1 /* 2 * zs.c: Serial port driver for IOASIC DECstations. 3 * 4 * Derived from drivers/sbus/char/sunserial.c by Paul Mackerras. 5 * Derived from drivers/macintosh/macserial.c by Harald Koerfgen. 6 * 7 * DECstation changes 8 * Copyright (C) 1998-2000 Harald Koerfgen 9 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki 10 * 11 * For the rest of the code the original Copyright applies: 12 * Copyright (C) 1996 Paul Mackerras (Paul.Mackerras@cs.anu.edu.au) 13 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) 14 * 15 * 16 * Note: for IOASIC systems the wiring is as follows: 17 * 18 * mouse/keyboard: 19 * DIN-7 MJ-4 signal SCC 20 * 2 1 TxD <- A.TxD 21 * 3 4 RxD -> A.RxD 22 * 23 * EIA-232/EIA-423: 24 * DB-25 MMJ-6 signal SCC 25 * 2 2 TxD <- B.TxD 26 * 3 5 RxD -> B.RxD 27 * 4 RTS <- ~A.RTS 28 * 5 CTS -> ~B.CTS 29 * 6 6 DSR -> ~A.SYNC 30 * 8 CD -> ~B.DCD 31 * 12 DSRS(DCE) -> ~A.CTS (*) 32 * 15 TxC -> B.TxC 33 * 17 RxC -> B.RxC 34 * 20 1 DTR <- ~A.DTR 35 * 22 RI -> ~A.DCD 36 * 23 DSRS(DTE) <- ~B.RTS 37 * 38 * (*) EIA-232 defines the signal at this pin to be SCD, while DSRS(DCE) 39 * is shared with DSRS(DTE) at pin 23. 40 * 41 * As you can immediately notice the wiring of the RTS, DTR and DSR signals 42 * is a bit odd. This makes the handling of port B unnecessarily 43 * complicated and prevents the use of some automatic modes of operation. 44 */ 45 46 #if defined(CONFIG_SERIAL_ZS_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) 47 #define SUPPORT_SYSRQ 48 #endif 49 50 #include <linux/bug.h> 51 #include <linux/console.h> 52 #include <linux/delay.h> 53 #include <linux/errno.h> 54 #include <linux/init.h> 55 #include <linux/interrupt.h> 56 #include <linux/io.h> 57 #include <linux/ioport.h> 58 #include <linux/irqflags.h> 59 #include <linux/kernel.h> 60 #include <linux/module.h> 61 #include <linux/major.h> 62 #include <linux/serial.h> 63 #include <linux/serial_core.h> 64 #include <linux/spinlock.h> 65 #include <linux/sysrq.h> 66 #include <linux/tty.h> 67 #include <linux/tty_flip.h> 68 #include <linux/types.h> 69 70 #include <linux/atomic.h> 71 72 #include <asm/dec/interrupts.h> 73 #include <asm/dec/ioasic_addrs.h> 74 #include <asm/dec/system.h> 75 76 #include "zs.h" 77 78 79 MODULE_AUTHOR("Maciej W. Rozycki <macro@linux-mips.org>"); 80 MODULE_DESCRIPTION("DECstation Z85C30 serial driver"); 81 MODULE_LICENSE("GPL"); 82 83 84 static char zs_name[] __initdata = "DECstation Z85C30 serial driver version "; 85 static char zs_version[] __initdata = "0.10"; 86 87 /* 88 * It would be nice to dynamically allocate everything that 89 * depends on ZS_NUM_SCCS, so we could support any number of 90 * Z85C30s, but for now... 91 */ 92 #define ZS_NUM_SCCS 2 /* Max # of ZS chips supported. */ 93 #define ZS_NUM_CHAN 2 /* 2 channels per chip. */ 94 #define ZS_CHAN_A 0 /* Index of the channel A. */ 95 #define ZS_CHAN_B 1 /* Index of the channel B. */ 96 #define ZS_CHAN_IO_SIZE 8 /* IOMEM space size. */ 97 #define ZS_CHAN_IO_STRIDE 4 /* Register alignment. */ 98 #define ZS_CHAN_IO_OFFSET 1 /* The SCC resides on the high byte 99 of the 16-bit IOBUS. */ 100 #define ZS_CLOCK 7372800 /* Z85C30 PCLK input clock rate. */ 101 102 #define to_zport(uport) container_of(uport, struct zs_port, port) 103 104 struct zs_parms { 105 resource_size_t scc[ZS_NUM_SCCS]; 106 int irq[ZS_NUM_SCCS]; 107 }; 108 109 static struct zs_scc zs_sccs[ZS_NUM_SCCS]; 110 111 static u8 zs_init_regs[ZS_NUM_REGS] __initdata = { 112 0, /* write 0 */ 113 PAR_SPEC, /* write 1 */ 114 0, /* write 2 */ 115 0, /* write 3 */ 116 X16CLK | SB1, /* write 4 */ 117 0, /* write 5 */ 118 0, 0, 0, /* write 6, 7, 8 */ 119 MIE | DLC | NV, /* write 9 */ 120 NRZ, /* write 10 */ 121 TCBR | RCBR, /* write 11 */ 122 0, 0, /* BRG time constant, write 12 + 13 */ 123 BRSRC | BRENABL, /* write 14 */ 124 0, /* write 15 */ 125 }; 126 127 /* 128 * Debugging. 129 */ 130 #undef ZS_DEBUG_REGS 131 132 133 /* 134 * Reading and writing Z85C30 registers. 135 */ 136 static void recovery_delay(void) 137 { 138 udelay(2); 139 } 140 141 static u8 read_zsreg(struct zs_port *zport, int reg) 142 { 143 void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET; 144 u8 retval; 145 146 if (reg != 0) { 147 writeb(reg & 0xf, control); 148 fast_iob(); 149 recovery_delay(); 150 } 151 retval = readb(control); 152 recovery_delay(); 153 return retval; 154 } 155 156 static void write_zsreg(struct zs_port *zport, int reg, u8 value) 157 { 158 void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET; 159 160 if (reg != 0) { 161 writeb(reg & 0xf, control); 162 fast_iob(); recovery_delay(); 163 } 164 writeb(value, control); 165 fast_iob(); 166 recovery_delay(); 167 return; 168 } 169 170 static u8 read_zsdata(struct zs_port *zport) 171 { 172 void __iomem *data = zport->port.membase + 173 ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET; 174 u8 retval; 175 176 retval = readb(data); 177 recovery_delay(); 178 return retval; 179 } 180 181 static void write_zsdata(struct zs_port *zport, u8 value) 182 { 183 void __iomem *data = zport->port.membase + 184 ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET; 185 186 writeb(value, data); 187 fast_iob(); 188 recovery_delay(); 189 return; 190 } 191 192 #ifdef ZS_DEBUG_REGS 193 void zs_dump(void) 194 { 195 struct zs_port *zport; 196 int i, j; 197 198 for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) { 199 zport = &zs_sccs[i / ZS_NUM_CHAN].zport[i % ZS_NUM_CHAN]; 200 201 if (!zport->scc) 202 continue; 203 204 for (j = 0; j < 16; j++) 205 printk("W%-2d = 0x%02x\t", j, zport->regs[j]); 206 printk("\n"); 207 for (j = 0; j < 16; j++) 208 printk("R%-2d = 0x%02x\t", j, read_zsreg(zport, j)); 209 printk("\n\n"); 210 } 211 } 212 #endif 213 214 215 static void zs_spin_lock_cond_irq(spinlock_t *lock, int irq) 216 { 217 if (irq) 218 spin_lock_irq(lock); 219 else 220 spin_lock(lock); 221 } 222 223 static void zs_spin_unlock_cond_irq(spinlock_t *lock, int irq) 224 { 225 if (irq) 226 spin_unlock_irq(lock); 227 else 228 spin_unlock(lock); 229 } 230 231 static int zs_receive_drain(struct zs_port *zport) 232 { 233 int loops = 10000; 234 235 while ((read_zsreg(zport, R0) & Rx_CH_AV) && --loops) 236 read_zsdata(zport); 237 return loops; 238 } 239 240 static int zs_transmit_drain(struct zs_port *zport, int irq) 241 { 242 struct zs_scc *scc = zport->scc; 243 int loops = 10000; 244 245 while (!(read_zsreg(zport, R0) & Tx_BUF_EMP) && --loops) { 246 zs_spin_unlock_cond_irq(&scc->zlock, irq); 247 udelay(2); 248 zs_spin_lock_cond_irq(&scc->zlock, irq); 249 } 250 return loops; 251 } 252 253 static int zs_line_drain(struct zs_port *zport, int irq) 254 { 255 struct zs_scc *scc = zport->scc; 256 int loops = 10000; 257 258 while (!(read_zsreg(zport, R1) & ALL_SNT) && --loops) { 259 zs_spin_unlock_cond_irq(&scc->zlock, irq); 260 udelay(2); 261 zs_spin_lock_cond_irq(&scc->zlock, irq); 262 } 263 return loops; 264 } 265 266 267 static void load_zsregs(struct zs_port *zport, u8 *regs, int irq) 268 { 269 /* Let the current transmission finish. */ 270 zs_line_drain(zport, irq); 271 /* Load 'em up. */ 272 write_zsreg(zport, R3, regs[3] & ~RxENABLE); 273 write_zsreg(zport, R5, regs[5] & ~TxENAB); 274 write_zsreg(zport, R4, regs[4]); 275 write_zsreg(zport, R9, regs[9]); 276 write_zsreg(zport, R1, regs[1]); 277 write_zsreg(zport, R2, regs[2]); 278 write_zsreg(zport, R10, regs[10]); 279 write_zsreg(zport, R14, regs[14] & ~BRENABL); 280 write_zsreg(zport, R11, regs[11]); 281 write_zsreg(zport, R12, regs[12]); 282 write_zsreg(zport, R13, regs[13]); 283 write_zsreg(zport, R14, regs[14]); 284 write_zsreg(zport, R15, regs[15]); 285 if (regs[3] & RxENABLE) 286 write_zsreg(zport, R3, regs[3]); 287 if (regs[5] & TxENAB) 288 write_zsreg(zport, R5, regs[5]); 289 return; 290 } 291 292 293 /* 294 * Status handling routines. 295 */ 296 297 /* 298 * zs_tx_empty() -- get the transmitter empty status 299 * 300 * Purpose: Let user call ioctl() to get info when the UART physically 301 * is emptied. On bus types like RS485, the transmitter must 302 * release the bus after transmitting. This must be done when 303 * the transmit shift register is empty, not be done when the 304 * transmit holding register is empty. This functionality 305 * allows an RS485 driver to be written in user space. 306 */ 307 static unsigned int zs_tx_empty(struct uart_port *uport) 308 { 309 struct zs_port *zport = to_zport(uport); 310 struct zs_scc *scc = zport->scc; 311 unsigned long flags; 312 u8 status; 313 314 spin_lock_irqsave(&scc->zlock, flags); 315 status = read_zsreg(zport, R1); 316 spin_unlock_irqrestore(&scc->zlock, flags); 317 318 return status & ALL_SNT ? TIOCSER_TEMT : 0; 319 } 320 321 static unsigned int zs_raw_get_ab_mctrl(struct zs_port *zport_a, 322 struct zs_port *zport_b) 323 { 324 u8 status_a, status_b; 325 unsigned int mctrl; 326 327 status_a = read_zsreg(zport_a, R0); 328 status_b = read_zsreg(zport_b, R0); 329 330 mctrl = ((status_b & CTS) ? TIOCM_CTS : 0) | 331 ((status_b & DCD) ? TIOCM_CAR : 0) | 332 ((status_a & DCD) ? TIOCM_RNG : 0) | 333 ((status_a & SYNC_HUNT) ? TIOCM_DSR : 0); 334 335 return mctrl; 336 } 337 338 static unsigned int zs_raw_get_mctrl(struct zs_port *zport) 339 { 340 struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A]; 341 342 return zport != zport_a ? zs_raw_get_ab_mctrl(zport_a, zport) : 0; 343 } 344 345 static unsigned int zs_raw_xor_mctrl(struct zs_port *zport) 346 { 347 struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A]; 348 unsigned int mmask, mctrl, delta; 349 u8 mask_a, mask_b; 350 351 if (zport == zport_a) 352 return 0; 353 354 mask_a = zport_a->regs[15]; 355 mask_b = zport->regs[15]; 356 357 mmask = ((mask_b & CTSIE) ? TIOCM_CTS : 0) | 358 ((mask_b & DCDIE) ? TIOCM_CAR : 0) | 359 ((mask_a & DCDIE) ? TIOCM_RNG : 0) | 360 ((mask_a & SYNCIE) ? TIOCM_DSR : 0); 361 362 mctrl = zport->mctrl; 363 if (mmask) { 364 mctrl &= ~mmask; 365 mctrl |= zs_raw_get_ab_mctrl(zport_a, zport) & mmask; 366 } 367 368 delta = mctrl ^ zport->mctrl; 369 if (delta) 370 zport->mctrl = mctrl; 371 372 return delta; 373 } 374 375 static unsigned int zs_get_mctrl(struct uart_port *uport) 376 { 377 struct zs_port *zport = to_zport(uport); 378 struct zs_scc *scc = zport->scc; 379 unsigned int mctrl; 380 381 spin_lock(&scc->zlock); 382 mctrl = zs_raw_get_mctrl(zport); 383 spin_unlock(&scc->zlock); 384 385 return mctrl; 386 } 387 388 static void zs_set_mctrl(struct uart_port *uport, unsigned int mctrl) 389 { 390 struct zs_port *zport = to_zport(uport); 391 struct zs_scc *scc = zport->scc; 392 struct zs_port *zport_a = &scc->zport[ZS_CHAN_A]; 393 u8 oldloop, newloop; 394 395 spin_lock(&scc->zlock); 396 if (zport != zport_a) { 397 if (mctrl & TIOCM_DTR) 398 zport_a->regs[5] |= DTR; 399 else 400 zport_a->regs[5] &= ~DTR; 401 if (mctrl & TIOCM_RTS) 402 zport_a->regs[5] |= RTS; 403 else 404 zport_a->regs[5] &= ~RTS; 405 write_zsreg(zport_a, R5, zport_a->regs[5]); 406 } 407 408 /* Rarely modified, so don't poke at hardware unless necessary. */ 409 oldloop = zport->regs[14]; 410 newloop = oldloop; 411 if (mctrl & TIOCM_LOOP) 412 newloop |= LOOPBAK; 413 else 414 newloop &= ~LOOPBAK; 415 if (newloop != oldloop) { 416 zport->regs[14] = newloop; 417 write_zsreg(zport, R14, zport->regs[14]); 418 } 419 spin_unlock(&scc->zlock); 420 } 421 422 static void zs_raw_stop_tx(struct zs_port *zport) 423 { 424 write_zsreg(zport, R0, RES_Tx_P); 425 zport->tx_stopped = 1; 426 } 427 428 static void zs_stop_tx(struct uart_port *uport) 429 { 430 struct zs_port *zport = to_zport(uport); 431 struct zs_scc *scc = zport->scc; 432 433 spin_lock(&scc->zlock); 434 zs_raw_stop_tx(zport); 435 spin_unlock(&scc->zlock); 436 } 437 438 static void zs_raw_transmit_chars(struct zs_port *); 439 440 static void zs_start_tx(struct uart_port *uport) 441 { 442 struct zs_port *zport = to_zport(uport); 443 struct zs_scc *scc = zport->scc; 444 445 spin_lock(&scc->zlock); 446 if (zport->tx_stopped) { 447 zs_transmit_drain(zport, 0); 448 zport->tx_stopped = 0; 449 zs_raw_transmit_chars(zport); 450 } 451 spin_unlock(&scc->zlock); 452 } 453 454 static void zs_stop_rx(struct uart_port *uport) 455 { 456 struct zs_port *zport = to_zport(uport); 457 struct zs_scc *scc = zport->scc; 458 struct zs_port *zport_a = &scc->zport[ZS_CHAN_A]; 459 460 spin_lock(&scc->zlock); 461 zport->regs[15] &= ~BRKIE; 462 zport->regs[1] &= ~(RxINT_MASK | TxINT_ENAB); 463 zport->regs[1] |= RxINT_DISAB; 464 465 if (zport != zport_a) { 466 /* A-side DCD tracks RI and SYNC tracks DSR. */ 467 zport_a->regs[15] &= ~(DCDIE | SYNCIE); 468 write_zsreg(zport_a, R15, zport_a->regs[15]); 469 if (!(zport_a->regs[15] & BRKIE)) { 470 zport_a->regs[1] &= ~EXT_INT_ENAB; 471 write_zsreg(zport_a, R1, zport_a->regs[1]); 472 } 473 474 /* This-side DCD tracks DCD and CTS tracks CTS. */ 475 zport->regs[15] &= ~(DCDIE | CTSIE); 476 zport->regs[1] &= ~EXT_INT_ENAB; 477 } else { 478 /* DCD tracks RI and SYNC tracks DSR for the B side. */ 479 if (!(zport->regs[15] & (DCDIE | SYNCIE))) 480 zport->regs[1] &= ~EXT_INT_ENAB; 481 } 482 483 write_zsreg(zport, R15, zport->regs[15]); 484 write_zsreg(zport, R1, zport->regs[1]); 485 spin_unlock(&scc->zlock); 486 } 487 488 static void zs_enable_ms(struct uart_port *uport) 489 { 490 struct zs_port *zport = to_zport(uport); 491 struct zs_scc *scc = zport->scc; 492 struct zs_port *zport_a = &scc->zport[ZS_CHAN_A]; 493 494 if (zport == zport_a) 495 return; 496 497 spin_lock(&scc->zlock); 498 499 /* Clear Ext interrupts if not being handled already. */ 500 if (!(zport_a->regs[1] & EXT_INT_ENAB)) 501 write_zsreg(zport_a, R0, RES_EXT_INT); 502 503 /* A-side DCD tracks RI and SYNC tracks DSR. */ 504 zport_a->regs[1] |= EXT_INT_ENAB; 505 zport_a->regs[15] |= DCDIE | SYNCIE; 506 507 /* This-side DCD tracks DCD and CTS tracks CTS. */ 508 zport->regs[15] |= DCDIE | CTSIE; 509 510 zs_raw_xor_mctrl(zport); 511 512 write_zsreg(zport_a, R1, zport_a->regs[1]); 513 write_zsreg(zport_a, R15, zport_a->regs[15]); 514 write_zsreg(zport, R15, zport->regs[15]); 515 spin_unlock(&scc->zlock); 516 } 517 518 static void zs_break_ctl(struct uart_port *uport, int break_state) 519 { 520 struct zs_port *zport = to_zport(uport); 521 struct zs_scc *scc = zport->scc; 522 unsigned long flags; 523 524 spin_lock_irqsave(&scc->zlock, flags); 525 if (break_state == -1) 526 zport->regs[5] |= SND_BRK; 527 else 528 zport->regs[5] &= ~SND_BRK; 529 write_zsreg(zport, R5, zport->regs[5]); 530 spin_unlock_irqrestore(&scc->zlock, flags); 531 } 532 533 534 /* 535 * Interrupt handling routines. 536 */ 537 #define Rx_BRK 0x0100 /* BREAK event software flag. */ 538 #define Rx_SYS 0x0200 /* SysRq event software flag. */ 539 540 static void zs_receive_chars(struct zs_port *zport) 541 { 542 struct uart_port *uport = &zport->port; 543 struct zs_scc *scc = zport->scc; 544 struct uart_icount *icount; 545 unsigned int avail, status, ch, flag; 546 int count; 547 548 for (count = 16; count; count--) { 549 spin_lock(&scc->zlock); 550 avail = read_zsreg(zport, R0) & Rx_CH_AV; 551 spin_unlock(&scc->zlock); 552 if (!avail) 553 break; 554 555 spin_lock(&scc->zlock); 556 status = read_zsreg(zport, R1) & (Rx_OVR | FRM_ERR | PAR_ERR); 557 ch = read_zsdata(zport); 558 spin_unlock(&scc->zlock); 559 560 flag = TTY_NORMAL; 561 562 icount = &uport->icount; 563 icount->rx++; 564 565 /* Handle the null char got when BREAK is removed. */ 566 if (!ch) 567 status |= zport->tty_break; 568 if (unlikely(status & 569 (Rx_OVR | FRM_ERR | PAR_ERR | Rx_SYS | Rx_BRK))) { 570 zport->tty_break = 0; 571 572 /* Reset the error indication. */ 573 if (status & (Rx_OVR | FRM_ERR | PAR_ERR)) { 574 spin_lock(&scc->zlock); 575 write_zsreg(zport, R0, ERR_RES); 576 spin_unlock(&scc->zlock); 577 } 578 579 if (status & (Rx_SYS | Rx_BRK)) { 580 icount->brk++; 581 /* SysRq discards the null char. */ 582 if (status & Rx_SYS) 583 continue; 584 } else if (status & FRM_ERR) 585 icount->frame++; 586 else if (status & PAR_ERR) 587 icount->parity++; 588 if (status & Rx_OVR) 589 icount->overrun++; 590 591 status &= uport->read_status_mask; 592 if (status & Rx_BRK) 593 flag = TTY_BREAK; 594 else if (status & FRM_ERR) 595 flag = TTY_FRAME; 596 else if (status & PAR_ERR) 597 flag = TTY_PARITY; 598 } 599 600 if (uart_handle_sysrq_char(uport, ch)) 601 continue; 602 603 uart_insert_char(uport, status, Rx_OVR, ch, flag); 604 } 605 606 tty_flip_buffer_push(&uport->state->port); 607 } 608 609 static void zs_raw_transmit_chars(struct zs_port *zport) 610 { 611 struct circ_buf *xmit = &zport->port.state->xmit; 612 613 /* XON/XOFF chars. */ 614 if (zport->port.x_char) { 615 write_zsdata(zport, zport->port.x_char); 616 zport->port.icount.tx++; 617 zport->port.x_char = 0; 618 return; 619 } 620 621 /* If nothing to do or stopped or hardware stopped. */ 622 if (uart_circ_empty(xmit) || uart_tx_stopped(&zport->port)) { 623 zs_raw_stop_tx(zport); 624 return; 625 } 626 627 /* Send char. */ 628 write_zsdata(zport, xmit->buf[xmit->tail]); 629 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); 630 zport->port.icount.tx++; 631 632 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 633 uart_write_wakeup(&zport->port); 634 635 /* Are we are done? */ 636 if (uart_circ_empty(xmit)) 637 zs_raw_stop_tx(zport); 638 } 639 640 static void zs_transmit_chars(struct zs_port *zport) 641 { 642 struct zs_scc *scc = zport->scc; 643 644 spin_lock(&scc->zlock); 645 zs_raw_transmit_chars(zport); 646 spin_unlock(&scc->zlock); 647 } 648 649 static void zs_status_handle(struct zs_port *zport, struct zs_port *zport_a) 650 { 651 struct uart_port *uport = &zport->port; 652 struct zs_scc *scc = zport->scc; 653 unsigned int delta; 654 u8 status, brk; 655 656 spin_lock(&scc->zlock); 657 658 /* Get status from Read Register 0. */ 659 status = read_zsreg(zport, R0); 660 661 if (zport->regs[15] & BRKIE) { 662 brk = status & BRK_ABRT; 663 if (brk && !zport->brk) { 664 spin_unlock(&scc->zlock); 665 if (uart_handle_break(uport)) 666 zport->tty_break = Rx_SYS; 667 else 668 zport->tty_break = Rx_BRK; 669 spin_lock(&scc->zlock); 670 } 671 zport->brk = brk; 672 } 673 674 if (zport != zport_a) { 675 delta = zs_raw_xor_mctrl(zport); 676 spin_unlock(&scc->zlock); 677 678 if (delta & TIOCM_CTS) 679 uart_handle_cts_change(uport, 680 zport->mctrl & TIOCM_CTS); 681 if (delta & TIOCM_CAR) 682 uart_handle_dcd_change(uport, 683 zport->mctrl & TIOCM_CAR); 684 if (delta & TIOCM_RNG) 685 uport->icount.dsr++; 686 if (delta & TIOCM_DSR) 687 uport->icount.rng++; 688 689 if (delta) 690 wake_up_interruptible(&uport->state->port.delta_msr_wait); 691 692 spin_lock(&scc->zlock); 693 } 694 695 /* Clear the status condition... */ 696 write_zsreg(zport, R0, RES_EXT_INT); 697 698 spin_unlock(&scc->zlock); 699 } 700 701 /* 702 * This is the Z85C30 driver's generic interrupt routine. 703 */ 704 static irqreturn_t zs_interrupt(int irq, void *dev_id) 705 { 706 struct zs_scc *scc = dev_id; 707 struct zs_port *zport_a = &scc->zport[ZS_CHAN_A]; 708 struct zs_port *zport_b = &scc->zport[ZS_CHAN_B]; 709 irqreturn_t status = IRQ_NONE; 710 u8 zs_intreg; 711 int count; 712 713 /* 714 * NOTE: The read register 3, which holds the irq status, 715 * does so for both channels on each chip. Although 716 * the status value itself must be read from the A 717 * channel and is only valid when read from channel A. 718 * Yes... broken hardware... 719 */ 720 for (count = 16; count; count--) { 721 spin_lock(&scc->zlock); 722 zs_intreg = read_zsreg(zport_a, R3); 723 spin_unlock(&scc->zlock); 724 if (!zs_intreg) 725 break; 726 727 /* 728 * We do not like losing characters, so we prioritise 729 * interrupt sources a little bit differently than 730 * the SCC would, was it allowed to. 731 */ 732 if (zs_intreg & CHBRxIP) 733 zs_receive_chars(zport_b); 734 if (zs_intreg & CHARxIP) 735 zs_receive_chars(zport_a); 736 if (zs_intreg & CHBEXT) 737 zs_status_handle(zport_b, zport_a); 738 if (zs_intreg & CHAEXT) 739 zs_status_handle(zport_a, zport_a); 740 if (zs_intreg & CHBTxIP) 741 zs_transmit_chars(zport_b); 742 if (zs_intreg & CHATxIP) 743 zs_transmit_chars(zport_a); 744 745 status = IRQ_HANDLED; 746 } 747 748 return status; 749 } 750 751 752 /* 753 * Finally, routines used to initialize the serial port. 754 */ 755 static int zs_startup(struct uart_port *uport) 756 { 757 struct zs_port *zport = to_zport(uport); 758 struct zs_scc *scc = zport->scc; 759 unsigned long flags; 760 int irq_guard; 761 int ret; 762 763 irq_guard = atomic_add_return(1, &scc->irq_guard); 764 if (irq_guard == 1) { 765 ret = request_irq(zport->port.irq, zs_interrupt, 766 IRQF_SHARED, "scc", scc); 767 if (ret) { 768 atomic_add(-1, &scc->irq_guard); 769 printk(KERN_ERR "zs: can't get irq %d\n", 770 zport->port.irq); 771 return ret; 772 } 773 } 774 775 spin_lock_irqsave(&scc->zlock, flags); 776 777 /* Clear the receive FIFO. */ 778 zs_receive_drain(zport); 779 780 /* Clear the interrupt registers. */ 781 write_zsreg(zport, R0, ERR_RES); 782 write_zsreg(zport, R0, RES_Tx_P); 783 /* But Ext only if not being handled already. */ 784 if (!(zport->regs[1] & EXT_INT_ENAB)) 785 write_zsreg(zport, R0, RES_EXT_INT); 786 787 /* Finally, enable sequencing and interrupts. */ 788 zport->regs[1] &= ~RxINT_MASK; 789 zport->regs[1] |= RxINT_ALL | TxINT_ENAB | EXT_INT_ENAB; 790 zport->regs[3] |= RxENABLE; 791 zport->regs[15] |= BRKIE; 792 write_zsreg(zport, R1, zport->regs[1]); 793 write_zsreg(zport, R3, zport->regs[3]); 794 write_zsreg(zport, R5, zport->regs[5]); 795 write_zsreg(zport, R15, zport->regs[15]); 796 797 /* Record the current state of RR0. */ 798 zport->mctrl = zs_raw_get_mctrl(zport); 799 zport->brk = read_zsreg(zport, R0) & BRK_ABRT; 800 801 zport->tx_stopped = 1; 802 803 spin_unlock_irqrestore(&scc->zlock, flags); 804 805 return 0; 806 } 807 808 static void zs_shutdown(struct uart_port *uport) 809 { 810 struct zs_port *zport = to_zport(uport); 811 struct zs_scc *scc = zport->scc; 812 unsigned long flags; 813 int irq_guard; 814 815 spin_lock_irqsave(&scc->zlock, flags); 816 817 zport->regs[3] &= ~RxENABLE; 818 write_zsreg(zport, R5, zport->regs[5]); 819 write_zsreg(zport, R3, zport->regs[3]); 820 821 spin_unlock_irqrestore(&scc->zlock, flags); 822 823 irq_guard = atomic_add_return(-1, &scc->irq_guard); 824 if (!irq_guard) 825 free_irq(zport->port.irq, scc); 826 } 827 828 829 static void zs_reset(struct zs_port *zport) 830 { 831 struct zs_scc *scc = zport->scc; 832 int irq; 833 unsigned long flags; 834 835 spin_lock_irqsave(&scc->zlock, flags); 836 irq = !irqs_disabled_flags(flags); 837 if (!scc->initialised) { 838 /* Reset the pointer first, just in case... */ 839 read_zsreg(zport, R0); 840 /* And let the current transmission finish. */ 841 zs_line_drain(zport, irq); 842 write_zsreg(zport, R9, FHWRES); 843 udelay(10); 844 write_zsreg(zport, R9, 0); 845 scc->initialised = 1; 846 } 847 load_zsregs(zport, zport->regs, irq); 848 spin_unlock_irqrestore(&scc->zlock, flags); 849 } 850 851 static void zs_set_termios(struct uart_port *uport, struct ktermios *termios, 852 struct ktermios *old_termios) 853 { 854 struct zs_port *zport = to_zport(uport); 855 struct zs_scc *scc = zport->scc; 856 struct zs_port *zport_a = &scc->zport[ZS_CHAN_A]; 857 int irq; 858 unsigned int baud, brg; 859 unsigned long flags; 860 861 spin_lock_irqsave(&scc->zlock, flags); 862 irq = !irqs_disabled_flags(flags); 863 864 /* Byte size. */ 865 zport->regs[3] &= ~RxNBITS_MASK; 866 zport->regs[5] &= ~TxNBITS_MASK; 867 switch (termios->c_cflag & CSIZE) { 868 case CS5: 869 zport->regs[3] |= Rx5; 870 zport->regs[5] |= Tx5; 871 break; 872 case CS6: 873 zport->regs[3] |= Rx6; 874 zport->regs[5] |= Tx6; 875 break; 876 case CS7: 877 zport->regs[3] |= Rx7; 878 zport->regs[5] |= Tx7; 879 break; 880 case CS8: 881 default: 882 zport->regs[3] |= Rx8; 883 zport->regs[5] |= Tx8; 884 break; 885 } 886 887 /* Parity and stop bits. */ 888 zport->regs[4] &= ~(XCLK_MASK | SB_MASK | PAR_ENA | PAR_EVEN); 889 if (termios->c_cflag & CSTOPB) 890 zport->regs[4] |= SB2; 891 else 892 zport->regs[4] |= SB1; 893 if (termios->c_cflag & PARENB) 894 zport->regs[4] |= PAR_ENA; 895 if (!(termios->c_cflag & PARODD)) 896 zport->regs[4] |= PAR_EVEN; 897 switch (zport->clk_mode) { 898 case 64: 899 zport->regs[4] |= X64CLK; 900 break; 901 case 32: 902 zport->regs[4] |= X32CLK; 903 break; 904 case 16: 905 zport->regs[4] |= X16CLK; 906 break; 907 case 1: 908 zport->regs[4] |= X1CLK; 909 break; 910 default: 911 BUG(); 912 } 913 914 baud = uart_get_baud_rate(uport, termios, old_termios, 0, 915 uport->uartclk / zport->clk_mode / 4); 916 917 brg = ZS_BPS_TO_BRG(baud, uport->uartclk / zport->clk_mode); 918 zport->regs[12] = brg & 0xff; 919 zport->regs[13] = (brg >> 8) & 0xff; 920 921 uart_update_timeout(uport, termios->c_cflag, baud); 922 923 uport->read_status_mask = Rx_OVR; 924 if (termios->c_iflag & INPCK) 925 uport->read_status_mask |= FRM_ERR | PAR_ERR; 926 if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK)) 927 uport->read_status_mask |= Rx_BRK; 928 929 uport->ignore_status_mask = 0; 930 if (termios->c_iflag & IGNPAR) 931 uport->ignore_status_mask |= FRM_ERR | PAR_ERR; 932 if (termios->c_iflag & IGNBRK) { 933 uport->ignore_status_mask |= Rx_BRK; 934 if (termios->c_iflag & IGNPAR) 935 uport->ignore_status_mask |= Rx_OVR; 936 } 937 938 if (termios->c_cflag & CREAD) 939 zport->regs[3] |= RxENABLE; 940 else 941 zport->regs[3] &= ~RxENABLE; 942 943 if (zport != zport_a) { 944 if (!(termios->c_cflag & CLOCAL)) { 945 zport->regs[15] |= DCDIE; 946 } else 947 zport->regs[15] &= ~DCDIE; 948 if (termios->c_cflag & CRTSCTS) { 949 zport->regs[15] |= CTSIE; 950 } else 951 zport->regs[15] &= ~CTSIE; 952 zs_raw_xor_mctrl(zport); 953 } 954 955 /* Load up the new values. */ 956 load_zsregs(zport, zport->regs, irq); 957 958 spin_unlock_irqrestore(&scc->zlock, flags); 959 } 960 961 /* 962 * Hack alert! 963 * Required solely so that the initial PROM-based console 964 * works undisturbed in parallel with this one. 965 */ 966 static void zs_pm(struct uart_port *uport, unsigned int state, 967 unsigned int oldstate) 968 { 969 struct zs_port *zport = to_zport(uport); 970 971 if (state < 3) 972 zport->regs[5] |= TxENAB; 973 else 974 zport->regs[5] &= ~TxENAB; 975 write_zsreg(zport, R5, zport->regs[5]); 976 } 977 978 979 static const char *zs_type(struct uart_port *uport) 980 { 981 return "Z85C30 SCC"; 982 } 983 984 static void zs_release_port(struct uart_port *uport) 985 { 986 iounmap(uport->membase); 987 uport->membase = 0; 988 release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE); 989 } 990 991 static int zs_map_port(struct uart_port *uport) 992 { 993 if (!uport->membase) 994 uport->membase = ioremap_nocache(uport->mapbase, 995 ZS_CHAN_IO_SIZE); 996 if (!uport->membase) { 997 printk(KERN_ERR "zs: Cannot map MMIO\n"); 998 return -ENOMEM; 999 } 1000 return 0; 1001 } 1002 1003 static int zs_request_port(struct uart_port *uport) 1004 { 1005 int ret; 1006 1007 if (!request_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE, "scc")) { 1008 printk(KERN_ERR "zs: Unable to reserve MMIO resource\n"); 1009 return -EBUSY; 1010 } 1011 ret = zs_map_port(uport); 1012 if (ret) { 1013 release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE); 1014 return ret; 1015 } 1016 return 0; 1017 } 1018 1019 static void zs_config_port(struct uart_port *uport, int flags) 1020 { 1021 struct zs_port *zport = to_zport(uport); 1022 1023 if (flags & UART_CONFIG_TYPE) { 1024 if (zs_request_port(uport)) 1025 return; 1026 1027 uport->type = PORT_ZS; 1028 1029 zs_reset(zport); 1030 } 1031 } 1032 1033 static int zs_verify_port(struct uart_port *uport, struct serial_struct *ser) 1034 { 1035 struct zs_port *zport = to_zport(uport); 1036 int ret = 0; 1037 1038 if (ser->type != PORT_UNKNOWN && ser->type != PORT_ZS) 1039 ret = -EINVAL; 1040 if (ser->irq != uport->irq) 1041 ret = -EINVAL; 1042 if (ser->baud_base != uport->uartclk / zport->clk_mode / 4) 1043 ret = -EINVAL; 1044 return ret; 1045 } 1046 1047 1048 static struct uart_ops zs_ops = { 1049 .tx_empty = zs_tx_empty, 1050 .set_mctrl = zs_set_mctrl, 1051 .get_mctrl = zs_get_mctrl, 1052 .stop_tx = zs_stop_tx, 1053 .start_tx = zs_start_tx, 1054 .stop_rx = zs_stop_rx, 1055 .enable_ms = zs_enable_ms, 1056 .break_ctl = zs_break_ctl, 1057 .startup = zs_startup, 1058 .shutdown = zs_shutdown, 1059 .set_termios = zs_set_termios, 1060 .pm = zs_pm, 1061 .type = zs_type, 1062 .release_port = zs_release_port, 1063 .request_port = zs_request_port, 1064 .config_port = zs_config_port, 1065 .verify_port = zs_verify_port, 1066 }; 1067 1068 /* 1069 * Initialize Z85C30 port structures. 1070 */ 1071 static int __init zs_probe_sccs(void) 1072 { 1073 static int probed; 1074 struct zs_parms zs_parms; 1075 int chip, side, irq; 1076 int n_chips = 0; 1077 int i; 1078 1079 if (probed) 1080 return 0; 1081 1082 irq = dec_interrupt[DEC_IRQ_SCC0]; 1083 if (irq >= 0) { 1084 zs_parms.scc[n_chips] = IOASIC_SCC0; 1085 zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC0]; 1086 n_chips++; 1087 } 1088 irq = dec_interrupt[DEC_IRQ_SCC1]; 1089 if (irq >= 0) { 1090 zs_parms.scc[n_chips] = IOASIC_SCC1; 1091 zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC1]; 1092 n_chips++; 1093 } 1094 if (!n_chips) 1095 return -ENXIO; 1096 1097 probed = 1; 1098 1099 for (chip = 0; chip < n_chips; chip++) { 1100 spin_lock_init(&zs_sccs[chip].zlock); 1101 for (side = 0; side < ZS_NUM_CHAN; side++) { 1102 struct zs_port *zport = &zs_sccs[chip].zport[side]; 1103 struct uart_port *uport = &zport->port; 1104 1105 zport->scc = &zs_sccs[chip]; 1106 zport->clk_mode = 16; 1107 1108 uport->irq = zs_parms.irq[chip]; 1109 uport->uartclk = ZS_CLOCK; 1110 uport->fifosize = 1; 1111 uport->iotype = UPIO_MEM; 1112 uport->flags = UPF_BOOT_AUTOCONF; 1113 uport->ops = &zs_ops; 1114 uport->line = chip * ZS_NUM_CHAN + side; 1115 uport->mapbase = dec_kn_slot_base + 1116 zs_parms.scc[chip] + 1117 (side ^ ZS_CHAN_B) * ZS_CHAN_IO_SIZE; 1118 1119 for (i = 0; i < ZS_NUM_REGS; i++) 1120 zport->regs[i] = zs_init_regs[i]; 1121 } 1122 } 1123 1124 return 0; 1125 } 1126 1127 1128 #ifdef CONFIG_SERIAL_ZS_CONSOLE 1129 static void zs_console_putchar(struct uart_port *uport, int ch) 1130 { 1131 struct zs_port *zport = to_zport(uport); 1132 struct zs_scc *scc = zport->scc; 1133 int irq; 1134 unsigned long flags; 1135 1136 spin_lock_irqsave(&scc->zlock, flags); 1137 irq = !irqs_disabled_flags(flags); 1138 if (zs_transmit_drain(zport, irq)) 1139 write_zsdata(zport, ch); 1140 spin_unlock_irqrestore(&scc->zlock, flags); 1141 } 1142 1143 /* 1144 * Print a string to the serial port trying not to disturb 1145 * any possible real use of the port... 1146 */ 1147 static void zs_console_write(struct console *co, const char *s, 1148 unsigned int count) 1149 { 1150 int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN; 1151 struct zs_port *zport = &zs_sccs[chip].zport[side]; 1152 struct zs_scc *scc = zport->scc; 1153 unsigned long flags; 1154 u8 txint, txenb; 1155 int irq; 1156 1157 /* Disable transmit interrupts and enable the transmitter. */ 1158 spin_lock_irqsave(&scc->zlock, flags); 1159 txint = zport->regs[1]; 1160 txenb = zport->regs[5]; 1161 if (txint & TxINT_ENAB) { 1162 zport->regs[1] = txint & ~TxINT_ENAB; 1163 write_zsreg(zport, R1, zport->regs[1]); 1164 } 1165 if (!(txenb & TxENAB)) { 1166 zport->regs[5] = txenb | TxENAB; 1167 write_zsreg(zport, R5, zport->regs[5]); 1168 } 1169 spin_unlock_irqrestore(&scc->zlock, flags); 1170 1171 uart_console_write(&zport->port, s, count, zs_console_putchar); 1172 1173 /* Restore transmit interrupts and the transmitter enable. */ 1174 spin_lock_irqsave(&scc->zlock, flags); 1175 irq = !irqs_disabled_flags(flags); 1176 zs_line_drain(zport, irq); 1177 if (!(txenb & TxENAB)) { 1178 zport->regs[5] &= ~TxENAB; 1179 write_zsreg(zport, R5, zport->regs[5]); 1180 } 1181 if (txint & TxINT_ENAB) { 1182 zport->regs[1] |= TxINT_ENAB; 1183 write_zsreg(zport, R1, zport->regs[1]); 1184 } 1185 spin_unlock_irqrestore(&scc->zlock, flags); 1186 } 1187 1188 /* 1189 * Setup serial console baud/bits/parity. We do two things here: 1190 * - construct a cflag setting for the first uart_open() 1191 * - initialise the serial port 1192 * Return non-zero if we didn't find a serial port. 1193 */ 1194 static int __init zs_console_setup(struct console *co, char *options) 1195 { 1196 int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN; 1197 struct zs_port *zport = &zs_sccs[chip].zport[side]; 1198 struct uart_port *uport = &zport->port; 1199 int baud = 9600; 1200 int bits = 8; 1201 int parity = 'n'; 1202 int flow = 'n'; 1203 int ret; 1204 1205 ret = zs_map_port(uport); 1206 if (ret) 1207 return ret; 1208 1209 zs_reset(zport); 1210 zs_pm(uport, 0, -1); 1211 1212 if (options) 1213 uart_parse_options(options, &baud, &parity, &bits, &flow); 1214 return uart_set_options(uport, co, baud, parity, bits, flow); 1215 } 1216 1217 static struct uart_driver zs_reg; 1218 static struct console zs_console = { 1219 .name = "ttyS", 1220 .write = zs_console_write, 1221 .device = uart_console_device, 1222 .setup = zs_console_setup, 1223 .flags = CON_PRINTBUFFER, 1224 .index = -1, 1225 .data = &zs_reg, 1226 }; 1227 1228 /* 1229 * Register console. 1230 */ 1231 static int __init zs_serial_console_init(void) 1232 { 1233 int ret; 1234 1235 ret = zs_probe_sccs(); 1236 if (ret) 1237 return ret; 1238 register_console(&zs_console); 1239 1240 return 0; 1241 } 1242 1243 console_initcall(zs_serial_console_init); 1244 1245 #define SERIAL_ZS_CONSOLE &zs_console 1246 #else 1247 #define SERIAL_ZS_CONSOLE NULL 1248 #endif /* CONFIG_SERIAL_ZS_CONSOLE */ 1249 1250 static struct uart_driver zs_reg = { 1251 .owner = THIS_MODULE, 1252 .driver_name = "serial", 1253 .dev_name = "ttyS", 1254 .major = TTY_MAJOR, 1255 .minor = 64, 1256 .nr = ZS_NUM_SCCS * ZS_NUM_CHAN, 1257 .cons = SERIAL_ZS_CONSOLE, 1258 }; 1259 1260 /* zs_init inits the driver. */ 1261 static int __init zs_init(void) 1262 { 1263 int i, ret; 1264 1265 pr_info("%s%s\n", zs_name, zs_version); 1266 1267 /* Find out how many Z85C30 SCCs we have. */ 1268 ret = zs_probe_sccs(); 1269 if (ret) 1270 return ret; 1271 1272 ret = uart_register_driver(&zs_reg); 1273 if (ret) 1274 return ret; 1275 1276 for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) { 1277 struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN]; 1278 struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN]; 1279 struct uart_port *uport = &zport->port; 1280 1281 if (zport->scc) 1282 uart_add_one_port(&zs_reg, uport); 1283 } 1284 1285 return 0; 1286 } 1287 1288 static void __exit zs_exit(void) 1289 { 1290 int i; 1291 1292 for (i = ZS_NUM_SCCS * ZS_NUM_CHAN - 1; i >= 0; i--) { 1293 struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN]; 1294 struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN]; 1295 struct uart_port *uport = &zport->port; 1296 1297 if (zport->scc) 1298 uart_remove_one_port(&zs_reg, uport); 1299 } 1300 1301 uart_unregister_driver(&zs_reg); 1302 } 1303 1304 module_init(zs_init); 1305 module_exit(zs_exit); 1306