1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) Maxime Coquelin 2015 4 * Copyright (C) STMicroelectronics SA 2017 5 * Authors: Maxime Coquelin <mcoquelin.stm32@gmail.com> 6 * Gerald Baeza <gerald.baeza@foss.st.com> 7 * Erwan Le Ray <erwan.leray@foss.st.com> 8 * 9 * Inspired by st-asc.c from STMicroelectronics (c) 10 */ 11 12 #include <linux/clk.h> 13 #include <linux/console.h> 14 #include <linux/delay.h> 15 #include <linux/dma-direction.h> 16 #include <linux/dmaengine.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/io.h> 19 #include <linux/iopoll.h> 20 #include <linux/irq.h> 21 #include <linux/module.h> 22 #include <linux/of.h> 23 #include <linux/of_platform.h> 24 #include <linux/pinctrl/consumer.h> 25 #include <linux/platform_device.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/pm_wakeirq.h> 28 #include <linux/serial_core.h> 29 #include <linux/serial.h> 30 #include <linux/spinlock.h> 31 #include <linux/sysrq.h> 32 #include <linux/tty_flip.h> 33 #include <linux/tty.h> 34 35 #include "serial_mctrl_gpio.h" 36 #include "stm32-usart.h" 37 38 39 /* Register offsets */ 40 static struct stm32_usart_info __maybe_unused stm32f4_info = { 41 .ofs = { 42 .isr = 0x00, 43 .rdr = 0x04, 44 .tdr = 0x04, 45 .brr = 0x08, 46 .cr1 = 0x0c, 47 .cr2 = 0x10, 48 .cr3 = 0x14, 49 .gtpr = 0x18, 50 .rtor = UNDEF_REG, 51 .rqr = UNDEF_REG, 52 .icr = UNDEF_REG, 53 }, 54 .cfg = { 55 .uart_enable_bit = 13, 56 .has_7bits_data = false, 57 .fifosize = 1, 58 } 59 }; 60 61 static struct stm32_usart_info __maybe_unused stm32f7_info = { 62 .ofs = { 63 .cr1 = 0x00, 64 .cr2 = 0x04, 65 .cr3 = 0x08, 66 .brr = 0x0c, 67 .gtpr = 0x10, 68 .rtor = 0x14, 69 .rqr = 0x18, 70 .isr = 0x1c, 71 .icr = 0x20, 72 .rdr = 0x24, 73 .tdr = 0x28, 74 }, 75 .cfg = { 76 .uart_enable_bit = 0, 77 .has_7bits_data = true, 78 .has_swap = true, 79 .fifosize = 1, 80 } 81 }; 82 83 static struct stm32_usart_info __maybe_unused stm32h7_info = { 84 .ofs = { 85 .cr1 = 0x00, 86 .cr2 = 0x04, 87 .cr3 = 0x08, 88 .brr = 0x0c, 89 .gtpr = 0x10, 90 .rtor = 0x14, 91 .rqr = 0x18, 92 .isr = 0x1c, 93 .icr = 0x20, 94 .rdr = 0x24, 95 .tdr = 0x28, 96 }, 97 .cfg = { 98 .uart_enable_bit = 0, 99 .has_7bits_data = true, 100 .has_swap = true, 101 .has_wakeup = true, 102 .has_fifo = true, 103 .fifosize = 16, 104 } 105 }; 106 107 static void stm32_usart_stop_tx(struct uart_port *port); 108 static void stm32_usart_transmit_chars(struct uart_port *port); 109 static void __maybe_unused stm32_usart_console_putchar(struct uart_port *port, unsigned char ch); 110 111 static inline struct stm32_port *to_stm32_port(struct uart_port *port) 112 { 113 return container_of(port, struct stm32_port, port); 114 } 115 116 static void stm32_usart_set_bits(struct uart_port *port, u32 reg, u32 bits) 117 { 118 u32 val; 119 120 val = readl_relaxed(port->membase + reg); 121 val |= bits; 122 writel_relaxed(val, port->membase + reg); 123 } 124 125 static void stm32_usart_clr_bits(struct uart_port *port, u32 reg, u32 bits) 126 { 127 u32 val; 128 129 val = readl_relaxed(port->membase + reg); 130 val &= ~bits; 131 writel_relaxed(val, port->membase + reg); 132 } 133 134 static unsigned int stm32_usart_tx_empty(struct uart_port *port) 135 { 136 struct stm32_port *stm32_port = to_stm32_port(port); 137 const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; 138 139 if (readl_relaxed(port->membase + ofs->isr) & USART_SR_TC) 140 return TIOCSER_TEMT; 141 142 return 0; 143 } 144 145 static void stm32_usart_rs485_rts_enable(struct uart_port *port) 146 { 147 struct stm32_port *stm32_port = to_stm32_port(port); 148 struct serial_rs485 *rs485conf = &port->rs485; 149 150 if (stm32_port->hw_flow_control || 151 !(rs485conf->flags & SER_RS485_ENABLED)) 152 return; 153 154 if (rs485conf->flags & SER_RS485_RTS_ON_SEND) { 155 mctrl_gpio_set(stm32_port->gpios, 156 stm32_port->port.mctrl | TIOCM_RTS); 157 } else { 158 mctrl_gpio_set(stm32_port->gpios, 159 stm32_port->port.mctrl & ~TIOCM_RTS); 160 } 161 } 162 163 static void stm32_usart_rs485_rts_disable(struct uart_port *port) 164 { 165 struct stm32_port *stm32_port = to_stm32_port(port); 166 struct serial_rs485 *rs485conf = &port->rs485; 167 168 if (stm32_port->hw_flow_control || 169 !(rs485conf->flags & SER_RS485_ENABLED)) 170 return; 171 172 if (rs485conf->flags & SER_RS485_RTS_ON_SEND) { 173 mctrl_gpio_set(stm32_port->gpios, 174 stm32_port->port.mctrl & ~TIOCM_RTS); 175 } else { 176 mctrl_gpio_set(stm32_port->gpios, 177 stm32_port->port.mctrl | TIOCM_RTS); 178 } 179 } 180 181 static void stm32_usart_config_reg_rs485(u32 *cr1, u32 *cr3, u32 delay_ADE, 182 u32 delay_DDE, u32 baud) 183 { 184 u32 rs485_deat_dedt; 185 u32 rs485_deat_dedt_max = (USART_CR1_DEAT_MASK >> USART_CR1_DEAT_SHIFT); 186 bool over8; 187 188 *cr3 |= USART_CR3_DEM; 189 over8 = *cr1 & USART_CR1_OVER8; 190 191 *cr1 &= ~(USART_CR1_DEDT_MASK | USART_CR1_DEAT_MASK); 192 193 if (over8) 194 rs485_deat_dedt = delay_ADE * baud * 8; 195 else 196 rs485_deat_dedt = delay_ADE * baud * 16; 197 198 rs485_deat_dedt = DIV_ROUND_CLOSEST(rs485_deat_dedt, 1000); 199 rs485_deat_dedt = rs485_deat_dedt > rs485_deat_dedt_max ? 200 rs485_deat_dedt_max : rs485_deat_dedt; 201 rs485_deat_dedt = (rs485_deat_dedt << USART_CR1_DEAT_SHIFT) & 202 USART_CR1_DEAT_MASK; 203 *cr1 |= rs485_deat_dedt; 204 205 if (over8) 206 rs485_deat_dedt = delay_DDE * baud * 8; 207 else 208 rs485_deat_dedt = delay_DDE * baud * 16; 209 210 rs485_deat_dedt = DIV_ROUND_CLOSEST(rs485_deat_dedt, 1000); 211 rs485_deat_dedt = rs485_deat_dedt > rs485_deat_dedt_max ? 212 rs485_deat_dedt_max : rs485_deat_dedt; 213 rs485_deat_dedt = (rs485_deat_dedt << USART_CR1_DEDT_SHIFT) & 214 USART_CR1_DEDT_MASK; 215 *cr1 |= rs485_deat_dedt; 216 } 217 218 static int stm32_usart_config_rs485(struct uart_port *port, struct ktermios *termios, 219 struct serial_rs485 *rs485conf) 220 { 221 struct stm32_port *stm32_port = to_stm32_port(port); 222 const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; 223 const struct stm32_usart_config *cfg = &stm32_port->info->cfg; 224 u32 usartdiv, baud, cr1, cr3; 225 bool over8; 226 227 stm32_usart_clr_bits(port, ofs->cr1, BIT(cfg->uart_enable_bit)); 228 229 if (port->rs485_rx_during_tx_gpio) 230 gpiod_set_value_cansleep(port->rs485_rx_during_tx_gpio, 231 !!(rs485conf->flags & SER_RS485_RX_DURING_TX)); 232 else 233 rs485conf->flags |= SER_RS485_RX_DURING_TX; 234 235 if (rs485conf->flags & SER_RS485_ENABLED) { 236 cr1 = readl_relaxed(port->membase + ofs->cr1); 237 cr3 = readl_relaxed(port->membase + ofs->cr3); 238 usartdiv = readl_relaxed(port->membase + ofs->brr); 239 usartdiv = usartdiv & GENMASK(15, 0); 240 over8 = cr1 & USART_CR1_OVER8; 241 242 if (over8) 243 usartdiv = usartdiv | (usartdiv & GENMASK(4, 0)) 244 << USART_BRR_04_R_SHIFT; 245 246 baud = DIV_ROUND_CLOSEST(port->uartclk, usartdiv); 247 stm32_usart_config_reg_rs485(&cr1, &cr3, 248 rs485conf->delay_rts_before_send, 249 rs485conf->delay_rts_after_send, 250 baud); 251 252 if (rs485conf->flags & SER_RS485_RTS_ON_SEND) 253 cr3 &= ~USART_CR3_DEP; 254 else 255 cr3 |= USART_CR3_DEP; 256 257 writel_relaxed(cr3, port->membase + ofs->cr3); 258 writel_relaxed(cr1, port->membase + ofs->cr1); 259 } else { 260 stm32_usart_clr_bits(port, ofs->cr3, 261 USART_CR3_DEM | USART_CR3_DEP); 262 stm32_usart_clr_bits(port, ofs->cr1, 263 USART_CR1_DEDT_MASK | USART_CR1_DEAT_MASK); 264 } 265 266 stm32_usart_set_bits(port, ofs->cr1, BIT(cfg->uart_enable_bit)); 267 268 /* Adjust RTS polarity in case it's driven in software */ 269 if (stm32_usart_tx_empty(port)) 270 stm32_usart_rs485_rts_disable(port); 271 else 272 stm32_usart_rs485_rts_enable(port); 273 274 return 0; 275 } 276 277 static int stm32_usart_init_rs485(struct uart_port *port, 278 struct platform_device *pdev) 279 { 280 struct serial_rs485 *rs485conf = &port->rs485; 281 282 rs485conf->flags = 0; 283 rs485conf->delay_rts_before_send = 0; 284 rs485conf->delay_rts_after_send = 0; 285 286 if (!pdev->dev.of_node) 287 return -ENODEV; 288 289 return uart_get_rs485_mode(port); 290 } 291 292 static bool stm32_usart_rx_dma_started(struct stm32_port *stm32_port) 293 { 294 return stm32_port->rx_ch ? stm32_port->rx_dma_busy : false; 295 } 296 297 static void stm32_usart_rx_dma_terminate(struct stm32_port *stm32_port) 298 { 299 dmaengine_terminate_async(stm32_port->rx_ch); 300 stm32_port->rx_dma_busy = false; 301 } 302 303 static int stm32_usart_dma_pause_resume(struct stm32_port *stm32_port, 304 struct dma_chan *chan, 305 enum dma_status expected_status, 306 int dmaengine_pause_or_resume(struct dma_chan *), 307 bool stm32_usart_xx_dma_started(struct stm32_port *), 308 void stm32_usart_xx_dma_terminate(struct stm32_port *)) 309 { 310 struct uart_port *port = &stm32_port->port; 311 enum dma_status dma_status; 312 int ret; 313 314 if (!stm32_usart_xx_dma_started(stm32_port)) 315 return -EPERM; 316 317 dma_status = dmaengine_tx_status(chan, chan->cookie, NULL); 318 if (dma_status != expected_status) 319 return -EAGAIN; 320 321 ret = dmaengine_pause_or_resume(chan); 322 if (ret) { 323 dev_err(port->dev, "DMA failed with error code: %d\n", ret); 324 stm32_usart_xx_dma_terminate(stm32_port); 325 } 326 return ret; 327 } 328 329 static int stm32_usart_rx_dma_pause(struct stm32_port *stm32_port) 330 { 331 return stm32_usart_dma_pause_resume(stm32_port, stm32_port->rx_ch, 332 DMA_IN_PROGRESS, dmaengine_pause, 333 stm32_usart_rx_dma_started, 334 stm32_usart_rx_dma_terminate); 335 } 336 337 static int stm32_usart_rx_dma_resume(struct stm32_port *stm32_port) 338 { 339 return stm32_usart_dma_pause_resume(stm32_port, stm32_port->rx_ch, 340 DMA_PAUSED, dmaengine_resume, 341 stm32_usart_rx_dma_started, 342 stm32_usart_rx_dma_terminate); 343 } 344 345 /* Return true when data is pending (in pio mode), and false when no data is pending. */ 346 static bool stm32_usart_pending_rx_pio(struct uart_port *port, u32 *sr) 347 { 348 struct stm32_port *stm32_port = to_stm32_port(port); 349 const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; 350 351 *sr = readl_relaxed(port->membase + ofs->isr); 352 /* Get pending characters in RDR or FIFO */ 353 if (*sr & USART_SR_RXNE) { 354 /* Get all pending characters from the RDR or the FIFO when using interrupts */ 355 if (!stm32_usart_rx_dma_started(stm32_port)) 356 return true; 357 358 /* Handle only RX data errors when using DMA */ 359 if (*sr & USART_SR_ERR_MASK) 360 return true; 361 } 362 363 return false; 364 } 365 366 static u8 stm32_usart_get_char_pio(struct uart_port *port) 367 { 368 struct stm32_port *stm32_port = to_stm32_port(port); 369 const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; 370 unsigned long c; 371 372 c = readl_relaxed(port->membase + ofs->rdr); 373 /* Apply RDR data mask */ 374 c &= stm32_port->rdr_mask; 375 376 return c; 377 } 378 379 static unsigned int stm32_usart_receive_chars_pio(struct uart_port *port) 380 { 381 struct stm32_port *stm32_port = to_stm32_port(port); 382 const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; 383 unsigned int size = 0; 384 u32 sr; 385 u8 c, flag; 386 387 while (stm32_usart_pending_rx_pio(port, &sr)) { 388 sr |= USART_SR_DUMMY_RX; 389 flag = TTY_NORMAL; 390 391 /* 392 * Status bits has to be cleared before reading the RDR: 393 * In FIFO mode, reading the RDR will pop the next data 394 * (if any) along with its status bits into the SR. 395 * Not doing so leads to misalignement between RDR and SR, 396 * and clear status bits of the next rx data. 397 * 398 * Clear errors flags for stm32f7 and stm32h7 compatible 399 * devices. On stm32f4 compatible devices, the error bit is 400 * cleared by the sequence [read SR - read DR]. 401 */ 402 if ((sr & USART_SR_ERR_MASK) && ofs->icr != UNDEF_REG) 403 writel_relaxed(sr & USART_SR_ERR_MASK, 404 port->membase + ofs->icr); 405 406 c = stm32_usart_get_char_pio(port); 407 port->icount.rx++; 408 size++; 409 if (sr & USART_SR_ERR_MASK) { 410 if (sr & USART_SR_ORE) { 411 port->icount.overrun++; 412 } else if (sr & USART_SR_PE) { 413 port->icount.parity++; 414 } else if (sr & USART_SR_FE) { 415 /* Break detection if character is null */ 416 if (!c) { 417 port->icount.brk++; 418 if (uart_handle_break(port)) 419 continue; 420 } else { 421 port->icount.frame++; 422 } 423 } 424 425 sr &= port->read_status_mask; 426 427 if (sr & USART_SR_PE) { 428 flag = TTY_PARITY; 429 } else if (sr & USART_SR_FE) { 430 if (!c) 431 flag = TTY_BREAK; 432 else 433 flag = TTY_FRAME; 434 } 435 } 436 437 if (uart_prepare_sysrq_char(port, c)) 438 continue; 439 uart_insert_char(port, sr, USART_SR_ORE, c, flag); 440 } 441 442 return size; 443 } 444 445 static void stm32_usart_push_buffer_dma(struct uart_port *port, unsigned int dma_size) 446 { 447 struct stm32_port *stm32_port = to_stm32_port(port); 448 struct tty_port *ttyport = &stm32_port->port.state->port; 449 unsigned char *dma_start; 450 int dma_count, i; 451 452 dma_start = stm32_port->rx_buf + (RX_BUF_L - stm32_port->last_res); 453 454 /* 455 * Apply rdr_mask on buffer in order to mask parity bit. 456 * This loop is useless in cs8 mode because DMA copies only 457 * 8 bits and already ignores parity bit. 458 */ 459 if (!(stm32_port->rdr_mask == (BIT(8) - 1))) 460 for (i = 0; i < dma_size; i++) 461 *(dma_start + i) &= stm32_port->rdr_mask; 462 463 dma_count = tty_insert_flip_string(ttyport, dma_start, dma_size); 464 port->icount.rx += dma_count; 465 if (dma_count != dma_size) 466 port->icount.buf_overrun++; 467 stm32_port->last_res -= dma_count; 468 if (stm32_port->last_res == 0) 469 stm32_port->last_res = RX_BUF_L; 470 } 471 472 static unsigned int stm32_usart_receive_chars_dma(struct uart_port *port) 473 { 474 struct stm32_port *stm32_port = to_stm32_port(port); 475 unsigned int dma_size, size = 0; 476 477 /* DMA buffer is configured in cyclic mode and handles the rollback of the buffer. */ 478 if (stm32_port->rx_dma_state.residue > stm32_port->last_res) { 479 /* Conditional first part: from last_res to end of DMA buffer */ 480 dma_size = stm32_port->last_res; 481 stm32_usart_push_buffer_dma(port, dma_size); 482 size = dma_size; 483 } 484 485 dma_size = stm32_port->last_res - stm32_port->rx_dma_state.residue; 486 stm32_usart_push_buffer_dma(port, dma_size); 487 size += dma_size; 488 489 return size; 490 } 491 492 static unsigned int stm32_usart_receive_chars(struct uart_port *port, bool force_dma_flush) 493 { 494 struct stm32_port *stm32_port = to_stm32_port(port); 495 const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; 496 enum dma_status rx_dma_status; 497 u32 sr; 498 unsigned int size = 0; 499 500 if (stm32_usart_rx_dma_started(stm32_port) || force_dma_flush) { 501 rx_dma_status = dmaengine_tx_status(stm32_port->rx_ch, 502 stm32_port->rx_ch->cookie, 503 &stm32_port->rx_dma_state); 504 if (rx_dma_status == DMA_IN_PROGRESS || 505 rx_dma_status == DMA_PAUSED) { 506 /* Empty DMA buffer */ 507 size = stm32_usart_receive_chars_dma(port); 508 sr = readl_relaxed(port->membase + ofs->isr); 509 if (sr & USART_SR_ERR_MASK) { 510 /* Disable DMA request line */ 511 stm32_usart_clr_bits(port, ofs->cr3, USART_CR3_DMAR); 512 513 /* Switch to PIO mode to handle the errors */ 514 size += stm32_usart_receive_chars_pio(port); 515 516 /* Switch back to DMA mode */ 517 stm32_usart_set_bits(port, ofs->cr3, USART_CR3_DMAR); 518 } 519 } else { 520 /* Disable RX DMA */ 521 stm32_usart_rx_dma_terminate(stm32_port); 522 /* Fall back to interrupt mode */ 523 dev_dbg(port->dev, "DMA error, fallback to irq mode\n"); 524 size = stm32_usart_receive_chars_pio(port); 525 } 526 } else { 527 size = stm32_usart_receive_chars_pio(port); 528 } 529 530 return size; 531 } 532 533 static void stm32_usart_rx_dma_complete(void *arg) 534 { 535 struct uart_port *port = arg; 536 struct tty_port *tport = &port->state->port; 537 unsigned int size; 538 unsigned long flags; 539 540 spin_lock_irqsave(&port->lock, flags); 541 size = stm32_usart_receive_chars(port, false); 542 uart_unlock_and_check_sysrq_irqrestore(port, flags); 543 if (size) 544 tty_flip_buffer_push(tport); 545 } 546 547 static int stm32_usart_rx_dma_start_or_resume(struct uart_port *port) 548 { 549 struct stm32_port *stm32_port = to_stm32_port(port); 550 struct dma_async_tx_descriptor *desc; 551 enum dma_status rx_dma_status; 552 int ret; 553 554 if (stm32_port->throttled) 555 return 0; 556 557 if (stm32_port->rx_dma_busy) { 558 rx_dma_status = dmaengine_tx_status(stm32_port->rx_ch, 559 stm32_port->rx_ch->cookie, 560 NULL); 561 if (rx_dma_status == DMA_IN_PROGRESS) 562 return 0; 563 564 if (rx_dma_status == DMA_PAUSED && !stm32_usart_rx_dma_resume(stm32_port)) 565 return 0; 566 567 dev_err(port->dev, "DMA failed : status error.\n"); 568 stm32_usart_rx_dma_terminate(stm32_port); 569 } 570 571 stm32_port->rx_dma_busy = true; 572 573 stm32_port->last_res = RX_BUF_L; 574 /* Prepare a DMA cyclic transaction */ 575 desc = dmaengine_prep_dma_cyclic(stm32_port->rx_ch, 576 stm32_port->rx_dma_buf, 577 RX_BUF_L, RX_BUF_P, 578 DMA_DEV_TO_MEM, 579 DMA_PREP_INTERRUPT); 580 if (!desc) { 581 dev_err(port->dev, "rx dma prep cyclic failed\n"); 582 stm32_port->rx_dma_busy = false; 583 return -ENODEV; 584 } 585 586 desc->callback = stm32_usart_rx_dma_complete; 587 desc->callback_param = port; 588 589 /* Push current DMA transaction in the pending queue */ 590 ret = dma_submit_error(dmaengine_submit(desc)); 591 if (ret) { 592 dmaengine_terminate_sync(stm32_port->rx_ch); 593 stm32_port->rx_dma_busy = false; 594 return ret; 595 } 596 597 /* Issue pending DMA requests */ 598 dma_async_issue_pending(stm32_port->rx_ch); 599 600 return 0; 601 } 602 603 static void stm32_usart_tx_dma_terminate(struct stm32_port *stm32_port) 604 { 605 dmaengine_terminate_async(stm32_port->tx_ch); 606 stm32_port->tx_dma_busy = false; 607 } 608 609 static bool stm32_usart_tx_dma_started(struct stm32_port *stm32_port) 610 { 611 /* 612 * We cannot use the function "dmaengine_tx_status" to know the 613 * status of DMA. This function does not show if the "dma complete" 614 * callback of the DMA transaction has been called. So we prefer 615 * to use "tx_dma_busy" flag to prevent dual DMA transaction at the 616 * same time. 617 */ 618 return stm32_port->tx_dma_busy; 619 } 620 621 static int stm32_usart_tx_dma_pause(struct stm32_port *stm32_port) 622 { 623 return stm32_usart_dma_pause_resume(stm32_port, stm32_port->tx_ch, 624 DMA_IN_PROGRESS, dmaengine_pause, 625 stm32_usart_tx_dma_started, 626 stm32_usart_tx_dma_terminate); 627 } 628 629 static int stm32_usart_tx_dma_resume(struct stm32_port *stm32_port) 630 { 631 return stm32_usart_dma_pause_resume(stm32_port, stm32_port->tx_ch, 632 DMA_PAUSED, dmaengine_resume, 633 stm32_usart_tx_dma_started, 634 stm32_usart_tx_dma_terminate); 635 } 636 637 static void stm32_usart_tx_dma_complete(void *arg) 638 { 639 struct uart_port *port = arg; 640 struct stm32_port *stm32port = to_stm32_port(port); 641 unsigned long flags; 642 643 stm32_usart_tx_dma_terminate(stm32port); 644 645 /* Let's see if we have pending data to send */ 646 spin_lock_irqsave(&port->lock, flags); 647 stm32_usart_transmit_chars(port); 648 spin_unlock_irqrestore(&port->lock, flags); 649 } 650 651 static void stm32_usart_tx_interrupt_enable(struct uart_port *port) 652 { 653 struct stm32_port *stm32_port = to_stm32_port(port); 654 const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; 655 656 /* 657 * Enables TX FIFO threashold irq when FIFO is enabled, 658 * or TX empty irq when FIFO is disabled 659 */ 660 if (stm32_port->fifoen && stm32_port->txftcfg >= 0) 661 stm32_usart_set_bits(port, ofs->cr3, USART_CR3_TXFTIE); 662 else 663 stm32_usart_set_bits(port, ofs->cr1, USART_CR1_TXEIE); 664 } 665 666 static void stm32_usart_tc_interrupt_enable(struct uart_port *port) 667 { 668 struct stm32_port *stm32_port = to_stm32_port(port); 669 const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; 670 671 stm32_usart_set_bits(port, ofs->cr1, USART_CR1_TCIE); 672 } 673 674 static void stm32_usart_tx_interrupt_disable(struct uart_port *port) 675 { 676 struct stm32_port *stm32_port = to_stm32_port(port); 677 const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; 678 679 if (stm32_port->fifoen && stm32_port->txftcfg >= 0) 680 stm32_usart_clr_bits(port, ofs->cr3, USART_CR3_TXFTIE); 681 else 682 stm32_usart_clr_bits(port, ofs->cr1, USART_CR1_TXEIE); 683 } 684 685 static void stm32_usart_tc_interrupt_disable(struct uart_port *port) 686 { 687 struct stm32_port *stm32_port = to_stm32_port(port); 688 const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; 689 690 stm32_usart_clr_bits(port, ofs->cr1, USART_CR1_TCIE); 691 } 692 693 static void stm32_usart_transmit_chars_pio(struct uart_port *port) 694 { 695 struct stm32_port *stm32_port = to_stm32_port(port); 696 const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; 697 struct circ_buf *xmit = &port->state->xmit; 698 699 while (!uart_circ_empty(xmit)) { 700 /* Check that TDR is empty before filling FIFO */ 701 if (!(readl_relaxed(port->membase + ofs->isr) & USART_SR_TXE)) 702 break; 703 writel_relaxed(xmit->buf[xmit->tail], port->membase + ofs->tdr); 704 uart_xmit_advance(port, 1); 705 } 706 707 /* rely on TXE irq (mask or unmask) for sending remaining data */ 708 if (uart_circ_empty(xmit)) 709 stm32_usart_tx_interrupt_disable(port); 710 else 711 stm32_usart_tx_interrupt_enable(port); 712 } 713 714 static void stm32_usart_transmit_chars_dma(struct uart_port *port) 715 { 716 struct stm32_port *stm32port = to_stm32_port(port); 717 struct circ_buf *xmit = &port->state->xmit; 718 struct dma_async_tx_descriptor *desc = NULL; 719 unsigned int count; 720 int ret; 721 722 if (stm32_usart_tx_dma_started(stm32port)) { 723 ret = stm32_usart_tx_dma_resume(stm32port); 724 if (ret < 0 && ret != -EAGAIN) 725 goto fallback_err; 726 return; 727 } 728 729 count = uart_circ_chars_pending(xmit); 730 731 if (count > TX_BUF_L) 732 count = TX_BUF_L; 733 734 if (xmit->tail < xmit->head) { 735 memcpy(&stm32port->tx_buf[0], &xmit->buf[xmit->tail], count); 736 } else { 737 size_t one = UART_XMIT_SIZE - xmit->tail; 738 size_t two; 739 740 if (one > count) 741 one = count; 742 two = count - one; 743 744 memcpy(&stm32port->tx_buf[0], &xmit->buf[xmit->tail], one); 745 if (two) 746 memcpy(&stm32port->tx_buf[one], &xmit->buf[0], two); 747 } 748 749 desc = dmaengine_prep_slave_single(stm32port->tx_ch, 750 stm32port->tx_dma_buf, 751 count, 752 DMA_MEM_TO_DEV, 753 DMA_PREP_INTERRUPT); 754 755 if (!desc) 756 goto fallback_err; 757 758 /* 759 * Set "tx_dma_busy" flag. This flag will be released when 760 * dmaengine_terminate_async will be called. This flag helps 761 * transmit_chars_dma not to start another DMA transaction 762 * if the callback of the previous is not yet called. 763 */ 764 stm32port->tx_dma_busy = true; 765 766 desc->callback = stm32_usart_tx_dma_complete; 767 desc->callback_param = port; 768 769 /* Push current DMA TX transaction in the pending queue */ 770 /* DMA no yet started, safe to free resources */ 771 ret = dma_submit_error(dmaengine_submit(desc)); 772 if (ret) { 773 dev_err(port->dev, "DMA failed with error code: %d\n", ret); 774 stm32_usart_tx_dma_terminate(stm32port); 775 goto fallback_err; 776 } 777 778 /* Issue pending DMA TX requests */ 779 dma_async_issue_pending(stm32port->tx_ch); 780 781 uart_xmit_advance(port, count); 782 783 return; 784 785 fallback_err: 786 stm32_usart_transmit_chars_pio(port); 787 } 788 789 static void stm32_usart_transmit_chars(struct uart_port *port) 790 { 791 struct stm32_port *stm32_port = to_stm32_port(port); 792 const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; 793 struct circ_buf *xmit = &port->state->xmit; 794 u32 isr; 795 int ret; 796 797 if (!stm32_port->hw_flow_control && 798 port->rs485.flags & SER_RS485_ENABLED && 799 (port->x_char || 800 !(uart_circ_empty(xmit) || uart_tx_stopped(port)))) { 801 stm32_usart_tc_interrupt_disable(port); 802 stm32_usart_rs485_rts_enable(port); 803 } 804 805 if (port->x_char) { 806 /* dma terminate may have been called in case of dma pause failure */ 807 stm32_usart_tx_dma_pause(stm32_port); 808 809 /* Check that TDR is empty before filling FIFO */ 810 ret = 811 readl_relaxed_poll_timeout_atomic(port->membase + ofs->isr, 812 isr, 813 (isr & USART_SR_TXE), 814 10, 1000); 815 if (ret) 816 dev_warn(port->dev, "1 character may be erased\n"); 817 818 writel_relaxed(port->x_char, port->membase + ofs->tdr); 819 port->x_char = 0; 820 port->icount.tx++; 821 822 /* dma terminate may have been called in case of dma resume failure */ 823 stm32_usart_tx_dma_resume(stm32_port); 824 return; 825 } 826 827 if (uart_circ_empty(xmit) || uart_tx_stopped(port)) { 828 stm32_usart_tx_interrupt_disable(port); 829 return; 830 } 831 832 if (ofs->icr == UNDEF_REG) 833 stm32_usart_clr_bits(port, ofs->isr, USART_SR_TC); 834 else 835 writel_relaxed(USART_ICR_TCCF, port->membase + ofs->icr); 836 837 if (stm32_port->tx_ch) 838 stm32_usart_transmit_chars_dma(port); 839 else 840 stm32_usart_transmit_chars_pio(port); 841 842 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 843 uart_write_wakeup(port); 844 845 if (uart_circ_empty(xmit)) { 846 stm32_usart_tx_interrupt_disable(port); 847 if (!stm32_port->hw_flow_control && 848 port->rs485.flags & SER_RS485_ENABLED) { 849 stm32_usart_tc_interrupt_enable(port); 850 } 851 } 852 } 853 854 static irqreturn_t stm32_usart_interrupt(int irq, void *ptr) 855 { 856 struct uart_port *port = ptr; 857 struct tty_port *tport = &port->state->port; 858 struct stm32_port *stm32_port = to_stm32_port(port); 859 const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; 860 u32 sr; 861 unsigned int size; 862 863 sr = readl_relaxed(port->membase + ofs->isr); 864 865 if (!stm32_port->hw_flow_control && 866 port->rs485.flags & SER_RS485_ENABLED && 867 (sr & USART_SR_TC)) { 868 stm32_usart_tc_interrupt_disable(port); 869 stm32_usart_rs485_rts_disable(port); 870 } 871 872 if ((sr & USART_SR_RTOF) && ofs->icr != UNDEF_REG) 873 writel_relaxed(USART_ICR_RTOCF, 874 port->membase + ofs->icr); 875 876 if ((sr & USART_SR_WUF) && ofs->icr != UNDEF_REG) { 877 /* Clear wake up flag and disable wake up interrupt */ 878 writel_relaxed(USART_ICR_WUCF, 879 port->membase + ofs->icr); 880 stm32_usart_clr_bits(port, ofs->cr3, USART_CR3_WUFIE); 881 if (irqd_is_wakeup_set(irq_get_irq_data(port->irq))) 882 pm_wakeup_event(tport->tty->dev, 0); 883 } 884 885 /* 886 * rx errors in dma mode has to be handled ASAP to avoid overrun as the DMA request 887 * line has been masked by HW and rx data are stacking in FIFO. 888 */ 889 if (!stm32_port->throttled) { 890 if (((sr & USART_SR_RXNE) && !stm32_usart_rx_dma_started(stm32_port)) || 891 ((sr & USART_SR_ERR_MASK) && stm32_usart_rx_dma_started(stm32_port))) { 892 spin_lock(&port->lock); 893 size = stm32_usart_receive_chars(port, false); 894 uart_unlock_and_check_sysrq(port); 895 if (size) 896 tty_flip_buffer_push(tport); 897 } 898 } 899 900 if ((sr & USART_SR_TXE) && !(stm32_port->tx_ch)) { 901 spin_lock(&port->lock); 902 stm32_usart_transmit_chars(port); 903 spin_unlock(&port->lock); 904 } 905 906 /* Receiver timeout irq for DMA RX */ 907 if (stm32_usart_rx_dma_started(stm32_port) && !stm32_port->throttled) { 908 spin_lock(&port->lock); 909 size = stm32_usart_receive_chars(port, false); 910 uart_unlock_and_check_sysrq(port); 911 if (size) 912 tty_flip_buffer_push(tport); 913 } 914 915 return IRQ_HANDLED; 916 } 917 918 static void stm32_usart_set_mctrl(struct uart_port *port, unsigned int mctrl) 919 { 920 struct stm32_port *stm32_port = to_stm32_port(port); 921 const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; 922 923 if ((mctrl & TIOCM_RTS) && (port->status & UPSTAT_AUTORTS)) 924 stm32_usart_set_bits(port, ofs->cr3, USART_CR3_RTSE); 925 else 926 stm32_usart_clr_bits(port, ofs->cr3, USART_CR3_RTSE); 927 928 mctrl_gpio_set(stm32_port->gpios, mctrl); 929 } 930 931 static unsigned int stm32_usart_get_mctrl(struct uart_port *port) 932 { 933 struct stm32_port *stm32_port = to_stm32_port(port); 934 unsigned int ret; 935 936 /* This routine is used to get signals of: DCD, DSR, RI, and CTS */ 937 ret = TIOCM_CAR | TIOCM_DSR | TIOCM_CTS; 938 939 return mctrl_gpio_get(stm32_port->gpios, &ret); 940 } 941 942 static void stm32_usart_enable_ms(struct uart_port *port) 943 { 944 mctrl_gpio_enable_ms(to_stm32_port(port)->gpios); 945 } 946 947 static void stm32_usart_disable_ms(struct uart_port *port) 948 { 949 mctrl_gpio_disable_ms(to_stm32_port(port)->gpios); 950 } 951 952 /* Transmit stop */ 953 static void stm32_usart_stop_tx(struct uart_port *port) 954 { 955 struct stm32_port *stm32_port = to_stm32_port(port); 956 957 stm32_usart_tx_interrupt_disable(port); 958 959 /* dma terminate may have been called in case of dma pause failure */ 960 stm32_usart_tx_dma_pause(stm32_port); 961 962 stm32_usart_rs485_rts_disable(port); 963 } 964 965 /* There are probably characters waiting to be transmitted. */ 966 static void stm32_usart_start_tx(struct uart_port *port) 967 { 968 struct circ_buf *xmit = &port->state->xmit; 969 970 if (uart_circ_empty(xmit) && !port->x_char) { 971 stm32_usart_rs485_rts_disable(port); 972 return; 973 } 974 975 stm32_usart_rs485_rts_enable(port); 976 977 stm32_usart_transmit_chars(port); 978 } 979 980 /* Flush the transmit buffer. */ 981 static void stm32_usart_flush_buffer(struct uart_port *port) 982 { 983 struct stm32_port *stm32_port = to_stm32_port(port); 984 985 if (stm32_port->tx_ch) 986 stm32_usart_tx_dma_terminate(stm32_port); 987 } 988 989 /* Throttle the remote when input buffer is about to overflow. */ 990 static void stm32_usart_throttle(struct uart_port *port) 991 { 992 struct stm32_port *stm32_port = to_stm32_port(port); 993 const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; 994 unsigned long flags; 995 996 spin_lock_irqsave(&port->lock, flags); 997 998 /* 999 * Pause DMA transfer, so the RX data gets queued into the FIFO. 1000 * Hardware flow control is triggered when RX FIFO is full. 1001 */ 1002 stm32_usart_rx_dma_pause(stm32_port); 1003 1004 stm32_usart_clr_bits(port, ofs->cr1, stm32_port->cr1_irq); 1005 if (stm32_port->cr3_irq) 1006 stm32_usart_clr_bits(port, ofs->cr3, stm32_port->cr3_irq); 1007 1008 stm32_port->throttled = true; 1009 spin_unlock_irqrestore(&port->lock, flags); 1010 } 1011 1012 /* Unthrottle the remote, the input buffer can now accept data. */ 1013 static void stm32_usart_unthrottle(struct uart_port *port) 1014 { 1015 struct stm32_port *stm32_port = to_stm32_port(port); 1016 const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; 1017 unsigned long flags; 1018 1019 spin_lock_irqsave(&port->lock, flags); 1020 stm32_usart_set_bits(port, ofs->cr1, stm32_port->cr1_irq); 1021 if (stm32_port->cr3_irq) 1022 stm32_usart_set_bits(port, ofs->cr3, stm32_port->cr3_irq); 1023 1024 stm32_port->throttled = false; 1025 1026 /* 1027 * Switch back to DMA mode (resume DMA). 1028 * Hardware flow control is stopped when FIFO is not full any more. 1029 */ 1030 if (stm32_port->rx_ch) 1031 stm32_usart_rx_dma_start_or_resume(port); 1032 1033 spin_unlock_irqrestore(&port->lock, flags); 1034 } 1035 1036 /* Receive stop */ 1037 static void stm32_usart_stop_rx(struct uart_port *port) 1038 { 1039 struct stm32_port *stm32_port = to_stm32_port(port); 1040 const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; 1041 1042 /* Disable DMA request line. */ 1043 stm32_usart_rx_dma_pause(stm32_port); 1044 1045 stm32_usart_clr_bits(port, ofs->cr1, stm32_port->cr1_irq); 1046 if (stm32_port->cr3_irq) 1047 stm32_usart_clr_bits(port, ofs->cr3, stm32_port->cr3_irq); 1048 } 1049 1050 /* Handle breaks - ignored by us */ 1051 static void stm32_usart_break_ctl(struct uart_port *port, int break_state) 1052 { 1053 } 1054 1055 static int stm32_usart_startup(struct uart_port *port) 1056 { 1057 struct stm32_port *stm32_port = to_stm32_port(port); 1058 const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; 1059 const struct stm32_usart_config *cfg = &stm32_port->info->cfg; 1060 const char *name = to_platform_device(port->dev)->name; 1061 u32 val; 1062 int ret; 1063 1064 ret = request_irq(port->irq, stm32_usart_interrupt, 1065 IRQF_NO_SUSPEND, name, port); 1066 if (ret) 1067 return ret; 1068 1069 if (stm32_port->swap) { 1070 val = readl_relaxed(port->membase + ofs->cr2); 1071 val |= USART_CR2_SWAP; 1072 writel_relaxed(val, port->membase + ofs->cr2); 1073 } 1074 1075 /* RX FIFO Flush */ 1076 if (ofs->rqr != UNDEF_REG) 1077 writel_relaxed(USART_RQR_RXFRQ, port->membase + ofs->rqr); 1078 1079 if (stm32_port->rx_ch) { 1080 ret = stm32_usart_rx_dma_start_or_resume(port); 1081 if (ret) { 1082 free_irq(port->irq, port); 1083 return ret; 1084 } 1085 } 1086 1087 /* RX enabling */ 1088 val = stm32_port->cr1_irq | USART_CR1_RE | BIT(cfg->uart_enable_bit); 1089 stm32_usart_set_bits(port, ofs->cr1, val); 1090 1091 return 0; 1092 } 1093 1094 static void stm32_usart_shutdown(struct uart_port *port) 1095 { 1096 struct stm32_port *stm32_port = to_stm32_port(port); 1097 const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; 1098 const struct stm32_usart_config *cfg = &stm32_port->info->cfg; 1099 u32 val, isr; 1100 int ret; 1101 1102 if (stm32_usart_tx_dma_started(stm32_port)) 1103 stm32_usart_tx_dma_terminate(stm32_port); 1104 1105 if (stm32_port->tx_ch) 1106 stm32_usart_clr_bits(port, ofs->cr3, USART_CR3_DMAT); 1107 1108 /* Disable modem control interrupts */ 1109 stm32_usart_disable_ms(port); 1110 1111 val = USART_CR1_TXEIE | USART_CR1_TE; 1112 val |= stm32_port->cr1_irq | USART_CR1_RE; 1113 val |= BIT(cfg->uart_enable_bit); 1114 if (stm32_port->fifoen) 1115 val |= USART_CR1_FIFOEN; 1116 1117 ret = readl_relaxed_poll_timeout(port->membase + ofs->isr, 1118 isr, (isr & USART_SR_TC), 1119 10, 100000); 1120 1121 /* Send the TC error message only when ISR_TC is not set */ 1122 if (ret) 1123 dev_err(port->dev, "Transmission is not complete\n"); 1124 1125 /* Disable RX DMA. */ 1126 if (stm32_port->rx_ch) { 1127 stm32_usart_rx_dma_terminate(stm32_port); 1128 dmaengine_synchronize(stm32_port->rx_ch); 1129 } 1130 1131 /* flush RX & TX FIFO */ 1132 if (ofs->rqr != UNDEF_REG) 1133 writel_relaxed(USART_RQR_TXFRQ | USART_RQR_RXFRQ, 1134 port->membase + ofs->rqr); 1135 1136 stm32_usart_clr_bits(port, ofs->cr1, val); 1137 1138 free_irq(port->irq, port); 1139 } 1140 1141 static void stm32_usart_set_termios(struct uart_port *port, 1142 struct ktermios *termios, 1143 const struct ktermios *old) 1144 { 1145 struct stm32_port *stm32_port = to_stm32_port(port); 1146 const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; 1147 const struct stm32_usart_config *cfg = &stm32_port->info->cfg; 1148 struct serial_rs485 *rs485conf = &port->rs485; 1149 unsigned int baud, bits; 1150 u32 usartdiv, mantissa, fraction, oversampling; 1151 tcflag_t cflag = termios->c_cflag; 1152 u32 cr1, cr2, cr3, isr; 1153 unsigned long flags; 1154 int ret; 1155 1156 if (!stm32_port->hw_flow_control) 1157 cflag &= ~CRTSCTS; 1158 1159 baud = uart_get_baud_rate(port, termios, old, 0, port->uartclk / 8); 1160 1161 spin_lock_irqsave(&port->lock, flags); 1162 1163 ret = readl_relaxed_poll_timeout_atomic(port->membase + ofs->isr, 1164 isr, 1165 (isr & USART_SR_TC), 1166 10, 100000); 1167 1168 /* Send the TC error message only when ISR_TC is not set. */ 1169 if (ret) 1170 dev_err(port->dev, "Transmission is not complete\n"); 1171 1172 /* Stop serial port and reset value */ 1173 writel_relaxed(0, port->membase + ofs->cr1); 1174 1175 /* flush RX & TX FIFO */ 1176 if (ofs->rqr != UNDEF_REG) 1177 writel_relaxed(USART_RQR_TXFRQ | USART_RQR_RXFRQ, 1178 port->membase + ofs->rqr); 1179 1180 cr1 = USART_CR1_TE | USART_CR1_RE; 1181 if (stm32_port->fifoen) 1182 cr1 |= USART_CR1_FIFOEN; 1183 cr2 = stm32_port->swap ? USART_CR2_SWAP : 0; 1184 1185 /* Tx and RX FIFO configuration */ 1186 cr3 = readl_relaxed(port->membase + ofs->cr3); 1187 cr3 &= USART_CR3_TXFTIE | USART_CR3_RXFTIE; 1188 if (stm32_port->fifoen) { 1189 if (stm32_port->txftcfg >= 0) 1190 cr3 |= stm32_port->txftcfg << USART_CR3_TXFTCFG_SHIFT; 1191 if (stm32_port->rxftcfg >= 0) 1192 cr3 |= stm32_port->rxftcfg << USART_CR3_RXFTCFG_SHIFT; 1193 } 1194 1195 if (cflag & CSTOPB) 1196 cr2 |= USART_CR2_STOP_2B; 1197 1198 bits = tty_get_char_size(cflag); 1199 stm32_port->rdr_mask = (BIT(bits) - 1); 1200 1201 if (cflag & PARENB) { 1202 bits++; 1203 cr1 |= USART_CR1_PCE; 1204 } 1205 1206 /* 1207 * Word length configuration: 1208 * CS8 + parity, 9 bits word aka [M1:M0] = 0b01 1209 * CS7 or (CS6 + parity), 7 bits word aka [M1:M0] = 0b10 1210 * CS8 or (CS7 + parity), 8 bits word aka [M1:M0] = 0b00 1211 * M0 and M1 already cleared by cr1 initialization. 1212 */ 1213 if (bits == 9) { 1214 cr1 |= USART_CR1_M0; 1215 } else if ((bits == 7) && cfg->has_7bits_data) { 1216 cr1 |= USART_CR1_M1; 1217 } else if (bits != 8) { 1218 dev_dbg(port->dev, "Unsupported data bits config: %u bits\n" 1219 , bits); 1220 cflag &= ~CSIZE; 1221 cflag |= CS8; 1222 termios->c_cflag = cflag; 1223 bits = 8; 1224 if (cflag & PARENB) { 1225 bits++; 1226 cr1 |= USART_CR1_M0; 1227 } 1228 } 1229 1230 if (ofs->rtor != UNDEF_REG && (stm32_port->rx_ch || 1231 (stm32_port->fifoen && 1232 stm32_port->rxftcfg >= 0))) { 1233 if (cflag & CSTOPB) 1234 bits = bits + 3; /* 1 start bit + 2 stop bits */ 1235 else 1236 bits = bits + 2; /* 1 start bit + 1 stop bit */ 1237 1238 /* RX timeout irq to occur after last stop bit + bits */ 1239 stm32_port->cr1_irq = USART_CR1_RTOIE; 1240 writel_relaxed(bits, port->membase + ofs->rtor); 1241 cr2 |= USART_CR2_RTOEN; 1242 /* 1243 * Enable fifo threshold irq in two cases, either when there is no DMA, or when 1244 * wake up over usart, from low power until the DMA gets re-enabled by resume. 1245 */ 1246 stm32_port->cr3_irq = USART_CR3_RXFTIE; 1247 } 1248 1249 cr1 |= stm32_port->cr1_irq; 1250 cr3 |= stm32_port->cr3_irq; 1251 1252 if (cflag & PARODD) 1253 cr1 |= USART_CR1_PS; 1254 1255 port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS); 1256 if (cflag & CRTSCTS) { 1257 port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS; 1258 cr3 |= USART_CR3_CTSE | USART_CR3_RTSE; 1259 } 1260 1261 usartdiv = DIV_ROUND_CLOSEST(port->uartclk, baud); 1262 1263 /* 1264 * The USART supports 16 or 8 times oversampling. 1265 * By default we prefer 16 times oversampling, so that the receiver 1266 * has a better tolerance to clock deviations. 1267 * 8 times oversampling is only used to achieve higher speeds. 1268 */ 1269 if (usartdiv < 16) { 1270 oversampling = 8; 1271 cr1 |= USART_CR1_OVER8; 1272 stm32_usart_set_bits(port, ofs->cr1, USART_CR1_OVER8); 1273 } else { 1274 oversampling = 16; 1275 cr1 &= ~USART_CR1_OVER8; 1276 stm32_usart_clr_bits(port, ofs->cr1, USART_CR1_OVER8); 1277 } 1278 1279 mantissa = (usartdiv / oversampling) << USART_BRR_DIV_M_SHIFT; 1280 fraction = usartdiv % oversampling; 1281 writel_relaxed(mantissa | fraction, port->membase + ofs->brr); 1282 1283 uart_update_timeout(port, cflag, baud); 1284 1285 port->read_status_mask = USART_SR_ORE; 1286 if (termios->c_iflag & INPCK) 1287 port->read_status_mask |= USART_SR_PE | USART_SR_FE; 1288 if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK)) 1289 port->read_status_mask |= USART_SR_FE; 1290 1291 /* Characters to ignore */ 1292 port->ignore_status_mask = 0; 1293 if (termios->c_iflag & IGNPAR) 1294 port->ignore_status_mask = USART_SR_PE | USART_SR_FE; 1295 if (termios->c_iflag & IGNBRK) { 1296 port->ignore_status_mask |= USART_SR_FE; 1297 /* 1298 * If we're ignoring parity and break indicators, 1299 * ignore overruns too (for real raw support). 1300 */ 1301 if (termios->c_iflag & IGNPAR) 1302 port->ignore_status_mask |= USART_SR_ORE; 1303 } 1304 1305 /* Ignore all characters if CREAD is not set */ 1306 if ((termios->c_cflag & CREAD) == 0) 1307 port->ignore_status_mask |= USART_SR_DUMMY_RX; 1308 1309 if (stm32_port->rx_ch) { 1310 /* 1311 * Setup DMA to collect only valid data and enable error irqs. 1312 * This also enables break reception when using DMA. 1313 */ 1314 cr1 |= USART_CR1_PEIE; 1315 cr3 |= USART_CR3_EIE; 1316 cr3 |= USART_CR3_DMAR; 1317 cr3 |= USART_CR3_DDRE; 1318 } 1319 1320 if (stm32_port->tx_ch) 1321 cr3 |= USART_CR3_DMAT; 1322 1323 if (rs485conf->flags & SER_RS485_ENABLED) { 1324 stm32_usart_config_reg_rs485(&cr1, &cr3, 1325 rs485conf->delay_rts_before_send, 1326 rs485conf->delay_rts_after_send, 1327 baud); 1328 if (rs485conf->flags & SER_RS485_RTS_ON_SEND) { 1329 cr3 &= ~USART_CR3_DEP; 1330 rs485conf->flags &= ~SER_RS485_RTS_AFTER_SEND; 1331 } else { 1332 cr3 |= USART_CR3_DEP; 1333 rs485conf->flags |= SER_RS485_RTS_AFTER_SEND; 1334 } 1335 1336 } else { 1337 cr3 &= ~(USART_CR3_DEM | USART_CR3_DEP); 1338 cr1 &= ~(USART_CR1_DEDT_MASK | USART_CR1_DEAT_MASK); 1339 } 1340 1341 /* Configure wake up from low power on start bit detection */ 1342 if (stm32_port->wakeup_src) { 1343 cr3 &= ~USART_CR3_WUS_MASK; 1344 cr3 |= USART_CR3_WUS_START_BIT; 1345 } 1346 1347 writel_relaxed(cr3, port->membase + ofs->cr3); 1348 writel_relaxed(cr2, port->membase + ofs->cr2); 1349 writel_relaxed(cr1, port->membase + ofs->cr1); 1350 1351 stm32_usart_set_bits(port, ofs->cr1, BIT(cfg->uart_enable_bit)); 1352 spin_unlock_irqrestore(&port->lock, flags); 1353 1354 /* Handle modem control interrupts */ 1355 if (UART_ENABLE_MS(port, termios->c_cflag)) 1356 stm32_usart_enable_ms(port); 1357 else 1358 stm32_usart_disable_ms(port); 1359 } 1360 1361 static const char *stm32_usart_type(struct uart_port *port) 1362 { 1363 return (port->type == PORT_STM32) ? DRIVER_NAME : NULL; 1364 } 1365 1366 static void stm32_usart_release_port(struct uart_port *port) 1367 { 1368 } 1369 1370 static int stm32_usart_request_port(struct uart_port *port) 1371 { 1372 return 0; 1373 } 1374 1375 static void stm32_usart_config_port(struct uart_port *port, int flags) 1376 { 1377 if (flags & UART_CONFIG_TYPE) 1378 port->type = PORT_STM32; 1379 } 1380 1381 static int 1382 stm32_usart_verify_port(struct uart_port *port, struct serial_struct *ser) 1383 { 1384 /* No user changeable parameters */ 1385 return -EINVAL; 1386 } 1387 1388 static void stm32_usart_pm(struct uart_port *port, unsigned int state, 1389 unsigned int oldstate) 1390 { 1391 struct stm32_port *stm32port = container_of(port, 1392 struct stm32_port, port); 1393 const struct stm32_usart_offsets *ofs = &stm32port->info->ofs; 1394 const struct stm32_usart_config *cfg = &stm32port->info->cfg; 1395 unsigned long flags; 1396 1397 switch (state) { 1398 case UART_PM_STATE_ON: 1399 pm_runtime_get_sync(port->dev); 1400 break; 1401 case UART_PM_STATE_OFF: 1402 spin_lock_irqsave(&port->lock, flags); 1403 stm32_usart_clr_bits(port, ofs->cr1, BIT(cfg->uart_enable_bit)); 1404 spin_unlock_irqrestore(&port->lock, flags); 1405 pm_runtime_put_sync(port->dev); 1406 break; 1407 } 1408 } 1409 1410 #if defined(CONFIG_CONSOLE_POLL) 1411 1412 /* Callbacks for characters polling in debug context (i.e. KGDB). */ 1413 static int stm32_usart_poll_init(struct uart_port *port) 1414 { 1415 struct stm32_port *stm32_port = to_stm32_port(port); 1416 1417 return clk_prepare_enable(stm32_port->clk); 1418 } 1419 1420 static int stm32_usart_poll_get_char(struct uart_port *port) 1421 { 1422 struct stm32_port *stm32_port = to_stm32_port(port); 1423 const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; 1424 1425 if (!(readl_relaxed(port->membase + ofs->isr) & USART_SR_RXNE)) 1426 return NO_POLL_CHAR; 1427 1428 return readl_relaxed(port->membase + ofs->rdr) & stm32_port->rdr_mask; 1429 } 1430 1431 static void stm32_usart_poll_put_char(struct uart_port *port, unsigned char ch) 1432 { 1433 stm32_usart_console_putchar(port, ch); 1434 } 1435 #endif /* CONFIG_CONSOLE_POLL */ 1436 1437 static const struct uart_ops stm32_uart_ops = { 1438 .tx_empty = stm32_usart_tx_empty, 1439 .set_mctrl = stm32_usart_set_mctrl, 1440 .get_mctrl = stm32_usart_get_mctrl, 1441 .stop_tx = stm32_usart_stop_tx, 1442 .start_tx = stm32_usart_start_tx, 1443 .throttle = stm32_usart_throttle, 1444 .unthrottle = stm32_usart_unthrottle, 1445 .stop_rx = stm32_usart_stop_rx, 1446 .enable_ms = stm32_usart_enable_ms, 1447 .break_ctl = stm32_usart_break_ctl, 1448 .startup = stm32_usart_startup, 1449 .shutdown = stm32_usart_shutdown, 1450 .flush_buffer = stm32_usart_flush_buffer, 1451 .set_termios = stm32_usart_set_termios, 1452 .pm = stm32_usart_pm, 1453 .type = stm32_usart_type, 1454 .release_port = stm32_usart_release_port, 1455 .request_port = stm32_usart_request_port, 1456 .config_port = stm32_usart_config_port, 1457 .verify_port = stm32_usart_verify_port, 1458 #if defined(CONFIG_CONSOLE_POLL) 1459 .poll_init = stm32_usart_poll_init, 1460 .poll_get_char = stm32_usart_poll_get_char, 1461 .poll_put_char = stm32_usart_poll_put_char, 1462 #endif /* CONFIG_CONSOLE_POLL */ 1463 }; 1464 1465 /* 1466 * STM32H7 RX & TX FIFO threshold configuration (CR3 RXFTCFG / TXFTCFG) 1467 * Note: 1 isn't a valid value in RXFTCFG / TXFTCFG. In this case, 1468 * RXNEIE / TXEIE can be used instead of threshold irqs: RXFTIE / TXFTIE. 1469 * So, RXFTCFG / TXFTCFG bitfields values are encoded as array index + 1. 1470 */ 1471 static const u32 stm32h7_usart_fifo_thresh_cfg[] = { 1, 2, 4, 8, 12, 14, 16 }; 1472 1473 static void stm32_usart_get_ftcfg(struct platform_device *pdev, const char *p, 1474 int *ftcfg) 1475 { 1476 u32 bytes, i; 1477 1478 /* DT option to get RX & TX FIFO threshold (default to 8 bytes) */ 1479 if (of_property_read_u32(pdev->dev.of_node, p, &bytes)) 1480 bytes = 8; 1481 1482 for (i = 0; i < ARRAY_SIZE(stm32h7_usart_fifo_thresh_cfg); i++) 1483 if (stm32h7_usart_fifo_thresh_cfg[i] >= bytes) 1484 break; 1485 if (i >= ARRAY_SIZE(stm32h7_usart_fifo_thresh_cfg)) 1486 i = ARRAY_SIZE(stm32h7_usart_fifo_thresh_cfg) - 1; 1487 1488 dev_dbg(&pdev->dev, "%s set to %d bytes\n", p, 1489 stm32h7_usart_fifo_thresh_cfg[i]); 1490 1491 /* Provide FIFO threshold ftcfg (1 is invalid: threshold irq unused) */ 1492 if (i) 1493 *ftcfg = i - 1; 1494 else 1495 *ftcfg = -EINVAL; 1496 } 1497 1498 static void stm32_usart_deinit_port(struct stm32_port *stm32port) 1499 { 1500 clk_disable_unprepare(stm32port->clk); 1501 } 1502 1503 static const struct serial_rs485 stm32_rs485_supported = { 1504 .flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND | 1505 SER_RS485_RX_DURING_TX, 1506 .delay_rts_before_send = 1, 1507 .delay_rts_after_send = 1, 1508 }; 1509 1510 static int stm32_usart_init_port(struct stm32_port *stm32port, 1511 struct platform_device *pdev) 1512 { 1513 struct uart_port *port = &stm32port->port; 1514 struct resource *res; 1515 int ret, irq; 1516 1517 irq = platform_get_irq(pdev, 0); 1518 if (irq < 0) 1519 return irq; 1520 1521 port->iotype = UPIO_MEM; 1522 port->flags = UPF_BOOT_AUTOCONF; 1523 port->ops = &stm32_uart_ops; 1524 port->dev = &pdev->dev; 1525 port->fifosize = stm32port->info->cfg.fifosize; 1526 port->has_sysrq = IS_ENABLED(CONFIG_SERIAL_STM32_CONSOLE); 1527 port->irq = irq; 1528 port->rs485_config = stm32_usart_config_rs485; 1529 port->rs485_supported = stm32_rs485_supported; 1530 1531 ret = stm32_usart_init_rs485(port, pdev); 1532 if (ret) 1533 return ret; 1534 1535 stm32port->wakeup_src = stm32port->info->cfg.has_wakeup && 1536 of_property_read_bool(pdev->dev.of_node, "wakeup-source"); 1537 1538 stm32port->swap = stm32port->info->cfg.has_swap && 1539 of_property_read_bool(pdev->dev.of_node, "rx-tx-swap"); 1540 1541 stm32port->fifoen = stm32port->info->cfg.has_fifo; 1542 if (stm32port->fifoen) { 1543 stm32_usart_get_ftcfg(pdev, "rx-threshold", 1544 &stm32port->rxftcfg); 1545 stm32_usart_get_ftcfg(pdev, "tx-threshold", 1546 &stm32port->txftcfg); 1547 } 1548 1549 port->membase = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 1550 if (IS_ERR(port->membase)) 1551 return PTR_ERR(port->membase); 1552 port->mapbase = res->start; 1553 1554 spin_lock_init(&port->lock); 1555 1556 stm32port->clk = devm_clk_get(&pdev->dev, NULL); 1557 if (IS_ERR(stm32port->clk)) 1558 return PTR_ERR(stm32port->clk); 1559 1560 /* Ensure that clk rate is correct by enabling the clk */ 1561 ret = clk_prepare_enable(stm32port->clk); 1562 if (ret) 1563 return ret; 1564 1565 stm32port->port.uartclk = clk_get_rate(stm32port->clk); 1566 if (!stm32port->port.uartclk) { 1567 ret = -EINVAL; 1568 goto err_clk; 1569 } 1570 1571 stm32port->gpios = mctrl_gpio_init(&stm32port->port, 0); 1572 if (IS_ERR(stm32port->gpios)) { 1573 ret = PTR_ERR(stm32port->gpios); 1574 goto err_clk; 1575 } 1576 1577 /* 1578 * Both CTS/RTS gpios and "st,hw-flow-ctrl" (deprecated) or "uart-has-rtscts" 1579 * properties should not be specified. 1580 */ 1581 if (stm32port->hw_flow_control) { 1582 if (mctrl_gpio_to_gpiod(stm32port->gpios, UART_GPIO_CTS) || 1583 mctrl_gpio_to_gpiod(stm32port->gpios, UART_GPIO_RTS)) { 1584 dev_err(&pdev->dev, "Conflicting RTS/CTS config\n"); 1585 ret = -EINVAL; 1586 goto err_clk; 1587 } 1588 } 1589 1590 return ret; 1591 1592 err_clk: 1593 clk_disable_unprepare(stm32port->clk); 1594 1595 return ret; 1596 } 1597 1598 static struct stm32_port *stm32_usart_of_get_port(struct platform_device *pdev) 1599 { 1600 struct device_node *np = pdev->dev.of_node; 1601 int id; 1602 1603 if (!np) 1604 return NULL; 1605 1606 id = of_alias_get_id(np, "serial"); 1607 if (id < 0) { 1608 dev_err(&pdev->dev, "failed to get alias id, errno %d\n", id); 1609 return NULL; 1610 } 1611 1612 if (WARN_ON(id >= STM32_MAX_PORTS)) 1613 return NULL; 1614 1615 stm32_ports[id].hw_flow_control = 1616 of_property_read_bool (np, "st,hw-flow-ctrl") /*deprecated*/ || 1617 of_property_read_bool (np, "uart-has-rtscts"); 1618 stm32_ports[id].port.line = id; 1619 stm32_ports[id].cr1_irq = USART_CR1_RXNEIE; 1620 stm32_ports[id].cr3_irq = 0; 1621 stm32_ports[id].last_res = RX_BUF_L; 1622 return &stm32_ports[id]; 1623 } 1624 1625 #ifdef CONFIG_OF 1626 static const struct of_device_id stm32_match[] = { 1627 { .compatible = "st,stm32-uart", .data = &stm32f4_info}, 1628 { .compatible = "st,stm32f7-uart", .data = &stm32f7_info}, 1629 { .compatible = "st,stm32h7-uart", .data = &stm32h7_info}, 1630 {}, 1631 }; 1632 1633 MODULE_DEVICE_TABLE(of, stm32_match); 1634 #endif 1635 1636 static void stm32_usart_of_dma_rx_remove(struct stm32_port *stm32port, 1637 struct platform_device *pdev) 1638 { 1639 if (stm32port->rx_buf) 1640 dma_free_coherent(&pdev->dev, RX_BUF_L, stm32port->rx_buf, 1641 stm32port->rx_dma_buf); 1642 } 1643 1644 static int stm32_usart_of_dma_rx_probe(struct stm32_port *stm32port, 1645 struct platform_device *pdev) 1646 { 1647 const struct stm32_usart_offsets *ofs = &stm32port->info->ofs; 1648 struct uart_port *port = &stm32port->port; 1649 struct device *dev = &pdev->dev; 1650 struct dma_slave_config config; 1651 int ret; 1652 1653 stm32port->rx_buf = dma_alloc_coherent(dev, RX_BUF_L, 1654 &stm32port->rx_dma_buf, 1655 GFP_KERNEL); 1656 if (!stm32port->rx_buf) 1657 return -ENOMEM; 1658 1659 /* Configure DMA channel */ 1660 memset(&config, 0, sizeof(config)); 1661 config.src_addr = port->mapbase + ofs->rdr; 1662 config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1663 1664 ret = dmaengine_slave_config(stm32port->rx_ch, &config); 1665 if (ret < 0) { 1666 dev_err(dev, "rx dma channel config failed\n"); 1667 stm32_usart_of_dma_rx_remove(stm32port, pdev); 1668 return ret; 1669 } 1670 1671 return 0; 1672 } 1673 1674 static void stm32_usart_of_dma_tx_remove(struct stm32_port *stm32port, 1675 struct platform_device *pdev) 1676 { 1677 if (stm32port->tx_buf) 1678 dma_free_coherent(&pdev->dev, TX_BUF_L, stm32port->tx_buf, 1679 stm32port->tx_dma_buf); 1680 } 1681 1682 static int stm32_usart_of_dma_tx_probe(struct stm32_port *stm32port, 1683 struct platform_device *pdev) 1684 { 1685 const struct stm32_usart_offsets *ofs = &stm32port->info->ofs; 1686 struct uart_port *port = &stm32port->port; 1687 struct device *dev = &pdev->dev; 1688 struct dma_slave_config config; 1689 int ret; 1690 1691 stm32port->tx_buf = dma_alloc_coherent(dev, TX_BUF_L, 1692 &stm32port->tx_dma_buf, 1693 GFP_KERNEL); 1694 if (!stm32port->tx_buf) 1695 return -ENOMEM; 1696 1697 /* Configure DMA channel */ 1698 memset(&config, 0, sizeof(config)); 1699 config.dst_addr = port->mapbase + ofs->tdr; 1700 config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1701 1702 ret = dmaengine_slave_config(stm32port->tx_ch, &config); 1703 if (ret < 0) { 1704 dev_err(dev, "tx dma channel config failed\n"); 1705 stm32_usart_of_dma_tx_remove(stm32port, pdev); 1706 return ret; 1707 } 1708 1709 return 0; 1710 } 1711 1712 static int stm32_usart_serial_probe(struct platform_device *pdev) 1713 { 1714 struct stm32_port *stm32port; 1715 int ret; 1716 1717 stm32port = stm32_usart_of_get_port(pdev); 1718 if (!stm32port) 1719 return -ENODEV; 1720 1721 stm32port->info = of_device_get_match_data(&pdev->dev); 1722 if (!stm32port->info) 1723 return -EINVAL; 1724 1725 stm32port->rx_ch = dma_request_chan(&pdev->dev, "rx"); 1726 if (PTR_ERR(stm32port->rx_ch) == -EPROBE_DEFER) 1727 return -EPROBE_DEFER; 1728 1729 /* Fall back in interrupt mode for any non-deferral error */ 1730 if (IS_ERR(stm32port->rx_ch)) 1731 stm32port->rx_ch = NULL; 1732 1733 stm32port->tx_ch = dma_request_chan(&pdev->dev, "tx"); 1734 if (PTR_ERR(stm32port->tx_ch) == -EPROBE_DEFER) { 1735 ret = -EPROBE_DEFER; 1736 goto err_dma_rx; 1737 } 1738 /* Fall back in interrupt mode for any non-deferral error */ 1739 if (IS_ERR(stm32port->tx_ch)) 1740 stm32port->tx_ch = NULL; 1741 1742 ret = stm32_usart_init_port(stm32port, pdev); 1743 if (ret) 1744 goto err_dma_tx; 1745 1746 if (stm32port->wakeup_src) { 1747 device_set_wakeup_capable(&pdev->dev, true); 1748 ret = dev_pm_set_wake_irq(&pdev->dev, stm32port->port.irq); 1749 if (ret) 1750 goto err_deinit_port; 1751 } 1752 1753 if (stm32port->rx_ch && stm32_usart_of_dma_rx_probe(stm32port, pdev)) { 1754 /* Fall back in interrupt mode */ 1755 dma_release_channel(stm32port->rx_ch); 1756 stm32port->rx_ch = NULL; 1757 } 1758 1759 if (stm32port->tx_ch && stm32_usart_of_dma_tx_probe(stm32port, pdev)) { 1760 /* Fall back in interrupt mode */ 1761 dma_release_channel(stm32port->tx_ch); 1762 stm32port->tx_ch = NULL; 1763 } 1764 1765 if (!stm32port->rx_ch) 1766 dev_info(&pdev->dev, "interrupt mode for rx (no dma)\n"); 1767 if (!stm32port->tx_ch) 1768 dev_info(&pdev->dev, "interrupt mode for tx (no dma)\n"); 1769 1770 platform_set_drvdata(pdev, &stm32port->port); 1771 1772 pm_runtime_get_noresume(&pdev->dev); 1773 pm_runtime_set_active(&pdev->dev); 1774 pm_runtime_enable(&pdev->dev); 1775 1776 ret = uart_add_one_port(&stm32_usart_driver, &stm32port->port); 1777 if (ret) 1778 goto err_port; 1779 1780 pm_runtime_put_sync(&pdev->dev); 1781 1782 return 0; 1783 1784 err_port: 1785 pm_runtime_disable(&pdev->dev); 1786 pm_runtime_set_suspended(&pdev->dev); 1787 pm_runtime_put_noidle(&pdev->dev); 1788 1789 if (stm32port->tx_ch) 1790 stm32_usart_of_dma_tx_remove(stm32port, pdev); 1791 if (stm32port->rx_ch) 1792 stm32_usart_of_dma_rx_remove(stm32port, pdev); 1793 1794 if (stm32port->wakeup_src) 1795 dev_pm_clear_wake_irq(&pdev->dev); 1796 1797 err_deinit_port: 1798 if (stm32port->wakeup_src) 1799 device_set_wakeup_capable(&pdev->dev, false); 1800 1801 stm32_usart_deinit_port(stm32port); 1802 1803 err_dma_tx: 1804 if (stm32port->tx_ch) 1805 dma_release_channel(stm32port->tx_ch); 1806 1807 err_dma_rx: 1808 if (stm32port->rx_ch) 1809 dma_release_channel(stm32port->rx_ch); 1810 1811 return ret; 1812 } 1813 1814 static int stm32_usart_serial_remove(struct platform_device *pdev) 1815 { 1816 struct uart_port *port = platform_get_drvdata(pdev); 1817 struct stm32_port *stm32_port = to_stm32_port(port); 1818 const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; 1819 u32 cr3; 1820 1821 pm_runtime_get_sync(&pdev->dev); 1822 uart_remove_one_port(&stm32_usart_driver, port); 1823 1824 pm_runtime_disable(&pdev->dev); 1825 pm_runtime_set_suspended(&pdev->dev); 1826 pm_runtime_put_noidle(&pdev->dev); 1827 1828 stm32_usart_clr_bits(port, ofs->cr1, USART_CR1_PEIE); 1829 1830 if (stm32_port->tx_ch) { 1831 stm32_usart_of_dma_tx_remove(stm32_port, pdev); 1832 dma_release_channel(stm32_port->tx_ch); 1833 } 1834 1835 if (stm32_port->rx_ch) { 1836 stm32_usart_of_dma_rx_remove(stm32_port, pdev); 1837 dma_release_channel(stm32_port->rx_ch); 1838 } 1839 1840 cr3 = readl_relaxed(port->membase + ofs->cr3); 1841 cr3 &= ~USART_CR3_EIE; 1842 cr3 &= ~USART_CR3_DMAR; 1843 cr3 &= ~USART_CR3_DMAT; 1844 cr3 &= ~USART_CR3_DDRE; 1845 writel_relaxed(cr3, port->membase + ofs->cr3); 1846 1847 if (stm32_port->wakeup_src) { 1848 dev_pm_clear_wake_irq(&pdev->dev); 1849 device_init_wakeup(&pdev->dev, false); 1850 } 1851 1852 stm32_usart_deinit_port(stm32_port); 1853 1854 return 0; 1855 } 1856 1857 static void __maybe_unused stm32_usart_console_putchar(struct uart_port *port, unsigned char ch) 1858 { 1859 struct stm32_port *stm32_port = to_stm32_port(port); 1860 const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; 1861 u32 isr; 1862 int ret; 1863 1864 ret = readl_relaxed_poll_timeout_atomic(port->membase + ofs->isr, isr, 1865 (isr & USART_SR_TXE), 100, 1866 STM32_USART_TIMEOUT_USEC); 1867 if (ret != 0) { 1868 dev_err(port->dev, "Error while sending data in UART TX : %d\n", ret); 1869 return; 1870 } 1871 writel_relaxed(ch, port->membase + ofs->tdr); 1872 } 1873 1874 #ifdef CONFIG_SERIAL_STM32_CONSOLE 1875 static void stm32_usart_console_write(struct console *co, const char *s, 1876 unsigned int cnt) 1877 { 1878 struct uart_port *port = &stm32_ports[co->index].port; 1879 struct stm32_port *stm32_port = to_stm32_port(port); 1880 const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; 1881 const struct stm32_usart_config *cfg = &stm32_port->info->cfg; 1882 unsigned long flags; 1883 u32 old_cr1, new_cr1; 1884 int locked = 1; 1885 1886 if (oops_in_progress) 1887 locked = spin_trylock_irqsave(&port->lock, flags); 1888 else 1889 spin_lock_irqsave(&port->lock, flags); 1890 1891 /* Save and disable interrupts, enable the transmitter */ 1892 old_cr1 = readl_relaxed(port->membase + ofs->cr1); 1893 new_cr1 = old_cr1 & ~USART_CR1_IE_MASK; 1894 new_cr1 |= USART_CR1_TE | BIT(cfg->uart_enable_bit); 1895 writel_relaxed(new_cr1, port->membase + ofs->cr1); 1896 1897 uart_console_write(port, s, cnt, stm32_usart_console_putchar); 1898 1899 /* Restore interrupt state */ 1900 writel_relaxed(old_cr1, port->membase + ofs->cr1); 1901 1902 if (locked) 1903 spin_unlock_irqrestore(&port->lock, flags); 1904 } 1905 1906 static int stm32_usart_console_setup(struct console *co, char *options) 1907 { 1908 struct stm32_port *stm32port; 1909 int baud = 9600; 1910 int bits = 8; 1911 int parity = 'n'; 1912 int flow = 'n'; 1913 1914 if (co->index >= STM32_MAX_PORTS) 1915 return -ENODEV; 1916 1917 stm32port = &stm32_ports[co->index]; 1918 1919 /* 1920 * This driver does not support early console initialization 1921 * (use ARM early printk support instead), so we only expect 1922 * this to be called during the uart port registration when the 1923 * driver gets probed and the port should be mapped at that point. 1924 */ 1925 if (stm32port->port.mapbase == 0 || !stm32port->port.membase) 1926 return -ENXIO; 1927 1928 if (options) 1929 uart_parse_options(options, &baud, &parity, &bits, &flow); 1930 1931 return uart_set_options(&stm32port->port, co, baud, parity, bits, flow); 1932 } 1933 1934 static struct console stm32_console = { 1935 .name = STM32_SERIAL_NAME, 1936 .device = uart_console_device, 1937 .write = stm32_usart_console_write, 1938 .setup = stm32_usart_console_setup, 1939 .flags = CON_PRINTBUFFER, 1940 .index = -1, 1941 .data = &stm32_usart_driver, 1942 }; 1943 1944 #define STM32_SERIAL_CONSOLE (&stm32_console) 1945 1946 #else 1947 #define STM32_SERIAL_CONSOLE NULL 1948 #endif /* CONFIG_SERIAL_STM32_CONSOLE */ 1949 1950 #ifdef CONFIG_SERIAL_EARLYCON 1951 static void early_stm32_usart_console_putchar(struct uart_port *port, unsigned char ch) 1952 { 1953 struct stm32_usart_info *info = port->private_data; 1954 1955 while (!(readl_relaxed(port->membase + info->ofs.isr) & USART_SR_TXE)) 1956 cpu_relax(); 1957 1958 writel_relaxed(ch, port->membase + info->ofs.tdr); 1959 } 1960 1961 static void early_stm32_serial_write(struct console *console, const char *s, unsigned int count) 1962 { 1963 struct earlycon_device *device = console->data; 1964 struct uart_port *port = &device->port; 1965 1966 uart_console_write(port, s, count, early_stm32_usart_console_putchar); 1967 } 1968 1969 static int __init early_stm32_h7_serial_setup(struct earlycon_device *device, const char *options) 1970 { 1971 if (!(device->port.membase || device->port.iobase)) 1972 return -ENODEV; 1973 device->port.private_data = &stm32h7_info; 1974 device->con->write = early_stm32_serial_write; 1975 return 0; 1976 } 1977 1978 static int __init early_stm32_f7_serial_setup(struct earlycon_device *device, const char *options) 1979 { 1980 if (!(device->port.membase || device->port.iobase)) 1981 return -ENODEV; 1982 device->port.private_data = &stm32f7_info; 1983 device->con->write = early_stm32_serial_write; 1984 return 0; 1985 } 1986 1987 static int __init early_stm32_f4_serial_setup(struct earlycon_device *device, const char *options) 1988 { 1989 if (!(device->port.membase || device->port.iobase)) 1990 return -ENODEV; 1991 device->port.private_data = &stm32f4_info; 1992 device->con->write = early_stm32_serial_write; 1993 return 0; 1994 } 1995 1996 OF_EARLYCON_DECLARE(stm32, "st,stm32h7-uart", early_stm32_h7_serial_setup); 1997 OF_EARLYCON_DECLARE(stm32, "st,stm32f7-uart", early_stm32_f7_serial_setup); 1998 OF_EARLYCON_DECLARE(stm32, "st,stm32-uart", early_stm32_f4_serial_setup); 1999 #endif /* CONFIG_SERIAL_EARLYCON */ 2000 2001 static struct uart_driver stm32_usart_driver = { 2002 .driver_name = DRIVER_NAME, 2003 .dev_name = STM32_SERIAL_NAME, 2004 .major = 0, 2005 .minor = 0, 2006 .nr = STM32_MAX_PORTS, 2007 .cons = STM32_SERIAL_CONSOLE, 2008 }; 2009 2010 static int __maybe_unused stm32_usart_serial_en_wakeup(struct uart_port *port, 2011 bool enable) 2012 { 2013 struct stm32_port *stm32_port = to_stm32_port(port); 2014 const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; 2015 struct tty_port *tport = &port->state->port; 2016 int ret; 2017 unsigned int size = 0; 2018 unsigned long flags; 2019 2020 if (!stm32_port->wakeup_src || !tty_port_initialized(tport)) 2021 return 0; 2022 2023 /* 2024 * Enable low-power wake-up and wake-up irq if argument is set to 2025 * "enable", disable low-power wake-up and wake-up irq otherwise 2026 */ 2027 if (enable) { 2028 stm32_usart_set_bits(port, ofs->cr1, USART_CR1_UESM); 2029 stm32_usart_set_bits(port, ofs->cr3, USART_CR3_WUFIE); 2030 mctrl_gpio_enable_irq_wake(stm32_port->gpios); 2031 2032 /* 2033 * When DMA is used for reception, it must be disabled before 2034 * entering low-power mode and re-enabled when exiting from 2035 * low-power mode. 2036 */ 2037 if (stm32_port->rx_ch) { 2038 spin_lock_irqsave(&port->lock, flags); 2039 /* Poll data from DMA RX buffer if any */ 2040 if (!stm32_usart_rx_dma_pause(stm32_port)) 2041 size += stm32_usart_receive_chars(port, true); 2042 stm32_usart_rx_dma_terminate(stm32_port); 2043 uart_unlock_and_check_sysrq_irqrestore(port, flags); 2044 if (size) 2045 tty_flip_buffer_push(tport); 2046 } 2047 2048 /* Poll data from RX FIFO if any */ 2049 stm32_usart_receive_chars(port, false); 2050 } else { 2051 if (stm32_port->rx_ch) { 2052 ret = stm32_usart_rx_dma_start_or_resume(port); 2053 if (ret) 2054 return ret; 2055 } 2056 mctrl_gpio_disable_irq_wake(stm32_port->gpios); 2057 stm32_usart_clr_bits(port, ofs->cr1, USART_CR1_UESM); 2058 stm32_usart_clr_bits(port, ofs->cr3, USART_CR3_WUFIE); 2059 } 2060 2061 return 0; 2062 } 2063 2064 static int __maybe_unused stm32_usart_serial_suspend(struct device *dev) 2065 { 2066 struct uart_port *port = dev_get_drvdata(dev); 2067 int ret; 2068 2069 uart_suspend_port(&stm32_usart_driver, port); 2070 2071 if (device_may_wakeup(dev) || device_wakeup_path(dev)) { 2072 ret = stm32_usart_serial_en_wakeup(port, true); 2073 if (ret) 2074 return ret; 2075 } 2076 2077 /* 2078 * When "no_console_suspend" is enabled, keep the pinctrl default state 2079 * and rely on bootloader stage to restore this state upon resume. 2080 * Otherwise, apply the idle or sleep states depending on wakeup 2081 * capabilities. 2082 */ 2083 if (console_suspend_enabled || !uart_console(port)) { 2084 if (device_may_wakeup(dev) || device_wakeup_path(dev)) 2085 pinctrl_pm_select_idle_state(dev); 2086 else 2087 pinctrl_pm_select_sleep_state(dev); 2088 } 2089 2090 return 0; 2091 } 2092 2093 static int __maybe_unused stm32_usart_serial_resume(struct device *dev) 2094 { 2095 struct uart_port *port = dev_get_drvdata(dev); 2096 int ret; 2097 2098 pinctrl_pm_select_default_state(dev); 2099 2100 if (device_may_wakeup(dev) || device_wakeup_path(dev)) { 2101 ret = stm32_usart_serial_en_wakeup(port, false); 2102 if (ret) 2103 return ret; 2104 } 2105 2106 return uart_resume_port(&stm32_usart_driver, port); 2107 } 2108 2109 static int __maybe_unused stm32_usart_runtime_suspend(struct device *dev) 2110 { 2111 struct uart_port *port = dev_get_drvdata(dev); 2112 struct stm32_port *stm32port = container_of(port, 2113 struct stm32_port, port); 2114 2115 clk_disable_unprepare(stm32port->clk); 2116 2117 return 0; 2118 } 2119 2120 static int __maybe_unused stm32_usart_runtime_resume(struct device *dev) 2121 { 2122 struct uart_port *port = dev_get_drvdata(dev); 2123 struct stm32_port *stm32port = container_of(port, 2124 struct stm32_port, port); 2125 2126 return clk_prepare_enable(stm32port->clk); 2127 } 2128 2129 static const struct dev_pm_ops stm32_serial_pm_ops = { 2130 SET_RUNTIME_PM_OPS(stm32_usart_runtime_suspend, 2131 stm32_usart_runtime_resume, NULL) 2132 SET_SYSTEM_SLEEP_PM_OPS(stm32_usart_serial_suspend, 2133 stm32_usart_serial_resume) 2134 }; 2135 2136 static struct platform_driver stm32_serial_driver = { 2137 .probe = stm32_usart_serial_probe, 2138 .remove = stm32_usart_serial_remove, 2139 .driver = { 2140 .name = DRIVER_NAME, 2141 .pm = &stm32_serial_pm_ops, 2142 .of_match_table = of_match_ptr(stm32_match), 2143 }, 2144 }; 2145 2146 static int __init stm32_usart_init(void) 2147 { 2148 static char banner[] __initdata = "STM32 USART driver initialized"; 2149 int ret; 2150 2151 pr_info("%s\n", banner); 2152 2153 ret = uart_register_driver(&stm32_usart_driver); 2154 if (ret) 2155 return ret; 2156 2157 ret = platform_driver_register(&stm32_serial_driver); 2158 if (ret) 2159 uart_unregister_driver(&stm32_usart_driver); 2160 2161 return ret; 2162 } 2163 2164 static void __exit stm32_usart_exit(void) 2165 { 2166 platform_driver_unregister(&stm32_serial_driver); 2167 uart_unregister_driver(&stm32_usart_driver); 2168 } 2169 2170 module_init(stm32_usart_init); 2171 module_exit(stm32_usart_exit); 2172 2173 MODULE_ALIAS("platform:" DRIVER_NAME); 2174 MODULE_DESCRIPTION("STMicroelectronics STM32 serial port driver"); 2175 MODULE_LICENSE("GPL v2"); 2176