xref: /openbmc/linux/drivers/tty/serial/zs.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * zs.c: Serial port driver for IOASIC DECstations.
4  *
5  * Derived from drivers/sbus/char/sunserial.c by Paul Mackerras.
6  * Derived from drivers/macintosh/macserial.c by Harald Koerfgen.
7  *
8  * DECstation changes
9  * Copyright (C) 1998-2000 Harald Koerfgen
10  * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
11  *
12  * For the rest of the code the original Copyright applies:
13  * Copyright (C) 1996 Paul Mackerras (Paul.Mackerras@cs.anu.edu.au)
14  * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
15  *
16  *
17  * Note: for IOASIC systems the wiring is as follows:
18  *
19  * mouse/keyboard:
20  * DIN-7 MJ-4  signal        SCC
21  * 2     1     TxD       <-  A.TxD
22  * 3     4     RxD       ->  A.RxD
23  *
24  * EIA-232/EIA-423:
25  * DB-25 MMJ-6 signal        SCC
26  * 2     2     TxD       <-  B.TxD
27  * 3     5     RxD       ->  B.RxD
28  * 4           RTS       <- ~A.RTS
29  * 5           CTS       -> ~B.CTS
30  * 6     6     DSR       -> ~A.SYNC
31  * 8           CD        -> ~B.DCD
32  * 12          DSRS(DCE) -> ~A.CTS  (*)
33  * 15          TxC       ->  B.TxC
34  * 17          RxC       ->  B.RxC
35  * 20    1     DTR       <- ~A.DTR
36  * 22          RI        -> ~A.DCD
37  * 23          DSRS(DTE) <- ~B.RTS
38  *
39  * (*) EIA-232 defines the signal at this pin to be SCD, while DSRS(DCE)
40  *     is shared with DSRS(DTE) at pin 23.
41  *
42  * As you can immediately notice the wiring of the RTS, DTR and DSR signals
43  * is a bit odd.  This makes the handling of port B unnecessarily
44  * complicated and prevents the use of some automatic modes of operation.
45  */
46 
47 #if defined(CONFIG_SERIAL_ZS_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
48 #define SUPPORT_SYSRQ
49 #endif
50 
51 #include <linux/bug.h>
52 #include <linux/console.h>
53 #include <linux/delay.h>
54 #include <linux/errno.h>
55 #include <linux/init.h>
56 #include <linux/interrupt.h>
57 #include <linux/io.h>
58 #include <linux/ioport.h>
59 #include <linux/irqflags.h>
60 #include <linux/kernel.h>
61 #include <linux/module.h>
62 #include <linux/major.h>
63 #include <linux/serial.h>
64 #include <linux/serial_core.h>
65 #include <linux/spinlock.h>
66 #include <linux/sysrq.h>
67 #include <linux/tty.h>
68 #include <linux/tty_flip.h>
69 #include <linux/types.h>
70 
71 #include <linux/atomic.h>
72 
73 #include <asm/dec/interrupts.h>
74 #include <asm/dec/ioasic_addrs.h>
75 #include <asm/dec/system.h>
76 
77 #include "zs.h"
78 
79 
80 MODULE_AUTHOR("Maciej W. Rozycki <macro@linux-mips.org>");
81 MODULE_DESCRIPTION("DECstation Z85C30 serial driver");
82 MODULE_LICENSE("GPL");
83 
84 
85 static char zs_name[] __initdata = "DECstation Z85C30 serial driver version ";
86 static char zs_version[] __initdata = "0.10";
87 
88 /*
89  * It would be nice to dynamically allocate everything that
90  * depends on ZS_NUM_SCCS, so we could support any number of
91  * Z85C30s, but for now...
92  */
93 #define ZS_NUM_SCCS	2		/* Max # of ZS chips supported.  */
94 #define ZS_NUM_CHAN	2		/* 2 channels per chip.  */
95 #define ZS_CHAN_A	0		/* Index of the channel A.  */
96 #define ZS_CHAN_B	1		/* Index of the channel B.  */
97 #define ZS_CHAN_IO_SIZE 8		/* IOMEM space size.  */
98 #define ZS_CHAN_IO_STRIDE 4		/* Register alignment.  */
99 #define ZS_CHAN_IO_OFFSET 1		/* The SCC resides on the high byte
100 					   of the 16-bit IOBUS.  */
101 #define ZS_CLOCK        7372800 	/* Z85C30 PCLK input clock rate.  */
102 
103 #define to_zport(uport) container_of(uport, struct zs_port, port)
104 
105 struct zs_parms {
106 	resource_size_t scc[ZS_NUM_SCCS];
107 	int irq[ZS_NUM_SCCS];
108 };
109 
110 static struct zs_scc zs_sccs[ZS_NUM_SCCS];
111 
112 static u8 zs_init_regs[ZS_NUM_REGS] __initdata = {
113 	0,				/* write 0 */
114 	PAR_SPEC,			/* write 1 */
115 	0,				/* write 2 */
116 	0,				/* write 3 */
117 	X16CLK | SB1,			/* write 4 */
118 	0,				/* write 5 */
119 	0, 0, 0,			/* write 6, 7, 8 */
120 	MIE | DLC | NV,			/* write 9 */
121 	NRZ,				/* write 10 */
122 	TCBR | RCBR,			/* write 11 */
123 	0, 0,				/* BRG time constant, write 12 + 13 */
124 	BRSRC | BRENABL,		/* write 14 */
125 	0,				/* write 15 */
126 };
127 
128 /*
129  * Debugging.
130  */
131 #undef ZS_DEBUG_REGS
132 
133 
134 /*
135  * Reading and writing Z85C30 registers.
136  */
137 static void recovery_delay(void)
138 {
139 	udelay(2);
140 }
141 
142 static u8 read_zsreg(struct zs_port *zport, int reg)
143 {
144 	void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET;
145 	u8 retval;
146 
147 	if (reg != 0) {
148 		writeb(reg & 0xf, control);
149 		fast_iob();
150 		recovery_delay();
151 	}
152 	retval = readb(control);
153 	recovery_delay();
154 	return retval;
155 }
156 
157 static void write_zsreg(struct zs_port *zport, int reg, u8 value)
158 {
159 	void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET;
160 
161 	if (reg != 0) {
162 		writeb(reg & 0xf, control);
163 		fast_iob(); recovery_delay();
164 	}
165 	writeb(value, control);
166 	fast_iob();
167 	recovery_delay();
168 	return;
169 }
170 
171 static u8 read_zsdata(struct zs_port *zport)
172 {
173 	void __iomem *data = zport->port.membase +
174 			     ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET;
175 	u8 retval;
176 
177 	retval = readb(data);
178 	recovery_delay();
179 	return retval;
180 }
181 
182 static void write_zsdata(struct zs_port *zport, u8 value)
183 {
184 	void __iomem *data = zport->port.membase +
185 			     ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET;
186 
187 	writeb(value, data);
188 	fast_iob();
189 	recovery_delay();
190 	return;
191 }
192 
193 #ifdef ZS_DEBUG_REGS
194 void zs_dump(void)
195 {
196 	struct zs_port *zport;
197 	int i, j;
198 
199 	for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) {
200 		zport = &zs_sccs[i / ZS_NUM_CHAN].zport[i % ZS_NUM_CHAN];
201 
202 		if (!zport->scc)
203 			continue;
204 
205 		for (j = 0; j < 16; j++)
206 			printk("W%-2d = 0x%02x\t", j, zport->regs[j]);
207 		printk("\n");
208 		for (j = 0; j < 16; j++)
209 			printk("R%-2d = 0x%02x\t", j, read_zsreg(zport, j));
210 		printk("\n\n");
211 	}
212 }
213 #endif
214 
215 
216 static void zs_spin_lock_cond_irq(spinlock_t *lock, int irq)
217 {
218 	if (irq)
219 		spin_lock_irq(lock);
220 	else
221 		spin_lock(lock);
222 }
223 
224 static void zs_spin_unlock_cond_irq(spinlock_t *lock, int irq)
225 {
226 	if (irq)
227 		spin_unlock_irq(lock);
228 	else
229 		spin_unlock(lock);
230 }
231 
232 static int zs_receive_drain(struct zs_port *zport)
233 {
234 	int loops = 10000;
235 
236 	while ((read_zsreg(zport, R0) & Rx_CH_AV) && --loops)
237 		read_zsdata(zport);
238 	return loops;
239 }
240 
241 static int zs_transmit_drain(struct zs_port *zport, int irq)
242 {
243 	struct zs_scc *scc = zport->scc;
244 	int loops = 10000;
245 
246 	while (!(read_zsreg(zport, R0) & Tx_BUF_EMP) && --loops) {
247 		zs_spin_unlock_cond_irq(&scc->zlock, irq);
248 		udelay(2);
249 		zs_spin_lock_cond_irq(&scc->zlock, irq);
250 	}
251 	return loops;
252 }
253 
254 static int zs_line_drain(struct zs_port *zport, int irq)
255 {
256 	struct zs_scc *scc = zport->scc;
257 	int loops = 10000;
258 
259 	while (!(read_zsreg(zport, R1) & ALL_SNT) && --loops) {
260 		zs_spin_unlock_cond_irq(&scc->zlock, irq);
261 		udelay(2);
262 		zs_spin_lock_cond_irq(&scc->zlock, irq);
263 	}
264 	return loops;
265 }
266 
267 
268 static void load_zsregs(struct zs_port *zport, u8 *regs, int irq)
269 {
270 	/* Let the current transmission finish.  */
271 	zs_line_drain(zport, irq);
272 	/* Load 'em up.  */
273 	write_zsreg(zport, R3, regs[3] & ~RxENABLE);
274 	write_zsreg(zport, R5, regs[5] & ~TxENAB);
275 	write_zsreg(zport, R4, regs[4]);
276 	write_zsreg(zport, R9, regs[9]);
277 	write_zsreg(zport, R1, regs[1]);
278 	write_zsreg(zport, R2, regs[2]);
279 	write_zsreg(zport, R10, regs[10]);
280 	write_zsreg(zport, R14, regs[14] & ~BRENABL);
281 	write_zsreg(zport, R11, regs[11]);
282 	write_zsreg(zport, R12, regs[12]);
283 	write_zsreg(zport, R13, regs[13]);
284 	write_zsreg(zport, R14, regs[14]);
285 	write_zsreg(zport, R15, regs[15]);
286 	if (regs[3] & RxENABLE)
287 		write_zsreg(zport, R3, regs[3]);
288 	if (regs[5] & TxENAB)
289 		write_zsreg(zport, R5, regs[5]);
290 	return;
291 }
292 
293 
294 /*
295  * Status handling routines.
296  */
297 
298 /*
299  * zs_tx_empty() -- get the transmitter empty status
300  *
301  * Purpose: Let user call ioctl() to get info when the UART physically
302  * 	    is emptied.  On bus types like RS485, the transmitter must
303  * 	    release the bus after transmitting.  This must be done when
304  * 	    the transmit shift register is empty, not be done when the
305  * 	    transmit holding register is empty.  This functionality
306  * 	    allows an RS485 driver to be written in user space.
307  */
308 static unsigned int zs_tx_empty(struct uart_port *uport)
309 {
310 	struct zs_port *zport = to_zport(uport);
311 	struct zs_scc *scc = zport->scc;
312 	unsigned long flags;
313 	u8 status;
314 
315 	spin_lock_irqsave(&scc->zlock, flags);
316 	status = read_zsreg(zport, R1);
317 	spin_unlock_irqrestore(&scc->zlock, flags);
318 
319 	return status & ALL_SNT ? TIOCSER_TEMT : 0;
320 }
321 
322 static unsigned int zs_raw_get_ab_mctrl(struct zs_port *zport_a,
323 					struct zs_port *zport_b)
324 {
325 	u8 status_a, status_b;
326 	unsigned int mctrl;
327 
328 	status_a = read_zsreg(zport_a, R0);
329 	status_b = read_zsreg(zport_b, R0);
330 
331 	mctrl = ((status_b & CTS) ? TIOCM_CTS : 0) |
332 		((status_b & DCD) ? TIOCM_CAR : 0) |
333 		((status_a & DCD) ? TIOCM_RNG : 0) |
334 		((status_a & SYNC_HUNT) ? TIOCM_DSR : 0);
335 
336 	return mctrl;
337 }
338 
339 static unsigned int zs_raw_get_mctrl(struct zs_port *zport)
340 {
341 	struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A];
342 
343 	return zport != zport_a ? zs_raw_get_ab_mctrl(zport_a, zport) : 0;
344 }
345 
346 static unsigned int zs_raw_xor_mctrl(struct zs_port *zport)
347 {
348 	struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A];
349 	unsigned int mmask, mctrl, delta;
350 	u8 mask_a, mask_b;
351 
352 	if (zport == zport_a)
353 		return 0;
354 
355 	mask_a = zport_a->regs[15];
356 	mask_b = zport->regs[15];
357 
358 	mmask = ((mask_b & CTSIE) ? TIOCM_CTS : 0) |
359 		((mask_b & DCDIE) ? TIOCM_CAR : 0) |
360 		((mask_a & DCDIE) ? TIOCM_RNG : 0) |
361 		((mask_a & SYNCIE) ? TIOCM_DSR : 0);
362 
363 	mctrl = zport->mctrl;
364 	if (mmask) {
365 		mctrl &= ~mmask;
366 		mctrl |= zs_raw_get_ab_mctrl(zport_a, zport) & mmask;
367 	}
368 
369 	delta = mctrl ^ zport->mctrl;
370 	if (delta)
371 		zport->mctrl = mctrl;
372 
373 	return delta;
374 }
375 
376 static unsigned int zs_get_mctrl(struct uart_port *uport)
377 {
378 	struct zs_port *zport = to_zport(uport);
379 	struct zs_scc *scc = zport->scc;
380 	unsigned int mctrl;
381 
382 	spin_lock(&scc->zlock);
383 	mctrl = zs_raw_get_mctrl(zport);
384 	spin_unlock(&scc->zlock);
385 
386 	return mctrl;
387 }
388 
389 static void zs_set_mctrl(struct uart_port *uport, unsigned int mctrl)
390 {
391 	struct zs_port *zport = to_zport(uport);
392 	struct zs_scc *scc = zport->scc;
393 	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
394 	u8 oldloop, newloop;
395 
396 	spin_lock(&scc->zlock);
397 	if (zport != zport_a) {
398 		if (mctrl & TIOCM_DTR)
399 			zport_a->regs[5] |= DTR;
400 		else
401 			zport_a->regs[5] &= ~DTR;
402 		if (mctrl & TIOCM_RTS)
403 			zport_a->regs[5] |= RTS;
404 		else
405 			zport_a->regs[5] &= ~RTS;
406 		write_zsreg(zport_a, R5, zport_a->regs[5]);
407 	}
408 
409 	/* Rarely modified, so don't poke at hardware unless necessary. */
410 	oldloop = zport->regs[14];
411 	newloop = oldloop;
412 	if (mctrl & TIOCM_LOOP)
413 		newloop |= LOOPBAK;
414 	else
415 		newloop &= ~LOOPBAK;
416 	if (newloop != oldloop) {
417 		zport->regs[14] = newloop;
418 		write_zsreg(zport, R14, zport->regs[14]);
419 	}
420 	spin_unlock(&scc->zlock);
421 }
422 
423 static void zs_raw_stop_tx(struct zs_port *zport)
424 {
425 	write_zsreg(zport, R0, RES_Tx_P);
426 	zport->tx_stopped = 1;
427 }
428 
429 static void zs_stop_tx(struct uart_port *uport)
430 {
431 	struct zs_port *zport = to_zport(uport);
432 	struct zs_scc *scc = zport->scc;
433 
434 	spin_lock(&scc->zlock);
435 	zs_raw_stop_tx(zport);
436 	spin_unlock(&scc->zlock);
437 }
438 
439 static void zs_raw_transmit_chars(struct zs_port *);
440 
441 static void zs_start_tx(struct uart_port *uport)
442 {
443 	struct zs_port *zport = to_zport(uport);
444 	struct zs_scc *scc = zport->scc;
445 
446 	spin_lock(&scc->zlock);
447 	if (zport->tx_stopped) {
448 		zs_transmit_drain(zport, 0);
449 		zport->tx_stopped = 0;
450 		zs_raw_transmit_chars(zport);
451 	}
452 	spin_unlock(&scc->zlock);
453 }
454 
455 static void zs_stop_rx(struct uart_port *uport)
456 {
457 	struct zs_port *zport = to_zport(uport);
458 	struct zs_scc *scc = zport->scc;
459 	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
460 
461 	spin_lock(&scc->zlock);
462 	zport->regs[15] &= ~BRKIE;
463 	zport->regs[1] &= ~(RxINT_MASK | TxINT_ENAB);
464 	zport->regs[1] |= RxINT_DISAB;
465 
466 	if (zport != zport_a) {
467 		/* A-side DCD tracks RI and SYNC tracks DSR.  */
468 		zport_a->regs[15] &= ~(DCDIE | SYNCIE);
469 		write_zsreg(zport_a, R15, zport_a->regs[15]);
470 		if (!(zport_a->regs[15] & BRKIE)) {
471 			zport_a->regs[1] &= ~EXT_INT_ENAB;
472 			write_zsreg(zport_a, R1, zport_a->regs[1]);
473 		}
474 
475 		/* This-side DCD tracks DCD and CTS tracks CTS.  */
476 		zport->regs[15] &= ~(DCDIE | CTSIE);
477 		zport->regs[1] &= ~EXT_INT_ENAB;
478 	} else {
479 		/* DCD tracks RI and SYNC tracks DSR for the B side.  */
480 		if (!(zport->regs[15] & (DCDIE | SYNCIE)))
481 			zport->regs[1] &= ~EXT_INT_ENAB;
482 	}
483 
484 	write_zsreg(zport, R15, zport->regs[15]);
485 	write_zsreg(zport, R1, zport->regs[1]);
486 	spin_unlock(&scc->zlock);
487 }
488 
489 static void zs_enable_ms(struct uart_port *uport)
490 {
491 	struct zs_port *zport = to_zport(uport);
492 	struct zs_scc *scc = zport->scc;
493 	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
494 
495 	if (zport == zport_a)
496 		return;
497 
498 	spin_lock(&scc->zlock);
499 
500 	/* Clear Ext interrupts if not being handled already.  */
501 	if (!(zport_a->regs[1] & EXT_INT_ENAB))
502 		write_zsreg(zport_a, R0, RES_EXT_INT);
503 
504 	/* A-side DCD tracks RI and SYNC tracks DSR.  */
505 	zport_a->regs[1] |= EXT_INT_ENAB;
506 	zport_a->regs[15] |= DCDIE | SYNCIE;
507 
508 	/* This-side DCD tracks DCD and CTS tracks CTS.  */
509 	zport->regs[15] |= DCDIE | CTSIE;
510 
511 	zs_raw_xor_mctrl(zport);
512 
513 	write_zsreg(zport_a, R1, zport_a->regs[1]);
514 	write_zsreg(zport_a, R15, zport_a->regs[15]);
515 	write_zsreg(zport, R15, zport->regs[15]);
516 	spin_unlock(&scc->zlock);
517 }
518 
519 static void zs_break_ctl(struct uart_port *uport, int break_state)
520 {
521 	struct zs_port *zport = to_zport(uport);
522 	struct zs_scc *scc = zport->scc;
523 	unsigned long flags;
524 
525 	spin_lock_irqsave(&scc->zlock, flags);
526 	if (break_state == -1)
527 		zport->regs[5] |= SND_BRK;
528 	else
529 		zport->regs[5] &= ~SND_BRK;
530 	write_zsreg(zport, R5, zport->regs[5]);
531 	spin_unlock_irqrestore(&scc->zlock, flags);
532 }
533 
534 
535 /*
536  * Interrupt handling routines.
537  */
538 #define Rx_BRK 0x0100			/* BREAK event software flag.  */
539 #define Rx_SYS 0x0200			/* SysRq event software flag.  */
540 
541 static void zs_receive_chars(struct zs_port *zport)
542 {
543 	struct uart_port *uport = &zport->port;
544 	struct zs_scc *scc = zport->scc;
545 	struct uart_icount *icount;
546 	unsigned int avail, status, ch, flag;
547 	int count;
548 
549 	for (count = 16; count; count--) {
550 		spin_lock(&scc->zlock);
551 		avail = read_zsreg(zport, R0) & Rx_CH_AV;
552 		spin_unlock(&scc->zlock);
553 		if (!avail)
554 			break;
555 
556 		spin_lock(&scc->zlock);
557 		status = read_zsreg(zport, R1) & (Rx_OVR | FRM_ERR | PAR_ERR);
558 		ch = read_zsdata(zport);
559 		spin_unlock(&scc->zlock);
560 
561 		flag = TTY_NORMAL;
562 
563 		icount = &uport->icount;
564 		icount->rx++;
565 
566 		/* Handle the null char got when BREAK is removed.  */
567 		if (!ch)
568 			status |= zport->tty_break;
569 		if (unlikely(status &
570 			     (Rx_OVR | FRM_ERR | PAR_ERR | Rx_SYS | Rx_BRK))) {
571 			zport->tty_break = 0;
572 
573 			/* Reset the error indication.  */
574 			if (status & (Rx_OVR | FRM_ERR | PAR_ERR)) {
575 				spin_lock(&scc->zlock);
576 				write_zsreg(zport, R0, ERR_RES);
577 				spin_unlock(&scc->zlock);
578 			}
579 
580 			if (status & (Rx_SYS | Rx_BRK)) {
581 				icount->brk++;
582 				/* SysRq discards the null char.  */
583 				if (status & Rx_SYS)
584 					continue;
585 			} else if (status & FRM_ERR)
586 				icount->frame++;
587 			else if (status & PAR_ERR)
588 				icount->parity++;
589 			if (status & Rx_OVR)
590 				icount->overrun++;
591 
592 			status &= uport->read_status_mask;
593 			if (status & Rx_BRK)
594 				flag = TTY_BREAK;
595 			else if (status & FRM_ERR)
596 				flag = TTY_FRAME;
597 			else if (status & PAR_ERR)
598 				flag = TTY_PARITY;
599 		}
600 
601 		if (uart_handle_sysrq_char(uport, ch))
602 			continue;
603 
604 		uart_insert_char(uport, status, Rx_OVR, ch, flag);
605 	}
606 
607 	tty_flip_buffer_push(&uport->state->port);
608 }
609 
610 static void zs_raw_transmit_chars(struct zs_port *zport)
611 {
612 	struct circ_buf *xmit = &zport->port.state->xmit;
613 
614 	/* XON/XOFF chars.  */
615 	if (zport->port.x_char) {
616 		write_zsdata(zport, zport->port.x_char);
617 		zport->port.icount.tx++;
618 		zport->port.x_char = 0;
619 		return;
620 	}
621 
622 	/* If nothing to do or stopped or hardware stopped.  */
623 	if (uart_circ_empty(xmit) || uart_tx_stopped(&zport->port)) {
624 		zs_raw_stop_tx(zport);
625 		return;
626 	}
627 
628 	/* Send char.  */
629 	write_zsdata(zport, xmit->buf[xmit->tail]);
630 	xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
631 	zport->port.icount.tx++;
632 
633 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
634 		uart_write_wakeup(&zport->port);
635 
636 	/* Are we are done?  */
637 	if (uart_circ_empty(xmit))
638 		zs_raw_stop_tx(zport);
639 }
640 
641 static void zs_transmit_chars(struct zs_port *zport)
642 {
643 	struct zs_scc *scc = zport->scc;
644 
645 	spin_lock(&scc->zlock);
646 	zs_raw_transmit_chars(zport);
647 	spin_unlock(&scc->zlock);
648 }
649 
650 static void zs_status_handle(struct zs_port *zport, struct zs_port *zport_a)
651 {
652 	struct uart_port *uport = &zport->port;
653 	struct zs_scc *scc = zport->scc;
654 	unsigned int delta;
655 	u8 status, brk;
656 
657 	spin_lock(&scc->zlock);
658 
659 	/* Get status from Read Register 0.  */
660 	status = read_zsreg(zport, R0);
661 
662 	if (zport->regs[15] & BRKIE) {
663 		brk = status & BRK_ABRT;
664 		if (brk && !zport->brk) {
665 			spin_unlock(&scc->zlock);
666 			if (uart_handle_break(uport))
667 				zport->tty_break = Rx_SYS;
668 			else
669 				zport->tty_break = Rx_BRK;
670 			spin_lock(&scc->zlock);
671 		}
672 		zport->brk = brk;
673 	}
674 
675 	if (zport != zport_a) {
676 		delta = zs_raw_xor_mctrl(zport);
677 		spin_unlock(&scc->zlock);
678 
679 		if (delta & TIOCM_CTS)
680 			uart_handle_cts_change(uport,
681 					       zport->mctrl & TIOCM_CTS);
682 		if (delta & TIOCM_CAR)
683 			uart_handle_dcd_change(uport,
684 					       zport->mctrl & TIOCM_CAR);
685 		if (delta & TIOCM_RNG)
686 			uport->icount.dsr++;
687 		if (delta & TIOCM_DSR)
688 			uport->icount.rng++;
689 
690 		if (delta)
691 			wake_up_interruptible(&uport->state->port.delta_msr_wait);
692 
693 		spin_lock(&scc->zlock);
694 	}
695 
696 	/* Clear the status condition...  */
697 	write_zsreg(zport, R0, RES_EXT_INT);
698 
699 	spin_unlock(&scc->zlock);
700 }
701 
702 /*
703  * This is the Z85C30 driver's generic interrupt routine.
704  */
705 static irqreturn_t zs_interrupt(int irq, void *dev_id)
706 {
707 	struct zs_scc *scc = dev_id;
708 	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
709 	struct zs_port *zport_b = &scc->zport[ZS_CHAN_B];
710 	irqreturn_t status = IRQ_NONE;
711 	u8 zs_intreg;
712 	int count;
713 
714 	/*
715 	 * NOTE: The read register 3, which holds the irq status,
716 	 *       does so for both channels on each chip.  Although
717 	 *       the status value itself must be read from the A
718 	 *       channel and is only valid when read from channel A.
719 	 *       Yes... broken hardware...
720 	 */
721 	for (count = 16; count; count--) {
722 		spin_lock(&scc->zlock);
723 		zs_intreg = read_zsreg(zport_a, R3);
724 		spin_unlock(&scc->zlock);
725 		if (!zs_intreg)
726 			break;
727 
728 		/*
729 		 * We do not like losing characters, so we prioritise
730 		 * interrupt sources a little bit differently than
731 		 * the SCC would, was it allowed to.
732 		 */
733 		if (zs_intreg & CHBRxIP)
734 			zs_receive_chars(zport_b);
735 		if (zs_intreg & CHARxIP)
736 			zs_receive_chars(zport_a);
737 		if (zs_intreg & CHBEXT)
738 			zs_status_handle(zport_b, zport_a);
739 		if (zs_intreg & CHAEXT)
740 			zs_status_handle(zport_a, zport_a);
741 		if (zs_intreg & CHBTxIP)
742 			zs_transmit_chars(zport_b);
743 		if (zs_intreg & CHATxIP)
744 			zs_transmit_chars(zport_a);
745 
746 		status = IRQ_HANDLED;
747 	}
748 
749 	return status;
750 }
751 
752 
753 /*
754  * Finally, routines used to initialize the serial port.
755  */
756 static int zs_startup(struct uart_port *uport)
757 {
758 	struct zs_port *zport = to_zport(uport);
759 	struct zs_scc *scc = zport->scc;
760 	unsigned long flags;
761 	int irq_guard;
762 	int ret;
763 
764 	irq_guard = atomic_add_return(1, &scc->irq_guard);
765 	if (irq_guard == 1) {
766 		ret = request_irq(zport->port.irq, zs_interrupt,
767 				  IRQF_SHARED, "scc", scc);
768 		if (ret) {
769 			atomic_add(-1, &scc->irq_guard);
770 			printk(KERN_ERR "zs: can't get irq %d\n",
771 			       zport->port.irq);
772 			return ret;
773 		}
774 	}
775 
776 	spin_lock_irqsave(&scc->zlock, flags);
777 
778 	/* Clear the receive FIFO.  */
779 	zs_receive_drain(zport);
780 
781 	/* Clear the interrupt registers.  */
782 	write_zsreg(zport, R0, ERR_RES);
783 	write_zsreg(zport, R0, RES_Tx_P);
784 	/* But Ext only if not being handled already.  */
785 	if (!(zport->regs[1] & EXT_INT_ENAB))
786 		write_zsreg(zport, R0, RES_EXT_INT);
787 
788 	/* Finally, enable sequencing and interrupts.  */
789 	zport->regs[1] &= ~RxINT_MASK;
790 	zport->regs[1] |= RxINT_ALL | TxINT_ENAB | EXT_INT_ENAB;
791 	zport->regs[3] |= RxENABLE;
792 	zport->regs[15] |= BRKIE;
793 	write_zsreg(zport, R1, zport->regs[1]);
794 	write_zsreg(zport, R3, zport->regs[3]);
795 	write_zsreg(zport, R5, zport->regs[5]);
796 	write_zsreg(zport, R15, zport->regs[15]);
797 
798 	/* Record the current state of RR0.  */
799 	zport->mctrl = zs_raw_get_mctrl(zport);
800 	zport->brk = read_zsreg(zport, R0) & BRK_ABRT;
801 
802 	zport->tx_stopped = 1;
803 
804 	spin_unlock_irqrestore(&scc->zlock, flags);
805 
806 	return 0;
807 }
808 
809 static void zs_shutdown(struct uart_port *uport)
810 {
811 	struct zs_port *zport = to_zport(uport);
812 	struct zs_scc *scc = zport->scc;
813 	unsigned long flags;
814 	int irq_guard;
815 
816 	spin_lock_irqsave(&scc->zlock, flags);
817 
818 	zport->regs[3] &= ~RxENABLE;
819 	write_zsreg(zport, R5, zport->regs[5]);
820 	write_zsreg(zport, R3, zport->regs[3]);
821 
822 	spin_unlock_irqrestore(&scc->zlock, flags);
823 
824 	irq_guard = atomic_add_return(-1, &scc->irq_guard);
825 	if (!irq_guard)
826 		free_irq(zport->port.irq, scc);
827 }
828 
829 
830 static void zs_reset(struct zs_port *zport)
831 {
832 	struct zs_scc *scc = zport->scc;
833 	int irq;
834 	unsigned long flags;
835 
836 	spin_lock_irqsave(&scc->zlock, flags);
837 	irq = !irqs_disabled_flags(flags);
838 	if (!scc->initialised) {
839 		/* Reset the pointer first, just in case...  */
840 		read_zsreg(zport, R0);
841 		/* And let the current transmission finish.  */
842 		zs_line_drain(zport, irq);
843 		write_zsreg(zport, R9, FHWRES);
844 		udelay(10);
845 		write_zsreg(zport, R9, 0);
846 		scc->initialised = 1;
847 	}
848 	load_zsregs(zport, zport->regs, irq);
849 	spin_unlock_irqrestore(&scc->zlock, flags);
850 }
851 
852 static void zs_set_termios(struct uart_port *uport, struct ktermios *termios,
853 			   struct ktermios *old_termios)
854 {
855 	struct zs_port *zport = to_zport(uport);
856 	struct zs_scc *scc = zport->scc;
857 	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
858 	int irq;
859 	unsigned int baud, brg;
860 	unsigned long flags;
861 
862 	spin_lock_irqsave(&scc->zlock, flags);
863 	irq = !irqs_disabled_flags(flags);
864 
865 	/* Byte size.  */
866 	zport->regs[3] &= ~RxNBITS_MASK;
867 	zport->regs[5] &= ~TxNBITS_MASK;
868 	switch (termios->c_cflag & CSIZE) {
869 	case CS5:
870 		zport->regs[3] |= Rx5;
871 		zport->regs[5] |= Tx5;
872 		break;
873 	case CS6:
874 		zport->regs[3] |= Rx6;
875 		zport->regs[5] |= Tx6;
876 		break;
877 	case CS7:
878 		zport->regs[3] |= Rx7;
879 		zport->regs[5] |= Tx7;
880 		break;
881 	case CS8:
882 	default:
883 		zport->regs[3] |= Rx8;
884 		zport->regs[5] |= Tx8;
885 		break;
886 	}
887 
888 	/* Parity and stop bits.  */
889 	zport->regs[4] &= ~(XCLK_MASK | SB_MASK | PAR_ENA | PAR_EVEN);
890 	if (termios->c_cflag & CSTOPB)
891 		zport->regs[4] |= SB2;
892 	else
893 		zport->regs[4] |= SB1;
894 	if (termios->c_cflag & PARENB)
895 		zport->regs[4] |= PAR_ENA;
896 	if (!(termios->c_cflag & PARODD))
897 		zport->regs[4] |= PAR_EVEN;
898 	switch (zport->clk_mode) {
899 	case 64:
900 		zport->regs[4] |= X64CLK;
901 		break;
902 	case 32:
903 		zport->regs[4] |= X32CLK;
904 		break;
905 	case 16:
906 		zport->regs[4] |= X16CLK;
907 		break;
908 	case 1:
909 		zport->regs[4] |= X1CLK;
910 		break;
911 	default:
912 		BUG();
913 	}
914 
915 	baud = uart_get_baud_rate(uport, termios, old_termios, 0,
916 				  uport->uartclk / zport->clk_mode / 4);
917 
918 	brg = ZS_BPS_TO_BRG(baud, uport->uartclk / zport->clk_mode);
919 	zport->regs[12] = brg & 0xff;
920 	zport->regs[13] = (brg >> 8) & 0xff;
921 
922 	uart_update_timeout(uport, termios->c_cflag, baud);
923 
924 	uport->read_status_mask = Rx_OVR;
925 	if (termios->c_iflag & INPCK)
926 		uport->read_status_mask |= FRM_ERR | PAR_ERR;
927 	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
928 		uport->read_status_mask |= Rx_BRK;
929 
930 	uport->ignore_status_mask = 0;
931 	if (termios->c_iflag & IGNPAR)
932 		uport->ignore_status_mask |= FRM_ERR | PAR_ERR;
933 	if (termios->c_iflag & IGNBRK) {
934 		uport->ignore_status_mask |= Rx_BRK;
935 		if (termios->c_iflag & IGNPAR)
936 			uport->ignore_status_mask |= Rx_OVR;
937 	}
938 
939 	if (termios->c_cflag & CREAD)
940 		zport->regs[3] |= RxENABLE;
941 	else
942 		zport->regs[3] &= ~RxENABLE;
943 
944 	if (zport != zport_a) {
945 		if (!(termios->c_cflag & CLOCAL)) {
946 			zport->regs[15] |= DCDIE;
947 		} else
948 			zport->regs[15] &= ~DCDIE;
949 		if (termios->c_cflag & CRTSCTS) {
950 			zport->regs[15] |= CTSIE;
951 		} else
952 			zport->regs[15] &= ~CTSIE;
953 		zs_raw_xor_mctrl(zport);
954 	}
955 
956 	/* Load up the new values.  */
957 	load_zsregs(zport, zport->regs, irq);
958 
959 	spin_unlock_irqrestore(&scc->zlock, flags);
960 }
961 
962 /*
963  * Hack alert!
964  * Required solely so that the initial PROM-based console
965  * works undisturbed in parallel with this one.
966  */
967 static void zs_pm(struct uart_port *uport, unsigned int state,
968 		  unsigned int oldstate)
969 {
970 	struct zs_port *zport = to_zport(uport);
971 
972 	if (state < 3)
973 		zport->regs[5] |= TxENAB;
974 	else
975 		zport->regs[5] &= ~TxENAB;
976 	write_zsreg(zport, R5, zport->regs[5]);
977 }
978 
979 
980 static const char *zs_type(struct uart_port *uport)
981 {
982 	return "Z85C30 SCC";
983 }
984 
985 static void zs_release_port(struct uart_port *uport)
986 {
987 	iounmap(uport->membase);
988 	uport->membase = 0;
989 	release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE);
990 }
991 
992 static int zs_map_port(struct uart_port *uport)
993 {
994 	if (!uport->membase)
995 		uport->membase = ioremap_nocache(uport->mapbase,
996 						 ZS_CHAN_IO_SIZE);
997 	if (!uport->membase) {
998 		printk(KERN_ERR "zs: Cannot map MMIO\n");
999 		return -ENOMEM;
1000 	}
1001 	return 0;
1002 }
1003 
1004 static int zs_request_port(struct uart_port *uport)
1005 {
1006 	int ret;
1007 
1008 	if (!request_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE, "scc")) {
1009 		printk(KERN_ERR "zs: Unable to reserve MMIO resource\n");
1010 		return -EBUSY;
1011 	}
1012 	ret = zs_map_port(uport);
1013 	if (ret) {
1014 		release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE);
1015 		return ret;
1016 	}
1017 	return 0;
1018 }
1019 
1020 static void zs_config_port(struct uart_port *uport, int flags)
1021 {
1022 	struct zs_port *zport = to_zport(uport);
1023 
1024 	if (flags & UART_CONFIG_TYPE) {
1025 		if (zs_request_port(uport))
1026 			return;
1027 
1028 		uport->type = PORT_ZS;
1029 
1030 		zs_reset(zport);
1031 	}
1032 }
1033 
1034 static int zs_verify_port(struct uart_port *uport, struct serial_struct *ser)
1035 {
1036 	struct zs_port *zport = to_zport(uport);
1037 	int ret = 0;
1038 
1039 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_ZS)
1040 		ret = -EINVAL;
1041 	if (ser->irq != uport->irq)
1042 		ret = -EINVAL;
1043 	if (ser->baud_base != uport->uartclk / zport->clk_mode / 4)
1044 		ret = -EINVAL;
1045 	return ret;
1046 }
1047 
1048 
1049 static const struct uart_ops zs_ops = {
1050 	.tx_empty	= zs_tx_empty,
1051 	.set_mctrl	= zs_set_mctrl,
1052 	.get_mctrl	= zs_get_mctrl,
1053 	.stop_tx	= zs_stop_tx,
1054 	.start_tx	= zs_start_tx,
1055 	.stop_rx	= zs_stop_rx,
1056 	.enable_ms	= zs_enable_ms,
1057 	.break_ctl	= zs_break_ctl,
1058 	.startup	= zs_startup,
1059 	.shutdown	= zs_shutdown,
1060 	.set_termios	= zs_set_termios,
1061 	.pm		= zs_pm,
1062 	.type		= zs_type,
1063 	.release_port	= zs_release_port,
1064 	.request_port	= zs_request_port,
1065 	.config_port	= zs_config_port,
1066 	.verify_port	= zs_verify_port,
1067 };
1068 
1069 /*
1070  * Initialize Z85C30 port structures.
1071  */
1072 static int __init zs_probe_sccs(void)
1073 {
1074 	static int probed;
1075 	struct zs_parms zs_parms;
1076 	int chip, side, irq;
1077 	int n_chips = 0;
1078 	int i;
1079 
1080 	if (probed)
1081 		return 0;
1082 
1083 	irq = dec_interrupt[DEC_IRQ_SCC0];
1084 	if (irq >= 0) {
1085 		zs_parms.scc[n_chips] = IOASIC_SCC0;
1086 		zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC0];
1087 		n_chips++;
1088 	}
1089 	irq = dec_interrupt[DEC_IRQ_SCC1];
1090 	if (irq >= 0) {
1091 		zs_parms.scc[n_chips] = IOASIC_SCC1;
1092 		zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC1];
1093 		n_chips++;
1094 	}
1095 	if (!n_chips)
1096 		return -ENXIO;
1097 
1098 	probed = 1;
1099 
1100 	for (chip = 0; chip < n_chips; chip++) {
1101 		spin_lock_init(&zs_sccs[chip].zlock);
1102 		for (side = 0; side < ZS_NUM_CHAN; side++) {
1103 			struct zs_port *zport = &zs_sccs[chip].zport[side];
1104 			struct uart_port *uport = &zport->port;
1105 
1106 			zport->scc	= &zs_sccs[chip];
1107 			zport->clk_mode	= 16;
1108 
1109 			uport->irq	= zs_parms.irq[chip];
1110 			uport->uartclk	= ZS_CLOCK;
1111 			uport->fifosize	= 1;
1112 			uport->iotype	= UPIO_MEM;
1113 			uport->flags	= UPF_BOOT_AUTOCONF;
1114 			uport->ops	= &zs_ops;
1115 			uport->line	= chip * ZS_NUM_CHAN + side;
1116 			uport->mapbase	= dec_kn_slot_base +
1117 					  zs_parms.scc[chip] +
1118 					  (side ^ ZS_CHAN_B) * ZS_CHAN_IO_SIZE;
1119 
1120 			for (i = 0; i < ZS_NUM_REGS; i++)
1121 				zport->regs[i] = zs_init_regs[i];
1122 		}
1123 	}
1124 
1125 	return 0;
1126 }
1127 
1128 
1129 #ifdef CONFIG_SERIAL_ZS_CONSOLE
1130 static void zs_console_putchar(struct uart_port *uport, int ch)
1131 {
1132 	struct zs_port *zport = to_zport(uport);
1133 	struct zs_scc *scc = zport->scc;
1134 	int irq;
1135 	unsigned long flags;
1136 
1137 	spin_lock_irqsave(&scc->zlock, flags);
1138 	irq = !irqs_disabled_flags(flags);
1139 	if (zs_transmit_drain(zport, irq))
1140 		write_zsdata(zport, ch);
1141 	spin_unlock_irqrestore(&scc->zlock, flags);
1142 }
1143 
1144 /*
1145  * Print a string to the serial port trying not to disturb
1146  * any possible real use of the port...
1147  */
1148 static void zs_console_write(struct console *co, const char *s,
1149 			     unsigned int count)
1150 {
1151 	int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN;
1152 	struct zs_port *zport = &zs_sccs[chip].zport[side];
1153 	struct zs_scc *scc = zport->scc;
1154 	unsigned long flags;
1155 	u8 txint, txenb;
1156 	int irq;
1157 
1158 	/* Disable transmit interrupts and enable the transmitter. */
1159 	spin_lock_irqsave(&scc->zlock, flags);
1160 	txint = zport->regs[1];
1161 	txenb = zport->regs[5];
1162 	if (txint & TxINT_ENAB) {
1163 		zport->regs[1] = txint & ~TxINT_ENAB;
1164 		write_zsreg(zport, R1, zport->regs[1]);
1165 	}
1166 	if (!(txenb & TxENAB)) {
1167 		zport->regs[5] = txenb | TxENAB;
1168 		write_zsreg(zport, R5, zport->regs[5]);
1169 	}
1170 	spin_unlock_irqrestore(&scc->zlock, flags);
1171 
1172 	uart_console_write(&zport->port, s, count, zs_console_putchar);
1173 
1174 	/* Restore transmit interrupts and the transmitter enable. */
1175 	spin_lock_irqsave(&scc->zlock, flags);
1176 	irq = !irqs_disabled_flags(flags);
1177 	zs_line_drain(zport, irq);
1178 	if (!(txenb & TxENAB)) {
1179 		zport->regs[5] &= ~TxENAB;
1180 		write_zsreg(zport, R5, zport->regs[5]);
1181 	}
1182 	if (txint & TxINT_ENAB) {
1183 		zport->regs[1] |= TxINT_ENAB;
1184 		write_zsreg(zport, R1, zport->regs[1]);
1185 
1186 		/* Resume any transmission as the TxIP bit won't be set.  */
1187 		if (!zport->tx_stopped)
1188 			zs_raw_transmit_chars(zport);
1189 	}
1190 	spin_unlock_irqrestore(&scc->zlock, flags);
1191 }
1192 
1193 /*
1194  * Setup serial console baud/bits/parity.  We do two things here:
1195  * - construct a cflag setting for the first uart_open()
1196  * - initialise the serial port
1197  * Return non-zero if we didn't find a serial port.
1198  */
1199 static int __init zs_console_setup(struct console *co, char *options)
1200 {
1201 	int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN;
1202 	struct zs_port *zport = &zs_sccs[chip].zport[side];
1203 	struct uart_port *uport = &zport->port;
1204 	int baud = 9600;
1205 	int bits = 8;
1206 	int parity = 'n';
1207 	int flow = 'n';
1208 	int ret;
1209 
1210 	ret = zs_map_port(uport);
1211 	if (ret)
1212 		return ret;
1213 
1214 	zs_reset(zport);
1215 	zs_pm(uport, 0, -1);
1216 
1217 	if (options)
1218 		uart_parse_options(options, &baud, &parity, &bits, &flow);
1219 	return uart_set_options(uport, co, baud, parity, bits, flow);
1220 }
1221 
1222 static struct uart_driver zs_reg;
1223 static struct console zs_console = {
1224 	.name	= "ttyS",
1225 	.write	= zs_console_write,
1226 	.device	= uart_console_device,
1227 	.setup	= zs_console_setup,
1228 	.flags	= CON_PRINTBUFFER,
1229 	.index	= -1,
1230 	.data	= &zs_reg,
1231 };
1232 
1233 /*
1234  *	Register console.
1235  */
1236 static int __init zs_serial_console_init(void)
1237 {
1238 	int ret;
1239 
1240 	ret = zs_probe_sccs();
1241 	if (ret)
1242 		return ret;
1243 	register_console(&zs_console);
1244 
1245 	return 0;
1246 }
1247 
1248 console_initcall(zs_serial_console_init);
1249 
1250 #define SERIAL_ZS_CONSOLE	&zs_console
1251 #else
1252 #define SERIAL_ZS_CONSOLE	NULL
1253 #endif /* CONFIG_SERIAL_ZS_CONSOLE */
1254 
1255 static struct uart_driver zs_reg = {
1256 	.owner			= THIS_MODULE,
1257 	.driver_name		= "serial",
1258 	.dev_name		= "ttyS",
1259 	.major			= TTY_MAJOR,
1260 	.minor			= 64,
1261 	.nr			= ZS_NUM_SCCS * ZS_NUM_CHAN,
1262 	.cons			= SERIAL_ZS_CONSOLE,
1263 };
1264 
1265 /* zs_init inits the driver. */
1266 static int __init zs_init(void)
1267 {
1268 	int i, ret;
1269 
1270 	pr_info("%s%s\n", zs_name, zs_version);
1271 
1272 	/* Find out how many Z85C30 SCCs we have.  */
1273 	ret = zs_probe_sccs();
1274 	if (ret)
1275 		return ret;
1276 
1277 	ret = uart_register_driver(&zs_reg);
1278 	if (ret)
1279 		return ret;
1280 
1281 	for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) {
1282 		struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN];
1283 		struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN];
1284 		struct uart_port *uport = &zport->port;
1285 
1286 		if (zport->scc)
1287 			uart_add_one_port(&zs_reg, uport);
1288 	}
1289 
1290 	return 0;
1291 }
1292 
1293 static void __exit zs_exit(void)
1294 {
1295 	int i;
1296 
1297 	for (i = ZS_NUM_SCCS * ZS_NUM_CHAN - 1; i >= 0; i--) {
1298 		struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN];
1299 		struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN];
1300 		struct uart_port *uport = &zport->port;
1301 
1302 		if (zport->scc)
1303 			uart_remove_one_port(&zs_reg, uport);
1304 	}
1305 
1306 	uart_unregister_driver(&zs_reg);
1307 }
1308 
1309 module_init(zs_init);
1310 module_exit(zs_exit);
1311