1 /* 2 * Freescale QUICC Engine UART device driver 3 * 4 * Author: Timur Tabi <timur@freescale.com> 5 * 6 * Copyright 2007 Freescale Semiconductor, Inc. This file is licensed under 7 * the terms of the GNU General Public License version 2. This program 8 * is licensed "as is" without any warranty of any kind, whether express 9 * or implied. 10 * 11 * This driver adds support for UART devices via Freescale's QUICC Engine 12 * found on some Freescale SOCs. 13 * 14 * If Soft-UART support is needed but not already present, then this driver 15 * will request and upload the "Soft-UART" microcode upon probe. The 16 * filename of the microcode should be fsl_qe_ucode_uart_X_YZ.bin, where "X" 17 * is the name of the SOC (e.g. 8323), and YZ is the revision of the SOC, 18 * (e.g. "11" for 1.1). 19 */ 20 21 #include <linux/module.h> 22 #include <linux/serial.h> 23 #include <linux/serial_core.h> 24 #include <linux/slab.h> 25 #include <linux/tty.h> 26 #include <linux/tty_flip.h> 27 #include <linux/io.h> 28 #include <linux/of_address.h> 29 #include <linux/of_irq.h> 30 #include <linux/of_platform.h> 31 #include <linux/dma-mapping.h> 32 33 #include <linux/fs_uart_pd.h> 34 #include <asm/ucc_slow.h> 35 36 #include <linux/firmware.h> 37 #include <asm/reg.h> 38 39 /* 40 * The GUMR flag for Soft UART. This would normally be defined in qe.h, 41 * but Soft-UART is a hack and we want to keep everything related to it in 42 * this file. 43 */ 44 #define UCC_SLOW_GUMR_H_SUART 0x00004000 /* Soft-UART */ 45 46 /* 47 * soft_uart is 1 if we need to use Soft-UART mode 48 */ 49 static int soft_uart; 50 /* 51 * firmware_loaded is 1 if the firmware has been loaded, 0 otherwise. 52 */ 53 static int firmware_loaded; 54 55 /* Enable this macro to configure all serial ports in internal loopback 56 mode */ 57 /* #define LOOPBACK */ 58 59 /* The major and minor device numbers are defined in 60 * http://www.lanana.org/docs/device-list/devices-2.6+.txt. For the QE 61 * UART, we have major number 204 and minor numbers 46 - 49, which are the 62 * same as for the CPM2. This decision was made because no Freescale part 63 * has both a CPM and a QE. 64 */ 65 #define SERIAL_QE_MAJOR 204 66 #define SERIAL_QE_MINOR 46 67 68 /* Since we only have minor numbers 46 - 49, there is a hard limit of 4 ports */ 69 #define UCC_MAX_UART 4 70 71 /* The number of buffer descriptors for receiving characters. */ 72 #define RX_NUM_FIFO 4 73 74 /* The number of buffer descriptors for transmitting characters. */ 75 #define TX_NUM_FIFO 4 76 77 /* The maximum size of the character buffer for a single RX BD. */ 78 #define RX_BUF_SIZE 32 79 80 /* The maximum size of the character buffer for a single TX BD. */ 81 #define TX_BUF_SIZE 32 82 83 /* 84 * The number of jiffies to wait after receiving a close command before the 85 * device is actually closed. This allows the last few characters to be 86 * sent over the wire. 87 */ 88 #define UCC_WAIT_CLOSING 100 89 90 struct ucc_uart_pram { 91 struct ucc_slow_pram common; 92 u8 res1[8]; /* reserved */ 93 __be16 maxidl; /* Maximum idle chars */ 94 __be16 idlc; /* temp idle counter */ 95 __be16 brkcr; /* Break count register */ 96 __be16 parec; /* receive parity error counter */ 97 __be16 frmec; /* receive framing error counter */ 98 __be16 nosec; /* receive noise counter */ 99 __be16 brkec; /* receive break condition counter */ 100 __be16 brkln; /* last received break length */ 101 __be16 uaddr[2]; /* UART address character 1 & 2 */ 102 __be16 rtemp; /* Temp storage */ 103 __be16 toseq; /* Transmit out of sequence char */ 104 __be16 cchars[8]; /* control characters 1-8 */ 105 __be16 rccm; /* receive control character mask */ 106 __be16 rccr; /* receive control character register */ 107 __be16 rlbc; /* receive last break character */ 108 __be16 res2; /* reserved */ 109 __be32 res3; /* reserved, should be cleared */ 110 u8 res4; /* reserved, should be cleared */ 111 u8 res5[3]; /* reserved, should be cleared */ 112 __be32 res6; /* reserved, should be cleared */ 113 __be32 res7; /* reserved, should be cleared */ 114 __be32 res8; /* reserved, should be cleared */ 115 __be32 res9; /* reserved, should be cleared */ 116 __be32 res10; /* reserved, should be cleared */ 117 __be32 res11; /* reserved, should be cleared */ 118 __be32 res12; /* reserved, should be cleared */ 119 __be32 res13; /* reserved, should be cleared */ 120 /* The rest is for Soft-UART only */ 121 __be16 supsmr; /* 0x90, Shadow UPSMR */ 122 __be16 res92; /* 0x92, reserved, initialize to 0 */ 123 __be32 rx_state; /* 0x94, RX state, initialize to 0 */ 124 __be32 rx_cnt; /* 0x98, RX count, initialize to 0 */ 125 u8 rx_length; /* 0x9C, Char length, set to 1+CL+PEN+1+SL */ 126 u8 rx_bitmark; /* 0x9D, reserved, initialize to 0 */ 127 u8 rx_temp_dlst_qe; /* 0x9E, reserved, initialize to 0 */ 128 u8 res14[0xBC - 0x9F]; /* reserved */ 129 __be32 dump_ptr; /* 0xBC, Dump pointer */ 130 __be32 rx_frame_rem; /* 0xC0, reserved, initialize to 0 */ 131 u8 rx_frame_rem_size; /* 0xC4, reserved, initialize to 0 */ 132 u8 tx_mode; /* 0xC5, mode, 0=AHDLC, 1=UART */ 133 __be16 tx_state; /* 0xC6, TX state */ 134 u8 res15[0xD0 - 0xC8]; /* reserved */ 135 __be32 resD0; /* 0xD0, reserved, initialize to 0 */ 136 u8 resD4; /* 0xD4, reserved, initialize to 0 */ 137 __be16 resD5; /* 0xD5, reserved, initialize to 0 */ 138 } __attribute__ ((packed)); 139 140 /* SUPSMR definitions, for Soft-UART only */ 141 #define UCC_UART_SUPSMR_SL 0x8000 142 #define UCC_UART_SUPSMR_RPM_MASK 0x6000 143 #define UCC_UART_SUPSMR_RPM_ODD 0x0000 144 #define UCC_UART_SUPSMR_RPM_LOW 0x2000 145 #define UCC_UART_SUPSMR_RPM_EVEN 0x4000 146 #define UCC_UART_SUPSMR_RPM_HIGH 0x6000 147 #define UCC_UART_SUPSMR_PEN 0x1000 148 #define UCC_UART_SUPSMR_TPM_MASK 0x0C00 149 #define UCC_UART_SUPSMR_TPM_ODD 0x0000 150 #define UCC_UART_SUPSMR_TPM_LOW 0x0400 151 #define UCC_UART_SUPSMR_TPM_EVEN 0x0800 152 #define UCC_UART_SUPSMR_TPM_HIGH 0x0C00 153 #define UCC_UART_SUPSMR_FRZ 0x0100 154 #define UCC_UART_SUPSMR_UM_MASK 0x00c0 155 #define UCC_UART_SUPSMR_UM_NORMAL 0x0000 156 #define UCC_UART_SUPSMR_UM_MAN_MULTI 0x0040 157 #define UCC_UART_SUPSMR_UM_AUTO_MULTI 0x00c0 158 #define UCC_UART_SUPSMR_CL_MASK 0x0030 159 #define UCC_UART_SUPSMR_CL_8 0x0030 160 #define UCC_UART_SUPSMR_CL_7 0x0020 161 #define UCC_UART_SUPSMR_CL_6 0x0010 162 #define UCC_UART_SUPSMR_CL_5 0x0000 163 164 #define UCC_UART_TX_STATE_AHDLC 0x00 165 #define UCC_UART_TX_STATE_UART 0x01 166 #define UCC_UART_TX_STATE_X1 0x00 167 #define UCC_UART_TX_STATE_X16 0x80 168 169 #define UCC_UART_PRAM_ALIGNMENT 0x100 170 171 #define UCC_UART_SIZE_OF_BD UCC_SLOW_SIZE_OF_BD 172 #define NUM_CONTROL_CHARS 8 173 174 /* Private per-port data structure */ 175 struct uart_qe_port { 176 struct uart_port port; 177 struct ucc_slow __iomem *uccp; 178 struct ucc_uart_pram __iomem *uccup; 179 struct ucc_slow_info us_info; 180 struct ucc_slow_private *us_private; 181 struct device_node *np; 182 unsigned int ucc_num; /* First ucc is 0, not 1 */ 183 184 u16 rx_nrfifos; 185 u16 rx_fifosize; 186 u16 tx_nrfifos; 187 u16 tx_fifosize; 188 int wait_closing; 189 u32 flags; 190 struct qe_bd *rx_bd_base; 191 struct qe_bd *rx_cur; 192 struct qe_bd *tx_bd_base; 193 struct qe_bd *tx_cur; 194 unsigned char *tx_buf; 195 unsigned char *rx_buf; 196 void *bd_virt; /* virtual address of the BD buffers */ 197 dma_addr_t bd_dma_addr; /* bus address of the BD buffers */ 198 unsigned int bd_size; /* size of BD buffer space */ 199 }; 200 201 static struct uart_driver ucc_uart_driver = { 202 .owner = THIS_MODULE, 203 .driver_name = "ucc_uart", 204 .dev_name = "ttyQE", 205 .major = SERIAL_QE_MAJOR, 206 .minor = SERIAL_QE_MINOR, 207 .nr = UCC_MAX_UART, 208 }; 209 210 /* 211 * Virtual to physical address translation. 212 * 213 * Given the virtual address for a character buffer, this function returns 214 * the physical (DMA) equivalent. 215 */ 216 static inline dma_addr_t cpu2qe_addr(void *addr, struct uart_qe_port *qe_port) 217 { 218 if (likely((addr >= qe_port->bd_virt)) && 219 (addr < (qe_port->bd_virt + qe_port->bd_size))) 220 return qe_port->bd_dma_addr + (addr - qe_port->bd_virt); 221 222 /* something nasty happened */ 223 printk(KERN_ERR "%s: addr=%p\n", __func__, addr); 224 BUG(); 225 return 0; 226 } 227 228 /* 229 * Physical to virtual address translation. 230 * 231 * Given the physical (DMA) address for a character buffer, this function 232 * returns the virtual equivalent. 233 */ 234 static inline void *qe2cpu_addr(dma_addr_t addr, struct uart_qe_port *qe_port) 235 { 236 /* sanity check */ 237 if (likely((addr >= qe_port->bd_dma_addr) && 238 (addr < (qe_port->bd_dma_addr + qe_port->bd_size)))) 239 return qe_port->bd_virt + (addr - qe_port->bd_dma_addr); 240 241 /* something nasty happened */ 242 printk(KERN_ERR "%s: addr=%llx\n", __func__, (u64)addr); 243 BUG(); 244 return NULL; 245 } 246 247 /* 248 * Return 1 if the QE is done transmitting all buffers for this port 249 * 250 * This function scans each BD in sequence. If we find a BD that is not 251 * ready (READY=1), then we return 0 indicating that the QE is still sending 252 * data. If we reach the last BD (WRAP=1), then we know we've scanned 253 * the entire list, and all BDs are done. 254 */ 255 static unsigned int qe_uart_tx_empty(struct uart_port *port) 256 { 257 struct uart_qe_port *qe_port = 258 container_of(port, struct uart_qe_port, port); 259 struct qe_bd *bdp = qe_port->tx_bd_base; 260 261 while (1) { 262 if (in_be16(&bdp->status) & BD_SC_READY) 263 /* This BD is not done, so return "not done" */ 264 return 0; 265 266 if (in_be16(&bdp->status) & BD_SC_WRAP) 267 /* 268 * This BD is done and it's the last one, so return 269 * "done" 270 */ 271 return 1; 272 273 bdp++; 274 } 275 } 276 277 /* 278 * Set the modem control lines 279 * 280 * Although the QE can control the modem control lines (e.g. CTS), we 281 * don't need that support. This function must exist, however, otherwise 282 * the kernel will panic. 283 */ 284 void qe_uart_set_mctrl(struct uart_port *port, unsigned int mctrl) 285 { 286 } 287 288 /* 289 * Get the current modem control line status 290 * 291 * Although the QE can control the modem control lines (e.g. CTS), this 292 * driver currently doesn't support that, so we always return Carrier 293 * Detect, Data Set Ready, and Clear To Send. 294 */ 295 static unsigned int qe_uart_get_mctrl(struct uart_port *port) 296 { 297 return TIOCM_CAR | TIOCM_DSR | TIOCM_CTS; 298 } 299 300 /* 301 * Disable the transmit interrupt. 302 * 303 * Although this function is called "stop_tx", it does not actually stop 304 * transmission of data. Instead, it tells the QE to not generate an 305 * interrupt when the UCC is finished sending characters. 306 */ 307 static void qe_uart_stop_tx(struct uart_port *port) 308 { 309 struct uart_qe_port *qe_port = 310 container_of(port, struct uart_qe_port, port); 311 312 clrbits16(&qe_port->uccp->uccm, UCC_UART_UCCE_TX); 313 } 314 315 /* 316 * Transmit as many characters to the HW as possible. 317 * 318 * This function will attempt to stuff of all the characters from the 319 * kernel's transmit buffer into TX BDs. 320 * 321 * A return value of non-zero indicates that it successfully stuffed all 322 * characters from the kernel buffer. 323 * 324 * A return value of zero indicates that there are still characters in the 325 * kernel's buffer that have not been transmitted, but there are no more BDs 326 * available. This function should be called again after a BD has been made 327 * available. 328 */ 329 static int qe_uart_tx_pump(struct uart_qe_port *qe_port) 330 { 331 struct qe_bd *bdp; 332 unsigned char *p; 333 unsigned int count; 334 struct uart_port *port = &qe_port->port; 335 struct circ_buf *xmit = &port->state->xmit; 336 337 bdp = qe_port->rx_cur; 338 339 /* Handle xon/xoff */ 340 if (port->x_char) { 341 /* Pick next descriptor and fill from buffer */ 342 bdp = qe_port->tx_cur; 343 344 p = qe2cpu_addr(bdp->buf, qe_port); 345 346 *p++ = port->x_char; 347 out_be16(&bdp->length, 1); 348 setbits16(&bdp->status, BD_SC_READY); 349 /* Get next BD. */ 350 if (in_be16(&bdp->status) & BD_SC_WRAP) 351 bdp = qe_port->tx_bd_base; 352 else 353 bdp++; 354 qe_port->tx_cur = bdp; 355 356 port->icount.tx++; 357 port->x_char = 0; 358 return 1; 359 } 360 361 if (uart_circ_empty(xmit) || uart_tx_stopped(port)) { 362 qe_uart_stop_tx(port); 363 return 0; 364 } 365 366 /* Pick next descriptor and fill from buffer */ 367 bdp = qe_port->tx_cur; 368 369 while (!(in_be16(&bdp->status) & BD_SC_READY) && 370 (xmit->tail != xmit->head)) { 371 count = 0; 372 p = qe2cpu_addr(bdp->buf, qe_port); 373 while (count < qe_port->tx_fifosize) { 374 *p++ = xmit->buf[xmit->tail]; 375 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); 376 port->icount.tx++; 377 count++; 378 if (xmit->head == xmit->tail) 379 break; 380 } 381 382 out_be16(&bdp->length, count); 383 setbits16(&bdp->status, BD_SC_READY); 384 385 /* Get next BD. */ 386 if (in_be16(&bdp->status) & BD_SC_WRAP) 387 bdp = qe_port->tx_bd_base; 388 else 389 bdp++; 390 } 391 qe_port->tx_cur = bdp; 392 393 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 394 uart_write_wakeup(port); 395 396 if (uart_circ_empty(xmit)) { 397 /* The kernel buffer is empty, so turn off TX interrupts. We 398 don't need to be told when the QE is finished transmitting 399 the data. */ 400 qe_uart_stop_tx(port); 401 return 0; 402 } 403 404 return 1; 405 } 406 407 /* 408 * Start transmitting data 409 * 410 * This function will start transmitting any available data, if the port 411 * isn't already transmitting data. 412 */ 413 static void qe_uart_start_tx(struct uart_port *port) 414 { 415 struct uart_qe_port *qe_port = 416 container_of(port, struct uart_qe_port, port); 417 418 /* If we currently are transmitting, then just return */ 419 if (in_be16(&qe_port->uccp->uccm) & UCC_UART_UCCE_TX) 420 return; 421 422 /* Otherwise, pump the port and start transmission */ 423 if (qe_uart_tx_pump(qe_port)) 424 setbits16(&qe_port->uccp->uccm, UCC_UART_UCCE_TX); 425 } 426 427 /* 428 * Stop transmitting data 429 */ 430 static void qe_uart_stop_rx(struct uart_port *port) 431 { 432 struct uart_qe_port *qe_port = 433 container_of(port, struct uart_qe_port, port); 434 435 clrbits16(&qe_port->uccp->uccm, UCC_UART_UCCE_RX); 436 } 437 438 /* 439 * Enable status change interrupts 440 * 441 * We don't support status change interrupts, but we need to define this 442 * function otherwise the kernel will panic. 443 */ 444 static void qe_uart_enable_ms(struct uart_port *port) 445 { 446 } 447 448 /* Start or stop sending break signal 449 * 450 * This function controls the sending of a break signal. If break_state=1, 451 * then we start sending a break signal. If break_state=0, then we stop 452 * sending the break signal. 453 */ 454 static void qe_uart_break_ctl(struct uart_port *port, int break_state) 455 { 456 struct uart_qe_port *qe_port = 457 container_of(port, struct uart_qe_port, port); 458 459 if (break_state) 460 ucc_slow_stop_tx(qe_port->us_private); 461 else 462 ucc_slow_restart_tx(qe_port->us_private); 463 } 464 465 /* ISR helper function for receiving character. 466 * 467 * This function is called by the ISR to handling receiving characters 468 */ 469 static void qe_uart_int_rx(struct uart_qe_port *qe_port) 470 { 471 int i; 472 unsigned char ch, *cp; 473 struct uart_port *port = &qe_port->port; 474 struct tty_port *tport = &port->state->port; 475 struct qe_bd *bdp; 476 u16 status; 477 unsigned int flg; 478 479 /* Just loop through the closed BDs and copy the characters into 480 * the buffer. 481 */ 482 bdp = qe_port->rx_cur; 483 while (1) { 484 status = in_be16(&bdp->status); 485 486 /* If this one is empty, then we assume we've read them all */ 487 if (status & BD_SC_EMPTY) 488 break; 489 490 /* get number of characters, and check space in RX buffer */ 491 i = in_be16(&bdp->length); 492 493 /* If we don't have enough room in RX buffer for the entire BD, 494 * then we try later, which will be the next RX interrupt. 495 */ 496 if (tty_buffer_request_room(tport, i) < i) { 497 dev_dbg(port->dev, "ucc-uart: no room in RX buffer\n"); 498 return; 499 } 500 501 /* get pointer */ 502 cp = qe2cpu_addr(bdp->buf, qe_port); 503 504 /* loop through the buffer */ 505 while (i-- > 0) { 506 ch = *cp++; 507 port->icount.rx++; 508 flg = TTY_NORMAL; 509 510 if (!i && status & 511 (BD_SC_BR | BD_SC_FR | BD_SC_PR | BD_SC_OV)) 512 goto handle_error; 513 if (uart_handle_sysrq_char(port, ch)) 514 continue; 515 516 error_return: 517 tty_insert_flip_char(tport, ch, flg); 518 519 } 520 521 /* This BD is ready to be used again. Clear status. get next */ 522 clrsetbits_be16(&bdp->status, BD_SC_BR | BD_SC_FR | BD_SC_PR | 523 BD_SC_OV | BD_SC_ID, BD_SC_EMPTY); 524 if (in_be16(&bdp->status) & BD_SC_WRAP) 525 bdp = qe_port->rx_bd_base; 526 else 527 bdp++; 528 529 } 530 531 /* Write back buffer pointer */ 532 qe_port->rx_cur = bdp; 533 534 /* Activate BH processing */ 535 tty_flip_buffer_push(tport); 536 537 return; 538 539 /* Error processing */ 540 541 handle_error: 542 /* Statistics */ 543 if (status & BD_SC_BR) 544 port->icount.brk++; 545 if (status & BD_SC_PR) 546 port->icount.parity++; 547 if (status & BD_SC_FR) 548 port->icount.frame++; 549 if (status & BD_SC_OV) 550 port->icount.overrun++; 551 552 /* Mask out ignored conditions */ 553 status &= port->read_status_mask; 554 555 /* Handle the remaining ones */ 556 if (status & BD_SC_BR) 557 flg = TTY_BREAK; 558 else if (status & BD_SC_PR) 559 flg = TTY_PARITY; 560 else if (status & BD_SC_FR) 561 flg = TTY_FRAME; 562 563 /* Overrun does not affect the current character ! */ 564 if (status & BD_SC_OV) 565 tty_insert_flip_char(tport, 0, TTY_OVERRUN); 566 #ifdef SUPPORT_SYSRQ 567 port->sysrq = 0; 568 #endif 569 goto error_return; 570 } 571 572 /* Interrupt handler 573 * 574 * This interrupt handler is called after a BD is processed. 575 */ 576 static irqreturn_t qe_uart_int(int irq, void *data) 577 { 578 struct uart_qe_port *qe_port = (struct uart_qe_port *) data; 579 struct ucc_slow __iomem *uccp = qe_port->uccp; 580 u16 events; 581 582 /* Clear the interrupts */ 583 events = in_be16(&uccp->ucce); 584 out_be16(&uccp->ucce, events); 585 586 if (events & UCC_UART_UCCE_BRKE) 587 uart_handle_break(&qe_port->port); 588 589 if (events & UCC_UART_UCCE_RX) 590 qe_uart_int_rx(qe_port); 591 592 if (events & UCC_UART_UCCE_TX) 593 qe_uart_tx_pump(qe_port); 594 595 return events ? IRQ_HANDLED : IRQ_NONE; 596 } 597 598 /* Initialize buffer descriptors 599 * 600 * This function initializes all of the RX and TX buffer descriptors. 601 */ 602 static void qe_uart_initbd(struct uart_qe_port *qe_port) 603 { 604 int i; 605 void *bd_virt; 606 struct qe_bd *bdp; 607 608 /* Set the physical address of the host memory buffers in the buffer 609 * descriptors, and the virtual address for us to work with. 610 */ 611 bd_virt = qe_port->bd_virt; 612 bdp = qe_port->rx_bd_base; 613 qe_port->rx_cur = qe_port->rx_bd_base; 614 for (i = 0; i < (qe_port->rx_nrfifos - 1); i++) { 615 out_be16(&bdp->status, BD_SC_EMPTY | BD_SC_INTRPT); 616 out_be32(&bdp->buf, cpu2qe_addr(bd_virt, qe_port)); 617 out_be16(&bdp->length, 0); 618 bd_virt += qe_port->rx_fifosize; 619 bdp++; 620 } 621 622 /* */ 623 out_be16(&bdp->status, BD_SC_WRAP | BD_SC_EMPTY | BD_SC_INTRPT); 624 out_be32(&bdp->buf, cpu2qe_addr(bd_virt, qe_port)); 625 out_be16(&bdp->length, 0); 626 627 /* Set the physical address of the host memory 628 * buffers in the buffer descriptors, and the 629 * virtual address for us to work with. 630 */ 631 bd_virt = qe_port->bd_virt + 632 L1_CACHE_ALIGN(qe_port->rx_nrfifos * qe_port->rx_fifosize); 633 qe_port->tx_cur = qe_port->tx_bd_base; 634 bdp = qe_port->tx_bd_base; 635 for (i = 0; i < (qe_port->tx_nrfifos - 1); i++) { 636 out_be16(&bdp->status, BD_SC_INTRPT); 637 out_be32(&bdp->buf, cpu2qe_addr(bd_virt, qe_port)); 638 out_be16(&bdp->length, 0); 639 bd_virt += qe_port->tx_fifosize; 640 bdp++; 641 } 642 643 /* Loopback requires the preamble bit to be set on the first TX BD */ 644 #ifdef LOOPBACK 645 setbits16(&qe_port->tx_cur->status, BD_SC_P); 646 #endif 647 648 out_be16(&bdp->status, BD_SC_WRAP | BD_SC_INTRPT); 649 out_be32(&bdp->buf, cpu2qe_addr(bd_virt, qe_port)); 650 out_be16(&bdp->length, 0); 651 } 652 653 /* 654 * Initialize a UCC for UART. 655 * 656 * This function configures a given UCC to be used as a UART device. Basic 657 * UCC initialization is handled in qe_uart_request_port(). This function 658 * does all the UART-specific stuff. 659 */ 660 static void qe_uart_init_ucc(struct uart_qe_port *qe_port) 661 { 662 u32 cecr_subblock; 663 struct ucc_slow __iomem *uccp = qe_port->uccp; 664 struct ucc_uart_pram *uccup = qe_port->uccup; 665 666 unsigned int i; 667 668 /* First, disable TX and RX in the UCC */ 669 ucc_slow_disable(qe_port->us_private, COMM_DIR_RX_AND_TX); 670 671 /* Program the UCC UART parameter RAM */ 672 out_8(&uccup->common.rbmr, UCC_BMR_GBL | UCC_BMR_BO_BE); 673 out_8(&uccup->common.tbmr, UCC_BMR_GBL | UCC_BMR_BO_BE); 674 out_be16(&uccup->common.mrblr, qe_port->rx_fifosize); 675 out_be16(&uccup->maxidl, 0x10); 676 out_be16(&uccup->brkcr, 1); 677 out_be16(&uccup->parec, 0); 678 out_be16(&uccup->frmec, 0); 679 out_be16(&uccup->nosec, 0); 680 out_be16(&uccup->brkec, 0); 681 out_be16(&uccup->uaddr[0], 0); 682 out_be16(&uccup->uaddr[1], 0); 683 out_be16(&uccup->toseq, 0); 684 for (i = 0; i < 8; i++) 685 out_be16(&uccup->cchars[i], 0xC000); 686 out_be16(&uccup->rccm, 0xc0ff); 687 688 /* Configure the GUMR registers for UART */ 689 if (soft_uart) { 690 /* Soft-UART requires a 1X multiplier for TX */ 691 clrsetbits_be32(&uccp->gumr_l, 692 UCC_SLOW_GUMR_L_MODE_MASK | UCC_SLOW_GUMR_L_TDCR_MASK | 693 UCC_SLOW_GUMR_L_RDCR_MASK, 694 UCC_SLOW_GUMR_L_MODE_UART | UCC_SLOW_GUMR_L_TDCR_1 | 695 UCC_SLOW_GUMR_L_RDCR_16); 696 697 clrsetbits_be32(&uccp->gumr_h, UCC_SLOW_GUMR_H_RFW, 698 UCC_SLOW_GUMR_H_TRX | UCC_SLOW_GUMR_H_TTX); 699 } else { 700 clrsetbits_be32(&uccp->gumr_l, 701 UCC_SLOW_GUMR_L_MODE_MASK | UCC_SLOW_GUMR_L_TDCR_MASK | 702 UCC_SLOW_GUMR_L_RDCR_MASK, 703 UCC_SLOW_GUMR_L_MODE_UART | UCC_SLOW_GUMR_L_TDCR_16 | 704 UCC_SLOW_GUMR_L_RDCR_16); 705 706 clrsetbits_be32(&uccp->gumr_h, 707 UCC_SLOW_GUMR_H_TRX | UCC_SLOW_GUMR_H_TTX, 708 UCC_SLOW_GUMR_H_RFW); 709 } 710 711 #ifdef LOOPBACK 712 clrsetbits_be32(&uccp->gumr_l, UCC_SLOW_GUMR_L_DIAG_MASK, 713 UCC_SLOW_GUMR_L_DIAG_LOOP); 714 clrsetbits_be32(&uccp->gumr_h, 715 UCC_SLOW_GUMR_H_CTSP | UCC_SLOW_GUMR_H_RSYN, 716 UCC_SLOW_GUMR_H_CDS); 717 #endif 718 719 /* Disable rx interrupts and clear all pending events. */ 720 out_be16(&uccp->uccm, 0); 721 out_be16(&uccp->ucce, 0xffff); 722 out_be16(&uccp->udsr, 0x7e7e); 723 724 /* Initialize UPSMR */ 725 out_be16(&uccp->upsmr, 0); 726 727 if (soft_uart) { 728 out_be16(&uccup->supsmr, 0x30); 729 out_be16(&uccup->res92, 0); 730 out_be32(&uccup->rx_state, 0); 731 out_be32(&uccup->rx_cnt, 0); 732 out_8(&uccup->rx_bitmark, 0); 733 out_8(&uccup->rx_length, 10); 734 out_be32(&uccup->dump_ptr, 0x4000); 735 out_8(&uccup->rx_temp_dlst_qe, 0); 736 out_be32(&uccup->rx_frame_rem, 0); 737 out_8(&uccup->rx_frame_rem_size, 0); 738 /* Soft-UART requires TX to be 1X */ 739 out_8(&uccup->tx_mode, 740 UCC_UART_TX_STATE_UART | UCC_UART_TX_STATE_X1); 741 out_be16(&uccup->tx_state, 0); 742 out_8(&uccup->resD4, 0); 743 out_be16(&uccup->resD5, 0); 744 745 /* Set UART mode. 746 * Enable receive and transmit. 747 */ 748 749 /* From the microcode errata: 750 * 1.GUMR_L register, set mode=0010 (QMC). 751 * 2.Set GUMR_H[17] bit. (UART/AHDLC mode). 752 * 3.Set GUMR_H[19:20] (Transparent mode) 753 * 4.Clear GUMR_H[26] (RFW) 754 * ... 755 * 6.Receiver must use 16x over sampling 756 */ 757 clrsetbits_be32(&uccp->gumr_l, 758 UCC_SLOW_GUMR_L_MODE_MASK | UCC_SLOW_GUMR_L_TDCR_MASK | 759 UCC_SLOW_GUMR_L_RDCR_MASK, 760 UCC_SLOW_GUMR_L_MODE_QMC | UCC_SLOW_GUMR_L_TDCR_16 | 761 UCC_SLOW_GUMR_L_RDCR_16); 762 763 clrsetbits_be32(&uccp->gumr_h, 764 UCC_SLOW_GUMR_H_RFW | UCC_SLOW_GUMR_H_RSYN, 765 UCC_SLOW_GUMR_H_SUART | UCC_SLOW_GUMR_H_TRX | 766 UCC_SLOW_GUMR_H_TTX | UCC_SLOW_GUMR_H_TFL); 767 768 #ifdef LOOPBACK 769 clrsetbits_be32(&uccp->gumr_l, UCC_SLOW_GUMR_L_DIAG_MASK, 770 UCC_SLOW_GUMR_L_DIAG_LOOP); 771 clrbits32(&uccp->gumr_h, UCC_SLOW_GUMR_H_CTSP | 772 UCC_SLOW_GUMR_H_CDS); 773 #endif 774 775 cecr_subblock = ucc_slow_get_qe_cr_subblock(qe_port->ucc_num); 776 qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock, 777 QE_CR_PROTOCOL_UNSPECIFIED, 0); 778 } else { 779 cecr_subblock = ucc_slow_get_qe_cr_subblock(qe_port->ucc_num); 780 qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock, 781 QE_CR_PROTOCOL_UART, 0); 782 } 783 } 784 785 /* 786 * Initialize the port. 787 */ 788 static int qe_uart_startup(struct uart_port *port) 789 { 790 struct uart_qe_port *qe_port = 791 container_of(port, struct uart_qe_port, port); 792 int ret; 793 794 /* 795 * If we're using Soft-UART mode, then we need to make sure the 796 * firmware has been uploaded first. 797 */ 798 if (soft_uart && !firmware_loaded) { 799 dev_err(port->dev, "Soft-UART firmware not uploaded\n"); 800 return -ENODEV; 801 } 802 803 qe_uart_initbd(qe_port); 804 qe_uart_init_ucc(qe_port); 805 806 /* Install interrupt handler. */ 807 ret = request_irq(port->irq, qe_uart_int, IRQF_SHARED, "ucc-uart", 808 qe_port); 809 if (ret) { 810 dev_err(port->dev, "could not claim IRQ %u\n", port->irq); 811 return ret; 812 } 813 814 /* Startup rx-int */ 815 setbits16(&qe_port->uccp->uccm, UCC_UART_UCCE_RX); 816 ucc_slow_enable(qe_port->us_private, COMM_DIR_RX_AND_TX); 817 818 return 0; 819 } 820 821 /* 822 * Shutdown the port. 823 */ 824 static void qe_uart_shutdown(struct uart_port *port) 825 { 826 struct uart_qe_port *qe_port = 827 container_of(port, struct uart_qe_port, port); 828 struct ucc_slow __iomem *uccp = qe_port->uccp; 829 unsigned int timeout = 20; 830 831 /* Disable RX and TX */ 832 833 /* Wait for all the BDs marked sent */ 834 while (!qe_uart_tx_empty(port)) { 835 if (!--timeout) { 836 dev_warn(port->dev, "shutdown timeout\n"); 837 break; 838 } 839 set_current_state(TASK_UNINTERRUPTIBLE); 840 schedule_timeout(2); 841 } 842 843 if (qe_port->wait_closing) { 844 /* Wait a bit longer */ 845 set_current_state(TASK_UNINTERRUPTIBLE); 846 schedule_timeout(qe_port->wait_closing); 847 } 848 849 /* Stop uarts */ 850 ucc_slow_disable(qe_port->us_private, COMM_DIR_RX_AND_TX); 851 clrbits16(&uccp->uccm, UCC_UART_UCCE_TX | UCC_UART_UCCE_RX); 852 853 /* Shut them really down and reinit buffer descriptors */ 854 ucc_slow_graceful_stop_tx(qe_port->us_private); 855 qe_uart_initbd(qe_port); 856 857 free_irq(port->irq, qe_port); 858 } 859 860 /* 861 * Set the serial port parameters. 862 */ 863 static void qe_uart_set_termios(struct uart_port *port, 864 struct ktermios *termios, struct ktermios *old) 865 { 866 struct uart_qe_port *qe_port = 867 container_of(port, struct uart_qe_port, port); 868 struct ucc_slow __iomem *uccp = qe_port->uccp; 869 unsigned int baud; 870 unsigned long flags; 871 u16 upsmr = in_be16(&uccp->upsmr); 872 struct ucc_uart_pram __iomem *uccup = qe_port->uccup; 873 u16 supsmr = in_be16(&uccup->supsmr); 874 u8 char_length = 2; /* 1 + CL + PEN + 1 + SL */ 875 876 /* Character length programmed into the mode register is the 877 * sum of: 1 start bit, number of data bits, 0 or 1 parity bit, 878 * 1 or 2 stop bits, minus 1. 879 * The value 'bits' counts this for us. 880 */ 881 882 /* byte size */ 883 upsmr &= UCC_UART_UPSMR_CL_MASK; 884 supsmr &= UCC_UART_SUPSMR_CL_MASK; 885 886 switch (termios->c_cflag & CSIZE) { 887 case CS5: 888 upsmr |= UCC_UART_UPSMR_CL_5; 889 supsmr |= UCC_UART_SUPSMR_CL_5; 890 char_length += 5; 891 break; 892 case CS6: 893 upsmr |= UCC_UART_UPSMR_CL_6; 894 supsmr |= UCC_UART_SUPSMR_CL_6; 895 char_length += 6; 896 break; 897 case CS7: 898 upsmr |= UCC_UART_UPSMR_CL_7; 899 supsmr |= UCC_UART_SUPSMR_CL_7; 900 char_length += 7; 901 break; 902 default: /* case CS8 */ 903 upsmr |= UCC_UART_UPSMR_CL_8; 904 supsmr |= UCC_UART_SUPSMR_CL_8; 905 char_length += 8; 906 break; 907 } 908 909 /* If CSTOPB is set, we want two stop bits */ 910 if (termios->c_cflag & CSTOPB) { 911 upsmr |= UCC_UART_UPSMR_SL; 912 supsmr |= UCC_UART_SUPSMR_SL; 913 char_length++; /* + SL */ 914 } 915 916 if (termios->c_cflag & PARENB) { 917 upsmr |= UCC_UART_UPSMR_PEN; 918 supsmr |= UCC_UART_SUPSMR_PEN; 919 char_length++; /* + PEN */ 920 921 if (!(termios->c_cflag & PARODD)) { 922 upsmr &= ~(UCC_UART_UPSMR_RPM_MASK | 923 UCC_UART_UPSMR_TPM_MASK); 924 upsmr |= UCC_UART_UPSMR_RPM_EVEN | 925 UCC_UART_UPSMR_TPM_EVEN; 926 supsmr &= ~(UCC_UART_SUPSMR_RPM_MASK | 927 UCC_UART_SUPSMR_TPM_MASK); 928 supsmr |= UCC_UART_SUPSMR_RPM_EVEN | 929 UCC_UART_SUPSMR_TPM_EVEN; 930 } 931 } 932 933 /* 934 * Set up parity check flag 935 */ 936 port->read_status_mask = BD_SC_EMPTY | BD_SC_OV; 937 if (termios->c_iflag & INPCK) 938 port->read_status_mask |= BD_SC_FR | BD_SC_PR; 939 if (termios->c_iflag & (BRKINT | PARMRK)) 940 port->read_status_mask |= BD_SC_BR; 941 942 /* 943 * Characters to ignore 944 */ 945 port->ignore_status_mask = 0; 946 if (termios->c_iflag & IGNPAR) 947 port->ignore_status_mask |= BD_SC_PR | BD_SC_FR; 948 if (termios->c_iflag & IGNBRK) { 949 port->ignore_status_mask |= BD_SC_BR; 950 /* 951 * If we're ignore parity and break indicators, ignore 952 * overruns too. (For real raw support). 953 */ 954 if (termios->c_iflag & IGNPAR) 955 port->ignore_status_mask |= BD_SC_OV; 956 } 957 /* 958 * !!! ignore all characters if CREAD is not set 959 */ 960 if ((termios->c_cflag & CREAD) == 0) 961 port->read_status_mask &= ~BD_SC_EMPTY; 962 963 baud = uart_get_baud_rate(port, termios, old, 0, 115200); 964 965 /* Do we really need a spinlock here? */ 966 spin_lock_irqsave(&port->lock, flags); 967 968 /* Update the per-port timeout. */ 969 uart_update_timeout(port, termios->c_cflag, baud); 970 971 out_be16(&uccp->upsmr, upsmr); 972 if (soft_uart) { 973 out_be16(&uccup->supsmr, supsmr); 974 out_8(&uccup->rx_length, char_length); 975 976 /* Soft-UART requires a 1X multiplier for TX */ 977 qe_setbrg(qe_port->us_info.rx_clock, baud, 16); 978 qe_setbrg(qe_port->us_info.tx_clock, baud, 1); 979 } else { 980 qe_setbrg(qe_port->us_info.rx_clock, baud, 16); 981 qe_setbrg(qe_port->us_info.tx_clock, baud, 16); 982 } 983 984 spin_unlock_irqrestore(&port->lock, flags); 985 } 986 987 /* 988 * Return a pointer to a string that describes what kind of port this is. 989 */ 990 static const char *qe_uart_type(struct uart_port *port) 991 { 992 return "QE"; 993 } 994 995 /* 996 * Allocate any memory and I/O resources required by the port. 997 */ 998 static int qe_uart_request_port(struct uart_port *port) 999 { 1000 int ret; 1001 struct uart_qe_port *qe_port = 1002 container_of(port, struct uart_qe_port, port); 1003 struct ucc_slow_info *us_info = &qe_port->us_info; 1004 struct ucc_slow_private *uccs; 1005 unsigned int rx_size, tx_size; 1006 void *bd_virt; 1007 dma_addr_t bd_dma_addr = 0; 1008 1009 ret = ucc_slow_init(us_info, &uccs); 1010 if (ret) { 1011 dev_err(port->dev, "could not initialize UCC%u\n", 1012 qe_port->ucc_num); 1013 return ret; 1014 } 1015 1016 qe_port->us_private = uccs; 1017 qe_port->uccp = uccs->us_regs; 1018 qe_port->uccup = (struct ucc_uart_pram *) uccs->us_pram; 1019 qe_port->rx_bd_base = uccs->rx_bd; 1020 qe_port->tx_bd_base = uccs->tx_bd; 1021 1022 /* 1023 * Allocate the transmit and receive data buffers. 1024 */ 1025 1026 rx_size = L1_CACHE_ALIGN(qe_port->rx_nrfifos * qe_port->rx_fifosize); 1027 tx_size = L1_CACHE_ALIGN(qe_port->tx_nrfifos * qe_port->tx_fifosize); 1028 1029 bd_virt = dma_alloc_coherent(port->dev, rx_size + tx_size, &bd_dma_addr, 1030 GFP_KERNEL); 1031 if (!bd_virt) { 1032 dev_err(port->dev, "could not allocate buffer descriptors\n"); 1033 return -ENOMEM; 1034 } 1035 1036 qe_port->bd_virt = bd_virt; 1037 qe_port->bd_dma_addr = bd_dma_addr; 1038 qe_port->bd_size = rx_size + tx_size; 1039 1040 qe_port->rx_buf = bd_virt; 1041 qe_port->tx_buf = qe_port->rx_buf + rx_size; 1042 1043 return 0; 1044 } 1045 1046 /* 1047 * Configure the port. 1048 * 1049 * We say we're a CPM-type port because that's mostly true. Once the device 1050 * is configured, this driver operates almost identically to the CPM serial 1051 * driver. 1052 */ 1053 static void qe_uart_config_port(struct uart_port *port, int flags) 1054 { 1055 if (flags & UART_CONFIG_TYPE) { 1056 port->type = PORT_CPM; 1057 qe_uart_request_port(port); 1058 } 1059 } 1060 1061 /* 1062 * Release any memory and I/O resources that were allocated in 1063 * qe_uart_request_port(). 1064 */ 1065 static void qe_uart_release_port(struct uart_port *port) 1066 { 1067 struct uart_qe_port *qe_port = 1068 container_of(port, struct uart_qe_port, port); 1069 struct ucc_slow_private *uccs = qe_port->us_private; 1070 1071 dma_free_coherent(port->dev, qe_port->bd_size, qe_port->bd_virt, 1072 qe_port->bd_dma_addr); 1073 1074 ucc_slow_free(uccs); 1075 } 1076 1077 /* 1078 * Verify that the data in serial_struct is suitable for this device. 1079 */ 1080 static int qe_uart_verify_port(struct uart_port *port, 1081 struct serial_struct *ser) 1082 { 1083 if (ser->type != PORT_UNKNOWN && ser->type != PORT_CPM) 1084 return -EINVAL; 1085 1086 if (ser->irq < 0 || ser->irq >= nr_irqs) 1087 return -EINVAL; 1088 1089 if (ser->baud_base < 9600) 1090 return -EINVAL; 1091 1092 return 0; 1093 } 1094 /* UART operations 1095 * 1096 * Details on these functions can be found in Documentation/serial/driver 1097 */ 1098 static struct uart_ops qe_uart_pops = { 1099 .tx_empty = qe_uart_tx_empty, 1100 .set_mctrl = qe_uart_set_mctrl, 1101 .get_mctrl = qe_uart_get_mctrl, 1102 .stop_tx = qe_uart_stop_tx, 1103 .start_tx = qe_uart_start_tx, 1104 .stop_rx = qe_uart_stop_rx, 1105 .enable_ms = qe_uart_enable_ms, 1106 .break_ctl = qe_uart_break_ctl, 1107 .startup = qe_uart_startup, 1108 .shutdown = qe_uart_shutdown, 1109 .set_termios = qe_uart_set_termios, 1110 .type = qe_uart_type, 1111 .release_port = qe_uart_release_port, 1112 .request_port = qe_uart_request_port, 1113 .config_port = qe_uart_config_port, 1114 .verify_port = qe_uart_verify_port, 1115 }; 1116 1117 /* 1118 * Obtain the SOC model number and revision level 1119 * 1120 * This function parses the device tree to obtain the SOC model. It then 1121 * reads the SVR register to the revision. 1122 * 1123 * The device tree stores the SOC model two different ways. 1124 * 1125 * The new way is: 1126 * 1127 * cpu@0 { 1128 * compatible = "PowerPC,8323"; 1129 * device_type = "cpu"; 1130 * ... 1131 * 1132 * 1133 * The old way is: 1134 * PowerPC,8323@0 { 1135 * device_type = "cpu"; 1136 * ... 1137 * 1138 * This code first checks the new way, and then the old way. 1139 */ 1140 static unsigned int soc_info(unsigned int *rev_h, unsigned int *rev_l) 1141 { 1142 struct device_node *np; 1143 const char *soc_string; 1144 unsigned int svr; 1145 unsigned int soc; 1146 1147 /* Find the CPU node */ 1148 np = of_find_node_by_type(NULL, "cpu"); 1149 if (!np) 1150 return 0; 1151 /* Find the compatible property */ 1152 soc_string = of_get_property(np, "compatible", NULL); 1153 if (!soc_string) 1154 /* No compatible property, so try the name. */ 1155 soc_string = np->name; 1156 1157 /* Extract the SOC number from the "PowerPC," string */ 1158 if ((sscanf(soc_string, "PowerPC,%u", &soc) != 1) || !soc) 1159 return 0; 1160 1161 /* Get the revision from the SVR */ 1162 svr = mfspr(SPRN_SVR); 1163 *rev_h = (svr >> 4) & 0xf; 1164 *rev_l = svr & 0xf; 1165 1166 return soc; 1167 } 1168 1169 /* 1170 * requst_firmware_nowait() callback function 1171 * 1172 * This function is called by the kernel when a firmware is made available, 1173 * or if it times out waiting for the firmware. 1174 */ 1175 static void uart_firmware_cont(const struct firmware *fw, void *context) 1176 { 1177 struct qe_firmware *firmware; 1178 struct device *dev = context; 1179 int ret; 1180 1181 if (!fw) { 1182 dev_err(dev, "firmware not found\n"); 1183 return; 1184 } 1185 1186 firmware = (struct qe_firmware *) fw->data; 1187 1188 if (firmware->header.length != fw->size) { 1189 dev_err(dev, "invalid firmware\n"); 1190 goto out; 1191 } 1192 1193 ret = qe_upload_firmware(firmware); 1194 if (ret) { 1195 dev_err(dev, "could not load firmware\n"); 1196 goto out; 1197 } 1198 1199 firmware_loaded = 1; 1200 out: 1201 release_firmware(fw); 1202 } 1203 1204 static int ucc_uart_probe(struct platform_device *ofdev) 1205 { 1206 struct device_node *np = ofdev->dev.of_node; 1207 const unsigned int *iprop; /* Integer OF properties */ 1208 const char *sprop; /* String OF properties */ 1209 struct uart_qe_port *qe_port = NULL; 1210 struct resource res; 1211 int ret; 1212 1213 /* 1214 * Determine if we need Soft-UART mode 1215 */ 1216 if (of_find_property(np, "soft-uart", NULL)) { 1217 dev_dbg(&ofdev->dev, "using Soft-UART mode\n"); 1218 soft_uart = 1; 1219 } 1220 1221 /* 1222 * If we are using Soft-UART, determine if we need to upload the 1223 * firmware, too. 1224 */ 1225 if (soft_uart) { 1226 struct qe_firmware_info *qe_fw_info; 1227 1228 qe_fw_info = qe_get_firmware_info(); 1229 1230 /* Check if the firmware has been uploaded. */ 1231 if (qe_fw_info && strstr(qe_fw_info->id, "Soft-UART")) { 1232 firmware_loaded = 1; 1233 } else { 1234 char filename[32]; 1235 unsigned int soc; 1236 unsigned int rev_h; 1237 unsigned int rev_l; 1238 1239 soc = soc_info(&rev_h, &rev_l); 1240 if (!soc) { 1241 dev_err(&ofdev->dev, "unknown CPU model\n"); 1242 return -ENXIO; 1243 } 1244 sprintf(filename, "fsl_qe_ucode_uart_%u_%u%u.bin", 1245 soc, rev_h, rev_l); 1246 1247 dev_info(&ofdev->dev, "waiting for firmware %s\n", 1248 filename); 1249 1250 /* 1251 * We call request_firmware_nowait instead of 1252 * request_firmware so that the driver can load and 1253 * initialize the ports without holding up the rest of 1254 * the kernel. If hotplug support is enabled in the 1255 * kernel, then we use it. 1256 */ 1257 ret = request_firmware_nowait(THIS_MODULE, 1258 FW_ACTION_HOTPLUG, filename, &ofdev->dev, 1259 GFP_KERNEL, &ofdev->dev, uart_firmware_cont); 1260 if (ret) { 1261 dev_err(&ofdev->dev, 1262 "could not load firmware %s\n", 1263 filename); 1264 return ret; 1265 } 1266 } 1267 } 1268 1269 qe_port = kzalloc(sizeof(struct uart_qe_port), GFP_KERNEL); 1270 if (!qe_port) { 1271 dev_err(&ofdev->dev, "can't allocate QE port structure\n"); 1272 return -ENOMEM; 1273 } 1274 1275 /* Search for IRQ and mapbase */ 1276 ret = of_address_to_resource(np, 0, &res); 1277 if (ret) { 1278 dev_err(&ofdev->dev, "missing 'reg' property in device tree\n"); 1279 goto out_free; 1280 } 1281 if (!res.start) { 1282 dev_err(&ofdev->dev, "invalid 'reg' property in device tree\n"); 1283 ret = -EINVAL; 1284 goto out_free; 1285 } 1286 qe_port->port.mapbase = res.start; 1287 1288 /* Get the UCC number (device ID) */ 1289 /* UCCs are numbered 1-7 */ 1290 iprop = of_get_property(np, "cell-index", NULL); 1291 if (!iprop) { 1292 iprop = of_get_property(np, "device-id", NULL); 1293 if (!iprop) { 1294 dev_err(&ofdev->dev, "UCC is unspecified in " 1295 "device tree\n"); 1296 ret = -EINVAL; 1297 goto out_free; 1298 } 1299 } 1300 1301 if ((*iprop < 1) || (*iprop > UCC_MAX_NUM)) { 1302 dev_err(&ofdev->dev, "no support for UCC%u\n", *iprop); 1303 ret = -ENODEV; 1304 goto out_free; 1305 } 1306 qe_port->ucc_num = *iprop - 1; 1307 1308 /* 1309 * In the future, we should not require the BRG to be specified in the 1310 * device tree. If no clock-source is specified, then just pick a BRG 1311 * to use. This requires a new QE library function that manages BRG 1312 * assignments. 1313 */ 1314 1315 sprop = of_get_property(np, "rx-clock-name", NULL); 1316 if (!sprop) { 1317 dev_err(&ofdev->dev, "missing rx-clock-name in device tree\n"); 1318 ret = -ENODEV; 1319 goto out_free; 1320 } 1321 1322 qe_port->us_info.rx_clock = qe_clock_source(sprop); 1323 if ((qe_port->us_info.rx_clock < QE_BRG1) || 1324 (qe_port->us_info.rx_clock > QE_BRG16)) { 1325 dev_err(&ofdev->dev, "rx-clock-name must be a BRG for UART\n"); 1326 ret = -ENODEV; 1327 goto out_free; 1328 } 1329 1330 #ifdef LOOPBACK 1331 /* In internal loopback mode, TX and RX must use the same clock */ 1332 qe_port->us_info.tx_clock = qe_port->us_info.rx_clock; 1333 #else 1334 sprop = of_get_property(np, "tx-clock-name", NULL); 1335 if (!sprop) { 1336 dev_err(&ofdev->dev, "missing tx-clock-name in device tree\n"); 1337 ret = -ENODEV; 1338 goto out_free; 1339 } 1340 qe_port->us_info.tx_clock = qe_clock_source(sprop); 1341 #endif 1342 if ((qe_port->us_info.tx_clock < QE_BRG1) || 1343 (qe_port->us_info.tx_clock > QE_BRG16)) { 1344 dev_err(&ofdev->dev, "tx-clock-name must be a BRG for UART\n"); 1345 ret = -ENODEV; 1346 goto out_free; 1347 } 1348 1349 /* Get the port number, numbered 0-3 */ 1350 iprop = of_get_property(np, "port-number", NULL); 1351 if (!iprop) { 1352 dev_err(&ofdev->dev, "missing port-number in device tree\n"); 1353 ret = -EINVAL; 1354 goto out_free; 1355 } 1356 qe_port->port.line = *iprop; 1357 if (qe_port->port.line >= UCC_MAX_UART) { 1358 dev_err(&ofdev->dev, "port-number must be 0-%u\n", 1359 UCC_MAX_UART - 1); 1360 ret = -EINVAL; 1361 goto out_free; 1362 } 1363 1364 qe_port->port.irq = irq_of_parse_and_map(np, 0); 1365 if (qe_port->port.irq == 0) { 1366 dev_err(&ofdev->dev, "could not map IRQ for UCC%u\n", 1367 qe_port->ucc_num + 1); 1368 ret = -EINVAL; 1369 goto out_free; 1370 } 1371 1372 /* 1373 * Newer device trees have an "fsl,qe" compatible property for the QE 1374 * node, but we still need to support older device trees. 1375 */ 1376 np = of_find_compatible_node(NULL, NULL, "fsl,qe"); 1377 if (!np) { 1378 np = of_find_node_by_type(NULL, "qe"); 1379 if (!np) { 1380 dev_err(&ofdev->dev, "could not find 'qe' node\n"); 1381 ret = -EINVAL; 1382 goto out_free; 1383 } 1384 } 1385 1386 iprop = of_get_property(np, "brg-frequency", NULL); 1387 if (!iprop) { 1388 dev_err(&ofdev->dev, 1389 "missing brg-frequency in device tree\n"); 1390 ret = -EINVAL; 1391 goto out_np; 1392 } 1393 1394 if (*iprop) 1395 qe_port->port.uartclk = *iprop; 1396 else { 1397 /* 1398 * Older versions of U-Boot do not initialize the brg-frequency 1399 * property, so in this case we assume the BRG frequency is 1400 * half the QE bus frequency. 1401 */ 1402 iprop = of_get_property(np, "bus-frequency", NULL); 1403 if (!iprop) { 1404 dev_err(&ofdev->dev, 1405 "missing QE bus-frequency in device tree\n"); 1406 ret = -EINVAL; 1407 goto out_np; 1408 } 1409 if (*iprop) 1410 qe_port->port.uartclk = *iprop / 2; 1411 else { 1412 dev_err(&ofdev->dev, 1413 "invalid QE bus-frequency in device tree\n"); 1414 ret = -EINVAL; 1415 goto out_np; 1416 } 1417 } 1418 1419 spin_lock_init(&qe_port->port.lock); 1420 qe_port->np = np; 1421 qe_port->port.dev = &ofdev->dev; 1422 qe_port->port.ops = &qe_uart_pops; 1423 qe_port->port.iotype = UPIO_MEM; 1424 1425 qe_port->tx_nrfifos = TX_NUM_FIFO; 1426 qe_port->tx_fifosize = TX_BUF_SIZE; 1427 qe_port->rx_nrfifos = RX_NUM_FIFO; 1428 qe_port->rx_fifosize = RX_BUF_SIZE; 1429 1430 qe_port->wait_closing = UCC_WAIT_CLOSING; 1431 qe_port->port.fifosize = 512; 1432 qe_port->port.flags = UPF_BOOT_AUTOCONF | UPF_IOREMAP; 1433 1434 qe_port->us_info.ucc_num = qe_port->ucc_num; 1435 qe_port->us_info.regs = (phys_addr_t) res.start; 1436 qe_port->us_info.irq = qe_port->port.irq; 1437 1438 qe_port->us_info.rx_bd_ring_len = qe_port->rx_nrfifos; 1439 qe_port->us_info.tx_bd_ring_len = qe_port->tx_nrfifos; 1440 1441 /* Make sure ucc_slow_init() initializes both TX and RX */ 1442 qe_port->us_info.init_tx = 1; 1443 qe_port->us_info.init_rx = 1; 1444 1445 /* Add the port to the uart sub-system. This will cause 1446 * qe_uart_config_port() to be called, so the us_info structure must 1447 * be initialized. 1448 */ 1449 ret = uart_add_one_port(&ucc_uart_driver, &qe_port->port); 1450 if (ret) { 1451 dev_err(&ofdev->dev, "could not add /dev/ttyQE%u\n", 1452 qe_port->port.line); 1453 goto out_np; 1454 } 1455 1456 platform_set_drvdata(ofdev, qe_port); 1457 1458 dev_info(&ofdev->dev, "UCC%u assigned to /dev/ttyQE%u\n", 1459 qe_port->ucc_num + 1, qe_port->port.line); 1460 1461 /* Display the mknod command for this device */ 1462 dev_dbg(&ofdev->dev, "mknod command is 'mknod /dev/ttyQE%u c %u %u'\n", 1463 qe_port->port.line, SERIAL_QE_MAJOR, 1464 SERIAL_QE_MINOR + qe_port->port.line); 1465 1466 return 0; 1467 out_np: 1468 of_node_put(np); 1469 out_free: 1470 kfree(qe_port); 1471 return ret; 1472 } 1473 1474 static int ucc_uart_remove(struct platform_device *ofdev) 1475 { 1476 struct uart_qe_port *qe_port = platform_get_drvdata(ofdev); 1477 1478 dev_info(&ofdev->dev, "removing /dev/ttyQE%u\n", qe_port->port.line); 1479 1480 uart_remove_one_port(&ucc_uart_driver, &qe_port->port); 1481 1482 kfree(qe_port); 1483 1484 return 0; 1485 } 1486 1487 static struct of_device_id ucc_uart_match[] = { 1488 { 1489 .type = "serial", 1490 .compatible = "ucc_uart", 1491 }, 1492 {}, 1493 }; 1494 MODULE_DEVICE_TABLE(of, ucc_uart_match); 1495 1496 static struct platform_driver ucc_uart_of_driver = { 1497 .driver = { 1498 .name = "ucc_uart", 1499 .owner = THIS_MODULE, 1500 .of_match_table = ucc_uart_match, 1501 }, 1502 .probe = ucc_uart_probe, 1503 .remove = ucc_uart_remove, 1504 }; 1505 1506 static int __init ucc_uart_init(void) 1507 { 1508 int ret; 1509 1510 printk(KERN_INFO "Freescale QUICC Engine UART device driver\n"); 1511 #ifdef LOOPBACK 1512 printk(KERN_INFO "ucc-uart: Using loopback mode\n"); 1513 #endif 1514 1515 ret = uart_register_driver(&ucc_uart_driver); 1516 if (ret) { 1517 printk(KERN_ERR "ucc-uart: could not register UART driver\n"); 1518 return ret; 1519 } 1520 1521 ret = platform_driver_register(&ucc_uart_of_driver); 1522 if (ret) { 1523 printk(KERN_ERR 1524 "ucc-uart: could not register platform driver\n"); 1525 uart_unregister_driver(&ucc_uart_driver); 1526 } 1527 1528 return ret; 1529 } 1530 1531 static void __exit ucc_uart_exit(void) 1532 { 1533 printk(KERN_INFO 1534 "Freescale QUICC Engine UART device driver unloading\n"); 1535 1536 platform_driver_unregister(&ucc_uart_of_driver); 1537 uart_unregister_driver(&ucc_uart_driver); 1538 } 1539 1540 module_init(ucc_uart_init); 1541 module_exit(ucc_uart_exit); 1542 1543 MODULE_DESCRIPTION("Freescale QUICC Engine (QE) UART"); 1544 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>"); 1545 MODULE_LICENSE("GPL v2"); 1546 MODULE_ALIAS_CHARDEV_MAJOR(SERIAL_QE_MAJOR); 1547 1548