xref: /openbmc/linux/drivers/tty/serial/sh-sci.c (revision ee89bd6b)
1 /*
2  * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
3  *
4  *  Copyright (C) 2002 - 2011  Paul Mundt
5  *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
6  *
7  * based off of the old drivers/char/sh-sci.c by:
8  *
9  *   Copyright (C) 1999, 2000  Niibe Yutaka
10  *   Copyright (C) 2000  Sugioka Toshinobu
11  *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
12  *   Modified to support SecureEdge. David McCullough (2002)
13  *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
14  *   Removed SH7300 support (Jul 2007).
15  *
16  * This file is subject to the terms and conditions of the GNU General Public
17  * License.  See the file "COPYING" in the main directory of this archive
18  * for more details.
19  */
20 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
21 #define SUPPORT_SYSRQ
22 #endif
23 
24 #undef DEBUG
25 
26 #include <linux/module.h>
27 #include <linux/errno.h>
28 #include <linux/sh_dma.h>
29 #include <linux/timer.h>
30 #include <linux/interrupt.h>
31 #include <linux/tty.h>
32 #include <linux/tty_flip.h>
33 #include <linux/serial.h>
34 #include <linux/major.h>
35 #include <linux/string.h>
36 #include <linux/sysrq.h>
37 #include <linux/ioport.h>
38 #include <linux/mm.h>
39 #include <linux/init.h>
40 #include <linux/delay.h>
41 #include <linux/console.h>
42 #include <linux/platform_device.h>
43 #include <linux/serial_sci.h>
44 #include <linux/notifier.h>
45 #include <linux/pm_runtime.h>
46 #include <linux/cpufreq.h>
47 #include <linux/clk.h>
48 #include <linux/ctype.h>
49 #include <linux/err.h>
50 #include <linux/dmaengine.h>
51 #include <linux/dma-mapping.h>
52 #include <linux/scatterlist.h>
53 #include <linux/slab.h>
54 #include <linux/gpio.h>
55 
56 #ifdef CONFIG_SUPERH
57 #include <asm/sh_bios.h>
58 #endif
59 
60 #include "sh-sci.h"
61 
62 struct sci_port {
63 	struct uart_port	port;
64 
65 	/* Platform configuration */
66 	struct plat_sci_port	*cfg;
67 
68 	/* Break timer */
69 	struct timer_list	break_timer;
70 	int			break_flag;
71 
72 	/* Interface clock */
73 	struct clk		*iclk;
74 	/* Function clock */
75 	struct clk		*fclk;
76 
77 	char			*irqstr[SCIx_NR_IRQS];
78 	char			*gpiostr[SCIx_NR_FNS];
79 
80 	struct dma_chan			*chan_tx;
81 	struct dma_chan			*chan_rx;
82 
83 #ifdef CONFIG_SERIAL_SH_SCI_DMA
84 	struct dma_async_tx_descriptor	*desc_tx;
85 	struct dma_async_tx_descriptor	*desc_rx[2];
86 	dma_cookie_t			cookie_tx;
87 	dma_cookie_t			cookie_rx[2];
88 	dma_cookie_t			active_rx;
89 	struct scatterlist		sg_tx;
90 	unsigned int			sg_len_tx;
91 	struct scatterlist		sg_rx[2];
92 	size_t				buf_len_rx;
93 	struct sh_dmae_slave		param_tx;
94 	struct sh_dmae_slave		param_rx;
95 	struct work_struct		work_tx;
96 	struct work_struct		work_rx;
97 	struct timer_list		rx_timer;
98 	unsigned int			rx_timeout;
99 #endif
100 
101 	struct notifier_block		freq_transition;
102 };
103 
104 /* Function prototypes */
105 static void sci_start_tx(struct uart_port *port);
106 static void sci_stop_tx(struct uart_port *port);
107 static void sci_start_rx(struct uart_port *port);
108 
109 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
110 
111 static struct sci_port sci_ports[SCI_NPORTS];
112 static struct uart_driver sci_uart_driver;
113 
114 static inline struct sci_port *
115 to_sci_port(struct uart_port *uart)
116 {
117 	return container_of(uart, struct sci_port, port);
118 }
119 
120 struct plat_sci_reg {
121 	u8 offset, size;
122 };
123 
124 /* Helper for invalidating specific entries of an inherited map. */
125 #define sci_reg_invalid	{ .offset = 0, .size = 0 }
126 
127 static struct plat_sci_reg sci_regmap[SCIx_NR_REGTYPES][SCIx_NR_REGS] = {
128 	[SCIx_PROBE_REGTYPE] = {
129 		[0 ... SCIx_NR_REGS - 1] = sci_reg_invalid,
130 	},
131 
132 	/*
133 	 * Common SCI definitions, dependent on the port's regshift
134 	 * value.
135 	 */
136 	[SCIx_SCI_REGTYPE] = {
137 		[SCSMR]		= { 0x00,  8 },
138 		[SCBRR]		= { 0x01,  8 },
139 		[SCSCR]		= { 0x02,  8 },
140 		[SCxTDR]	= { 0x03,  8 },
141 		[SCxSR]		= { 0x04,  8 },
142 		[SCxRDR]	= { 0x05,  8 },
143 		[SCFCR]		= sci_reg_invalid,
144 		[SCFDR]		= sci_reg_invalid,
145 		[SCTFDR]	= sci_reg_invalid,
146 		[SCRFDR]	= sci_reg_invalid,
147 		[SCSPTR]	= sci_reg_invalid,
148 		[SCLSR]		= sci_reg_invalid,
149 	},
150 
151 	/*
152 	 * Common definitions for legacy IrDA ports, dependent on
153 	 * regshift value.
154 	 */
155 	[SCIx_IRDA_REGTYPE] = {
156 		[SCSMR]		= { 0x00,  8 },
157 		[SCBRR]		= { 0x01,  8 },
158 		[SCSCR]		= { 0x02,  8 },
159 		[SCxTDR]	= { 0x03,  8 },
160 		[SCxSR]		= { 0x04,  8 },
161 		[SCxRDR]	= { 0x05,  8 },
162 		[SCFCR]		= { 0x06,  8 },
163 		[SCFDR]		= { 0x07, 16 },
164 		[SCTFDR]	= sci_reg_invalid,
165 		[SCRFDR]	= sci_reg_invalid,
166 		[SCSPTR]	= sci_reg_invalid,
167 		[SCLSR]		= sci_reg_invalid,
168 	},
169 
170 	/*
171 	 * Common SCIFA definitions.
172 	 */
173 	[SCIx_SCIFA_REGTYPE] = {
174 		[SCSMR]		= { 0x00, 16 },
175 		[SCBRR]		= { 0x04,  8 },
176 		[SCSCR]		= { 0x08, 16 },
177 		[SCxTDR]	= { 0x20,  8 },
178 		[SCxSR]		= { 0x14, 16 },
179 		[SCxRDR]	= { 0x24,  8 },
180 		[SCFCR]		= { 0x18, 16 },
181 		[SCFDR]		= { 0x1c, 16 },
182 		[SCTFDR]	= sci_reg_invalid,
183 		[SCRFDR]	= sci_reg_invalid,
184 		[SCSPTR]	= sci_reg_invalid,
185 		[SCLSR]		= sci_reg_invalid,
186 	},
187 
188 	/*
189 	 * Common SCIFB definitions.
190 	 */
191 	[SCIx_SCIFB_REGTYPE] = {
192 		[SCSMR]		= { 0x00, 16 },
193 		[SCBRR]		= { 0x04,  8 },
194 		[SCSCR]		= { 0x08, 16 },
195 		[SCxTDR]	= { 0x40,  8 },
196 		[SCxSR]		= { 0x14, 16 },
197 		[SCxRDR]	= { 0x60,  8 },
198 		[SCFCR]		= { 0x18, 16 },
199 		[SCFDR]		= sci_reg_invalid,
200 		[SCTFDR]	= { 0x38, 16 },
201 		[SCRFDR]	= { 0x3c, 16 },
202 		[SCSPTR]	= sci_reg_invalid,
203 		[SCLSR]		= sci_reg_invalid,
204 	},
205 
206 	/*
207 	 * Common SH-2(A) SCIF definitions for ports with FIFO data
208 	 * count registers.
209 	 */
210 	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
211 		[SCSMR]		= { 0x00, 16 },
212 		[SCBRR]		= { 0x04,  8 },
213 		[SCSCR]		= { 0x08, 16 },
214 		[SCxTDR]	= { 0x0c,  8 },
215 		[SCxSR]		= { 0x10, 16 },
216 		[SCxRDR]	= { 0x14,  8 },
217 		[SCFCR]		= { 0x18, 16 },
218 		[SCFDR]		= { 0x1c, 16 },
219 		[SCTFDR]	= sci_reg_invalid,
220 		[SCRFDR]	= sci_reg_invalid,
221 		[SCSPTR]	= { 0x20, 16 },
222 		[SCLSR]		= { 0x24, 16 },
223 	},
224 
225 	/*
226 	 * Common SH-3 SCIF definitions.
227 	 */
228 	[SCIx_SH3_SCIF_REGTYPE] = {
229 		[SCSMR]		= { 0x00,  8 },
230 		[SCBRR]		= { 0x02,  8 },
231 		[SCSCR]		= { 0x04,  8 },
232 		[SCxTDR]	= { 0x06,  8 },
233 		[SCxSR]		= { 0x08, 16 },
234 		[SCxRDR]	= { 0x0a,  8 },
235 		[SCFCR]		= { 0x0c,  8 },
236 		[SCFDR]		= { 0x0e, 16 },
237 		[SCTFDR]	= sci_reg_invalid,
238 		[SCRFDR]	= sci_reg_invalid,
239 		[SCSPTR]	= sci_reg_invalid,
240 		[SCLSR]		= sci_reg_invalid,
241 	},
242 
243 	/*
244 	 * Common SH-4(A) SCIF(B) definitions.
245 	 */
246 	[SCIx_SH4_SCIF_REGTYPE] = {
247 		[SCSMR]		= { 0x00, 16 },
248 		[SCBRR]		= { 0x04,  8 },
249 		[SCSCR]		= { 0x08, 16 },
250 		[SCxTDR]	= { 0x0c,  8 },
251 		[SCxSR]		= { 0x10, 16 },
252 		[SCxRDR]	= { 0x14,  8 },
253 		[SCFCR]		= { 0x18, 16 },
254 		[SCFDR]		= { 0x1c, 16 },
255 		[SCTFDR]	= sci_reg_invalid,
256 		[SCRFDR]	= sci_reg_invalid,
257 		[SCSPTR]	= { 0x20, 16 },
258 		[SCLSR]		= { 0x24, 16 },
259 	},
260 
261 	/*
262 	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
263 	 * register.
264 	 */
265 	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
266 		[SCSMR]		= { 0x00, 16 },
267 		[SCBRR]		= { 0x04,  8 },
268 		[SCSCR]		= { 0x08, 16 },
269 		[SCxTDR]	= { 0x0c,  8 },
270 		[SCxSR]		= { 0x10, 16 },
271 		[SCxRDR]	= { 0x14,  8 },
272 		[SCFCR]		= { 0x18, 16 },
273 		[SCFDR]		= { 0x1c, 16 },
274 		[SCTFDR]	= sci_reg_invalid,
275 		[SCRFDR]	= sci_reg_invalid,
276 		[SCSPTR]	= sci_reg_invalid,
277 		[SCLSR]		= { 0x24, 16 },
278 	},
279 
280 	/*
281 	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
282 	 * count registers.
283 	 */
284 	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
285 		[SCSMR]		= { 0x00, 16 },
286 		[SCBRR]		= { 0x04,  8 },
287 		[SCSCR]		= { 0x08, 16 },
288 		[SCxTDR]	= { 0x0c,  8 },
289 		[SCxSR]		= { 0x10, 16 },
290 		[SCxRDR]	= { 0x14,  8 },
291 		[SCFCR]		= { 0x18, 16 },
292 		[SCFDR]		= { 0x1c, 16 },
293 		[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
294 		[SCRFDR]	= { 0x20, 16 },
295 		[SCSPTR]	= { 0x24, 16 },
296 		[SCLSR]		= { 0x28, 16 },
297 	},
298 
299 	/*
300 	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
301 	 * registers.
302 	 */
303 	[SCIx_SH7705_SCIF_REGTYPE] = {
304 		[SCSMR]		= { 0x00, 16 },
305 		[SCBRR]		= { 0x04,  8 },
306 		[SCSCR]		= { 0x08, 16 },
307 		[SCxTDR]	= { 0x20,  8 },
308 		[SCxSR]		= { 0x14, 16 },
309 		[SCxRDR]	= { 0x24,  8 },
310 		[SCFCR]		= { 0x18, 16 },
311 		[SCFDR]		= { 0x1c, 16 },
312 		[SCTFDR]	= sci_reg_invalid,
313 		[SCRFDR]	= sci_reg_invalid,
314 		[SCSPTR]	= sci_reg_invalid,
315 		[SCLSR]		= sci_reg_invalid,
316 	},
317 };
318 
319 #define sci_getreg(up, offset)		(sci_regmap[to_sci_port(up)->cfg->regtype] + offset)
320 
321 /*
322  * The "offset" here is rather misleading, in that it refers to an enum
323  * value relative to the port mapping rather than the fixed offset
324  * itself, which needs to be manually retrieved from the platform's
325  * register map for the given port.
326  */
327 static unsigned int sci_serial_in(struct uart_port *p, int offset)
328 {
329 	struct plat_sci_reg *reg = sci_getreg(p, offset);
330 
331 	if (reg->size == 8)
332 		return ioread8(p->membase + (reg->offset << p->regshift));
333 	else if (reg->size == 16)
334 		return ioread16(p->membase + (reg->offset << p->regshift));
335 	else
336 		WARN(1, "Invalid register access\n");
337 
338 	return 0;
339 }
340 
341 static void sci_serial_out(struct uart_port *p, int offset, int value)
342 {
343 	struct plat_sci_reg *reg = sci_getreg(p, offset);
344 
345 	if (reg->size == 8)
346 		iowrite8(value, p->membase + (reg->offset << p->regshift));
347 	else if (reg->size == 16)
348 		iowrite16(value, p->membase + (reg->offset << p->regshift));
349 	else
350 		WARN(1, "Invalid register access\n");
351 }
352 
353 static int sci_probe_regmap(struct plat_sci_port *cfg)
354 {
355 	switch (cfg->type) {
356 	case PORT_SCI:
357 		cfg->regtype = SCIx_SCI_REGTYPE;
358 		break;
359 	case PORT_IRDA:
360 		cfg->regtype = SCIx_IRDA_REGTYPE;
361 		break;
362 	case PORT_SCIFA:
363 		cfg->regtype = SCIx_SCIFA_REGTYPE;
364 		break;
365 	case PORT_SCIFB:
366 		cfg->regtype = SCIx_SCIFB_REGTYPE;
367 		break;
368 	case PORT_SCIF:
369 		/*
370 		 * The SH-4 is a bit of a misnomer here, although that's
371 		 * where this particular port layout originated. This
372 		 * configuration (or some slight variation thereof)
373 		 * remains the dominant model for all SCIFs.
374 		 */
375 		cfg->regtype = SCIx_SH4_SCIF_REGTYPE;
376 		break;
377 	default:
378 		printk(KERN_ERR "Can't probe register map for given port\n");
379 		return -EINVAL;
380 	}
381 
382 	return 0;
383 }
384 
385 static void sci_port_enable(struct sci_port *sci_port)
386 {
387 	if (!sci_port->port.dev)
388 		return;
389 
390 	pm_runtime_get_sync(sci_port->port.dev);
391 
392 	clk_enable(sci_port->iclk);
393 	sci_port->port.uartclk = clk_get_rate(sci_port->iclk);
394 	clk_enable(sci_port->fclk);
395 }
396 
397 static void sci_port_disable(struct sci_port *sci_port)
398 {
399 	if (!sci_port->port.dev)
400 		return;
401 
402 	clk_disable(sci_port->fclk);
403 	clk_disable(sci_port->iclk);
404 
405 	pm_runtime_put_sync(sci_port->port.dev);
406 }
407 
408 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
409 
410 #ifdef CONFIG_CONSOLE_POLL
411 static int sci_poll_get_char(struct uart_port *port)
412 {
413 	unsigned short status;
414 	int c;
415 
416 	do {
417 		status = serial_port_in(port, SCxSR);
418 		if (status & SCxSR_ERRORS(port)) {
419 			serial_port_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
420 			continue;
421 		}
422 		break;
423 	} while (1);
424 
425 	if (!(status & SCxSR_RDxF(port)))
426 		return NO_POLL_CHAR;
427 
428 	c = serial_port_in(port, SCxRDR);
429 
430 	/* Dummy read */
431 	serial_port_in(port, SCxSR);
432 	serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
433 
434 	return c;
435 }
436 #endif
437 
438 static void sci_poll_put_char(struct uart_port *port, unsigned char c)
439 {
440 	unsigned short status;
441 
442 	do {
443 		status = serial_port_in(port, SCxSR);
444 	} while (!(status & SCxSR_TDxE(port)));
445 
446 	serial_port_out(port, SCxTDR, c);
447 	serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
448 }
449 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE */
450 
451 static void sci_init_pins(struct uart_port *port, unsigned int cflag)
452 {
453 	struct sci_port *s = to_sci_port(port);
454 	struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
455 
456 	/*
457 	 * Use port-specific handler if provided.
458 	 */
459 	if (s->cfg->ops && s->cfg->ops->init_pins) {
460 		s->cfg->ops->init_pins(port, cflag);
461 		return;
462 	}
463 
464 	/*
465 	 * For the generic path SCSPTR is necessary. Bail out if that's
466 	 * unavailable, too.
467 	 */
468 	if (!reg->size)
469 		return;
470 
471 	if ((s->cfg->capabilities & SCIx_HAVE_RTSCTS) &&
472 	    ((!(cflag & CRTSCTS)))) {
473 		unsigned short status;
474 
475 		status = serial_port_in(port, SCSPTR);
476 		status &= ~SCSPTR_CTSIO;
477 		status |= SCSPTR_RTSIO;
478 		serial_port_out(port, SCSPTR, status); /* Set RTS = 1 */
479 	}
480 }
481 
482 static int sci_txfill(struct uart_port *port)
483 {
484 	struct plat_sci_reg *reg;
485 
486 	reg = sci_getreg(port, SCTFDR);
487 	if (reg->size)
488 		return serial_port_in(port, SCTFDR) & ((port->fifosize << 1) - 1);
489 
490 	reg = sci_getreg(port, SCFDR);
491 	if (reg->size)
492 		return serial_port_in(port, SCFDR) >> 8;
493 
494 	return !(serial_port_in(port, SCxSR) & SCI_TDRE);
495 }
496 
497 static int sci_txroom(struct uart_port *port)
498 {
499 	return port->fifosize - sci_txfill(port);
500 }
501 
502 static int sci_rxfill(struct uart_port *port)
503 {
504 	struct plat_sci_reg *reg;
505 
506 	reg = sci_getreg(port, SCRFDR);
507 	if (reg->size)
508 		return serial_port_in(port, SCRFDR) & ((port->fifosize << 1) - 1);
509 
510 	reg = sci_getreg(port, SCFDR);
511 	if (reg->size)
512 		return serial_port_in(port, SCFDR) & ((port->fifosize << 1) - 1);
513 
514 	return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
515 }
516 
517 /*
518  * SCI helper for checking the state of the muxed port/RXD pins.
519  */
520 static inline int sci_rxd_in(struct uart_port *port)
521 {
522 	struct sci_port *s = to_sci_port(port);
523 
524 	if (s->cfg->port_reg <= 0)
525 		return 1;
526 
527 	/* Cast for ARM damage */
528 	return !!__raw_readb((void __iomem *)s->cfg->port_reg);
529 }
530 
531 /* ********************************************************************** *
532  *                   the interrupt related routines                       *
533  * ********************************************************************** */
534 
535 static void sci_transmit_chars(struct uart_port *port)
536 {
537 	struct circ_buf *xmit = &port->state->xmit;
538 	unsigned int stopped = uart_tx_stopped(port);
539 	unsigned short status;
540 	unsigned short ctrl;
541 	int count;
542 
543 	status = serial_port_in(port, SCxSR);
544 	if (!(status & SCxSR_TDxE(port))) {
545 		ctrl = serial_port_in(port, SCSCR);
546 		if (uart_circ_empty(xmit))
547 			ctrl &= ~SCSCR_TIE;
548 		else
549 			ctrl |= SCSCR_TIE;
550 		serial_port_out(port, SCSCR, ctrl);
551 		return;
552 	}
553 
554 	count = sci_txroom(port);
555 
556 	do {
557 		unsigned char c;
558 
559 		if (port->x_char) {
560 			c = port->x_char;
561 			port->x_char = 0;
562 		} else if (!uart_circ_empty(xmit) && !stopped) {
563 			c = xmit->buf[xmit->tail];
564 			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
565 		} else {
566 			break;
567 		}
568 
569 		serial_port_out(port, SCxTDR, c);
570 
571 		port->icount.tx++;
572 	} while (--count > 0);
573 
574 	serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
575 
576 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
577 		uart_write_wakeup(port);
578 	if (uart_circ_empty(xmit)) {
579 		sci_stop_tx(port);
580 	} else {
581 		ctrl = serial_port_in(port, SCSCR);
582 
583 		if (port->type != PORT_SCI) {
584 			serial_port_in(port, SCxSR); /* Dummy read */
585 			serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
586 		}
587 
588 		ctrl |= SCSCR_TIE;
589 		serial_port_out(port, SCSCR, ctrl);
590 	}
591 }
592 
593 /* On SH3, SCIF may read end-of-break as a space->mark char */
594 #define STEPFN(c)  ({int __c = (c); (((__c-1)|(__c)) == -1); })
595 
596 static void sci_receive_chars(struct uart_port *port)
597 {
598 	struct sci_port *sci_port = to_sci_port(port);
599 	struct tty_port *tport = &port->state->port;
600 	int i, count, copied = 0;
601 	unsigned short status;
602 	unsigned char flag;
603 
604 	status = serial_port_in(port, SCxSR);
605 	if (!(status & SCxSR_RDxF(port)))
606 		return;
607 
608 	while (1) {
609 		/* Don't copy more bytes than there is room for in the buffer */
610 		count = tty_buffer_request_room(tport, sci_rxfill(port));
611 
612 		/* If for any reason we can't copy more data, we're done! */
613 		if (count == 0)
614 			break;
615 
616 		if (port->type == PORT_SCI) {
617 			char c = serial_port_in(port, SCxRDR);
618 			if (uart_handle_sysrq_char(port, c) ||
619 			    sci_port->break_flag)
620 				count = 0;
621 			else
622 				tty_insert_flip_char(tport, c, TTY_NORMAL);
623 		} else {
624 			for (i = 0; i < count; i++) {
625 				char c = serial_port_in(port, SCxRDR);
626 
627 				status = serial_port_in(port, SCxSR);
628 #if defined(CONFIG_CPU_SH3)
629 				/* Skip "chars" during break */
630 				if (sci_port->break_flag) {
631 					if ((c == 0) &&
632 					    (status & SCxSR_FER(port))) {
633 						count--; i--;
634 						continue;
635 					}
636 
637 					/* Nonzero => end-of-break */
638 					dev_dbg(port->dev, "debounce<%02x>\n", c);
639 					sci_port->break_flag = 0;
640 
641 					if (STEPFN(c)) {
642 						count--; i--;
643 						continue;
644 					}
645 				}
646 #endif /* CONFIG_CPU_SH3 */
647 				if (uart_handle_sysrq_char(port, c)) {
648 					count--; i--;
649 					continue;
650 				}
651 
652 				/* Store data and status */
653 				if (status & SCxSR_FER(port)) {
654 					flag = TTY_FRAME;
655 					port->icount.frame++;
656 					dev_notice(port->dev, "frame error\n");
657 				} else if (status & SCxSR_PER(port)) {
658 					flag = TTY_PARITY;
659 					port->icount.parity++;
660 					dev_notice(port->dev, "parity error\n");
661 				} else
662 					flag = TTY_NORMAL;
663 
664 				tty_insert_flip_char(tport, c, flag);
665 			}
666 		}
667 
668 		serial_port_in(port, SCxSR); /* dummy read */
669 		serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
670 
671 		copied += count;
672 		port->icount.rx += count;
673 	}
674 
675 	if (copied) {
676 		/* Tell the rest of the system the news. New characters! */
677 		tty_flip_buffer_push(tport);
678 	} else {
679 		serial_port_in(port, SCxSR); /* dummy read */
680 		serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
681 	}
682 }
683 
684 #define SCI_BREAK_JIFFIES (HZ/20)
685 
686 /*
687  * The sci generates interrupts during the break,
688  * 1 per millisecond or so during the break period, for 9600 baud.
689  * So dont bother disabling interrupts.
690  * But dont want more than 1 break event.
691  * Use a kernel timer to periodically poll the rx line until
692  * the break is finished.
693  */
694 static inline void sci_schedule_break_timer(struct sci_port *port)
695 {
696 	mod_timer(&port->break_timer, jiffies + SCI_BREAK_JIFFIES);
697 }
698 
699 /* Ensure that two consecutive samples find the break over. */
700 static void sci_break_timer(unsigned long data)
701 {
702 	struct sci_port *port = (struct sci_port *)data;
703 
704 	sci_port_enable(port);
705 
706 	if (sci_rxd_in(&port->port) == 0) {
707 		port->break_flag = 1;
708 		sci_schedule_break_timer(port);
709 	} else if (port->break_flag == 1) {
710 		/* break is over. */
711 		port->break_flag = 2;
712 		sci_schedule_break_timer(port);
713 	} else
714 		port->break_flag = 0;
715 
716 	sci_port_disable(port);
717 }
718 
719 static int sci_handle_errors(struct uart_port *port)
720 {
721 	int copied = 0;
722 	unsigned short status = serial_port_in(port, SCxSR);
723 	struct tty_port *tport = &port->state->port;
724 	struct sci_port *s = to_sci_port(port);
725 
726 	/*
727 	 * Handle overruns, if supported.
728 	 */
729 	if (s->cfg->overrun_bit != SCIx_NOT_SUPPORTED) {
730 		if (status & (1 << s->cfg->overrun_bit)) {
731 			port->icount.overrun++;
732 
733 			/* overrun error */
734 			if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
735 				copied++;
736 
737 			dev_notice(port->dev, "overrun error");
738 		}
739 	}
740 
741 	if (status & SCxSR_FER(port)) {
742 		if (sci_rxd_in(port) == 0) {
743 			/* Notify of BREAK */
744 			struct sci_port *sci_port = to_sci_port(port);
745 
746 			if (!sci_port->break_flag) {
747 				port->icount.brk++;
748 
749 				sci_port->break_flag = 1;
750 				sci_schedule_break_timer(sci_port);
751 
752 				/* Do sysrq handling. */
753 				if (uart_handle_break(port))
754 					return 0;
755 
756 				dev_dbg(port->dev, "BREAK detected\n");
757 
758 				if (tty_insert_flip_char(tport, 0, TTY_BREAK))
759 					copied++;
760 			}
761 
762 		} else {
763 			/* frame error */
764 			port->icount.frame++;
765 
766 			if (tty_insert_flip_char(tport, 0, TTY_FRAME))
767 				copied++;
768 
769 			dev_notice(port->dev, "frame error\n");
770 		}
771 	}
772 
773 	if (status & SCxSR_PER(port)) {
774 		/* parity error */
775 		port->icount.parity++;
776 
777 		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
778 			copied++;
779 
780 		dev_notice(port->dev, "parity error");
781 	}
782 
783 	if (copied)
784 		tty_flip_buffer_push(tport);
785 
786 	return copied;
787 }
788 
789 static int sci_handle_fifo_overrun(struct uart_port *port)
790 {
791 	struct tty_port *tport = &port->state->port;
792 	struct sci_port *s = to_sci_port(port);
793 	struct plat_sci_reg *reg;
794 	int copied = 0;
795 
796 	reg = sci_getreg(port, SCLSR);
797 	if (!reg->size)
798 		return 0;
799 
800 	if ((serial_port_in(port, SCLSR) & (1 << s->cfg->overrun_bit))) {
801 		serial_port_out(port, SCLSR, 0);
802 
803 		port->icount.overrun++;
804 
805 		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
806 		tty_flip_buffer_push(tport);
807 
808 		dev_notice(port->dev, "overrun error\n");
809 		copied++;
810 	}
811 
812 	return copied;
813 }
814 
815 static int sci_handle_breaks(struct uart_port *port)
816 {
817 	int copied = 0;
818 	unsigned short status = serial_port_in(port, SCxSR);
819 	struct tty_port *tport = &port->state->port;
820 	struct sci_port *s = to_sci_port(port);
821 
822 	if (uart_handle_break(port))
823 		return 0;
824 
825 	if (!s->break_flag && status & SCxSR_BRK(port)) {
826 #if defined(CONFIG_CPU_SH3)
827 		/* Debounce break */
828 		s->break_flag = 1;
829 #endif
830 
831 		port->icount.brk++;
832 
833 		/* Notify of BREAK */
834 		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
835 			copied++;
836 
837 		dev_dbg(port->dev, "BREAK detected\n");
838 	}
839 
840 	if (copied)
841 		tty_flip_buffer_push(tport);
842 
843 	copied += sci_handle_fifo_overrun(port);
844 
845 	return copied;
846 }
847 
848 static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
849 {
850 #ifdef CONFIG_SERIAL_SH_SCI_DMA
851 	struct uart_port *port = ptr;
852 	struct sci_port *s = to_sci_port(port);
853 
854 	if (s->chan_rx) {
855 		u16 scr = serial_port_in(port, SCSCR);
856 		u16 ssr = serial_port_in(port, SCxSR);
857 
858 		/* Disable future Rx interrupts */
859 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
860 			disable_irq_nosync(irq);
861 			scr |= 0x4000;
862 		} else {
863 			scr &= ~SCSCR_RIE;
864 		}
865 		serial_port_out(port, SCSCR, scr);
866 		/* Clear current interrupt */
867 		serial_port_out(port, SCxSR, ssr & ~(1 | SCxSR_RDxF(port)));
868 		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n",
869 			jiffies, s->rx_timeout);
870 		mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
871 
872 		return IRQ_HANDLED;
873 	}
874 #endif
875 
876 	/* I think sci_receive_chars has to be called irrespective
877 	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
878 	 * to be disabled?
879 	 */
880 	sci_receive_chars(ptr);
881 
882 	return IRQ_HANDLED;
883 }
884 
885 static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
886 {
887 	struct uart_port *port = ptr;
888 	unsigned long flags;
889 
890 	spin_lock_irqsave(&port->lock, flags);
891 	sci_transmit_chars(port);
892 	spin_unlock_irqrestore(&port->lock, flags);
893 
894 	return IRQ_HANDLED;
895 }
896 
897 static irqreturn_t sci_er_interrupt(int irq, void *ptr)
898 {
899 	struct uart_port *port = ptr;
900 
901 	/* Handle errors */
902 	if (port->type == PORT_SCI) {
903 		if (sci_handle_errors(port)) {
904 			/* discard character in rx buffer */
905 			serial_port_in(port, SCxSR);
906 			serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
907 		}
908 	} else {
909 		sci_handle_fifo_overrun(port);
910 		sci_rx_interrupt(irq, ptr);
911 	}
912 
913 	serial_port_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
914 
915 	/* Kick the transmission */
916 	sci_tx_interrupt(irq, ptr);
917 
918 	return IRQ_HANDLED;
919 }
920 
921 static irqreturn_t sci_br_interrupt(int irq, void *ptr)
922 {
923 	struct uart_port *port = ptr;
924 
925 	/* Handle BREAKs */
926 	sci_handle_breaks(port);
927 	serial_port_out(port, SCxSR, SCxSR_BREAK_CLEAR(port));
928 
929 	return IRQ_HANDLED;
930 }
931 
932 static inline unsigned long port_rx_irq_mask(struct uart_port *port)
933 {
934 	/*
935 	 * Not all ports (such as SCIFA) will support REIE. Rather than
936 	 * special-casing the port type, we check the port initialization
937 	 * IRQ enable mask to see whether the IRQ is desired at all. If
938 	 * it's unset, it's logically inferred that there's no point in
939 	 * testing for it.
940 	 */
941 	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
942 }
943 
944 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
945 {
946 	unsigned short ssr_status, scr_status, err_enabled;
947 	struct uart_port *port = ptr;
948 	struct sci_port *s = to_sci_port(port);
949 	irqreturn_t ret = IRQ_NONE;
950 
951 	ssr_status = serial_port_in(port, SCxSR);
952 	scr_status = serial_port_in(port, SCSCR);
953 	err_enabled = scr_status & port_rx_irq_mask(port);
954 
955 	/* Tx Interrupt */
956 	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
957 	    !s->chan_tx)
958 		ret = sci_tx_interrupt(irq, ptr);
959 
960 	/*
961 	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
962 	 * DR flags
963 	 */
964 	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
965 	    (scr_status & SCSCR_RIE))
966 		ret = sci_rx_interrupt(irq, ptr);
967 
968 	/* Error Interrupt */
969 	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
970 		ret = sci_er_interrupt(irq, ptr);
971 
972 	/* Break Interrupt */
973 	if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
974 		ret = sci_br_interrupt(irq, ptr);
975 
976 	return ret;
977 }
978 
979 /*
980  * Here we define a transition notifier so that we can update all of our
981  * ports' baud rate when the peripheral clock changes.
982  */
983 static int sci_notifier(struct notifier_block *self,
984 			unsigned long phase, void *p)
985 {
986 	struct sci_port *sci_port;
987 	unsigned long flags;
988 
989 	sci_port = container_of(self, struct sci_port, freq_transition);
990 
991 	if ((phase == CPUFREQ_POSTCHANGE) ||
992 	    (phase == CPUFREQ_RESUMECHANGE)) {
993 		struct uart_port *port = &sci_port->port;
994 
995 		spin_lock_irqsave(&port->lock, flags);
996 		port->uartclk = clk_get_rate(sci_port->iclk);
997 		spin_unlock_irqrestore(&port->lock, flags);
998 	}
999 
1000 	return NOTIFY_OK;
1001 }
1002 
1003 static struct sci_irq_desc {
1004 	const char	*desc;
1005 	irq_handler_t	handler;
1006 } sci_irq_desc[] = {
1007 	/*
1008 	 * Split out handlers, the default case.
1009 	 */
1010 	[SCIx_ERI_IRQ] = {
1011 		.desc = "rx err",
1012 		.handler = sci_er_interrupt,
1013 	},
1014 
1015 	[SCIx_RXI_IRQ] = {
1016 		.desc = "rx full",
1017 		.handler = sci_rx_interrupt,
1018 	},
1019 
1020 	[SCIx_TXI_IRQ] = {
1021 		.desc = "tx empty",
1022 		.handler = sci_tx_interrupt,
1023 	},
1024 
1025 	[SCIx_BRI_IRQ] = {
1026 		.desc = "break",
1027 		.handler = sci_br_interrupt,
1028 	},
1029 
1030 	/*
1031 	 * Special muxed handler.
1032 	 */
1033 	[SCIx_MUX_IRQ] = {
1034 		.desc = "mux",
1035 		.handler = sci_mpxed_interrupt,
1036 	},
1037 };
1038 
1039 static int sci_request_irq(struct sci_port *port)
1040 {
1041 	struct uart_port *up = &port->port;
1042 	int i, j, ret = 0;
1043 
1044 	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1045 		struct sci_irq_desc *desc;
1046 		unsigned int irq;
1047 
1048 		if (SCIx_IRQ_IS_MUXED(port)) {
1049 			i = SCIx_MUX_IRQ;
1050 			irq = up->irq;
1051 		} else {
1052 			irq = port->cfg->irqs[i];
1053 
1054 			/*
1055 			 * Certain port types won't support all of the
1056 			 * available interrupt sources.
1057 			 */
1058 			if (unlikely(!irq))
1059 				continue;
1060 		}
1061 
1062 		desc = sci_irq_desc + i;
1063 		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1064 					    dev_name(up->dev), desc->desc);
1065 		if (!port->irqstr[j]) {
1066 			dev_err(up->dev, "Failed to allocate %s IRQ string\n",
1067 				desc->desc);
1068 			goto out_nomem;
1069 		}
1070 
1071 		ret = request_irq(irq, desc->handler, up->irqflags,
1072 				  port->irqstr[j], port);
1073 		if (unlikely(ret)) {
1074 			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1075 			goto out_noirq;
1076 		}
1077 	}
1078 
1079 	return 0;
1080 
1081 out_noirq:
1082 	while (--i >= 0)
1083 		free_irq(port->cfg->irqs[i], port);
1084 
1085 out_nomem:
1086 	while (--j >= 0)
1087 		kfree(port->irqstr[j]);
1088 
1089 	return ret;
1090 }
1091 
1092 static void sci_free_irq(struct sci_port *port)
1093 {
1094 	int i;
1095 
1096 	/*
1097 	 * Intentionally in reverse order so we iterate over the muxed
1098 	 * IRQ first.
1099 	 */
1100 	for (i = 0; i < SCIx_NR_IRQS; i++) {
1101 		unsigned int irq = port->cfg->irqs[i];
1102 
1103 		/*
1104 		 * Certain port types won't support all of the available
1105 		 * interrupt sources.
1106 		 */
1107 		if (unlikely(!irq))
1108 			continue;
1109 
1110 		free_irq(port->cfg->irqs[i], port);
1111 		kfree(port->irqstr[i]);
1112 
1113 		if (SCIx_IRQ_IS_MUXED(port)) {
1114 			/* If there's only one IRQ, we're done. */
1115 			return;
1116 		}
1117 	}
1118 }
1119 
1120 static const char *sci_gpio_names[SCIx_NR_FNS] = {
1121 	"sck", "rxd", "txd", "cts", "rts",
1122 };
1123 
1124 static const char *sci_gpio_str(unsigned int index)
1125 {
1126 	return sci_gpio_names[index];
1127 }
1128 
1129 static void sci_init_gpios(struct sci_port *port)
1130 {
1131 	struct uart_port *up = &port->port;
1132 	int i;
1133 
1134 	if (!port->cfg)
1135 		return;
1136 
1137 	for (i = 0; i < SCIx_NR_FNS; i++) {
1138 		const char *desc;
1139 		int ret;
1140 
1141 		if (!port->cfg->gpios[i])
1142 			continue;
1143 
1144 		desc = sci_gpio_str(i);
1145 
1146 		port->gpiostr[i] = kasprintf(GFP_KERNEL, "%s:%s",
1147 					     dev_name(up->dev), desc);
1148 
1149 		/*
1150 		 * If we've failed the allocation, we can still continue
1151 		 * on with a NULL string.
1152 		 */
1153 		if (!port->gpiostr[i])
1154 			dev_notice(up->dev, "%s string allocation failure\n",
1155 				   desc);
1156 
1157 		ret = gpio_request(port->cfg->gpios[i], port->gpiostr[i]);
1158 		if (unlikely(ret != 0)) {
1159 			dev_notice(up->dev, "failed %s gpio request\n", desc);
1160 
1161 			/*
1162 			 * If we can't get the GPIO for whatever reason,
1163 			 * no point in keeping the verbose string around.
1164 			 */
1165 			kfree(port->gpiostr[i]);
1166 		}
1167 	}
1168 }
1169 
1170 static void sci_free_gpios(struct sci_port *port)
1171 {
1172 	int i;
1173 
1174 	for (i = 0; i < SCIx_NR_FNS; i++)
1175 		if (port->cfg->gpios[i]) {
1176 			gpio_free(port->cfg->gpios[i]);
1177 			kfree(port->gpiostr[i]);
1178 		}
1179 }
1180 
1181 static unsigned int sci_tx_empty(struct uart_port *port)
1182 {
1183 	unsigned short status = serial_port_in(port, SCxSR);
1184 	unsigned short in_tx_fifo = sci_txfill(port);
1185 
1186 	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1187 }
1188 
1189 /*
1190  * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
1191  * CTS/RTS is supported in hardware by at least one port and controlled
1192  * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
1193  * handled via the ->init_pins() op, which is a bit of a one-way street,
1194  * lacking any ability to defer pin control -- this will later be
1195  * converted over to the GPIO framework).
1196  *
1197  * Other modes (such as loopback) are supported generically on certain
1198  * port types, but not others. For these it's sufficient to test for the
1199  * existence of the support register and simply ignore the port type.
1200  */
1201 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
1202 {
1203 	if (mctrl & TIOCM_LOOP) {
1204 		struct plat_sci_reg *reg;
1205 
1206 		/*
1207 		 * Standard loopback mode for SCFCR ports.
1208 		 */
1209 		reg = sci_getreg(port, SCFCR);
1210 		if (reg->size)
1211 			serial_port_out(port, SCFCR, serial_port_in(port, SCFCR) | 1);
1212 	}
1213 }
1214 
1215 static unsigned int sci_get_mctrl(struct uart_port *port)
1216 {
1217 	/*
1218 	 * CTS/RTS is handled in hardware when supported, while nothing
1219 	 * else is wired up. Keep it simple and simply assert DSR/CAR.
1220 	 */
1221 	return TIOCM_DSR | TIOCM_CAR;
1222 }
1223 
1224 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1225 static void sci_dma_tx_complete(void *arg)
1226 {
1227 	struct sci_port *s = arg;
1228 	struct uart_port *port = &s->port;
1229 	struct circ_buf *xmit = &port->state->xmit;
1230 	unsigned long flags;
1231 
1232 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1233 
1234 	spin_lock_irqsave(&port->lock, flags);
1235 
1236 	xmit->tail += sg_dma_len(&s->sg_tx);
1237 	xmit->tail &= UART_XMIT_SIZE - 1;
1238 
1239 	port->icount.tx += sg_dma_len(&s->sg_tx);
1240 
1241 	async_tx_ack(s->desc_tx);
1242 	s->desc_tx = NULL;
1243 
1244 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1245 		uart_write_wakeup(port);
1246 
1247 	if (!uart_circ_empty(xmit)) {
1248 		s->cookie_tx = 0;
1249 		schedule_work(&s->work_tx);
1250 	} else {
1251 		s->cookie_tx = -EINVAL;
1252 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1253 			u16 ctrl = serial_port_in(port, SCSCR);
1254 			serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1255 		}
1256 	}
1257 
1258 	spin_unlock_irqrestore(&port->lock, flags);
1259 }
1260 
1261 /* Locking: called with port lock held */
1262 static int sci_dma_rx_push(struct sci_port *s, size_t count)
1263 {
1264 	struct uart_port *port = &s->port;
1265 	struct tty_port *tport = &port->state->port;
1266 	int i, active, room;
1267 
1268 	room = tty_buffer_request_room(tport, count);
1269 
1270 	if (s->active_rx == s->cookie_rx[0]) {
1271 		active = 0;
1272 	} else if (s->active_rx == s->cookie_rx[1]) {
1273 		active = 1;
1274 	} else {
1275 		dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
1276 		return 0;
1277 	}
1278 
1279 	if (room < count)
1280 		dev_warn(port->dev, "Rx overrun: dropping %u bytes\n",
1281 			 count - room);
1282 	if (!room)
1283 		return room;
1284 
1285 	for (i = 0; i < room; i++)
1286 		tty_insert_flip_char(tport, ((u8 *)sg_virt(&s->sg_rx[active]))[i],
1287 				     TTY_NORMAL);
1288 
1289 	port->icount.rx += room;
1290 
1291 	return room;
1292 }
1293 
1294 static void sci_dma_rx_complete(void *arg)
1295 {
1296 	struct sci_port *s = arg;
1297 	struct uart_port *port = &s->port;
1298 	unsigned long flags;
1299 	int count;
1300 
1301 	dev_dbg(port->dev, "%s(%d) active #%d\n", __func__, port->line, s->active_rx);
1302 
1303 	spin_lock_irqsave(&port->lock, flags);
1304 
1305 	count = sci_dma_rx_push(s, s->buf_len_rx);
1306 
1307 	mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1308 
1309 	spin_unlock_irqrestore(&port->lock, flags);
1310 
1311 	if (count)
1312 		tty_flip_buffer_push(&port->state->port);
1313 
1314 	schedule_work(&s->work_rx);
1315 }
1316 
1317 static void sci_rx_dma_release(struct sci_port *s, bool enable_pio)
1318 {
1319 	struct dma_chan *chan = s->chan_rx;
1320 	struct uart_port *port = &s->port;
1321 
1322 	s->chan_rx = NULL;
1323 	s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL;
1324 	dma_release_channel(chan);
1325 	if (sg_dma_address(&s->sg_rx[0]))
1326 		dma_free_coherent(port->dev, s->buf_len_rx * 2,
1327 				  sg_virt(&s->sg_rx[0]), sg_dma_address(&s->sg_rx[0]));
1328 	if (enable_pio)
1329 		sci_start_rx(port);
1330 }
1331 
1332 static void sci_tx_dma_release(struct sci_port *s, bool enable_pio)
1333 {
1334 	struct dma_chan *chan = s->chan_tx;
1335 	struct uart_port *port = &s->port;
1336 
1337 	s->chan_tx = NULL;
1338 	s->cookie_tx = -EINVAL;
1339 	dma_release_channel(chan);
1340 	if (enable_pio)
1341 		sci_start_tx(port);
1342 }
1343 
1344 static void sci_submit_rx(struct sci_port *s)
1345 {
1346 	struct dma_chan *chan = s->chan_rx;
1347 	int i;
1348 
1349 	for (i = 0; i < 2; i++) {
1350 		struct scatterlist *sg = &s->sg_rx[i];
1351 		struct dma_async_tx_descriptor *desc;
1352 
1353 		desc = dmaengine_prep_slave_sg(chan,
1354 			sg, 1, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
1355 
1356 		if (desc) {
1357 			s->desc_rx[i] = desc;
1358 			desc->callback = sci_dma_rx_complete;
1359 			desc->callback_param = s;
1360 			s->cookie_rx[i] = desc->tx_submit(desc);
1361 		}
1362 
1363 		if (!desc || s->cookie_rx[i] < 0) {
1364 			if (i) {
1365 				async_tx_ack(s->desc_rx[0]);
1366 				s->cookie_rx[0] = -EINVAL;
1367 			}
1368 			if (desc) {
1369 				async_tx_ack(desc);
1370 				s->cookie_rx[i] = -EINVAL;
1371 			}
1372 			dev_warn(s->port.dev,
1373 				 "failed to re-start DMA, using PIO\n");
1374 			sci_rx_dma_release(s, true);
1375 			return;
1376 		}
1377 		dev_dbg(s->port.dev, "%s(): cookie %d to #%d\n", __func__,
1378 			s->cookie_rx[i], i);
1379 	}
1380 
1381 	s->active_rx = s->cookie_rx[0];
1382 
1383 	dma_async_issue_pending(chan);
1384 }
1385 
1386 static void work_fn_rx(struct work_struct *work)
1387 {
1388 	struct sci_port *s = container_of(work, struct sci_port, work_rx);
1389 	struct uart_port *port = &s->port;
1390 	struct dma_async_tx_descriptor *desc;
1391 	int new;
1392 
1393 	if (s->active_rx == s->cookie_rx[0]) {
1394 		new = 0;
1395 	} else if (s->active_rx == s->cookie_rx[1]) {
1396 		new = 1;
1397 	} else {
1398 		dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
1399 		return;
1400 	}
1401 	desc = s->desc_rx[new];
1402 
1403 	if (dma_async_is_tx_complete(s->chan_rx, s->active_rx, NULL, NULL) !=
1404 	    DMA_SUCCESS) {
1405 		/* Handle incomplete DMA receive */
1406 		struct dma_chan *chan = s->chan_rx;
1407 		struct shdma_desc *sh_desc = container_of(desc,
1408 					struct shdma_desc, async_tx);
1409 		unsigned long flags;
1410 		int count;
1411 
1412 		chan->device->device_control(chan, DMA_TERMINATE_ALL, 0);
1413 		dev_dbg(port->dev, "Read %u bytes with cookie %d\n",
1414 			sh_desc->partial, sh_desc->cookie);
1415 
1416 		spin_lock_irqsave(&port->lock, flags);
1417 		count = sci_dma_rx_push(s, sh_desc->partial);
1418 		spin_unlock_irqrestore(&port->lock, flags);
1419 
1420 		if (count)
1421 			tty_flip_buffer_push(&port->state->port);
1422 
1423 		sci_submit_rx(s);
1424 
1425 		return;
1426 	}
1427 
1428 	s->cookie_rx[new] = desc->tx_submit(desc);
1429 	if (s->cookie_rx[new] < 0) {
1430 		dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1431 		sci_rx_dma_release(s, true);
1432 		return;
1433 	}
1434 
1435 	s->active_rx = s->cookie_rx[!new];
1436 
1437 	dev_dbg(port->dev, "%s: cookie %d #%d, new active #%d\n", __func__,
1438 		s->cookie_rx[new], new, s->active_rx);
1439 }
1440 
1441 static void work_fn_tx(struct work_struct *work)
1442 {
1443 	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1444 	struct dma_async_tx_descriptor *desc;
1445 	struct dma_chan *chan = s->chan_tx;
1446 	struct uart_port *port = &s->port;
1447 	struct circ_buf *xmit = &port->state->xmit;
1448 	struct scatterlist *sg = &s->sg_tx;
1449 
1450 	/*
1451 	 * DMA is idle now.
1452 	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1453 	 * offsets and lengths. Since it is a circular buffer, we have to
1454 	 * transmit till the end, and then the rest. Take the port lock to get a
1455 	 * consistent xmit buffer state.
1456 	 */
1457 	spin_lock_irq(&port->lock);
1458 	sg->offset = xmit->tail & (UART_XMIT_SIZE - 1);
1459 	sg_dma_address(sg) = (sg_dma_address(sg) & ~(UART_XMIT_SIZE - 1)) +
1460 		sg->offset;
1461 	sg_dma_len(sg) = min((int)CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
1462 		CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
1463 	spin_unlock_irq(&port->lock);
1464 
1465 	BUG_ON(!sg_dma_len(sg));
1466 
1467 	desc = dmaengine_prep_slave_sg(chan,
1468 			sg, s->sg_len_tx, DMA_MEM_TO_DEV,
1469 			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1470 	if (!desc) {
1471 		/* switch to PIO */
1472 		sci_tx_dma_release(s, true);
1473 		return;
1474 	}
1475 
1476 	dma_sync_sg_for_device(port->dev, sg, 1, DMA_TO_DEVICE);
1477 
1478 	spin_lock_irq(&port->lock);
1479 	s->desc_tx = desc;
1480 	desc->callback = sci_dma_tx_complete;
1481 	desc->callback_param = s;
1482 	spin_unlock_irq(&port->lock);
1483 	s->cookie_tx = desc->tx_submit(desc);
1484 	if (s->cookie_tx < 0) {
1485 		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1486 		/* switch to PIO */
1487 		sci_tx_dma_release(s, true);
1488 		return;
1489 	}
1490 
1491 	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n", __func__,
1492 		xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
1493 
1494 	dma_async_issue_pending(chan);
1495 }
1496 #endif
1497 
1498 static void sci_start_tx(struct uart_port *port)
1499 {
1500 	struct sci_port *s = to_sci_port(port);
1501 	unsigned short ctrl;
1502 
1503 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1504 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1505 		u16 new, scr = serial_port_in(port, SCSCR);
1506 		if (s->chan_tx)
1507 			new = scr | 0x8000;
1508 		else
1509 			new = scr & ~0x8000;
1510 		if (new != scr)
1511 			serial_port_out(port, SCSCR, new);
1512 	}
1513 
1514 	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
1515 	    s->cookie_tx < 0) {
1516 		s->cookie_tx = 0;
1517 		schedule_work(&s->work_tx);
1518 	}
1519 #endif
1520 
1521 	if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1522 		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
1523 		ctrl = serial_port_in(port, SCSCR);
1524 		serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
1525 	}
1526 }
1527 
1528 static void sci_stop_tx(struct uart_port *port)
1529 {
1530 	unsigned short ctrl;
1531 
1532 	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
1533 	ctrl = serial_port_in(port, SCSCR);
1534 
1535 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1536 		ctrl &= ~0x8000;
1537 
1538 	ctrl &= ~SCSCR_TIE;
1539 
1540 	serial_port_out(port, SCSCR, ctrl);
1541 }
1542 
1543 static void sci_start_rx(struct uart_port *port)
1544 {
1545 	unsigned short ctrl;
1546 
1547 	ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
1548 
1549 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1550 		ctrl &= ~0x4000;
1551 
1552 	serial_port_out(port, SCSCR, ctrl);
1553 }
1554 
1555 static void sci_stop_rx(struct uart_port *port)
1556 {
1557 	unsigned short ctrl;
1558 
1559 	ctrl = serial_port_in(port, SCSCR);
1560 
1561 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1562 		ctrl &= ~0x4000;
1563 
1564 	ctrl &= ~port_rx_irq_mask(port);
1565 
1566 	serial_port_out(port, SCSCR, ctrl);
1567 }
1568 
1569 static void sci_enable_ms(struct uart_port *port)
1570 {
1571 	/*
1572 	 * Not supported by hardware, always a nop.
1573 	 */
1574 }
1575 
1576 static void sci_break_ctl(struct uart_port *port, int break_state)
1577 {
1578 	struct sci_port *s = to_sci_port(port);
1579 	struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
1580 	unsigned short scscr, scsptr;
1581 
1582 	/* check wheter the port has SCSPTR */
1583 	if (!reg->size) {
1584 		/*
1585 		 * Not supported by hardware. Most parts couple break and rx
1586 		 * interrupts together, with break detection always enabled.
1587 		 */
1588 		return;
1589 	}
1590 
1591 	scsptr = serial_port_in(port, SCSPTR);
1592 	scscr = serial_port_in(port, SCSCR);
1593 
1594 	if (break_state == -1) {
1595 		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
1596 		scscr &= ~SCSCR_TE;
1597 	} else {
1598 		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
1599 		scscr |= SCSCR_TE;
1600 	}
1601 
1602 	serial_port_out(port, SCSPTR, scsptr);
1603 	serial_port_out(port, SCSCR, scscr);
1604 }
1605 
1606 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1607 static bool filter(struct dma_chan *chan, void *slave)
1608 {
1609 	struct sh_dmae_slave *param = slave;
1610 
1611 	dev_dbg(chan->device->dev, "%s: slave ID %d\n", __func__,
1612 		param->shdma_slave.slave_id);
1613 
1614 	chan->private = &param->shdma_slave;
1615 	return true;
1616 }
1617 
1618 static void rx_timer_fn(unsigned long arg)
1619 {
1620 	struct sci_port *s = (struct sci_port *)arg;
1621 	struct uart_port *port = &s->port;
1622 	u16 scr = serial_port_in(port, SCSCR);
1623 
1624 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1625 		scr &= ~0x4000;
1626 		enable_irq(s->cfg->irqs[1]);
1627 	}
1628 	serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1629 	dev_dbg(port->dev, "DMA Rx timed out\n");
1630 	schedule_work(&s->work_rx);
1631 }
1632 
1633 static void sci_request_dma(struct uart_port *port)
1634 {
1635 	struct sci_port *s = to_sci_port(port);
1636 	struct sh_dmae_slave *param;
1637 	struct dma_chan *chan;
1638 	dma_cap_mask_t mask;
1639 	int nent;
1640 
1641 	dev_dbg(port->dev, "%s: port %d\n", __func__,
1642 		port->line);
1643 
1644 	if (s->cfg->dma_slave_tx <= 0 || s->cfg->dma_slave_rx <= 0)
1645 		return;
1646 
1647 	dma_cap_zero(mask);
1648 	dma_cap_set(DMA_SLAVE, mask);
1649 
1650 	param = &s->param_tx;
1651 
1652 	/* Slave ID, e.g., SHDMA_SLAVE_SCIF0_TX */
1653 	param->shdma_slave.slave_id = s->cfg->dma_slave_tx;
1654 
1655 	s->cookie_tx = -EINVAL;
1656 	chan = dma_request_channel(mask, filter, param);
1657 	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1658 	if (chan) {
1659 		s->chan_tx = chan;
1660 		sg_init_table(&s->sg_tx, 1);
1661 		/* UART circular tx buffer is an aligned page. */
1662 		BUG_ON((int)port->state->xmit.buf & ~PAGE_MASK);
1663 		sg_set_page(&s->sg_tx, virt_to_page(port->state->xmit.buf),
1664 			    UART_XMIT_SIZE, (int)port->state->xmit.buf & ~PAGE_MASK);
1665 		nent = dma_map_sg(port->dev, &s->sg_tx, 1, DMA_TO_DEVICE);
1666 		if (!nent)
1667 			sci_tx_dma_release(s, false);
1668 		else
1669 			dev_dbg(port->dev, "%s: mapped %d@%p to %x\n", __func__,
1670 				sg_dma_len(&s->sg_tx),
1671 				port->state->xmit.buf, sg_dma_address(&s->sg_tx));
1672 
1673 		s->sg_len_tx = nent;
1674 
1675 		INIT_WORK(&s->work_tx, work_fn_tx);
1676 	}
1677 
1678 	param = &s->param_rx;
1679 
1680 	/* Slave ID, e.g., SHDMA_SLAVE_SCIF0_RX */
1681 	param->shdma_slave.slave_id = s->cfg->dma_slave_rx;
1682 
1683 	chan = dma_request_channel(mask, filter, param);
1684 	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1685 	if (chan) {
1686 		dma_addr_t dma[2];
1687 		void *buf[2];
1688 		int i;
1689 
1690 		s->chan_rx = chan;
1691 
1692 		s->buf_len_rx = 2 * max(16, (int)port->fifosize);
1693 		buf[0] = dma_alloc_coherent(port->dev, s->buf_len_rx * 2,
1694 					    &dma[0], GFP_KERNEL);
1695 
1696 		if (!buf[0]) {
1697 			dev_warn(port->dev,
1698 				 "failed to allocate dma buffer, using PIO\n");
1699 			sci_rx_dma_release(s, true);
1700 			return;
1701 		}
1702 
1703 		buf[1] = buf[0] + s->buf_len_rx;
1704 		dma[1] = dma[0] + s->buf_len_rx;
1705 
1706 		for (i = 0; i < 2; i++) {
1707 			struct scatterlist *sg = &s->sg_rx[i];
1708 
1709 			sg_init_table(sg, 1);
1710 			sg_set_page(sg, virt_to_page(buf[i]), s->buf_len_rx,
1711 				    (int)buf[i] & ~PAGE_MASK);
1712 			sg_dma_address(sg) = dma[i];
1713 		}
1714 
1715 		INIT_WORK(&s->work_rx, work_fn_rx);
1716 		setup_timer(&s->rx_timer, rx_timer_fn, (unsigned long)s);
1717 
1718 		sci_submit_rx(s);
1719 	}
1720 }
1721 
1722 static void sci_free_dma(struct uart_port *port)
1723 {
1724 	struct sci_port *s = to_sci_port(port);
1725 
1726 	if (s->chan_tx)
1727 		sci_tx_dma_release(s, false);
1728 	if (s->chan_rx)
1729 		sci_rx_dma_release(s, false);
1730 }
1731 #else
1732 static inline void sci_request_dma(struct uart_port *port)
1733 {
1734 }
1735 
1736 static inline void sci_free_dma(struct uart_port *port)
1737 {
1738 }
1739 #endif
1740 
1741 static int sci_startup(struct uart_port *port)
1742 {
1743 	struct sci_port *s = to_sci_port(port);
1744 	unsigned long flags;
1745 	int ret;
1746 
1747 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1748 
1749 	ret = sci_request_irq(s);
1750 	if (unlikely(ret < 0))
1751 		return ret;
1752 
1753 	sci_request_dma(port);
1754 
1755 	spin_lock_irqsave(&port->lock, flags);
1756 	sci_start_tx(port);
1757 	sci_start_rx(port);
1758 	spin_unlock_irqrestore(&port->lock, flags);
1759 
1760 	return 0;
1761 }
1762 
1763 static void sci_shutdown(struct uart_port *port)
1764 {
1765 	struct sci_port *s = to_sci_port(port);
1766 	unsigned long flags;
1767 
1768 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1769 
1770 	spin_lock_irqsave(&port->lock, flags);
1771 	sci_stop_rx(port);
1772 	sci_stop_tx(port);
1773 	spin_unlock_irqrestore(&port->lock, flags);
1774 
1775 	sci_free_dma(port);
1776 	sci_free_irq(s);
1777 }
1778 
1779 static unsigned int sci_scbrr_calc(unsigned int algo_id, unsigned int bps,
1780 				   unsigned long freq)
1781 {
1782 	switch (algo_id) {
1783 	case SCBRR_ALGO_1:
1784 		return ((freq + 16 * bps) / (16 * bps) - 1);
1785 	case SCBRR_ALGO_2:
1786 		return ((freq + 16 * bps) / (32 * bps) - 1);
1787 	case SCBRR_ALGO_3:
1788 		return (((freq * 2) + 16 * bps) / (16 * bps) - 1);
1789 	case SCBRR_ALGO_4:
1790 		return (((freq * 2) + 16 * bps) / (32 * bps) - 1);
1791 	case SCBRR_ALGO_5:
1792 		return (((freq * 1000 / 32) / bps) - 1);
1793 	}
1794 
1795 	/* Warn, but use a safe default */
1796 	WARN_ON(1);
1797 
1798 	return ((freq + 16 * bps) / (32 * bps) - 1);
1799 }
1800 
1801 static void sci_reset(struct uart_port *port)
1802 {
1803 	struct plat_sci_reg *reg;
1804 	unsigned int status;
1805 
1806 	do {
1807 		status = serial_port_in(port, SCxSR);
1808 	} while (!(status & SCxSR_TEND(port)));
1809 
1810 	serial_port_out(port, SCSCR, 0x00);	/* TE=0, RE=0, CKE1=0 */
1811 
1812 	reg = sci_getreg(port, SCFCR);
1813 	if (reg->size)
1814 		serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
1815 }
1816 
1817 static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
1818 			    struct ktermios *old)
1819 {
1820 	struct sci_port *s = to_sci_port(port);
1821 	struct plat_sci_reg *reg;
1822 	unsigned int baud, smr_val, max_baud, cks;
1823 	int t = -1;
1824 
1825 	/*
1826 	 * earlyprintk comes here early on with port->uartclk set to zero.
1827 	 * the clock framework is not up and running at this point so here
1828 	 * we assume that 115200 is the maximum baud rate. please note that
1829 	 * the baud rate is not programmed during earlyprintk - it is assumed
1830 	 * that the previous boot loader has enabled required clocks and
1831 	 * setup the baud rate generator hardware for us already.
1832 	 */
1833 	max_baud = port->uartclk ? port->uartclk / 16 : 115200;
1834 
1835 	baud = uart_get_baud_rate(port, termios, old, 0, max_baud);
1836 	if (likely(baud && port->uartclk))
1837 		t = sci_scbrr_calc(s->cfg->scbrr_algo_id, baud, port->uartclk);
1838 
1839 	sci_port_enable(s);
1840 
1841 	sci_reset(port);
1842 
1843 	smr_val = serial_port_in(port, SCSMR) & 3;
1844 
1845 	if ((termios->c_cflag & CSIZE) == CS7)
1846 		smr_val |= 0x40;
1847 	if (termios->c_cflag & PARENB)
1848 		smr_val |= 0x20;
1849 	if (termios->c_cflag & PARODD)
1850 		smr_val |= 0x30;
1851 	if (termios->c_cflag & CSTOPB)
1852 		smr_val |= 0x08;
1853 
1854 	uart_update_timeout(port, termios->c_cflag, baud);
1855 
1856 	for (cks = 0; t >= 256 && cks <= 3; cks++)
1857 		t >>= 2;
1858 
1859 	dev_dbg(port->dev, "%s: SMR %x, cks %x, t %x, SCSCR %x\n",
1860 		__func__, smr_val, cks, t, s->cfg->scscr);
1861 
1862 	if (t >= 0) {
1863 		serial_port_out(port, SCSMR, (smr_val & ~3) | cks);
1864 		serial_port_out(port, SCBRR, t);
1865 		udelay((1000000+(baud-1)) / baud); /* Wait one bit interval */
1866 	} else
1867 		serial_port_out(port, SCSMR, smr_val);
1868 
1869 	sci_init_pins(port, termios->c_cflag);
1870 
1871 	reg = sci_getreg(port, SCFCR);
1872 	if (reg->size) {
1873 		unsigned short ctrl = serial_port_in(port, SCFCR);
1874 
1875 		if (s->cfg->capabilities & SCIx_HAVE_RTSCTS) {
1876 			if (termios->c_cflag & CRTSCTS)
1877 				ctrl |= SCFCR_MCE;
1878 			else
1879 				ctrl &= ~SCFCR_MCE;
1880 		}
1881 
1882 		/*
1883 		 * As we've done a sci_reset() above, ensure we don't
1884 		 * interfere with the FIFOs while toggling MCE. As the
1885 		 * reset values could still be set, simply mask them out.
1886 		 */
1887 		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
1888 
1889 		serial_port_out(port, SCFCR, ctrl);
1890 	}
1891 
1892 	serial_port_out(port, SCSCR, s->cfg->scscr);
1893 
1894 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1895 	/*
1896 	 * Calculate delay for 1.5 DMA buffers: see
1897 	 * drivers/serial/serial_core.c::uart_update_timeout(). With 10 bits
1898 	 * (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above function
1899 	 * calculates 1 jiffie for the data plus 5 jiffies for the "slop(e)."
1900 	 * Then below we calculate 3 jiffies (12ms) for 1.5 DMA buffers (3 FIFO
1901 	 * sizes), but it has been found out experimentally, that this is not
1902 	 * enough: the driver too often needlessly runs on a DMA timeout. 20ms
1903 	 * as a minimum seem to work perfectly.
1904 	 */
1905 	if (s->chan_rx) {
1906 		s->rx_timeout = (port->timeout - HZ / 50) * s->buf_len_rx * 3 /
1907 			port->fifosize / 2;
1908 		dev_dbg(port->dev,
1909 			"DMA Rx t-out %ums, tty t-out %u jiffies\n",
1910 			s->rx_timeout * 1000 / HZ, port->timeout);
1911 		if (s->rx_timeout < msecs_to_jiffies(20))
1912 			s->rx_timeout = msecs_to_jiffies(20);
1913 	}
1914 #endif
1915 
1916 	if ((termios->c_cflag & CREAD) != 0)
1917 		sci_start_rx(port);
1918 
1919 	sci_port_disable(s);
1920 }
1921 
1922 static void sci_pm(struct uart_port *port, unsigned int state,
1923 		   unsigned int oldstate)
1924 {
1925 	struct sci_port *sci_port = to_sci_port(port);
1926 
1927 	switch (state) {
1928 	case 3:
1929 		sci_port_disable(sci_port);
1930 		break;
1931 	default:
1932 		sci_port_enable(sci_port);
1933 		break;
1934 	}
1935 }
1936 
1937 static const char *sci_type(struct uart_port *port)
1938 {
1939 	switch (port->type) {
1940 	case PORT_IRDA:
1941 		return "irda";
1942 	case PORT_SCI:
1943 		return "sci";
1944 	case PORT_SCIF:
1945 		return "scif";
1946 	case PORT_SCIFA:
1947 		return "scifa";
1948 	case PORT_SCIFB:
1949 		return "scifb";
1950 	}
1951 
1952 	return NULL;
1953 }
1954 
1955 static inline unsigned long sci_port_size(struct uart_port *port)
1956 {
1957 	/*
1958 	 * Pick an arbitrary size that encapsulates all of the base
1959 	 * registers by default. This can be optimized later, or derived
1960 	 * from platform resource data at such a time that ports begin to
1961 	 * behave more erratically.
1962 	 */
1963 	return 64;
1964 }
1965 
1966 static int sci_remap_port(struct uart_port *port)
1967 {
1968 	unsigned long size = sci_port_size(port);
1969 
1970 	/*
1971 	 * Nothing to do if there's already an established membase.
1972 	 */
1973 	if (port->membase)
1974 		return 0;
1975 
1976 	if (port->flags & UPF_IOREMAP) {
1977 		port->membase = ioremap_nocache(port->mapbase, size);
1978 		if (unlikely(!port->membase)) {
1979 			dev_err(port->dev, "can't remap port#%d\n", port->line);
1980 			return -ENXIO;
1981 		}
1982 	} else {
1983 		/*
1984 		 * For the simple (and majority of) cases where we don't
1985 		 * need to do any remapping, just cast the cookie
1986 		 * directly.
1987 		 */
1988 		port->membase = (void __iomem *)port->mapbase;
1989 	}
1990 
1991 	return 0;
1992 }
1993 
1994 static void sci_release_port(struct uart_port *port)
1995 {
1996 	if (port->flags & UPF_IOREMAP) {
1997 		iounmap(port->membase);
1998 		port->membase = NULL;
1999 	}
2000 
2001 	release_mem_region(port->mapbase, sci_port_size(port));
2002 }
2003 
2004 static int sci_request_port(struct uart_port *port)
2005 {
2006 	unsigned long size = sci_port_size(port);
2007 	struct resource *res;
2008 	int ret;
2009 
2010 	res = request_mem_region(port->mapbase, size, dev_name(port->dev));
2011 	if (unlikely(res == NULL))
2012 		return -EBUSY;
2013 
2014 	ret = sci_remap_port(port);
2015 	if (unlikely(ret != 0)) {
2016 		release_resource(res);
2017 		return ret;
2018 	}
2019 
2020 	return 0;
2021 }
2022 
2023 static void sci_config_port(struct uart_port *port, int flags)
2024 {
2025 	if (flags & UART_CONFIG_TYPE) {
2026 		struct sci_port *sport = to_sci_port(port);
2027 
2028 		port->type = sport->cfg->type;
2029 		sci_request_port(port);
2030 	}
2031 }
2032 
2033 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2034 {
2035 	struct sci_port *s = to_sci_port(port);
2036 
2037 	if (ser->irq != s->cfg->irqs[SCIx_TXI_IRQ] || ser->irq > nr_irqs)
2038 		return -EINVAL;
2039 	if (ser->baud_base < 2400)
2040 		/* No paper tape reader for Mitch.. */
2041 		return -EINVAL;
2042 
2043 	return 0;
2044 }
2045 
2046 static struct uart_ops sci_uart_ops = {
2047 	.tx_empty	= sci_tx_empty,
2048 	.set_mctrl	= sci_set_mctrl,
2049 	.get_mctrl	= sci_get_mctrl,
2050 	.start_tx	= sci_start_tx,
2051 	.stop_tx	= sci_stop_tx,
2052 	.stop_rx	= sci_stop_rx,
2053 	.enable_ms	= sci_enable_ms,
2054 	.break_ctl	= sci_break_ctl,
2055 	.startup	= sci_startup,
2056 	.shutdown	= sci_shutdown,
2057 	.set_termios	= sci_set_termios,
2058 	.pm		= sci_pm,
2059 	.type		= sci_type,
2060 	.release_port	= sci_release_port,
2061 	.request_port	= sci_request_port,
2062 	.config_port	= sci_config_port,
2063 	.verify_port	= sci_verify_port,
2064 #ifdef CONFIG_CONSOLE_POLL
2065 	.poll_get_char	= sci_poll_get_char,
2066 	.poll_put_char	= sci_poll_put_char,
2067 #endif
2068 };
2069 
2070 static int sci_init_single(struct platform_device *dev,
2071 				     struct sci_port *sci_port,
2072 				     unsigned int index,
2073 				     struct plat_sci_port *p)
2074 {
2075 	struct uart_port *port = &sci_port->port;
2076 	int ret;
2077 
2078 	sci_port->cfg	= p;
2079 
2080 	port->ops	= &sci_uart_ops;
2081 	port->iotype	= UPIO_MEM;
2082 	port->line	= index;
2083 
2084 	switch (p->type) {
2085 	case PORT_SCIFB:
2086 		port->fifosize = 256;
2087 		break;
2088 	case PORT_SCIFA:
2089 		port->fifosize = 64;
2090 		break;
2091 	case PORT_SCIF:
2092 		port->fifosize = 16;
2093 		break;
2094 	default:
2095 		port->fifosize = 1;
2096 		break;
2097 	}
2098 
2099 	if (p->regtype == SCIx_PROBE_REGTYPE) {
2100 		ret = sci_probe_regmap(p);
2101 		if (unlikely(ret))
2102 			return ret;
2103 	}
2104 
2105 	if (dev) {
2106 		sci_port->iclk = clk_get(&dev->dev, "sci_ick");
2107 		if (IS_ERR(sci_port->iclk)) {
2108 			sci_port->iclk = clk_get(&dev->dev, "peripheral_clk");
2109 			if (IS_ERR(sci_port->iclk)) {
2110 				dev_err(&dev->dev, "can't get iclk\n");
2111 				return PTR_ERR(sci_port->iclk);
2112 			}
2113 		}
2114 
2115 		/*
2116 		 * The function clock is optional, ignore it if we can't
2117 		 * find it.
2118 		 */
2119 		sci_port->fclk = clk_get(&dev->dev, "sci_fck");
2120 		if (IS_ERR(sci_port->fclk))
2121 			sci_port->fclk = NULL;
2122 
2123 		port->dev = &dev->dev;
2124 
2125 		sci_init_gpios(sci_port);
2126 
2127 		pm_runtime_enable(&dev->dev);
2128 	}
2129 
2130 	sci_port->break_timer.data = (unsigned long)sci_port;
2131 	sci_port->break_timer.function = sci_break_timer;
2132 	init_timer(&sci_port->break_timer);
2133 
2134 	/*
2135 	 * Establish some sensible defaults for the error detection.
2136 	 */
2137 	if (!p->error_mask)
2138 		p->error_mask = (p->type == PORT_SCI) ?
2139 			SCI_DEFAULT_ERROR_MASK : SCIF_DEFAULT_ERROR_MASK;
2140 
2141 	/*
2142 	 * Establish sensible defaults for the overrun detection, unless
2143 	 * the part has explicitly disabled support for it.
2144 	 */
2145 	if (p->overrun_bit != SCIx_NOT_SUPPORTED) {
2146 		if (p->type == PORT_SCI)
2147 			p->overrun_bit = 5;
2148 		else if (p->scbrr_algo_id == SCBRR_ALGO_4)
2149 			p->overrun_bit = 9;
2150 		else
2151 			p->overrun_bit = 0;
2152 
2153 		/*
2154 		 * Make the error mask inclusive of overrun detection, if
2155 		 * supported.
2156 		 */
2157 		p->error_mask |= (1 << p->overrun_bit);
2158 	}
2159 
2160 	port->mapbase		= p->mapbase;
2161 	port->type		= p->type;
2162 	port->flags		= p->flags;
2163 	port->regshift		= p->regshift;
2164 
2165 	/*
2166 	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
2167 	 * for the multi-IRQ ports, which is where we are primarily
2168 	 * concerned with the shutdown path synchronization.
2169 	 *
2170 	 * For the muxed case there's nothing more to do.
2171 	 */
2172 	port->irq		= p->irqs[SCIx_RXI_IRQ];
2173 	port->irqflags		= 0;
2174 
2175 	port->serial_in		= sci_serial_in;
2176 	port->serial_out	= sci_serial_out;
2177 
2178 	if (p->dma_slave_tx > 0 && p->dma_slave_rx > 0)
2179 		dev_dbg(port->dev, "DMA tx %d, rx %d\n",
2180 			p->dma_slave_tx, p->dma_slave_rx);
2181 
2182 	return 0;
2183 }
2184 
2185 static void sci_cleanup_single(struct sci_port *port)
2186 {
2187 	sci_free_gpios(port);
2188 
2189 	clk_put(port->iclk);
2190 	clk_put(port->fclk);
2191 
2192 	pm_runtime_disable(port->port.dev);
2193 }
2194 
2195 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
2196 static void serial_console_putchar(struct uart_port *port, int ch)
2197 {
2198 	sci_poll_put_char(port, ch);
2199 }
2200 
2201 /*
2202  *	Print a string to the serial port trying not to disturb
2203  *	any possible real use of the port...
2204  */
2205 static void serial_console_write(struct console *co, const char *s,
2206 				 unsigned count)
2207 {
2208 	struct sci_port *sci_port = &sci_ports[co->index];
2209 	struct uart_port *port = &sci_port->port;
2210 	unsigned short bits, ctrl;
2211 	unsigned long flags;
2212 	int locked = 1;
2213 
2214 	local_irq_save(flags);
2215 	if (port->sysrq)
2216 		locked = 0;
2217 	else if (oops_in_progress)
2218 		locked = spin_trylock(&port->lock);
2219 	else
2220 		spin_lock(&port->lock);
2221 
2222 	/* first save the SCSCR then disable the interrupts */
2223 	ctrl = serial_port_in(port, SCSCR);
2224 	serial_port_out(port, SCSCR, sci_port->cfg->scscr);
2225 
2226 	uart_console_write(port, s, count, serial_console_putchar);
2227 
2228 	/* wait until fifo is empty and last bit has been transmitted */
2229 	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
2230 	while ((serial_port_in(port, SCxSR) & bits) != bits)
2231 		cpu_relax();
2232 
2233 	/* restore the SCSCR */
2234 	serial_port_out(port, SCSCR, ctrl);
2235 
2236 	if (locked)
2237 		spin_unlock(&port->lock);
2238 	local_irq_restore(flags);
2239 }
2240 
2241 static int serial_console_setup(struct console *co, char *options)
2242 {
2243 	struct sci_port *sci_port;
2244 	struct uart_port *port;
2245 	int baud = 115200;
2246 	int bits = 8;
2247 	int parity = 'n';
2248 	int flow = 'n';
2249 	int ret;
2250 
2251 	/*
2252 	 * Refuse to handle any bogus ports.
2253 	 */
2254 	if (co->index < 0 || co->index >= SCI_NPORTS)
2255 		return -ENODEV;
2256 
2257 	sci_port = &sci_ports[co->index];
2258 	port = &sci_port->port;
2259 
2260 	/*
2261 	 * Refuse to handle uninitialized ports.
2262 	 */
2263 	if (!port->ops)
2264 		return -ENODEV;
2265 
2266 	ret = sci_remap_port(port);
2267 	if (unlikely(ret != 0))
2268 		return ret;
2269 
2270 	if (options)
2271 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2272 
2273 	return uart_set_options(port, co, baud, parity, bits, flow);
2274 }
2275 
2276 static struct console serial_console = {
2277 	.name		= "ttySC",
2278 	.device		= uart_console_device,
2279 	.write		= serial_console_write,
2280 	.setup		= serial_console_setup,
2281 	.flags		= CON_PRINTBUFFER,
2282 	.index		= -1,
2283 	.data		= &sci_uart_driver,
2284 };
2285 
2286 static struct console early_serial_console = {
2287 	.name           = "early_ttySC",
2288 	.write          = serial_console_write,
2289 	.flags          = CON_PRINTBUFFER,
2290 	.index		= -1,
2291 };
2292 
2293 static char early_serial_buf[32];
2294 
2295 static int sci_probe_earlyprintk(struct platform_device *pdev)
2296 {
2297 	struct plat_sci_port *cfg = pdev->dev.platform_data;
2298 
2299 	if (early_serial_console.data)
2300 		return -EEXIST;
2301 
2302 	early_serial_console.index = pdev->id;
2303 
2304 	sci_init_single(NULL, &sci_ports[pdev->id], pdev->id, cfg);
2305 
2306 	serial_console_setup(&early_serial_console, early_serial_buf);
2307 
2308 	if (!strstr(early_serial_buf, "keep"))
2309 		early_serial_console.flags |= CON_BOOT;
2310 
2311 	register_console(&early_serial_console);
2312 	return 0;
2313 }
2314 
2315 #define SCI_CONSOLE	(&serial_console)
2316 
2317 #else
2318 static inline int sci_probe_earlyprintk(struct platform_device *pdev)
2319 {
2320 	return -EINVAL;
2321 }
2322 
2323 #define SCI_CONSOLE	NULL
2324 
2325 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE */
2326 
2327 static char banner[] __initdata =
2328 	KERN_INFO "SuperH SCI(F) driver initialized\n";
2329 
2330 static struct uart_driver sci_uart_driver = {
2331 	.owner		= THIS_MODULE,
2332 	.driver_name	= "sci",
2333 	.dev_name	= "ttySC",
2334 	.major		= SCI_MAJOR,
2335 	.minor		= SCI_MINOR_START,
2336 	.nr		= SCI_NPORTS,
2337 	.cons		= SCI_CONSOLE,
2338 };
2339 
2340 static int sci_remove(struct platform_device *dev)
2341 {
2342 	struct sci_port *port = platform_get_drvdata(dev);
2343 
2344 	cpufreq_unregister_notifier(&port->freq_transition,
2345 				    CPUFREQ_TRANSITION_NOTIFIER);
2346 
2347 	uart_remove_one_port(&sci_uart_driver, &port->port);
2348 
2349 	sci_cleanup_single(port);
2350 
2351 	return 0;
2352 }
2353 
2354 static int sci_probe_single(struct platform_device *dev,
2355 				      unsigned int index,
2356 				      struct plat_sci_port *p,
2357 				      struct sci_port *sciport)
2358 {
2359 	int ret;
2360 
2361 	/* Sanity check */
2362 	if (unlikely(index >= SCI_NPORTS)) {
2363 		dev_notice(&dev->dev, "Attempting to register port "
2364 			   "%d when only %d are available.\n",
2365 			   index+1, SCI_NPORTS);
2366 		dev_notice(&dev->dev, "Consider bumping "
2367 			   "CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
2368 		return -EINVAL;
2369 	}
2370 
2371 	ret = sci_init_single(dev, sciport, index, p);
2372 	if (ret)
2373 		return ret;
2374 
2375 	ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
2376 	if (ret) {
2377 		sci_cleanup_single(sciport);
2378 		return ret;
2379 	}
2380 
2381 	return 0;
2382 }
2383 
2384 static int sci_probe(struct platform_device *dev)
2385 {
2386 	struct plat_sci_port *p = dev->dev.platform_data;
2387 	struct sci_port *sp = &sci_ports[dev->id];
2388 	int ret;
2389 
2390 	/*
2391 	 * If we've come here via earlyprintk initialization, head off to
2392 	 * the special early probe. We don't have sufficient device state
2393 	 * to make it beyond this yet.
2394 	 */
2395 	if (is_early_platform_device(dev))
2396 		return sci_probe_earlyprintk(dev);
2397 
2398 	platform_set_drvdata(dev, sp);
2399 
2400 	ret = sci_probe_single(dev, dev->id, p, sp);
2401 	if (ret)
2402 		return ret;
2403 
2404 	sp->freq_transition.notifier_call = sci_notifier;
2405 
2406 	ret = cpufreq_register_notifier(&sp->freq_transition,
2407 					CPUFREQ_TRANSITION_NOTIFIER);
2408 	if (unlikely(ret < 0)) {
2409 		sci_cleanup_single(sp);
2410 		return ret;
2411 	}
2412 
2413 #ifdef CONFIG_SH_STANDARD_BIOS
2414 	sh_bios_gdb_detach();
2415 #endif
2416 
2417 	return 0;
2418 }
2419 
2420 static int sci_suspend(struct device *dev)
2421 {
2422 	struct sci_port *sport = dev_get_drvdata(dev);
2423 
2424 	if (sport)
2425 		uart_suspend_port(&sci_uart_driver, &sport->port);
2426 
2427 	return 0;
2428 }
2429 
2430 static int sci_resume(struct device *dev)
2431 {
2432 	struct sci_port *sport = dev_get_drvdata(dev);
2433 
2434 	if (sport)
2435 		uart_resume_port(&sci_uart_driver, &sport->port);
2436 
2437 	return 0;
2438 }
2439 
2440 static const struct dev_pm_ops sci_dev_pm_ops = {
2441 	.suspend	= sci_suspend,
2442 	.resume		= sci_resume,
2443 };
2444 
2445 static struct platform_driver sci_driver = {
2446 	.probe		= sci_probe,
2447 	.remove		= sci_remove,
2448 	.driver		= {
2449 		.name	= "sh-sci",
2450 		.owner	= THIS_MODULE,
2451 		.pm	= &sci_dev_pm_ops,
2452 	},
2453 };
2454 
2455 static int __init sci_init(void)
2456 {
2457 	int ret;
2458 
2459 	printk(banner);
2460 
2461 	ret = uart_register_driver(&sci_uart_driver);
2462 	if (likely(ret == 0)) {
2463 		ret = platform_driver_register(&sci_driver);
2464 		if (unlikely(ret))
2465 			uart_unregister_driver(&sci_uart_driver);
2466 	}
2467 
2468 	return ret;
2469 }
2470 
2471 static void __exit sci_exit(void)
2472 {
2473 	platform_driver_unregister(&sci_driver);
2474 	uart_unregister_driver(&sci_uart_driver);
2475 }
2476 
2477 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
2478 early_platform_init_buffer("earlyprintk", &sci_driver,
2479 			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
2480 #endif
2481 module_init(sci_init);
2482 module_exit(sci_exit);
2483 
2484 MODULE_LICENSE("GPL");
2485 MODULE_ALIAS("platform:sh-sci");
2486 MODULE_AUTHOR("Paul Mundt");
2487 MODULE_DESCRIPTION("SuperH SCI(F) serial driver");
2488