xref: /openbmc/linux/drivers/tty/serial/sh-sci.c (revision e2afca69)
1 /*
2  * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
3  *
4  *  Copyright (C) 2002 - 2011  Paul Mundt
5  *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
6  *
7  * based off of the old drivers/char/sh-sci.c by:
8  *
9  *   Copyright (C) 1999, 2000  Niibe Yutaka
10  *   Copyright (C) 2000  Sugioka Toshinobu
11  *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
12  *   Modified to support SecureEdge. David McCullough (2002)
13  *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
14  *   Removed SH7300 support (Jul 2007).
15  *
16  * This file is subject to the terms and conditions of the GNU General Public
17  * License.  See the file "COPYING" in the main directory of this archive
18  * for more details.
19  */
20 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
21 #define SUPPORT_SYSRQ
22 #endif
23 
24 #undef DEBUG
25 
26 #include <linux/module.h>
27 #include <linux/errno.h>
28 #include <linux/sh_dma.h>
29 #include <linux/timer.h>
30 #include <linux/interrupt.h>
31 #include <linux/tty.h>
32 #include <linux/tty_flip.h>
33 #include <linux/serial.h>
34 #include <linux/major.h>
35 #include <linux/string.h>
36 #include <linux/sysrq.h>
37 #include <linux/ioport.h>
38 #include <linux/mm.h>
39 #include <linux/init.h>
40 #include <linux/delay.h>
41 #include <linux/console.h>
42 #include <linux/platform_device.h>
43 #include <linux/serial_sci.h>
44 #include <linux/notifier.h>
45 #include <linux/pm_runtime.h>
46 #include <linux/cpufreq.h>
47 #include <linux/clk.h>
48 #include <linux/ctype.h>
49 #include <linux/err.h>
50 #include <linux/dmaengine.h>
51 #include <linux/dma-mapping.h>
52 #include <linux/scatterlist.h>
53 #include <linux/slab.h>
54 #include <linux/gpio.h>
55 
56 #ifdef CONFIG_SUPERH
57 #include <asm/sh_bios.h>
58 #endif
59 
60 #include "sh-sci.h"
61 
62 struct sci_port {
63 	struct uart_port	port;
64 
65 	/* Platform configuration */
66 	struct plat_sci_port	*cfg;
67 
68 	/* Break timer */
69 	struct timer_list	break_timer;
70 	int			break_flag;
71 
72 	/* Interface clock */
73 	struct clk		*iclk;
74 	/* Function clock */
75 	struct clk		*fclk;
76 
77 	char			*irqstr[SCIx_NR_IRQS];
78 	char			*gpiostr[SCIx_NR_FNS];
79 
80 	struct dma_chan			*chan_tx;
81 	struct dma_chan			*chan_rx;
82 
83 #ifdef CONFIG_SERIAL_SH_SCI_DMA
84 	struct dma_async_tx_descriptor	*desc_tx;
85 	struct dma_async_tx_descriptor	*desc_rx[2];
86 	dma_cookie_t			cookie_tx;
87 	dma_cookie_t			cookie_rx[2];
88 	dma_cookie_t			active_rx;
89 	struct scatterlist		sg_tx;
90 	unsigned int			sg_len_tx;
91 	struct scatterlist		sg_rx[2];
92 	size_t				buf_len_rx;
93 	struct sh_dmae_slave		param_tx;
94 	struct sh_dmae_slave		param_rx;
95 	struct work_struct		work_tx;
96 	struct work_struct		work_rx;
97 	struct timer_list		rx_timer;
98 	unsigned int			rx_timeout;
99 #endif
100 
101 	struct notifier_block		freq_transition;
102 };
103 
104 /* Function prototypes */
105 static void sci_start_tx(struct uart_port *port);
106 static void sci_stop_tx(struct uart_port *port);
107 static void sci_start_rx(struct uart_port *port);
108 
109 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
110 
111 static struct sci_port sci_ports[SCI_NPORTS];
112 static struct uart_driver sci_uart_driver;
113 
114 static inline struct sci_port *
115 to_sci_port(struct uart_port *uart)
116 {
117 	return container_of(uart, struct sci_port, port);
118 }
119 
120 struct plat_sci_reg {
121 	u8 offset, size;
122 };
123 
124 /* Helper for invalidating specific entries of an inherited map. */
125 #define sci_reg_invalid	{ .offset = 0, .size = 0 }
126 
127 static struct plat_sci_reg sci_regmap[SCIx_NR_REGTYPES][SCIx_NR_REGS] = {
128 	[SCIx_PROBE_REGTYPE] = {
129 		[0 ... SCIx_NR_REGS - 1] = sci_reg_invalid,
130 	},
131 
132 	/*
133 	 * Common SCI definitions, dependent on the port's regshift
134 	 * value.
135 	 */
136 	[SCIx_SCI_REGTYPE] = {
137 		[SCSMR]		= { 0x00,  8 },
138 		[SCBRR]		= { 0x01,  8 },
139 		[SCSCR]		= { 0x02,  8 },
140 		[SCxTDR]	= { 0x03,  8 },
141 		[SCxSR]		= { 0x04,  8 },
142 		[SCxRDR]	= { 0x05,  8 },
143 		[SCFCR]		= sci_reg_invalid,
144 		[SCFDR]		= sci_reg_invalid,
145 		[SCTFDR]	= sci_reg_invalid,
146 		[SCRFDR]	= sci_reg_invalid,
147 		[SCSPTR]	= sci_reg_invalid,
148 		[SCLSR]		= sci_reg_invalid,
149 		[HSSRR]		= sci_reg_invalid,
150 	},
151 
152 	/*
153 	 * Common definitions for legacy IrDA ports, dependent on
154 	 * regshift value.
155 	 */
156 	[SCIx_IRDA_REGTYPE] = {
157 		[SCSMR]		= { 0x00,  8 },
158 		[SCBRR]		= { 0x01,  8 },
159 		[SCSCR]		= { 0x02,  8 },
160 		[SCxTDR]	= { 0x03,  8 },
161 		[SCxSR]		= { 0x04,  8 },
162 		[SCxRDR]	= { 0x05,  8 },
163 		[SCFCR]		= { 0x06,  8 },
164 		[SCFDR]		= { 0x07, 16 },
165 		[SCTFDR]	= sci_reg_invalid,
166 		[SCRFDR]	= sci_reg_invalid,
167 		[SCSPTR]	= sci_reg_invalid,
168 		[SCLSR]		= sci_reg_invalid,
169 		[HSSRR]		= sci_reg_invalid,
170 	},
171 
172 	/*
173 	 * Common SCIFA definitions.
174 	 */
175 	[SCIx_SCIFA_REGTYPE] = {
176 		[SCSMR]		= { 0x00, 16 },
177 		[SCBRR]		= { 0x04,  8 },
178 		[SCSCR]		= { 0x08, 16 },
179 		[SCxTDR]	= { 0x20,  8 },
180 		[SCxSR]		= { 0x14, 16 },
181 		[SCxRDR]	= { 0x24,  8 },
182 		[SCFCR]		= { 0x18, 16 },
183 		[SCFDR]		= { 0x1c, 16 },
184 		[SCTFDR]	= sci_reg_invalid,
185 		[SCRFDR]	= sci_reg_invalid,
186 		[SCSPTR]	= sci_reg_invalid,
187 		[SCLSR]		= sci_reg_invalid,
188 		[HSSRR]		= sci_reg_invalid,
189 	},
190 
191 	/*
192 	 * Common SCIFB definitions.
193 	 */
194 	[SCIx_SCIFB_REGTYPE] = {
195 		[SCSMR]		= { 0x00, 16 },
196 		[SCBRR]		= { 0x04,  8 },
197 		[SCSCR]		= { 0x08, 16 },
198 		[SCxTDR]	= { 0x40,  8 },
199 		[SCxSR]		= { 0x14, 16 },
200 		[SCxRDR]	= { 0x60,  8 },
201 		[SCFCR]		= { 0x18, 16 },
202 		[SCFDR]		= sci_reg_invalid,
203 		[SCTFDR]	= { 0x38, 16 },
204 		[SCRFDR]	= { 0x3c, 16 },
205 		[SCSPTR]	= sci_reg_invalid,
206 		[SCLSR]		= sci_reg_invalid,
207 		[HSSRR]		= sci_reg_invalid,
208 	},
209 
210 	/*
211 	 * Common SH-2(A) SCIF definitions for ports with FIFO data
212 	 * count registers.
213 	 */
214 	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
215 		[SCSMR]		= { 0x00, 16 },
216 		[SCBRR]		= { 0x04,  8 },
217 		[SCSCR]		= { 0x08, 16 },
218 		[SCxTDR]	= { 0x0c,  8 },
219 		[SCxSR]		= { 0x10, 16 },
220 		[SCxRDR]	= { 0x14,  8 },
221 		[SCFCR]		= { 0x18, 16 },
222 		[SCFDR]		= { 0x1c, 16 },
223 		[SCTFDR]	= sci_reg_invalid,
224 		[SCRFDR]	= sci_reg_invalid,
225 		[SCSPTR]	= { 0x20, 16 },
226 		[SCLSR]		= { 0x24, 16 },
227 		[HSSRR]		= sci_reg_invalid,
228 	},
229 
230 	/*
231 	 * Common SH-3 SCIF definitions.
232 	 */
233 	[SCIx_SH3_SCIF_REGTYPE] = {
234 		[SCSMR]		= { 0x00,  8 },
235 		[SCBRR]		= { 0x02,  8 },
236 		[SCSCR]		= { 0x04,  8 },
237 		[SCxTDR]	= { 0x06,  8 },
238 		[SCxSR]		= { 0x08, 16 },
239 		[SCxRDR]	= { 0x0a,  8 },
240 		[SCFCR]		= { 0x0c,  8 },
241 		[SCFDR]		= { 0x0e, 16 },
242 		[SCTFDR]	= sci_reg_invalid,
243 		[SCRFDR]	= sci_reg_invalid,
244 		[SCSPTR]	= sci_reg_invalid,
245 		[SCLSR]		= sci_reg_invalid,
246 		[HSSRR]		= sci_reg_invalid,
247 	},
248 
249 	/*
250 	 * Common SH-4(A) SCIF(B) definitions.
251 	 */
252 	[SCIx_SH4_SCIF_REGTYPE] = {
253 		[SCSMR]		= { 0x00, 16 },
254 		[SCBRR]		= { 0x04,  8 },
255 		[SCSCR]		= { 0x08, 16 },
256 		[SCxTDR]	= { 0x0c,  8 },
257 		[SCxSR]		= { 0x10, 16 },
258 		[SCxRDR]	= { 0x14,  8 },
259 		[SCFCR]		= { 0x18, 16 },
260 		[SCFDR]		= { 0x1c, 16 },
261 		[SCTFDR]	= sci_reg_invalid,
262 		[SCRFDR]	= sci_reg_invalid,
263 		[SCSPTR]	= { 0x20, 16 },
264 		[SCLSR]		= { 0x24, 16 },
265 		[HSSRR]		= sci_reg_invalid,
266 	},
267 
268 	/*
269 	 * Common HSCIF definitions.
270 	 */
271 	[SCIx_HSCIF_REGTYPE] = {
272 		[SCSMR]		= { 0x00, 16 },
273 		[SCBRR]		= { 0x04,  8 },
274 		[SCSCR]		= { 0x08, 16 },
275 		[SCxTDR]	= { 0x0c,  8 },
276 		[SCxSR]		= { 0x10, 16 },
277 		[SCxRDR]	= { 0x14,  8 },
278 		[SCFCR]		= { 0x18, 16 },
279 		[SCFDR]		= { 0x1c, 16 },
280 		[SCTFDR]	= sci_reg_invalid,
281 		[SCRFDR]	= sci_reg_invalid,
282 		[SCSPTR]	= { 0x20, 16 },
283 		[SCLSR]		= { 0x24, 16 },
284 		[HSSRR]		= { 0x40, 16 },
285 	},
286 
287 	/*
288 	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
289 	 * register.
290 	 */
291 	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
292 		[SCSMR]		= { 0x00, 16 },
293 		[SCBRR]		= { 0x04,  8 },
294 		[SCSCR]		= { 0x08, 16 },
295 		[SCxTDR]	= { 0x0c,  8 },
296 		[SCxSR]		= { 0x10, 16 },
297 		[SCxRDR]	= { 0x14,  8 },
298 		[SCFCR]		= { 0x18, 16 },
299 		[SCFDR]		= { 0x1c, 16 },
300 		[SCTFDR]	= sci_reg_invalid,
301 		[SCRFDR]	= sci_reg_invalid,
302 		[SCSPTR]	= sci_reg_invalid,
303 		[SCLSR]		= { 0x24, 16 },
304 		[HSSRR]		= sci_reg_invalid,
305 	},
306 
307 	/*
308 	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
309 	 * count registers.
310 	 */
311 	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
312 		[SCSMR]		= { 0x00, 16 },
313 		[SCBRR]		= { 0x04,  8 },
314 		[SCSCR]		= { 0x08, 16 },
315 		[SCxTDR]	= { 0x0c,  8 },
316 		[SCxSR]		= { 0x10, 16 },
317 		[SCxRDR]	= { 0x14,  8 },
318 		[SCFCR]		= { 0x18, 16 },
319 		[SCFDR]		= { 0x1c, 16 },
320 		[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
321 		[SCRFDR]	= { 0x20, 16 },
322 		[SCSPTR]	= { 0x24, 16 },
323 		[SCLSR]		= { 0x28, 16 },
324 		[HSSRR]		= sci_reg_invalid,
325 	},
326 
327 	/*
328 	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
329 	 * registers.
330 	 */
331 	[SCIx_SH7705_SCIF_REGTYPE] = {
332 		[SCSMR]		= { 0x00, 16 },
333 		[SCBRR]		= { 0x04,  8 },
334 		[SCSCR]		= { 0x08, 16 },
335 		[SCxTDR]	= { 0x20,  8 },
336 		[SCxSR]		= { 0x14, 16 },
337 		[SCxRDR]	= { 0x24,  8 },
338 		[SCFCR]		= { 0x18, 16 },
339 		[SCFDR]		= { 0x1c, 16 },
340 		[SCTFDR]	= sci_reg_invalid,
341 		[SCRFDR]	= sci_reg_invalid,
342 		[SCSPTR]	= sci_reg_invalid,
343 		[SCLSR]		= sci_reg_invalid,
344 		[HSSRR]		= sci_reg_invalid,
345 	},
346 };
347 
348 #define sci_getreg(up, offset)		(sci_regmap[to_sci_port(up)->cfg->regtype] + offset)
349 
350 /*
351  * The "offset" here is rather misleading, in that it refers to an enum
352  * value relative to the port mapping rather than the fixed offset
353  * itself, which needs to be manually retrieved from the platform's
354  * register map for the given port.
355  */
356 static unsigned int sci_serial_in(struct uart_port *p, int offset)
357 {
358 	struct plat_sci_reg *reg = sci_getreg(p, offset);
359 
360 	if (reg->size == 8)
361 		return ioread8(p->membase + (reg->offset << p->regshift));
362 	else if (reg->size == 16)
363 		return ioread16(p->membase + (reg->offset << p->regshift));
364 	else
365 		WARN(1, "Invalid register access\n");
366 
367 	return 0;
368 }
369 
370 static void sci_serial_out(struct uart_port *p, int offset, int value)
371 {
372 	struct plat_sci_reg *reg = sci_getreg(p, offset);
373 
374 	if (reg->size == 8)
375 		iowrite8(value, p->membase + (reg->offset << p->regshift));
376 	else if (reg->size == 16)
377 		iowrite16(value, p->membase + (reg->offset << p->regshift));
378 	else
379 		WARN(1, "Invalid register access\n");
380 }
381 
382 static int sci_probe_regmap(struct plat_sci_port *cfg)
383 {
384 	switch (cfg->type) {
385 	case PORT_SCI:
386 		cfg->regtype = SCIx_SCI_REGTYPE;
387 		break;
388 	case PORT_IRDA:
389 		cfg->regtype = SCIx_IRDA_REGTYPE;
390 		break;
391 	case PORT_SCIFA:
392 		cfg->regtype = SCIx_SCIFA_REGTYPE;
393 		break;
394 	case PORT_SCIFB:
395 		cfg->regtype = SCIx_SCIFB_REGTYPE;
396 		break;
397 	case PORT_SCIF:
398 		/*
399 		 * The SH-4 is a bit of a misnomer here, although that's
400 		 * where this particular port layout originated. This
401 		 * configuration (or some slight variation thereof)
402 		 * remains the dominant model for all SCIFs.
403 		 */
404 		cfg->regtype = SCIx_SH4_SCIF_REGTYPE;
405 		break;
406 	case PORT_HSCIF:
407 		cfg->regtype = SCIx_HSCIF_REGTYPE;
408 		break;
409 	default:
410 		printk(KERN_ERR "Can't probe register map for given port\n");
411 		return -EINVAL;
412 	}
413 
414 	return 0;
415 }
416 
417 static void sci_port_enable(struct sci_port *sci_port)
418 {
419 	if (!sci_port->port.dev)
420 		return;
421 
422 	pm_runtime_get_sync(sci_port->port.dev);
423 
424 	clk_enable(sci_port->iclk);
425 	sci_port->port.uartclk = clk_get_rate(sci_port->iclk);
426 	clk_enable(sci_port->fclk);
427 }
428 
429 static void sci_port_disable(struct sci_port *sci_port)
430 {
431 	if (!sci_port->port.dev)
432 		return;
433 
434 	clk_disable(sci_port->fclk);
435 	clk_disable(sci_port->iclk);
436 
437 	pm_runtime_put_sync(sci_port->port.dev);
438 }
439 
440 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
441 
442 #ifdef CONFIG_CONSOLE_POLL
443 static int sci_poll_get_char(struct uart_port *port)
444 {
445 	unsigned short status;
446 	int c;
447 
448 	do {
449 		status = serial_port_in(port, SCxSR);
450 		if (status & SCxSR_ERRORS(port)) {
451 			serial_port_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
452 			continue;
453 		}
454 		break;
455 	} while (1);
456 
457 	if (!(status & SCxSR_RDxF(port)))
458 		return NO_POLL_CHAR;
459 
460 	c = serial_port_in(port, SCxRDR);
461 
462 	/* Dummy read */
463 	serial_port_in(port, SCxSR);
464 	serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
465 
466 	return c;
467 }
468 #endif
469 
470 static void sci_poll_put_char(struct uart_port *port, unsigned char c)
471 {
472 	unsigned short status;
473 
474 	do {
475 		status = serial_port_in(port, SCxSR);
476 	} while (!(status & SCxSR_TDxE(port)));
477 
478 	serial_port_out(port, SCxTDR, c);
479 	serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
480 }
481 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE */
482 
483 static void sci_init_pins(struct uart_port *port, unsigned int cflag)
484 {
485 	struct sci_port *s = to_sci_port(port);
486 	struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
487 
488 	/*
489 	 * Use port-specific handler if provided.
490 	 */
491 	if (s->cfg->ops && s->cfg->ops->init_pins) {
492 		s->cfg->ops->init_pins(port, cflag);
493 		return;
494 	}
495 
496 	/*
497 	 * For the generic path SCSPTR is necessary. Bail out if that's
498 	 * unavailable, too.
499 	 */
500 	if (!reg->size)
501 		return;
502 
503 	if ((s->cfg->capabilities & SCIx_HAVE_RTSCTS) &&
504 	    ((!(cflag & CRTSCTS)))) {
505 		unsigned short status;
506 
507 		status = serial_port_in(port, SCSPTR);
508 		status &= ~SCSPTR_CTSIO;
509 		status |= SCSPTR_RTSIO;
510 		serial_port_out(port, SCSPTR, status); /* Set RTS = 1 */
511 	}
512 }
513 
514 static int sci_txfill(struct uart_port *port)
515 {
516 	struct plat_sci_reg *reg;
517 
518 	reg = sci_getreg(port, SCTFDR);
519 	if (reg->size)
520 		return serial_port_in(port, SCTFDR) & ((port->fifosize << 1) - 1);
521 
522 	reg = sci_getreg(port, SCFDR);
523 	if (reg->size)
524 		return serial_port_in(port, SCFDR) >> 8;
525 
526 	return !(serial_port_in(port, SCxSR) & SCI_TDRE);
527 }
528 
529 static int sci_txroom(struct uart_port *port)
530 {
531 	return port->fifosize - sci_txfill(port);
532 }
533 
534 static int sci_rxfill(struct uart_port *port)
535 {
536 	struct plat_sci_reg *reg;
537 
538 	reg = sci_getreg(port, SCRFDR);
539 	if (reg->size)
540 		return serial_port_in(port, SCRFDR) & ((port->fifosize << 1) - 1);
541 
542 	reg = sci_getreg(port, SCFDR);
543 	if (reg->size)
544 		return serial_port_in(port, SCFDR) & ((port->fifosize << 1) - 1);
545 
546 	return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
547 }
548 
549 /*
550  * SCI helper for checking the state of the muxed port/RXD pins.
551  */
552 static inline int sci_rxd_in(struct uart_port *port)
553 {
554 	struct sci_port *s = to_sci_port(port);
555 
556 	if (s->cfg->port_reg <= 0)
557 		return 1;
558 
559 	/* Cast for ARM damage */
560 	return !!__raw_readb((void __iomem *)(uintptr_t)s->cfg->port_reg);
561 }
562 
563 /* ********************************************************************** *
564  *                   the interrupt related routines                       *
565  * ********************************************************************** */
566 
567 static void sci_transmit_chars(struct uart_port *port)
568 {
569 	struct circ_buf *xmit = &port->state->xmit;
570 	unsigned int stopped = uart_tx_stopped(port);
571 	unsigned short status;
572 	unsigned short ctrl;
573 	int count;
574 
575 	status = serial_port_in(port, SCxSR);
576 	if (!(status & SCxSR_TDxE(port))) {
577 		ctrl = serial_port_in(port, SCSCR);
578 		if (uart_circ_empty(xmit))
579 			ctrl &= ~SCSCR_TIE;
580 		else
581 			ctrl |= SCSCR_TIE;
582 		serial_port_out(port, SCSCR, ctrl);
583 		return;
584 	}
585 
586 	count = sci_txroom(port);
587 
588 	do {
589 		unsigned char c;
590 
591 		if (port->x_char) {
592 			c = port->x_char;
593 			port->x_char = 0;
594 		} else if (!uart_circ_empty(xmit) && !stopped) {
595 			c = xmit->buf[xmit->tail];
596 			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
597 		} else {
598 			break;
599 		}
600 
601 		serial_port_out(port, SCxTDR, c);
602 
603 		port->icount.tx++;
604 	} while (--count > 0);
605 
606 	serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
607 
608 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
609 		uart_write_wakeup(port);
610 	if (uart_circ_empty(xmit)) {
611 		sci_stop_tx(port);
612 	} else {
613 		ctrl = serial_port_in(port, SCSCR);
614 
615 		if (port->type != PORT_SCI) {
616 			serial_port_in(port, SCxSR); /* Dummy read */
617 			serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
618 		}
619 
620 		ctrl |= SCSCR_TIE;
621 		serial_port_out(port, SCSCR, ctrl);
622 	}
623 }
624 
625 /* On SH3, SCIF may read end-of-break as a space->mark char */
626 #define STEPFN(c)  ({int __c = (c); (((__c-1)|(__c)) == -1); })
627 
628 static void sci_receive_chars(struct uart_port *port)
629 {
630 	struct sci_port *sci_port = to_sci_port(port);
631 	struct tty_port *tport = &port->state->port;
632 	int i, count, copied = 0;
633 	unsigned short status;
634 	unsigned char flag;
635 
636 	status = serial_port_in(port, SCxSR);
637 	if (!(status & SCxSR_RDxF(port)))
638 		return;
639 
640 	while (1) {
641 		/* Don't copy more bytes than there is room for in the buffer */
642 		count = tty_buffer_request_room(tport, sci_rxfill(port));
643 
644 		/* If for any reason we can't copy more data, we're done! */
645 		if (count == 0)
646 			break;
647 
648 		if (port->type == PORT_SCI) {
649 			char c = serial_port_in(port, SCxRDR);
650 			if (uart_handle_sysrq_char(port, c) ||
651 			    sci_port->break_flag)
652 				count = 0;
653 			else
654 				tty_insert_flip_char(tport, c, TTY_NORMAL);
655 		} else {
656 			for (i = 0; i < count; i++) {
657 				char c = serial_port_in(port, SCxRDR);
658 
659 				status = serial_port_in(port, SCxSR);
660 #if defined(CONFIG_CPU_SH3)
661 				/* Skip "chars" during break */
662 				if (sci_port->break_flag) {
663 					if ((c == 0) &&
664 					    (status & SCxSR_FER(port))) {
665 						count--; i--;
666 						continue;
667 					}
668 
669 					/* Nonzero => end-of-break */
670 					dev_dbg(port->dev, "debounce<%02x>\n", c);
671 					sci_port->break_flag = 0;
672 
673 					if (STEPFN(c)) {
674 						count--; i--;
675 						continue;
676 					}
677 				}
678 #endif /* CONFIG_CPU_SH3 */
679 				if (uart_handle_sysrq_char(port, c)) {
680 					count--; i--;
681 					continue;
682 				}
683 
684 				/* Store data and status */
685 				if (status & SCxSR_FER(port)) {
686 					flag = TTY_FRAME;
687 					port->icount.frame++;
688 					dev_notice(port->dev, "frame error\n");
689 				} else if (status & SCxSR_PER(port)) {
690 					flag = TTY_PARITY;
691 					port->icount.parity++;
692 					dev_notice(port->dev, "parity error\n");
693 				} else
694 					flag = TTY_NORMAL;
695 
696 				tty_insert_flip_char(tport, c, flag);
697 			}
698 		}
699 
700 		serial_port_in(port, SCxSR); /* dummy read */
701 		serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
702 
703 		copied += count;
704 		port->icount.rx += count;
705 	}
706 
707 	if (copied) {
708 		/* Tell the rest of the system the news. New characters! */
709 		tty_flip_buffer_push(tport);
710 	} else {
711 		serial_port_in(port, SCxSR); /* dummy read */
712 		serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
713 	}
714 }
715 
716 #define SCI_BREAK_JIFFIES (HZ/20)
717 
718 /*
719  * The sci generates interrupts during the break,
720  * 1 per millisecond or so during the break period, for 9600 baud.
721  * So dont bother disabling interrupts.
722  * But dont want more than 1 break event.
723  * Use a kernel timer to periodically poll the rx line until
724  * the break is finished.
725  */
726 static inline void sci_schedule_break_timer(struct sci_port *port)
727 {
728 	mod_timer(&port->break_timer, jiffies + SCI_BREAK_JIFFIES);
729 }
730 
731 /* Ensure that two consecutive samples find the break over. */
732 static void sci_break_timer(unsigned long data)
733 {
734 	struct sci_port *port = (struct sci_port *)data;
735 
736 	sci_port_enable(port);
737 
738 	if (sci_rxd_in(&port->port) == 0) {
739 		port->break_flag = 1;
740 		sci_schedule_break_timer(port);
741 	} else if (port->break_flag == 1) {
742 		/* break is over. */
743 		port->break_flag = 2;
744 		sci_schedule_break_timer(port);
745 	} else
746 		port->break_flag = 0;
747 
748 	sci_port_disable(port);
749 }
750 
751 static int sci_handle_errors(struct uart_port *port)
752 {
753 	int copied = 0;
754 	unsigned short status = serial_port_in(port, SCxSR);
755 	struct tty_port *tport = &port->state->port;
756 	struct sci_port *s = to_sci_port(port);
757 
758 	/*
759 	 * Handle overruns, if supported.
760 	 */
761 	if (s->cfg->overrun_bit != SCIx_NOT_SUPPORTED) {
762 		if (status & (1 << s->cfg->overrun_bit)) {
763 			port->icount.overrun++;
764 
765 			/* overrun error */
766 			if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
767 				copied++;
768 
769 			dev_notice(port->dev, "overrun error");
770 		}
771 	}
772 
773 	if (status & SCxSR_FER(port)) {
774 		if (sci_rxd_in(port) == 0) {
775 			/* Notify of BREAK */
776 			struct sci_port *sci_port = to_sci_port(port);
777 
778 			if (!sci_port->break_flag) {
779 				port->icount.brk++;
780 
781 				sci_port->break_flag = 1;
782 				sci_schedule_break_timer(sci_port);
783 
784 				/* Do sysrq handling. */
785 				if (uart_handle_break(port))
786 					return 0;
787 
788 				dev_dbg(port->dev, "BREAK detected\n");
789 
790 				if (tty_insert_flip_char(tport, 0, TTY_BREAK))
791 					copied++;
792 			}
793 
794 		} else {
795 			/* frame error */
796 			port->icount.frame++;
797 
798 			if (tty_insert_flip_char(tport, 0, TTY_FRAME))
799 				copied++;
800 
801 			dev_notice(port->dev, "frame error\n");
802 		}
803 	}
804 
805 	if (status & SCxSR_PER(port)) {
806 		/* parity error */
807 		port->icount.parity++;
808 
809 		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
810 			copied++;
811 
812 		dev_notice(port->dev, "parity error");
813 	}
814 
815 	if (copied)
816 		tty_flip_buffer_push(tport);
817 
818 	return copied;
819 }
820 
821 static int sci_handle_fifo_overrun(struct uart_port *port)
822 {
823 	struct tty_port *tport = &port->state->port;
824 	struct sci_port *s = to_sci_port(port);
825 	struct plat_sci_reg *reg;
826 	int copied = 0;
827 
828 	reg = sci_getreg(port, SCLSR);
829 	if (!reg->size)
830 		return 0;
831 
832 	if ((serial_port_in(port, SCLSR) & (1 << s->cfg->overrun_bit))) {
833 		serial_port_out(port, SCLSR, 0);
834 
835 		port->icount.overrun++;
836 
837 		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
838 		tty_flip_buffer_push(tport);
839 
840 		dev_notice(port->dev, "overrun error\n");
841 		copied++;
842 	}
843 
844 	return copied;
845 }
846 
847 static int sci_handle_breaks(struct uart_port *port)
848 {
849 	int copied = 0;
850 	unsigned short status = serial_port_in(port, SCxSR);
851 	struct tty_port *tport = &port->state->port;
852 	struct sci_port *s = to_sci_port(port);
853 
854 	if (uart_handle_break(port))
855 		return 0;
856 
857 	if (!s->break_flag && status & SCxSR_BRK(port)) {
858 #if defined(CONFIG_CPU_SH3)
859 		/* Debounce break */
860 		s->break_flag = 1;
861 #endif
862 
863 		port->icount.brk++;
864 
865 		/* Notify of BREAK */
866 		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
867 			copied++;
868 
869 		dev_dbg(port->dev, "BREAK detected\n");
870 	}
871 
872 	if (copied)
873 		tty_flip_buffer_push(tport);
874 
875 	copied += sci_handle_fifo_overrun(port);
876 
877 	return copied;
878 }
879 
880 static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
881 {
882 #ifdef CONFIG_SERIAL_SH_SCI_DMA
883 	struct uart_port *port = ptr;
884 	struct sci_port *s = to_sci_port(port);
885 
886 	if (s->chan_rx) {
887 		u16 scr = serial_port_in(port, SCSCR);
888 		u16 ssr = serial_port_in(port, SCxSR);
889 
890 		/* Disable future Rx interrupts */
891 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
892 			disable_irq_nosync(irq);
893 			scr |= 0x4000;
894 		} else {
895 			scr &= ~SCSCR_RIE;
896 		}
897 		serial_port_out(port, SCSCR, scr);
898 		/* Clear current interrupt */
899 		serial_port_out(port, SCxSR, ssr & ~(1 | SCxSR_RDxF(port)));
900 		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n",
901 			jiffies, s->rx_timeout);
902 		mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
903 
904 		return IRQ_HANDLED;
905 	}
906 #endif
907 
908 	/* I think sci_receive_chars has to be called irrespective
909 	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
910 	 * to be disabled?
911 	 */
912 	sci_receive_chars(ptr);
913 
914 	return IRQ_HANDLED;
915 }
916 
917 static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
918 {
919 	struct uart_port *port = ptr;
920 	unsigned long flags;
921 
922 	spin_lock_irqsave(&port->lock, flags);
923 	sci_transmit_chars(port);
924 	spin_unlock_irqrestore(&port->lock, flags);
925 
926 	return IRQ_HANDLED;
927 }
928 
929 static irqreturn_t sci_er_interrupt(int irq, void *ptr)
930 {
931 	struct uart_port *port = ptr;
932 
933 	/* Handle errors */
934 	if (port->type == PORT_SCI) {
935 		if (sci_handle_errors(port)) {
936 			/* discard character in rx buffer */
937 			serial_port_in(port, SCxSR);
938 			serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
939 		}
940 	} else {
941 		sci_handle_fifo_overrun(port);
942 		sci_rx_interrupt(irq, ptr);
943 	}
944 
945 	serial_port_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
946 
947 	/* Kick the transmission */
948 	sci_tx_interrupt(irq, ptr);
949 
950 	return IRQ_HANDLED;
951 }
952 
953 static irqreturn_t sci_br_interrupt(int irq, void *ptr)
954 {
955 	struct uart_port *port = ptr;
956 
957 	/* Handle BREAKs */
958 	sci_handle_breaks(port);
959 	serial_port_out(port, SCxSR, SCxSR_BREAK_CLEAR(port));
960 
961 	return IRQ_HANDLED;
962 }
963 
964 static inline unsigned long port_rx_irq_mask(struct uart_port *port)
965 {
966 	/*
967 	 * Not all ports (such as SCIFA) will support REIE. Rather than
968 	 * special-casing the port type, we check the port initialization
969 	 * IRQ enable mask to see whether the IRQ is desired at all. If
970 	 * it's unset, it's logically inferred that there's no point in
971 	 * testing for it.
972 	 */
973 	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
974 }
975 
976 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
977 {
978 	unsigned short ssr_status, scr_status, err_enabled;
979 	struct uart_port *port = ptr;
980 	struct sci_port *s = to_sci_port(port);
981 	irqreturn_t ret = IRQ_NONE;
982 
983 	ssr_status = serial_port_in(port, SCxSR);
984 	scr_status = serial_port_in(port, SCSCR);
985 	err_enabled = scr_status & port_rx_irq_mask(port);
986 
987 	/* Tx Interrupt */
988 	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
989 	    !s->chan_tx)
990 		ret = sci_tx_interrupt(irq, ptr);
991 
992 	/*
993 	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
994 	 * DR flags
995 	 */
996 	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
997 	    (scr_status & SCSCR_RIE))
998 		ret = sci_rx_interrupt(irq, ptr);
999 
1000 	/* Error Interrupt */
1001 	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1002 		ret = sci_er_interrupt(irq, ptr);
1003 
1004 	/* Break Interrupt */
1005 	if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
1006 		ret = sci_br_interrupt(irq, ptr);
1007 
1008 	return ret;
1009 }
1010 
1011 /*
1012  * Here we define a transition notifier so that we can update all of our
1013  * ports' baud rate when the peripheral clock changes.
1014  */
1015 static int sci_notifier(struct notifier_block *self,
1016 			unsigned long phase, void *p)
1017 {
1018 	struct sci_port *sci_port;
1019 	unsigned long flags;
1020 
1021 	sci_port = container_of(self, struct sci_port, freq_transition);
1022 
1023 	if ((phase == CPUFREQ_POSTCHANGE) ||
1024 	    (phase == CPUFREQ_RESUMECHANGE)) {
1025 		struct uart_port *port = &sci_port->port;
1026 
1027 		spin_lock_irqsave(&port->lock, flags);
1028 		port->uartclk = clk_get_rate(sci_port->iclk);
1029 		spin_unlock_irqrestore(&port->lock, flags);
1030 	}
1031 
1032 	return NOTIFY_OK;
1033 }
1034 
1035 static struct sci_irq_desc {
1036 	const char	*desc;
1037 	irq_handler_t	handler;
1038 } sci_irq_desc[] = {
1039 	/*
1040 	 * Split out handlers, the default case.
1041 	 */
1042 	[SCIx_ERI_IRQ] = {
1043 		.desc = "rx err",
1044 		.handler = sci_er_interrupt,
1045 	},
1046 
1047 	[SCIx_RXI_IRQ] = {
1048 		.desc = "rx full",
1049 		.handler = sci_rx_interrupt,
1050 	},
1051 
1052 	[SCIx_TXI_IRQ] = {
1053 		.desc = "tx empty",
1054 		.handler = sci_tx_interrupt,
1055 	},
1056 
1057 	[SCIx_BRI_IRQ] = {
1058 		.desc = "break",
1059 		.handler = sci_br_interrupt,
1060 	},
1061 
1062 	/*
1063 	 * Special muxed handler.
1064 	 */
1065 	[SCIx_MUX_IRQ] = {
1066 		.desc = "mux",
1067 		.handler = sci_mpxed_interrupt,
1068 	},
1069 };
1070 
1071 static int sci_request_irq(struct sci_port *port)
1072 {
1073 	struct uart_port *up = &port->port;
1074 	int i, j, ret = 0;
1075 
1076 	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1077 		struct sci_irq_desc *desc;
1078 		unsigned int irq;
1079 
1080 		if (SCIx_IRQ_IS_MUXED(port)) {
1081 			i = SCIx_MUX_IRQ;
1082 			irq = up->irq;
1083 		} else {
1084 			irq = port->cfg->irqs[i];
1085 
1086 			/*
1087 			 * Certain port types won't support all of the
1088 			 * available interrupt sources.
1089 			 */
1090 			if (unlikely(!irq))
1091 				continue;
1092 		}
1093 
1094 		desc = sci_irq_desc + i;
1095 		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1096 					    dev_name(up->dev), desc->desc);
1097 		if (!port->irqstr[j]) {
1098 			dev_err(up->dev, "Failed to allocate %s IRQ string\n",
1099 				desc->desc);
1100 			goto out_nomem;
1101 		}
1102 
1103 		ret = request_irq(irq, desc->handler, up->irqflags,
1104 				  port->irqstr[j], port);
1105 		if (unlikely(ret)) {
1106 			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1107 			goto out_noirq;
1108 		}
1109 	}
1110 
1111 	return 0;
1112 
1113 out_noirq:
1114 	while (--i >= 0)
1115 		free_irq(port->cfg->irqs[i], port);
1116 
1117 out_nomem:
1118 	while (--j >= 0)
1119 		kfree(port->irqstr[j]);
1120 
1121 	return ret;
1122 }
1123 
1124 static void sci_free_irq(struct sci_port *port)
1125 {
1126 	int i;
1127 
1128 	/*
1129 	 * Intentionally in reverse order so we iterate over the muxed
1130 	 * IRQ first.
1131 	 */
1132 	for (i = 0; i < SCIx_NR_IRQS; i++) {
1133 		unsigned int irq = port->cfg->irqs[i];
1134 
1135 		/*
1136 		 * Certain port types won't support all of the available
1137 		 * interrupt sources.
1138 		 */
1139 		if (unlikely(!irq))
1140 			continue;
1141 
1142 		free_irq(port->cfg->irqs[i], port);
1143 		kfree(port->irqstr[i]);
1144 
1145 		if (SCIx_IRQ_IS_MUXED(port)) {
1146 			/* If there's only one IRQ, we're done. */
1147 			return;
1148 		}
1149 	}
1150 }
1151 
1152 static const char *sci_gpio_names[SCIx_NR_FNS] = {
1153 	"sck", "rxd", "txd", "cts", "rts",
1154 };
1155 
1156 static const char *sci_gpio_str(unsigned int index)
1157 {
1158 	return sci_gpio_names[index];
1159 }
1160 
1161 static void sci_init_gpios(struct sci_port *port)
1162 {
1163 	struct uart_port *up = &port->port;
1164 	int i;
1165 
1166 	if (!port->cfg)
1167 		return;
1168 
1169 	for (i = 0; i < SCIx_NR_FNS; i++) {
1170 		const char *desc;
1171 		int ret;
1172 
1173 		if (!port->cfg->gpios[i])
1174 			continue;
1175 
1176 		desc = sci_gpio_str(i);
1177 
1178 		port->gpiostr[i] = kasprintf(GFP_KERNEL, "%s:%s",
1179 					     dev_name(up->dev), desc);
1180 
1181 		/*
1182 		 * If we've failed the allocation, we can still continue
1183 		 * on with a NULL string.
1184 		 */
1185 		if (!port->gpiostr[i])
1186 			dev_notice(up->dev, "%s string allocation failure\n",
1187 				   desc);
1188 
1189 		ret = gpio_request(port->cfg->gpios[i], port->gpiostr[i]);
1190 		if (unlikely(ret != 0)) {
1191 			dev_notice(up->dev, "failed %s gpio request\n", desc);
1192 
1193 			/*
1194 			 * If we can't get the GPIO for whatever reason,
1195 			 * no point in keeping the verbose string around.
1196 			 */
1197 			kfree(port->gpiostr[i]);
1198 		}
1199 	}
1200 }
1201 
1202 static void sci_free_gpios(struct sci_port *port)
1203 {
1204 	int i;
1205 
1206 	for (i = 0; i < SCIx_NR_FNS; i++)
1207 		if (port->cfg->gpios[i]) {
1208 			gpio_free(port->cfg->gpios[i]);
1209 			kfree(port->gpiostr[i]);
1210 		}
1211 }
1212 
1213 static unsigned int sci_tx_empty(struct uart_port *port)
1214 {
1215 	unsigned short status = serial_port_in(port, SCxSR);
1216 	unsigned short in_tx_fifo = sci_txfill(port);
1217 
1218 	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1219 }
1220 
1221 /*
1222  * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
1223  * CTS/RTS is supported in hardware by at least one port and controlled
1224  * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
1225  * handled via the ->init_pins() op, which is a bit of a one-way street,
1226  * lacking any ability to defer pin control -- this will later be
1227  * converted over to the GPIO framework).
1228  *
1229  * Other modes (such as loopback) are supported generically on certain
1230  * port types, but not others. For these it's sufficient to test for the
1231  * existence of the support register and simply ignore the port type.
1232  */
1233 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
1234 {
1235 	if (mctrl & TIOCM_LOOP) {
1236 		struct plat_sci_reg *reg;
1237 
1238 		/*
1239 		 * Standard loopback mode for SCFCR ports.
1240 		 */
1241 		reg = sci_getreg(port, SCFCR);
1242 		if (reg->size)
1243 			serial_port_out(port, SCFCR, serial_port_in(port, SCFCR) | 1);
1244 	}
1245 }
1246 
1247 static unsigned int sci_get_mctrl(struct uart_port *port)
1248 {
1249 	/*
1250 	 * CTS/RTS is handled in hardware when supported, while nothing
1251 	 * else is wired up. Keep it simple and simply assert DSR/CAR.
1252 	 */
1253 	return TIOCM_DSR | TIOCM_CAR;
1254 }
1255 
1256 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1257 static void sci_dma_tx_complete(void *arg)
1258 {
1259 	struct sci_port *s = arg;
1260 	struct uart_port *port = &s->port;
1261 	struct circ_buf *xmit = &port->state->xmit;
1262 	unsigned long flags;
1263 
1264 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1265 
1266 	spin_lock_irqsave(&port->lock, flags);
1267 
1268 	xmit->tail += sg_dma_len(&s->sg_tx);
1269 	xmit->tail &= UART_XMIT_SIZE - 1;
1270 
1271 	port->icount.tx += sg_dma_len(&s->sg_tx);
1272 
1273 	async_tx_ack(s->desc_tx);
1274 	s->desc_tx = NULL;
1275 
1276 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1277 		uart_write_wakeup(port);
1278 
1279 	if (!uart_circ_empty(xmit)) {
1280 		s->cookie_tx = 0;
1281 		schedule_work(&s->work_tx);
1282 	} else {
1283 		s->cookie_tx = -EINVAL;
1284 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1285 			u16 ctrl = serial_port_in(port, SCSCR);
1286 			serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1287 		}
1288 	}
1289 
1290 	spin_unlock_irqrestore(&port->lock, flags);
1291 }
1292 
1293 /* Locking: called with port lock held */
1294 static int sci_dma_rx_push(struct sci_port *s, size_t count)
1295 {
1296 	struct uart_port *port = &s->port;
1297 	struct tty_port *tport = &port->state->port;
1298 	int i, active, room;
1299 
1300 	room = tty_buffer_request_room(tport, count);
1301 
1302 	if (s->active_rx == s->cookie_rx[0]) {
1303 		active = 0;
1304 	} else if (s->active_rx == s->cookie_rx[1]) {
1305 		active = 1;
1306 	} else {
1307 		dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
1308 		return 0;
1309 	}
1310 
1311 	if (room < count)
1312 		dev_warn(port->dev, "Rx overrun: dropping %zu bytes\n",
1313 			 count - room);
1314 	if (!room)
1315 		return room;
1316 
1317 	for (i = 0; i < room; i++)
1318 		tty_insert_flip_char(tport, ((u8 *)sg_virt(&s->sg_rx[active]))[i],
1319 				     TTY_NORMAL);
1320 
1321 	port->icount.rx += room;
1322 
1323 	return room;
1324 }
1325 
1326 static void sci_dma_rx_complete(void *arg)
1327 {
1328 	struct sci_port *s = arg;
1329 	struct uart_port *port = &s->port;
1330 	unsigned long flags;
1331 	int count;
1332 
1333 	dev_dbg(port->dev, "%s(%d) active #%d\n", __func__, port->line, s->active_rx);
1334 
1335 	spin_lock_irqsave(&port->lock, flags);
1336 
1337 	count = sci_dma_rx_push(s, s->buf_len_rx);
1338 
1339 	mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1340 
1341 	spin_unlock_irqrestore(&port->lock, flags);
1342 
1343 	if (count)
1344 		tty_flip_buffer_push(&port->state->port);
1345 
1346 	schedule_work(&s->work_rx);
1347 }
1348 
1349 static void sci_rx_dma_release(struct sci_port *s, bool enable_pio)
1350 {
1351 	struct dma_chan *chan = s->chan_rx;
1352 	struct uart_port *port = &s->port;
1353 
1354 	s->chan_rx = NULL;
1355 	s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL;
1356 	dma_release_channel(chan);
1357 	if (sg_dma_address(&s->sg_rx[0]))
1358 		dma_free_coherent(port->dev, s->buf_len_rx * 2,
1359 				  sg_virt(&s->sg_rx[0]), sg_dma_address(&s->sg_rx[0]));
1360 	if (enable_pio)
1361 		sci_start_rx(port);
1362 }
1363 
1364 static void sci_tx_dma_release(struct sci_port *s, bool enable_pio)
1365 {
1366 	struct dma_chan *chan = s->chan_tx;
1367 	struct uart_port *port = &s->port;
1368 
1369 	s->chan_tx = NULL;
1370 	s->cookie_tx = -EINVAL;
1371 	dma_release_channel(chan);
1372 	if (enable_pio)
1373 		sci_start_tx(port);
1374 }
1375 
1376 static void sci_submit_rx(struct sci_port *s)
1377 {
1378 	struct dma_chan *chan = s->chan_rx;
1379 	int i;
1380 
1381 	for (i = 0; i < 2; i++) {
1382 		struct scatterlist *sg = &s->sg_rx[i];
1383 		struct dma_async_tx_descriptor *desc;
1384 
1385 		desc = dmaengine_prep_slave_sg(chan,
1386 			sg, 1, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
1387 
1388 		if (desc) {
1389 			s->desc_rx[i] = desc;
1390 			desc->callback = sci_dma_rx_complete;
1391 			desc->callback_param = s;
1392 			s->cookie_rx[i] = desc->tx_submit(desc);
1393 		}
1394 
1395 		if (!desc || s->cookie_rx[i] < 0) {
1396 			if (i) {
1397 				async_tx_ack(s->desc_rx[0]);
1398 				s->cookie_rx[0] = -EINVAL;
1399 			}
1400 			if (desc) {
1401 				async_tx_ack(desc);
1402 				s->cookie_rx[i] = -EINVAL;
1403 			}
1404 			dev_warn(s->port.dev,
1405 				 "failed to re-start DMA, using PIO\n");
1406 			sci_rx_dma_release(s, true);
1407 			return;
1408 		}
1409 		dev_dbg(s->port.dev, "%s(): cookie %d to #%d\n", __func__,
1410 			s->cookie_rx[i], i);
1411 	}
1412 
1413 	s->active_rx = s->cookie_rx[0];
1414 
1415 	dma_async_issue_pending(chan);
1416 }
1417 
1418 static void work_fn_rx(struct work_struct *work)
1419 {
1420 	struct sci_port *s = container_of(work, struct sci_port, work_rx);
1421 	struct uart_port *port = &s->port;
1422 	struct dma_async_tx_descriptor *desc;
1423 	int new;
1424 
1425 	if (s->active_rx == s->cookie_rx[0]) {
1426 		new = 0;
1427 	} else if (s->active_rx == s->cookie_rx[1]) {
1428 		new = 1;
1429 	} else {
1430 		dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
1431 		return;
1432 	}
1433 	desc = s->desc_rx[new];
1434 
1435 	if (dma_async_is_tx_complete(s->chan_rx, s->active_rx, NULL, NULL) !=
1436 	    DMA_COMPLETE) {
1437 		/* Handle incomplete DMA receive */
1438 		struct dma_chan *chan = s->chan_rx;
1439 		struct shdma_desc *sh_desc = container_of(desc,
1440 					struct shdma_desc, async_tx);
1441 		unsigned long flags;
1442 		int count;
1443 
1444 		chan->device->device_control(chan, DMA_TERMINATE_ALL, 0);
1445 		dev_dbg(port->dev, "Read %zu bytes with cookie %d\n",
1446 			sh_desc->partial, sh_desc->cookie);
1447 
1448 		spin_lock_irqsave(&port->lock, flags);
1449 		count = sci_dma_rx_push(s, sh_desc->partial);
1450 		spin_unlock_irqrestore(&port->lock, flags);
1451 
1452 		if (count)
1453 			tty_flip_buffer_push(&port->state->port);
1454 
1455 		sci_submit_rx(s);
1456 
1457 		return;
1458 	}
1459 
1460 	s->cookie_rx[new] = desc->tx_submit(desc);
1461 	if (s->cookie_rx[new] < 0) {
1462 		dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1463 		sci_rx_dma_release(s, true);
1464 		return;
1465 	}
1466 
1467 	s->active_rx = s->cookie_rx[!new];
1468 
1469 	dev_dbg(port->dev, "%s: cookie %d #%d, new active #%d\n", __func__,
1470 		s->cookie_rx[new], new, s->active_rx);
1471 }
1472 
1473 static void work_fn_tx(struct work_struct *work)
1474 {
1475 	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1476 	struct dma_async_tx_descriptor *desc;
1477 	struct dma_chan *chan = s->chan_tx;
1478 	struct uart_port *port = &s->port;
1479 	struct circ_buf *xmit = &port->state->xmit;
1480 	struct scatterlist *sg = &s->sg_tx;
1481 
1482 	/*
1483 	 * DMA is idle now.
1484 	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1485 	 * offsets and lengths. Since it is a circular buffer, we have to
1486 	 * transmit till the end, and then the rest. Take the port lock to get a
1487 	 * consistent xmit buffer state.
1488 	 */
1489 	spin_lock_irq(&port->lock);
1490 	sg->offset = xmit->tail & (UART_XMIT_SIZE - 1);
1491 	sg_dma_address(sg) = (sg_dma_address(sg) & ~(UART_XMIT_SIZE - 1)) +
1492 		sg->offset;
1493 	sg_dma_len(sg) = min((int)CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
1494 		CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
1495 	spin_unlock_irq(&port->lock);
1496 
1497 	BUG_ON(!sg_dma_len(sg));
1498 
1499 	desc = dmaengine_prep_slave_sg(chan,
1500 			sg, s->sg_len_tx, DMA_MEM_TO_DEV,
1501 			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1502 	if (!desc) {
1503 		/* switch to PIO */
1504 		sci_tx_dma_release(s, true);
1505 		return;
1506 	}
1507 
1508 	dma_sync_sg_for_device(port->dev, sg, 1, DMA_TO_DEVICE);
1509 
1510 	spin_lock_irq(&port->lock);
1511 	s->desc_tx = desc;
1512 	desc->callback = sci_dma_tx_complete;
1513 	desc->callback_param = s;
1514 	spin_unlock_irq(&port->lock);
1515 	s->cookie_tx = desc->tx_submit(desc);
1516 	if (s->cookie_tx < 0) {
1517 		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1518 		/* switch to PIO */
1519 		sci_tx_dma_release(s, true);
1520 		return;
1521 	}
1522 
1523 	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n", __func__,
1524 		xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
1525 
1526 	dma_async_issue_pending(chan);
1527 }
1528 #endif
1529 
1530 static void sci_start_tx(struct uart_port *port)
1531 {
1532 	struct sci_port *s = to_sci_port(port);
1533 	unsigned short ctrl;
1534 
1535 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1536 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1537 		u16 new, scr = serial_port_in(port, SCSCR);
1538 		if (s->chan_tx)
1539 			new = scr | 0x8000;
1540 		else
1541 			new = scr & ~0x8000;
1542 		if (new != scr)
1543 			serial_port_out(port, SCSCR, new);
1544 	}
1545 
1546 	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
1547 	    s->cookie_tx < 0) {
1548 		s->cookie_tx = 0;
1549 		schedule_work(&s->work_tx);
1550 	}
1551 #endif
1552 
1553 	if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1554 		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
1555 		ctrl = serial_port_in(port, SCSCR);
1556 		serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
1557 	}
1558 }
1559 
1560 static void sci_stop_tx(struct uart_port *port)
1561 {
1562 	unsigned short ctrl;
1563 
1564 	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
1565 	ctrl = serial_port_in(port, SCSCR);
1566 
1567 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1568 		ctrl &= ~0x8000;
1569 
1570 	ctrl &= ~SCSCR_TIE;
1571 
1572 	serial_port_out(port, SCSCR, ctrl);
1573 }
1574 
1575 static void sci_start_rx(struct uart_port *port)
1576 {
1577 	unsigned short ctrl;
1578 
1579 	ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
1580 
1581 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1582 		ctrl &= ~0x4000;
1583 
1584 	serial_port_out(port, SCSCR, ctrl);
1585 }
1586 
1587 static void sci_stop_rx(struct uart_port *port)
1588 {
1589 	unsigned short ctrl;
1590 
1591 	ctrl = serial_port_in(port, SCSCR);
1592 
1593 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1594 		ctrl &= ~0x4000;
1595 
1596 	ctrl &= ~port_rx_irq_mask(port);
1597 
1598 	serial_port_out(port, SCSCR, ctrl);
1599 }
1600 
1601 static void sci_enable_ms(struct uart_port *port)
1602 {
1603 	/*
1604 	 * Not supported by hardware, always a nop.
1605 	 */
1606 }
1607 
1608 static void sci_break_ctl(struct uart_port *port, int break_state)
1609 {
1610 	struct sci_port *s = to_sci_port(port);
1611 	struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
1612 	unsigned short scscr, scsptr;
1613 
1614 	/* check wheter the port has SCSPTR */
1615 	if (!reg->size) {
1616 		/*
1617 		 * Not supported by hardware. Most parts couple break and rx
1618 		 * interrupts together, with break detection always enabled.
1619 		 */
1620 		return;
1621 	}
1622 
1623 	scsptr = serial_port_in(port, SCSPTR);
1624 	scscr = serial_port_in(port, SCSCR);
1625 
1626 	if (break_state == -1) {
1627 		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
1628 		scscr &= ~SCSCR_TE;
1629 	} else {
1630 		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
1631 		scscr |= SCSCR_TE;
1632 	}
1633 
1634 	serial_port_out(port, SCSPTR, scsptr);
1635 	serial_port_out(port, SCSCR, scscr);
1636 }
1637 
1638 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1639 static bool filter(struct dma_chan *chan, void *slave)
1640 {
1641 	struct sh_dmae_slave *param = slave;
1642 
1643 	dev_dbg(chan->device->dev, "%s: slave ID %d\n", __func__,
1644 		param->shdma_slave.slave_id);
1645 
1646 	chan->private = &param->shdma_slave;
1647 	return true;
1648 }
1649 
1650 static void rx_timer_fn(unsigned long arg)
1651 {
1652 	struct sci_port *s = (struct sci_port *)arg;
1653 	struct uart_port *port = &s->port;
1654 	u16 scr = serial_port_in(port, SCSCR);
1655 
1656 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1657 		scr &= ~0x4000;
1658 		enable_irq(s->cfg->irqs[1]);
1659 	}
1660 	serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1661 	dev_dbg(port->dev, "DMA Rx timed out\n");
1662 	schedule_work(&s->work_rx);
1663 }
1664 
1665 static void sci_request_dma(struct uart_port *port)
1666 {
1667 	struct sci_port *s = to_sci_port(port);
1668 	struct sh_dmae_slave *param;
1669 	struct dma_chan *chan;
1670 	dma_cap_mask_t mask;
1671 	int nent;
1672 
1673 	dev_dbg(port->dev, "%s: port %d\n", __func__,
1674 		port->line);
1675 
1676 	if (s->cfg->dma_slave_tx <= 0 || s->cfg->dma_slave_rx <= 0)
1677 		return;
1678 
1679 	dma_cap_zero(mask);
1680 	dma_cap_set(DMA_SLAVE, mask);
1681 
1682 	param = &s->param_tx;
1683 
1684 	/* Slave ID, e.g., SHDMA_SLAVE_SCIF0_TX */
1685 	param->shdma_slave.slave_id = s->cfg->dma_slave_tx;
1686 
1687 	s->cookie_tx = -EINVAL;
1688 	chan = dma_request_channel(mask, filter, param);
1689 	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1690 	if (chan) {
1691 		s->chan_tx = chan;
1692 		sg_init_table(&s->sg_tx, 1);
1693 		/* UART circular tx buffer is an aligned page. */
1694 		BUG_ON((uintptr_t)port->state->xmit.buf & ~PAGE_MASK);
1695 		sg_set_page(&s->sg_tx, virt_to_page(port->state->xmit.buf),
1696 			    UART_XMIT_SIZE,
1697 			    (uintptr_t)port->state->xmit.buf & ~PAGE_MASK);
1698 		nent = dma_map_sg(port->dev, &s->sg_tx, 1, DMA_TO_DEVICE);
1699 		if (!nent)
1700 			sci_tx_dma_release(s, false);
1701 		else
1702 			dev_dbg(port->dev, "%s: mapped %d@%p to %pad\n", __func__,
1703 				sg_dma_len(&s->sg_tx), port->state->xmit.buf,
1704 				&sg_dma_address(&s->sg_tx));
1705 
1706 		s->sg_len_tx = nent;
1707 
1708 		INIT_WORK(&s->work_tx, work_fn_tx);
1709 	}
1710 
1711 	param = &s->param_rx;
1712 
1713 	/* Slave ID, e.g., SHDMA_SLAVE_SCIF0_RX */
1714 	param->shdma_slave.slave_id = s->cfg->dma_slave_rx;
1715 
1716 	chan = dma_request_channel(mask, filter, param);
1717 	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1718 	if (chan) {
1719 		dma_addr_t dma[2];
1720 		void *buf[2];
1721 		int i;
1722 
1723 		s->chan_rx = chan;
1724 
1725 		s->buf_len_rx = 2 * max(16, (int)port->fifosize);
1726 		buf[0] = dma_alloc_coherent(port->dev, s->buf_len_rx * 2,
1727 					    &dma[0], GFP_KERNEL);
1728 
1729 		if (!buf[0]) {
1730 			dev_warn(port->dev,
1731 				 "failed to allocate dma buffer, using PIO\n");
1732 			sci_rx_dma_release(s, true);
1733 			return;
1734 		}
1735 
1736 		buf[1] = buf[0] + s->buf_len_rx;
1737 		dma[1] = dma[0] + s->buf_len_rx;
1738 
1739 		for (i = 0; i < 2; i++) {
1740 			struct scatterlist *sg = &s->sg_rx[i];
1741 
1742 			sg_init_table(sg, 1);
1743 			sg_set_page(sg, virt_to_page(buf[i]), s->buf_len_rx,
1744 				    (uintptr_t)buf[i] & ~PAGE_MASK);
1745 			sg_dma_address(sg) = dma[i];
1746 		}
1747 
1748 		INIT_WORK(&s->work_rx, work_fn_rx);
1749 		setup_timer(&s->rx_timer, rx_timer_fn, (unsigned long)s);
1750 
1751 		sci_submit_rx(s);
1752 	}
1753 }
1754 
1755 static void sci_free_dma(struct uart_port *port)
1756 {
1757 	struct sci_port *s = to_sci_port(port);
1758 
1759 	if (s->chan_tx)
1760 		sci_tx_dma_release(s, false);
1761 	if (s->chan_rx)
1762 		sci_rx_dma_release(s, false);
1763 }
1764 #else
1765 static inline void sci_request_dma(struct uart_port *port)
1766 {
1767 }
1768 
1769 static inline void sci_free_dma(struct uart_port *port)
1770 {
1771 }
1772 #endif
1773 
1774 static int sci_startup(struct uart_port *port)
1775 {
1776 	struct sci_port *s = to_sci_port(port);
1777 	unsigned long flags;
1778 	int ret;
1779 
1780 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1781 
1782 	ret = sci_request_irq(s);
1783 	if (unlikely(ret < 0))
1784 		return ret;
1785 
1786 	sci_request_dma(port);
1787 
1788 	spin_lock_irqsave(&port->lock, flags);
1789 	sci_start_tx(port);
1790 	sci_start_rx(port);
1791 	spin_unlock_irqrestore(&port->lock, flags);
1792 
1793 	return 0;
1794 }
1795 
1796 static void sci_shutdown(struct uart_port *port)
1797 {
1798 	struct sci_port *s = to_sci_port(port);
1799 	unsigned long flags;
1800 
1801 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1802 
1803 	spin_lock_irqsave(&port->lock, flags);
1804 	sci_stop_rx(port);
1805 	sci_stop_tx(port);
1806 	spin_unlock_irqrestore(&port->lock, flags);
1807 
1808 	sci_free_dma(port);
1809 	sci_free_irq(s);
1810 }
1811 
1812 static unsigned int sci_scbrr_calc(unsigned int algo_id, unsigned int bps,
1813 				   unsigned long freq)
1814 {
1815 	switch (algo_id) {
1816 	case SCBRR_ALGO_1:
1817 		return ((freq + 16 * bps) / (16 * bps) - 1);
1818 	case SCBRR_ALGO_2:
1819 		return ((freq + 16 * bps) / (32 * bps) - 1);
1820 	case SCBRR_ALGO_3:
1821 		return (((freq * 2) + 16 * bps) / (16 * bps) - 1);
1822 	case SCBRR_ALGO_4:
1823 		return (((freq * 2) + 16 * bps) / (32 * bps) - 1);
1824 	case SCBRR_ALGO_5:
1825 		return (((freq * 1000 / 32) / bps) - 1);
1826 	}
1827 
1828 	/* Warn, but use a safe default */
1829 	WARN_ON(1);
1830 
1831 	return ((freq + 16 * bps) / (32 * bps) - 1);
1832 }
1833 
1834 /* calculate sample rate, BRR, and clock select for HSCIF */
1835 static void sci_baud_calc_hscif(unsigned int bps, unsigned long freq,
1836 				int *brr, unsigned int *srr,
1837 				unsigned int *cks)
1838 {
1839 	int sr, c, br, err;
1840 	int min_err = 1000; /* 100% */
1841 
1842 	/* Find the combination of sample rate and clock select with the
1843 	   smallest deviation from the desired baud rate. */
1844 	for (sr = 8; sr <= 32; sr++) {
1845 		for (c = 0; c <= 3; c++) {
1846 			/* integerized formulas from HSCIF documentation */
1847 			br = freq / (sr * (1 << (2 * c + 1)) * bps) - 1;
1848 			if (br < 0 || br > 255)
1849 				continue;
1850 			err = freq / ((br + 1) * bps * sr *
1851 			      (1 << (2 * c + 1)) / 1000) - 1000;
1852 			if (min_err > err) {
1853 				min_err = err;
1854 				*brr = br;
1855 				*srr = sr - 1;
1856 				*cks = c;
1857 			}
1858 		}
1859 	}
1860 
1861 	if (min_err == 1000) {
1862 		WARN_ON(1);
1863 		/* use defaults */
1864 		*brr = 255;
1865 		*srr = 15;
1866 		*cks = 0;
1867 	}
1868 }
1869 
1870 static void sci_reset(struct uart_port *port)
1871 {
1872 	struct plat_sci_reg *reg;
1873 	unsigned int status;
1874 
1875 	do {
1876 		status = serial_port_in(port, SCxSR);
1877 	} while (!(status & SCxSR_TEND(port)));
1878 
1879 	serial_port_out(port, SCSCR, 0x00);	/* TE=0, RE=0, CKE1=0 */
1880 
1881 	reg = sci_getreg(port, SCFCR);
1882 	if (reg->size)
1883 		serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
1884 }
1885 
1886 static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
1887 			    struct ktermios *old)
1888 {
1889 	struct sci_port *s = to_sci_port(port);
1890 	struct plat_sci_reg *reg;
1891 	unsigned int baud, smr_val, max_baud, cks = 0;
1892 	int t = -1;
1893 	unsigned int srr = 15;
1894 
1895 	/*
1896 	 * earlyprintk comes here early on with port->uartclk set to zero.
1897 	 * the clock framework is not up and running at this point so here
1898 	 * we assume that 115200 is the maximum baud rate. please note that
1899 	 * the baud rate is not programmed during earlyprintk - it is assumed
1900 	 * that the previous boot loader has enabled required clocks and
1901 	 * setup the baud rate generator hardware for us already.
1902 	 */
1903 	max_baud = port->uartclk ? port->uartclk / 16 : 115200;
1904 
1905 	baud = uart_get_baud_rate(port, termios, old, 0, max_baud);
1906 	if (likely(baud && port->uartclk)) {
1907 		if (s->cfg->scbrr_algo_id == SCBRR_ALGO_6) {
1908 			sci_baud_calc_hscif(baud, port->uartclk, &t, &srr,
1909 					    &cks);
1910 		} else {
1911 			t = sci_scbrr_calc(s->cfg->scbrr_algo_id, baud,
1912 					   port->uartclk);
1913 			for (cks = 0; t >= 256 && cks <= 3; cks++)
1914 				t >>= 2;
1915 		}
1916 	}
1917 
1918 	sci_port_enable(s);
1919 
1920 	sci_reset(port);
1921 
1922 	smr_val = serial_port_in(port, SCSMR) & 3;
1923 
1924 	if ((termios->c_cflag & CSIZE) == CS7)
1925 		smr_val |= 0x40;
1926 	if (termios->c_cflag & PARENB)
1927 		smr_val |= 0x20;
1928 	if (termios->c_cflag & PARODD)
1929 		smr_val |= 0x30;
1930 	if (termios->c_cflag & CSTOPB)
1931 		smr_val |= 0x08;
1932 
1933 	uart_update_timeout(port, termios->c_cflag, baud);
1934 
1935 	dev_dbg(port->dev, "%s: SMR %x, cks %x, t %x, SCSCR %x\n",
1936 		__func__, smr_val, cks, t, s->cfg->scscr);
1937 
1938 	if (t >= 0) {
1939 		serial_port_out(port, SCSMR, (smr_val & ~3) | cks);
1940 		serial_port_out(port, SCBRR, t);
1941 		reg = sci_getreg(port, HSSRR);
1942 		if (reg->size)
1943 			serial_port_out(port, HSSRR, srr | HSCIF_SRE);
1944 		udelay((1000000+(baud-1)) / baud); /* Wait one bit interval */
1945 	} else
1946 		serial_port_out(port, SCSMR, smr_val);
1947 
1948 	sci_init_pins(port, termios->c_cflag);
1949 
1950 	reg = sci_getreg(port, SCFCR);
1951 	if (reg->size) {
1952 		unsigned short ctrl = serial_port_in(port, SCFCR);
1953 
1954 		if (s->cfg->capabilities & SCIx_HAVE_RTSCTS) {
1955 			if (termios->c_cflag & CRTSCTS)
1956 				ctrl |= SCFCR_MCE;
1957 			else
1958 				ctrl &= ~SCFCR_MCE;
1959 		}
1960 
1961 		/*
1962 		 * As we've done a sci_reset() above, ensure we don't
1963 		 * interfere with the FIFOs while toggling MCE. As the
1964 		 * reset values could still be set, simply mask them out.
1965 		 */
1966 		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
1967 
1968 		serial_port_out(port, SCFCR, ctrl);
1969 	}
1970 
1971 	serial_port_out(port, SCSCR, s->cfg->scscr);
1972 
1973 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1974 	/*
1975 	 * Calculate delay for 1.5 DMA buffers: see
1976 	 * drivers/serial/serial_core.c::uart_update_timeout(). With 10 bits
1977 	 * (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above function
1978 	 * calculates 1 jiffie for the data plus 5 jiffies for the "slop(e)."
1979 	 * Then below we calculate 3 jiffies (12ms) for 1.5 DMA buffers (3 FIFO
1980 	 * sizes), but it has been found out experimentally, that this is not
1981 	 * enough: the driver too often needlessly runs on a DMA timeout. 20ms
1982 	 * as a minimum seem to work perfectly.
1983 	 */
1984 	if (s->chan_rx) {
1985 		s->rx_timeout = (port->timeout - HZ / 50) * s->buf_len_rx * 3 /
1986 			port->fifosize / 2;
1987 		dev_dbg(port->dev,
1988 			"DMA Rx t-out %ums, tty t-out %u jiffies\n",
1989 			s->rx_timeout * 1000 / HZ, port->timeout);
1990 		if (s->rx_timeout < msecs_to_jiffies(20))
1991 			s->rx_timeout = msecs_to_jiffies(20);
1992 	}
1993 #endif
1994 
1995 	if ((termios->c_cflag & CREAD) != 0)
1996 		sci_start_rx(port);
1997 
1998 	sci_port_disable(s);
1999 }
2000 
2001 static void sci_pm(struct uart_port *port, unsigned int state,
2002 		   unsigned int oldstate)
2003 {
2004 	struct sci_port *sci_port = to_sci_port(port);
2005 
2006 	switch (state) {
2007 	case 3:
2008 		sci_port_disable(sci_port);
2009 		break;
2010 	default:
2011 		sci_port_enable(sci_port);
2012 		break;
2013 	}
2014 }
2015 
2016 static const char *sci_type(struct uart_port *port)
2017 {
2018 	switch (port->type) {
2019 	case PORT_IRDA:
2020 		return "irda";
2021 	case PORT_SCI:
2022 		return "sci";
2023 	case PORT_SCIF:
2024 		return "scif";
2025 	case PORT_SCIFA:
2026 		return "scifa";
2027 	case PORT_SCIFB:
2028 		return "scifb";
2029 	case PORT_HSCIF:
2030 		return "hscif";
2031 	}
2032 
2033 	return NULL;
2034 }
2035 
2036 static inline unsigned long sci_port_size(struct uart_port *port)
2037 {
2038 	/*
2039 	 * Pick an arbitrary size that encapsulates all of the base
2040 	 * registers by default. This can be optimized later, or derived
2041 	 * from platform resource data at such a time that ports begin to
2042 	 * behave more erratically.
2043 	 */
2044 	if (port->type == PORT_HSCIF)
2045 		return 96;
2046 	else
2047 		return 64;
2048 }
2049 
2050 static int sci_remap_port(struct uart_port *port)
2051 {
2052 	unsigned long size = sci_port_size(port);
2053 
2054 	/*
2055 	 * Nothing to do if there's already an established membase.
2056 	 */
2057 	if (port->membase)
2058 		return 0;
2059 
2060 	if (port->flags & UPF_IOREMAP) {
2061 		port->membase = ioremap_nocache(port->mapbase, size);
2062 		if (unlikely(!port->membase)) {
2063 			dev_err(port->dev, "can't remap port#%d\n", port->line);
2064 			return -ENXIO;
2065 		}
2066 	} else {
2067 		/*
2068 		 * For the simple (and majority of) cases where we don't
2069 		 * need to do any remapping, just cast the cookie
2070 		 * directly.
2071 		 */
2072 		port->membase = (void __iomem *)port->mapbase;
2073 	}
2074 
2075 	return 0;
2076 }
2077 
2078 static void sci_release_port(struct uart_port *port)
2079 {
2080 	if (port->flags & UPF_IOREMAP) {
2081 		iounmap(port->membase);
2082 		port->membase = NULL;
2083 	}
2084 
2085 	release_mem_region(port->mapbase, sci_port_size(port));
2086 }
2087 
2088 static int sci_request_port(struct uart_port *port)
2089 {
2090 	unsigned long size = sci_port_size(port);
2091 	struct resource *res;
2092 	int ret;
2093 
2094 	res = request_mem_region(port->mapbase, size, dev_name(port->dev));
2095 	if (unlikely(res == NULL))
2096 		return -EBUSY;
2097 
2098 	ret = sci_remap_port(port);
2099 	if (unlikely(ret != 0)) {
2100 		release_resource(res);
2101 		return ret;
2102 	}
2103 
2104 	return 0;
2105 }
2106 
2107 static void sci_config_port(struct uart_port *port, int flags)
2108 {
2109 	if (flags & UART_CONFIG_TYPE) {
2110 		struct sci_port *sport = to_sci_port(port);
2111 
2112 		port->type = sport->cfg->type;
2113 		sci_request_port(port);
2114 	}
2115 }
2116 
2117 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2118 {
2119 	struct sci_port *s = to_sci_port(port);
2120 
2121 	if (ser->irq != s->cfg->irqs[SCIx_TXI_IRQ] || ser->irq > nr_irqs)
2122 		return -EINVAL;
2123 	if (ser->baud_base < 2400)
2124 		/* No paper tape reader for Mitch.. */
2125 		return -EINVAL;
2126 
2127 	return 0;
2128 }
2129 
2130 static struct uart_ops sci_uart_ops = {
2131 	.tx_empty	= sci_tx_empty,
2132 	.set_mctrl	= sci_set_mctrl,
2133 	.get_mctrl	= sci_get_mctrl,
2134 	.start_tx	= sci_start_tx,
2135 	.stop_tx	= sci_stop_tx,
2136 	.stop_rx	= sci_stop_rx,
2137 	.enable_ms	= sci_enable_ms,
2138 	.break_ctl	= sci_break_ctl,
2139 	.startup	= sci_startup,
2140 	.shutdown	= sci_shutdown,
2141 	.set_termios	= sci_set_termios,
2142 	.pm		= sci_pm,
2143 	.type		= sci_type,
2144 	.release_port	= sci_release_port,
2145 	.request_port	= sci_request_port,
2146 	.config_port	= sci_config_port,
2147 	.verify_port	= sci_verify_port,
2148 #ifdef CONFIG_CONSOLE_POLL
2149 	.poll_get_char	= sci_poll_get_char,
2150 	.poll_put_char	= sci_poll_put_char,
2151 #endif
2152 };
2153 
2154 static int sci_init_single(struct platform_device *dev,
2155 				     struct sci_port *sci_port,
2156 				     unsigned int index,
2157 				     struct plat_sci_port *p)
2158 {
2159 	struct uart_port *port = &sci_port->port;
2160 	int ret;
2161 
2162 	sci_port->cfg	= p;
2163 
2164 	port->ops	= &sci_uart_ops;
2165 	port->iotype	= UPIO_MEM;
2166 	port->line	= index;
2167 
2168 	switch (p->type) {
2169 	case PORT_SCIFB:
2170 		port->fifosize = 256;
2171 		break;
2172 	case PORT_HSCIF:
2173 		port->fifosize = 128;
2174 		break;
2175 	case PORT_SCIFA:
2176 		port->fifosize = 64;
2177 		break;
2178 	case PORT_SCIF:
2179 		port->fifosize = 16;
2180 		break;
2181 	default:
2182 		port->fifosize = 1;
2183 		break;
2184 	}
2185 
2186 	if (p->regtype == SCIx_PROBE_REGTYPE) {
2187 		ret = sci_probe_regmap(p);
2188 		if (unlikely(ret))
2189 			return ret;
2190 	}
2191 
2192 	if (dev) {
2193 		sci_port->iclk = clk_get(&dev->dev, "sci_ick");
2194 		if (IS_ERR(sci_port->iclk)) {
2195 			sci_port->iclk = clk_get(&dev->dev, "peripheral_clk");
2196 			if (IS_ERR(sci_port->iclk)) {
2197 				dev_err(&dev->dev, "can't get iclk\n");
2198 				return PTR_ERR(sci_port->iclk);
2199 			}
2200 		}
2201 
2202 		/*
2203 		 * The function clock is optional, ignore it if we can't
2204 		 * find it.
2205 		 */
2206 		sci_port->fclk = clk_get(&dev->dev, "sci_fck");
2207 		if (IS_ERR(sci_port->fclk))
2208 			sci_port->fclk = NULL;
2209 
2210 		port->dev = &dev->dev;
2211 
2212 		sci_init_gpios(sci_port);
2213 
2214 		pm_runtime_enable(&dev->dev);
2215 	}
2216 
2217 	sci_port->break_timer.data = (unsigned long)sci_port;
2218 	sci_port->break_timer.function = sci_break_timer;
2219 	init_timer(&sci_port->break_timer);
2220 
2221 	/*
2222 	 * Establish some sensible defaults for the error detection.
2223 	 */
2224 	if (!p->error_mask)
2225 		p->error_mask = (p->type == PORT_SCI) ?
2226 			SCI_DEFAULT_ERROR_MASK : SCIF_DEFAULT_ERROR_MASK;
2227 
2228 	/*
2229 	 * Establish sensible defaults for the overrun detection, unless
2230 	 * the part has explicitly disabled support for it.
2231 	 */
2232 	if (p->overrun_bit != SCIx_NOT_SUPPORTED) {
2233 		if (p->type == PORT_SCI)
2234 			p->overrun_bit = 5;
2235 		else if (p->scbrr_algo_id == SCBRR_ALGO_4)
2236 			p->overrun_bit = 9;
2237 		else
2238 			p->overrun_bit = 0;
2239 
2240 		/*
2241 		 * Make the error mask inclusive of overrun detection, if
2242 		 * supported.
2243 		 */
2244 		p->error_mask |= (1 << p->overrun_bit);
2245 	}
2246 
2247 	port->mapbase		= p->mapbase;
2248 	port->type		= p->type;
2249 	port->flags		= p->flags;
2250 	port->regshift		= p->regshift;
2251 
2252 	/*
2253 	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
2254 	 * for the multi-IRQ ports, which is where we are primarily
2255 	 * concerned with the shutdown path synchronization.
2256 	 *
2257 	 * For the muxed case there's nothing more to do.
2258 	 */
2259 	port->irq		= p->irqs[SCIx_RXI_IRQ];
2260 	port->irqflags		= 0;
2261 
2262 	port->serial_in		= sci_serial_in;
2263 	port->serial_out	= sci_serial_out;
2264 
2265 	if (p->dma_slave_tx > 0 && p->dma_slave_rx > 0)
2266 		dev_dbg(port->dev, "DMA tx %d, rx %d\n",
2267 			p->dma_slave_tx, p->dma_slave_rx);
2268 
2269 	return 0;
2270 }
2271 
2272 static void sci_cleanup_single(struct sci_port *port)
2273 {
2274 	sci_free_gpios(port);
2275 
2276 	clk_put(port->iclk);
2277 	clk_put(port->fclk);
2278 
2279 	pm_runtime_disable(port->port.dev);
2280 }
2281 
2282 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
2283 static void serial_console_putchar(struct uart_port *port, int ch)
2284 {
2285 	sci_poll_put_char(port, ch);
2286 }
2287 
2288 /*
2289  *	Print a string to the serial port trying not to disturb
2290  *	any possible real use of the port...
2291  */
2292 static void serial_console_write(struct console *co, const char *s,
2293 				 unsigned count)
2294 {
2295 	struct sci_port *sci_port = &sci_ports[co->index];
2296 	struct uart_port *port = &sci_port->port;
2297 	unsigned short bits, ctrl;
2298 	unsigned long flags;
2299 	int locked = 1;
2300 
2301 	local_irq_save(flags);
2302 	if (port->sysrq)
2303 		locked = 0;
2304 	else if (oops_in_progress)
2305 		locked = spin_trylock(&port->lock);
2306 	else
2307 		spin_lock(&port->lock);
2308 
2309 	/* first save the SCSCR then disable the interrupts */
2310 	ctrl = serial_port_in(port, SCSCR);
2311 	serial_port_out(port, SCSCR, sci_port->cfg->scscr);
2312 
2313 	uart_console_write(port, s, count, serial_console_putchar);
2314 
2315 	/* wait until fifo is empty and last bit has been transmitted */
2316 	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
2317 	while ((serial_port_in(port, SCxSR) & bits) != bits)
2318 		cpu_relax();
2319 
2320 	/* restore the SCSCR */
2321 	serial_port_out(port, SCSCR, ctrl);
2322 
2323 	if (locked)
2324 		spin_unlock(&port->lock);
2325 	local_irq_restore(flags);
2326 }
2327 
2328 static int serial_console_setup(struct console *co, char *options)
2329 {
2330 	struct sci_port *sci_port;
2331 	struct uart_port *port;
2332 	int baud = 115200;
2333 	int bits = 8;
2334 	int parity = 'n';
2335 	int flow = 'n';
2336 	int ret;
2337 
2338 	/*
2339 	 * Refuse to handle any bogus ports.
2340 	 */
2341 	if (co->index < 0 || co->index >= SCI_NPORTS)
2342 		return -ENODEV;
2343 
2344 	sci_port = &sci_ports[co->index];
2345 	port = &sci_port->port;
2346 
2347 	/*
2348 	 * Refuse to handle uninitialized ports.
2349 	 */
2350 	if (!port->ops)
2351 		return -ENODEV;
2352 
2353 	ret = sci_remap_port(port);
2354 	if (unlikely(ret != 0))
2355 		return ret;
2356 
2357 	if (options)
2358 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2359 
2360 	return uart_set_options(port, co, baud, parity, bits, flow);
2361 }
2362 
2363 static struct console serial_console = {
2364 	.name		= "ttySC",
2365 	.device		= uart_console_device,
2366 	.write		= serial_console_write,
2367 	.setup		= serial_console_setup,
2368 	.flags		= CON_PRINTBUFFER,
2369 	.index		= -1,
2370 	.data		= &sci_uart_driver,
2371 };
2372 
2373 static struct console early_serial_console = {
2374 	.name           = "early_ttySC",
2375 	.write          = serial_console_write,
2376 	.flags          = CON_PRINTBUFFER,
2377 	.index		= -1,
2378 };
2379 
2380 static char early_serial_buf[32];
2381 
2382 static int sci_probe_earlyprintk(struct platform_device *pdev)
2383 {
2384 	struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
2385 
2386 	if (early_serial_console.data)
2387 		return -EEXIST;
2388 
2389 	early_serial_console.index = pdev->id;
2390 
2391 	sci_init_single(NULL, &sci_ports[pdev->id], pdev->id, cfg);
2392 
2393 	serial_console_setup(&early_serial_console, early_serial_buf);
2394 
2395 	if (!strstr(early_serial_buf, "keep"))
2396 		early_serial_console.flags |= CON_BOOT;
2397 
2398 	register_console(&early_serial_console);
2399 	return 0;
2400 }
2401 
2402 #define SCI_CONSOLE	(&serial_console)
2403 
2404 #else
2405 static inline int sci_probe_earlyprintk(struct platform_device *pdev)
2406 {
2407 	return -EINVAL;
2408 }
2409 
2410 #define SCI_CONSOLE	NULL
2411 
2412 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE */
2413 
2414 static char banner[] __initdata =
2415 	KERN_INFO "SuperH (H)SCI(F) driver initialized\n";
2416 
2417 static struct uart_driver sci_uart_driver = {
2418 	.owner		= THIS_MODULE,
2419 	.driver_name	= "sci",
2420 	.dev_name	= "ttySC",
2421 	.major		= SCI_MAJOR,
2422 	.minor		= SCI_MINOR_START,
2423 	.nr		= SCI_NPORTS,
2424 	.cons		= SCI_CONSOLE,
2425 };
2426 
2427 static int sci_remove(struct platform_device *dev)
2428 {
2429 	struct sci_port *port = platform_get_drvdata(dev);
2430 
2431 	cpufreq_unregister_notifier(&port->freq_transition,
2432 				    CPUFREQ_TRANSITION_NOTIFIER);
2433 
2434 	uart_remove_one_port(&sci_uart_driver, &port->port);
2435 
2436 	sci_cleanup_single(port);
2437 
2438 	return 0;
2439 }
2440 
2441 static int sci_probe_single(struct platform_device *dev,
2442 				      unsigned int index,
2443 				      struct plat_sci_port *p,
2444 				      struct sci_port *sciport)
2445 {
2446 	int ret;
2447 
2448 	/* Sanity check */
2449 	if (unlikely(index >= SCI_NPORTS)) {
2450 		dev_notice(&dev->dev, "Attempting to register port "
2451 			   "%d when only %d are available.\n",
2452 			   index+1, SCI_NPORTS);
2453 		dev_notice(&dev->dev, "Consider bumping "
2454 			   "CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
2455 		return -EINVAL;
2456 	}
2457 
2458 	ret = sci_init_single(dev, sciport, index, p);
2459 	if (ret)
2460 		return ret;
2461 
2462 	ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
2463 	if (ret) {
2464 		sci_cleanup_single(sciport);
2465 		return ret;
2466 	}
2467 
2468 	return 0;
2469 }
2470 
2471 static int sci_probe(struct platform_device *dev)
2472 {
2473 	struct plat_sci_port *p = dev_get_platdata(&dev->dev);
2474 	struct sci_port *sp = &sci_ports[dev->id];
2475 	int ret;
2476 
2477 	/*
2478 	 * If we've come here via earlyprintk initialization, head off to
2479 	 * the special early probe. We don't have sufficient device state
2480 	 * to make it beyond this yet.
2481 	 */
2482 	if (is_early_platform_device(dev))
2483 		return sci_probe_earlyprintk(dev);
2484 
2485 	platform_set_drvdata(dev, sp);
2486 
2487 	ret = sci_probe_single(dev, dev->id, p, sp);
2488 	if (ret)
2489 		return ret;
2490 
2491 	sp->freq_transition.notifier_call = sci_notifier;
2492 
2493 	ret = cpufreq_register_notifier(&sp->freq_transition,
2494 					CPUFREQ_TRANSITION_NOTIFIER);
2495 	if (unlikely(ret < 0)) {
2496 		sci_cleanup_single(sp);
2497 		return ret;
2498 	}
2499 
2500 #ifdef CONFIG_SH_STANDARD_BIOS
2501 	sh_bios_gdb_detach();
2502 #endif
2503 
2504 	return 0;
2505 }
2506 
2507 static int sci_suspend(struct device *dev)
2508 {
2509 	struct sci_port *sport = dev_get_drvdata(dev);
2510 
2511 	if (sport)
2512 		uart_suspend_port(&sci_uart_driver, &sport->port);
2513 
2514 	return 0;
2515 }
2516 
2517 static int sci_resume(struct device *dev)
2518 {
2519 	struct sci_port *sport = dev_get_drvdata(dev);
2520 
2521 	if (sport)
2522 		uart_resume_port(&sci_uart_driver, &sport->port);
2523 
2524 	return 0;
2525 }
2526 
2527 static const struct dev_pm_ops sci_dev_pm_ops = {
2528 	.suspend	= sci_suspend,
2529 	.resume		= sci_resume,
2530 };
2531 
2532 static struct platform_driver sci_driver = {
2533 	.probe		= sci_probe,
2534 	.remove		= sci_remove,
2535 	.driver		= {
2536 		.name	= "sh-sci",
2537 		.owner	= THIS_MODULE,
2538 		.pm	= &sci_dev_pm_ops,
2539 	},
2540 };
2541 
2542 static int __init sci_init(void)
2543 {
2544 	int ret;
2545 
2546 	printk(banner);
2547 
2548 	ret = uart_register_driver(&sci_uart_driver);
2549 	if (likely(ret == 0)) {
2550 		ret = platform_driver_register(&sci_driver);
2551 		if (unlikely(ret))
2552 			uart_unregister_driver(&sci_uart_driver);
2553 	}
2554 
2555 	return ret;
2556 }
2557 
2558 static void __exit sci_exit(void)
2559 {
2560 	platform_driver_unregister(&sci_driver);
2561 	uart_unregister_driver(&sci_uart_driver);
2562 }
2563 
2564 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
2565 early_platform_init_buffer("earlyprintk", &sci_driver,
2566 			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
2567 #endif
2568 module_init(sci_init);
2569 module_exit(sci_exit);
2570 
2571 MODULE_LICENSE("GPL");
2572 MODULE_ALIAS("platform:sh-sci");
2573 MODULE_AUTHOR("Paul Mundt");
2574 MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");
2575