xref: /openbmc/linux/drivers/tty/serial/sh-sci.c (revision e3d786a3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
4  *
5  *  Copyright (C) 2002 - 2011  Paul Mundt
6  *  Copyright (C) 2015 Glider bvba
7  *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
8  *
9  * based off of the old drivers/char/sh-sci.c by:
10  *
11  *   Copyright (C) 1999, 2000  Niibe Yutaka
12  *   Copyright (C) 2000  Sugioka Toshinobu
13  *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
14  *   Modified to support SecureEdge. David McCullough (2002)
15  *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
16  *   Removed SH7300 support (Jul 2007).
17  */
18 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
19 #define SUPPORT_SYSRQ
20 #endif
21 
22 #undef DEBUG
23 
24 #include <linux/clk.h>
25 #include <linux/console.h>
26 #include <linux/ctype.h>
27 #include <linux/cpufreq.h>
28 #include <linux/delay.h>
29 #include <linux/dmaengine.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/err.h>
32 #include <linux/errno.h>
33 #include <linux/init.h>
34 #include <linux/interrupt.h>
35 #include <linux/ioport.h>
36 #include <linux/ktime.h>
37 #include <linux/major.h>
38 #include <linux/module.h>
39 #include <linux/mm.h>
40 #include <linux/of.h>
41 #include <linux/of_device.h>
42 #include <linux/platform_device.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/scatterlist.h>
45 #include <linux/serial.h>
46 #include <linux/serial_sci.h>
47 #include <linux/sh_dma.h>
48 #include <linux/slab.h>
49 #include <linux/string.h>
50 #include <linux/sysrq.h>
51 #include <linux/timer.h>
52 #include <linux/tty.h>
53 #include <linux/tty_flip.h>
54 
55 #ifdef CONFIG_SUPERH
56 #include <asm/sh_bios.h>
57 #endif
58 
59 #include "serial_mctrl_gpio.h"
60 #include "sh-sci.h"
61 
62 /* Offsets into the sci_port->irqs array */
63 enum {
64 	SCIx_ERI_IRQ,
65 	SCIx_RXI_IRQ,
66 	SCIx_TXI_IRQ,
67 	SCIx_BRI_IRQ,
68 	SCIx_DRI_IRQ,
69 	SCIx_TEI_IRQ,
70 	SCIx_NR_IRQS,
71 
72 	SCIx_MUX_IRQ = SCIx_NR_IRQS,	/* special case */
73 };
74 
75 #define SCIx_IRQ_IS_MUXED(port)			\
76 	((port)->irqs[SCIx_ERI_IRQ] ==	\
77 	 (port)->irqs[SCIx_RXI_IRQ]) ||	\
78 	((port)->irqs[SCIx_ERI_IRQ] &&	\
79 	 ((port)->irqs[SCIx_RXI_IRQ] < 0))
80 
81 enum SCI_CLKS {
82 	SCI_FCK,		/* Functional Clock */
83 	SCI_SCK,		/* Optional External Clock */
84 	SCI_BRG_INT,		/* Optional BRG Internal Clock Source */
85 	SCI_SCIF_CLK,		/* Optional BRG External Clock Source */
86 	SCI_NUM_CLKS
87 };
88 
89 /* Bit x set means sampling rate x + 1 is supported */
90 #define SCI_SR(x)		BIT((x) - 1)
91 #define SCI_SR_RANGE(x, y)	GENMASK((y) - 1, (x) - 1)
92 
93 #define SCI_SR_SCIFAB		SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \
94 				SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \
95 				SCI_SR(19) | SCI_SR(27)
96 
97 #define min_sr(_port)		ffs((_port)->sampling_rate_mask)
98 #define max_sr(_port)		fls((_port)->sampling_rate_mask)
99 
100 /* Iterate over all supported sampling rates, from high to low */
101 #define for_each_sr(_sr, _port)						\
102 	for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--)	\
103 		if ((_port)->sampling_rate_mask & SCI_SR((_sr)))
104 
105 struct plat_sci_reg {
106 	u8 offset, size;
107 };
108 
109 struct sci_port_params {
110 	const struct plat_sci_reg regs[SCIx_NR_REGS];
111 	unsigned int fifosize;
112 	unsigned int overrun_reg;
113 	unsigned int overrun_mask;
114 	unsigned int sampling_rate_mask;
115 	unsigned int error_mask;
116 	unsigned int error_clear;
117 };
118 
119 struct sci_port {
120 	struct uart_port	port;
121 
122 	/* Platform configuration */
123 	const struct sci_port_params *params;
124 	const struct plat_sci_port *cfg;
125 	unsigned int		sampling_rate_mask;
126 	resource_size_t		reg_size;
127 	struct mctrl_gpios	*gpios;
128 
129 	/* Clocks */
130 	struct clk		*clks[SCI_NUM_CLKS];
131 	unsigned long		clk_rates[SCI_NUM_CLKS];
132 
133 	int			irqs[SCIx_NR_IRQS];
134 	char			*irqstr[SCIx_NR_IRQS];
135 
136 	struct dma_chan			*chan_tx;
137 	struct dma_chan			*chan_rx;
138 
139 #ifdef CONFIG_SERIAL_SH_SCI_DMA
140 	struct dma_chan			*chan_tx_saved;
141 	struct dma_chan			*chan_rx_saved;
142 	dma_cookie_t			cookie_tx;
143 	dma_cookie_t			cookie_rx[2];
144 	dma_cookie_t			active_rx;
145 	dma_addr_t			tx_dma_addr;
146 	unsigned int			tx_dma_len;
147 	struct scatterlist		sg_rx[2];
148 	void				*rx_buf[2];
149 	size_t				buf_len_rx;
150 	struct work_struct		work_tx;
151 	struct hrtimer			rx_timer;
152 	unsigned int			rx_timeout;	/* microseconds */
153 #endif
154 	unsigned int			rx_frame;
155 	int				rx_trigger;
156 	struct timer_list		rx_fifo_timer;
157 	int				rx_fifo_timeout;
158 	u16				hscif_tot;
159 
160 	bool has_rtscts;
161 	bool autorts;
162 };
163 
164 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
165 
166 static struct sci_port sci_ports[SCI_NPORTS];
167 static unsigned long sci_ports_in_use;
168 static struct uart_driver sci_uart_driver;
169 
170 static inline struct sci_port *
171 to_sci_port(struct uart_port *uart)
172 {
173 	return container_of(uart, struct sci_port, port);
174 }
175 
176 static const struct sci_port_params sci_port_params[SCIx_NR_REGTYPES] = {
177 	/*
178 	 * Common SCI definitions, dependent on the port's regshift
179 	 * value.
180 	 */
181 	[SCIx_SCI_REGTYPE] = {
182 		.regs = {
183 			[SCSMR]		= { 0x00,  8 },
184 			[SCBRR]		= { 0x01,  8 },
185 			[SCSCR]		= { 0x02,  8 },
186 			[SCxTDR]	= { 0x03,  8 },
187 			[SCxSR]		= { 0x04,  8 },
188 			[SCxRDR]	= { 0x05,  8 },
189 		},
190 		.fifosize = 1,
191 		.overrun_reg = SCxSR,
192 		.overrun_mask = SCI_ORER,
193 		.sampling_rate_mask = SCI_SR(32),
194 		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
195 		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
196 	},
197 
198 	/*
199 	 * Common definitions for legacy IrDA ports.
200 	 */
201 	[SCIx_IRDA_REGTYPE] = {
202 		.regs = {
203 			[SCSMR]		= { 0x00,  8 },
204 			[SCBRR]		= { 0x02,  8 },
205 			[SCSCR]		= { 0x04,  8 },
206 			[SCxTDR]	= { 0x06,  8 },
207 			[SCxSR]		= { 0x08, 16 },
208 			[SCxRDR]	= { 0x0a,  8 },
209 			[SCFCR]		= { 0x0c,  8 },
210 			[SCFDR]		= { 0x0e, 16 },
211 		},
212 		.fifosize = 1,
213 		.overrun_reg = SCxSR,
214 		.overrun_mask = SCI_ORER,
215 		.sampling_rate_mask = SCI_SR(32),
216 		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
217 		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
218 	},
219 
220 	/*
221 	 * Common SCIFA definitions.
222 	 */
223 	[SCIx_SCIFA_REGTYPE] = {
224 		.regs = {
225 			[SCSMR]		= { 0x00, 16 },
226 			[SCBRR]		= { 0x04,  8 },
227 			[SCSCR]		= { 0x08, 16 },
228 			[SCxTDR]	= { 0x20,  8 },
229 			[SCxSR]		= { 0x14, 16 },
230 			[SCxRDR]	= { 0x24,  8 },
231 			[SCFCR]		= { 0x18, 16 },
232 			[SCFDR]		= { 0x1c, 16 },
233 			[SCPCR]		= { 0x30, 16 },
234 			[SCPDR]		= { 0x34, 16 },
235 		},
236 		.fifosize = 64,
237 		.overrun_reg = SCxSR,
238 		.overrun_mask = SCIFA_ORER,
239 		.sampling_rate_mask = SCI_SR_SCIFAB,
240 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
241 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
242 	},
243 
244 	/*
245 	 * Common SCIFB definitions.
246 	 */
247 	[SCIx_SCIFB_REGTYPE] = {
248 		.regs = {
249 			[SCSMR]		= { 0x00, 16 },
250 			[SCBRR]		= { 0x04,  8 },
251 			[SCSCR]		= { 0x08, 16 },
252 			[SCxTDR]	= { 0x40,  8 },
253 			[SCxSR]		= { 0x14, 16 },
254 			[SCxRDR]	= { 0x60,  8 },
255 			[SCFCR]		= { 0x18, 16 },
256 			[SCTFDR]	= { 0x38, 16 },
257 			[SCRFDR]	= { 0x3c, 16 },
258 			[SCPCR]		= { 0x30, 16 },
259 			[SCPDR]		= { 0x34, 16 },
260 		},
261 		.fifosize = 256,
262 		.overrun_reg = SCxSR,
263 		.overrun_mask = SCIFA_ORER,
264 		.sampling_rate_mask = SCI_SR_SCIFAB,
265 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
266 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
267 	},
268 
269 	/*
270 	 * Common SH-2(A) SCIF definitions for ports with FIFO data
271 	 * count registers.
272 	 */
273 	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
274 		.regs = {
275 			[SCSMR]		= { 0x00, 16 },
276 			[SCBRR]		= { 0x04,  8 },
277 			[SCSCR]		= { 0x08, 16 },
278 			[SCxTDR]	= { 0x0c,  8 },
279 			[SCxSR]		= { 0x10, 16 },
280 			[SCxRDR]	= { 0x14,  8 },
281 			[SCFCR]		= { 0x18, 16 },
282 			[SCFDR]		= { 0x1c, 16 },
283 			[SCSPTR]	= { 0x20, 16 },
284 			[SCLSR]		= { 0x24, 16 },
285 		},
286 		.fifosize = 16,
287 		.overrun_reg = SCLSR,
288 		.overrun_mask = SCLSR_ORER,
289 		.sampling_rate_mask = SCI_SR(32),
290 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
291 		.error_clear = SCIF_ERROR_CLEAR,
292 	},
293 
294 	/*
295 	 * The "SCIFA" that is in RZ/T and RZ/A2.
296 	 * It looks like a normal SCIF with FIFO data, but with a
297 	 * compressed address space. Also, the break out of interrupts
298 	 * are different: ERI/BRI, RXI, TXI, TEI, DRI.
299 	 */
300 	[SCIx_RZ_SCIFA_REGTYPE] = {
301 		.regs = {
302 			[SCSMR]		= { 0x00, 16 },
303 			[SCBRR]		= { 0x02,  8 },
304 			[SCSCR]		= { 0x04, 16 },
305 			[SCxTDR]	= { 0x06,  8 },
306 			[SCxSR]		= { 0x08, 16 },
307 			[SCxRDR]	= { 0x0A,  8 },
308 			[SCFCR]		= { 0x0C, 16 },
309 			[SCFDR]		= { 0x0E, 16 },
310 			[SCSPTR]	= { 0x10, 16 },
311 			[SCLSR]		= { 0x12, 16 },
312 		},
313 		.fifosize = 16,
314 		.overrun_reg = SCLSR,
315 		.overrun_mask = SCLSR_ORER,
316 		.sampling_rate_mask = SCI_SR(32),
317 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
318 		.error_clear = SCIF_ERROR_CLEAR,
319 	},
320 
321 	/*
322 	 * Common SH-3 SCIF definitions.
323 	 */
324 	[SCIx_SH3_SCIF_REGTYPE] = {
325 		.regs = {
326 			[SCSMR]		= { 0x00,  8 },
327 			[SCBRR]		= { 0x02,  8 },
328 			[SCSCR]		= { 0x04,  8 },
329 			[SCxTDR]	= { 0x06,  8 },
330 			[SCxSR]		= { 0x08, 16 },
331 			[SCxRDR]	= { 0x0a,  8 },
332 			[SCFCR]		= { 0x0c,  8 },
333 			[SCFDR]		= { 0x0e, 16 },
334 		},
335 		.fifosize = 16,
336 		.overrun_reg = SCLSR,
337 		.overrun_mask = SCLSR_ORER,
338 		.sampling_rate_mask = SCI_SR(32),
339 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
340 		.error_clear = SCIF_ERROR_CLEAR,
341 	},
342 
343 	/*
344 	 * Common SH-4(A) SCIF(B) definitions.
345 	 */
346 	[SCIx_SH4_SCIF_REGTYPE] = {
347 		.regs = {
348 			[SCSMR]		= { 0x00, 16 },
349 			[SCBRR]		= { 0x04,  8 },
350 			[SCSCR]		= { 0x08, 16 },
351 			[SCxTDR]	= { 0x0c,  8 },
352 			[SCxSR]		= { 0x10, 16 },
353 			[SCxRDR]	= { 0x14,  8 },
354 			[SCFCR]		= { 0x18, 16 },
355 			[SCFDR]		= { 0x1c, 16 },
356 			[SCSPTR]	= { 0x20, 16 },
357 			[SCLSR]		= { 0x24, 16 },
358 		},
359 		.fifosize = 16,
360 		.overrun_reg = SCLSR,
361 		.overrun_mask = SCLSR_ORER,
362 		.sampling_rate_mask = SCI_SR(32),
363 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
364 		.error_clear = SCIF_ERROR_CLEAR,
365 	},
366 
367 	/*
368 	 * Common SCIF definitions for ports with a Baud Rate Generator for
369 	 * External Clock (BRG).
370 	 */
371 	[SCIx_SH4_SCIF_BRG_REGTYPE] = {
372 		.regs = {
373 			[SCSMR]		= { 0x00, 16 },
374 			[SCBRR]		= { 0x04,  8 },
375 			[SCSCR]		= { 0x08, 16 },
376 			[SCxTDR]	= { 0x0c,  8 },
377 			[SCxSR]		= { 0x10, 16 },
378 			[SCxRDR]	= { 0x14,  8 },
379 			[SCFCR]		= { 0x18, 16 },
380 			[SCFDR]		= { 0x1c, 16 },
381 			[SCSPTR]	= { 0x20, 16 },
382 			[SCLSR]		= { 0x24, 16 },
383 			[SCDL]		= { 0x30, 16 },
384 			[SCCKS]		= { 0x34, 16 },
385 		},
386 		.fifosize = 16,
387 		.overrun_reg = SCLSR,
388 		.overrun_mask = SCLSR_ORER,
389 		.sampling_rate_mask = SCI_SR(32),
390 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
391 		.error_clear = SCIF_ERROR_CLEAR,
392 	},
393 
394 	/*
395 	 * Common HSCIF definitions.
396 	 */
397 	[SCIx_HSCIF_REGTYPE] = {
398 		.regs = {
399 			[SCSMR]		= { 0x00, 16 },
400 			[SCBRR]		= { 0x04,  8 },
401 			[SCSCR]		= { 0x08, 16 },
402 			[SCxTDR]	= { 0x0c,  8 },
403 			[SCxSR]		= { 0x10, 16 },
404 			[SCxRDR]	= { 0x14,  8 },
405 			[SCFCR]		= { 0x18, 16 },
406 			[SCFDR]		= { 0x1c, 16 },
407 			[SCSPTR]	= { 0x20, 16 },
408 			[SCLSR]		= { 0x24, 16 },
409 			[HSSRR]		= { 0x40, 16 },
410 			[SCDL]		= { 0x30, 16 },
411 			[SCCKS]		= { 0x34, 16 },
412 			[HSRTRGR]	= { 0x54, 16 },
413 			[HSTTRGR]	= { 0x58, 16 },
414 		},
415 		.fifosize = 128,
416 		.overrun_reg = SCLSR,
417 		.overrun_mask = SCLSR_ORER,
418 		.sampling_rate_mask = SCI_SR_RANGE(8, 32),
419 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
420 		.error_clear = SCIF_ERROR_CLEAR,
421 	},
422 
423 	/*
424 	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
425 	 * register.
426 	 */
427 	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
428 		.regs = {
429 			[SCSMR]		= { 0x00, 16 },
430 			[SCBRR]		= { 0x04,  8 },
431 			[SCSCR]		= { 0x08, 16 },
432 			[SCxTDR]	= { 0x0c,  8 },
433 			[SCxSR]		= { 0x10, 16 },
434 			[SCxRDR]	= { 0x14,  8 },
435 			[SCFCR]		= { 0x18, 16 },
436 			[SCFDR]		= { 0x1c, 16 },
437 			[SCLSR]		= { 0x24, 16 },
438 		},
439 		.fifosize = 16,
440 		.overrun_reg = SCLSR,
441 		.overrun_mask = SCLSR_ORER,
442 		.sampling_rate_mask = SCI_SR(32),
443 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
444 		.error_clear = SCIF_ERROR_CLEAR,
445 	},
446 
447 	/*
448 	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
449 	 * count registers.
450 	 */
451 	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
452 		.regs = {
453 			[SCSMR]		= { 0x00, 16 },
454 			[SCBRR]		= { 0x04,  8 },
455 			[SCSCR]		= { 0x08, 16 },
456 			[SCxTDR]	= { 0x0c,  8 },
457 			[SCxSR]		= { 0x10, 16 },
458 			[SCxRDR]	= { 0x14,  8 },
459 			[SCFCR]		= { 0x18, 16 },
460 			[SCFDR]		= { 0x1c, 16 },
461 			[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
462 			[SCRFDR]	= { 0x20, 16 },
463 			[SCSPTR]	= { 0x24, 16 },
464 			[SCLSR]		= { 0x28, 16 },
465 		},
466 		.fifosize = 16,
467 		.overrun_reg = SCLSR,
468 		.overrun_mask = SCLSR_ORER,
469 		.sampling_rate_mask = SCI_SR(32),
470 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
471 		.error_clear = SCIF_ERROR_CLEAR,
472 	},
473 
474 	/*
475 	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
476 	 * registers.
477 	 */
478 	[SCIx_SH7705_SCIF_REGTYPE] = {
479 		.regs = {
480 			[SCSMR]		= { 0x00, 16 },
481 			[SCBRR]		= { 0x04,  8 },
482 			[SCSCR]		= { 0x08, 16 },
483 			[SCxTDR]	= { 0x20,  8 },
484 			[SCxSR]		= { 0x14, 16 },
485 			[SCxRDR]	= { 0x24,  8 },
486 			[SCFCR]		= { 0x18, 16 },
487 			[SCFDR]		= { 0x1c, 16 },
488 		},
489 		.fifosize = 64,
490 		.overrun_reg = SCxSR,
491 		.overrun_mask = SCIFA_ORER,
492 		.sampling_rate_mask = SCI_SR(16),
493 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
494 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
495 	},
496 };
497 
498 #define sci_getreg(up, offset)		(&to_sci_port(up)->params->regs[offset])
499 
500 /*
501  * The "offset" here is rather misleading, in that it refers to an enum
502  * value relative to the port mapping rather than the fixed offset
503  * itself, which needs to be manually retrieved from the platform's
504  * register map for the given port.
505  */
506 static unsigned int sci_serial_in(struct uart_port *p, int offset)
507 {
508 	const struct plat_sci_reg *reg = sci_getreg(p, offset);
509 
510 	if (reg->size == 8)
511 		return ioread8(p->membase + (reg->offset << p->regshift));
512 	else if (reg->size == 16)
513 		return ioread16(p->membase + (reg->offset << p->regshift));
514 	else
515 		WARN(1, "Invalid register access\n");
516 
517 	return 0;
518 }
519 
520 static void sci_serial_out(struct uart_port *p, int offset, int value)
521 {
522 	const struct plat_sci_reg *reg = sci_getreg(p, offset);
523 
524 	if (reg->size == 8)
525 		iowrite8(value, p->membase + (reg->offset << p->regshift));
526 	else if (reg->size == 16)
527 		iowrite16(value, p->membase + (reg->offset << p->regshift));
528 	else
529 		WARN(1, "Invalid register access\n");
530 }
531 
532 static void sci_port_enable(struct sci_port *sci_port)
533 {
534 	unsigned int i;
535 
536 	if (!sci_port->port.dev)
537 		return;
538 
539 	pm_runtime_get_sync(sci_port->port.dev);
540 
541 	for (i = 0; i < SCI_NUM_CLKS; i++) {
542 		clk_prepare_enable(sci_port->clks[i]);
543 		sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]);
544 	}
545 	sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
546 }
547 
548 static void sci_port_disable(struct sci_port *sci_port)
549 {
550 	unsigned int i;
551 
552 	if (!sci_port->port.dev)
553 		return;
554 
555 	for (i = SCI_NUM_CLKS; i-- > 0; )
556 		clk_disable_unprepare(sci_port->clks[i]);
557 
558 	pm_runtime_put_sync(sci_port->port.dev);
559 }
560 
561 static inline unsigned long port_rx_irq_mask(struct uart_port *port)
562 {
563 	/*
564 	 * Not all ports (such as SCIFA) will support REIE. Rather than
565 	 * special-casing the port type, we check the port initialization
566 	 * IRQ enable mask to see whether the IRQ is desired at all. If
567 	 * it's unset, it's logically inferred that there's no point in
568 	 * testing for it.
569 	 */
570 	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
571 }
572 
573 static void sci_start_tx(struct uart_port *port)
574 {
575 	struct sci_port *s = to_sci_port(port);
576 	unsigned short ctrl;
577 
578 #ifdef CONFIG_SERIAL_SH_SCI_DMA
579 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
580 		u16 new, scr = serial_port_in(port, SCSCR);
581 		if (s->chan_tx)
582 			new = scr | SCSCR_TDRQE;
583 		else
584 			new = scr & ~SCSCR_TDRQE;
585 		if (new != scr)
586 			serial_port_out(port, SCSCR, new);
587 	}
588 
589 	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
590 	    dma_submit_error(s->cookie_tx)) {
591 		s->cookie_tx = 0;
592 		schedule_work(&s->work_tx);
593 	}
594 #endif
595 
596 	if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
597 		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
598 		ctrl = serial_port_in(port, SCSCR);
599 		serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
600 	}
601 }
602 
603 static void sci_stop_tx(struct uart_port *port)
604 {
605 	unsigned short ctrl;
606 
607 	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
608 	ctrl = serial_port_in(port, SCSCR);
609 
610 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
611 		ctrl &= ~SCSCR_TDRQE;
612 
613 	ctrl &= ~SCSCR_TIE;
614 
615 	serial_port_out(port, SCSCR, ctrl);
616 }
617 
618 static void sci_start_rx(struct uart_port *port)
619 {
620 	unsigned short ctrl;
621 
622 	ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
623 
624 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
625 		ctrl &= ~SCSCR_RDRQE;
626 
627 	serial_port_out(port, SCSCR, ctrl);
628 }
629 
630 static void sci_stop_rx(struct uart_port *port)
631 {
632 	unsigned short ctrl;
633 
634 	ctrl = serial_port_in(port, SCSCR);
635 
636 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
637 		ctrl &= ~SCSCR_RDRQE;
638 
639 	ctrl &= ~port_rx_irq_mask(port);
640 
641 	serial_port_out(port, SCSCR, ctrl);
642 }
643 
644 static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
645 {
646 	if (port->type == PORT_SCI) {
647 		/* Just store the mask */
648 		serial_port_out(port, SCxSR, mask);
649 	} else if (to_sci_port(port)->params->overrun_mask == SCIFA_ORER) {
650 		/* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
651 		/* Only clear the status bits we want to clear */
652 		serial_port_out(port, SCxSR,
653 				serial_port_in(port, SCxSR) & mask);
654 	} else {
655 		/* Store the mask, clear parity/framing errors */
656 		serial_port_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
657 	}
658 }
659 
660 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
661     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
662 
663 #ifdef CONFIG_CONSOLE_POLL
664 static int sci_poll_get_char(struct uart_port *port)
665 {
666 	unsigned short status;
667 	int c;
668 
669 	do {
670 		status = serial_port_in(port, SCxSR);
671 		if (status & SCxSR_ERRORS(port)) {
672 			sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
673 			continue;
674 		}
675 		break;
676 	} while (1);
677 
678 	if (!(status & SCxSR_RDxF(port)))
679 		return NO_POLL_CHAR;
680 
681 	c = serial_port_in(port, SCxRDR);
682 
683 	/* Dummy read */
684 	serial_port_in(port, SCxSR);
685 	sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
686 
687 	return c;
688 }
689 #endif
690 
691 static void sci_poll_put_char(struct uart_port *port, unsigned char c)
692 {
693 	unsigned short status;
694 
695 	do {
696 		status = serial_port_in(port, SCxSR);
697 	} while (!(status & SCxSR_TDxE(port)));
698 
699 	serial_port_out(port, SCxTDR, c);
700 	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
701 }
702 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE ||
703 	  CONFIG_SERIAL_SH_SCI_EARLYCON */
704 
705 static void sci_init_pins(struct uart_port *port, unsigned int cflag)
706 {
707 	struct sci_port *s = to_sci_port(port);
708 
709 	/*
710 	 * Use port-specific handler if provided.
711 	 */
712 	if (s->cfg->ops && s->cfg->ops->init_pins) {
713 		s->cfg->ops->init_pins(port, cflag);
714 		return;
715 	}
716 
717 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
718 		u16 data = serial_port_in(port, SCPDR);
719 		u16 ctrl = serial_port_in(port, SCPCR);
720 
721 		/* Enable RXD and TXD pin functions */
722 		ctrl &= ~(SCPCR_RXDC | SCPCR_TXDC);
723 		if (to_sci_port(port)->has_rtscts) {
724 			/* RTS# is output, active low, unless autorts */
725 			if (!(port->mctrl & TIOCM_RTS)) {
726 				ctrl |= SCPCR_RTSC;
727 				data |= SCPDR_RTSD;
728 			} else if (!s->autorts) {
729 				ctrl |= SCPCR_RTSC;
730 				data &= ~SCPDR_RTSD;
731 			} else {
732 				/* Enable RTS# pin function */
733 				ctrl &= ~SCPCR_RTSC;
734 			}
735 			/* Enable CTS# pin function */
736 			ctrl &= ~SCPCR_CTSC;
737 		}
738 		serial_port_out(port, SCPDR, data);
739 		serial_port_out(port, SCPCR, ctrl);
740 	} else if (sci_getreg(port, SCSPTR)->size) {
741 		u16 status = serial_port_in(port, SCSPTR);
742 
743 		/* RTS# is always output; and active low, unless autorts */
744 		status |= SCSPTR_RTSIO;
745 		if (!(port->mctrl & TIOCM_RTS))
746 			status |= SCSPTR_RTSDT;
747 		else if (!s->autorts)
748 			status &= ~SCSPTR_RTSDT;
749 		/* CTS# and SCK are inputs */
750 		status &= ~(SCSPTR_CTSIO | SCSPTR_SCKIO);
751 		serial_port_out(port, SCSPTR, status);
752 	}
753 }
754 
755 static int sci_txfill(struct uart_port *port)
756 {
757 	struct sci_port *s = to_sci_port(port);
758 	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
759 	const struct plat_sci_reg *reg;
760 
761 	reg = sci_getreg(port, SCTFDR);
762 	if (reg->size)
763 		return serial_port_in(port, SCTFDR) & fifo_mask;
764 
765 	reg = sci_getreg(port, SCFDR);
766 	if (reg->size)
767 		return serial_port_in(port, SCFDR) >> 8;
768 
769 	return !(serial_port_in(port, SCxSR) & SCI_TDRE);
770 }
771 
772 static int sci_txroom(struct uart_port *port)
773 {
774 	return port->fifosize - sci_txfill(port);
775 }
776 
777 static int sci_rxfill(struct uart_port *port)
778 {
779 	struct sci_port *s = to_sci_port(port);
780 	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
781 	const struct plat_sci_reg *reg;
782 
783 	reg = sci_getreg(port, SCRFDR);
784 	if (reg->size)
785 		return serial_port_in(port, SCRFDR) & fifo_mask;
786 
787 	reg = sci_getreg(port, SCFDR);
788 	if (reg->size)
789 		return serial_port_in(port, SCFDR) & fifo_mask;
790 
791 	return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
792 }
793 
794 /* ********************************************************************** *
795  *                   the interrupt related routines                       *
796  * ********************************************************************** */
797 
798 static void sci_transmit_chars(struct uart_port *port)
799 {
800 	struct circ_buf *xmit = &port->state->xmit;
801 	unsigned int stopped = uart_tx_stopped(port);
802 	unsigned short status;
803 	unsigned short ctrl;
804 	int count;
805 
806 	status = serial_port_in(port, SCxSR);
807 	if (!(status & SCxSR_TDxE(port))) {
808 		ctrl = serial_port_in(port, SCSCR);
809 		if (uart_circ_empty(xmit))
810 			ctrl &= ~SCSCR_TIE;
811 		else
812 			ctrl |= SCSCR_TIE;
813 		serial_port_out(port, SCSCR, ctrl);
814 		return;
815 	}
816 
817 	count = sci_txroom(port);
818 
819 	do {
820 		unsigned char c;
821 
822 		if (port->x_char) {
823 			c = port->x_char;
824 			port->x_char = 0;
825 		} else if (!uart_circ_empty(xmit) && !stopped) {
826 			c = xmit->buf[xmit->tail];
827 			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
828 		} else {
829 			break;
830 		}
831 
832 		serial_port_out(port, SCxTDR, c);
833 
834 		port->icount.tx++;
835 	} while (--count > 0);
836 
837 	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
838 
839 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
840 		uart_write_wakeup(port);
841 	if (uart_circ_empty(xmit)) {
842 		sci_stop_tx(port);
843 	} else {
844 		ctrl = serial_port_in(port, SCSCR);
845 
846 		if (port->type != PORT_SCI) {
847 			serial_port_in(port, SCxSR); /* Dummy read */
848 			sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
849 		}
850 
851 		ctrl |= SCSCR_TIE;
852 		serial_port_out(port, SCSCR, ctrl);
853 	}
854 }
855 
856 /* On SH3, SCIF may read end-of-break as a space->mark char */
857 #define STEPFN(c)  ({int __c = (c); (((__c-1)|(__c)) == -1); })
858 
859 static void sci_receive_chars(struct uart_port *port)
860 {
861 	struct tty_port *tport = &port->state->port;
862 	int i, count, copied = 0;
863 	unsigned short status;
864 	unsigned char flag;
865 
866 	status = serial_port_in(port, SCxSR);
867 	if (!(status & SCxSR_RDxF(port)))
868 		return;
869 
870 	while (1) {
871 		/* Don't copy more bytes than there is room for in the buffer */
872 		count = tty_buffer_request_room(tport, sci_rxfill(port));
873 
874 		/* If for any reason we can't copy more data, we're done! */
875 		if (count == 0)
876 			break;
877 
878 		if (port->type == PORT_SCI) {
879 			char c = serial_port_in(port, SCxRDR);
880 			if (uart_handle_sysrq_char(port, c))
881 				count = 0;
882 			else
883 				tty_insert_flip_char(tport, c, TTY_NORMAL);
884 		} else {
885 			for (i = 0; i < count; i++) {
886 				char c = serial_port_in(port, SCxRDR);
887 
888 				status = serial_port_in(port, SCxSR);
889 				if (uart_handle_sysrq_char(port, c)) {
890 					count--; i--;
891 					continue;
892 				}
893 
894 				/* Store data and status */
895 				if (status & SCxSR_FER(port)) {
896 					flag = TTY_FRAME;
897 					port->icount.frame++;
898 					dev_notice(port->dev, "frame error\n");
899 				} else if (status & SCxSR_PER(port)) {
900 					flag = TTY_PARITY;
901 					port->icount.parity++;
902 					dev_notice(port->dev, "parity error\n");
903 				} else
904 					flag = TTY_NORMAL;
905 
906 				tty_insert_flip_char(tport, c, flag);
907 			}
908 		}
909 
910 		serial_port_in(port, SCxSR); /* dummy read */
911 		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
912 
913 		copied += count;
914 		port->icount.rx += count;
915 	}
916 
917 	if (copied) {
918 		/* Tell the rest of the system the news. New characters! */
919 		tty_flip_buffer_push(tport);
920 	} else {
921 		/* TTY buffers full; read from RX reg to prevent lockup */
922 		serial_port_in(port, SCxRDR);
923 		serial_port_in(port, SCxSR); /* dummy read */
924 		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
925 	}
926 }
927 
928 static int sci_handle_errors(struct uart_port *port)
929 {
930 	int copied = 0;
931 	unsigned short status = serial_port_in(port, SCxSR);
932 	struct tty_port *tport = &port->state->port;
933 	struct sci_port *s = to_sci_port(port);
934 
935 	/* Handle overruns */
936 	if (status & s->params->overrun_mask) {
937 		port->icount.overrun++;
938 
939 		/* overrun error */
940 		if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
941 			copied++;
942 
943 		dev_notice(port->dev, "overrun error\n");
944 	}
945 
946 	if (status & SCxSR_FER(port)) {
947 		/* frame error */
948 		port->icount.frame++;
949 
950 		if (tty_insert_flip_char(tport, 0, TTY_FRAME))
951 			copied++;
952 
953 		dev_notice(port->dev, "frame error\n");
954 	}
955 
956 	if (status & SCxSR_PER(port)) {
957 		/* parity error */
958 		port->icount.parity++;
959 
960 		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
961 			copied++;
962 
963 		dev_notice(port->dev, "parity error\n");
964 	}
965 
966 	if (copied)
967 		tty_flip_buffer_push(tport);
968 
969 	return copied;
970 }
971 
972 static int sci_handle_fifo_overrun(struct uart_port *port)
973 {
974 	struct tty_port *tport = &port->state->port;
975 	struct sci_port *s = to_sci_port(port);
976 	const struct plat_sci_reg *reg;
977 	int copied = 0;
978 	u16 status;
979 
980 	reg = sci_getreg(port, s->params->overrun_reg);
981 	if (!reg->size)
982 		return 0;
983 
984 	status = serial_port_in(port, s->params->overrun_reg);
985 	if (status & s->params->overrun_mask) {
986 		status &= ~s->params->overrun_mask;
987 		serial_port_out(port, s->params->overrun_reg, status);
988 
989 		port->icount.overrun++;
990 
991 		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
992 		tty_flip_buffer_push(tport);
993 
994 		dev_dbg(port->dev, "overrun error\n");
995 		copied++;
996 	}
997 
998 	return copied;
999 }
1000 
1001 static int sci_handle_breaks(struct uart_port *port)
1002 {
1003 	int copied = 0;
1004 	unsigned short status = serial_port_in(port, SCxSR);
1005 	struct tty_port *tport = &port->state->port;
1006 
1007 	if (uart_handle_break(port))
1008 		return 0;
1009 
1010 	if (status & SCxSR_BRK(port)) {
1011 		port->icount.brk++;
1012 
1013 		/* Notify of BREAK */
1014 		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
1015 			copied++;
1016 
1017 		dev_dbg(port->dev, "BREAK detected\n");
1018 	}
1019 
1020 	if (copied)
1021 		tty_flip_buffer_push(tport);
1022 
1023 	copied += sci_handle_fifo_overrun(port);
1024 
1025 	return copied;
1026 }
1027 
1028 static int scif_set_rtrg(struct uart_port *port, int rx_trig)
1029 {
1030 	unsigned int bits;
1031 
1032 	if (rx_trig < 1)
1033 		rx_trig = 1;
1034 	if (rx_trig >= port->fifosize)
1035 		rx_trig = port->fifosize;
1036 
1037 	/* HSCIF can be set to an arbitrary level. */
1038 	if (sci_getreg(port, HSRTRGR)->size) {
1039 		serial_port_out(port, HSRTRGR, rx_trig);
1040 		return rx_trig;
1041 	}
1042 
1043 	switch (port->type) {
1044 	case PORT_SCIF:
1045 		if (rx_trig < 4) {
1046 			bits = 0;
1047 			rx_trig = 1;
1048 		} else if (rx_trig < 8) {
1049 			bits = SCFCR_RTRG0;
1050 			rx_trig = 4;
1051 		} else if (rx_trig < 14) {
1052 			bits = SCFCR_RTRG1;
1053 			rx_trig = 8;
1054 		} else {
1055 			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1056 			rx_trig = 14;
1057 		}
1058 		break;
1059 	case PORT_SCIFA:
1060 	case PORT_SCIFB:
1061 		if (rx_trig < 16) {
1062 			bits = 0;
1063 			rx_trig = 1;
1064 		} else if (rx_trig < 32) {
1065 			bits = SCFCR_RTRG0;
1066 			rx_trig = 16;
1067 		} else if (rx_trig < 48) {
1068 			bits = SCFCR_RTRG1;
1069 			rx_trig = 32;
1070 		} else {
1071 			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1072 			rx_trig = 48;
1073 		}
1074 		break;
1075 	default:
1076 		WARN(1, "unknown FIFO configuration");
1077 		return 1;
1078 	}
1079 
1080 	serial_port_out(port, SCFCR,
1081 		(serial_port_in(port, SCFCR) &
1082 		~(SCFCR_RTRG1 | SCFCR_RTRG0)) | bits);
1083 
1084 	return rx_trig;
1085 }
1086 
1087 static int scif_rtrg_enabled(struct uart_port *port)
1088 {
1089 	if (sci_getreg(port, HSRTRGR)->size)
1090 		return serial_port_in(port, HSRTRGR) != 0;
1091 	else
1092 		return (serial_port_in(port, SCFCR) &
1093 			(SCFCR_RTRG0 | SCFCR_RTRG1)) != 0;
1094 }
1095 
1096 static void rx_fifo_timer_fn(struct timer_list *t)
1097 {
1098 	struct sci_port *s = from_timer(s, t, rx_fifo_timer);
1099 	struct uart_port *port = &s->port;
1100 
1101 	dev_dbg(port->dev, "Rx timed out\n");
1102 	scif_set_rtrg(port, 1);
1103 }
1104 
1105 static ssize_t rx_trigger_show(struct device *dev,
1106 			       struct device_attribute *attr,
1107 			       char *buf)
1108 {
1109 	struct uart_port *port = dev_get_drvdata(dev);
1110 	struct sci_port *sci = to_sci_port(port);
1111 
1112 	return sprintf(buf, "%d\n", sci->rx_trigger);
1113 }
1114 
1115 static ssize_t rx_trigger_store(struct device *dev,
1116 				struct device_attribute *attr,
1117 				const char *buf,
1118 				size_t count)
1119 {
1120 	struct uart_port *port = dev_get_drvdata(dev);
1121 	struct sci_port *sci = to_sci_port(port);
1122 	int ret;
1123 	long r;
1124 
1125 	ret = kstrtol(buf, 0, &r);
1126 	if (ret)
1127 		return ret;
1128 
1129 	sci->rx_trigger = scif_set_rtrg(port, r);
1130 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1131 		scif_set_rtrg(port, 1);
1132 
1133 	return count;
1134 }
1135 
1136 static DEVICE_ATTR(rx_fifo_trigger, 0644, rx_trigger_show, rx_trigger_store);
1137 
1138 static ssize_t rx_fifo_timeout_show(struct device *dev,
1139 			       struct device_attribute *attr,
1140 			       char *buf)
1141 {
1142 	struct uart_port *port = dev_get_drvdata(dev);
1143 	struct sci_port *sci = to_sci_port(port);
1144 	int v;
1145 
1146 	if (port->type == PORT_HSCIF)
1147 		v = sci->hscif_tot >> HSSCR_TOT_SHIFT;
1148 	else
1149 		v = sci->rx_fifo_timeout;
1150 
1151 	return sprintf(buf, "%d\n", v);
1152 }
1153 
1154 static ssize_t rx_fifo_timeout_store(struct device *dev,
1155 				struct device_attribute *attr,
1156 				const char *buf,
1157 				size_t count)
1158 {
1159 	struct uart_port *port = dev_get_drvdata(dev);
1160 	struct sci_port *sci = to_sci_port(port);
1161 	int ret;
1162 	long r;
1163 
1164 	ret = kstrtol(buf, 0, &r);
1165 	if (ret)
1166 		return ret;
1167 
1168 	if (port->type == PORT_HSCIF) {
1169 		if (r < 0 || r > 3)
1170 			return -EINVAL;
1171 		sci->hscif_tot = r << HSSCR_TOT_SHIFT;
1172 	} else {
1173 		sci->rx_fifo_timeout = r;
1174 		scif_set_rtrg(port, 1);
1175 		if (r > 0)
1176 			timer_setup(&sci->rx_fifo_timer, rx_fifo_timer_fn, 0);
1177 	}
1178 
1179 	return count;
1180 }
1181 
1182 static DEVICE_ATTR_RW(rx_fifo_timeout);
1183 
1184 
1185 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1186 static void sci_dma_tx_complete(void *arg)
1187 {
1188 	struct sci_port *s = arg;
1189 	struct uart_port *port = &s->port;
1190 	struct circ_buf *xmit = &port->state->xmit;
1191 	unsigned long flags;
1192 
1193 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1194 
1195 	spin_lock_irqsave(&port->lock, flags);
1196 
1197 	xmit->tail += s->tx_dma_len;
1198 	xmit->tail &= UART_XMIT_SIZE - 1;
1199 
1200 	port->icount.tx += s->tx_dma_len;
1201 
1202 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1203 		uart_write_wakeup(port);
1204 
1205 	if (!uart_circ_empty(xmit)) {
1206 		s->cookie_tx = 0;
1207 		schedule_work(&s->work_tx);
1208 	} else {
1209 		s->cookie_tx = -EINVAL;
1210 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1211 			u16 ctrl = serial_port_in(port, SCSCR);
1212 			serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1213 		}
1214 	}
1215 
1216 	spin_unlock_irqrestore(&port->lock, flags);
1217 }
1218 
1219 /* Locking: called with port lock held */
1220 static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1221 {
1222 	struct uart_port *port = &s->port;
1223 	struct tty_port *tport = &port->state->port;
1224 	int copied;
1225 
1226 	copied = tty_insert_flip_string(tport, buf, count);
1227 	if (copied < count)
1228 		port->icount.buf_overrun++;
1229 
1230 	port->icount.rx += copied;
1231 
1232 	return copied;
1233 }
1234 
1235 static int sci_dma_rx_find_active(struct sci_port *s)
1236 {
1237 	unsigned int i;
1238 
1239 	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1240 		if (s->active_rx == s->cookie_rx[i])
1241 			return i;
1242 
1243 	return -1;
1244 }
1245 
1246 static void sci_rx_dma_release(struct sci_port *s)
1247 {
1248 	struct dma_chan *chan = s->chan_rx_saved;
1249 
1250 	s->chan_rx_saved = s->chan_rx = NULL;
1251 	s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL;
1252 	dmaengine_terminate_sync(chan);
1253 	dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1254 			  sg_dma_address(&s->sg_rx[0]));
1255 	dma_release_channel(chan);
1256 }
1257 
1258 static void start_hrtimer_us(struct hrtimer *hrt, unsigned long usec)
1259 {
1260 	long sec = usec / 1000000;
1261 	long nsec = (usec % 1000000) * 1000;
1262 	ktime_t t = ktime_set(sec, nsec);
1263 
1264 	hrtimer_start(hrt, t, HRTIMER_MODE_REL);
1265 }
1266 
1267 static void sci_dma_rx_complete(void *arg)
1268 {
1269 	struct sci_port *s = arg;
1270 	struct dma_chan *chan = s->chan_rx;
1271 	struct uart_port *port = &s->port;
1272 	struct dma_async_tx_descriptor *desc;
1273 	unsigned long flags;
1274 	int active, count = 0;
1275 
1276 	dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1277 		s->active_rx);
1278 
1279 	spin_lock_irqsave(&port->lock, flags);
1280 
1281 	active = sci_dma_rx_find_active(s);
1282 	if (active >= 0)
1283 		count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1284 
1285 	start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1286 
1287 	if (count)
1288 		tty_flip_buffer_push(&port->state->port);
1289 
1290 	desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1291 				       DMA_DEV_TO_MEM,
1292 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1293 	if (!desc)
1294 		goto fail;
1295 
1296 	desc->callback = sci_dma_rx_complete;
1297 	desc->callback_param = s;
1298 	s->cookie_rx[active] = dmaengine_submit(desc);
1299 	if (dma_submit_error(s->cookie_rx[active]))
1300 		goto fail;
1301 
1302 	s->active_rx = s->cookie_rx[!active];
1303 
1304 	dma_async_issue_pending(chan);
1305 
1306 	spin_unlock_irqrestore(&port->lock, flags);
1307 	dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1308 		__func__, s->cookie_rx[active], active, s->active_rx);
1309 	return;
1310 
1311 fail:
1312 	spin_unlock_irqrestore(&port->lock, flags);
1313 	dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1314 	/* Switch to PIO */
1315 	spin_lock_irqsave(&port->lock, flags);
1316 	s->chan_rx = NULL;
1317 	sci_start_rx(port);
1318 	spin_unlock_irqrestore(&port->lock, flags);
1319 }
1320 
1321 static void sci_tx_dma_release(struct sci_port *s)
1322 {
1323 	struct dma_chan *chan = s->chan_tx_saved;
1324 
1325 	cancel_work_sync(&s->work_tx);
1326 	s->chan_tx_saved = s->chan_tx = NULL;
1327 	s->cookie_tx = -EINVAL;
1328 	dmaengine_terminate_sync(chan);
1329 	dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1330 			 DMA_TO_DEVICE);
1331 	dma_release_channel(chan);
1332 }
1333 
1334 static void sci_submit_rx(struct sci_port *s)
1335 {
1336 	struct dma_chan *chan = s->chan_rx;
1337 	struct uart_port *port = &s->port;
1338 	unsigned long flags;
1339 	int i;
1340 
1341 	for (i = 0; i < 2; i++) {
1342 		struct scatterlist *sg = &s->sg_rx[i];
1343 		struct dma_async_tx_descriptor *desc;
1344 
1345 		desc = dmaengine_prep_slave_sg(chan,
1346 			sg, 1, DMA_DEV_TO_MEM,
1347 			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1348 		if (!desc)
1349 			goto fail;
1350 
1351 		desc->callback = sci_dma_rx_complete;
1352 		desc->callback_param = s;
1353 		s->cookie_rx[i] = dmaengine_submit(desc);
1354 		if (dma_submit_error(s->cookie_rx[i]))
1355 			goto fail;
1356 
1357 	}
1358 
1359 	s->active_rx = s->cookie_rx[0];
1360 
1361 	dma_async_issue_pending(chan);
1362 	return;
1363 
1364 fail:
1365 	if (i)
1366 		dmaengine_terminate_async(chan);
1367 	for (i = 0; i < 2; i++)
1368 		s->cookie_rx[i] = -EINVAL;
1369 	s->active_rx = -EINVAL;
1370 	/* Switch to PIO */
1371 	spin_lock_irqsave(&port->lock, flags);
1372 	s->chan_rx = NULL;
1373 	sci_start_rx(port);
1374 	spin_unlock_irqrestore(&port->lock, flags);
1375 }
1376 
1377 static void work_fn_tx(struct work_struct *work)
1378 {
1379 	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1380 	struct dma_async_tx_descriptor *desc;
1381 	struct dma_chan *chan = s->chan_tx;
1382 	struct uart_port *port = &s->port;
1383 	struct circ_buf *xmit = &port->state->xmit;
1384 	unsigned long flags;
1385 	dma_addr_t buf;
1386 
1387 	/*
1388 	 * DMA is idle now.
1389 	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1390 	 * offsets and lengths. Since it is a circular buffer, we have to
1391 	 * transmit till the end, and then the rest. Take the port lock to get a
1392 	 * consistent xmit buffer state.
1393 	 */
1394 	spin_lock_irq(&port->lock);
1395 	buf = s->tx_dma_addr + (xmit->tail & (UART_XMIT_SIZE - 1));
1396 	s->tx_dma_len = min_t(unsigned int,
1397 		CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
1398 		CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
1399 	spin_unlock_irq(&port->lock);
1400 
1401 	desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1402 					   DMA_MEM_TO_DEV,
1403 					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1404 	if (!desc) {
1405 		dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1406 		goto switch_to_pio;
1407 	}
1408 
1409 	dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1410 				   DMA_TO_DEVICE);
1411 
1412 	spin_lock_irq(&port->lock);
1413 	desc->callback = sci_dma_tx_complete;
1414 	desc->callback_param = s;
1415 	spin_unlock_irq(&port->lock);
1416 	s->cookie_tx = dmaengine_submit(desc);
1417 	if (dma_submit_error(s->cookie_tx)) {
1418 		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1419 		goto switch_to_pio;
1420 	}
1421 
1422 	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
1423 		__func__, xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
1424 
1425 	dma_async_issue_pending(chan);
1426 	return;
1427 
1428 switch_to_pio:
1429 	spin_lock_irqsave(&port->lock, flags);
1430 	s->chan_tx = NULL;
1431 	sci_start_tx(port);
1432 	spin_unlock_irqrestore(&port->lock, flags);
1433 	return;
1434 }
1435 
1436 static enum hrtimer_restart rx_timer_fn(struct hrtimer *t)
1437 {
1438 	struct sci_port *s = container_of(t, struct sci_port, rx_timer);
1439 	struct dma_chan *chan = s->chan_rx;
1440 	struct uart_port *port = &s->port;
1441 	struct dma_tx_state state;
1442 	enum dma_status status;
1443 	unsigned long flags;
1444 	unsigned int read;
1445 	int active, count;
1446 	u16 scr;
1447 
1448 	dev_dbg(port->dev, "DMA Rx timed out\n");
1449 
1450 	spin_lock_irqsave(&port->lock, flags);
1451 
1452 	active = sci_dma_rx_find_active(s);
1453 	if (active < 0) {
1454 		spin_unlock_irqrestore(&port->lock, flags);
1455 		return HRTIMER_NORESTART;
1456 	}
1457 
1458 	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1459 	if (status == DMA_COMPLETE) {
1460 		spin_unlock_irqrestore(&port->lock, flags);
1461 		dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1462 			s->active_rx, active);
1463 
1464 		/* Let packet complete handler take care of the packet */
1465 		return HRTIMER_NORESTART;
1466 	}
1467 
1468 	dmaengine_pause(chan);
1469 
1470 	/*
1471 	 * sometimes DMA transfer doesn't stop even if it is stopped and
1472 	 * data keeps on coming until transaction is complete so check
1473 	 * for DMA_COMPLETE again
1474 	 * Let packet complete handler take care of the packet
1475 	 */
1476 	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1477 	if (status == DMA_COMPLETE) {
1478 		spin_unlock_irqrestore(&port->lock, flags);
1479 		dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1480 		return HRTIMER_NORESTART;
1481 	}
1482 
1483 	/* Handle incomplete DMA receive */
1484 	dmaengine_terminate_async(s->chan_rx);
1485 	read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1486 
1487 	if (read) {
1488 		count = sci_dma_rx_push(s, s->rx_buf[active], read);
1489 		if (count)
1490 			tty_flip_buffer_push(&port->state->port);
1491 	}
1492 
1493 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1494 		sci_submit_rx(s);
1495 
1496 	/* Direct new serial port interrupts back to CPU */
1497 	scr = serial_port_in(port, SCSCR);
1498 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1499 		scr &= ~SCSCR_RDRQE;
1500 		enable_irq(s->irqs[SCIx_RXI_IRQ]);
1501 	}
1502 	serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1503 
1504 	spin_unlock_irqrestore(&port->lock, flags);
1505 
1506 	return HRTIMER_NORESTART;
1507 }
1508 
1509 static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1510 					     enum dma_transfer_direction dir)
1511 {
1512 	struct dma_chan *chan;
1513 	struct dma_slave_config cfg;
1514 	int ret;
1515 
1516 	chan = dma_request_slave_channel(port->dev,
1517 					 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1518 	if (!chan) {
1519 		dev_dbg(port->dev, "dma_request_slave_channel failed\n");
1520 		return NULL;
1521 	}
1522 
1523 	memset(&cfg, 0, sizeof(cfg));
1524 	cfg.direction = dir;
1525 	if (dir == DMA_MEM_TO_DEV) {
1526 		cfg.dst_addr = port->mapbase +
1527 			(sci_getreg(port, SCxTDR)->offset << port->regshift);
1528 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1529 	} else {
1530 		cfg.src_addr = port->mapbase +
1531 			(sci_getreg(port, SCxRDR)->offset << port->regshift);
1532 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1533 	}
1534 
1535 	ret = dmaengine_slave_config(chan, &cfg);
1536 	if (ret) {
1537 		dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1538 		dma_release_channel(chan);
1539 		return NULL;
1540 	}
1541 
1542 	return chan;
1543 }
1544 
1545 static void sci_request_dma(struct uart_port *port)
1546 {
1547 	struct sci_port *s = to_sci_port(port);
1548 	struct dma_chan *chan;
1549 
1550 	dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1551 
1552 	if (!port->dev->of_node)
1553 		return;
1554 
1555 	s->cookie_tx = -EINVAL;
1556 
1557 	/*
1558 	 * Don't request a dma channel if no channel was specified
1559 	 * in the device tree.
1560 	 */
1561 	if (!of_find_property(port->dev->of_node, "dmas", NULL))
1562 		return;
1563 
1564 	chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV);
1565 	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1566 	if (chan) {
1567 		/* UART circular tx buffer is an aligned page. */
1568 		s->tx_dma_addr = dma_map_single(chan->device->dev,
1569 						port->state->xmit.buf,
1570 						UART_XMIT_SIZE,
1571 						DMA_TO_DEVICE);
1572 		if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1573 			dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1574 			dma_release_channel(chan);
1575 		} else {
1576 			dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1577 				__func__, UART_XMIT_SIZE,
1578 				port->state->xmit.buf, &s->tx_dma_addr);
1579 
1580 			INIT_WORK(&s->work_tx, work_fn_tx);
1581 			s->chan_tx_saved = s->chan_tx = chan;
1582 		}
1583 	}
1584 
1585 	chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM);
1586 	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1587 	if (chan) {
1588 		unsigned int i;
1589 		dma_addr_t dma;
1590 		void *buf;
1591 
1592 		s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1593 		buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1594 					 &dma, GFP_KERNEL);
1595 		if (!buf) {
1596 			dev_warn(port->dev,
1597 				 "Failed to allocate Rx dma buffer, using PIO\n");
1598 			dma_release_channel(chan);
1599 			return;
1600 		}
1601 
1602 		for (i = 0; i < 2; i++) {
1603 			struct scatterlist *sg = &s->sg_rx[i];
1604 
1605 			sg_init_table(sg, 1);
1606 			s->rx_buf[i] = buf;
1607 			sg_dma_address(sg) = dma;
1608 			sg_dma_len(sg) = s->buf_len_rx;
1609 
1610 			buf += s->buf_len_rx;
1611 			dma += s->buf_len_rx;
1612 		}
1613 
1614 		hrtimer_init(&s->rx_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1615 		s->rx_timer.function = rx_timer_fn;
1616 
1617 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1618 			sci_submit_rx(s);
1619 
1620 		s->chan_rx_saved = s->chan_rx = chan;
1621 	}
1622 }
1623 
1624 static void sci_free_dma(struct uart_port *port)
1625 {
1626 	struct sci_port *s = to_sci_port(port);
1627 
1628 	if (s->chan_tx_saved)
1629 		sci_tx_dma_release(s);
1630 	if (s->chan_rx_saved)
1631 		sci_rx_dma_release(s);
1632 }
1633 
1634 static void sci_flush_buffer(struct uart_port *port)
1635 {
1636 	/*
1637 	 * In uart_flush_buffer(), the xmit circular buffer has just been
1638 	 * cleared, so we have to reset tx_dma_len accordingly.
1639 	 */
1640 	to_sci_port(port)->tx_dma_len = 0;
1641 }
1642 #else /* !CONFIG_SERIAL_SH_SCI_DMA */
1643 static inline void sci_request_dma(struct uart_port *port)
1644 {
1645 }
1646 
1647 static inline void sci_free_dma(struct uart_port *port)
1648 {
1649 }
1650 
1651 #define sci_flush_buffer	NULL
1652 #endif /* !CONFIG_SERIAL_SH_SCI_DMA */
1653 
1654 static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1655 {
1656 	struct uart_port *port = ptr;
1657 	struct sci_port *s = to_sci_port(port);
1658 
1659 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1660 	if (s->chan_rx) {
1661 		u16 scr = serial_port_in(port, SCSCR);
1662 		u16 ssr = serial_port_in(port, SCxSR);
1663 
1664 		/* Disable future Rx interrupts */
1665 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1666 			disable_irq_nosync(irq);
1667 			scr |= SCSCR_RDRQE;
1668 		} else {
1669 			scr &= ~SCSCR_RIE;
1670 			sci_submit_rx(s);
1671 		}
1672 		serial_port_out(port, SCSCR, scr);
1673 		/* Clear current interrupt */
1674 		serial_port_out(port, SCxSR,
1675 				ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1676 		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u us\n",
1677 			jiffies, s->rx_timeout);
1678 		start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1679 
1680 		return IRQ_HANDLED;
1681 	}
1682 #endif
1683 
1684 	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0) {
1685 		if (!scif_rtrg_enabled(port))
1686 			scif_set_rtrg(port, s->rx_trigger);
1687 
1688 		mod_timer(&s->rx_fifo_timer, jiffies + DIV_ROUND_UP(
1689 			  s->rx_frame * HZ * s->rx_fifo_timeout, 1000000));
1690 	}
1691 
1692 	/* I think sci_receive_chars has to be called irrespective
1693 	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
1694 	 * to be disabled?
1695 	 */
1696 	sci_receive_chars(ptr);
1697 
1698 	return IRQ_HANDLED;
1699 }
1700 
1701 static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1702 {
1703 	struct uart_port *port = ptr;
1704 	unsigned long flags;
1705 
1706 	spin_lock_irqsave(&port->lock, flags);
1707 	sci_transmit_chars(port);
1708 	spin_unlock_irqrestore(&port->lock, flags);
1709 
1710 	return IRQ_HANDLED;
1711 }
1712 
1713 static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1714 {
1715 	struct uart_port *port = ptr;
1716 
1717 	/* Handle BREAKs */
1718 	sci_handle_breaks(port);
1719 	sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1720 
1721 	return IRQ_HANDLED;
1722 }
1723 
1724 static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1725 {
1726 	struct uart_port *port = ptr;
1727 	struct sci_port *s = to_sci_port(port);
1728 
1729 	if (s->irqs[SCIx_ERI_IRQ] == s->irqs[SCIx_BRI_IRQ]) {
1730 		/* Break and Error interrupts are muxed */
1731 		unsigned short ssr_status = serial_port_in(port, SCxSR);
1732 
1733 		/* Break Interrupt */
1734 		if (ssr_status & SCxSR_BRK(port))
1735 			sci_br_interrupt(irq, ptr);
1736 
1737 		/* Break only? */
1738 		if (!(ssr_status & SCxSR_ERRORS(port)))
1739 			return IRQ_HANDLED;
1740 	}
1741 
1742 	/* Handle errors */
1743 	if (port->type == PORT_SCI) {
1744 		if (sci_handle_errors(port)) {
1745 			/* discard character in rx buffer */
1746 			serial_port_in(port, SCxSR);
1747 			sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1748 		}
1749 	} else {
1750 		sci_handle_fifo_overrun(port);
1751 		if (!s->chan_rx)
1752 			sci_receive_chars(ptr);
1753 	}
1754 
1755 	sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1756 
1757 	/* Kick the transmission */
1758 	if (!s->chan_tx)
1759 		sci_tx_interrupt(irq, ptr);
1760 
1761 	return IRQ_HANDLED;
1762 }
1763 
1764 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1765 {
1766 	unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1767 	struct uart_port *port = ptr;
1768 	struct sci_port *s = to_sci_port(port);
1769 	irqreturn_t ret = IRQ_NONE;
1770 
1771 	ssr_status = serial_port_in(port, SCxSR);
1772 	scr_status = serial_port_in(port, SCSCR);
1773 	if (s->params->overrun_reg == SCxSR)
1774 		orer_status = ssr_status;
1775 	else if (sci_getreg(port, s->params->overrun_reg)->size)
1776 		orer_status = serial_port_in(port, s->params->overrun_reg);
1777 
1778 	err_enabled = scr_status & port_rx_irq_mask(port);
1779 
1780 	/* Tx Interrupt */
1781 	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1782 	    !s->chan_tx)
1783 		ret = sci_tx_interrupt(irq, ptr);
1784 
1785 	/*
1786 	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1787 	 * DR flags
1788 	 */
1789 	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1790 	    (scr_status & SCSCR_RIE))
1791 		ret = sci_rx_interrupt(irq, ptr);
1792 
1793 	/* Error Interrupt */
1794 	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1795 		ret = sci_er_interrupt(irq, ptr);
1796 
1797 	/* Break Interrupt */
1798 	if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
1799 		ret = sci_br_interrupt(irq, ptr);
1800 
1801 	/* Overrun Interrupt */
1802 	if (orer_status & s->params->overrun_mask) {
1803 		sci_handle_fifo_overrun(port);
1804 		ret = IRQ_HANDLED;
1805 	}
1806 
1807 	return ret;
1808 }
1809 
1810 static const struct sci_irq_desc {
1811 	const char	*desc;
1812 	irq_handler_t	handler;
1813 } sci_irq_desc[] = {
1814 	/*
1815 	 * Split out handlers, the default case.
1816 	 */
1817 	[SCIx_ERI_IRQ] = {
1818 		.desc = "rx err",
1819 		.handler = sci_er_interrupt,
1820 	},
1821 
1822 	[SCIx_RXI_IRQ] = {
1823 		.desc = "rx full",
1824 		.handler = sci_rx_interrupt,
1825 	},
1826 
1827 	[SCIx_TXI_IRQ] = {
1828 		.desc = "tx empty",
1829 		.handler = sci_tx_interrupt,
1830 	},
1831 
1832 	[SCIx_BRI_IRQ] = {
1833 		.desc = "break",
1834 		.handler = sci_br_interrupt,
1835 	},
1836 
1837 	[SCIx_DRI_IRQ] = {
1838 		.desc = "rx ready",
1839 		.handler = sci_rx_interrupt,
1840 	},
1841 
1842 	[SCIx_TEI_IRQ] = {
1843 		.desc = "tx end",
1844 		.handler = sci_tx_interrupt,
1845 	},
1846 
1847 	/*
1848 	 * Special muxed handler.
1849 	 */
1850 	[SCIx_MUX_IRQ] = {
1851 		.desc = "mux",
1852 		.handler = sci_mpxed_interrupt,
1853 	},
1854 };
1855 
1856 static int sci_request_irq(struct sci_port *port)
1857 {
1858 	struct uart_port *up = &port->port;
1859 	int i, j, w, ret = 0;
1860 
1861 	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1862 		const struct sci_irq_desc *desc;
1863 		int irq;
1864 
1865 		/* Check if already registered (muxed) */
1866 		for (w = 0; w < i; w++)
1867 			if (port->irqs[w] == port->irqs[i])
1868 				w = i + 1;
1869 		if (w > i)
1870 			continue;
1871 
1872 		if (SCIx_IRQ_IS_MUXED(port)) {
1873 			i = SCIx_MUX_IRQ;
1874 			irq = up->irq;
1875 		} else {
1876 			irq = port->irqs[i];
1877 
1878 			/*
1879 			 * Certain port types won't support all of the
1880 			 * available interrupt sources.
1881 			 */
1882 			if (unlikely(irq < 0))
1883 				continue;
1884 		}
1885 
1886 		desc = sci_irq_desc + i;
1887 		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1888 					    dev_name(up->dev), desc->desc);
1889 		if (!port->irqstr[j]) {
1890 			ret = -ENOMEM;
1891 			goto out_nomem;
1892 		}
1893 
1894 		ret = request_irq(irq, desc->handler, up->irqflags,
1895 				  port->irqstr[j], port);
1896 		if (unlikely(ret)) {
1897 			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1898 			goto out_noirq;
1899 		}
1900 	}
1901 
1902 	return 0;
1903 
1904 out_noirq:
1905 	while (--i >= 0)
1906 		free_irq(port->irqs[i], port);
1907 
1908 out_nomem:
1909 	while (--j >= 0)
1910 		kfree(port->irqstr[j]);
1911 
1912 	return ret;
1913 }
1914 
1915 static void sci_free_irq(struct sci_port *port)
1916 {
1917 	int i;
1918 
1919 	/*
1920 	 * Intentionally in reverse order so we iterate over the muxed
1921 	 * IRQ first.
1922 	 */
1923 	for (i = 0; i < SCIx_NR_IRQS; i++) {
1924 		int irq = port->irqs[i];
1925 
1926 		/*
1927 		 * Certain port types won't support all of the available
1928 		 * interrupt sources.
1929 		 */
1930 		if (unlikely(irq < 0))
1931 			continue;
1932 
1933 		free_irq(port->irqs[i], port);
1934 		kfree(port->irqstr[i]);
1935 
1936 		if (SCIx_IRQ_IS_MUXED(port)) {
1937 			/* If there's only one IRQ, we're done. */
1938 			return;
1939 		}
1940 	}
1941 }
1942 
1943 static unsigned int sci_tx_empty(struct uart_port *port)
1944 {
1945 	unsigned short status = serial_port_in(port, SCxSR);
1946 	unsigned short in_tx_fifo = sci_txfill(port);
1947 
1948 	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1949 }
1950 
1951 static void sci_set_rts(struct uart_port *port, bool state)
1952 {
1953 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1954 		u16 data = serial_port_in(port, SCPDR);
1955 
1956 		/* Active low */
1957 		if (state)
1958 			data &= ~SCPDR_RTSD;
1959 		else
1960 			data |= SCPDR_RTSD;
1961 		serial_port_out(port, SCPDR, data);
1962 
1963 		/* RTS# is output */
1964 		serial_port_out(port, SCPCR,
1965 				serial_port_in(port, SCPCR) | SCPCR_RTSC);
1966 	} else if (sci_getreg(port, SCSPTR)->size) {
1967 		u16 ctrl = serial_port_in(port, SCSPTR);
1968 
1969 		/* Active low */
1970 		if (state)
1971 			ctrl &= ~SCSPTR_RTSDT;
1972 		else
1973 			ctrl |= SCSPTR_RTSDT;
1974 		serial_port_out(port, SCSPTR, ctrl);
1975 	}
1976 }
1977 
1978 static bool sci_get_cts(struct uart_port *port)
1979 {
1980 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1981 		/* Active low */
1982 		return !(serial_port_in(port, SCPDR) & SCPDR_CTSD);
1983 	} else if (sci_getreg(port, SCSPTR)->size) {
1984 		/* Active low */
1985 		return !(serial_port_in(port, SCSPTR) & SCSPTR_CTSDT);
1986 	}
1987 
1988 	return true;
1989 }
1990 
1991 /*
1992  * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
1993  * CTS/RTS is supported in hardware by at least one port and controlled
1994  * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
1995  * handled via the ->init_pins() op, which is a bit of a one-way street,
1996  * lacking any ability to defer pin control -- this will later be
1997  * converted over to the GPIO framework).
1998  *
1999  * Other modes (such as loopback) are supported generically on certain
2000  * port types, but not others. For these it's sufficient to test for the
2001  * existence of the support register and simply ignore the port type.
2002  */
2003 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
2004 {
2005 	struct sci_port *s = to_sci_port(port);
2006 
2007 	if (mctrl & TIOCM_LOOP) {
2008 		const struct plat_sci_reg *reg;
2009 
2010 		/*
2011 		 * Standard loopback mode for SCFCR ports.
2012 		 */
2013 		reg = sci_getreg(port, SCFCR);
2014 		if (reg->size)
2015 			serial_port_out(port, SCFCR,
2016 					serial_port_in(port, SCFCR) |
2017 					SCFCR_LOOP);
2018 	}
2019 
2020 	mctrl_gpio_set(s->gpios, mctrl);
2021 
2022 	if (!s->has_rtscts)
2023 		return;
2024 
2025 	if (!(mctrl & TIOCM_RTS)) {
2026 		/* Disable Auto RTS */
2027 		serial_port_out(port, SCFCR,
2028 				serial_port_in(port, SCFCR) & ~SCFCR_MCE);
2029 
2030 		/* Clear RTS */
2031 		sci_set_rts(port, 0);
2032 	} else if (s->autorts) {
2033 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2034 			/* Enable RTS# pin function */
2035 			serial_port_out(port, SCPCR,
2036 				serial_port_in(port, SCPCR) & ~SCPCR_RTSC);
2037 		}
2038 
2039 		/* Enable Auto RTS */
2040 		serial_port_out(port, SCFCR,
2041 				serial_port_in(port, SCFCR) | SCFCR_MCE);
2042 	} else {
2043 		/* Set RTS */
2044 		sci_set_rts(port, 1);
2045 	}
2046 }
2047 
2048 static unsigned int sci_get_mctrl(struct uart_port *port)
2049 {
2050 	struct sci_port *s = to_sci_port(port);
2051 	struct mctrl_gpios *gpios = s->gpios;
2052 	unsigned int mctrl = 0;
2053 
2054 	mctrl_gpio_get(gpios, &mctrl);
2055 
2056 	/*
2057 	 * CTS/RTS is handled in hardware when supported, while nothing
2058 	 * else is wired up.
2059 	 */
2060 	if (s->autorts) {
2061 		if (sci_get_cts(port))
2062 			mctrl |= TIOCM_CTS;
2063 	} else if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_CTS))) {
2064 		mctrl |= TIOCM_CTS;
2065 	}
2066 	if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_DSR)))
2067 		mctrl |= TIOCM_DSR;
2068 	if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_DCD)))
2069 		mctrl |= TIOCM_CAR;
2070 
2071 	return mctrl;
2072 }
2073 
2074 static void sci_enable_ms(struct uart_port *port)
2075 {
2076 	mctrl_gpio_enable_ms(to_sci_port(port)->gpios);
2077 }
2078 
2079 static void sci_break_ctl(struct uart_port *port, int break_state)
2080 {
2081 	unsigned short scscr, scsptr;
2082 	unsigned long flags;
2083 
2084 	/* check wheter the port has SCSPTR */
2085 	if (!sci_getreg(port, SCSPTR)->size) {
2086 		/*
2087 		 * Not supported by hardware. Most parts couple break and rx
2088 		 * interrupts together, with break detection always enabled.
2089 		 */
2090 		return;
2091 	}
2092 
2093 	spin_lock_irqsave(&port->lock, flags);
2094 	scsptr = serial_port_in(port, SCSPTR);
2095 	scscr = serial_port_in(port, SCSCR);
2096 
2097 	if (break_state == -1) {
2098 		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
2099 		scscr &= ~SCSCR_TE;
2100 	} else {
2101 		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
2102 		scscr |= SCSCR_TE;
2103 	}
2104 
2105 	serial_port_out(port, SCSPTR, scsptr);
2106 	serial_port_out(port, SCSCR, scscr);
2107 	spin_unlock_irqrestore(&port->lock, flags);
2108 }
2109 
2110 static int sci_startup(struct uart_port *port)
2111 {
2112 	struct sci_port *s = to_sci_port(port);
2113 	int ret;
2114 
2115 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2116 
2117 	sci_request_dma(port);
2118 
2119 	ret = sci_request_irq(s);
2120 	if (unlikely(ret < 0)) {
2121 		sci_free_dma(port);
2122 		return ret;
2123 	}
2124 
2125 	return 0;
2126 }
2127 
2128 static void sci_shutdown(struct uart_port *port)
2129 {
2130 	struct sci_port *s = to_sci_port(port);
2131 	unsigned long flags;
2132 	u16 scr;
2133 
2134 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2135 
2136 	s->autorts = false;
2137 	mctrl_gpio_disable_ms(to_sci_port(port)->gpios);
2138 
2139 	spin_lock_irqsave(&port->lock, flags);
2140 	sci_stop_rx(port);
2141 	sci_stop_tx(port);
2142 	/*
2143 	 * Stop RX and TX, disable related interrupts, keep clock source
2144 	 * and HSCIF TOT bits
2145 	 */
2146 	scr = serial_port_in(port, SCSCR);
2147 	serial_port_out(port, SCSCR, scr &
2148 			(SCSCR_CKE1 | SCSCR_CKE0 | s->hscif_tot));
2149 	spin_unlock_irqrestore(&port->lock, flags);
2150 
2151 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2152 	if (s->chan_rx_saved) {
2153 		dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
2154 			port->line);
2155 		hrtimer_cancel(&s->rx_timer);
2156 	}
2157 #endif
2158 
2159 	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0)
2160 		del_timer_sync(&s->rx_fifo_timer);
2161 	sci_free_irq(s);
2162 	sci_free_dma(port);
2163 }
2164 
2165 static int sci_sck_calc(struct sci_port *s, unsigned int bps,
2166 			unsigned int *srr)
2167 {
2168 	unsigned long freq = s->clk_rates[SCI_SCK];
2169 	int err, min_err = INT_MAX;
2170 	unsigned int sr;
2171 
2172 	if (s->port.type != PORT_HSCIF)
2173 		freq *= 2;
2174 
2175 	for_each_sr(sr, s) {
2176 		err = DIV_ROUND_CLOSEST(freq, sr) - bps;
2177 		if (abs(err) >= abs(min_err))
2178 			continue;
2179 
2180 		min_err = err;
2181 		*srr = sr - 1;
2182 
2183 		if (!err)
2184 			break;
2185 	}
2186 
2187 	dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
2188 		*srr + 1);
2189 	return min_err;
2190 }
2191 
2192 static int sci_brg_calc(struct sci_port *s, unsigned int bps,
2193 			unsigned long freq, unsigned int *dlr,
2194 			unsigned int *srr)
2195 {
2196 	int err, min_err = INT_MAX;
2197 	unsigned int sr, dl;
2198 
2199 	if (s->port.type != PORT_HSCIF)
2200 		freq *= 2;
2201 
2202 	for_each_sr(sr, s) {
2203 		dl = DIV_ROUND_CLOSEST(freq, sr * bps);
2204 		dl = clamp(dl, 1U, 65535U);
2205 
2206 		err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
2207 		if (abs(err) >= abs(min_err))
2208 			continue;
2209 
2210 		min_err = err;
2211 		*dlr = dl;
2212 		*srr = sr - 1;
2213 
2214 		if (!err)
2215 			break;
2216 	}
2217 
2218 	dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
2219 		min_err, *dlr, *srr + 1);
2220 	return min_err;
2221 }
2222 
2223 /* calculate sample rate, BRR, and clock select */
2224 static int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
2225 			  unsigned int *brr, unsigned int *srr,
2226 			  unsigned int *cks)
2227 {
2228 	unsigned long freq = s->clk_rates[SCI_FCK];
2229 	unsigned int sr, br, prediv, scrate, c;
2230 	int err, min_err = INT_MAX;
2231 
2232 	if (s->port.type != PORT_HSCIF)
2233 		freq *= 2;
2234 
2235 	/*
2236 	 * Find the combination of sample rate and clock select with the
2237 	 * smallest deviation from the desired baud rate.
2238 	 * Prefer high sample rates to maximise the receive margin.
2239 	 *
2240 	 * M: Receive margin (%)
2241 	 * N: Ratio of bit rate to clock (N = sampling rate)
2242 	 * D: Clock duty (D = 0 to 1.0)
2243 	 * L: Frame length (L = 9 to 12)
2244 	 * F: Absolute value of clock frequency deviation
2245 	 *
2246 	 *  M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
2247 	 *      (|D - 0.5| / N * (1 + F))|
2248 	 *  NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
2249 	 */
2250 	for_each_sr(sr, s) {
2251 		for (c = 0; c <= 3; c++) {
2252 			/* integerized formulas from HSCIF documentation */
2253 			prediv = sr * (1 << (2 * c + 1));
2254 
2255 			/*
2256 			 * We need to calculate:
2257 			 *
2258 			 *     br = freq / (prediv * bps) clamped to [1..256]
2259 			 *     err = freq / (br * prediv) - bps
2260 			 *
2261 			 * Watch out for overflow when calculating the desired
2262 			 * sampling clock rate!
2263 			 */
2264 			if (bps > UINT_MAX / prediv)
2265 				break;
2266 
2267 			scrate = prediv * bps;
2268 			br = DIV_ROUND_CLOSEST(freq, scrate);
2269 			br = clamp(br, 1U, 256U);
2270 
2271 			err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
2272 			if (abs(err) >= abs(min_err))
2273 				continue;
2274 
2275 			min_err = err;
2276 			*brr = br - 1;
2277 			*srr = sr - 1;
2278 			*cks = c;
2279 
2280 			if (!err)
2281 				goto found;
2282 		}
2283 	}
2284 
2285 found:
2286 	dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
2287 		min_err, *brr, *srr + 1, *cks);
2288 	return min_err;
2289 }
2290 
2291 static void sci_reset(struct uart_port *port)
2292 {
2293 	const struct plat_sci_reg *reg;
2294 	unsigned int status;
2295 	struct sci_port *s = to_sci_port(port);
2296 
2297 	serial_port_out(port, SCSCR, s->hscif_tot);	/* TE=0, RE=0, CKE1=0 */
2298 
2299 	reg = sci_getreg(port, SCFCR);
2300 	if (reg->size)
2301 		serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
2302 
2303 	sci_clear_SCxSR(port,
2304 			SCxSR_RDxF_CLEAR(port) & SCxSR_ERROR_CLEAR(port) &
2305 			SCxSR_BREAK_CLEAR(port));
2306 	if (sci_getreg(port, SCLSR)->size) {
2307 		status = serial_port_in(port, SCLSR);
2308 		status &= ~(SCLSR_TO | SCLSR_ORER);
2309 		serial_port_out(port, SCLSR, status);
2310 	}
2311 
2312 	if (s->rx_trigger > 1) {
2313 		if (s->rx_fifo_timeout) {
2314 			scif_set_rtrg(port, 1);
2315 			timer_setup(&s->rx_fifo_timer, rx_fifo_timer_fn, 0);
2316 		} else {
2317 			if (port->type == PORT_SCIFA ||
2318 			    port->type == PORT_SCIFB)
2319 				scif_set_rtrg(port, 1);
2320 			else
2321 				scif_set_rtrg(port, s->rx_trigger);
2322 		}
2323 	}
2324 }
2325 
2326 static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
2327 			    struct ktermios *old)
2328 {
2329 	unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i, bits;
2330 	unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
2331 	unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
2332 	struct sci_port *s = to_sci_port(port);
2333 	const struct plat_sci_reg *reg;
2334 	int min_err = INT_MAX, err;
2335 	unsigned long max_freq = 0;
2336 	int best_clk = -1;
2337 	unsigned long flags;
2338 
2339 	if ((termios->c_cflag & CSIZE) == CS7)
2340 		smr_val |= SCSMR_CHR;
2341 	if (termios->c_cflag & PARENB)
2342 		smr_val |= SCSMR_PE;
2343 	if (termios->c_cflag & PARODD)
2344 		smr_val |= SCSMR_PE | SCSMR_ODD;
2345 	if (termios->c_cflag & CSTOPB)
2346 		smr_val |= SCSMR_STOP;
2347 
2348 	/*
2349 	 * earlyprintk comes here early on with port->uartclk set to zero.
2350 	 * the clock framework is not up and running at this point so here
2351 	 * we assume that 115200 is the maximum baud rate. please note that
2352 	 * the baud rate is not programmed during earlyprintk - it is assumed
2353 	 * that the previous boot loader has enabled required clocks and
2354 	 * setup the baud rate generator hardware for us already.
2355 	 */
2356 	if (!port->uartclk) {
2357 		baud = uart_get_baud_rate(port, termios, old, 0, 115200);
2358 		goto done;
2359 	}
2360 
2361 	for (i = 0; i < SCI_NUM_CLKS; i++)
2362 		max_freq = max(max_freq, s->clk_rates[i]);
2363 
2364 	baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s));
2365 	if (!baud)
2366 		goto done;
2367 
2368 	/*
2369 	 * There can be multiple sources for the sampling clock.  Find the one
2370 	 * that gives us the smallest deviation from the desired baud rate.
2371 	 */
2372 
2373 	/* Optional Undivided External Clock */
2374 	if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA &&
2375 	    port->type != PORT_SCIFB) {
2376 		err = sci_sck_calc(s, baud, &srr1);
2377 		if (abs(err) < abs(min_err)) {
2378 			best_clk = SCI_SCK;
2379 			scr_val = SCSCR_CKE1;
2380 			sccks = SCCKS_CKS;
2381 			min_err = err;
2382 			srr = srr1;
2383 			if (!err)
2384 				goto done;
2385 		}
2386 	}
2387 
2388 	/* Optional BRG Frequency Divided External Clock */
2389 	if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
2390 		err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1,
2391 				   &srr1);
2392 		if (abs(err) < abs(min_err)) {
2393 			best_clk = SCI_SCIF_CLK;
2394 			scr_val = SCSCR_CKE1;
2395 			sccks = 0;
2396 			min_err = err;
2397 			dl = dl1;
2398 			srr = srr1;
2399 			if (!err)
2400 				goto done;
2401 		}
2402 	}
2403 
2404 	/* Optional BRG Frequency Divided Internal Clock */
2405 	if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
2406 		err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1,
2407 				   &srr1);
2408 		if (abs(err) < abs(min_err)) {
2409 			best_clk = SCI_BRG_INT;
2410 			scr_val = SCSCR_CKE1;
2411 			sccks = SCCKS_XIN;
2412 			min_err = err;
2413 			dl = dl1;
2414 			srr = srr1;
2415 			if (!min_err)
2416 				goto done;
2417 		}
2418 	}
2419 
2420 	/* Divided Functional Clock using standard Bit Rate Register */
2421 	err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1);
2422 	if (abs(err) < abs(min_err)) {
2423 		best_clk = SCI_FCK;
2424 		scr_val = 0;
2425 		min_err = err;
2426 		brr = brr1;
2427 		srr = srr1;
2428 		cks = cks1;
2429 	}
2430 
2431 done:
2432 	if (best_clk >= 0)
2433 		dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
2434 			s->clks[best_clk], baud, min_err);
2435 
2436 	sci_port_enable(s);
2437 
2438 	/*
2439 	 * Program the optional External Baud Rate Generator (BRG) first.
2440 	 * It controls the mux to select (H)SCK or frequency divided clock.
2441 	 */
2442 	if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
2443 		serial_port_out(port, SCDL, dl);
2444 		serial_port_out(port, SCCKS, sccks);
2445 	}
2446 
2447 	spin_lock_irqsave(&port->lock, flags);
2448 
2449 	sci_reset(port);
2450 
2451 	uart_update_timeout(port, termios->c_cflag, baud);
2452 
2453 	/* byte size and parity */
2454 	switch (termios->c_cflag & CSIZE) {
2455 	case CS5:
2456 		bits = 7;
2457 		break;
2458 	case CS6:
2459 		bits = 8;
2460 		break;
2461 	case CS7:
2462 		bits = 9;
2463 		break;
2464 	default:
2465 		bits = 10;
2466 		break;
2467 	}
2468 
2469 	if (termios->c_cflag & CSTOPB)
2470 		bits++;
2471 	if (termios->c_cflag & PARENB)
2472 		bits++;
2473 
2474 	if (best_clk >= 0) {
2475 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
2476 			switch (srr + 1) {
2477 			case 5:  smr_val |= SCSMR_SRC_5;  break;
2478 			case 7:  smr_val |= SCSMR_SRC_7;  break;
2479 			case 11: smr_val |= SCSMR_SRC_11; break;
2480 			case 13: smr_val |= SCSMR_SRC_13; break;
2481 			case 16: smr_val |= SCSMR_SRC_16; break;
2482 			case 17: smr_val |= SCSMR_SRC_17; break;
2483 			case 19: smr_val |= SCSMR_SRC_19; break;
2484 			case 27: smr_val |= SCSMR_SRC_27; break;
2485 			}
2486 		smr_val |= cks;
2487 		serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2488 		serial_port_out(port, SCSMR, smr_val);
2489 		serial_port_out(port, SCBRR, brr);
2490 		if (sci_getreg(port, HSSRR)->size) {
2491 			unsigned int hssrr = srr | HSCIF_SRE;
2492 			/* Calculate deviation from intended rate at the
2493 			 * center of the last stop bit in sampling clocks.
2494 			 */
2495 			int last_stop = bits * 2 - 1;
2496 			int deviation = min_err * srr * last_stop / 2 / baud;
2497 
2498 			if (abs(deviation) >= 2) {
2499 				/* At least two sampling clocks off at the
2500 				 * last stop bit; we can increase the error
2501 				 * margin by shifting the sampling point.
2502 				 */
2503 				int shift = min(-8, max(7, deviation / 2));
2504 
2505 				hssrr |= (shift << HSCIF_SRHP_SHIFT) &
2506 					 HSCIF_SRHP_MASK;
2507 				hssrr |= HSCIF_SRDE;
2508 			}
2509 			serial_port_out(port, HSSRR, hssrr);
2510 		}
2511 
2512 		/* Wait one bit interval */
2513 		udelay((1000000 + (baud - 1)) / baud);
2514 	} else {
2515 		/* Don't touch the bit rate configuration */
2516 		scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
2517 		smr_val |= serial_port_in(port, SCSMR) &
2518 			   (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS);
2519 		serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2520 		serial_port_out(port, SCSMR, smr_val);
2521 	}
2522 
2523 	sci_init_pins(port, termios->c_cflag);
2524 
2525 	port->status &= ~UPSTAT_AUTOCTS;
2526 	s->autorts = false;
2527 	reg = sci_getreg(port, SCFCR);
2528 	if (reg->size) {
2529 		unsigned short ctrl = serial_port_in(port, SCFCR);
2530 
2531 		if ((port->flags & UPF_HARD_FLOW) &&
2532 		    (termios->c_cflag & CRTSCTS)) {
2533 			/* There is no CTS interrupt to restart the hardware */
2534 			port->status |= UPSTAT_AUTOCTS;
2535 			/* MCE is enabled when RTS is raised */
2536 			s->autorts = true;
2537 		}
2538 
2539 		/*
2540 		 * As we've done a sci_reset() above, ensure we don't
2541 		 * interfere with the FIFOs while toggling MCE. As the
2542 		 * reset values could still be set, simply mask them out.
2543 		 */
2544 		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2545 
2546 		serial_port_out(port, SCFCR, ctrl);
2547 	}
2548 	if (port->flags & UPF_HARD_FLOW) {
2549 		/* Refresh (Auto) RTS */
2550 		sci_set_mctrl(port, port->mctrl);
2551 	}
2552 
2553 	scr_val |= SCSCR_RE | SCSCR_TE |
2554 		   (s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0));
2555 	serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2556 	if ((srr + 1 == 5) &&
2557 	    (port->type == PORT_SCIFA || port->type == PORT_SCIFB)) {
2558 		/*
2559 		 * In asynchronous mode, when the sampling rate is 1/5, first
2560 		 * received data may become invalid on some SCIFA and SCIFB.
2561 		 * To avoid this problem wait more than 1 serial data time (1
2562 		 * bit time x serial data number) after setting SCSCR.RE = 1.
2563 		 */
2564 		udelay(DIV_ROUND_UP(10 * 1000000, baud));
2565 	}
2566 
2567 	/*
2568 	 * Calculate delay for 2 DMA buffers (4 FIFO).
2569 	 * See serial_core.c::uart_update_timeout().
2570 	 * With 10 bits (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above
2571 	 * function calculates 1 jiffie for the data plus 5 jiffies for the
2572 	 * "slop(e)." Then below we calculate 5 jiffies (20ms) for 2 DMA
2573 	 * buffers (4 FIFO sizes), but when performing a faster transfer, the
2574 	 * value obtained by this formula is too small. Therefore, if the value
2575 	 * is smaller than 20ms, use 20ms as the timeout value for DMA.
2576 	 */
2577 	s->rx_frame = (10000 * bits) / (baud / 100);
2578 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2579 	s->rx_timeout = s->buf_len_rx * 2 * s->rx_frame;
2580 	if (s->rx_timeout < 20)
2581 		s->rx_timeout = 20;
2582 #endif
2583 
2584 	if ((termios->c_cflag & CREAD) != 0)
2585 		sci_start_rx(port);
2586 
2587 	spin_unlock_irqrestore(&port->lock, flags);
2588 
2589 	sci_port_disable(s);
2590 
2591 	if (UART_ENABLE_MS(port, termios->c_cflag))
2592 		sci_enable_ms(port);
2593 }
2594 
2595 static void sci_pm(struct uart_port *port, unsigned int state,
2596 		   unsigned int oldstate)
2597 {
2598 	struct sci_port *sci_port = to_sci_port(port);
2599 
2600 	switch (state) {
2601 	case UART_PM_STATE_OFF:
2602 		sci_port_disable(sci_port);
2603 		break;
2604 	default:
2605 		sci_port_enable(sci_port);
2606 		break;
2607 	}
2608 }
2609 
2610 static const char *sci_type(struct uart_port *port)
2611 {
2612 	switch (port->type) {
2613 	case PORT_IRDA:
2614 		return "irda";
2615 	case PORT_SCI:
2616 		return "sci";
2617 	case PORT_SCIF:
2618 		return "scif";
2619 	case PORT_SCIFA:
2620 		return "scifa";
2621 	case PORT_SCIFB:
2622 		return "scifb";
2623 	case PORT_HSCIF:
2624 		return "hscif";
2625 	}
2626 
2627 	return NULL;
2628 }
2629 
2630 static int sci_remap_port(struct uart_port *port)
2631 {
2632 	struct sci_port *sport = to_sci_port(port);
2633 
2634 	/*
2635 	 * Nothing to do if there's already an established membase.
2636 	 */
2637 	if (port->membase)
2638 		return 0;
2639 
2640 	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2641 		port->membase = ioremap_nocache(port->mapbase, sport->reg_size);
2642 		if (unlikely(!port->membase)) {
2643 			dev_err(port->dev, "can't remap port#%d\n", port->line);
2644 			return -ENXIO;
2645 		}
2646 	} else {
2647 		/*
2648 		 * For the simple (and majority of) cases where we don't
2649 		 * need to do any remapping, just cast the cookie
2650 		 * directly.
2651 		 */
2652 		port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2653 	}
2654 
2655 	return 0;
2656 }
2657 
2658 static void sci_release_port(struct uart_port *port)
2659 {
2660 	struct sci_port *sport = to_sci_port(port);
2661 
2662 	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2663 		iounmap(port->membase);
2664 		port->membase = NULL;
2665 	}
2666 
2667 	release_mem_region(port->mapbase, sport->reg_size);
2668 }
2669 
2670 static int sci_request_port(struct uart_port *port)
2671 {
2672 	struct resource *res;
2673 	struct sci_port *sport = to_sci_port(port);
2674 	int ret;
2675 
2676 	res = request_mem_region(port->mapbase, sport->reg_size,
2677 				 dev_name(port->dev));
2678 	if (unlikely(res == NULL)) {
2679 		dev_err(port->dev, "request_mem_region failed.");
2680 		return -EBUSY;
2681 	}
2682 
2683 	ret = sci_remap_port(port);
2684 	if (unlikely(ret != 0)) {
2685 		release_resource(res);
2686 		return ret;
2687 	}
2688 
2689 	return 0;
2690 }
2691 
2692 static void sci_config_port(struct uart_port *port, int flags)
2693 {
2694 	if (flags & UART_CONFIG_TYPE) {
2695 		struct sci_port *sport = to_sci_port(port);
2696 
2697 		port->type = sport->cfg->type;
2698 		sci_request_port(port);
2699 	}
2700 }
2701 
2702 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2703 {
2704 	if (ser->baud_base < 2400)
2705 		/* No paper tape reader for Mitch.. */
2706 		return -EINVAL;
2707 
2708 	return 0;
2709 }
2710 
2711 static const struct uart_ops sci_uart_ops = {
2712 	.tx_empty	= sci_tx_empty,
2713 	.set_mctrl	= sci_set_mctrl,
2714 	.get_mctrl	= sci_get_mctrl,
2715 	.start_tx	= sci_start_tx,
2716 	.stop_tx	= sci_stop_tx,
2717 	.stop_rx	= sci_stop_rx,
2718 	.enable_ms	= sci_enable_ms,
2719 	.break_ctl	= sci_break_ctl,
2720 	.startup	= sci_startup,
2721 	.shutdown	= sci_shutdown,
2722 	.flush_buffer	= sci_flush_buffer,
2723 	.set_termios	= sci_set_termios,
2724 	.pm		= sci_pm,
2725 	.type		= sci_type,
2726 	.release_port	= sci_release_port,
2727 	.request_port	= sci_request_port,
2728 	.config_port	= sci_config_port,
2729 	.verify_port	= sci_verify_port,
2730 #ifdef CONFIG_CONSOLE_POLL
2731 	.poll_get_char	= sci_poll_get_char,
2732 	.poll_put_char	= sci_poll_put_char,
2733 #endif
2734 };
2735 
2736 static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
2737 {
2738 	const char *clk_names[] = {
2739 		[SCI_FCK] = "fck",
2740 		[SCI_SCK] = "sck",
2741 		[SCI_BRG_INT] = "brg_int",
2742 		[SCI_SCIF_CLK] = "scif_clk",
2743 	};
2744 	struct clk *clk;
2745 	unsigned int i;
2746 
2747 	if (sci_port->cfg->type == PORT_HSCIF)
2748 		clk_names[SCI_SCK] = "hsck";
2749 
2750 	for (i = 0; i < SCI_NUM_CLKS; i++) {
2751 		clk = devm_clk_get(dev, clk_names[i]);
2752 		if (PTR_ERR(clk) == -EPROBE_DEFER)
2753 			return -EPROBE_DEFER;
2754 
2755 		if (IS_ERR(clk) && i == SCI_FCK) {
2756 			/*
2757 			 * "fck" used to be called "sci_ick", and we need to
2758 			 * maintain DT backward compatibility.
2759 			 */
2760 			clk = devm_clk_get(dev, "sci_ick");
2761 			if (PTR_ERR(clk) == -EPROBE_DEFER)
2762 				return -EPROBE_DEFER;
2763 
2764 			if (!IS_ERR(clk))
2765 				goto found;
2766 
2767 			/*
2768 			 * Not all SH platforms declare a clock lookup entry
2769 			 * for SCI devices, in which case we need to get the
2770 			 * global "peripheral_clk" clock.
2771 			 */
2772 			clk = devm_clk_get(dev, "peripheral_clk");
2773 			if (!IS_ERR(clk))
2774 				goto found;
2775 
2776 			dev_err(dev, "failed to get %s (%ld)\n", clk_names[i],
2777 				PTR_ERR(clk));
2778 			return PTR_ERR(clk);
2779 		}
2780 
2781 found:
2782 		if (IS_ERR(clk))
2783 			dev_dbg(dev, "failed to get %s (%ld)\n", clk_names[i],
2784 				PTR_ERR(clk));
2785 		else
2786 			dev_dbg(dev, "clk %s is %pC rate %lu\n", clk_names[i],
2787 				clk, clk_get_rate(clk));
2788 		sci_port->clks[i] = IS_ERR(clk) ? NULL : clk;
2789 	}
2790 	return 0;
2791 }
2792 
2793 static const struct sci_port_params *
2794 sci_probe_regmap(const struct plat_sci_port *cfg)
2795 {
2796 	unsigned int regtype;
2797 
2798 	if (cfg->regtype != SCIx_PROBE_REGTYPE)
2799 		return &sci_port_params[cfg->regtype];
2800 
2801 	switch (cfg->type) {
2802 	case PORT_SCI:
2803 		regtype = SCIx_SCI_REGTYPE;
2804 		break;
2805 	case PORT_IRDA:
2806 		regtype = SCIx_IRDA_REGTYPE;
2807 		break;
2808 	case PORT_SCIFA:
2809 		regtype = SCIx_SCIFA_REGTYPE;
2810 		break;
2811 	case PORT_SCIFB:
2812 		regtype = SCIx_SCIFB_REGTYPE;
2813 		break;
2814 	case PORT_SCIF:
2815 		/*
2816 		 * The SH-4 is a bit of a misnomer here, although that's
2817 		 * where this particular port layout originated. This
2818 		 * configuration (or some slight variation thereof)
2819 		 * remains the dominant model for all SCIFs.
2820 		 */
2821 		regtype = SCIx_SH4_SCIF_REGTYPE;
2822 		break;
2823 	case PORT_HSCIF:
2824 		regtype = SCIx_HSCIF_REGTYPE;
2825 		break;
2826 	default:
2827 		pr_err("Can't probe register map for given port\n");
2828 		return NULL;
2829 	}
2830 
2831 	return &sci_port_params[regtype];
2832 }
2833 
2834 static int sci_init_single(struct platform_device *dev,
2835 			   struct sci_port *sci_port, unsigned int index,
2836 			   const struct plat_sci_port *p, bool early)
2837 {
2838 	struct uart_port *port = &sci_port->port;
2839 	const struct resource *res;
2840 	unsigned int i;
2841 	int ret;
2842 
2843 	sci_port->cfg	= p;
2844 
2845 	port->ops	= &sci_uart_ops;
2846 	port->iotype	= UPIO_MEM;
2847 	port->line	= index;
2848 
2849 	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2850 	if (res == NULL)
2851 		return -ENOMEM;
2852 
2853 	port->mapbase = res->start;
2854 	sci_port->reg_size = resource_size(res);
2855 
2856 	for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i)
2857 		sci_port->irqs[i] = platform_get_irq(dev, i);
2858 
2859 	/* The SCI generates several interrupts. They can be muxed together or
2860 	 * connected to different interrupt lines. In the muxed case only one
2861 	 * interrupt resource is specified as there is only one interrupt ID.
2862 	 * In the non-muxed case, up to 6 interrupt signals might be generated
2863 	 * from the SCI, however those signals might have their own individual
2864 	 * interrupt ID numbers, or muxed together with another interrupt.
2865 	 */
2866 	if (sci_port->irqs[0] < 0)
2867 		return -ENXIO;
2868 
2869 	if (sci_port->irqs[1] < 0)
2870 		for (i = 1; i < ARRAY_SIZE(sci_port->irqs); i++)
2871 			sci_port->irqs[i] = sci_port->irqs[0];
2872 
2873 	sci_port->params = sci_probe_regmap(p);
2874 	if (unlikely(sci_port->params == NULL))
2875 		return -EINVAL;
2876 
2877 	switch (p->type) {
2878 	case PORT_SCIFB:
2879 		sci_port->rx_trigger = 48;
2880 		break;
2881 	case PORT_HSCIF:
2882 		sci_port->rx_trigger = 64;
2883 		break;
2884 	case PORT_SCIFA:
2885 		sci_port->rx_trigger = 32;
2886 		break;
2887 	case PORT_SCIF:
2888 		if (p->regtype == SCIx_SH7705_SCIF_REGTYPE)
2889 			/* RX triggering not implemented for this IP */
2890 			sci_port->rx_trigger = 1;
2891 		else
2892 			sci_port->rx_trigger = 8;
2893 		break;
2894 	default:
2895 		sci_port->rx_trigger = 1;
2896 		break;
2897 	}
2898 
2899 	sci_port->rx_fifo_timeout = 0;
2900 	sci_port->hscif_tot = 0;
2901 
2902 	/* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2903 	 * match the SoC datasheet, this should be investigated. Let platform
2904 	 * data override the sampling rate for now.
2905 	 */
2906 	sci_port->sampling_rate_mask = p->sampling_rate
2907 				     ? SCI_SR(p->sampling_rate)
2908 				     : sci_port->params->sampling_rate_mask;
2909 
2910 	if (!early) {
2911 		ret = sci_init_clocks(sci_port, &dev->dev);
2912 		if (ret < 0)
2913 			return ret;
2914 
2915 		port->dev = &dev->dev;
2916 
2917 		pm_runtime_enable(&dev->dev);
2918 	}
2919 
2920 	port->type		= p->type;
2921 	port->flags		= UPF_FIXED_PORT | UPF_BOOT_AUTOCONF | p->flags;
2922 	port->fifosize		= sci_port->params->fifosize;
2923 
2924 	if (port->type == PORT_SCI) {
2925 		if (sci_port->reg_size >= 0x20)
2926 			port->regshift = 2;
2927 		else
2928 			port->regshift = 1;
2929 	}
2930 
2931 	/*
2932 	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
2933 	 * for the multi-IRQ ports, which is where we are primarily
2934 	 * concerned with the shutdown path synchronization.
2935 	 *
2936 	 * For the muxed case there's nothing more to do.
2937 	 */
2938 	port->irq		= sci_port->irqs[SCIx_RXI_IRQ];
2939 	port->irqflags		= 0;
2940 
2941 	port->serial_in		= sci_serial_in;
2942 	port->serial_out	= sci_serial_out;
2943 
2944 	return 0;
2945 }
2946 
2947 static void sci_cleanup_single(struct sci_port *port)
2948 {
2949 	pm_runtime_disable(port->port.dev);
2950 }
2951 
2952 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
2953     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
2954 static void serial_console_putchar(struct uart_port *port, int ch)
2955 {
2956 	sci_poll_put_char(port, ch);
2957 }
2958 
2959 /*
2960  *	Print a string to the serial port trying not to disturb
2961  *	any possible real use of the port...
2962  */
2963 static void serial_console_write(struct console *co, const char *s,
2964 				 unsigned count)
2965 {
2966 	struct sci_port *sci_port = &sci_ports[co->index];
2967 	struct uart_port *port = &sci_port->port;
2968 	unsigned short bits, ctrl, ctrl_temp;
2969 	unsigned long flags;
2970 	int locked = 1;
2971 
2972 #if defined(SUPPORT_SYSRQ)
2973 	if (port->sysrq)
2974 		locked = 0;
2975 	else
2976 #endif
2977 	if (oops_in_progress)
2978 		locked = spin_trylock_irqsave(&port->lock, flags);
2979 	else
2980 		spin_lock_irqsave(&port->lock, flags);
2981 
2982 	/* first save SCSCR then disable interrupts, keep clock source */
2983 	ctrl = serial_port_in(port, SCSCR);
2984 	ctrl_temp = SCSCR_RE | SCSCR_TE |
2985 		    (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
2986 		    (ctrl & (SCSCR_CKE1 | SCSCR_CKE0));
2987 	serial_port_out(port, SCSCR, ctrl_temp | sci_port->hscif_tot);
2988 
2989 	uart_console_write(port, s, count, serial_console_putchar);
2990 
2991 	/* wait until fifo is empty and last bit has been transmitted */
2992 	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
2993 	while ((serial_port_in(port, SCxSR) & bits) != bits)
2994 		cpu_relax();
2995 
2996 	/* restore the SCSCR */
2997 	serial_port_out(port, SCSCR, ctrl);
2998 
2999 	if (locked)
3000 		spin_unlock_irqrestore(&port->lock, flags);
3001 }
3002 
3003 static int serial_console_setup(struct console *co, char *options)
3004 {
3005 	struct sci_port *sci_port;
3006 	struct uart_port *port;
3007 	int baud = 115200;
3008 	int bits = 8;
3009 	int parity = 'n';
3010 	int flow = 'n';
3011 	int ret;
3012 
3013 	/*
3014 	 * Refuse to handle any bogus ports.
3015 	 */
3016 	if (co->index < 0 || co->index >= SCI_NPORTS)
3017 		return -ENODEV;
3018 
3019 	sci_port = &sci_ports[co->index];
3020 	port = &sci_port->port;
3021 
3022 	/*
3023 	 * Refuse to handle uninitialized ports.
3024 	 */
3025 	if (!port->ops)
3026 		return -ENODEV;
3027 
3028 	ret = sci_remap_port(port);
3029 	if (unlikely(ret != 0))
3030 		return ret;
3031 
3032 	if (options)
3033 		uart_parse_options(options, &baud, &parity, &bits, &flow);
3034 
3035 	return uart_set_options(port, co, baud, parity, bits, flow);
3036 }
3037 
3038 static struct console serial_console = {
3039 	.name		= "ttySC",
3040 	.device		= uart_console_device,
3041 	.write		= serial_console_write,
3042 	.setup		= serial_console_setup,
3043 	.flags		= CON_PRINTBUFFER,
3044 	.index		= -1,
3045 	.data		= &sci_uart_driver,
3046 };
3047 
3048 static struct console early_serial_console = {
3049 	.name           = "early_ttySC",
3050 	.write          = serial_console_write,
3051 	.flags          = CON_PRINTBUFFER,
3052 	.index		= -1,
3053 };
3054 
3055 static char early_serial_buf[32];
3056 
3057 static int sci_probe_earlyprintk(struct platform_device *pdev)
3058 {
3059 	const struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
3060 
3061 	if (early_serial_console.data)
3062 		return -EEXIST;
3063 
3064 	early_serial_console.index = pdev->id;
3065 
3066 	sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
3067 
3068 	serial_console_setup(&early_serial_console, early_serial_buf);
3069 
3070 	if (!strstr(early_serial_buf, "keep"))
3071 		early_serial_console.flags |= CON_BOOT;
3072 
3073 	register_console(&early_serial_console);
3074 	return 0;
3075 }
3076 
3077 #define SCI_CONSOLE	(&serial_console)
3078 
3079 #else
3080 static inline int sci_probe_earlyprintk(struct platform_device *pdev)
3081 {
3082 	return -EINVAL;
3083 }
3084 
3085 #define SCI_CONSOLE	NULL
3086 
3087 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */
3088 
3089 static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
3090 
3091 static DEFINE_MUTEX(sci_uart_registration_lock);
3092 static struct uart_driver sci_uart_driver = {
3093 	.owner		= THIS_MODULE,
3094 	.driver_name	= "sci",
3095 	.dev_name	= "ttySC",
3096 	.major		= SCI_MAJOR,
3097 	.minor		= SCI_MINOR_START,
3098 	.nr		= SCI_NPORTS,
3099 	.cons		= SCI_CONSOLE,
3100 };
3101 
3102 static int sci_remove(struct platform_device *dev)
3103 {
3104 	struct sci_port *port = platform_get_drvdata(dev);
3105 
3106 	sci_ports_in_use &= ~BIT(port->port.line);
3107 	uart_remove_one_port(&sci_uart_driver, &port->port);
3108 
3109 	sci_cleanup_single(port);
3110 
3111 	if (port->port.fifosize > 1) {
3112 		sysfs_remove_file(&dev->dev.kobj,
3113 				  &dev_attr_rx_fifo_trigger.attr);
3114 	}
3115 	if (port->port.type == PORT_SCIFA || port->port.type == PORT_SCIFB ||
3116 	    port->port.type == PORT_HSCIF) {
3117 		sysfs_remove_file(&dev->dev.kobj,
3118 				  &dev_attr_rx_fifo_timeout.attr);
3119 	}
3120 
3121 	return 0;
3122 }
3123 
3124 
3125 #define SCI_OF_DATA(type, regtype)	(void *)((type) << 16 | (regtype))
3126 #define SCI_OF_TYPE(data)		((unsigned long)(data) >> 16)
3127 #define SCI_OF_REGTYPE(data)		((unsigned long)(data) & 0xffff)
3128 
3129 static const struct of_device_id of_sci_match[] = {
3130 	/* SoC-specific types */
3131 	{
3132 		.compatible = "renesas,scif-r7s72100",
3133 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE),
3134 	},
3135 	{
3136 		.compatible = "renesas,scif-r7s9210",
3137 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_RZ_SCIFA_REGTYPE),
3138 	},
3139 	/* Family-specific types */
3140 	{
3141 		.compatible = "renesas,rcar-gen1-scif",
3142 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3143 	}, {
3144 		.compatible = "renesas,rcar-gen2-scif",
3145 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3146 	}, {
3147 		.compatible = "renesas,rcar-gen3-scif",
3148 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3149 	},
3150 	/* Generic types */
3151 	{
3152 		.compatible = "renesas,scif",
3153 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE),
3154 	}, {
3155 		.compatible = "renesas,scifa",
3156 		.data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE),
3157 	}, {
3158 		.compatible = "renesas,scifb",
3159 		.data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE),
3160 	}, {
3161 		.compatible = "renesas,hscif",
3162 		.data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE),
3163 	}, {
3164 		.compatible = "renesas,sci",
3165 		.data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE),
3166 	}, {
3167 		/* Terminator */
3168 	},
3169 };
3170 MODULE_DEVICE_TABLE(of, of_sci_match);
3171 
3172 static struct plat_sci_port *sci_parse_dt(struct platform_device *pdev,
3173 					  unsigned int *dev_id)
3174 {
3175 	struct device_node *np = pdev->dev.of_node;
3176 	struct plat_sci_port *p;
3177 	struct sci_port *sp;
3178 	const void *data;
3179 	int id;
3180 
3181 	if (!IS_ENABLED(CONFIG_OF) || !np)
3182 		return NULL;
3183 
3184 	data = of_device_get_match_data(&pdev->dev);
3185 
3186 	p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
3187 	if (!p)
3188 		return NULL;
3189 
3190 	/* Get the line number from the aliases node. */
3191 	id = of_alias_get_id(np, "serial");
3192 	if (id < 0 && ~sci_ports_in_use)
3193 		id = ffz(sci_ports_in_use);
3194 	if (id < 0) {
3195 		dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
3196 		return NULL;
3197 	}
3198 	if (id >= ARRAY_SIZE(sci_ports)) {
3199 		dev_err(&pdev->dev, "serial%d out of range\n", id);
3200 		return NULL;
3201 	}
3202 
3203 	sp = &sci_ports[id];
3204 	*dev_id = id;
3205 
3206 	p->type = SCI_OF_TYPE(data);
3207 	p->regtype = SCI_OF_REGTYPE(data);
3208 
3209 	sp->has_rtscts = of_property_read_bool(np, "uart-has-rtscts");
3210 
3211 	return p;
3212 }
3213 
3214 static int sci_probe_single(struct platform_device *dev,
3215 				      unsigned int index,
3216 				      struct plat_sci_port *p,
3217 				      struct sci_port *sciport)
3218 {
3219 	int ret;
3220 
3221 	/* Sanity check */
3222 	if (unlikely(index >= SCI_NPORTS)) {
3223 		dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
3224 			   index+1, SCI_NPORTS);
3225 		dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
3226 		return -EINVAL;
3227 	}
3228 	BUILD_BUG_ON(SCI_NPORTS > sizeof(sci_ports_in_use) * 8);
3229 	if (sci_ports_in_use & BIT(index))
3230 		return -EBUSY;
3231 
3232 	mutex_lock(&sci_uart_registration_lock);
3233 	if (!sci_uart_driver.state) {
3234 		ret = uart_register_driver(&sci_uart_driver);
3235 		if (ret) {
3236 			mutex_unlock(&sci_uart_registration_lock);
3237 			return ret;
3238 		}
3239 	}
3240 	mutex_unlock(&sci_uart_registration_lock);
3241 
3242 	ret = sci_init_single(dev, sciport, index, p, false);
3243 	if (ret)
3244 		return ret;
3245 
3246 	sciport->gpios = mctrl_gpio_init(&sciport->port, 0);
3247 	if (IS_ERR(sciport->gpios) && PTR_ERR(sciport->gpios) != -ENOSYS)
3248 		return PTR_ERR(sciport->gpios);
3249 
3250 	if (sciport->has_rtscts) {
3251 		if (!IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(sciport->gpios,
3252 							UART_GPIO_CTS)) ||
3253 		    !IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(sciport->gpios,
3254 							UART_GPIO_RTS))) {
3255 			dev_err(&dev->dev, "Conflicting RTS/CTS config\n");
3256 			return -EINVAL;
3257 		}
3258 		sciport->port.flags |= UPF_HARD_FLOW;
3259 	}
3260 
3261 	ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
3262 	if (ret) {
3263 		sci_cleanup_single(sciport);
3264 		return ret;
3265 	}
3266 
3267 	return 0;
3268 }
3269 
3270 static int sci_probe(struct platform_device *dev)
3271 {
3272 	struct plat_sci_port *p;
3273 	struct sci_port *sp;
3274 	unsigned int dev_id;
3275 	int ret;
3276 
3277 	/*
3278 	 * If we've come here via earlyprintk initialization, head off to
3279 	 * the special early probe. We don't have sufficient device state
3280 	 * to make it beyond this yet.
3281 	 */
3282 	if (is_early_platform_device(dev))
3283 		return sci_probe_earlyprintk(dev);
3284 
3285 	if (dev->dev.of_node) {
3286 		p = sci_parse_dt(dev, &dev_id);
3287 		if (p == NULL)
3288 			return -EINVAL;
3289 	} else {
3290 		p = dev->dev.platform_data;
3291 		if (p == NULL) {
3292 			dev_err(&dev->dev, "no platform data supplied\n");
3293 			return -EINVAL;
3294 		}
3295 
3296 		dev_id = dev->id;
3297 	}
3298 
3299 	sp = &sci_ports[dev_id];
3300 	platform_set_drvdata(dev, sp);
3301 
3302 	ret = sci_probe_single(dev, dev_id, p, sp);
3303 	if (ret)
3304 		return ret;
3305 
3306 	if (sp->port.fifosize > 1) {
3307 		ret = sysfs_create_file(&dev->dev.kobj,
3308 				&dev_attr_rx_fifo_trigger.attr);
3309 		if (ret)
3310 			return ret;
3311 	}
3312 	if (sp->port.type == PORT_SCIFA || sp->port.type == PORT_SCIFB ||
3313 	    sp->port.type == PORT_HSCIF) {
3314 		ret = sysfs_create_file(&dev->dev.kobj,
3315 				&dev_attr_rx_fifo_timeout.attr);
3316 		if (ret) {
3317 			if (sp->port.fifosize > 1) {
3318 				sysfs_remove_file(&dev->dev.kobj,
3319 					&dev_attr_rx_fifo_trigger.attr);
3320 			}
3321 			return ret;
3322 		}
3323 	}
3324 
3325 #ifdef CONFIG_SH_STANDARD_BIOS
3326 	sh_bios_gdb_detach();
3327 #endif
3328 
3329 	sci_ports_in_use |= BIT(dev_id);
3330 	return 0;
3331 }
3332 
3333 static __maybe_unused int sci_suspend(struct device *dev)
3334 {
3335 	struct sci_port *sport = dev_get_drvdata(dev);
3336 
3337 	if (sport)
3338 		uart_suspend_port(&sci_uart_driver, &sport->port);
3339 
3340 	return 0;
3341 }
3342 
3343 static __maybe_unused int sci_resume(struct device *dev)
3344 {
3345 	struct sci_port *sport = dev_get_drvdata(dev);
3346 
3347 	if (sport)
3348 		uart_resume_port(&sci_uart_driver, &sport->port);
3349 
3350 	return 0;
3351 }
3352 
3353 static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
3354 
3355 static struct platform_driver sci_driver = {
3356 	.probe		= sci_probe,
3357 	.remove		= sci_remove,
3358 	.driver		= {
3359 		.name	= "sh-sci",
3360 		.pm	= &sci_dev_pm_ops,
3361 		.of_match_table = of_match_ptr(of_sci_match),
3362 	},
3363 };
3364 
3365 static int __init sci_init(void)
3366 {
3367 	pr_info("%s\n", banner);
3368 
3369 	return platform_driver_register(&sci_driver);
3370 }
3371 
3372 static void __exit sci_exit(void)
3373 {
3374 	platform_driver_unregister(&sci_driver);
3375 
3376 	if (sci_uart_driver.state)
3377 		uart_unregister_driver(&sci_uart_driver);
3378 }
3379 
3380 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
3381 early_platform_init_buffer("earlyprintk", &sci_driver,
3382 			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
3383 #endif
3384 #ifdef CONFIG_SERIAL_SH_SCI_EARLYCON
3385 static struct plat_sci_port port_cfg __initdata;
3386 
3387 static int __init early_console_setup(struct earlycon_device *device,
3388 				      int type)
3389 {
3390 	if (!device->port.membase)
3391 		return -ENODEV;
3392 
3393 	device->port.serial_in = sci_serial_in;
3394 	device->port.serial_out	= sci_serial_out;
3395 	device->port.type = type;
3396 	memcpy(&sci_ports[0].port, &device->port, sizeof(struct uart_port));
3397 	port_cfg.type = type;
3398 	sci_ports[0].cfg = &port_cfg;
3399 	sci_ports[0].params = sci_probe_regmap(&port_cfg);
3400 	port_cfg.scscr = sci_serial_in(&sci_ports[0].port, SCSCR);
3401 	sci_serial_out(&sci_ports[0].port, SCSCR,
3402 		       SCSCR_RE | SCSCR_TE | port_cfg.scscr);
3403 
3404 	device->con->write = serial_console_write;
3405 	return 0;
3406 }
3407 static int __init sci_early_console_setup(struct earlycon_device *device,
3408 					  const char *opt)
3409 {
3410 	return early_console_setup(device, PORT_SCI);
3411 }
3412 static int __init scif_early_console_setup(struct earlycon_device *device,
3413 					  const char *opt)
3414 {
3415 	return early_console_setup(device, PORT_SCIF);
3416 }
3417 static int __init rzscifa_early_console_setup(struct earlycon_device *device,
3418 					  const char *opt)
3419 {
3420 	port_cfg.regtype = SCIx_RZ_SCIFA_REGTYPE;
3421 	return early_console_setup(device, PORT_SCIF);
3422 }
3423 static int __init scifa_early_console_setup(struct earlycon_device *device,
3424 					  const char *opt)
3425 {
3426 	return early_console_setup(device, PORT_SCIFA);
3427 }
3428 static int __init scifb_early_console_setup(struct earlycon_device *device,
3429 					  const char *opt)
3430 {
3431 	return early_console_setup(device, PORT_SCIFB);
3432 }
3433 static int __init hscif_early_console_setup(struct earlycon_device *device,
3434 					  const char *opt)
3435 {
3436 	return early_console_setup(device, PORT_HSCIF);
3437 }
3438 
3439 OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup);
3440 OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup);
3441 OF_EARLYCON_DECLARE(scif, "renesas,scif-r7s9210", rzscifa_early_console_setup);
3442 OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup);
3443 OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup);
3444 OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup);
3445 #endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */
3446 
3447 module_init(sci_init);
3448 module_exit(sci_exit);
3449 
3450 MODULE_LICENSE("GPL");
3451 MODULE_ALIAS("platform:sh-sci");
3452 MODULE_AUTHOR("Paul Mundt");
3453 MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");
3454