); 1009 if (ret) { 1010 release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE); 1011 return ret; 1012 } 1013 return 0; 1014 } 1015 1016 static void zs_config_port(struct uart_port *uport, int flags) 1017 { 1018 struct zs_port *zport = to_zport(uport); 1019 1020 if (flags & UART_CONFIG_TYPE) { 1021 if (zs_request_port(uport)) 1022 return; 1023 1024 uport->type = PORT_ZS; 1025 1026 zs_reset(zport); 1027 } 1028 } 1029 1030 static int zs_verify_port(struct uart_port *uport, struct serial_struct *ser) 1031 { 1032 struct zs_port *zport = to_zport(uport); 1033 int ret = 0; 1034 1035 if (ser->type != PORT_UNKNOWN && ser->type != PORT_ZS) 1036 ret = -EINVAL; 1037 if (ser->irq != uport->irq) 1038 ret = -EINVAL; 1039 if (ser->baud_base != uport->uartclk / zport->clk_mode / 4) 1040 ret = -EINVAL; 1041 return ret; 1042 } 1043 1044 1045 static const struct uart_ops zs_ops = { 1046 .tx_empty = zs_tx_empty, 1047 .set_mctrl = zs_set_mctrl, 1048 .get_mctrl = zs_get_mctrl, 1049 .stop_tx = zs_stop_tx, 1050 .start_tx = zs_start_tx, 1051 .stop_rx = zs_stop_rx, 1052 .enable_ms = zs_enable_ms, 1053 .break_ctl = zs_break_ctl, 1054 .startup = zs_startup, 1055 .shutdown = zs_shutdown, 1056 .set_termios = zs_set_termios, 1057 .pm = zs_pm, 1058 .type = zs_type, 1059 .release_port = zs_release_port, 1060 .request_port = zs_request_port, 1061 .config_port = zs_config_port, 1062 .verify_port = zs_verify_port, 1063 }; 1064 1065 /* 1066 * Initialize Z85C30 port structures. 1067 */ 1068 static int __init zs_probe_sccs(void) 1069 { 1070 static int probed; 1071 struct zs_parms zs_parms; 1072 int chip, side, irq; 1073 int n_chips = 0; 1074 int i; 1075 1076 if (probed) 1077 return 0; 1078 1079 irq = dec_interrupt[DEC_IRQ_SCC0]; 1080 if (irq >= 0) { 1081 zs_parms.scc[n_chips] = IOASIC_SCC0; 1082 zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC0]; 1083 n_chips++; 1084 } 1085 irq = dec_interrupt[DEC_IRQ_SCC1]; 1086 if (irq >= 0) { 1087 zs_parms.scc[n_chips] = IOASIC_SCC1; 1088 zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC1]; 1089 n_chips++; 1090 } 1091 if (!n_chips) 1092 return -ENXIO; 1093 1094 probed = 1; 1095 1096 for (chip = 0; chip < n_chips; chip++) { 1097 spin_lock_init(&zs_sccs[chip].zlock); 1098 for (side = 0; side < ZS_NUM_CHAN; side++) { 1099 struct zs_port *zport = &zs_sccs[chip].zport[side]; 1100 struct uart_port *uport = &zport->port; 1101 1102 zport->scc = &zs_sccs[chip]; 1103 zport->clk_mode = 16; 1104 1105 uport->has_sysrq = IS_ENABLED(CONFIG_SERIAL_ZS_CONSOLE); 1106 uport->irq = zs_parms.irq[chip]; 1107 uport->uartclk = ZS_CLOCK; 1108 uport->fifosize = 1; 1109 uport->iotype = UPIO_MEM; 1110 uport->flags = UPF_BOOT_AUTOCONF; 1111 uport->ops = &zs_ops; 1112 uport->line = chip * ZS_NUM_CHAN + side; 1113 uport->mapbase = dec_kn_slot_base + 1114 zs_parms.scc[chip] + 1115 (side ^ ZS_CHAN_B) * ZS_CHAN_IO_SIZE; 1116 1117 for (i = 0; i < ZS_NUM_REGS; i++) 1118 zport->regs[i] = zs_init_regs[i]; 1119 } 1120 } 1121 1122 return 0; 1123 } 1124 1125 1126 #ifdef CONFIG_SERIAL_ZS_CONSOLE 1127 static void zs_console_putchar(struct uart_port *uport, int ch) 1128 { 1129 struct zs_port *zport = to_zport(uport); 1130 struct zs_scc *scc = zport->scc; 1131 int irq; 1132 unsigned long flags; 1133 1134 spin_lock_irqsave(&scc->zlock, flags); 1135 irq = !irqs_disabled_flags(flags); 1136 if (zs_transmit_drain(zport, irq)) 1137 write_zsdata(zport, ch); 1138 spin_unlock_irqrestore(&scc->zlock, flags); 1139 } 1140 1141 /* 1142 * Print a string to the serial port trying not to disturb 1143 * any possible real use of the port... 1144 */ 1145 static void zs_console_write(struct console *co, const char *s, 1146 unsigned int count) 1147 { 1148 int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN; 1149 struct zs_port *zport = &zs_sccs[chip].zport[side]; 1150 struct zs_scc *scc = zport->scc; 1151 unsigned long flags; 1152 u8 txint, txenb; 1153 int irq; 1154 1155 /* Disable transmit interrupts and enable the transmitter. */ 1156 spin_lock_irqsave(&scc->zlock, flags); 1157 txint = zport->regs[1]; 1158 txenb = zport->regs[5]; 1159 if (txint & TxINT_ENAB) { 1160 zport->regs[1] = txint & ~TxINT_ENAB; 1161 write_zsreg(zport, R1, zport->regs[1]); 1162 } 1163 if (!(txenb & TxENAB)) { 1164 zport->regs[5] = txenb | TxENAB; 1165 write_zsreg(zport, R5, zport->regs[5]); 1166 } 1167 spin_unlock_irqrestore(&scc->zlock, flags); 1168 1169 uart_console_write(&zport->port, s, count, zs_console_putchar); 1170 1171 /* Restore transmit interrupts and the transmitter enable. */ 1172 spin_lock_irqsave(&scc->zlock, flags); 1173 irq = !irqs_disabled_flags(flags); 1174 zs_line_drain(zport, irq); 1175 if (!(txenb & TxENAB)) { 1176 zport->regs[5] &= ~TxENAB; 1177 write_zsreg(zport, R5, zport->regs[5]); 1178 } 1179 if (txint & TxINT_ENAB) { 1180 zport->regs[1] |= TxINT_ENAB; 1181 write_zsreg(zport, R1, zport->regs[1]); 1182 1183 /* Resume any transmission as the TxIP bit won't be set. */ 1184 if (!zport->tx_stopped) 1185 zs_raw_transmit_chars(zport); 1186 } 1187 spin_unlock_irqrestore(&scc->zlock, flags); 1188 } 1189 1190 /* 1191 * Setup serial console baud/bits/parity. We do two things here: 1192 * - construct a cflag setting for the first uart_open() 1193 * - initialise the serial port 1194 * Return non-zero if we didn't find a serial port. 1195 */ 1196 static int __init zs_console_setup(struct console *co, char *options) 1197 { 1198 int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN; 1199 struct zs_port *zport = &zs_sccs[chip].zport[side]; 1200 struct uart_port *uport = &zport->port; 1201 int baud = 9600; 1202 int bits = 8; 1203 int parity = 'n'; 1204 int flow = 'n'; 1205 int ret; 1206 1207 ret = zs_map_port(uport); 1208 if (ret) 1209 return ret; 1210 1211 zs_reset(zport); 1212 zs_pm(uport, 0, -1); 1213 1214 if (options) 1215 uart_parse_options(options, &baud, &parity, &bits, &flow); 1216 return uart_set_options(uport, co, baud, parity, bits, flow); 1217 } 1218 1219 static struct uart_driver zs_reg; 1220 static struct console zs_console = { 1221 .name = "ttyS", 1222 .write = zs_console_write, 1223 .device = uart_console_device, 1224 .setup = zs_console_setup, 1225 .flags = CON_PRINTBUFFER, 1226 .index = -1, 1227 .data = &zs_reg, 1228 }; 1229 1230 /* 1231 * Register console. 1232 */ 1233 static int __init zs_serial_console_init(void) 1234 { 1235 int ret; 1236 1237 ret = zs_probe_sccs(); 1238 if (ret) 1239 return ret; 1240 register_console(&zs_console); 1241 1242 return 0; 1243 } 1244 1245 console_initcall(zs_serial_console_init); 1246 1247 #define SERIAL_ZS_CONSOLE &zs_console 1248 #else 1249 #define SERIAL_ZS_CONSOLE NULL 1250 #endif /* CONFIG_SERIAL_ZS_CONSOLE */ 1251 1252 static struct uart_driver zs_reg = { 1253 .owner = THIS_MODULE, 1254 .driver_name = "serial", 1255 .dev_name = "ttyS", 1256 .major = TTY_MAJOR, 1257 .minor = 64, 1258 .nr = ZS_NUM_SCCS * ZS_NUM_CHAN, 1259 .cons = SERIAL_ZS_CONSOLE, 1260 }; 1261 1262 /* zs_init inits the driver. */ 1263 static int __init zs_init(void) 1264 { 1265 int i, ret; 1266 1267 pr_info("%s%s\n", zs_name, zs_version); 1268 1269 /* Find out how many Z85C30 SCCs we have. */ 1270 ret = zs_probe_sccs(); 1271 if (ret) 1272 return ret; 1273 1274 ret = uart_register_driver(&zs_reg); 1275 if (ret) 1276 return ret; 1277 1278 for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) { 1279 struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN]; 1280 struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN]; 1281 struct uart_port *uport = &zport->port; 1282 1283 if (zport->scc) 1284 uart_add_one_port(&zs_reg, uport); 1285 } 1286 1287 return 0; 1288 } 1289 1290 static void __exit zs_exit(void) 1291 { 1292 int i; 1293 1294 for (i = ZS_NUM_SCCS * ZS_NUM_CHAN - 1; i >= 0; i--) { 1295 struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN]; 1296 struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN]; 1297 struct uart_port *uport = &zport->port; 1298 1299 if (zport->scc) 1300 uart_remove_one_port(&zs_reg, uport); 1301 } 1302 1303 uart_unregister_driver(&zs_reg); 1304 } 1305 1306 module_init(zs_init); 1307 module_exit(zs_exit); 1308