xref: /openbmc/linux/drivers/tty/serial/sh-sci.c (revision fcbd8037)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
4  *
5  *  Copyright (C) 2002 - 2011  Paul Mundt
6  *  Copyright (C) 2015 Glider bvba
7  *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
8  *
9  * based off of the old drivers/char/sh-sci.c by:
10  *
11  *   Copyright (C) 1999, 2000  Niibe Yutaka
12  *   Copyright (C) 2000  Sugioka Toshinobu
13  *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
14  *   Modified to support SecureEdge. David McCullough (2002)
15  *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
16  *   Removed SH7300 support (Jul 2007).
17  */
18 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
19 #define SUPPORT_SYSRQ
20 #endif
21 
22 #undef DEBUG
23 
24 #include <linux/clk.h>
25 #include <linux/console.h>
26 #include <linux/ctype.h>
27 #include <linux/cpufreq.h>
28 #include <linux/delay.h>
29 #include <linux/dmaengine.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/err.h>
32 #include <linux/errno.h>
33 #include <linux/init.h>
34 #include <linux/interrupt.h>
35 #include <linux/ioport.h>
36 #include <linux/ktime.h>
37 #include <linux/major.h>
38 #include <linux/module.h>
39 #include <linux/mm.h>
40 #include <linux/of.h>
41 #include <linux/of_device.h>
42 #include <linux/platform_device.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/scatterlist.h>
45 #include <linux/serial.h>
46 #include <linux/serial_sci.h>
47 #include <linux/sh_dma.h>
48 #include <linux/slab.h>
49 #include <linux/string.h>
50 #include <linux/sysrq.h>
51 #include <linux/timer.h>
52 #include <linux/tty.h>
53 #include <linux/tty_flip.h>
54 
55 #ifdef CONFIG_SUPERH
56 #include <asm/sh_bios.h>
57 #endif
58 
59 #include "serial_mctrl_gpio.h"
60 #include "sh-sci.h"
61 
62 /* Offsets into the sci_port->irqs array */
63 enum {
64 	SCIx_ERI_IRQ,
65 	SCIx_RXI_IRQ,
66 	SCIx_TXI_IRQ,
67 	SCIx_BRI_IRQ,
68 	SCIx_DRI_IRQ,
69 	SCIx_TEI_IRQ,
70 	SCIx_NR_IRQS,
71 
72 	SCIx_MUX_IRQ = SCIx_NR_IRQS,	/* special case */
73 };
74 
75 #define SCIx_IRQ_IS_MUXED(port)			\
76 	((port)->irqs[SCIx_ERI_IRQ] ==	\
77 	 (port)->irqs[SCIx_RXI_IRQ]) ||	\
78 	((port)->irqs[SCIx_ERI_IRQ] &&	\
79 	 ((port)->irqs[SCIx_RXI_IRQ] < 0))
80 
81 enum SCI_CLKS {
82 	SCI_FCK,		/* Functional Clock */
83 	SCI_SCK,		/* Optional External Clock */
84 	SCI_BRG_INT,		/* Optional BRG Internal Clock Source */
85 	SCI_SCIF_CLK,		/* Optional BRG External Clock Source */
86 	SCI_NUM_CLKS
87 };
88 
89 /* Bit x set means sampling rate x + 1 is supported */
90 #define SCI_SR(x)		BIT((x) - 1)
91 #define SCI_SR_RANGE(x, y)	GENMASK((y) - 1, (x) - 1)
92 
93 #define SCI_SR_SCIFAB		SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \
94 				SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \
95 				SCI_SR(19) | SCI_SR(27)
96 
97 #define min_sr(_port)		ffs((_port)->sampling_rate_mask)
98 #define max_sr(_port)		fls((_port)->sampling_rate_mask)
99 
100 /* Iterate over all supported sampling rates, from high to low */
101 #define for_each_sr(_sr, _port)						\
102 	for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--)	\
103 		if ((_port)->sampling_rate_mask & SCI_SR((_sr)))
104 
105 struct plat_sci_reg {
106 	u8 offset, size;
107 };
108 
109 struct sci_port_params {
110 	const struct plat_sci_reg regs[SCIx_NR_REGS];
111 	unsigned int fifosize;
112 	unsigned int overrun_reg;
113 	unsigned int overrun_mask;
114 	unsigned int sampling_rate_mask;
115 	unsigned int error_mask;
116 	unsigned int error_clear;
117 };
118 
119 struct sci_port {
120 	struct uart_port	port;
121 
122 	/* Platform configuration */
123 	const struct sci_port_params *params;
124 	const struct plat_sci_port *cfg;
125 	unsigned int		sampling_rate_mask;
126 	resource_size_t		reg_size;
127 	struct mctrl_gpios	*gpios;
128 
129 	/* Clocks */
130 	struct clk		*clks[SCI_NUM_CLKS];
131 	unsigned long		clk_rates[SCI_NUM_CLKS];
132 
133 	int			irqs[SCIx_NR_IRQS];
134 	char			*irqstr[SCIx_NR_IRQS];
135 
136 	struct dma_chan			*chan_tx;
137 	struct dma_chan			*chan_rx;
138 
139 #ifdef CONFIG_SERIAL_SH_SCI_DMA
140 	struct dma_chan			*chan_tx_saved;
141 	struct dma_chan			*chan_rx_saved;
142 	dma_cookie_t			cookie_tx;
143 	dma_cookie_t			cookie_rx[2];
144 	dma_cookie_t			active_rx;
145 	dma_addr_t			tx_dma_addr;
146 	unsigned int			tx_dma_len;
147 	struct scatterlist		sg_rx[2];
148 	void				*rx_buf[2];
149 	size_t				buf_len_rx;
150 	struct work_struct		work_tx;
151 	struct hrtimer			rx_timer;
152 	unsigned int			rx_timeout;	/* microseconds */
153 #endif
154 	unsigned int			rx_frame;
155 	int				rx_trigger;
156 	struct timer_list		rx_fifo_timer;
157 	int				rx_fifo_timeout;
158 	u16				hscif_tot;
159 
160 	bool has_rtscts;
161 	bool autorts;
162 };
163 
164 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
165 
166 static struct sci_port sci_ports[SCI_NPORTS];
167 static unsigned long sci_ports_in_use;
168 static struct uart_driver sci_uart_driver;
169 
170 static inline struct sci_port *
171 to_sci_port(struct uart_port *uart)
172 {
173 	return container_of(uart, struct sci_port, port);
174 }
175 
176 static const struct sci_port_params sci_port_params[SCIx_NR_REGTYPES] = {
177 	/*
178 	 * Common SCI definitions, dependent on the port's regshift
179 	 * value.
180 	 */
181 	[SCIx_SCI_REGTYPE] = {
182 		.regs = {
183 			[SCSMR]		= { 0x00,  8 },
184 			[SCBRR]		= { 0x01,  8 },
185 			[SCSCR]		= { 0x02,  8 },
186 			[SCxTDR]	= { 0x03,  8 },
187 			[SCxSR]		= { 0x04,  8 },
188 			[SCxRDR]	= { 0x05,  8 },
189 		},
190 		.fifosize = 1,
191 		.overrun_reg = SCxSR,
192 		.overrun_mask = SCI_ORER,
193 		.sampling_rate_mask = SCI_SR(32),
194 		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
195 		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
196 	},
197 
198 	/*
199 	 * Common definitions for legacy IrDA ports.
200 	 */
201 	[SCIx_IRDA_REGTYPE] = {
202 		.regs = {
203 			[SCSMR]		= { 0x00,  8 },
204 			[SCBRR]		= { 0x02,  8 },
205 			[SCSCR]		= { 0x04,  8 },
206 			[SCxTDR]	= { 0x06,  8 },
207 			[SCxSR]		= { 0x08, 16 },
208 			[SCxRDR]	= { 0x0a,  8 },
209 			[SCFCR]		= { 0x0c,  8 },
210 			[SCFDR]		= { 0x0e, 16 },
211 		},
212 		.fifosize = 1,
213 		.overrun_reg = SCxSR,
214 		.overrun_mask = SCI_ORER,
215 		.sampling_rate_mask = SCI_SR(32),
216 		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
217 		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
218 	},
219 
220 	/*
221 	 * Common SCIFA definitions.
222 	 */
223 	[SCIx_SCIFA_REGTYPE] = {
224 		.regs = {
225 			[SCSMR]		= { 0x00, 16 },
226 			[SCBRR]		= { 0x04,  8 },
227 			[SCSCR]		= { 0x08, 16 },
228 			[SCxTDR]	= { 0x20,  8 },
229 			[SCxSR]		= { 0x14, 16 },
230 			[SCxRDR]	= { 0x24,  8 },
231 			[SCFCR]		= { 0x18, 16 },
232 			[SCFDR]		= { 0x1c, 16 },
233 			[SCPCR]		= { 0x30, 16 },
234 			[SCPDR]		= { 0x34, 16 },
235 		},
236 		.fifosize = 64,
237 		.overrun_reg = SCxSR,
238 		.overrun_mask = SCIFA_ORER,
239 		.sampling_rate_mask = SCI_SR_SCIFAB,
240 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
241 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
242 	},
243 
244 	/*
245 	 * Common SCIFB definitions.
246 	 */
247 	[SCIx_SCIFB_REGTYPE] = {
248 		.regs = {
249 			[SCSMR]		= { 0x00, 16 },
250 			[SCBRR]		= { 0x04,  8 },
251 			[SCSCR]		= { 0x08, 16 },
252 			[SCxTDR]	= { 0x40,  8 },
253 			[SCxSR]		= { 0x14, 16 },
254 			[SCxRDR]	= { 0x60,  8 },
255 			[SCFCR]		= { 0x18, 16 },
256 			[SCTFDR]	= { 0x38, 16 },
257 			[SCRFDR]	= { 0x3c, 16 },
258 			[SCPCR]		= { 0x30, 16 },
259 			[SCPDR]		= { 0x34, 16 },
260 		},
261 		.fifosize = 256,
262 		.overrun_reg = SCxSR,
263 		.overrun_mask = SCIFA_ORER,
264 		.sampling_rate_mask = SCI_SR_SCIFAB,
265 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
266 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
267 	},
268 
269 	/*
270 	 * Common SH-2(A) SCIF definitions for ports with FIFO data
271 	 * count registers.
272 	 */
273 	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
274 		.regs = {
275 			[SCSMR]		= { 0x00, 16 },
276 			[SCBRR]		= { 0x04,  8 },
277 			[SCSCR]		= { 0x08, 16 },
278 			[SCxTDR]	= { 0x0c,  8 },
279 			[SCxSR]		= { 0x10, 16 },
280 			[SCxRDR]	= { 0x14,  8 },
281 			[SCFCR]		= { 0x18, 16 },
282 			[SCFDR]		= { 0x1c, 16 },
283 			[SCSPTR]	= { 0x20, 16 },
284 			[SCLSR]		= { 0x24, 16 },
285 		},
286 		.fifosize = 16,
287 		.overrun_reg = SCLSR,
288 		.overrun_mask = SCLSR_ORER,
289 		.sampling_rate_mask = SCI_SR(32),
290 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
291 		.error_clear = SCIF_ERROR_CLEAR,
292 	},
293 
294 	/*
295 	 * The "SCIFA" that is in RZ/T and RZ/A2.
296 	 * It looks like a normal SCIF with FIFO data, but with a
297 	 * compressed address space. Also, the break out of interrupts
298 	 * are different: ERI/BRI, RXI, TXI, TEI, DRI.
299 	 */
300 	[SCIx_RZ_SCIFA_REGTYPE] = {
301 		.regs = {
302 			[SCSMR]		= { 0x00, 16 },
303 			[SCBRR]		= { 0x02,  8 },
304 			[SCSCR]		= { 0x04, 16 },
305 			[SCxTDR]	= { 0x06,  8 },
306 			[SCxSR]		= { 0x08, 16 },
307 			[SCxRDR]	= { 0x0A,  8 },
308 			[SCFCR]		= { 0x0C, 16 },
309 			[SCFDR]		= { 0x0E, 16 },
310 			[SCSPTR]	= { 0x10, 16 },
311 			[SCLSR]		= { 0x12, 16 },
312 		},
313 		.fifosize = 16,
314 		.overrun_reg = SCLSR,
315 		.overrun_mask = SCLSR_ORER,
316 		.sampling_rate_mask = SCI_SR(32),
317 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
318 		.error_clear = SCIF_ERROR_CLEAR,
319 	},
320 
321 	/*
322 	 * Common SH-3 SCIF definitions.
323 	 */
324 	[SCIx_SH3_SCIF_REGTYPE] = {
325 		.regs = {
326 			[SCSMR]		= { 0x00,  8 },
327 			[SCBRR]		= { 0x02,  8 },
328 			[SCSCR]		= { 0x04,  8 },
329 			[SCxTDR]	= { 0x06,  8 },
330 			[SCxSR]		= { 0x08, 16 },
331 			[SCxRDR]	= { 0x0a,  8 },
332 			[SCFCR]		= { 0x0c,  8 },
333 			[SCFDR]		= { 0x0e, 16 },
334 		},
335 		.fifosize = 16,
336 		.overrun_reg = SCLSR,
337 		.overrun_mask = SCLSR_ORER,
338 		.sampling_rate_mask = SCI_SR(32),
339 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
340 		.error_clear = SCIF_ERROR_CLEAR,
341 	},
342 
343 	/*
344 	 * Common SH-4(A) SCIF(B) definitions.
345 	 */
346 	[SCIx_SH4_SCIF_REGTYPE] = {
347 		.regs = {
348 			[SCSMR]		= { 0x00, 16 },
349 			[SCBRR]		= { 0x04,  8 },
350 			[SCSCR]		= { 0x08, 16 },
351 			[SCxTDR]	= { 0x0c,  8 },
352 			[SCxSR]		= { 0x10, 16 },
353 			[SCxRDR]	= { 0x14,  8 },
354 			[SCFCR]		= { 0x18, 16 },
355 			[SCFDR]		= { 0x1c, 16 },
356 			[SCSPTR]	= { 0x20, 16 },
357 			[SCLSR]		= { 0x24, 16 },
358 		},
359 		.fifosize = 16,
360 		.overrun_reg = SCLSR,
361 		.overrun_mask = SCLSR_ORER,
362 		.sampling_rate_mask = SCI_SR(32),
363 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
364 		.error_clear = SCIF_ERROR_CLEAR,
365 	},
366 
367 	/*
368 	 * Common SCIF definitions for ports with a Baud Rate Generator for
369 	 * External Clock (BRG).
370 	 */
371 	[SCIx_SH4_SCIF_BRG_REGTYPE] = {
372 		.regs = {
373 			[SCSMR]		= { 0x00, 16 },
374 			[SCBRR]		= { 0x04,  8 },
375 			[SCSCR]		= { 0x08, 16 },
376 			[SCxTDR]	= { 0x0c,  8 },
377 			[SCxSR]		= { 0x10, 16 },
378 			[SCxRDR]	= { 0x14,  8 },
379 			[SCFCR]		= { 0x18, 16 },
380 			[SCFDR]		= { 0x1c, 16 },
381 			[SCSPTR]	= { 0x20, 16 },
382 			[SCLSR]		= { 0x24, 16 },
383 			[SCDL]		= { 0x30, 16 },
384 			[SCCKS]		= { 0x34, 16 },
385 		},
386 		.fifosize = 16,
387 		.overrun_reg = SCLSR,
388 		.overrun_mask = SCLSR_ORER,
389 		.sampling_rate_mask = SCI_SR(32),
390 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
391 		.error_clear = SCIF_ERROR_CLEAR,
392 	},
393 
394 	/*
395 	 * Common HSCIF definitions.
396 	 */
397 	[SCIx_HSCIF_REGTYPE] = {
398 		.regs = {
399 			[SCSMR]		= { 0x00, 16 },
400 			[SCBRR]		= { 0x04,  8 },
401 			[SCSCR]		= { 0x08, 16 },
402 			[SCxTDR]	= { 0x0c,  8 },
403 			[SCxSR]		= { 0x10, 16 },
404 			[SCxRDR]	= { 0x14,  8 },
405 			[SCFCR]		= { 0x18, 16 },
406 			[SCFDR]		= { 0x1c, 16 },
407 			[SCSPTR]	= { 0x20, 16 },
408 			[SCLSR]		= { 0x24, 16 },
409 			[HSSRR]		= { 0x40, 16 },
410 			[SCDL]		= { 0x30, 16 },
411 			[SCCKS]		= { 0x34, 16 },
412 			[HSRTRGR]	= { 0x54, 16 },
413 			[HSTTRGR]	= { 0x58, 16 },
414 		},
415 		.fifosize = 128,
416 		.overrun_reg = SCLSR,
417 		.overrun_mask = SCLSR_ORER,
418 		.sampling_rate_mask = SCI_SR_RANGE(8, 32),
419 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
420 		.error_clear = SCIF_ERROR_CLEAR,
421 	},
422 
423 	/*
424 	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
425 	 * register.
426 	 */
427 	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
428 		.regs = {
429 			[SCSMR]		= { 0x00, 16 },
430 			[SCBRR]		= { 0x04,  8 },
431 			[SCSCR]		= { 0x08, 16 },
432 			[SCxTDR]	= { 0x0c,  8 },
433 			[SCxSR]		= { 0x10, 16 },
434 			[SCxRDR]	= { 0x14,  8 },
435 			[SCFCR]		= { 0x18, 16 },
436 			[SCFDR]		= { 0x1c, 16 },
437 			[SCLSR]		= { 0x24, 16 },
438 		},
439 		.fifosize = 16,
440 		.overrun_reg = SCLSR,
441 		.overrun_mask = SCLSR_ORER,
442 		.sampling_rate_mask = SCI_SR(32),
443 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
444 		.error_clear = SCIF_ERROR_CLEAR,
445 	},
446 
447 	/*
448 	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
449 	 * count registers.
450 	 */
451 	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
452 		.regs = {
453 			[SCSMR]		= { 0x00, 16 },
454 			[SCBRR]		= { 0x04,  8 },
455 			[SCSCR]		= { 0x08, 16 },
456 			[SCxTDR]	= { 0x0c,  8 },
457 			[SCxSR]		= { 0x10, 16 },
458 			[SCxRDR]	= { 0x14,  8 },
459 			[SCFCR]		= { 0x18, 16 },
460 			[SCFDR]		= { 0x1c, 16 },
461 			[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
462 			[SCRFDR]	= { 0x20, 16 },
463 			[SCSPTR]	= { 0x24, 16 },
464 			[SCLSR]		= { 0x28, 16 },
465 		},
466 		.fifosize = 16,
467 		.overrun_reg = SCLSR,
468 		.overrun_mask = SCLSR_ORER,
469 		.sampling_rate_mask = SCI_SR(32),
470 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
471 		.error_clear = SCIF_ERROR_CLEAR,
472 	},
473 
474 	/*
475 	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
476 	 * registers.
477 	 */
478 	[SCIx_SH7705_SCIF_REGTYPE] = {
479 		.regs = {
480 			[SCSMR]		= { 0x00, 16 },
481 			[SCBRR]		= { 0x04,  8 },
482 			[SCSCR]		= { 0x08, 16 },
483 			[SCxTDR]	= { 0x20,  8 },
484 			[SCxSR]		= { 0x14, 16 },
485 			[SCxRDR]	= { 0x24,  8 },
486 			[SCFCR]		= { 0x18, 16 },
487 			[SCFDR]		= { 0x1c, 16 },
488 		},
489 		.fifosize = 64,
490 		.overrun_reg = SCxSR,
491 		.overrun_mask = SCIFA_ORER,
492 		.sampling_rate_mask = SCI_SR(16),
493 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
494 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
495 	},
496 };
497 
498 #define sci_getreg(up, offset)		(&to_sci_port(up)->params->regs[offset])
499 
500 /*
501  * The "offset" here is rather misleading, in that it refers to an enum
502  * value relative to the port mapping rather than the fixed offset
503  * itself, which needs to be manually retrieved from the platform's
504  * register map for the given port.
505  */
506 static unsigned int sci_serial_in(struct uart_port *p, int offset)
507 {
508 	const struct plat_sci_reg *reg = sci_getreg(p, offset);
509 
510 	if (reg->size == 8)
511 		return ioread8(p->membase + (reg->offset << p->regshift));
512 	else if (reg->size == 16)
513 		return ioread16(p->membase + (reg->offset << p->regshift));
514 	else
515 		WARN(1, "Invalid register access\n");
516 
517 	return 0;
518 }
519 
520 static void sci_serial_out(struct uart_port *p, int offset, int value)
521 {
522 	const struct plat_sci_reg *reg = sci_getreg(p, offset);
523 
524 	if (reg->size == 8)
525 		iowrite8(value, p->membase + (reg->offset << p->regshift));
526 	else if (reg->size == 16)
527 		iowrite16(value, p->membase + (reg->offset << p->regshift));
528 	else
529 		WARN(1, "Invalid register access\n");
530 }
531 
532 static void sci_port_enable(struct sci_port *sci_port)
533 {
534 	unsigned int i;
535 
536 	if (!sci_port->port.dev)
537 		return;
538 
539 	pm_runtime_get_sync(sci_port->port.dev);
540 
541 	for (i = 0; i < SCI_NUM_CLKS; i++) {
542 		clk_prepare_enable(sci_port->clks[i]);
543 		sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]);
544 	}
545 	sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
546 }
547 
548 static void sci_port_disable(struct sci_port *sci_port)
549 {
550 	unsigned int i;
551 
552 	if (!sci_port->port.dev)
553 		return;
554 
555 	for (i = SCI_NUM_CLKS; i-- > 0; )
556 		clk_disable_unprepare(sci_port->clks[i]);
557 
558 	pm_runtime_put_sync(sci_port->port.dev);
559 }
560 
561 static inline unsigned long port_rx_irq_mask(struct uart_port *port)
562 {
563 	/*
564 	 * Not all ports (such as SCIFA) will support REIE. Rather than
565 	 * special-casing the port type, we check the port initialization
566 	 * IRQ enable mask to see whether the IRQ is desired at all. If
567 	 * it's unset, it's logically inferred that there's no point in
568 	 * testing for it.
569 	 */
570 	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
571 }
572 
573 static void sci_start_tx(struct uart_port *port)
574 {
575 	struct sci_port *s = to_sci_port(port);
576 	unsigned short ctrl;
577 
578 #ifdef CONFIG_SERIAL_SH_SCI_DMA
579 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
580 		u16 new, scr = serial_port_in(port, SCSCR);
581 		if (s->chan_tx)
582 			new = scr | SCSCR_TDRQE;
583 		else
584 			new = scr & ~SCSCR_TDRQE;
585 		if (new != scr)
586 			serial_port_out(port, SCSCR, new);
587 	}
588 
589 	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
590 	    dma_submit_error(s->cookie_tx)) {
591 		s->cookie_tx = 0;
592 		schedule_work(&s->work_tx);
593 	}
594 #endif
595 
596 	if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
597 		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
598 		ctrl = serial_port_in(port, SCSCR);
599 		serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
600 	}
601 }
602 
603 static void sci_stop_tx(struct uart_port *port)
604 {
605 	unsigned short ctrl;
606 
607 	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
608 	ctrl = serial_port_in(port, SCSCR);
609 
610 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
611 		ctrl &= ~SCSCR_TDRQE;
612 
613 	ctrl &= ~SCSCR_TIE;
614 
615 	serial_port_out(port, SCSCR, ctrl);
616 }
617 
618 static void sci_start_rx(struct uart_port *port)
619 {
620 	unsigned short ctrl;
621 
622 	ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
623 
624 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
625 		ctrl &= ~SCSCR_RDRQE;
626 
627 	serial_port_out(port, SCSCR, ctrl);
628 }
629 
630 static void sci_stop_rx(struct uart_port *port)
631 {
632 	unsigned short ctrl;
633 
634 	ctrl = serial_port_in(port, SCSCR);
635 
636 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
637 		ctrl &= ~SCSCR_RDRQE;
638 
639 	ctrl &= ~port_rx_irq_mask(port);
640 
641 	serial_port_out(port, SCSCR, ctrl);
642 }
643 
644 static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
645 {
646 	if (port->type == PORT_SCI) {
647 		/* Just store the mask */
648 		serial_port_out(port, SCxSR, mask);
649 	} else if (to_sci_port(port)->params->overrun_mask == SCIFA_ORER) {
650 		/* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
651 		/* Only clear the status bits we want to clear */
652 		serial_port_out(port, SCxSR,
653 				serial_port_in(port, SCxSR) & mask);
654 	} else {
655 		/* Store the mask, clear parity/framing errors */
656 		serial_port_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
657 	}
658 }
659 
660 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
661     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
662 
663 #ifdef CONFIG_CONSOLE_POLL
664 static int sci_poll_get_char(struct uart_port *port)
665 {
666 	unsigned short status;
667 	int c;
668 
669 	do {
670 		status = serial_port_in(port, SCxSR);
671 		if (status & SCxSR_ERRORS(port)) {
672 			sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
673 			continue;
674 		}
675 		break;
676 	} while (1);
677 
678 	if (!(status & SCxSR_RDxF(port)))
679 		return NO_POLL_CHAR;
680 
681 	c = serial_port_in(port, SCxRDR);
682 
683 	/* Dummy read */
684 	serial_port_in(port, SCxSR);
685 	sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
686 
687 	return c;
688 }
689 #endif
690 
691 static void sci_poll_put_char(struct uart_port *port, unsigned char c)
692 {
693 	unsigned short status;
694 
695 	do {
696 		status = serial_port_in(port, SCxSR);
697 	} while (!(status & SCxSR_TDxE(port)));
698 
699 	serial_port_out(port, SCxTDR, c);
700 	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
701 }
702 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE ||
703 	  CONFIG_SERIAL_SH_SCI_EARLYCON */
704 
705 static void sci_init_pins(struct uart_port *port, unsigned int cflag)
706 {
707 	struct sci_port *s = to_sci_port(port);
708 
709 	/*
710 	 * Use port-specific handler if provided.
711 	 */
712 	if (s->cfg->ops && s->cfg->ops->init_pins) {
713 		s->cfg->ops->init_pins(port, cflag);
714 		return;
715 	}
716 
717 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
718 		u16 data = serial_port_in(port, SCPDR);
719 		u16 ctrl = serial_port_in(port, SCPCR);
720 
721 		/* Enable RXD and TXD pin functions */
722 		ctrl &= ~(SCPCR_RXDC | SCPCR_TXDC);
723 		if (to_sci_port(port)->has_rtscts) {
724 			/* RTS# is output, active low, unless autorts */
725 			if (!(port->mctrl & TIOCM_RTS)) {
726 				ctrl |= SCPCR_RTSC;
727 				data |= SCPDR_RTSD;
728 			} else if (!s->autorts) {
729 				ctrl |= SCPCR_RTSC;
730 				data &= ~SCPDR_RTSD;
731 			} else {
732 				/* Enable RTS# pin function */
733 				ctrl &= ~SCPCR_RTSC;
734 			}
735 			/* Enable CTS# pin function */
736 			ctrl &= ~SCPCR_CTSC;
737 		}
738 		serial_port_out(port, SCPDR, data);
739 		serial_port_out(port, SCPCR, ctrl);
740 	} else if (sci_getreg(port, SCSPTR)->size) {
741 		u16 status = serial_port_in(port, SCSPTR);
742 
743 		/* RTS# is always output; and active low, unless autorts */
744 		status |= SCSPTR_RTSIO;
745 		if (!(port->mctrl & TIOCM_RTS))
746 			status |= SCSPTR_RTSDT;
747 		else if (!s->autorts)
748 			status &= ~SCSPTR_RTSDT;
749 		/* CTS# and SCK are inputs */
750 		status &= ~(SCSPTR_CTSIO | SCSPTR_SCKIO);
751 		serial_port_out(port, SCSPTR, status);
752 	}
753 }
754 
755 static int sci_txfill(struct uart_port *port)
756 {
757 	struct sci_port *s = to_sci_port(port);
758 	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
759 	const struct plat_sci_reg *reg;
760 
761 	reg = sci_getreg(port, SCTFDR);
762 	if (reg->size)
763 		return serial_port_in(port, SCTFDR) & fifo_mask;
764 
765 	reg = sci_getreg(port, SCFDR);
766 	if (reg->size)
767 		return serial_port_in(port, SCFDR) >> 8;
768 
769 	return !(serial_port_in(port, SCxSR) & SCI_TDRE);
770 }
771 
772 static int sci_txroom(struct uart_port *port)
773 {
774 	return port->fifosize - sci_txfill(port);
775 }
776 
777 static int sci_rxfill(struct uart_port *port)
778 {
779 	struct sci_port *s = to_sci_port(port);
780 	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
781 	const struct plat_sci_reg *reg;
782 
783 	reg = sci_getreg(port, SCRFDR);
784 	if (reg->size)
785 		return serial_port_in(port, SCRFDR) & fifo_mask;
786 
787 	reg = sci_getreg(port, SCFDR);
788 	if (reg->size)
789 		return serial_port_in(port, SCFDR) & fifo_mask;
790 
791 	return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
792 }
793 
794 /* ********************************************************************** *
795  *                   the interrupt related routines                       *
796  * ********************************************************************** */
797 
798 static void sci_transmit_chars(struct uart_port *port)
799 {
800 	struct circ_buf *xmit = &port->state->xmit;
801 	unsigned int stopped = uart_tx_stopped(port);
802 	unsigned short status;
803 	unsigned short ctrl;
804 	int count;
805 
806 	status = serial_port_in(port, SCxSR);
807 	if (!(status & SCxSR_TDxE(port))) {
808 		ctrl = serial_port_in(port, SCSCR);
809 		if (uart_circ_empty(xmit))
810 			ctrl &= ~SCSCR_TIE;
811 		else
812 			ctrl |= SCSCR_TIE;
813 		serial_port_out(port, SCSCR, ctrl);
814 		return;
815 	}
816 
817 	count = sci_txroom(port);
818 
819 	do {
820 		unsigned char c;
821 
822 		if (port->x_char) {
823 			c = port->x_char;
824 			port->x_char = 0;
825 		} else if (!uart_circ_empty(xmit) && !stopped) {
826 			c = xmit->buf[xmit->tail];
827 			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
828 		} else {
829 			break;
830 		}
831 
832 		serial_port_out(port, SCxTDR, c);
833 
834 		port->icount.tx++;
835 	} while (--count > 0);
836 
837 	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
838 
839 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
840 		uart_write_wakeup(port);
841 	if (uart_circ_empty(xmit))
842 		sci_stop_tx(port);
843 
844 }
845 
846 /* On SH3, SCIF may read end-of-break as a space->mark char */
847 #define STEPFN(c)  ({int __c = (c); (((__c-1)|(__c)) == -1); })
848 
849 static void sci_receive_chars(struct uart_port *port)
850 {
851 	struct tty_port *tport = &port->state->port;
852 	int i, count, copied = 0;
853 	unsigned short status;
854 	unsigned char flag;
855 
856 	status = serial_port_in(port, SCxSR);
857 	if (!(status & SCxSR_RDxF(port)))
858 		return;
859 
860 	while (1) {
861 		/* Don't copy more bytes than there is room for in the buffer */
862 		count = tty_buffer_request_room(tport, sci_rxfill(port));
863 
864 		/* If for any reason we can't copy more data, we're done! */
865 		if (count == 0)
866 			break;
867 
868 		if (port->type == PORT_SCI) {
869 			char c = serial_port_in(port, SCxRDR);
870 			if (uart_handle_sysrq_char(port, c))
871 				count = 0;
872 			else
873 				tty_insert_flip_char(tport, c, TTY_NORMAL);
874 		} else {
875 			for (i = 0; i < count; i++) {
876 				char c = serial_port_in(port, SCxRDR);
877 
878 				status = serial_port_in(port, SCxSR);
879 				if (uart_handle_sysrq_char(port, c)) {
880 					count--; i--;
881 					continue;
882 				}
883 
884 				/* Store data and status */
885 				if (status & SCxSR_FER(port)) {
886 					flag = TTY_FRAME;
887 					port->icount.frame++;
888 					dev_notice(port->dev, "frame error\n");
889 				} else if (status & SCxSR_PER(port)) {
890 					flag = TTY_PARITY;
891 					port->icount.parity++;
892 					dev_notice(port->dev, "parity error\n");
893 				} else
894 					flag = TTY_NORMAL;
895 
896 				tty_insert_flip_char(tport, c, flag);
897 			}
898 		}
899 
900 		serial_port_in(port, SCxSR); /* dummy read */
901 		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
902 
903 		copied += count;
904 		port->icount.rx += count;
905 	}
906 
907 	if (copied) {
908 		/* Tell the rest of the system the news. New characters! */
909 		tty_flip_buffer_push(tport);
910 	} else {
911 		/* TTY buffers full; read from RX reg to prevent lockup */
912 		serial_port_in(port, SCxRDR);
913 		serial_port_in(port, SCxSR); /* dummy read */
914 		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
915 	}
916 }
917 
918 static int sci_handle_errors(struct uart_port *port)
919 {
920 	int copied = 0;
921 	unsigned short status = serial_port_in(port, SCxSR);
922 	struct tty_port *tport = &port->state->port;
923 	struct sci_port *s = to_sci_port(port);
924 
925 	/* Handle overruns */
926 	if (status & s->params->overrun_mask) {
927 		port->icount.overrun++;
928 
929 		/* overrun error */
930 		if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
931 			copied++;
932 
933 		dev_notice(port->dev, "overrun error\n");
934 	}
935 
936 	if (status & SCxSR_FER(port)) {
937 		/* frame error */
938 		port->icount.frame++;
939 
940 		if (tty_insert_flip_char(tport, 0, TTY_FRAME))
941 			copied++;
942 
943 		dev_notice(port->dev, "frame error\n");
944 	}
945 
946 	if (status & SCxSR_PER(port)) {
947 		/* parity error */
948 		port->icount.parity++;
949 
950 		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
951 			copied++;
952 
953 		dev_notice(port->dev, "parity error\n");
954 	}
955 
956 	if (copied)
957 		tty_flip_buffer_push(tport);
958 
959 	return copied;
960 }
961 
962 static int sci_handle_fifo_overrun(struct uart_port *port)
963 {
964 	struct tty_port *tport = &port->state->port;
965 	struct sci_port *s = to_sci_port(port);
966 	const struct plat_sci_reg *reg;
967 	int copied = 0;
968 	u16 status;
969 
970 	reg = sci_getreg(port, s->params->overrun_reg);
971 	if (!reg->size)
972 		return 0;
973 
974 	status = serial_port_in(port, s->params->overrun_reg);
975 	if (status & s->params->overrun_mask) {
976 		status &= ~s->params->overrun_mask;
977 		serial_port_out(port, s->params->overrun_reg, status);
978 
979 		port->icount.overrun++;
980 
981 		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
982 		tty_flip_buffer_push(tport);
983 
984 		dev_dbg(port->dev, "overrun error\n");
985 		copied++;
986 	}
987 
988 	return copied;
989 }
990 
991 static int sci_handle_breaks(struct uart_port *port)
992 {
993 	int copied = 0;
994 	unsigned short status = serial_port_in(port, SCxSR);
995 	struct tty_port *tport = &port->state->port;
996 
997 	if (uart_handle_break(port))
998 		return 0;
999 
1000 	if (status & SCxSR_BRK(port)) {
1001 		port->icount.brk++;
1002 
1003 		/* Notify of BREAK */
1004 		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
1005 			copied++;
1006 
1007 		dev_dbg(port->dev, "BREAK detected\n");
1008 	}
1009 
1010 	if (copied)
1011 		tty_flip_buffer_push(tport);
1012 
1013 	copied += sci_handle_fifo_overrun(port);
1014 
1015 	return copied;
1016 }
1017 
1018 static int scif_set_rtrg(struct uart_port *port, int rx_trig)
1019 {
1020 	unsigned int bits;
1021 
1022 	if (rx_trig < 1)
1023 		rx_trig = 1;
1024 	if (rx_trig >= port->fifosize)
1025 		rx_trig = port->fifosize;
1026 
1027 	/* HSCIF can be set to an arbitrary level. */
1028 	if (sci_getreg(port, HSRTRGR)->size) {
1029 		serial_port_out(port, HSRTRGR, rx_trig);
1030 		return rx_trig;
1031 	}
1032 
1033 	switch (port->type) {
1034 	case PORT_SCIF:
1035 		if (rx_trig < 4) {
1036 			bits = 0;
1037 			rx_trig = 1;
1038 		} else if (rx_trig < 8) {
1039 			bits = SCFCR_RTRG0;
1040 			rx_trig = 4;
1041 		} else if (rx_trig < 14) {
1042 			bits = SCFCR_RTRG1;
1043 			rx_trig = 8;
1044 		} else {
1045 			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1046 			rx_trig = 14;
1047 		}
1048 		break;
1049 	case PORT_SCIFA:
1050 	case PORT_SCIFB:
1051 		if (rx_trig < 16) {
1052 			bits = 0;
1053 			rx_trig = 1;
1054 		} else if (rx_trig < 32) {
1055 			bits = SCFCR_RTRG0;
1056 			rx_trig = 16;
1057 		} else if (rx_trig < 48) {
1058 			bits = SCFCR_RTRG1;
1059 			rx_trig = 32;
1060 		} else {
1061 			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1062 			rx_trig = 48;
1063 		}
1064 		break;
1065 	default:
1066 		WARN(1, "unknown FIFO configuration");
1067 		return 1;
1068 	}
1069 
1070 	serial_port_out(port, SCFCR,
1071 		(serial_port_in(port, SCFCR) &
1072 		~(SCFCR_RTRG1 | SCFCR_RTRG0)) | bits);
1073 
1074 	return rx_trig;
1075 }
1076 
1077 static int scif_rtrg_enabled(struct uart_port *port)
1078 {
1079 	if (sci_getreg(port, HSRTRGR)->size)
1080 		return serial_port_in(port, HSRTRGR) != 0;
1081 	else
1082 		return (serial_port_in(port, SCFCR) &
1083 			(SCFCR_RTRG0 | SCFCR_RTRG1)) != 0;
1084 }
1085 
1086 static void rx_fifo_timer_fn(struct timer_list *t)
1087 {
1088 	struct sci_port *s = from_timer(s, t, rx_fifo_timer);
1089 	struct uart_port *port = &s->port;
1090 
1091 	dev_dbg(port->dev, "Rx timed out\n");
1092 	scif_set_rtrg(port, 1);
1093 }
1094 
1095 static ssize_t rx_fifo_trigger_show(struct device *dev,
1096 				    struct device_attribute *attr, char *buf)
1097 {
1098 	struct uart_port *port = dev_get_drvdata(dev);
1099 	struct sci_port *sci = to_sci_port(port);
1100 
1101 	return sprintf(buf, "%d\n", sci->rx_trigger);
1102 }
1103 
1104 static ssize_t rx_fifo_trigger_store(struct device *dev,
1105 				     struct device_attribute *attr,
1106 				     const char *buf, size_t count)
1107 {
1108 	struct uart_port *port = dev_get_drvdata(dev);
1109 	struct sci_port *sci = to_sci_port(port);
1110 	int ret;
1111 	long r;
1112 
1113 	ret = kstrtol(buf, 0, &r);
1114 	if (ret)
1115 		return ret;
1116 
1117 	sci->rx_trigger = scif_set_rtrg(port, r);
1118 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1119 		scif_set_rtrg(port, 1);
1120 
1121 	return count;
1122 }
1123 
1124 static DEVICE_ATTR_RW(rx_fifo_trigger);
1125 
1126 static ssize_t rx_fifo_timeout_show(struct device *dev,
1127 			       struct device_attribute *attr,
1128 			       char *buf)
1129 {
1130 	struct uart_port *port = dev_get_drvdata(dev);
1131 	struct sci_port *sci = to_sci_port(port);
1132 	int v;
1133 
1134 	if (port->type == PORT_HSCIF)
1135 		v = sci->hscif_tot >> HSSCR_TOT_SHIFT;
1136 	else
1137 		v = sci->rx_fifo_timeout;
1138 
1139 	return sprintf(buf, "%d\n", v);
1140 }
1141 
1142 static ssize_t rx_fifo_timeout_store(struct device *dev,
1143 				struct device_attribute *attr,
1144 				const char *buf,
1145 				size_t count)
1146 {
1147 	struct uart_port *port = dev_get_drvdata(dev);
1148 	struct sci_port *sci = to_sci_port(port);
1149 	int ret;
1150 	long r;
1151 
1152 	ret = kstrtol(buf, 0, &r);
1153 	if (ret)
1154 		return ret;
1155 
1156 	if (port->type == PORT_HSCIF) {
1157 		if (r < 0 || r > 3)
1158 			return -EINVAL;
1159 		sci->hscif_tot = r << HSSCR_TOT_SHIFT;
1160 	} else {
1161 		sci->rx_fifo_timeout = r;
1162 		scif_set_rtrg(port, 1);
1163 		if (r > 0)
1164 			timer_setup(&sci->rx_fifo_timer, rx_fifo_timer_fn, 0);
1165 	}
1166 
1167 	return count;
1168 }
1169 
1170 static DEVICE_ATTR_RW(rx_fifo_timeout);
1171 
1172 
1173 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1174 static void sci_dma_tx_complete(void *arg)
1175 {
1176 	struct sci_port *s = arg;
1177 	struct uart_port *port = &s->port;
1178 	struct circ_buf *xmit = &port->state->xmit;
1179 	unsigned long flags;
1180 
1181 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1182 
1183 	spin_lock_irqsave(&port->lock, flags);
1184 
1185 	xmit->tail += s->tx_dma_len;
1186 	xmit->tail &= UART_XMIT_SIZE - 1;
1187 
1188 	port->icount.tx += s->tx_dma_len;
1189 
1190 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1191 		uart_write_wakeup(port);
1192 
1193 	if (!uart_circ_empty(xmit)) {
1194 		s->cookie_tx = 0;
1195 		schedule_work(&s->work_tx);
1196 	} else {
1197 		s->cookie_tx = -EINVAL;
1198 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1199 			u16 ctrl = serial_port_in(port, SCSCR);
1200 			serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1201 		}
1202 	}
1203 
1204 	spin_unlock_irqrestore(&port->lock, flags);
1205 }
1206 
1207 /* Locking: called with port lock held */
1208 static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1209 {
1210 	struct uart_port *port = &s->port;
1211 	struct tty_port *tport = &port->state->port;
1212 	int copied;
1213 
1214 	copied = tty_insert_flip_string(tport, buf, count);
1215 	if (copied < count)
1216 		port->icount.buf_overrun++;
1217 
1218 	port->icount.rx += copied;
1219 
1220 	return copied;
1221 }
1222 
1223 static int sci_dma_rx_find_active(struct sci_port *s)
1224 {
1225 	unsigned int i;
1226 
1227 	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1228 		if (s->active_rx == s->cookie_rx[i])
1229 			return i;
1230 
1231 	return -1;
1232 }
1233 
1234 static void sci_dma_rx_chan_invalidate(struct sci_port *s)
1235 {
1236 	unsigned int i;
1237 
1238 	s->chan_rx = NULL;
1239 	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1240 		s->cookie_rx[i] = -EINVAL;
1241 	s->active_rx = 0;
1242 }
1243 
1244 static void sci_dma_rx_release(struct sci_port *s)
1245 {
1246 	struct dma_chan *chan = s->chan_rx_saved;
1247 
1248 	s->chan_rx_saved = NULL;
1249 	sci_dma_rx_chan_invalidate(s);
1250 	dmaengine_terminate_sync(chan);
1251 	dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1252 			  sg_dma_address(&s->sg_rx[0]));
1253 	dma_release_channel(chan);
1254 }
1255 
1256 static void start_hrtimer_us(struct hrtimer *hrt, unsigned long usec)
1257 {
1258 	long sec = usec / 1000000;
1259 	long nsec = (usec % 1000000) * 1000;
1260 	ktime_t t = ktime_set(sec, nsec);
1261 
1262 	hrtimer_start(hrt, t, HRTIMER_MODE_REL);
1263 }
1264 
1265 static void sci_dma_rx_reenable_irq(struct sci_port *s)
1266 {
1267 	struct uart_port *port = &s->port;
1268 	u16 scr;
1269 
1270 	/* Direct new serial port interrupts back to CPU */
1271 	scr = serial_port_in(port, SCSCR);
1272 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1273 		scr &= ~SCSCR_RDRQE;
1274 		enable_irq(s->irqs[SCIx_RXI_IRQ]);
1275 	}
1276 	serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1277 }
1278 
1279 static void sci_dma_rx_complete(void *arg)
1280 {
1281 	struct sci_port *s = arg;
1282 	struct dma_chan *chan = s->chan_rx;
1283 	struct uart_port *port = &s->port;
1284 	struct dma_async_tx_descriptor *desc;
1285 	unsigned long flags;
1286 	int active, count = 0;
1287 
1288 	dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1289 		s->active_rx);
1290 
1291 	spin_lock_irqsave(&port->lock, flags);
1292 
1293 	active = sci_dma_rx_find_active(s);
1294 	if (active >= 0)
1295 		count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1296 
1297 	start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1298 
1299 	if (count)
1300 		tty_flip_buffer_push(&port->state->port);
1301 
1302 	desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1303 				       DMA_DEV_TO_MEM,
1304 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1305 	if (!desc)
1306 		goto fail;
1307 
1308 	desc->callback = sci_dma_rx_complete;
1309 	desc->callback_param = s;
1310 	s->cookie_rx[active] = dmaengine_submit(desc);
1311 	if (dma_submit_error(s->cookie_rx[active]))
1312 		goto fail;
1313 
1314 	s->active_rx = s->cookie_rx[!active];
1315 
1316 	dma_async_issue_pending(chan);
1317 
1318 	spin_unlock_irqrestore(&port->lock, flags);
1319 	dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1320 		__func__, s->cookie_rx[active], active, s->active_rx);
1321 	return;
1322 
1323 fail:
1324 	spin_unlock_irqrestore(&port->lock, flags);
1325 	dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1326 	/* Switch to PIO */
1327 	spin_lock_irqsave(&port->lock, flags);
1328 	dmaengine_terminate_async(chan);
1329 	sci_dma_rx_chan_invalidate(s);
1330 	sci_dma_rx_reenable_irq(s);
1331 	spin_unlock_irqrestore(&port->lock, flags);
1332 }
1333 
1334 static void sci_dma_tx_release(struct sci_port *s)
1335 {
1336 	struct dma_chan *chan = s->chan_tx_saved;
1337 
1338 	cancel_work_sync(&s->work_tx);
1339 	s->chan_tx_saved = s->chan_tx = NULL;
1340 	s->cookie_tx = -EINVAL;
1341 	dmaengine_terminate_sync(chan);
1342 	dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1343 			 DMA_TO_DEVICE);
1344 	dma_release_channel(chan);
1345 }
1346 
1347 static int sci_dma_rx_submit(struct sci_port *s, bool port_lock_held)
1348 {
1349 	struct dma_chan *chan = s->chan_rx;
1350 	struct uart_port *port = &s->port;
1351 	unsigned long flags;
1352 	int i;
1353 
1354 	for (i = 0; i < 2; i++) {
1355 		struct scatterlist *sg = &s->sg_rx[i];
1356 		struct dma_async_tx_descriptor *desc;
1357 
1358 		desc = dmaengine_prep_slave_sg(chan,
1359 			sg, 1, DMA_DEV_TO_MEM,
1360 			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1361 		if (!desc)
1362 			goto fail;
1363 
1364 		desc->callback = sci_dma_rx_complete;
1365 		desc->callback_param = s;
1366 		s->cookie_rx[i] = dmaengine_submit(desc);
1367 		if (dma_submit_error(s->cookie_rx[i]))
1368 			goto fail;
1369 
1370 	}
1371 
1372 	s->active_rx = s->cookie_rx[0];
1373 
1374 	dma_async_issue_pending(chan);
1375 	return 0;
1376 
1377 fail:
1378 	/* Switch to PIO */
1379 	if (!port_lock_held)
1380 		spin_lock_irqsave(&port->lock, flags);
1381 	if (i)
1382 		dmaengine_terminate_async(chan);
1383 	sci_dma_rx_chan_invalidate(s);
1384 	sci_start_rx(port);
1385 	if (!port_lock_held)
1386 		spin_unlock_irqrestore(&port->lock, flags);
1387 	return -EAGAIN;
1388 }
1389 
1390 static void sci_dma_tx_work_fn(struct work_struct *work)
1391 {
1392 	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1393 	struct dma_async_tx_descriptor *desc;
1394 	struct dma_chan *chan = s->chan_tx;
1395 	struct uart_port *port = &s->port;
1396 	struct circ_buf *xmit = &port->state->xmit;
1397 	unsigned long flags;
1398 	dma_addr_t buf;
1399 	int head, tail;
1400 
1401 	/*
1402 	 * DMA is idle now.
1403 	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1404 	 * offsets and lengths. Since it is a circular buffer, we have to
1405 	 * transmit till the end, and then the rest. Take the port lock to get a
1406 	 * consistent xmit buffer state.
1407 	 */
1408 	spin_lock_irq(&port->lock);
1409 	head = xmit->head;
1410 	tail = xmit->tail;
1411 	buf = s->tx_dma_addr + (tail & (UART_XMIT_SIZE - 1));
1412 	s->tx_dma_len = min_t(unsigned int,
1413 		CIRC_CNT(head, tail, UART_XMIT_SIZE),
1414 		CIRC_CNT_TO_END(head, tail, UART_XMIT_SIZE));
1415 	if (!s->tx_dma_len) {
1416 		/* Transmit buffer has been flushed */
1417 		spin_unlock_irq(&port->lock);
1418 		return;
1419 	}
1420 
1421 	desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1422 					   DMA_MEM_TO_DEV,
1423 					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1424 	if (!desc) {
1425 		spin_unlock_irq(&port->lock);
1426 		dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1427 		goto switch_to_pio;
1428 	}
1429 
1430 	dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1431 				   DMA_TO_DEVICE);
1432 
1433 	desc->callback = sci_dma_tx_complete;
1434 	desc->callback_param = s;
1435 	s->cookie_tx = dmaengine_submit(desc);
1436 	if (dma_submit_error(s->cookie_tx)) {
1437 		spin_unlock_irq(&port->lock);
1438 		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1439 		goto switch_to_pio;
1440 	}
1441 
1442 	spin_unlock_irq(&port->lock);
1443 	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
1444 		__func__, xmit->buf, tail, head, s->cookie_tx);
1445 
1446 	dma_async_issue_pending(chan);
1447 	return;
1448 
1449 switch_to_pio:
1450 	spin_lock_irqsave(&port->lock, flags);
1451 	s->chan_tx = NULL;
1452 	sci_start_tx(port);
1453 	spin_unlock_irqrestore(&port->lock, flags);
1454 	return;
1455 }
1456 
1457 static enum hrtimer_restart sci_dma_rx_timer_fn(struct hrtimer *t)
1458 {
1459 	struct sci_port *s = container_of(t, struct sci_port, rx_timer);
1460 	struct dma_chan *chan = s->chan_rx;
1461 	struct uart_port *port = &s->port;
1462 	struct dma_tx_state state;
1463 	enum dma_status status;
1464 	unsigned long flags;
1465 	unsigned int read;
1466 	int active, count;
1467 
1468 	dev_dbg(port->dev, "DMA Rx timed out\n");
1469 
1470 	spin_lock_irqsave(&port->lock, flags);
1471 
1472 	active = sci_dma_rx_find_active(s);
1473 	if (active < 0) {
1474 		spin_unlock_irqrestore(&port->lock, flags);
1475 		return HRTIMER_NORESTART;
1476 	}
1477 
1478 	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1479 	if (status == DMA_COMPLETE) {
1480 		spin_unlock_irqrestore(&port->lock, flags);
1481 		dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1482 			s->active_rx, active);
1483 
1484 		/* Let packet complete handler take care of the packet */
1485 		return HRTIMER_NORESTART;
1486 	}
1487 
1488 	dmaengine_pause(chan);
1489 
1490 	/*
1491 	 * sometimes DMA transfer doesn't stop even if it is stopped and
1492 	 * data keeps on coming until transaction is complete so check
1493 	 * for DMA_COMPLETE again
1494 	 * Let packet complete handler take care of the packet
1495 	 */
1496 	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1497 	if (status == DMA_COMPLETE) {
1498 		spin_unlock_irqrestore(&port->lock, flags);
1499 		dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1500 		return HRTIMER_NORESTART;
1501 	}
1502 
1503 	/* Handle incomplete DMA receive */
1504 	dmaengine_terminate_async(s->chan_rx);
1505 	read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1506 
1507 	if (read) {
1508 		count = sci_dma_rx_push(s, s->rx_buf[active], read);
1509 		if (count)
1510 			tty_flip_buffer_push(&port->state->port);
1511 	}
1512 
1513 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1514 		sci_dma_rx_submit(s, true);
1515 
1516 	sci_dma_rx_reenable_irq(s);
1517 
1518 	spin_unlock_irqrestore(&port->lock, flags);
1519 
1520 	return HRTIMER_NORESTART;
1521 }
1522 
1523 static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1524 					     enum dma_transfer_direction dir)
1525 {
1526 	struct dma_chan *chan;
1527 	struct dma_slave_config cfg;
1528 	int ret;
1529 
1530 	chan = dma_request_slave_channel(port->dev,
1531 					 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1532 	if (!chan) {
1533 		dev_dbg(port->dev, "dma_request_slave_channel failed\n");
1534 		return NULL;
1535 	}
1536 
1537 	memset(&cfg, 0, sizeof(cfg));
1538 	cfg.direction = dir;
1539 	if (dir == DMA_MEM_TO_DEV) {
1540 		cfg.dst_addr = port->mapbase +
1541 			(sci_getreg(port, SCxTDR)->offset << port->regshift);
1542 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1543 	} else {
1544 		cfg.src_addr = port->mapbase +
1545 			(sci_getreg(port, SCxRDR)->offset << port->regshift);
1546 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1547 	}
1548 
1549 	ret = dmaengine_slave_config(chan, &cfg);
1550 	if (ret) {
1551 		dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1552 		dma_release_channel(chan);
1553 		return NULL;
1554 	}
1555 
1556 	return chan;
1557 }
1558 
1559 static void sci_request_dma(struct uart_port *port)
1560 {
1561 	struct sci_port *s = to_sci_port(port);
1562 	struct dma_chan *chan;
1563 
1564 	dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1565 
1566 	/*
1567 	 * DMA on console may interfere with Kernel log messages which use
1568 	 * plain putchar(). So, simply don't use it with a console.
1569 	 */
1570 	if (uart_console(port))
1571 		return;
1572 
1573 	if (!port->dev->of_node)
1574 		return;
1575 
1576 	s->cookie_tx = -EINVAL;
1577 
1578 	/*
1579 	 * Don't request a dma channel if no channel was specified
1580 	 * in the device tree.
1581 	 */
1582 	if (!of_find_property(port->dev->of_node, "dmas", NULL))
1583 		return;
1584 
1585 	chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV);
1586 	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1587 	if (chan) {
1588 		/* UART circular tx buffer is an aligned page. */
1589 		s->tx_dma_addr = dma_map_single(chan->device->dev,
1590 						port->state->xmit.buf,
1591 						UART_XMIT_SIZE,
1592 						DMA_TO_DEVICE);
1593 		if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1594 			dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1595 			dma_release_channel(chan);
1596 		} else {
1597 			dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1598 				__func__, UART_XMIT_SIZE,
1599 				port->state->xmit.buf, &s->tx_dma_addr);
1600 
1601 			INIT_WORK(&s->work_tx, sci_dma_tx_work_fn);
1602 			s->chan_tx_saved = s->chan_tx = chan;
1603 		}
1604 	}
1605 
1606 	chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM);
1607 	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1608 	if (chan) {
1609 		unsigned int i;
1610 		dma_addr_t dma;
1611 		void *buf;
1612 
1613 		s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1614 		buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1615 					 &dma, GFP_KERNEL);
1616 		if (!buf) {
1617 			dev_warn(port->dev,
1618 				 "Failed to allocate Rx dma buffer, using PIO\n");
1619 			dma_release_channel(chan);
1620 			return;
1621 		}
1622 
1623 		for (i = 0; i < 2; i++) {
1624 			struct scatterlist *sg = &s->sg_rx[i];
1625 
1626 			sg_init_table(sg, 1);
1627 			s->rx_buf[i] = buf;
1628 			sg_dma_address(sg) = dma;
1629 			sg_dma_len(sg) = s->buf_len_rx;
1630 
1631 			buf += s->buf_len_rx;
1632 			dma += s->buf_len_rx;
1633 		}
1634 
1635 		hrtimer_init(&s->rx_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1636 		s->rx_timer.function = sci_dma_rx_timer_fn;
1637 
1638 		s->chan_rx_saved = s->chan_rx = chan;
1639 
1640 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1641 			sci_dma_rx_submit(s, false);
1642 	}
1643 }
1644 
1645 static void sci_free_dma(struct uart_port *port)
1646 {
1647 	struct sci_port *s = to_sci_port(port);
1648 
1649 	if (s->chan_tx_saved)
1650 		sci_dma_tx_release(s);
1651 	if (s->chan_rx_saved)
1652 		sci_dma_rx_release(s);
1653 }
1654 
1655 static void sci_flush_buffer(struct uart_port *port)
1656 {
1657 	struct sci_port *s = to_sci_port(port);
1658 
1659 	/*
1660 	 * In uart_flush_buffer(), the xmit circular buffer has just been
1661 	 * cleared, so we have to reset tx_dma_len accordingly, and stop any
1662 	 * pending transfers
1663 	 */
1664 	s->tx_dma_len = 0;
1665 	if (s->chan_tx) {
1666 		dmaengine_terminate_async(s->chan_tx);
1667 		s->cookie_tx = -EINVAL;
1668 	}
1669 }
1670 #else /* !CONFIG_SERIAL_SH_SCI_DMA */
1671 static inline void sci_request_dma(struct uart_port *port)
1672 {
1673 }
1674 
1675 static inline void sci_free_dma(struct uart_port *port)
1676 {
1677 }
1678 
1679 #define sci_flush_buffer	NULL
1680 #endif /* !CONFIG_SERIAL_SH_SCI_DMA */
1681 
1682 static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1683 {
1684 	struct uart_port *port = ptr;
1685 	struct sci_port *s = to_sci_port(port);
1686 
1687 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1688 	if (s->chan_rx) {
1689 		u16 scr = serial_port_in(port, SCSCR);
1690 		u16 ssr = serial_port_in(port, SCxSR);
1691 
1692 		/* Disable future Rx interrupts */
1693 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1694 			disable_irq_nosync(irq);
1695 			scr |= SCSCR_RDRQE;
1696 		} else {
1697 			if (sci_dma_rx_submit(s, false) < 0)
1698 				goto handle_pio;
1699 
1700 			scr &= ~SCSCR_RIE;
1701 		}
1702 		serial_port_out(port, SCSCR, scr);
1703 		/* Clear current interrupt */
1704 		serial_port_out(port, SCxSR,
1705 				ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1706 		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u us\n",
1707 			jiffies, s->rx_timeout);
1708 		start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1709 
1710 		return IRQ_HANDLED;
1711 	}
1712 
1713 handle_pio:
1714 #endif
1715 
1716 	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0) {
1717 		if (!scif_rtrg_enabled(port))
1718 			scif_set_rtrg(port, s->rx_trigger);
1719 
1720 		mod_timer(&s->rx_fifo_timer, jiffies + DIV_ROUND_UP(
1721 			  s->rx_frame * HZ * s->rx_fifo_timeout, 1000000));
1722 	}
1723 
1724 	/* I think sci_receive_chars has to be called irrespective
1725 	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
1726 	 * to be disabled?
1727 	 */
1728 	sci_receive_chars(port);
1729 
1730 	return IRQ_HANDLED;
1731 }
1732 
1733 static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1734 {
1735 	struct uart_port *port = ptr;
1736 	unsigned long flags;
1737 
1738 	spin_lock_irqsave(&port->lock, flags);
1739 	sci_transmit_chars(port);
1740 	spin_unlock_irqrestore(&port->lock, flags);
1741 
1742 	return IRQ_HANDLED;
1743 }
1744 
1745 static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1746 {
1747 	struct uart_port *port = ptr;
1748 
1749 	/* Handle BREAKs */
1750 	sci_handle_breaks(port);
1751 	sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1752 
1753 	return IRQ_HANDLED;
1754 }
1755 
1756 static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1757 {
1758 	struct uart_port *port = ptr;
1759 	struct sci_port *s = to_sci_port(port);
1760 
1761 	if (s->irqs[SCIx_ERI_IRQ] == s->irqs[SCIx_BRI_IRQ]) {
1762 		/* Break and Error interrupts are muxed */
1763 		unsigned short ssr_status = serial_port_in(port, SCxSR);
1764 
1765 		/* Break Interrupt */
1766 		if (ssr_status & SCxSR_BRK(port))
1767 			sci_br_interrupt(irq, ptr);
1768 
1769 		/* Break only? */
1770 		if (!(ssr_status & SCxSR_ERRORS(port)))
1771 			return IRQ_HANDLED;
1772 	}
1773 
1774 	/* Handle errors */
1775 	if (port->type == PORT_SCI) {
1776 		if (sci_handle_errors(port)) {
1777 			/* discard character in rx buffer */
1778 			serial_port_in(port, SCxSR);
1779 			sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1780 		}
1781 	} else {
1782 		sci_handle_fifo_overrun(port);
1783 		if (!s->chan_rx)
1784 			sci_receive_chars(port);
1785 	}
1786 
1787 	sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1788 
1789 	/* Kick the transmission */
1790 	if (!s->chan_tx)
1791 		sci_tx_interrupt(irq, ptr);
1792 
1793 	return IRQ_HANDLED;
1794 }
1795 
1796 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1797 {
1798 	unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1799 	struct uart_port *port = ptr;
1800 	struct sci_port *s = to_sci_port(port);
1801 	irqreturn_t ret = IRQ_NONE;
1802 
1803 	ssr_status = serial_port_in(port, SCxSR);
1804 	scr_status = serial_port_in(port, SCSCR);
1805 	if (s->params->overrun_reg == SCxSR)
1806 		orer_status = ssr_status;
1807 	else if (sci_getreg(port, s->params->overrun_reg)->size)
1808 		orer_status = serial_port_in(port, s->params->overrun_reg);
1809 
1810 	err_enabled = scr_status & port_rx_irq_mask(port);
1811 
1812 	/* Tx Interrupt */
1813 	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1814 	    !s->chan_tx)
1815 		ret = sci_tx_interrupt(irq, ptr);
1816 
1817 	/*
1818 	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1819 	 * DR flags
1820 	 */
1821 	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1822 	    (scr_status & SCSCR_RIE))
1823 		ret = sci_rx_interrupt(irq, ptr);
1824 
1825 	/* Error Interrupt */
1826 	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1827 		ret = sci_er_interrupt(irq, ptr);
1828 
1829 	/* Break Interrupt */
1830 	if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
1831 		ret = sci_br_interrupt(irq, ptr);
1832 
1833 	/* Overrun Interrupt */
1834 	if (orer_status & s->params->overrun_mask) {
1835 		sci_handle_fifo_overrun(port);
1836 		ret = IRQ_HANDLED;
1837 	}
1838 
1839 	return ret;
1840 }
1841 
1842 static const struct sci_irq_desc {
1843 	const char	*desc;
1844 	irq_handler_t	handler;
1845 } sci_irq_desc[] = {
1846 	/*
1847 	 * Split out handlers, the default case.
1848 	 */
1849 	[SCIx_ERI_IRQ] = {
1850 		.desc = "rx err",
1851 		.handler = sci_er_interrupt,
1852 	},
1853 
1854 	[SCIx_RXI_IRQ] = {
1855 		.desc = "rx full",
1856 		.handler = sci_rx_interrupt,
1857 	},
1858 
1859 	[SCIx_TXI_IRQ] = {
1860 		.desc = "tx empty",
1861 		.handler = sci_tx_interrupt,
1862 	},
1863 
1864 	[SCIx_BRI_IRQ] = {
1865 		.desc = "break",
1866 		.handler = sci_br_interrupt,
1867 	},
1868 
1869 	[SCIx_DRI_IRQ] = {
1870 		.desc = "rx ready",
1871 		.handler = sci_rx_interrupt,
1872 	},
1873 
1874 	[SCIx_TEI_IRQ] = {
1875 		.desc = "tx end",
1876 		.handler = sci_tx_interrupt,
1877 	},
1878 
1879 	/*
1880 	 * Special muxed handler.
1881 	 */
1882 	[SCIx_MUX_IRQ] = {
1883 		.desc = "mux",
1884 		.handler = sci_mpxed_interrupt,
1885 	},
1886 };
1887 
1888 static int sci_request_irq(struct sci_port *port)
1889 {
1890 	struct uart_port *up = &port->port;
1891 	int i, j, w, ret = 0;
1892 
1893 	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1894 		const struct sci_irq_desc *desc;
1895 		int irq;
1896 
1897 		/* Check if already registered (muxed) */
1898 		for (w = 0; w < i; w++)
1899 			if (port->irqs[w] == port->irqs[i])
1900 				w = i + 1;
1901 		if (w > i)
1902 			continue;
1903 
1904 		if (SCIx_IRQ_IS_MUXED(port)) {
1905 			i = SCIx_MUX_IRQ;
1906 			irq = up->irq;
1907 		} else {
1908 			irq = port->irqs[i];
1909 
1910 			/*
1911 			 * Certain port types won't support all of the
1912 			 * available interrupt sources.
1913 			 */
1914 			if (unlikely(irq < 0))
1915 				continue;
1916 		}
1917 
1918 		desc = sci_irq_desc + i;
1919 		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1920 					    dev_name(up->dev), desc->desc);
1921 		if (!port->irqstr[j]) {
1922 			ret = -ENOMEM;
1923 			goto out_nomem;
1924 		}
1925 
1926 		ret = request_irq(irq, desc->handler, up->irqflags,
1927 				  port->irqstr[j], port);
1928 		if (unlikely(ret)) {
1929 			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1930 			goto out_noirq;
1931 		}
1932 	}
1933 
1934 	return 0;
1935 
1936 out_noirq:
1937 	while (--i >= 0)
1938 		free_irq(port->irqs[i], port);
1939 
1940 out_nomem:
1941 	while (--j >= 0)
1942 		kfree(port->irqstr[j]);
1943 
1944 	return ret;
1945 }
1946 
1947 static void sci_free_irq(struct sci_port *port)
1948 {
1949 	int i, j;
1950 
1951 	/*
1952 	 * Intentionally in reverse order so we iterate over the muxed
1953 	 * IRQ first.
1954 	 */
1955 	for (i = 0; i < SCIx_NR_IRQS; i++) {
1956 		int irq = port->irqs[i];
1957 
1958 		/*
1959 		 * Certain port types won't support all of the available
1960 		 * interrupt sources.
1961 		 */
1962 		if (unlikely(irq < 0))
1963 			continue;
1964 
1965 		/* Check if already freed (irq was muxed) */
1966 		for (j = 0; j < i; j++)
1967 			if (port->irqs[j] == irq)
1968 				j = i + 1;
1969 		if (j > i)
1970 			continue;
1971 
1972 		free_irq(port->irqs[i], port);
1973 		kfree(port->irqstr[i]);
1974 
1975 		if (SCIx_IRQ_IS_MUXED(port)) {
1976 			/* If there's only one IRQ, we're done. */
1977 			return;
1978 		}
1979 	}
1980 }
1981 
1982 static unsigned int sci_tx_empty(struct uart_port *port)
1983 {
1984 	unsigned short status = serial_port_in(port, SCxSR);
1985 	unsigned short in_tx_fifo = sci_txfill(port);
1986 
1987 	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1988 }
1989 
1990 static void sci_set_rts(struct uart_port *port, bool state)
1991 {
1992 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1993 		u16 data = serial_port_in(port, SCPDR);
1994 
1995 		/* Active low */
1996 		if (state)
1997 			data &= ~SCPDR_RTSD;
1998 		else
1999 			data |= SCPDR_RTSD;
2000 		serial_port_out(port, SCPDR, data);
2001 
2002 		/* RTS# is output */
2003 		serial_port_out(port, SCPCR,
2004 				serial_port_in(port, SCPCR) | SCPCR_RTSC);
2005 	} else if (sci_getreg(port, SCSPTR)->size) {
2006 		u16 ctrl = serial_port_in(port, SCSPTR);
2007 
2008 		/* Active low */
2009 		if (state)
2010 			ctrl &= ~SCSPTR_RTSDT;
2011 		else
2012 			ctrl |= SCSPTR_RTSDT;
2013 		serial_port_out(port, SCSPTR, ctrl);
2014 	}
2015 }
2016 
2017 static bool sci_get_cts(struct uart_port *port)
2018 {
2019 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2020 		/* Active low */
2021 		return !(serial_port_in(port, SCPDR) & SCPDR_CTSD);
2022 	} else if (sci_getreg(port, SCSPTR)->size) {
2023 		/* Active low */
2024 		return !(serial_port_in(port, SCSPTR) & SCSPTR_CTSDT);
2025 	}
2026 
2027 	return true;
2028 }
2029 
2030 /*
2031  * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
2032  * CTS/RTS is supported in hardware by at least one port and controlled
2033  * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
2034  * handled via the ->init_pins() op, which is a bit of a one-way street,
2035  * lacking any ability to defer pin control -- this will later be
2036  * converted over to the GPIO framework).
2037  *
2038  * Other modes (such as loopback) are supported generically on certain
2039  * port types, but not others. For these it's sufficient to test for the
2040  * existence of the support register and simply ignore the port type.
2041  */
2042 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
2043 {
2044 	struct sci_port *s = to_sci_port(port);
2045 
2046 	if (mctrl & TIOCM_LOOP) {
2047 		const struct plat_sci_reg *reg;
2048 
2049 		/*
2050 		 * Standard loopback mode for SCFCR ports.
2051 		 */
2052 		reg = sci_getreg(port, SCFCR);
2053 		if (reg->size)
2054 			serial_port_out(port, SCFCR,
2055 					serial_port_in(port, SCFCR) |
2056 					SCFCR_LOOP);
2057 	}
2058 
2059 	mctrl_gpio_set(s->gpios, mctrl);
2060 
2061 	if (!s->has_rtscts)
2062 		return;
2063 
2064 	if (!(mctrl & TIOCM_RTS)) {
2065 		/* Disable Auto RTS */
2066 		serial_port_out(port, SCFCR,
2067 				serial_port_in(port, SCFCR) & ~SCFCR_MCE);
2068 
2069 		/* Clear RTS */
2070 		sci_set_rts(port, 0);
2071 	} else if (s->autorts) {
2072 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2073 			/* Enable RTS# pin function */
2074 			serial_port_out(port, SCPCR,
2075 				serial_port_in(port, SCPCR) & ~SCPCR_RTSC);
2076 		}
2077 
2078 		/* Enable Auto RTS */
2079 		serial_port_out(port, SCFCR,
2080 				serial_port_in(port, SCFCR) | SCFCR_MCE);
2081 	} else {
2082 		/* Set RTS */
2083 		sci_set_rts(port, 1);
2084 	}
2085 }
2086 
2087 static unsigned int sci_get_mctrl(struct uart_port *port)
2088 {
2089 	struct sci_port *s = to_sci_port(port);
2090 	struct mctrl_gpios *gpios = s->gpios;
2091 	unsigned int mctrl = 0;
2092 
2093 	mctrl_gpio_get(gpios, &mctrl);
2094 
2095 	/*
2096 	 * CTS/RTS is handled in hardware when supported, while nothing
2097 	 * else is wired up.
2098 	 */
2099 	if (s->autorts) {
2100 		if (sci_get_cts(port))
2101 			mctrl |= TIOCM_CTS;
2102 	} else if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_CTS)) {
2103 		mctrl |= TIOCM_CTS;
2104 	}
2105 	if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DSR))
2106 		mctrl |= TIOCM_DSR;
2107 	if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DCD))
2108 		mctrl |= TIOCM_CAR;
2109 
2110 	return mctrl;
2111 }
2112 
2113 static void sci_enable_ms(struct uart_port *port)
2114 {
2115 	mctrl_gpio_enable_ms(to_sci_port(port)->gpios);
2116 }
2117 
2118 static void sci_break_ctl(struct uart_port *port, int break_state)
2119 {
2120 	unsigned short scscr, scsptr;
2121 	unsigned long flags;
2122 
2123 	/* check wheter the port has SCSPTR */
2124 	if (!sci_getreg(port, SCSPTR)->size) {
2125 		/*
2126 		 * Not supported by hardware. Most parts couple break and rx
2127 		 * interrupts together, with break detection always enabled.
2128 		 */
2129 		return;
2130 	}
2131 
2132 	spin_lock_irqsave(&port->lock, flags);
2133 	scsptr = serial_port_in(port, SCSPTR);
2134 	scscr = serial_port_in(port, SCSCR);
2135 
2136 	if (break_state == -1) {
2137 		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
2138 		scscr &= ~SCSCR_TE;
2139 	} else {
2140 		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
2141 		scscr |= SCSCR_TE;
2142 	}
2143 
2144 	serial_port_out(port, SCSPTR, scsptr);
2145 	serial_port_out(port, SCSCR, scscr);
2146 	spin_unlock_irqrestore(&port->lock, flags);
2147 }
2148 
2149 static int sci_startup(struct uart_port *port)
2150 {
2151 	struct sci_port *s = to_sci_port(port);
2152 	int ret;
2153 
2154 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2155 
2156 	sci_request_dma(port);
2157 
2158 	ret = sci_request_irq(s);
2159 	if (unlikely(ret < 0)) {
2160 		sci_free_dma(port);
2161 		return ret;
2162 	}
2163 
2164 	return 0;
2165 }
2166 
2167 static void sci_shutdown(struct uart_port *port)
2168 {
2169 	struct sci_port *s = to_sci_port(port);
2170 	unsigned long flags;
2171 	u16 scr;
2172 
2173 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2174 
2175 	s->autorts = false;
2176 	mctrl_gpio_disable_ms(to_sci_port(port)->gpios);
2177 
2178 	spin_lock_irqsave(&port->lock, flags);
2179 	sci_stop_rx(port);
2180 	sci_stop_tx(port);
2181 	/*
2182 	 * Stop RX and TX, disable related interrupts, keep clock source
2183 	 * and HSCIF TOT bits
2184 	 */
2185 	scr = serial_port_in(port, SCSCR);
2186 	serial_port_out(port, SCSCR, scr &
2187 			(SCSCR_CKE1 | SCSCR_CKE0 | s->hscif_tot));
2188 	spin_unlock_irqrestore(&port->lock, flags);
2189 
2190 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2191 	if (s->chan_rx_saved) {
2192 		dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
2193 			port->line);
2194 		hrtimer_cancel(&s->rx_timer);
2195 	}
2196 #endif
2197 
2198 	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0)
2199 		del_timer_sync(&s->rx_fifo_timer);
2200 	sci_free_irq(s);
2201 	sci_free_dma(port);
2202 }
2203 
2204 static int sci_sck_calc(struct sci_port *s, unsigned int bps,
2205 			unsigned int *srr)
2206 {
2207 	unsigned long freq = s->clk_rates[SCI_SCK];
2208 	int err, min_err = INT_MAX;
2209 	unsigned int sr;
2210 
2211 	if (s->port.type != PORT_HSCIF)
2212 		freq *= 2;
2213 
2214 	for_each_sr(sr, s) {
2215 		err = DIV_ROUND_CLOSEST(freq, sr) - bps;
2216 		if (abs(err) >= abs(min_err))
2217 			continue;
2218 
2219 		min_err = err;
2220 		*srr = sr - 1;
2221 
2222 		if (!err)
2223 			break;
2224 	}
2225 
2226 	dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
2227 		*srr + 1);
2228 	return min_err;
2229 }
2230 
2231 static int sci_brg_calc(struct sci_port *s, unsigned int bps,
2232 			unsigned long freq, unsigned int *dlr,
2233 			unsigned int *srr)
2234 {
2235 	int err, min_err = INT_MAX;
2236 	unsigned int sr, dl;
2237 
2238 	if (s->port.type != PORT_HSCIF)
2239 		freq *= 2;
2240 
2241 	for_each_sr(sr, s) {
2242 		dl = DIV_ROUND_CLOSEST(freq, sr * bps);
2243 		dl = clamp(dl, 1U, 65535U);
2244 
2245 		err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
2246 		if (abs(err) >= abs(min_err))
2247 			continue;
2248 
2249 		min_err = err;
2250 		*dlr = dl;
2251 		*srr = sr - 1;
2252 
2253 		if (!err)
2254 			break;
2255 	}
2256 
2257 	dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
2258 		min_err, *dlr, *srr + 1);
2259 	return min_err;
2260 }
2261 
2262 /* calculate sample rate, BRR, and clock select */
2263 static int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
2264 			  unsigned int *brr, unsigned int *srr,
2265 			  unsigned int *cks)
2266 {
2267 	unsigned long freq = s->clk_rates[SCI_FCK];
2268 	unsigned int sr, br, prediv, scrate, c;
2269 	int err, min_err = INT_MAX;
2270 
2271 	if (s->port.type != PORT_HSCIF)
2272 		freq *= 2;
2273 
2274 	/*
2275 	 * Find the combination of sample rate and clock select with the
2276 	 * smallest deviation from the desired baud rate.
2277 	 * Prefer high sample rates to maximise the receive margin.
2278 	 *
2279 	 * M: Receive margin (%)
2280 	 * N: Ratio of bit rate to clock (N = sampling rate)
2281 	 * D: Clock duty (D = 0 to 1.0)
2282 	 * L: Frame length (L = 9 to 12)
2283 	 * F: Absolute value of clock frequency deviation
2284 	 *
2285 	 *  M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
2286 	 *      (|D - 0.5| / N * (1 + F))|
2287 	 *  NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
2288 	 */
2289 	for_each_sr(sr, s) {
2290 		for (c = 0; c <= 3; c++) {
2291 			/* integerized formulas from HSCIF documentation */
2292 			prediv = sr * (1 << (2 * c + 1));
2293 
2294 			/*
2295 			 * We need to calculate:
2296 			 *
2297 			 *     br = freq / (prediv * bps) clamped to [1..256]
2298 			 *     err = freq / (br * prediv) - bps
2299 			 *
2300 			 * Watch out for overflow when calculating the desired
2301 			 * sampling clock rate!
2302 			 */
2303 			if (bps > UINT_MAX / prediv)
2304 				break;
2305 
2306 			scrate = prediv * bps;
2307 			br = DIV_ROUND_CLOSEST(freq, scrate);
2308 			br = clamp(br, 1U, 256U);
2309 
2310 			err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
2311 			if (abs(err) >= abs(min_err))
2312 				continue;
2313 
2314 			min_err = err;
2315 			*brr = br - 1;
2316 			*srr = sr - 1;
2317 			*cks = c;
2318 
2319 			if (!err)
2320 				goto found;
2321 		}
2322 	}
2323 
2324 found:
2325 	dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
2326 		min_err, *brr, *srr + 1, *cks);
2327 	return min_err;
2328 }
2329 
2330 static void sci_reset(struct uart_port *port)
2331 {
2332 	const struct plat_sci_reg *reg;
2333 	unsigned int status;
2334 	struct sci_port *s = to_sci_port(port);
2335 
2336 	serial_port_out(port, SCSCR, s->hscif_tot);	/* TE=0, RE=0, CKE1=0 */
2337 
2338 	reg = sci_getreg(port, SCFCR);
2339 	if (reg->size)
2340 		serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
2341 
2342 	sci_clear_SCxSR(port,
2343 			SCxSR_RDxF_CLEAR(port) & SCxSR_ERROR_CLEAR(port) &
2344 			SCxSR_BREAK_CLEAR(port));
2345 	if (sci_getreg(port, SCLSR)->size) {
2346 		status = serial_port_in(port, SCLSR);
2347 		status &= ~(SCLSR_TO | SCLSR_ORER);
2348 		serial_port_out(port, SCLSR, status);
2349 	}
2350 
2351 	if (s->rx_trigger > 1) {
2352 		if (s->rx_fifo_timeout) {
2353 			scif_set_rtrg(port, 1);
2354 			timer_setup(&s->rx_fifo_timer, rx_fifo_timer_fn, 0);
2355 		} else {
2356 			if (port->type == PORT_SCIFA ||
2357 			    port->type == PORT_SCIFB)
2358 				scif_set_rtrg(port, 1);
2359 			else
2360 				scif_set_rtrg(port, s->rx_trigger);
2361 		}
2362 	}
2363 }
2364 
2365 static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
2366 			    struct ktermios *old)
2367 {
2368 	unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i, bits;
2369 	unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
2370 	unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
2371 	struct sci_port *s = to_sci_port(port);
2372 	const struct plat_sci_reg *reg;
2373 	int min_err = INT_MAX, err;
2374 	unsigned long max_freq = 0;
2375 	int best_clk = -1;
2376 	unsigned long flags;
2377 
2378 	if ((termios->c_cflag & CSIZE) == CS7)
2379 		smr_val |= SCSMR_CHR;
2380 	if (termios->c_cflag & PARENB)
2381 		smr_val |= SCSMR_PE;
2382 	if (termios->c_cflag & PARODD)
2383 		smr_val |= SCSMR_PE | SCSMR_ODD;
2384 	if (termios->c_cflag & CSTOPB)
2385 		smr_val |= SCSMR_STOP;
2386 
2387 	/*
2388 	 * earlyprintk comes here early on with port->uartclk set to zero.
2389 	 * the clock framework is not up and running at this point so here
2390 	 * we assume that 115200 is the maximum baud rate. please note that
2391 	 * the baud rate is not programmed during earlyprintk - it is assumed
2392 	 * that the previous boot loader has enabled required clocks and
2393 	 * setup the baud rate generator hardware for us already.
2394 	 */
2395 	if (!port->uartclk) {
2396 		baud = uart_get_baud_rate(port, termios, old, 0, 115200);
2397 		goto done;
2398 	}
2399 
2400 	for (i = 0; i < SCI_NUM_CLKS; i++)
2401 		max_freq = max(max_freq, s->clk_rates[i]);
2402 
2403 	baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s));
2404 	if (!baud)
2405 		goto done;
2406 
2407 	/*
2408 	 * There can be multiple sources for the sampling clock.  Find the one
2409 	 * that gives us the smallest deviation from the desired baud rate.
2410 	 */
2411 
2412 	/* Optional Undivided External Clock */
2413 	if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA &&
2414 	    port->type != PORT_SCIFB) {
2415 		err = sci_sck_calc(s, baud, &srr1);
2416 		if (abs(err) < abs(min_err)) {
2417 			best_clk = SCI_SCK;
2418 			scr_val = SCSCR_CKE1;
2419 			sccks = SCCKS_CKS;
2420 			min_err = err;
2421 			srr = srr1;
2422 			if (!err)
2423 				goto done;
2424 		}
2425 	}
2426 
2427 	/* Optional BRG Frequency Divided External Clock */
2428 	if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
2429 		err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1,
2430 				   &srr1);
2431 		if (abs(err) < abs(min_err)) {
2432 			best_clk = SCI_SCIF_CLK;
2433 			scr_val = SCSCR_CKE1;
2434 			sccks = 0;
2435 			min_err = err;
2436 			dl = dl1;
2437 			srr = srr1;
2438 			if (!err)
2439 				goto done;
2440 		}
2441 	}
2442 
2443 	/* Optional BRG Frequency Divided Internal Clock */
2444 	if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
2445 		err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1,
2446 				   &srr1);
2447 		if (abs(err) < abs(min_err)) {
2448 			best_clk = SCI_BRG_INT;
2449 			scr_val = SCSCR_CKE1;
2450 			sccks = SCCKS_XIN;
2451 			min_err = err;
2452 			dl = dl1;
2453 			srr = srr1;
2454 			if (!min_err)
2455 				goto done;
2456 		}
2457 	}
2458 
2459 	/* Divided Functional Clock using standard Bit Rate Register */
2460 	err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1);
2461 	if (abs(err) < abs(min_err)) {
2462 		best_clk = SCI_FCK;
2463 		scr_val = 0;
2464 		min_err = err;
2465 		brr = brr1;
2466 		srr = srr1;
2467 		cks = cks1;
2468 	}
2469 
2470 done:
2471 	if (best_clk >= 0)
2472 		dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
2473 			s->clks[best_clk], baud, min_err);
2474 
2475 	sci_port_enable(s);
2476 
2477 	/*
2478 	 * Program the optional External Baud Rate Generator (BRG) first.
2479 	 * It controls the mux to select (H)SCK or frequency divided clock.
2480 	 */
2481 	if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
2482 		serial_port_out(port, SCDL, dl);
2483 		serial_port_out(port, SCCKS, sccks);
2484 	}
2485 
2486 	spin_lock_irqsave(&port->lock, flags);
2487 
2488 	sci_reset(port);
2489 
2490 	uart_update_timeout(port, termios->c_cflag, baud);
2491 
2492 	/* byte size and parity */
2493 	switch (termios->c_cflag & CSIZE) {
2494 	case CS5:
2495 		bits = 7;
2496 		break;
2497 	case CS6:
2498 		bits = 8;
2499 		break;
2500 	case CS7:
2501 		bits = 9;
2502 		break;
2503 	default:
2504 		bits = 10;
2505 		break;
2506 	}
2507 
2508 	if (termios->c_cflag & CSTOPB)
2509 		bits++;
2510 	if (termios->c_cflag & PARENB)
2511 		bits++;
2512 
2513 	if (best_clk >= 0) {
2514 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
2515 			switch (srr + 1) {
2516 			case 5:  smr_val |= SCSMR_SRC_5;  break;
2517 			case 7:  smr_val |= SCSMR_SRC_7;  break;
2518 			case 11: smr_val |= SCSMR_SRC_11; break;
2519 			case 13: smr_val |= SCSMR_SRC_13; break;
2520 			case 16: smr_val |= SCSMR_SRC_16; break;
2521 			case 17: smr_val |= SCSMR_SRC_17; break;
2522 			case 19: smr_val |= SCSMR_SRC_19; break;
2523 			case 27: smr_val |= SCSMR_SRC_27; break;
2524 			}
2525 		smr_val |= cks;
2526 		serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2527 		serial_port_out(port, SCSMR, smr_val);
2528 		serial_port_out(port, SCBRR, brr);
2529 		if (sci_getreg(port, HSSRR)->size) {
2530 			unsigned int hssrr = srr | HSCIF_SRE;
2531 			/* Calculate deviation from intended rate at the
2532 			 * center of the last stop bit in sampling clocks.
2533 			 */
2534 			int last_stop = bits * 2 - 1;
2535 			int deviation = DIV_ROUND_CLOSEST(min_err * last_stop *
2536 							  (int)(srr + 1),
2537 							  2 * (int)baud);
2538 
2539 			if (abs(deviation) >= 2) {
2540 				/* At least two sampling clocks off at the
2541 				 * last stop bit; we can increase the error
2542 				 * margin by shifting the sampling point.
2543 				 */
2544 				int shift = clamp(deviation / 2, -8, 7);
2545 
2546 				hssrr |= (shift << HSCIF_SRHP_SHIFT) &
2547 					 HSCIF_SRHP_MASK;
2548 				hssrr |= HSCIF_SRDE;
2549 			}
2550 			serial_port_out(port, HSSRR, hssrr);
2551 		}
2552 
2553 		/* Wait one bit interval */
2554 		udelay((1000000 + (baud - 1)) / baud);
2555 	} else {
2556 		/* Don't touch the bit rate configuration */
2557 		scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
2558 		smr_val |= serial_port_in(port, SCSMR) &
2559 			   (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS);
2560 		serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2561 		serial_port_out(port, SCSMR, smr_val);
2562 	}
2563 
2564 	sci_init_pins(port, termios->c_cflag);
2565 
2566 	port->status &= ~UPSTAT_AUTOCTS;
2567 	s->autorts = false;
2568 	reg = sci_getreg(port, SCFCR);
2569 	if (reg->size) {
2570 		unsigned short ctrl = serial_port_in(port, SCFCR);
2571 
2572 		if ((port->flags & UPF_HARD_FLOW) &&
2573 		    (termios->c_cflag & CRTSCTS)) {
2574 			/* There is no CTS interrupt to restart the hardware */
2575 			port->status |= UPSTAT_AUTOCTS;
2576 			/* MCE is enabled when RTS is raised */
2577 			s->autorts = true;
2578 		}
2579 
2580 		/*
2581 		 * As we've done a sci_reset() above, ensure we don't
2582 		 * interfere with the FIFOs while toggling MCE. As the
2583 		 * reset values could still be set, simply mask them out.
2584 		 */
2585 		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2586 
2587 		serial_port_out(port, SCFCR, ctrl);
2588 	}
2589 	if (port->flags & UPF_HARD_FLOW) {
2590 		/* Refresh (Auto) RTS */
2591 		sci_set_mctrl(port, port->mctrl);
2592 	}
2593 
2594 	scr_val |= SCSCR_RE | SCSCR_TE |
2595 		   (s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0));
2596 	serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2597 	if ((srr + 1 == 5) &&
2598 	    (port->type == PORT_SCIFA || port->type == PORT_SCIFB)) {
2599 		/*
2600 		 * In asynchronous mode, when the sampling rate is 1/5, first
2601 		 * received data may become invalid on some SCIFA and SCIFB.
2602 		 * To avoid this problem wait more than 1 serial data time (1
2603 		 * bit time x serial data number) after setting SCSCR.RE = 1.
2604 		 */
2605 		udelay(DIV_ROUND_UP(10 * 1000000, baud));
2606 	}
2607 
2608 	/*
2609 	 * Calculate delay for 2 DMA buffers (4 FIFO).
2610 	 * See serial_core.c::uart_update_timeout().
2611 	 * With 10 bits (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above
2612 	 * function calculates 1 jiffie for the data plus 5 jiffies for the
2613 	 * "slop(e)." Then below we calculate 5 jiffies (20ms) for 2 DMA
2614 	 * buffers (4 FIFO sizes), but when performing a faster transfer, the
2615 	 * value obtained by this formula is too small. Therefore, if the value
2616 	 * is smaller than 20ms, use 20ms as the timeout value for DMA.
2617 	 */
2618 	s->rx_frame = (10000 * bits) / (baud / 100);
2619 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2620 	s->rx_timeout = s->buf_len_rx * 2 * s->rx_frame;
2621 	if (s->rx_timeout < 20)
2622 		s->rx_timeout = 20;
2623 #endif
2624 
2625 	if ((termios->c_cflag & CREAD) != 0)
2626 		sci_start_rx(port);
2627 
2628 	spin_unlock_irqrestore(&port->lock, flags);
2629 
2630 	sci_port_disable(s);
2631 
2632 	if (UART_ENABLE_MS(port, termios->c_cflag))
2633 		sci_enable_ms(port);
2634 }
2635 
2636 static void sci_pm(struct uart_port *port, unsigned int state,
2637 		   unsigned int oldstate)
2638 {
2639 	struct sci_port *sci_port = to_sci_port(port);
2640 
2641 	switch (state) {
2642 	case UART_PM_STATE_OFF:
2643 		sci_port_disable(sci_port);
2644 		break;
2645 	default:
2646 		sci_port_enable(sci_port);
2647 		break;
2648 	}
2649 }
2650 
2651 static const char *sci_type(struct uart_port *port)
2652 {
2653 	switch (port->type) {
2654 	case PORT_IRDA:
2655 		return "irda";
2656 	case PORT_SCI:
2657 		return "sci";
2658 	case PORT_SCIF:
2659 		return "scif";
2660 	case PORT_SCIFA:
2661 		return "scifa";
2662 	case PORT_SCIFB:
2663 		return "scifb";
2664 	case PORT_HSCIF:
2665 		return "hscif";
2666 	}
2667 
2668 	return NULL;
2669 }
2670 
2671 static int sci_remap_port(struct uart_port *port)
2672 {
2673 	struct sci_port *sport = to_sci_port(port);
2674 
2675 	/*
2676 	 * Nothing to do if there's already an established membase.
2677 	 */
2678 	if (port->membase)
2679 		return 0;
2680 
2681 	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2682 		port->membase = ioremap_nocache(port->mapbase, sport->reg_size);
2683 		if (unlikely(!port->membase)) {
2684 			dev_err(port->dev, "can't remap port#%d\n", port->line);
2685 			return -ENXIO;
2686 		}
2687 	} else {
2688 		/*
2689 		 * For the simple (and majority of) cases where we don't
2690 		 * need to do any remapping, just cast the cookie
2691 		 * directly.
2692 		 */
2693 		port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2694 	}
2695 
2696 	return 0;
2697 }
2698 
2699 static void sci_release_port(struct uart_port *port)
2700 {
2701 	struct sci_port *sport = to_sci_port(port);
2702 
2703 	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2704 		iounmap(port->membase);
2705 		port->membase = NULL;
2706 	}
2707 
2708 	release_mem_region(port->mapbase, sport->reg_size);
2709 }
2710 
2711 static int sci_request_port(struct uart_port *port)
2712 {
2713 	struct resource *res;
2714 	struct sci_port *sport = to_sci_port(port);
2715 	int ret;
2716 
2717 	res = request_mem_region(port->mapbase, sport->reg_size,
2718 				 dev_name(port->dev));
2719 	if (unlikely(res == NULL)) {
2720 		dev_err(port->dev, "request_mem_region failed.");
2721 		return -EBUSY;
2722 	}
2723 
2724 	ret = sci_remap_port(port);
2725 	if (unlikely(ret != 0)) {
2726 		release_resource(res);
2727 		return ret;
2728 	}
2729 
2730 	return 0;
2731 }
2732 
2733 static void sci_config_port(struct uart_port *port, int flags)
2734 {
2735 	if (flags & UART_CONFIG_TYPE) {
2736 		struct sci_port *sport = to_sci_port(port);
2737 
2738 		port->type = sport->cfg->type;
2739 		sci_request_port(port);
2740 	}
2741 }
2742 
2743 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2744 {
2745 	if (ser->baud_base < 2400)
2746 		/* No paper tape reader for Mitch.. */
2747 		return -EINVAL;
2748 
2749 	return 0;
2750 }
2751 
2752 static const struct uart_ops sci_uart_ops = {
2753 	.tx_empty	= sci_tx_empty,
2754 	.set_mctrl	= sci_set_mctrl,
2755 	.get_mctrl	= sci_get_mctrl,
2756 	.start_tx	= sci_start_tx,
2757 	.stop_tx	= sci_stop_tx,
2758 	.stop_rx	= sci_stop_rx,
2759 	.enable_ms	= sci_enable_ms,
2760 	.break_ctl	= sci_break_ctl,
2761 	.startup	= sci_startup,
2762 	.shutdown	= sci_shutdown,
2763 	.flush_buffer	= sci_flush_buffer,
2764 	.set_termios	= sci_set_termios,
2765 	.pm		= sci_pm,
2766 	.type		= sci_type,
2767 	.release_port	= sci_release_port,
2768 	.request_port	= sci_request_port,
2769 	.config_port	= sci_config_port,
2770 	.verify_port	= sci_verify_port,
2771 #ifdef CONFIG_CONSOLE_POLL
2772 	.poll_get_char	= sci_poll_get_char,
2773 	.poll_put_char	= sci_poll_put_char,
2774 #endif
2775 };
2776 
2777 static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
2778 {
2779 	const char *clk_names[] = {
2780 		[SCI_FCK] = "fck",
2781 		[SCI_SCK] = "sck",
2782 		[SCI_BRG_INT] = "brg_int",
2783 		[SCI_SCIF_CLK] = "scif_clk",
2784 	};
2785 	struct clk *clk;
2786 	unsigned int i;
2787 
2788 	if (sci_port->cfg->type == PORT_HSCIF)
2789 		clk_names[SCI_SCK] = "hsck";
2790 
2791 	for (i = 0; i < SCI_NUM_CLKS; i++) {
2792 		clk = devm_clk_get(dev, clk_names[i]);
2793 		if (PTR_ERR(clk) == -EPROBE_DEFER)
2794 			return -EPROBE_DEFER;
2795 
2796 		if (IS_ERR(clk) && i == SCI_FCK) {
2797 			/*
2798 			 * "fck" used to be called "sci_ick", and we need to
2799 			 * maintain DT backward compatibility.
2800 			 */
2801 			clk = devm_clk_get(dev, "sci_ick");
2802 			if (PTR_ERR(clk) == -EPROBE_DEFER)
2803 				return -EPROBE_DEFER;
2804 
2805 			if (!IS_ERR(clk))
2806 				goto found;
2807 
2808 			/*
2809 			 * Not all SH platforms declare a clock lookup entry
2810 			 * for SCI devices, in which case we need to get the
2811 			 * global "peripheral_clk" clock.
2812 			 */
2813 			clk = devm_clk_get(dev, "peripheral_clk");
2814 			if (!IS_ERR(clk))
2815 				goto found;
2816 
2817 			dev_err(dev, "failed to get %s (%ld)\n", clk_names[i],
2818 				PTR_ERR(clk));
2819 			return PTR_ERR(clk);
2820 		}
2821 
2822 found:
2823 		if (IS_ERR(clk))
2824 			dev_dbg(dev, "failed to get %s (%ld)\n", clk_names[i],
2825 				PTR_ERR(clk));
2826 		else
2827 			dev_dbg(dev, "clk %s is %pC rate %lu\n", clk_names[i],
2828 				clk, clk_get_rate(clk));
2829 		sci_port->clks[i] = IS_ERR(clk) ? NULL : clk;
2830 	}
2831 	return 0;
2832 }
2833 
2834 static const struct sci_port_params *
2835 sci_probe_regmap(const struct plat_sci_port *cfg)
2836 {
2837 	unsigned int regtype;
2838 
2839 	if (cfg->regtype != SCIx_PROBE_REGTYPE)
2840 		return &sci_port_params[cfg->regtype];
2841 
2842 	switch (cfg->type) {
2843 	case PORT_SCI:
2844 		regtype = SCIx_SCI_REGTYPE;
2845 		break;
2846 	case PORT_IRDA:
2847 		regtype = SCIx_IRDA_REGTYPE;
2848 		break;
2849 	case PORT_SCIFA:
2850 		regtype = SCIx_SCIFA_REGTYPE;
2851 		break;
2852 	case PORT_SCIFB:
2853 		regtype = SCIx_SCIFB_REGTYPE;
2854 		break;
2855 	case PORT_SCIF:
2856 		/*
2857 		 * The SH-4 is a bit of a misnomer here, although that's
2858 		 * where this particular port layout originated. This
2859 		 * configuration (or some slight variation thereof)
2860 		 * remains the dominant model for all SCIFs.
2861 		 */
2862 		regtype = SCIx_SH4_SCIF_REGTYPE;
2863 		break;
2864 	case PORT_HSCIF:
2865 		regtype = SCIx_HSCIF_REGTYPE;
2866 		break;
2867 	default:
2868 		pr_err("Can't probe register map for given port\n");
2869 		return NULL;
2870 	}
2871 
2872 	return &sci_port_params[regtype];
2873 }
2874 
2875 static int sci_init_single(struct platform_device *dev,
2876 			   struct sci_port *sci_port, unsigned int index,
2877 			   const struct plat_sci_port *p, bool early)
2878 {
2879 	struct uart_port *port = &sci_port->port;
2880 	const struct resource *res;
2881 	unsigned int i;
2882 	int ret;
2883 
2884 	sci_port->cfg	= p;
2885 
2886 	port->ops	= &sci_uart_ops;
2887 	port->iotype	= UPIO_MEM;
2888 	port->line	= index;
2889 
2890 	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2891 	if (res == NULL)
2892 		return -ENOMEM;
2893 
2894 	port->mapbase = res->start;
2895 	sci_port->reg_size = resource_size(res);
2896 
2897 	for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i) {
2898 		if (i)
2899 			sci_port->irqs[i] = platform_get_irq_optional(dev, i);
2900 		else
2901 			sci_port->irqs[i] = platform_get_irq(dev, i);
2902 	}
2903 
2904 	/* The SCI generates several interrupts. They can be muxed together or
2905 	 * connected to different interrupt lines. In the muxed case only one
2906 	 * interrupt resource is specified as there is only one interrupt ID.
2907 	 * In the non-muxed case, up to 6 interrupt signals might be generated
2908 	 * from the SCI, however those signals might have their own individual
2909 	 * interrupt ID numbers, or muxed together with another interrupt.
2910 	 */
2911 	if (sci_port->irqs[0] < 0)
2912 		return -ENXIO;
2913 
2914 	if (sci_port->irqs[1] < 0)
2915 		for (i = 1; i < ARRAY_SIZE(sci_port->irqs); i++)
2916 			sci_port->irqs[i] = sci_port->irqs[0];
2917 
2918 	sci_port->params = sci_probe_regmap(p);
2919 	if (unlikely(sci_port->params == NULL))
2920 		return -EINVAL;
2921 
2922 	switch (p->type) {
2923 	case PORT_SCIFB:
2924 		sci_port->rx_trigger = 48;
2925 		break;
2926 	case PORT_HSCIF:
2927 		sci_port->rx_trigger = 64;
2928 		break;
2929 	case PORT_SCIFA:
2930 		sci_port->rx_trigger = 32;
2931 		break;
2932 	case PORT_SCIF:
2933 		if (p->regtype == SCIx_SH7705_SCIF_REGTYPE)
2934 			/* RX triggering not implemented for this IP */
2935 			sci_port->rx_trigger = 1;
2936 		else
2937 			sci_port->rx_trigger = 8;
2938 		break;
2939 	default:
2940 		sci_port->rx_trigger = 1;
2941 		break;
2942 	}
2943 
2944 	sci_port->rx_fifo_timeout = 0;
2945 	sci_port->hscif_tot = 0;
2946 
2947 	/* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2948 	 * match the SoC datasheet, this should be investigated. Let platform
2949 	 * data override the sampling rate for now.
2950 	 */
2951 	sci_port->sampling_rate_mask = p->sampling_rate
2952 				     ? SCI_SR(p->sampling_rate)
2953 				     : sci_port->params->sampling_rate_mask;
2954 
2955 	if (!early) {
2956 		ret = sci_init_clocks(sci_port, &dev->dev);
2957 		if (ret < 0)
2958 			return ret;
2959 
2960 		port->dev = &dev->dev;
2961 
2962 		pm_runtime_enable(&dev->dev);
2963 	}
2964 
2965 	port->type		= p->type;
2966 	port->flags		= UPF_FIXED_PORT | UPF_BOOT_AUTOCONF | p->flags;
2967 	port->fifosize		= sci_port->params->fifosize;
2968 
2969 	if (port->type == PORT_SCI) {
2970 		if (sci_port->reg_size >= 0x20)
2971 			port->regshift = 2;
2972 		else
2973 			port->regshift = 1;
2974 	}
2975 
2976 	/*
2977 	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
2978 	 * for the multi-IRQ ports, which is where we are primarily
2979 	 * concerned with the shutdown path synchronization.
2980 	 *
2981 	 * For the muxed case there's nothing more to do.
2982 	 */
2983 	port->irq		= sci_port->irqs[SCIx_RXI_IRQ];
2984 	port->irqflags		= 0;
2985 
2986 	port->serial_in		= sci_serial_in;
2987 	port->serial_out	= sci_serial_out;
2988 
2989 	return 0;
2990 }
2991 
2992 static void sci_cleanup_single(struct sci_port *port)
2993 {
2994 	pm_runtime_disable(port->port.dev);
2995 }
2996 
2997 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
2998     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
2999 static void serial_console_putchar(struct uart_port *port, int ch)
3000 {
3001 	sci_poll_put_char(port, ch);
3002 }
3003 
3004 /*
3005  *	Print a string to the serial port trying not to disturb
3006  *	any possible real use of the port...
3007  */
3008 static void serial_console_write(struct console *co, const char *s,
3009 				 unsigned count)
3010 {
3011 	struct sci_port *sci_port = &sci_ports[co->index];
3012 	struct uart_port *port = &sci_port->port;
3013 	unsigned short bits, ctrl, ctrl_temp;
3014 	unsigned long flags;
3015 	int locked = 1;
3016 
3017 #if defined(SUPPORT_SYSRQ)
3018 	if (port->sysrq)
3019 		locked = 0;
3020 	else
3021 #endif
3022 	if (oops_in_progress)
3023 		locked = spin_trylock_irqsave(&port->lock, flags);
3024 	else
3025 		spin_lock_irqsave(&port->lock, flags);
3026 
3027 	/* first save SCSCR then disable interrupts, keep clock source */
3028 	ctrl = serial_port_in(port, SCSCR);
3029 	ctrl_temp = SCSCR_RE | SCSCR_TE |
3030 		    (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
3031 		    (ctrl & (SCSCR_CKE1 | SCSCR_CKE0));
3032 	serial_port_out(port, SCSCR, ctrl_temp | sci_port->hscif_tot);
3033 
3034 	uart_console_write(port, s, count, serial_console_putchar);
3035 
3036 	/* wait until fifo is empty and last bit has been transmitted */
3037 	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
3038 	while ((serial_port_in(port, SCxSR) & bits) != bits)
3039 		cpu_relax();
3040 
3041 	/* restore the SCSCR */
3042 	serial_port_out(port, SCSCR, ctrl);
3043 
3044 	if (locked)
3045 		spin_unlock_irqrestore(&port->lock, flags);
3046 }
3047 
3048 static int serial_console_setup(struct console *co, char *options)
3049 {
3050 	struct sci_port *sci_port;
3051 	struct uart_port *port;
3052 	int baud = 115200;
3053 	int bits = 8;
3054 	int parity = 'n';
3055 	int flow = 'n';
3056 	int ret;
3057 
3058 	/*
3059 	 * Refuse to handle any bogus ports.
3060 	 */
3061 	if (co->index < 0 || co->index >= SCI_NPORTS)
3062 		return -ENODEV;
3063 
3064 	sci_port = &sci_ports[co->index];
3065 	port = &sci_port->port;
3066 
3067 	/*
3068 	 * Refuse to handle uninitialized ports.
3069 	 */
3070 	if (!port->ops)
3071 		return -ENODEV;
3072 
3073 	ret = sci_remap_port(port);
3074 	if (unlikely(ret != 0))
3075 		return ret;
3076 
3077 	if (options)
3078 		uart_parse_options(options, &baud, &parity, &bits, &flow);
3079 
3080 	return uart_set_options(port, co, baud, parity, bits, flow);
3081 }
3082 
3083 static struct console serial_console = {
3084 	.name		= "ttySC",
3085 	.device		= uart_console_device,
3086 	.write		= serial_console_write,
3087 	.setup		= serial_console_setup,
3088 	.flags		= CON_PRINTBUFFER,
3089 	.index		= -1,
3090 	.data		= &sci_uart_driver,
3091 };
3092 
3093 static struct console early_serial_console = {
3094 	.name           = "early_ttySC",
3095 	.write          = serial_console_write,
3096 	.flags          = CON_PRINTBUFFER,
3097 	.index		= -1,
3098 };
3099 
3100 static char early_serial_buf[32];
3101 
3102 static int sci_probe_earlyprintk(struct platform_device *pdev)
3103 {
3104 	const struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
3105 
3106 	if (early_serial_console.data)
3107 		return -EEXIST;
3108 
3109 	early_serial_console.index = pdev->id;
3110 
3111 	sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
3112 
3113 	serial_console_setup(&early_serial_console, early_serial_buf);
3114 
3115 	if (!strstr(early_serial_buf, "keep"))
3116 		early_serial_console.flags |= CON_BOOT;
3117 
3118 	register_console(&early_serial_console);
3119 	return 0;
3120 }
3121 
3122 #define SCI_CONSOLE	(&serial_console)
3123 
3124 #else
3125 static inline int sci_probe_earlyprintk(struct platform_device *pdev)
3126 {
3127 	return -EINVAL;
3128 }
3129 
3130 #define SCI_CONSOLE	NULL
3131 
3132 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */
3133 
3134 static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
3135 
3136 static DEFINE_MUTEX(sci_uart_registration_lock);
3137 static struct uart_driver sci_uart_driver = {
3138 	.owner		= THIS_MODULE,
3139 	.driver_name	= "sci",
3140 	.dev_name	= "ttySC",
3141 	.major		= SCI_MAJOR,
3142 	.minor		= SCI_MINOR_START,
3143 	.nr		= SCI_NPORTS,
3144 	.cons		= SCI_CONSOLE,
3145 };
3146 
3147 static int sci_remove(struct platform_device *dev)
3148 {
3149 	struct sci_port *port = platform_get_drvdata(dev);
3150 	unsigned int type = port->port.type;	/* uart_remove_... clears it */
3151 
3152 	sci_ports_in_use &= ~BIT(port->port.line);
3153 	uart_remove_one_port(&sci_uart_driver, &port->port);
3154 
3155 	sci_cleanup_single(port);
3156 
3157 	if (port->port.fifosize > 1)
3158 		device_remove_file(&dev->dev, &dev_attr_rx_fifo_trigger);
3159 	if (type == PORT_SCIFA || type == PORT_SCIFB || type == PORT_HSCIF)
3160 		device_remove_file(&dev->dev, &dev_attr_rx_fifo_timeout);
3161 
3162 	return 0;
3163 }
3164 
3165 
3166 #define SCI_OF_DATA(type, regtype)	(void *)((type) << 16 | (regtype))
3167 #define SCI_OF_TYPE(data)		((unsigned long)(data) >> 16)
3168 #define SCI_OF_REGTYPE(data)		((unsigned long)(data) & 0xffff)
3169 
3170 static const struct of_device_id of_sci_match[] = {
3171 	/* SoC-specific types */
3172 	{
3173 		.compatible = "renesas,scif-r7s72100",
3174 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE),
3175 	},
3176 	{
3177 		.compatible = "renesas,scif-r7s9210",
3178 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_RZ_SCIFA_REGTYPE),
3179 	},
3180 	/* Family-specific types */
3181 	{
3182 		.compatible = "renesas,rcar-gen1-scif",
3183 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3184 	}, {
3185 		.compatible = "renesas,rcar-gen2-scif",
3186 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3187 	}, {
3188 		.compatible = "renesas,rcar-gen3-scif",
3189 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3190 	},
3191 	/* Generic types */
3192 	{
3193 		.compatible = "renesas,scif",
3194 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE),
3195 	}, {
3196 		.compatible = "renesas,scifa",
3197 		.data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE),
3198 	}, {
3199 		.compatible = "renesas,scifb",
3200 		.data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE),
3201 	}, {
3202 		.compatible = "renesas,hscif",
3203 		.data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE),
3204 	}, {
3205 		.compatible = "renesas,sci",
3206 		.data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE),
3207 	}, {
3208 		/* Terminator */
3209 	},
3210 };
3211 MODULE_DEVICE_TABLE(of, of_sci_match);
3212 
3213 static struct plat_sci_port *sci_parse_dt(struct platform_device *pdev,
3214 					  unsigned int *dev_id)
3215 {
3216 	struct device_node *np = pdev->dev.of_node;
3217 	struct plat_sci_port *p;
3218 	struct sci_port *sp;
3219 	const void *data;
3220 	int id;
3221 
3222 	if (!IS_ENABLED(CONFIG_OF) || !np)
3223 		return NULL;
3224 
3225 	data = of_device_get_match_data(&pdev->dev);
3226 
3227 	p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
3228 	if (!p)
3229 		return NULL;
3230 
3231 	/* Get the line number from the aliases node. */
3232 	id = of_alias_get_id(np, "serial");
3233 	if (id < 0 && ~sci_ports_in_use)
3234 		id = ffz(sci_ports_in_use);
3235 	if (id < 0) {
3236 		dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
3237 		return NULL;
3238 	}
3239 	if (id >= ARRAY_SIZE(sci_ports)) {
3240 		dev_err(&pdev->dev, "serial%d out of range\n", id);
3241 		return NULL;
3242 	}
3243 
3244 	sp = &sci_ports[id];
3245 	*dev_id = id;
3246 
3247 	p->type = SCI_OF_TYPE(data);
3248 	p->regtype = SCI_OF_REGTYPE(data);
3249 
3250 	sp->has_rtscts = of_property_read_bool(np, "uart-has-rtscts");
3251 
3252 	return p;
3253 }
3254 
3255 static int sci_probe_single(struct platform_device *dev,
3256 				      unsigned int index,
3257 				      struct plat_sci_port *p,
3258 				      struct sci_port *sciport)
3259 {
3260 	int ret;
3261 
3262 	/* Sanity check */
3263 	if (unlikely(index >= SCI_NPORTS)) {
3264 		dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
3265 			   index+1, SCI_NPORTS);
3266 		dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
3267 		return -EINVAL;
3268 	}
3269 	BUILD_BUG_ON(SCI_NPORTS > sizeof(sci_ports_in_use) * 8);
3270 	if (sci_ports_in_use & BIT(index))
3271 		return -EBUSY;
3272 
3273 	mutex_lock(&sci_uart_registration_lock);
3274 	if (!sci_uart_driver.state) {
3275 		ret = uart_register_driver(&sci_uart_driver);
3276 		if (ret) {
3277 			mutex_unlock(&sci_uart_registration_lock);
3278 			return ret;
3279 		}
3280 	}
3281 	mutex_unlock(&sci_uart_registration_lock);
3282 
3283 	ret = sci_init_single(dev, sciport, index, p, false);
3284 	if (ret)
3285 		return ret;
3286 
3287 	sciport->gpios = mctrl_gpio_init(&sciport->port, 0);
3288 	if (IS_ERR(sciport->gpios))
3289 		return PTR_ERR(sciport->gpios);
3290 
3291 	if (sciport->has_rtscts) {
3292 		if (mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_CTS) ||
3293 		    mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_RTS)) {
3294 			dev_err(&dev->dev, "Conflicting RTS/CTS config\n");
3295 			return -EINVAL;
3296 		}
3297 		sciport->port.flags |= UPF_HARD_FLOW;
3298 	}
3299 
3300 	ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
3301 	if (ret) {
3302 		sci_cleanup_single(sciport);
3303 		return ret;
3304 	}
3305 
3306 	return 0;
3307 }
3308 
3309 static int sci_probe(struct platform_device *dev)
3310 {
3311 	struct plat_sci_port *p;
3312 	struct sci_port *sp;
3313 	unsigned int dev_id;
3314 	int ret;
3315 
3316 	/*
3317 	 * If we've come here via earlyprintk initialization, head off to
3318 	 * the special early probe. We don't have sufficient device state
3319 	 * to make it beyond this yet.
3320 	 */
3321 	if (is_early_platform_device(dev))
3322 		return sci_probe_earlyprintk(dev);
3323 
3324 	if (dev->dev.of_node) {
3325 		p = sci_parse_dt(dev, &dev_id);
3326 		if (p == NULL)
3327 			return -EINVAL;
3328 	} else {
3329 		p = dev->dev.platform_data;
3330 		if (p == NULL) {
3331 			dev_err(&dev->dev, "no platform data supplied\n");
3332 			return -EINVAL;
3333 		}
3334 
3335 		dev_id = dev->id;
3336 	}
3337 
3338 	sp = &sci_ports[dev_id];
3339 	platform_set_drvdata(dev, sp);
3340 
3341 	ret = sci_probe_single(dev, dev_id, p, sp);
3342 	if (ret)
3343 		return ret;
3344 
3345 	if (sp->port.fifosize > 1) {
3346 		ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_trigger);
3347 		if (ret)
3348 			return ret;
3349 	}
3350 	if (sp->port.type == PORT_SCIFA || sp->port.type == PORT_SCIFB ||
3351 	    sp->port.type == PORT_HSCIF) {
3352 		ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_timeout);
3353 		if (ret) {
3354 			if (sp->port.fifosize > 1) {
3355 				device_remove_file(&dev->dev,
3356 						   &dev_attr_rx_fifo_trigger);
3357 			}
3358 			return ret;
3359 		}
3360 	}
3361 
3362 #ifdef CONFIG_SH_STANDARD_BIOS
3363 	sh_bios_gdb_detach();
3364 #endif
3365 
3366 	sci_ports_in_use |= BIT(dev_id);
3367 	return 0;
3368 }
3369 
3370 static __maybe_unused int sci_suspend(struct device *dev)
3371 {
3372 	struct sci_port *sport = dev_get_drvdata(dev);
3373 
3374 	if (sport)
3375 		uart_suspend_port(&sci_uart_driver, &sport->port);
3376 
3377 	return 0;
3378 }
3379 
3380 static __maybe_unused int sci_resume(struct device *dev)
3381 {
3382 	struct sci_port *sport = dev_get_drvdata(dev);
3383 
3384 	if (sport)
3385 		uart_resume_port(&sci_uart_driver, &sport->port);
3386 
3387 	return 0;
3388 }
3389 
3390 static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
3391 
3392 static struct platform_driver sci_driver = {
3393 	.probe		= sci_probe,
3394 	.remove		= sci_remove,
3395 	.driver		= {
3396 		.name	= "sh-sci",
3397 		.pm	= &sci_dev_pm_ops,
3398 		.of_match_table = of_match_ptr(of_sci_match),
3399 	},
3400 };
3401 
3402 static int __init sci_init(void)
3403 {
3404 	pr_info("%s\n", banner);
3405 
3406 	return platform_driver_register(&sci_driver);
3407 }
3408 
3409 static void __exit sci_exit(void)
3410 {
3411 	platform_driver_unregister(&sci_driver);
3412 
3413 	if (sci_uart_driver.state)
3414 		uart_unregister_driver(&sci_uart_driver);
3415 }
3416 
3417 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
3418 early_platform_init_buffer("earlyprintk", &sci_driver,
3419 			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
3420 #endif
3421 #ifdef CONFIG_SERIAL_SH_SCI_EARLYCON
3422 static struct plat_sci_port port_cfg __initdata;
3423 
3424 static int __init early_console_setup(struct earlycon_device *device,
3425 				      int type)
3426 {
3427 	if (!device->port.membase)
3428 		return -ENODEV;
3429 
3430 	device->port.serial_in = sci_serial_in;
3431 	device->port.serial_out	= sci_serial_out;
3432 	device->port.type = type;
3433 	memcpy(&sci_ports[0].port, &device->port, sizeof(struct uart_port));
3434 	port_cfg.type = type;
3435 	sci_ports[0].cfg = &port_cfg;
3436 	sci_ports[0].params = sci_probe_regmap(&port_cfg);
3437 	port_cfg.scscr = sci_serial_in(&sci_ports[0].port, SCSCR);
3438 	sci_serial_out(&sci_ports[0].port, SCSCR,
3439 		       SCSCR_RE | SCSCR_TE | port_cfg.scscr);
3440 
3441 	device->con->write = serial_console_write;
3442 	return 0;
3443 }
3444 static int __init sci_early_console_setup(struct earlycon_device *device,
3445 					  const char *opt)
3446 {
3447 	return early_console_setup(device, PORT_SCI);
3448 }
3449 static int __init scif_early_console_setup(struct earlycon_device *device,
3450 					  const char *opt)
3451 {
3452 	return early_console_setup(device, PORT_SCIF);
3453 }
3454 static int __init rzscifa_early_console_setup(struct earlycon_device *device,
3455 					  const char *opt)
3456 {
3457 	port_cfg.regtype = SCIx_RZ_SCIFA_REGTYPE;
3458 	return early_console_setup(device, PORT_SCIF);
3459 }
3460 static int __init scifa_early_console_setup(struct earlycon_device *device,
3461 					  const char *opt)
3462 {
3463 	return early_console_setup(device, PORT_SCIFA);
3464 }
3465 static int __init scifb_early_console_setup(struct earlycon_device *device,
3466 					  const char *opt)
3467 {
3468 	return early_console_setup(device, PORT_SCIFB);
3469 }
3470 static int __init hscif_early_console_setup(struct earlycon_device *device,
3471 					  const char *opt)
3472 {
3473 	return early_console_setup(device, PORT_HSCIF);
3474 }
3475 
3476 OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup);
3477 OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup);
3478 OF_EARLYCON_DECLARE(scif, "renesas,scif-r7s9210", rzscifa_early_console_setup);
3479 OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup);
3480 OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup);
3481 OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup);
3482 #endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */
3483 
3484 module_init(sci_init);
3485 module_exit(sci_exit);
3486 
3487 MODULE_LICENSE("GPL");
3488 MODULE_ALIAS("platform:sh-sci");
3489 MODULE_AUTHOR("Paul Mundt");
3490 MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");
3491