xref: /openbmc/linux/drivers/tty/serial/ucc_uart.c (revision 7fe2f639)
1 /*
2  * Freescale QUICC Engine UART device driver
3  *
4  * Author: Timur Tabi <timur@freescale.com>
5  *
6  * Copyright 2007 Freescale Semiconductor, Inc.  This file is licensed under
7  * the terms of the GNU General Public License version 2.  This program
8  * is licensed "as is" without any warranty of any kind, whether express
9  * or implied.
10  *
11  * This driver adds support for UART devices via Freescale's QUICC Engine
12  * found on some Freescale SOCs.
13  *
14  * If Soft-UART support is needed but not already present, then this driver
15  * will request and upload the "Soft-UART" microcode upon probe.  The
16  * filename of the microcode should be fsl_qe_ucode_uart_X_YZ.bin, where "X"
17  * is the name of the SOC (e.g. 8323), and YZ is the revision of the SOC,
18  * (e.g. "11" for 1.1).
19  */
20 
21 #include <linux/module.h>
22 #include <linux/serial.h>
23 #include <linux/slab.h>
24 #include <linux/serial_core.h>
25 #include <linux/io.h>
26 #include <linux/of_platform.h>
27 #include <linux/dma-mapping.h>
28 
29 #include <linux/fs_uart_pd.h>
30 #include <asm/ucc_slow.h>
31 
32 #include <linux/firmware.h>
33 #include <asm/reg.h>
34 
35 /*
36  * The GUMR flag for Soft UART.  This would normally be defined in qe.h,
37  * but Soft-UART is a hack and we want to keep everything related to it in
38  * this file.
39  */
40 #define UCC_SLOW_GUMR_H_SUART   	0x00004000      /* Soft-UART */
41 
42 /*
43  * soft_uart is 1 if we need to use Soft-UART mode
44  */
45 static int soft_uart;
46 /*
47  * firmware_loaded is 1 if the firmware has been loaded, 0 otherwise.
48  */
49 static int firmware_loaded;
50 
51 /* Enable this macro to configure all serial ports in internal loopback
52    mode */
53 /* #define LOOPBACK */
54 
55 /* The major and minor device numbers are defined in
56  * http://www.lanana.org/docs/device-list/devices-2.6+.txt.  For the QE
57  * UART, we have major number 204 and minor numbers 46 - 49, which are the
58  * same as for the CPM2.  This decision was made because no Freescale part
59  * has both a CPM and a QE.
60  */
61 #define SERIAL_QE_MAJOR 204
62 #define SERIAL_QE_MINOR 46
63 
64 /* Since we only have minor numbers 46 - 49, there is a hard limit of 4 ports */
65 #define UCC_MAX_UART    4
66 
67 /* The number of buffer descriptors for receiving characters. */
68 #define RX_NUM_FIFO     4
69 
70 /* The number of buffer descriptors for transmitting characters. */
71 #define TX_NUM_FIFO     4
72 
73 /* The maximum size of the character buffer for a single RX BD. */
74 #define RX_BUF_SIZE     32
75 
76 /* The maximum size of the character buffer for a single TX BD. */
77 #define TX_BUF_SIZE     32
78 
79 /*
80  * The number of jiffies to wait after receiving a close command before the
81  * device is actually closed.  This allows the last few characters to be
82  * sent over the wire.
83  */
84 #define UCC_WAIT_CLOSING 100
85 
86 struct ucc_uart_pram {
87 	struct ucc_slow_pram common;
88 	u8 res1[8];     	/* reserved */
89 	__be16 maxidl;  	/* Maximum idle chars */
90 	__be16 idlc;    	/* temp idle counter */
91 	__be16 brkcr;   	/* Break count register */
92 	__be16 parec;   	/* receive parity error counter */
93 	__be16 frmec;   	/* receive framing error counter */
94 	__be16 nosec;   	/* receive noise counter */
95 	__be16 brkec;   	/* receive break condition counter */
96 	__be16 brkln;   	/* last received break length */
97 	__be16 uaddr[2];	/* UART address character 1 & 2 */
98 	__be16 rtemp;   	/* Temp storage */
99 	__be16 toseq;   	/* Transmit out of sequence char */
100 	__be16 cchars[8];       /* control characters 1-8 */
101 	__be16 rccm;    	/* receive control character mask */
102 	__be16 rccr;    	/* receive control character register */
103 	__be16 rlbc;    	/* receive last break character */
104 	__be16 res2;    	/* reserved */
105 	__be32 res3;    	/* reserved, should be cleared */
106 	u8 res4;		/* reserved, should be cleared */
107 	u8 res5[3];     	/* reserved, should be cleared */
108 	__be32 res6;    	/* reserved, should be cleared */
109 	__be32 res7;    	/* reserved, should be cleared */
110 	__be32 res8;    	/* reserved, should be cleared */
111 	__be32 res9;    	/* reserved, should be cleared */
112 	__be32 res10;   	/* reserved, should be cleared */
113 	__be32 res11;   	/* reserved, should be cleared */
114 	__be32 res12;   	/* reserved, should be cleared */
115 	__be32 res13;   	/* reserved, should be cleared */
116 /* The rest is for Soft-UART only */
117 	__be16 supsmr;  	/* 0x90, Shadow UPSMR */
118 	__be16 res92;   	/* 0x92, reserved, initialize to 0 */
119 	__be32 rx_state;	/* 0x94, RX state, initialize to 0 */
120 	__be32 rx_cnt;  	/* 0x98, RX count, initialize to 0 */
121 	u8 rx_length;   	/* 0x9C, Char length, set to 1+CL+PEN+1+SL */
122 	u8 rx_bitmark;  	/* 0x9D, reserved, initialize to 0 */
123 	u8 rx_temp_dlst_qe;     /* 0x9E, reserved, initialize to 0 */
124 	u8 res14[0xBC - 0x9F];  /* reserved */
125 	__be32 dump_ptr;	/* 0xBC, Dump pointer */
126 	__be32 rx_frame_rem;    /* 0xC0, reserved, initialize to 0 */
127 	u8 rx_frame_rem_size;   /* 0xC4, reserved, initialize to 0 */
128 	u8 tx_mode;     	/* 0xC5, mode, 0=AHDLC, 1=UART */
129 	__be16 tx_state;	/* 0xC6, TX state */
130 	u8 res15[0xD0 - 0xC8];  /* reserved */
131 	__be32 resD0;   	/* 0xD0, reserved, initialize to 0 */
132 	u8 resD4;       	/* 0xD4, reserved, initialize to 0 */
133 	__be16 resD5;   	/* 0xD5, reserved, initialize to 0 */
134 } __attribute__ ((packed));
135 
136 /* SUPSMR definitions, for Soft-UART only */
137 #define UCC_UART_SUPSMR_SL      	0x8000
138 #define UCC_UART_SUPSMR_RPM_MASK	0x6000
139 #define UCC_UART_SUPSMR_RPM_ODD 	0x0000
140 #define UCC_UART_SUPSMR_RPM_LOW 	0x2000
141 #define UCC_UART_SUPSMR_RPM_EVEN	0x4000
142 #define UCC_UART_SUPSMR_RPM_HIGH	0x6000
143 #define UCC_UART_SUPSMR_PEN     	0x1000
144 #define UCC_UART_SUPSMR_TPM_MASK	0x0C00
145 #define UCC_UART_SUPSMR_TPM_ODD 	0x0000
146 #define UCC_UART_SUPSMR_TPM_LOW 	0x0400
147 #define UCC_UART_SUPSMR_TPM_EVEN	0x0800
148 #define UCC_UART_SUPSMR_TPM_HIGH	0x0C00
149 #define UCC_UART_SUPSMR_FRZ     	0x0100
150 #define UCC_UART_SUPSMR_UM_MASK 	0x00c0
151 #define UCC_UART_SUPSMR_UM_NORMAL       0x0000
152 #define UCC_UART_SUPSMR_UM_MAN_MULTI    0x0040
153 #define UCC_UART_SUPSMR_UM_AUTO_MULTI   0x00c0
154 #define UCC_UART_SUPSMR_CL_MASK 	0x0030
155 #define UCC_UART_SUPSMR_CL_8    	0x0030
156 #define UCC_UART_SUPSMR_CL_7    	0x0020
157 #define UCC_UART_SUPSMR_CL_6    	0x0010
158 #define UCC_UART_SUPSMR_CL_5    	0x0000
159 
160 #define UCC_UART_TX_STATE_AHDLC 	0x00
161 #define UCC_UART_TX_STATE_UART  	0x01
162 #define UCC_UART_TX_STATE_X1    	0x00
163 #define UCC_UART_TX_STATE_X16   	0x80
164 
165 #define UCC_UART_PRAM_ALIGNMENT 0x100
166 
167 #define UCC_UART_SIZE_OF_BD     UCC_SLOW_SIZE_OF_BD
168 #define NUM_CONTROL_CHARS       8
169 
170 /* Private per-port data structure */
171 struct uart_qe_port {
172 	struct uart_port port;
173 	struct ucc_slow __iomem *uccp;
174 	struct ucc_uart_pram __iomem *uccup;
175 	struct ucc_slow_info us_info;
176 	struct ucc_slow_private *us_private;
177 	struct device_node *np;
178 	unsigned int ucc_num;   /* First ucc is 0, not 1 */
179 
180 	u16 rx_nrfifos;
181 	u16 rx_fifosize;
182 	u16 tx_nrfifos;
183 	u16 tx_fifosize;
184 	int wait_closing;
185 	u32 flags;
186 	struct qe_bd *rx_bd_base;
187 	struct qe_bd *rx_cur;
188 	struct qe_bd *tx_bd_base;
189 	struct qe_bd *tx_cur;
190 	unsigned char *tx_buf;
191 	unsigned char *rx_buf;
192 	void *bd_virt;  	/* virtual address of the BD buffers */
193 	dma_addr_t bd_dma_addr; /* bus address of the BD buffers */
194 	unsigned int bd_size;   /* size of BD buffer space */
195 };
196 
197 static struct uart_driver ucc_uart_driver = {
198 	.owner  	= THIS_MODULE,
199 	.driver_name    = "ucc_uart",
200 	.dev_name       = "ttyQE",
201 	.major  	= SERIAL_QE_MAJOR,
202 	.minor  	= SERIAL_QE_MINOR,
203 	.nr     	= UCC_MAX_UART,
204 };
205 
206 /*
207  * Virtual to physical address translation.
208  *
209  * Given the virtual address for a character buffer, this function returns
210  * the physical (DMA) equivalent.
211  */
212 static inline dma_addr_t cpu2qe_addr(void *addr, struct uart_qe_port *qe_port)
213 {
214 	if (likely((addr >= qe_port->bd_virt)) &&
215 	    (addr < (qe_port->bd_virt + qe_port->bd_size)))
216 		return qe_port->bd_dma_addr + (addr - qe_port->bd_virt);
217 
218 	/* something nasty happened */
219 	printk(KERN_ERR "%s: addr=%p\n", __func__, addr);
220 	BUG();
221 	return 0;
222 }
223 
224 /*
225  * Physical to virtual address translation.
226  *
227  * Given the physical (DMA) address for a character buffer, this function
228  * returns the virtual equivalent.
229  */
230 static inline void *qe2cpu_addr(dma_addr_t addr, struct uart_qe_port *qe_port)
231 {
232 	/* sanity check */
233 	if (likely((addr >= qe_port->bd_dma_addr) &&
234 		   (addr < (qe_port->bd_dma_addr + qe_port->bd_size))))
235 		return qe_port->bd_virt + (addr - qe_port->bd_dma_addr);
236 
237 	/* something nasty happened */
238 	printk(KERN_ERR "%s: addr=%x\n", __func__, addr);
239 	BUG();
240 	return NULL;
241 }
242 
243 /*
244  * Return 1 if the QE is done transmitting all buffers for this port
245  *
246  * This function scans each BD in sequence.  If we find a BD that is not
247  * ready (READY=1), then we return 0 indicating that the QE is still sending
248  * data.  If we reach the last BD (WRAP=1), then we know we've scanned
249  * the entire list, and all BDs are done.
250  */
251 static unsigned int qe_uart_tx_empty(struct uart_port *port)
252 {
253 	struct uart_qe_port *qe_port =
254 		container_of(port, struct uart_qe_port, port);
255 	struct qe_bd *bdp = qe_port->tx_bd_base;
256 
257 	while (1) {
258 		if (in_be16(&bdp->status) & BD_SC_READY)
259 			/* This BD is not done, so return "not done" */
260 			return 0;
261 
262 		if (in_be16(&bdp->status) & BD_SC_WRAP)
263 			/*
264 			 * This BD is done and it's the last one, so return
265 			 * "done"
266 			 */
267 			return 1;
268 
269 		bdp++;
270 	};
271 }
272 
273 /*
274  * Set the modem control lines
275  *
276  * Although the QE can control the modem control lines (e.g. CTS), we
277  * don't need that support. This function must exist, however, otherwise
278  * the kernel will panic.
279  */
280 void qe_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
281 {
282 }
283 
284 /*
285  * Get the current modem control line status
286  *
287  * Although the QE can control the modem control lines (e.g. CTS), this
288  * driver currently doesn't support that, so we always return Carrier
289  * Detect, Data Set Ready, and Clear To Send.
290  */
291 static unsigned int qe_uart_get_mctrl(struct uart_port *port)
292 {
293 	return TIOCM_CAR | TIOCM_DSR | TIOCM_CTS;
294 }
295 
296 /*
297  * Disable the transmit interrupt.
298  *
299  * Although this function is called "stop_tx", it does not actually stop
300  * transmission of data.  Instead, it tells the QE to not generate an
301  * interrupt when the UCC is finished sending characters.
302  */
303 static void qe_uart_stop_tx(struct uart_port *port)
304 {
305 	struct uart_qe_port *qe_port =
306 		container_of(port, struct uart_qe_port, port);
307 
308 	clrbits16(&qe_port->uccp->uccm, UCC_UART_UCCE_TX);
309 }
310 
311 /*
312  * Transmit as many characters to the HW as possible.
313  *
314  * This function will attempt to stuff of all the characters from the
315  * kernel's transmit buffer into TX BDs.
316  *
317  * A return value of non-zero indicates that it successfully stuffed all
318  * characters from the kernel buffer.
319  *
320  * A return value of zero indicates that there are still characters in the
321  * kernel's buffer that have not been transmitted, but there are no more BDs
322  * available.  This function should be called again after a BD has been made
323  * available.
324  */
325 static int qe_uart_tx_pump(struct uart_qe_port *qe_port)
326 {
327 	struct qe_bd *bdp;
328 	unsigned char *p;
329 	unsigned int count;
330 	struct uart_port *port = &qe_port->port;
331 	struct circ_buf *xmit = &port->state->xmit;
332 
333 	bdp = qe_port->rx_cur;
334 
335 	/* Handle xon/xoff */
336 	if (port->x_char) {
337 		/* Pick next descriptor and fill from buffer */
338 		bdp = qe_port->tx_cur;
339 
340 		p = qe2cpu_addr(bdp->buf, qe_port);
341 
342 		*p++ = port->x_char;
343 		out_be16(&bdp->length, 1);
344 		setbits16(&bdp->status, BD_SC_READY);
345 		/* Get next BD. */
346 		if (in_be16(&bdp->status) & BD_SC_WRAP)
347 			bdp = qe_port->tx_bd_base;
348 		else
349 			bdp++;
350 		qe_port->tx_cur = bdp;
351 
352 		port->icount.tx++;
353 		port->x_char = 0;
354 		return 1;
355 	}
356 
357 	if (uart_circ_empty(xmit) || uart_tx_stopped(port)) {
358 		qe_uart_stop_tx(port);
359 		return 0;
360 	}
361 
362 	/* Pick next descriptor and fill from buffer */
363 	bdp = qe_port->tx_cur;
364 
365 	while (!(in_be16(&bdp->status) & BD_SC_READY) &&
366 	       (xmit->tail != xmit->head)) {
367 		count = 0;
368 		p = qe2cpu_addr(bdp->buf, qe_port);
369 		while (count < qe_port->tx_fifosize) {
370 			*p++ = xmit->buf[xmit->tail];
371 			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
372 			port->icount.tx++;
373 			count++;
374 			if (xmit->head == xmit->tail)
375 				break;
376 		}
377 
378 		out_be16(&bdp->length, count);
379 		setbits16(&bdp->status, BD_SC_READY);
380 
381 		/* Get next BD. */
382 		if (in_be16(&bdp->status) & BD_SC_WRAP)
383 			bdp = qe_port->tx_bd_base;
384 		else
385 			bdp++;
386 	}
387 	qe_port->tx_cur = bdp;
388 
389 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
390 		uart_write_wakeup(port);
391 
392 	if (uart_circ_empty(xmit)) {
393 		/* The kernel buffer is empty, so turn off TX interrupts.  We
394 		   don't need to be told when the QE is finished transmitting
395 		   the data. */
396 		qe_uart_stop_tx(port);
397 		return 0;
398 	}
399 
400 	return 1;
401 }
402 
403 /*
404  * Start transmitting data
405  *
406  * This function will start transmitting any available data, if the port
407  * isn't already transmitting data.
408  */
409 static void qe_uart_start_tx(struct uart_port *port)
410 {
411 	struct uart_qe_port *qe_port =
412 		container_of(port, struct uart_qe_port, port);
413 
414 	/* If we currently are transmitting, then just return */
415 	if (in_be16(&qe_port->uccp->uccm) & UCC_UART_UCCE_TX)
416 		return;
417 
418 	/* Otherwise, pump the port and start transmission */
419 	if (qe_uart_tx_pump(qe_port))
420 		setbits16(&qe_port->uccp->uccm, UCC_UART_UCCE_TX);
421 }
422 
423 /*
424  * Stop transmitting data
425  */
426 static void qe_uart_stop_rx(struct uart_port *port)
427 {
428 	struct uart_qe_port *qe_port =
429 		container_of(port, struct uart_qe_port, port);
430 
431 	clrbits16(&qe_port->uccp->uccm, UCC_UART_UCCE_RX);
432 }
433 
434 /*
435  * Enable status change interrupts
436  *
437  * We don't support status change interrupts, but we need to define this
438  * function otherwise the kernel will panic.
439  */
440 static void qe_uart_enable_ms(struct uart_port *port)
441 {
442 }
443 
444 /* Start or stop sending  break signal
445  *
446  * This function controls the sending of a break signal.  If break_state=1,
447  * then we start sending a break signal.  If break_state=0, then we stop
448  * sending the break signal.
449  */
450 static void qe_uart_break_ctl(struct uart_port *port, int break_state)
451 {
452 	struct uart_qe_port *qe_port =
453 		container_of(port, struct uart_qe_port, port);
454 
455 	if (break_state)
456 		ucc_slow_stop_tx(qe_port->us_private);
457 	else
458 		ucc_slow_restart_tx(qe_port->us_private);
459 }
460 
461 /* ISR helper function for receiving character.
462  *
463  * This function is called by the ISR to handling receiving characters
464  */
465 static void qe_uart_int_rx(struct uart_qe_port *qe_port)
466 {
467 	int i;
468 	unsigned char ch, *cp;
469 	struct uart_port *port = &qe_port->port;
470 	struct tty_struct *tty = port->state->port.tty;
471 	struct qe_bd *bdp;
472 	u16 status;
473 	unsigned int flg;
474 
475 	/* Just loop through the closed BDs and copy the characters into
476 	 * the buffer.
477 	 */
478 	bdp = qe_port->rx_cur;
479 	while (1) {
480 		status = in_be16(&bdp->status);
481 
482 		/* If this one is empty, then we assume we've read them all */
483 		if (status & BD_SC_EMPTY)
484 			break;
485 
486 		/* get number of characters, and check space in RX buffer */
487 		i = in_be16(&bdp->length);
488 
489 		/* If we don't have enough room in RX buffer for the entire BD,
490 		 * then we try later, which will be the next RX interrupt.
491 		 */
492 		if (tty_buffer_request_room(tty, i) < i) {
493 			dev_dbg(port->dev, "ucc-uart: no room in RX buffer\n");
494 			return;
495 		}
496 
497 		/* get pointer */
498 		cp = qe2cpu_addr(bdp->buf, qe_port);
499 
500 		/* loop through the buffer */
501 		while (i-- > 0) {
502 			ch = *cp++;
503 			port->icount.rx++;
504 			flg = TTY_NORMAL;
505 
506 			if (!i && status &
507 			    (BD_SC_BR | BD_SC_FR | BD_SC_PR | BD_SC_OV))
508 				goto handle_error;
509 			if (uart_handle_sysrq_char(port, ch))
510 				continue;
511 
512 error_return:
513 			tty_insert_flip_char(tty, ch, flg);
514 
515 		}
516 
517 		/* This BD is ready to be used again. Clear status. get next */
518 		clrsetbits_be16(&bdp->status, BD_SC_BR | BD_SC_FR | BD_SC_PR |
519 			BD_SC_OV | BD_SC_ID, BD_SC_EMPTY);
520 		if (in_be16(&bdp->status) & BD_SC_WRAP)
521 			bdp = qe_port->rx_bd_base;
522 		else
523 			bdp++;
524 
525 	}
526 
527 	/* Write back buffer pointer */
528 	qe_port->rx_cur = bdp;
529 
530 	/* Activate BH processing */
531 	tty_flip_buffer_push(tty);
532 
533 	return;
534 
535 	/* Error processing */
536 
537 handle_error:
538 	/* Statistics */
539 	if (status & BD_SC_BR)
540 		port->icount.brk++;
541 	if (status & BD_SC_PR)
542 		port->icount.parity++;
543 	if (status & BD_SC_FR)
544 		port->icount.frame++;
545 	if (status & BD_SC_OV)
546 		port->icount.overrun++;
547 
548 	/* Mask out ignored conditions */
549 	status &= port->read_status_mask;
550 
551 	/* Handle the remaining ones */
552 	if (status & BD_SC_BR)
553 		flg = TTY_BREAK;
554 	else if (status & BD_SC_PR)
555 		flg = TTY_PARITY;
556 	else if (status & BD_SC_FR)
557 		flg = TTY_FRAME;
558 
559 	/* Overrun does not affect the current character ! */
560 	if (status & BD_SC_OV)
561 		tty_insert_flip_char(tty, 0, TTY_OVERRUN);
562 #ifdef SUPPORT_SYSRQ
563 	port->sysrq = 0;
564 #endif
565 	goto error_return;
566 }
567 
568 /* Interrupt handler
569  *
570  * This interrupt handler is called after a BD is processed.
571  */
572 static irqreturn_t qe_uart_int(int irq, void *data)
573 {
574 	struct uart_qe_port *qe_port = (struct uart_qe_port *) data;
575 	struct ucc_slow __iomem *uccp = qe_port->uccp;
576 	u16 events;
577 
578 	/* Clear the interrupts */
579 	events = in_be16(&uccp->ucce);
580 	out_be16(&uccp->ucce, events);
581 
582 	if (events & UCC_UART_UCCE_BRKE)
583 		uart_handle_break(&qe_port->port);
584 
585 	if (events & UCC_UART_UCCE_RX)
586 		qe_uart_int_rx(qe_port);
587 
588 	if (events & UCC_UART_UCCE_TX)
589 		qe_uart_tx_pump(qe_port);
590 
591 	return events ? IRQ_HANDLED : IRQ_NONE;
592 }
593 
594 /* Initialize buffer descriptors
595  *
596  * This function initializes all of the RX and TX buffer descriptors.
597  */
598 static void qe_uart_initbd(struct uart_qe_port *qe_port)
599 {
600 	int i;
601 	void *bd_virt;
602 	struct qe_bd *bdp;
603 
604 	/* Set the physical address of the host memory buffers in the buffer
605 	 * descriptors, and the virtual address for us to work with.
606 	 */
607 	bd_virt = qe_port->bd_virt;
608 	bdp = qe_port->rx_bd_base;
609 	qe_port->rx_cur = qe_port->rx_bd_base;
610 	for (i = 0; i < (qe_port->rx_nrfifos - 1); i++) {
611 		out_be16(&bdp->status, BD_SC_EMPTY | BD_SC_INTRPT);
612 		out_be32(&bdp->buf, cpu2qe_addr(bd_virt, qe_port));
613 		out_be16(&bdp->length, 0);
614 		bd_virt += qe_port->rx_fifosize;
615 		bdp++;
616 	}
617 
618 	/* */
619 	out_be16(&bdp->status, BD_SC_WRAP | BD_SC_EMPTY | BD_SC_INTRPT);
620 	out_be32(&bdp->buf, cpu2qe_addr(bd_virt, qe_port));
621 	out_be16(&bdp->length, 0);
622 
623 	/* Set the physical address of the host memory
624 	 * buffers in the buffer descriptors, and the
625 	 * virtual address for us to work with.
626 	 */
627 	bd_virt = qe_port->bd_virt +
628 		L1_CACHE_ALIGN(qe_port->rx_nrfifos * qe_port->rx_fifosize);
629 	qe_port->tx_cur = qe_port->tx_bd_base;
630 	bdp = qe_port->tx_bd_base;
631 	for (i = 0; i < (qe_port->tx_nrfifos - 1); i++) {
632 		out_be16(&bdp->status, BD_SC_INTRPT);
633 		out_be32(&bdp->buf, cpu2qe_addr(bd_virt, qe_port));
634 		out_be16(&bdp->length, 0);
635 		bd_virt += qe_port->tx_fifosize;
636 		bdp++;
637 	}
638 
639 	/* Loopback requires the preamble bit to be set on the first TX BD */
640 #ifdef LOOPBACK
641 	setbits16(&qe_port->tx_cur->status, BD_SC_P);
642 #endif
643 
644 	out_be16(&bdp->status, BD_SC_WRAP | BD_SC_INTRPT);
645 	out_be32(&bdp->buf, cpu2qe_addr(bd_virt, qe_port));
646 	out_be16(&bdp->length, 0);
647 }
648 
649 /*
650  * Initialize a UCC for UART.
651  *
652  * This function configures a given UCC to be used as a UART device. Basic
653  * UCC initialization is handled in qe_uart_request_port().  This function
654  * does all the UART-specific stuff.
655  */
656 static void qe_uart_init_ucc(struct uart_qe_port *qe_port)
657 {
658 	u32 cecr_subblock;
659 	struct ucc_slow __iomem *uccp = qe_port->uccp;
660 	struct ucc_uart_pram *uccup = qe_port->uccup;
661 
662 	unsigned int i;
663 
664 	/* First, disable TX and RX in the UCC */
665 	ucc_slow_disable(qe_port->us_private, COMM_DIR_RX_AND_TX);
666 
667 	/* Program the UCC UART parameter RAM */
668 	out_8(&uccup->common.rbmr, UCC_BMR_GBL | UCC_BMR_BO_BE);
669 	out_8(&uccup->common.tbmr, UCC_BMR_GBL | UCC_BMR_BO_BE);
670 	out_be16(&uccup->common.mrblr, qe_port->rx_fifosize);
671 	out_be16(&uccup->maxidl, 0x10);
672 	out_be16(&uccup->brkcr, 1);
673 	out_be16(&uccup->parec, 0);
674 	out_be16(&uccup->frmec, 0);
675 	out_be16(&uccup->nosec, 0);
676 	out_be16(&uccup->brkec, 0);
677 	out_be16(&uccup->uaddr[0], 0);
678 	out_be16(&uccup->uaddr[1], 0);
679 	out_be16(&uccup->toseq, 0);
680 	for (i = 0; i < 8; i++)
681 		out_be16(&uccup->cchars[i], 0xC000);
682 	out_be16(&uccup->rccm, 0xc0ff);
683 
684 	/* Configure the GUMR registers for UART */
685 	if (soft_uart) {
686 		/* Soft-UART requires a 1X multiplier for TX */
687 		clrsetbits_be32(&uccp->gumr_l,
688 			UCC_SLOW_GUMR_L_MODE_MASK | UCC_SLOW_GUMR_L_TDCR_MASK |
689 			UCC_SLOW_GUMR_L_RDCR_MASK,
690 			UCC_SLOW_GUMR_L_MODE_UART | UCC_SLOW_GUMR_L_TDCR_1 |
691 			UCC_SLOW_GUMR_L_RDCR_16);
692 
693 		clrsetbits_be32(&uccp->gumr_h, UCC_SLOW_GUMR_H_RFW,
694 			UCC_SLOW_GUMR_H_TRX | UCC_SLOW_GUMR_H_TTX);
695 	} else {
696 		clrsetbits_be32(&uccp->gumr_l,
697 			UCC_SLOW_GUMR_L_MODE_MASK | UCC_SLOW_GUMR_L_TDCR_MASK |
698 			UCC_SLOW_GUMR_L_RDCR_MASK,
699 			UCC_SLOW_GUMR_L_MODE_UART | UCC_SLOW_GUMR_L_TDCR_16 |
700 			UCC_SLOW_GUMR_L_RDCR_16);
701 
702 		clrsetbits_be32(&uccp->gumr_h,
703 			UCC_SLOW_GUMR_H_TRX | UCC_SLOW_GUMR_H_TTX,
704 			UCC_SLOW_GUMR_H_RFW);
705 	}
706 
707 #ifdef LOOPBACK
708 	clrsetbits_be32(&uccp->gumr_l, UCC_SLOW_GUMR_L_DIAG_MASK,
709 		UCC_SLOW_GUMR_L_DIAG_LOOP);
710 	clrsetbits_be32(&uccp->gumr_h,
711 		UCC_SLOW_GUMR_H_CTSP | UCC_SLOW_GUMR_H_RSYN,
712 		UCC_SLOW_GUMR_H_CDS);
713 #endif
714 
715 	/* Disable rx interrupts  and clear all pending events.  */
716 	out_be16(&uccp->uccm, 0);
717 	out_be16(&uccp->ucce, 0xffff);
718 	out_be16(&uccp->udsr, 0x7e7e);
719 
720 	/* Initialize UPSMR */
721 	out_be16(&uccp->upsmr, 0);
722 
723 	if (soft_uart) {
724 		out_be16(&uccup->supsmr, 0x30);
725 		out_be16(&uccup->res92, 0);
726 		out_be32(&uccup->rx_state, 0);
727 		out_be32(&uccup->rx_cnt, 0);
728 		out_8(&uccup->rx_bitmark, 0);
729 		out_8(&uccup->rx_length, 10);
730 		out_be32(&uccup->dump_ptr, 0x4000);
731 		out_8(&uccup->rx_temp_dlst_qe, 0);
732 		out_be32(&uccup->rx_frame_rem, 0);
733 		out_8(&uccup->rx_frame_rem_size, 0);
734 		/* Soft-UART requires TX to be 1X */
735 		out_8(&uccup->tx_mode,
736 			UCC_UART_TX_STATE_UART | UCC_UART_TX_STATE_X1);
737 		out_be16(&uccup->tx_state, 0);
738 		out_8(&uccup->resD4, 0);
739 		out_be16(&uccup->resD5, 0);
740 
741 		/* Set UART mode.
742 		 * Enable receive and transmit.
743 		 */
744 
745 		/* From the microcode errata:
746 		 * 1.GUMR_L register, set mode=0010 (QMC).
747 		 * 2.Set GUMR_H[17] bit. (UART/AHDLC mode).
748 		 * 3.Set GUMR_H[19:20] (Transparent mode)
749 		 * 4.Clear GUMR_H[26] (RFW)
750 		 * ...
751 		 * 6.Receiver must use 16x over sampling
752 		 */
753 		clrsetbits_be32(&uccp->gumr_l,
754 			UCC_SLOW_GUMR_L_MODE_MASK | UCC_SLOW_GUMR_L_TDCR_MASK |
755 			UCC_SLOW_GUMR_L_RDCR_MASK,
756 			UCC_SLOW_GUMR_L_MODE_QMC | UCC_SLOW_GUMR_L_TDCR_16 |
757 			UCC_SLOW_GUMR_L_RDCR_16);
758 
759 		clrsetbits_be32(&uccp->gumr_h,
760 			UCC_SLOW_GUMR_H_RFW | UCC_SLOW_GUMR_H_RSYN,
761 			UCC_SLOW_GUMR_H_SUART | UCC_SLOW_GUMR_H_TRX |
762 			UCC_SLOW_GUMR_H_TTX | UCC_SLOW_GUMR_H_TFL);
763 
764 #ifdef LOOPBACK
765 		clrsetbits_be32(&uccp->gumr_l, UCC_SLOW_GUMR_L_DIAG_MASK,
766 				UCC_SLOW_GUMR_L_DIAG_LOOP);
767 		clrbits32(&uccp->gumr_h, UCC_SLOW_GUMR_H_CTSP |
768 			  UCC_SLOW_GUMR_H_CDS);
769 #endif
770 
771 		cecr_subblock = ucc_slow_get_qe_cr_subblock(qe_port->ucc_num);
772 		qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
773 			QE_CR_PROTOCOL_UNSPECIFIED, 0);
774 	} else {
775 		cecr_subblock = ucc_slow_get_qe_cr_subblock(qe_port->ucc_num);
776 		qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
777 			QE_CR_PROTOCOL_UART, 0);
778 	}
779 }
780 
781 /*
782  * Initialize the port.
783  */
784 static int qe_uart_startup(struct uart_port *port)
785 {
786 	struct uart_qe_port *qe_port =
787 		container_of(port, struct uart_qe_port, port);
788 	int ret;
789 
790 	/*
791 	 * If we're using Soft-UART mode, then we need to make sure the
792 	 * firmware has been uploaded first.
793 	 */
794 	if (soft_uart && !firmware_loaded) {
795 		dev_err(port->dev, "Soft-UART firmware not uploaded\n");
796 		return -ENODEV;
797 	}
798 
799 	qe_uart_initbd(qe_port);
800 	qe_uart_init_ucc(qe_port);
801 
802 	/* Install interrupt handler. */
803 	ret = request_irq(port->irq, qe_uart_int, IRQF_SHARED, "ucc-uart",
804 		qe_port);
805 	if (ret) {
806 		dev_err(port->dev, "could not claim IRQ %u\n", port->irq);
807 		return ret;
808 	}
809 
810 	/* Startup rx-int */
811 	setbits16(&qe_port->uccp->uccm, UCC_UART_UCCE_RX);
812 	ucc_slow_enable(qe_port->us_private, COMM_DIR_RX_AND_TX);
813 
814 	return 0;
815 }
816 
817 /*
818  * Shutdown the port.
819  */
820 static void qe_uart_shutdown(struct uart_port *port)
821 {
822 	struct uart_qe_port *qe_port =
823 		container_of(port, struct uart_qe_port, port);
824 	struct ucc_slow __iomem *uccp = qe_port->uccp;
825 	unsigned int timeout = 20;
826 
827 	/* Disable RX and TX */
828 
829 	/* Wait for all the BDs marked sent */
830 	while (!qe_uart_tx_empty(port)) {
831 		if (!--timeout) {
832 			dev_warn(port->dev, "shutdown timeout\n");
833 			break;
834 		}
835 		set_current_state(TASK_UNINTERRUPTIBLE);
836 		schedule_timeout(2);
837 	}
838 
839 	if (qe_port->wait_closing) {
840 		/* Wait a bit longer */
841 		set_current_state(TASK_UNINTERRUPTIBLE);
842 		schedule_timeout(qe_port->wait_closing);
843 	}
844 
845 	/* Stop uarts */
846 	ucc_slow_disable(qe_port->us_private, COMM_DIR_RX_AND_TX);
847 	clrbits16(&uccp->uccm, UCC_UART_UCCE_TX | UCC_UART_UCCE_RX);
848 
849 	/* Shut them really down and reinit buffer descriptors */
850 	ucc_slow_graceful_stop_tx(qe_port->us_private);
851 	qe_uart_initbd(qe_port);
852 
853 	free_irq(port->irq, qe_port);
854 }
855 
856 /*
857  * Set the serial port parameters.
858  */
859 static void qe_uart_set_termios(struct uart_port *port,
860 				struct ktermios *termios, struct ktermios *old)
861 {
862 	struct uart_qe_port *qe_port =
863 		container_of(port, struct uart_qe_port, port);
864 	struct ucc_slow __iomem *uccp = qe_port->uccp;
865 	unsigned int baud;
866 	unsigned long flags;
867 	u16 upsmr = in_be16(&uccp->upsmr);
868 	struct ucc_uart_pram __iomem *uccup = qe_port->uccup;
869 	u16 supsmr = in_be16(&uccup->supsmr);
870 	u8 char_length = 2; /* 1 + CL + PEN + 1 + SL */
871 
872 	/* Character length programmed into the mode register is the
873 	 * sum of: 1 start bit, number of data bits, 0 or 1 parity bit,
874 	 * 1 or 2 stop bits, minus 1.
875 	 * The value 'bits' counts this for us.
876 	 */
877 
878 	/* byte size */
879 	upsmr &= UCC_UART_UPSMR_CL_MASK;
880 	supsmr &= UCC_UART_SUPSMR_CL_MASK;
881 
882 	switch (termios->c_cflag & CSIZE) {
883 	case CS5:
884 		upsmr |= UCC_UART_UPSMR_CL_5;
885 		supsmr |= UCC_UART_SUPSMR_CL_5;
886 		char_length += 5;
887 		break;
888 	case CS6:
889 		upsmr |= UCC_UART_UPSMR_CL_6;
890 		supsmr |= UCC_UART_SUPSMR_CL_6;
891 		char_length += 6;
892 		break;
893 	case CS7:
894 		upsmr |= UCC_UART_UPSMR_CL_7;
895 		supsmr |= UCC_UART_SUPSMR_CL_7;
896 		char_length += 7;
897 		break;
898 	default:	/* case CS8 */
899 		upsmr |= UCC_UART_UPSMR_CL_8;
900 		supsmr |= UCC_UART_SUPSMR_CL_8;
901 		char_length += 8;
902 		break;
903 	}
904 
905 	/* If CSTOPB is set, we want two stop bits */
906 	if (termios->c_cflag & CSTOPB) {
907 		upsmr |= UCC_UART_UPSMR_SL;
908 		supsmr |= UCC_UART_SUPSMR_SL;
909 		char_length++;  /* + SL */
910 	}
911 
912 	if (termios->c_cflag & PARENB) {
913 		upsmr |= UCC_UART_UPSMR_PEN;
914 		supsmr |= UCC_UART_SUPSMR_PEN;
915 		char_length++;  /* + PEN */
916 
917 		if (!(termios->c_cflag & PARODD)) {
918 			upsmr &= ~(UCC_UART_UPSMR_RPM_MASK |
919 				   UCC_UART_UPSMR_TPM_MASK);
920 			upsmr |= UCC_UART_UPSMR_RPM_EVEN |
921 				UCC_UART_UPSMR_TPM_EVEN;
922 			supsmr &= ~(UCC_UART_SUPSMR_RPM_MASK |
923 				    UCC_UART_SUPSMR_TPM_MASK);
924 			supsmr |= UCC_UART_SUPSMR_RPM_EVEN |
925 				UCC_UART_SUPSMR_TPM_EVEN;
926 		}
927 	}
928 
929 	/*
930 	 * Set up parity check flag
931 	 */
932 	port->read_status_mask = BD_SC_EMPTY | BD_SC_OV;
933 	if (termios->c_iflag & INPCK)
934 		port->read_status_mask |= BD_SC_FR | BD_SC_PR;
935 	if (termios->c_iflag & (BRKINT | PARMRK))
936 		port->read_status_mask |= BD_SC_BR;
937 
938 	/*
939 	 * Characters to ignore
940 	 */
941 	port->ignore_status_mask = 0;
942 	if (termios->c_iflag & IGNPAR)
943 		port->ignore_status_mask |= BD_SC_PR | BD_SC_FR;
944 	if (termios->c_iflag & IGNBRK) {
945 		port->ignore_status_mask |= BD_SC_BR;
946 		/*
947 		 * If we're ignore parity and break indicators, ignore
948 		 * overruns too.  (For real raw support).
949 		 */
950 		if (termios->c_iflag & IGNPAR)
951 			port->ignore_status_mask |= BD_SC_OV;
952 	}
953 	/*
954 	 * !!! ignore all characters if CREAD is not set
955 	 */
956 	if ((termios->c_cflag & CREAD) == 0)
957 		port->read_status_mask &= ~BD_SC_EMPTY;
958 
959 	baud = uart_get_baud_rate(port, termios, old, 0, 115200);
960 
961 	/* Do we really need a spinlock here? */
962 	spin_lock_irqsave(&port->lock, flags);
963 
964 	out_be16(&uccp->upsmr, upsmr);
965 	if (soft_uart) {
966 		out_be16(&uccup->supsmr, supsmr);
967 		out_8(&uccup->rx_length, char_length);
968 
969 		/* Soft-UART requires a 1X multiplier for TX */
970 		qe_setbrg(qe_port->us_info.rx_clock, baud, 16);
971 		qe_setbrg(qe_port->us_info.tx_clock, baud, 1);
972 	} else {
973 		qe_setbrg(qe_port->us_info.rx_clock, baud, 16);
974 		qe_setbrg(qe_port->us_info.tx_clock, baud, 16);
975 	}
976 
977 	spin_unlock_irqrestore(&port->lock, flags);
978 }
979 
980 /*
981  * Return a pointer to a string that describes what kind of port this is.
982  */
983 static const char *qe_uart_type(struct uart_port *port)
984 {
985 	return "QE";
986 }
987 
988 /*
989  * Allocate any memory and I/O resources required by the port.
990  */
991 static int qe_uart_request_port(struct uart_port *port)
992 {
993 	int ret;
994 	struct uart_qe_port *qe_port =
995 		container_of(port, struct uart_qe_port, port);
996 	struct ucc_slow_info *us_info = &qe_port->us_info;
997 	struct ucc_slow_private *uccs;
998 	unsigned int rx_size, tx_size;
999 	void *bd_virt;
1000 	dma_addr_t bd_dma_addr = 0;
1001 
1002 	ret = ucc_slow_init(us_info, &uccs);
1003 	if (ret) {
1004 		dev_err(port->dev, "could not initialize UCC%u\n",
1005 		       qe_port->ucc_num);
1006 		return ret;
1007 	}
1008 
1009 	qe_port->us_private = uccs;
1010 	qe_port->uccp = uccs->us_regs;
1011 	qe_port->uccup = (struct ucc_uart_pram *) uccs->us_pram;
1012 	qe_port->rx_bd_base = uccs->rx_bd;
1013 	qe_port->tx_bd_base = uccs->tx_bd;
1014 
1015 	/*
1016 	 * Allocate the transmit and receive data buffers.
1017 	 */
1018 
1019 	rx_size = L1_CACHE_ALIGN(qe_port->rx_nrfifos * qe_port->rx_fifosize);
1020 	tx_size = L1_CACHE_ALIGN(qe_port->tx_nrfifos * qe_port->tx_fifosize);
1021 
1022 	bd_virt = dma_alloc_coherent(port->dev, rx_size + tx_size, &bd_dma_addr,
1023 		GFP_KERNEL);
1024 	if (!bd_virt) {
1025 		dev_err(port->dev, "could not allocate buffer descriptors\n");
1026 		return -ENOMEM;
1027 	}
1028 
1029 	qe_port->bd_virt = bd_virt;
1030 	qe_port->bd_dma_addr = bd_dma_addr;
1031 	qe_port->bd_size = rx_size + tx_size;
1032 
1033 	qe_port->rx_buf = bd_virt;
1034 	qe_port->tx_buf = qe_port->rx_buf + rx_size;
1035 
1036 	return 0;
1037 }
1038 
1039 /*
1040  * Configure the port.
1041  *
1042  * We say we're a CPM-type port because that's mostly true.  Once the device
1043  * is configured, this driver operates almost identically to the CPM serial
1044  * driver.
1045  */
1046 static void qe_uart_config_port(struct uart_port *port, int flags)
1047 {
1048 	if (flags & UART_CONFIG_TYPE) {
1049 		port->type = PORT_CPM;
1050 		qe_uart_request_port(port);
1051 	}
1052 }
1053 
1054 /*
1055  * Release any memory and I/O resources that were allocated in
1056  * qe_uart_request_port().
1057  */
1058 static void qe_uart_release_port(struct uart_port *port)
1059 {
1060 	struct uart_qe_port *qe_port =
1061 		container_of(port, struct uart_qe_port, port);
1062 	struct ucc_slow_private *uccs = qe_port->us_private;
1063 
1064 	dma_free_coherent(port->dev, qe_port->bd_size, qe_port->bd_virt,
1065 			  qe_port->bd_dma_addr);
1066 
1067 	ucc_slow_free(uccs);
1068 }
1069 
1070 /*
1071  * Verify that the data in serial_struct is suitable for this device.
1072  */
1073 static int qe_uart_verify_port(struct uart_port *port,
1074 			       struct serial_struct *ser)
1075 {
1076 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_CPM)
1077 		return -EINVAL;
1078 
1079 	if (ser->irq < 0 || ser->irq >= nr_irqs)
1080 		return -EINVAL;
1081 
1082 	if (ser->baud_base < 9600)
1083 		return -EINVAL;
1084 
1085 	return 0;
1086 }
1087 /* UART operations
1088  *
1089  * Details on these functions can be found in Documentation/serial/driver
1090  */
1091 static struct uart_ops qe_uart_pops = {
1092 	.tx_empty       = qe_uart_tx_empty,
1093 	.set_mctrl      = qe_uart_set_mctrl,
1094 	.get_mctrl      = qe_uart_get_mctrl,
1095 	.stop_tx	= qe_uart_stop_tx,
1096 	.start_tx       = qe_uart_start_tx,
1097 	.stop_rx	= qe_uart_stop_rx,
1098 	.enable_ms      = qe_uart_enable_ms,
1099 	.break_ctl      = qe_uart_break_ctl,
1100 	.startup	= qe_uart_startup,
1101 	.shutdown       = qe_uart_shutdown,
1102 	.set_termios    = qe_uart_set_termios,
1103 	.type   	= qe_uart_type,
1104 	.release_port   = qe_uart_release_port,
1105 	.request_port   = qe_uart_request_port,
1106 	.config_port    = qe_uart_config_port,
1107 	.verify_port    = qe_uart_verify_port,
1108 };
1109 
1110 /*
1111  * Obtain the SOC model number and revision level
1112  *
1113  * This function parses the device tree to obtain the SOC model.  It then
1114  * reads the SVR register to the revision.
1115  *
1116  * The device tree stores the SOC model two different ways.
1117  *
1118  * The new way is:
1119  *
1120  *      	cpu@0 {
1121  *      		compatible = "PowerPC,8323";
1122  *      		device_type = "cpu";
1123  *      		...
1124  *
1125  *
1126  * The old way is:
1127  *      	 PowerPC,8323@0 {
1128  *      		device_type = "cpu";
1129  *      		...
1130  *
1131  * This code first checks the new way, and then the old way.
1132  */
1133 static unsigned int soc_info(unsigned int *rev_h, unsigned int *rev_l)
1134 {
1135 	struct device_node *np;
1136 	const char *soc_string;
1137 	unsigned int svr;
1138 	unsigned int soc;
1139 
1140 	/* Find the CPU node */
1141 	np = of_find_node_by_type(NULL, "cpu");
1142 	if (!np)
1143 		return 0;
1144 	/* Find the compatible property */
1145 	soc_string = of_get_property(np, "compatible", NULL);
1146 	if (!soc_string)
1147 		/* No compatible property, so try the name. */
1148 		soc_string = np->name;
1149 
1150 	/* Extract the SOC number from the "PowerPC," string */
1151 	if ((sscanf(soc_string, "PowerPC,%u", &soc) != 1) || !soc)
1152 		return 0;
1153 
1154 	/* Get the revision from the SVR */
1155 	svr = mfspr(SPRN_SVR);
1156 	*rev_h = (svr >> 4) & 0xf;
1157 	*rev_l = svr & 0xf;
1158 
1159 	return soc;
1160 }
1161 
1162 /*
1163  * requst_firmware_nowait() callback function
1164  *
1165  * This function is called by the kernel when a firmware is made available,
1166  * or if it times out waiting for the firmware.
1167  */
1168 static void uart_firmware_cont(const struct firmware *fw, void *context)
1169 {
1170 	struct qe_firmware *firmware;
1171 	struct device *dev = context;
1172 	int ret;
1173 
1174 	if (!fw) {
1175 		dev_err(dev, "firmware not found\n");
1176 		return;
1177 	}
1178 
1179 	firmware = (struct qe_firmware *) fw->data;
1180 
1181 	if (firmware->header.length != fw->size) {
1182 		dev_err(dev, "invalid firmware\n");
1183 		goto out;
1184 	}
1185 
1186 	ret = qe_upload_firmware(firmware);
1187 	if (ret) {
1188 		dev_err(dev, "could not load firmware\n");
1189 		goto out;
1190 	}
1191 
1192 	firmware_loaded = 1;
1193  out:
1194 	release_firmware(fw);
1195 }
1196 
1197 static int ucc_uart_probe(struct platform_device *ofdev)
1198 {
1199 	struct device_node *np = ofdev->dev.of_node;
1200 	const unsigned int *iprop;      /* Integer OF properties */
1201 	const char *sprop;      /* String OF properties */
1202 	struct uart_qe_port *qe_port = NULL;
1203 	struct resource res;
1204 	int ret;
1205 
1206 	/*
1207 	 * Determine if we need Soft-UART mode
1208 	 */
1209 	if (of_find_property(np, "soft-uart", NULL)) {
1210 		dev_dbg(&ofdev->dev, "using Soft-UART mode\n");
1211 		soft_uart = 1;
1212 	}
1213 
1214 	/*
1215 	 * If we are using Soft-UART, determine if we need to upload the
1216 	 * firmware, too.
1217 	 */
1218 	if (soft_uart) {
1219 		struct qe_firmware_info *qe_fw_info;
1220 
1221 		qe_fw_info = qe_get_firmware_info();
1222 
1223 		/* Check if the firmware has been uploaded. */
1224 		if (qe_fw_info && strstr(qe_fw_info->id, "Soft-UART")) {
1225 			firmware_loaded = 1;
1226 		} else {
1227 			char filename[32];
1228 			unsigned int soc;
1229 			unsigned int rev_h;
1230 			unsigned int rev_l;
1231 
1232 			soc = soc_info(&rev_h, &rev_l);
1233 			if (!soc) {
1234 				dev_err(&ofdev->dev, "unknown CPU model\n");
1235 				return -ENXIO;
1236 			}
1237 			sprintf(filename, "fsl_qe_ucode_uart_%u_%u%u.bin",
1238 				soc, rev_h, rev_l);
1239 
1240 			dev_info(&ofdev->dev, "waiting for firmware %s\n",
1241 				filename);
1242 
1243 			/*
1244 			 * We call request_firmware_nowait instead of
1245 			 * request_firmware so that the driver can load and
1246 			 * initialize the ports without holding up the rest of
1247 			 * the kernel.  If hotplug support is enabled in the
1248 			 * kernel, then we use it.
1249 			 */
1250 			ret = request_firmware_nowait(THIS_MODULE,
1251 				FW_ACTION_HOTPLUG, filename, &ofdev->dev,
1252 				GFP_KERNEL, &ofdev->dev, uart_firmware_cont);
1253 			if (ret) {
1254 				dev_err(&ofdev->dev,
1255 					"could not load firmware %s\n",
1256 					filename);
1257 				return ret;
1258 			}
1259 		}
1260 	}
1261 
1262 	qe_port = kzalloc(sizeof(struct uart_qe_port), GFP_KERNEL);
1263 	if (!qe_port) {
1264 		dev_err(&ofdev->dev, "can't allocate QE port structure\n");
1265 		return -ENOMEM;
1266 	}
1267 
1268 	/* Search for IRQ and mapbase */
1269 	ret = of_address_to_resource(np, 0, &res);
1270 	if (ret) {
1271 		dev_err(&ofdev->dev, "missing 'reg' property in device tree\n");
1272 		goto out_free;
1273 	}
1274 	if (!res.start) {
1275 		dev_err(&ofdev->dev, "invalid 'reg' property in device tree\n");
1276 		ret = -EINVAL;
1277 		goto out_free;
1278 	}
1279 	qe_port->port.mapbase = res.start;
1280 
1281 	/* Get the UCC number (device ID) */
1282 	/* UCCs are numbered 1-7 */
1283 	iprop = of_get_property(np, "cell-index", NULL);
1284 	if (!iprop) {
1285 		iprop = of_get_property(np, "device-id", NULL);
1286 		if (!iprop) {
1287 			dev_err(&ofdev->dev, "UCC is unspecified in "
1288 				"device tree\n");
1289 			ret = -EINVAL;
1290 			goto out_free;
1291 		}
1292 	}
1293 
1294 	if ((*iprop < 1) || (*iprop > UCC_MAX_NUM)) {
1295 		dev_err(&ofdev->dev, "no support for UCC%u\n", *iprop);
1296 		ret = -ENODEV;
1297 		goto out_free;
1298 	}
1299 	qe_port->ucc_num = *iprop - 1;
1300 
1301 	/*
1302 	 * In the future, we should not require the BRG to be specified in the
1303 	 * device tree.  If no clock-source is specified, then just pick a BRG
1304 	 * to use.  This requires a new QE library function that manages BRG
1305 	 * assignments.
1306 	 */
1307 
1308 	sprop = of_get_property(np, "rx-clock-name", NULL);
1309 	if (!sprop) {
1310 		dev_err(&ofdev->dev, "missing rx-clock-name in device tree\n");
1311 		ret = -ENODEV;
1312 		goto out_free;
1313 	}
1314 
1315 	qe_port->us_info.rx_clock = qe_clock_source(sprop);
1316 	if ((qe_port->us_info.rx_clock < QE_BRG1) ||
1317 	    (qe_port->us_info.rx_clock > QE_BRG16)) {
1318 		dev_err(&ofdev->dev, "rx-clock-name must be a BRG for UART\n");
1319 		ret = -ENODEV;
1320 		goto out_free;
1321 	}
1322 
1323 #ifdef LOOPBACK
1324 	/* In internal loopback mode, TX and RX must use the same clock */
1325 	qe_port->us_info.tx_clock = qe_port->us_info.rx_clock;
1326 #else
1327 	sprop = of_get_property(np, "tx-clock-name", NULL);
1328 	if (!sprop) {
1329 		dev_err(&ofdev->dev, "missing tx-clock-name in device tree\n");
1330 		ret = -ENODEV;
1331 		goto out_free;
1332 	}
1333 	qe_port->us_info.tx_clock = qe_clock_source(sprop);
1334 #endif
1335 	if ((qe_port->us_info.tx_clock < QE_BRG1) ||
1336 	    (qe_port->us_info.tx_clock > QE_BRG16)) {
1337 		dev_err(&ofdev->dev, "tx-clock-name must be a BRG for UART\n");
1338 		ret = -ENODEV;
1339 		goto out_free;
1340 	}
1341 
1342 	/* Get the port number, numbered 0-3 */
1343 	iprop = of_get_property(np, "port-number", NULL);
1344 	if (!iprop) {
1345 		dev_err(&ofdev->dev, "missing port-number in device tree\n");
1346 		ret = -EINVAL;
1347 		goto out_free;
1348 	}
1349 	qe_port->port.line = *iprop;
1350 	if (qe_port->port.line >= UCC_MAX_UART) {
1351 		dev_err(&ofdev->dev, "port-number must be 0-%u\n",
1352 			UCC_MAX_UART - 1);
1353 		ret = -EINVAL;
1354 		goto out_free;
1355 	}
1356 
1357 	qe_port->port.irq = irq_of_parse_and_map(np, 0);
1358 	if (qe_port->port.irq == NO_IRQ) {
1359 		dev_err(&ofdev->dev, "could not map IRQ for UCC%u\n",
1360 		       qe_port->ucc_num + 1);
1361 		ret = -EINVAL;
1362 		goto out_free;
1363 	}
1364 
1365 	/*
1366 	 * Newer device trees have an "fsl,qe" compatible property for the QE
1367 	 * node, but we still need to support older device trees.
1368 	 */
1369 	np = of_find_compatible_node(NULL, NULL, "fsl,qe");
1370 	if (!np) {
1371 		np = of_find_node_by_type(NULL, "qe");
1372 		if (!np) {
1373 			dev_err(&ofdev->dev, "could not find 'qe' node\n");
1374 			ret = -EINVAL;
1375 			goto out_free;
1376 		}
1377 	}
1378 
1379 	iprop = of_get_property(np, "brg-frequency", NULL);
1380 	if (!iprop) {
1381 		dev_err(&ofdev->dev,
1382 		       "missing brg-frequency in device tree\n");
1383 		ret = -EINVAL;
1384 		goto out_np;
1385 	}
1386 
1387 	if (*iprop)
1388 		qe_port->port.uartclk = *iprop;
1389 	else {
1390 		/*
1391 		 * Older versions of U-Boot do not initialize the brg-frequency
1392 		 * property, so in this case we assume the BRG frequency is
1393 		 * half the QE bus frequency.
1394 		 */
1395 		iprop = of_get_property(np, "bus-frequency", NULL);
1396 		if (!iprop) {
1397 			dev_err(&ofdev->dev,
1398 				"missing QE bus-frequency in device tree\n");
1399 			ret = -EINVAL;
1400 			goto out_np;
1401 		}
1402 		if (*iprop)
1403 			qe_port->port.uartclk = *iprop / 2;
1404 		else {
1405 			dev_err(&ofdev->dev,
1406 				"invalid QE bus-frequency in device tree\n");
1407 			ret = -EINVAL;
1408 			goto out_np;
1409 		}
1410 	}
1411 
1412 	spin_lock_init(&qe_port->port.lock);
1413 	qe_port->np = np;
1414 	qe_port->port.dev = &ofdev->dev;
1415 	qe_port->port.ops = &qe_uart_pops;
1416 	qe_port->port.iotype = UPIO_MEM;
1417 
1418 	qe_port->tx_nrfifos = TX_NUM_FIFO;
1419 	qe_port->tx_fifosize = TX_BUF_SIZE;
1420 	qe_port->rx_nrfifos = RX_NUM_FIFO;
1421 	qe_port->rx_fifosize = RX_BUF_SIZE;
1422 
1423 	qe_port->wait_closing = UCC_WAIT_CLOSING;
1424 	qe_port->port.fifosize = 512;
1425 	qe_port->port.flags = UPF_BOOT_AUTOCONF | UPF_IOREMAP;
1426 
1427 	qe_port->us_info.ucc_num = qe_port->ucc_num;
1428 	qe_port->us_info.regs = (phys_addr_t) res.start;
1429 	qe_port->us_info.irq = qe_port->port.irq;
1430 
1431 	qe_port->us_info.rx_bd_ring_len = qe_port->rx_nrfifos;
1432 	qe_port->us_info.tx_bd_ring_len = qe_port->tx_nrfifos;
1433 
1434 	/* Make sure ucc_slow_init() initializes both TX and RX */
1435 	qe_port->us_info.init_tx = 1;
1436 	qe_port->us_info.init_rx = 1;
1437 
1438 	/* Add the port to the uart sub-system.  This will cause
1439 	 * qe_uart_config_port() to be called, so the us_info structure must
1440 	 * be initialized.
1441 	 */
1442 	ret = uart_add_one_port(&ucc_uart_driver, &qe_port->port);
1443 	if (ret) {
1444 		dev_err(&ofdev->dev, "could not add /dev/ttyQE%u\n",
1445 		       qe_port->port.line);
1446 		goto out_np;
1447 	}
1448 
1449 	dev_set_drvdata(&ofdev->dev, qe_port);
1450 
1451 	dev_info(&ofdev->dev, "UCC%u assigned to /dev/ttyQE%u\n",
1452 		qe_port->ucc_num + 1, qe_port->port.line);
1453 
1454 	/* Display the mknod command for this device */
1455 	dev_dbg(&ofdev->dev, "mknod command is 'mknod /dev/ttyQE%u c %u %u'\n",
1456 	       qe_port->port.line, SERIAL_QE_MAJOR,
1457 	       SERIAL_QE_MINOR + qe_port->port.line);
1458 
1459 	return 0;
1460 out_np:
1461 	of_node_put(np);
1462 out_free:
1463 	kfree(qe_port);
1464 	return ret;
1465 }
1466 
1467 static int ucc_uart_remove(struct platform_device *ofdev)
1468 {
1469 	struct uart_qe_port *qe_port = dev_get_drvdata(&ofdev->dev);
1470 
1471 	dev_info(&ofdev->dev, "removing /dev/ttyQE%u\n", qe_port->port.line);
1472 
1473 	uart_remove_one_port(&ucc_uart_driver, &qe_port->port);
1474 
1475 	dev_set_drvdata(&ofdev->dev, NULL);
1476 	kfree(qe_port);
1477 
1478 	return 0;
1479 }
1480 
1481 static struct of_device_id ucc_uart_match[] = {
1482 	{
1483 		.type = "serial",
1484 		.compatible = "ucc_uart",
1485 	},
1486 	{},
1487 };
1488 MODULE_DEVICE_TABLE(of, ucc_uart_match);
1489 
1490 static struct platform_driver ucc_uart_of_driver = {
1491 	.driver = {
1492 		.name = "ucc_uart",
1493 		.owner = THIS_MODULE,
1494 		.of_match_table    = ucc_uart_match,
1495 	},
1496 	.probe  	= ucc_uart_probe,
1497 	.remove 	= ucc_uart_remove,
1498 };
1499 
1500 static int __init ucc_uart_init(void)
1501 {
1502 	int ret;
1503 
1504 	printk(KERN_INFO "Freescale QUICC Engine UART device driver\n");
1505 #ifdef LOOPBACK
1506 	printk(KERN_INFO "ucc-uart: Using loopback mode\n");
1507 #endif
1508 
1509 	ret = uart_register_driver(&ucc_uart_driver);
1510 	if (ret) {
1511 		printk(KERN_ERR "ucc-uart: could not register UART driver\n");
1512 		return ret;
1513 	}
1514 
1515 	ret = platform_driver_register(&ucc_uart_of_driver);
1516 	if (ret)
1517 		printk(KERN_ERR
1518 		       "ucc-uart: could not register platform driver\n");
1519 
1520 	return ret;
1521 }
1522 
1523 static void __exit ucc_uart_exit(void)
1524 {
1525 	printk(KERN_INFO
1526 	       "Freescale QUICC Engine UART device driver unloading\n");
1527 
1528 	platform_driver_unregister(&ucc_uart_of_driver);
1529 	uart_unregister_driver(&ucc_uart_driver);
1530 }
1531 
1532 module_init(ucc_uart_init);
1533 module_exit(ucc_uart_exit);
1534 
1535 MODULE_DESCRIPTION("Freescale QUICC Engine (QE) UART");
1536 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
1537 MODULE_LICENSE("GPL v2");
1538 MODULE_ALIAS_CHARDEV_MAJOR(SERIAL_QE_MAJOR);
1539 
1540