xref: /openbmc/linux/drivers/tty/serial/sh-sci.c (revision ce932d0c5589e9766e089c22c66890dfc48fbd94)
1 /*
2  * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
3  *
4  *  Copyright (C) 2002 - 2011  Paul Mundt
5  *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
6  *
7  * based off of the old drivers/char/sh-sci.c by:
8  *
9  *   Copyright (C) 1999, 2000  Niibe Yutaka
10  *   Copyright (C) 2000  Sugioka Toshinobu
11  *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
12  *   Modified to support SecureEdge. David McCullough (2002)
13  *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
14  *   Removed SH7300 support (Jul 2007).
15  *
16  * This file is subject to the terms and conditions of the GNU General Public
17  * License.  See the file "COPYING" in the main directory of this archive
18  * for more details.
19  */
20 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
21 #define SUPPORT_SYSRQ
22 #endif
23 
24 #undef DEBUG
25 
26 #include <linux/module.h>
27 #include <linux/errno.h>
28 #include <linux/timer.h>
29 #include <linux/interrupt.h>
30 #include <linux/tty.h>
31 #include <linux/tty_flip.h>
32 #include <linux/serial.h>
33 #include <linux/major.h>
34 #include <linux/string.h>
35 #include <linux/sysrq.h>
36 #include <linux/ioport.h>
37 #include <linux/mm.h>
38 #include <linux/init.h>
39 #include <linux/delay.h>
40 #include <linux/console.h>
41 #include <linux/platform_device.h>
42 #include <linux/serial_sci.h>
43 #include <linux/notifier.h>
44 #include <linux/pm_runtime.h>
45 #include <linux/cpufreq.h>
46 #include <linux/clk.h>
47 #include <linux/ctype.h>
48 #include <linux/err.h>
49 #include <linux/dmaengine.h>
50 #include <linux/dma-mapping.h>
51 #include <linux/scatterlist.h>
52 #include <linux/slab.h>
53 #include <linux/gpio.h>
54 
55 #ifdef CONFIG_SUPERH
56 #include <asm/sh_bios.h>
57 #endif
58 
59 #include "sh-sci.h"
60 
61 struct sci_port {
62 	struct uart_port	port;
63 
64 	/* Platform configuration */
65 	struct plat_sci_port	*cfg;
66 
67 	/* Break timer */
68 	struct timer_list	break_timer;
69 	int			break_flag;
70 
71 	/* Interface clock */
72 	struct clk		*iclk;
73 	/* Function clock */
74 	struct clk		*fclk;
75 
76 	char			*irqstr[SCIx_NR_IRQS];
77 	char			*gpiostr[SCIx_NR_FNS];
78 
79 	struct dma_chan			*chan_tx;
80 	struct dma_chan			*chan_rx;
81 
82 #ifdef CONFIG_SERIAL_SH_SCI_DMA
83 	struct dma_async_tx_descriptor	*desc_tx;
84 	struct dma_async_tx_descriptor	*desc_rx[2];
85 	dma_cookie_t			cookie_tx;
86 	dma_cookie_t			cookie_rx[2];
87 	dma_cookie_t			active_rx;
88 	struct scatterlist		sg_tx;
89 	unsigned int			sg_len_tx;
90 	struct scatterlist		sg_rx[2];
91 	size_t				buf_len_rx;
92 	struct sh_dmae_slave		param_tx;
93 	struct sh_dmae_slave		param_rx;
94 	struct work_struct		work_tx;
95 	struct work_struct		work_rx;
96 	struct timer_list		rx_timer;
97 	unsigned int			rx_timeout;
98 #endif
99 
100 	struct notifier_block		freq_transition;
101 
102 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
103 	unsigned short saved_smr;
104 	unsigned short saved_fcr;
105 	unsigned char saved_brr;
106 #endif
107 };
108 
109 /* Function prototypes */
110 static void sci_start_tx(struct uart_port *port);
111 static void sci_stop_tx(struct uart_port *port);
112 static void sci_start_rx(struct uart_port *port);
113 
114 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
115 
116 static struct sci_port sci_ports[SCI_NPORTS];
117 static struct uart_driver sci_uart_driver;
118 
119 static inline struct sci_port *
120 to_sci_port(struct uart_port *uart)
121 {
122 	return container_of(uart, struct sci_port, port);
123 }
124 
125 struct plat_sci_reg {
126 	u8 offset, size;
127 };
128 
129 /* Helper for invalidating specific entries of an inherited map. */
130 #define sci_reg_invalid	{ .offset = 0, .size = 0 }
131 
132 static struct plat_sci_reg sci_regmap[SCIx_NR_REGTYPES][SCIx_NR_REGS] = {
133 	[SCIx_PROBE_REGTYPE] = {
134 		[0 ... SCIx_NR_REGS - 1] = sci_reg_invalid,
135 	},
136 
137 	/*
138 	 * Common SCI definitions, dependent on the port's regshift
139 	 * value.
140 	 */
141 	[SCIx_SCI_REGTYPE] = {
142 		[SCSMR]		= { 0x00,  8 },
143 		[SCBRR]		= { 0x01,  8 },
144 		[SCSCR]		= { 0x02,  8 },
145 		[SCxTDR]	= { 0x03,  8 },
146 		[SCxSR]		= { 0x04,  8 },
147 		[SCxRDR]	= { 0x05,  8 },
148 		[SCFCR]		= sci_reg_invalid,
149 		[SCFDR]		= sci_reg_invalid,
150 		[SCTFDR]	= sci_reg_invalid,
151 		[SCRFDR]	= sci_reg_invalid,
152 		[SCSPTR]	= sci_reg_invalid,
153 		[SCLSR]		= sci_reg_invalid,
154 	},
155 
156 	/*
157 	 * Common definitions for legacy IrDA ports, dependent on
158 	 * regshift value.
159 	 */
160 	[SCIx_IRDA_REGTYPE] = {
161 		[SCSMR]		= { 0x00,  8 },
162 		[SCBRR]		= { 0x01,  8 },
163 		[SCSCR]		= { 0x02,  8 },
164 		[SCxTDR]	= { 0x03,  8 },
165 		[SCxSR]		= { 0x04,  8 },
166 		[SCxRDR]	= { 0x05,  8 },
167 		[SCFCR]		= { 0x06,  8 },
168 		[SCFDR]		= { 0x07, 16 },
169 		[SCTFDR]	= sci_reg_invalid,
170 		[SCRFDR]	= sci_reg_invalid,
171 		[SCSPTR]	= sci_reg_invalid,
172 		[SCLSR]		= sci_reg_invalid,
173 	},
174 
175 	/*
176 	 * Common SCIFA definitions.
177 	 */
178 	[SCIx_SCIFA_REGTYPE] = {
179 		[SCSMR]		= { 0x00, 16 },
180 		[SCBRR]		= { 0x04,  8 },
181 		[SCSCR]		= { 0x08, 16 },
182 		[SCxTDR]	= { 0x20,  8 },
183 		[SCxSR]		= { 0x14, 16 },
184 		[SCxRDR]	= { 0x24,  8 },
185 		[SCFCR]		= { 0x18, 16 },
186 		[SCFDR]		= { 0x1c, 16 },
187 		[SCTFDR]	= sci_reg_invalid,
188 		[SCRFDR]	= sci_reg_invalid,
189 		[SCSPTR]	= sci_reg_invalid,
190 		[SCLSR]		= sci_reg_invalid,
191 	},
192 
193 	/*
194 	 * Common SCIFB definitions.
195 	 */
196 	[SCIx_SCIFB_REGTYPE] = {
197 		[SCSMR]		= { 0x00, 16 },
198 		[SCBRR]		= { 0x04,  8 },
199 		[SCSCR]		= { 0x08, 16 },
200 		[SCxTDR]	= { 0x40,  8 },
201 		[SCxSR]		= { 0x14, 16 },
202 		[SCxRDR]	= { 0x60,  8 },
203 		[SCFCR]		= { 0x18, 16 },
204 		[SCFDR]		= { 0x1c, 16 },
205 		[SCTFDR]	= sci_reg_invalid,
206 		[SCRFDR]	= sci_reg_invalid,
207 		[SCSPTR]	= sci_reg_invalid,
208 		[SCLSR]		= sci_reg_invalid,
209 	},
210 
211 	/*
212 	 * Common SH-2(A) SCIF definitions for ports with FIFO data
213 	 * count registers.
214 	 */
215 	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
216 		[SCSMR]		= { 0x00, 16 },
217 		[SCBRR]		= { 0x04,  8 },
218 		[SCSCR]		= { 0x08, 16 },
219 		[SCxTDR]	= { 0x0c,  8 },
220 		[SCxSR]		= { 0x10, 16 },
221 		[SCxRDR]	= { 0x14,  8 },
222 		[SCFCR]		= { 0x18, 16 },
223 		[SCFDR]		= { 0x1c, 16 },
224 		[SCTFDR]	= sci_reg_invalid,
225 		[SCRFDR]	= sci_reg_invalid,
226 		[SCSPTR]	= { 0x20, 16 },
227 		[SCLSR]		= { 0x24, 16 },
228 	},
229 
230 	/*
231 	 * Common SH-3 SCIF definitions.
232 	 */
233 	[SCIx_SH3_SCIF_REGTYPE] = {
234 		[SCSMR]		= { 0x00,  8 },
235 		[SCBRR]		= { 0x02,  8 },
236 		[SCSCR]		= { 0x04,  8 },
237 		[SCxTDR]	= { 0x06,  8 },
238 		[SCxSR]		= { 0x08, 16 },
239 		[SCxRDR]	= { 0x0a,  8 },
240 		[SCFCR]		= { 0x0c,  8 },
241 		[SCFDR]		= { 0x0e, 16 },
242 		[SCTFDR]	= sci_reg_invalid,
243 		[SCRFDR]	= sci_reg_invalid,
244 		[SCSPTR]	= sci_reg_invalid,
245 		[SCLSR]		= sci_reg_invalid,
246 	},
247 
248 	/*
249 	 * Common SH-4(A) SCIF(B) definitions.
250 	 */
251 	[SCIx_SH4_SCIF_REGTYPE] = {
252 		[SCSMR]		= { 0x00, 16 },
253 		[SCBRR]		= { 0x04,  8 },
254 		[SCSCR]		= { 0x08, 16 },
255 		[SCxTDR]	= { 0x0c,  8 },
256 		[SCxSR]		= { 0x10, 16 },
257 		[SCxRDR]	= { 0x14,  8 },
258 		[SCFCR]		= { 0x18, 16 },
259 		[SCFDR]		= { 0x1c, 16 },
260 		[SCTFDR]	= sci_reg_invalid,
261 		[SCRFDR]	= sci_reg_invalid,
262 		[SCSPTR]	= { 0x20, 16 },
263 		[SCLSR]		= { 0x24, 16 },
264 	},
265 
266 	/*
267 	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
268 	 * register.
269 	 */
270 	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
271 		[SCSMR]		= { 0x00, 16 },
272 		[SCBRR]		= { 0x04,  8 },
273 		[SCSCR]		= { 0x08, 16 },
274 		[SCxTDR]	= { 0x0c,  8 },
275 		[SCxSR]		= { 0x10, 16 },
276 		[SCxRDR]	= { 0x14,  8 },
277 		[SCFCR]		= { 0x18, 16 },
278 		[SCFDR]		= { 0x1c, 16 },
279 		[SCTFDR]	= sci_reg_invalid,
280 		[SCRFDR]	= sci_reg_invalid,
281 		[SCSPTR]	= sci_reg_invalid,
282 		[SCLSR]		= { 0x24, 16 },
283 	},
284 
285 	/*
286 	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
287 	 * count registers.
288 	 */
289 	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
290 		[SCSMR]		= { 0x00, 16 },
291 		[SCBRR]		= { 0x04,  8 },
292 		[SCSCR]		= { 0x08, 16 },
293 		[SCxTDR]	= { 0x0c,  8 },
294 		[SCxSR]		= { 0x10, 16 },
295 		[SCxRDR]	= { 0x14,  8 },
296 		[SCFCR]		= { 0x18, 16 },
297 		[SCFDR]		= { 0x1c, 16 },
298 		[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
299 		[SCRFDR]	= { 0x20, 16 },
300 		[SCSPTR]	= { 0x24, 16 },
301 		[SCLSR]		= { 0x28, 16 },
302 	},
303 
304 	/*
305 	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
306 	 * registers.
307 	 */
308 	[SCIx_SH7705_SCIF_REGTYPE] = {
309 		[SCSMR]		= { 0x00, 16 },
310 		[SCBRR]		= { 0x04,  8 },
311 		[SCSCR]		= { 0x08, 16 },
312 		[SCxTDR]	= { 0x20,  8 },
313 		[SCxSR]		= { 0x14, 16 },
314 		[SCxRDR]	= { 0x24,  8 },
315 		[SCFCR]		= { 0x18, 16 },
316 		[SCFDR]		= { 0x1c, 16 },
317 		[SCTFDR]	= sci_reg_invalid,
318 		[SCRFDR]	= sci_reg_invalid,
319 		[SCSPTR]	= sci_reg_invalid,
320 		[SCLSR]		= sci_reg_invalid,
321 	},
322 };
323 
324 #define sci_getreg(up, offset)		(sci_regmap[to_sci_port(up)->cfg->regtype] + offset)
325 
326 /*
327  * The "offset" here is rather misleading, in that it refers to an enum
328  * value relative to the port mapping rather than the fixed offset
329  * itself, which needs to be manually retrieved from the platform's
330  * register map for the given port.
331  */
332 static unsigned int sci_serial_in(struct uart_port *p, int offset)
333 {
334 	struct plat_sci_reg *reg = sci_getreg(p, offset);
335 
336 	if (reg->size == 8)
337 		return ioread8(p->membase + (reg->offset << p->regshift));
338 	else if (reg->size == 16)
339 		return ioread16(p->membase + (reg->offset << p->regshift));
340 	else
341 		WARN(1, "Invalid register access\n");
342 
343 	return 0;
344 }
345 
346 static void sci_serial_out(struct uart_port *p, int offset, int value)
347 {
348 	struct plat_sci_reg *reg = sci_getreg(p, offset);
349 
350 	if (reg->size == 8)
351 		iowrite8(value, p->membase + (reg->offset << p->regshift));
352 	else if (reg->size == 16)
353 		iowrite16(value, p->membase + (reg->offset << p->regshift));
354 	else
355 		WARN(1, "Invalid register access\n");
356 }
357 
358 static int sci_probe_regmap(struct plat_sci_port *cfg)
359 {
360 	switch (cfg->type) {
361 	case PORT_SCI:
362 		cfg->regtype = SCIx_SCI_REGTYPE;
363 		break;
364 	case PORT_IRDA:
365 		cfg->regtype = SCIx_IRDA_REGTYPE;
366 		break;
367 	case PORT_SCIFA:
368 		cfg->regtype = SCIx_SCIFA_REGTYPE;
369 		break;
370 	case PORT_SCIFB:
371 		cfg->regtype = SCIx_SCIFB_REGTYPE;
372 		break;
373 	case PORT_SCIF:
374 		/*
375 		 * The SH-4 is a bit of a misnomer here, although that's
376 		 * where this particular port layout originated. This
377 		 * configuration (or some slight variation thereof)
378 		 * remains the dominant model for all SCIFs.
379 		 */
380 		cfg->regtype = SCIx_SH4_SCIF_REGTYPE;
381 		break;
382 	default:
383 		printk(KERN_ERR "Can't probe register map for given port\n");
384 		return -EINVAL;
385 	}
386 
387 	return 0;
388 }
389 
390 static void sci_port_enable(struct sci_port *sci_port)
391 {
392 	if (!sci_port->port.dev)
393 		return;
394 
395 	pm_runtime_get_sync(sci_port->port.dev);
396 
397 	clk_enable(sci_port->iclk);
398 	sci_port->port.uartclk = clk_get_rate(sci_port->iclk);
399 	clk_enable(sci_port->fclk);
400 }
401 
402 static void sci_port_disable(struct sci_port *sci_port)
403 {
404 	if (!sci_port->port.dev)
405 		return;
406 
407 	clk_disable(sci_port->fclk);
408 	clk_disable(sci_port->iclk);
409 
410 	pm_runtime_put_sync(sci_port->port.dev);
411 }
412 
413 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
414 
415 #ifdef CONFIG_CONSOLE_POLL
416 static int sci_poll_get_char(struct uart_port *port)
417 {
418 	unsigned short status;
419 	int c;
420 
421 	do {
422 		status = serial_port_in(port, SCxSR);
423 		if (status & SCxSR_ERRORS(port)) {
424 			serial_port_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
425 			continue;
426 		}
427 		break;
428 	} while (1);
429 
430 	if (!(status & SCxSR_RDxF(port)))
431 		return NO_POLL_CHAR;
432 
433 	c = serial_port_in(port, SCxRDR);
434 
435 	/* Dummy read */
436 	serial_port_in(port, SCxSR);
437 	serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
438 
439 	return c;
440 }
441 #endif
442 
443 static void sci_poll_put_char(struct uart_port *port, unsigned char c)
444 {
445 	unsigned short status;
446 
447 	do {
448 		status = serial_port_in(port, SCxSR);
449 	} while (!(status & SCxSR_TDxE(port)));
450 
451 	serial_port_out(port, SCxTDR, c);
452 	serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
453 }
454 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE */
455 
456 static void sci_init_pins(struct uart_port *port, unsigned int cflag)
457 {
458 	struct sci_port *s = to_sci_port(port);
459 	struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
460 
461 	/*
462 	 * Use port-specific handler if provided.
463 	 */
464 	if (s->cfg->ops && s->cfg->ops->init_pins) {
465 		s->cfg->ops->init_pins(port, cflag);
466 		return;
467 	}
468 
469 	/*
470 	 * For the generic path SCSPTR is necessary. Bail out if that's
471 	 * unavailable, too.
472 	 */
473 	if (!reg->size)
474 		return;
475 
476 	if ((s->cfg->capabilities & SCIx_HAVE_RTSCTS) &&
477 	    ((!(cflag & CRTSCTS)))) {
478 		unsigned short status;
479 
480 		status = serial_port_in(port, SCSPTR);
481 		status &= ~SCSPTR_CTSIO;
482 		status |= SCSPTR_RTSIO;
483 		serial_port_out(port, SCSPTR, status); /* Set RTS = 1 */
484 	}
485 }
486 
487 static int sci_txfill(struct uart_port *port)
488 {
489 	struct plat_sci_reg *reg;
490 
491 	reg = sci_getreg(port, SCTFDR);
492 	if (reg->size)
493 		return serial_port_in(port, SCTFDR) & 0xff;
494 
495 	reg = sci_getreg(port, SCFDR);
496 	if (reg->size)
497 		return serial_port_in(port, SCFDR) >> 8;
498 
499 	return !(serial_port_in(port, SCxSR) & SCI_TDRE);
500 }
501 
502 static int sci_txroom(struct uart_port *port)
503 {
504 	return port->fifosize - sci_txfill(port);
505 }
506 
507 static int sci_rxfill(struct uart_port *port)
508 {
509 	struct plat_sci_reg *reg;
510 
511 	reg = sci_getreg(port, SCRFDR);
512 	if (reg->size)
513 		return serial_port_in(port, SCRFDR) & 0xff;
514 
515 	reg = sci_getreg(port, SCFDR);
516 	if (reg->size)
517 		return serial_port_in(port, SCFDR) & ((port->fifosize << 1) - 1);
518 
519 	return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
520 }
521 
522 /*
523  * SCI helper for checking the state of the muxed port/RXD pins.
524  */
525 static inline int sci_rxd_in(struct uart_port *port)
526 {
527 	struct sci_port *s = to_sci_port(port);
528 
529 	if (s->cfg->port_reg <= 0)
530 		return 1;
531 
532 	return !!__raw_readb(s->cfg->port_reg);
533 }
534 
535 /* ********************************************************************** *
536  *                   the interrupt related routines                       *
537  * ********************************************************************** */
538 
539 static void sci_transmit_chars(struct uart_port *port)
540 {
541 	struct circ_buf *xmit = &port->state->xmit;
542 	unsigned int stopped = uart_tx_stopped(port);
543 	unsigned short status;
544 	unsigned short ctrl;
545 	int count;
546 
547 	status = serial_port_in(port, SCxSR);
548 	if (!(status & SCxSR_TDxE(port))) {
549 		ctrl = serial_port_in(port, SCSCR);
550 		if (uart_circ_empty(xmit))
551 			ctrl &= ~SCSCR_TIE;
552 		else
553 			ctrl |= SCSCR_TIE;
554 		serial_port_out(port, SCSCR, ctrl);
555 		return;
556 	}
557 
558 	count = sci_txroom(port);
559 
560 	do {
561 		unsigned char c;
562 
563 		if (port->x_char) {
564 			c = port->x_char;
565 			port->x_char = 0;
566 		} else if (!uart_circ_empty(xmit) && !stopped) {
567 			c = xmit->buf[xmit->tail];
568 			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
569 		} else {
570 			break;
571 		}
572 
573 		serial_port_out(port, SCxTDR, c);
574 
575 		port->icount.tx++;
576 	} while (--count > 0);
577 
578 	serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
579 
580 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
581 		uart_write_wakeup(port);
582 	if (uart_circ_empty(xmit)) {
583 		sci_stop_tx(port);
584 	} else {
585 		ctrl = serial_port_in(port, SCSCR);
586 
587 		if (port->type != PORT_SCI) {
588 			serial_port_in(port, SCxSR); /* Dummy read */
589 			serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
590 		}
591 
592 		ctrl |= SCSCR_TIE;
593 		serial_port_out(port, SCSCR, ctrl);
594 	}
595 }
596 
597 /* On SH3, SCIF may read end-of-break as a space->mark char */
598 #define STEPFN(c)  ({int __c = (c); (((__c-1)|(__c)) == -1); })
599 
600 static void sci_receive_chars(struct uart_port *port)
601 {
602 	struct sci_port *sci_port = to_sci_port(port);
603 	struct tty_struct *tty = port->state->port.tty;
604 	int i, count, copied = 0;
605 	unsigned short status;
606 	unsigned char flag;
607 
608 	status = serial_port_in(port, SCxSR);
609 	if (!(status & SCxSR_RDxF(port)))
610 		return;
611 
612 	while (1) {
613 		/* Don't copy more bytes than there is room for in the buffer */
614 		count = tty_buffer_request_room(tty, sci_rxfill(port));
615 
616 		/* If for any reason we can't copy more data, we're done! */
617 		if (count == 0)
618 			break;
619 
620 		if (port->type == PORT_SCI) {
621 			char c = serial_port_in(port, SCxRDR);
622 			if (uart_handle_sysrq_char(port, c) ||
623 			    sci_port->break_flag)
624 				count = 0;
625 			else
626 				tty_insert_flip_char(tty, c, TTY_NORMAL);
627 		} else {
628 			for (i = 0; i < count; i++) {
629 				char c = serial_port_in(port, SCxRDR);
630 
631 				status = serial_port_in(port, SCxSR);
632 #if defined(CONFIG_CPU_SH3)
633 				/* Skip "chars" during break */
634 				if (sci_port->break_flag) {
635 					if ((c == 0) &&
636 					    (status & SCxSR_FER(port))) {
637 						count--; i--;
638 						continue;
639 					}
640 
641 					/* Nonzero => end-of-break */
642 					dev_dbg(port->dev, "debounce<%02x>\n", c);
643 					sci_port->break_flag = 0;
644 
645 					if (STEPFN(c)) {
646 						count--; i--;
647 						continue;
648 					}
649 				}
650 #endif /* CONFIG_CPU_SH3 */
651 				if (uart_handle_sysrq_char(port, c)) {
652 					count--; i--;
653 					continue;
654 				}
655 
656 				/* Store data and status */
657 				if (status & SCxSR_FER(port)) {
658 					flag = TTY_FRAME;
659 					port->icount.frame++;
660 					dev_notice(port->dev, "frame error\n");
661 				} else if (status & SCxSR_PER(port)) {
662 					flag = TTY_PARITY;
663 					port->icount.parity++;
664 					dev_notice(port->dev, "parity error\n");
665 				} else
666 					flag = TTY_NORMAL;
667 
668 				tty_insert_flip_char(tty, c, flag);
669 			}
670 		}
671 
672 		serial_port_in(port, SCxSR); /* dummy read */
673 		serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
674 
675 		copied += count;
676 		port->icount.rx += count;
677 	}
678 
679 	if (copied) {
680 		/* Tell the rest of the system the news. New characters! */
681 		tty_flip_buffer_push(tty);
682 	} else {
683 		serial_port_in(port, SCxSR); /* dummy read */
684 		serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
685 	}
686 }
687 
688 #define SCI_BREAK_JIFFIES (HZ/20)
689 
690 /*
691  * The sci generates interrupts during the break,
692  * 1 per millisecond or so during the break period, for 9600 baud.
693  * So dont bother disabling interrupts.
694  * But dont want more than 1 break event.
695  * Use a kernel timer to periodically poll the rx line until
696  * the break is finished.
697  */
698 static inline void sci_schedule_break_timer(struct sci_port *port)
699 {
700 	mod_timer(&port->break_timer, jiffies + SCI_BREAK_JIFFIES);
701 }
702 
703 /* Ensure that two consecutive samples find the break over. */
704 static void sci_break_timer(unsigned long data)
705 {
706 	struct sci_port *port = (struct sci_port *)data;
707 
708 	sci_port_enable(port);
709 
710 	if (sci_rxd_in(&port->port) == 0) {
711 		port->break_flag = 1;
712 		sci_schedule_break_timer(port);
713 	} else if (port->break_flag == 1) {
714 		/* break is over. */
715 		port->break_flag = 2;
716 		sci_schedule_break_timer(port);
717 	} else
718 		port->break_flag = 0;
719 
720 	sci_port_disable(port);
721 }
722 
723 static int sci_handle_errors(struct uart_port *port)
724 {
725 	int copied = 0;
726 	unsigned short status = serial_port_in(port, SCxSR);
727 	struct tty_struct *tty = port->state->port.tty;
728 	struct sci_port *s = to_sci_port(port);
729 
730 	/*
731 	 * Handle overruns, if supported.
732 	 */
733 	if (s->cfg->overrun_bit != SCIx_NOT_SUPPORTED) {
734 		if (status & (1 << s->cfg->overrun_bit)) {
735 			port->icount.overrun++;
736 
737 			/* overrun error */
738 			if (tty_insert_flip_char(tty, 0, TTY_OVERRUN))
739 				copied++;
740 
741 			dev_notice(port->dev, "overrun error");
742 		}
743 	}
744 
745 	if (status & SCxSR_FER(port)) {
746 		if (sci_rxd_in(port) == 0) {
747 			/* Notify of BREAK */
748 			struct sci_port *sci_port = to_sci_port(port);
749 
750 			if (!sci_port->break_flag) {
751 				port->icount.brk++;
752 
753 				sci_port->break_flag = 1;
754 				sci_schedule_break_timer(sci_port);
755 
756 				/* Do sysrq handling. */
757 				if (uart_handle_break(port))
758 					return 0;
759 
760 				dev_dbg(port->dev, "BREAK detected\n");
761 
762 				if (tty_insert_flip_char(tty, 0, TTY_BREAK))
763 					copied++;
764 			}
765 
766 		} else {
767 			/* frame error */
768 			port->icount.frame++;
769 
770 			if (tty_insert_flip_char(tty, 0, TTY_FRAME))
771 				copied++;
772 
773 			dev_notice(port->dev, "frame error\n");
774 		}
775 	}
776 
777 	if (status & SCxSR_PER(port)) {
778 		/* parity error */
779 		port->icount.parity++;
780 
781 		if (tty_insert_flip_char(tty, 0, TTY_PARITY))
782 			copied++;
783 
784 		dev_notice(port->dev, "parity error");
785 	}
786 
787 	if (copied)
788 		tty_flip_buffer_push(tty);
789 
790 	return copied;
791 }
792 
793 static int sci_handle_fifo_overrun(struct uart_port *port)
794 {
795 	struct tty_struct *tty = port->state->port.tty;
796 	struct sci_port *s = to_sci_port(port);
797 	struct plat_sci_reg *reg;
798 	int copied = 0;
799 
800 	reg = sci_getreg(port, SCLSR);
801 	if (!reg->size)
802 		return 0;
803 
804 	if ((serial_port_in(port, SCLSR) & (1 << s->cfg->overrun_bit))) {
805 		serial_port_out(port, SCLSR, 0);
806 
807 		port->icount.overrun++;
808 
809 		tty_insert_flip_char(tty, 0, TTY_OVERRUN);
810 		tty_flip_buffer_push(tty);
811 
812 		dev_notice(port->dev, "overrun error\n");
813 		copied++;
814 	}
815 
816 	return copied;
817 }
818 
819 static int sci_handle_breaks(struct uart_port *port)
820 {
821 	int copied = 0;
822 	unsigned short status = serial_port_in(port, SCxSR);
823 	struct tty_struct *tty = port->state->port.tty;
824 	struct sci_port *s = to_sci_port(port);
825 
826 	if (uart_handle_break(port))
827 		return 0;
828 
829 	if (!s->break_flag && status & SCxSR_BRK(port)) {
830 #if defined(CONFIG_CPU_SH3)
831 		/* Debounce break */
832 		s->break_flag = 1;
833 #endif
834 
835 		port->icount.brk++;
836 
837 		/* Notify of BREAK */
838 		if (tty_insert_flip_char(tty, 0, TTY_BREAK))
839 			copied++;
840 
841 		dev_dbg(port->dev, "BREAK detected\n");
842 	}
843 
844 	if (copied)
845 		tty_flip_buffer_push(tty);
846 
847 	copied += sci_handle_fifo_overrun(port);
848 
849 	return copied;
850 }
851 
852 static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
853 {
854 #ifdef CONFIG_SERIAL_SH_SCI_DMA
855 	struct uart_port *port = ptr;
856 	struct sci_port *s = to_sci_port(port);
857 
858 	if (s->chan_rx) {
859 		u16 scr = serial_port_in(port, SCSCR);
860 		u16 ssr = serial_port_in(port, SCxSR);
861 
862 		/* Disable future Rx interrupts */
863 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
864 			disable_irq_nosync(irq);
865 			scr |= 0x4000;
866 		} else {
867 			scr &= ~SCSCR_RIE;
868 		}
869 		serial_port_out(port, SCSCR, scr);
870 		/* Clear current interrupt */
871 		serial_port_out(port, SCxSR, ssr & ~(1 | SCxSR_RDxF(port)));
872 		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n",
873 			jiffies, s->rx_timeout);
874 		mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
875 
876 		return IRQ_HANDLED;
877 	}
878 #endif
879 
880 	/* I think sci_receive_chars has to be called irrespective
881 	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
882 	 * to be disabled?
883 	 */
884 	sci_receive_chars(ptr);
885 
886 	return IRQ_HANDLED;
887 }
888 
889 static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
890 {
891 	struct uart_port *port = ptr;
892 	unsigned long flags;
893 
894 	spin_lock_irqsave(&port->lock, flags);
895 	sci_transmit_chars(port);
896 	spin_unlock_irqrestore(&port->lock, flags);
897 
898 	return IRQ_HANDLED;
899 }
900 
901 static irqreturn_t sci_er_interrupt(int irq, void *ptr)
902 {
903 	struct uart_port *port = ptr;
904 
905 	/* Handle errors */
906 	if (port->type == PORT_SCI) {
907 		if (sci_handle_errors(port)) {
908 			/* discard character in rx buffer */
909 			serial_port_in(port, SCxSR);
910 			serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
911 		}
912 	} else {
913 		sci_handle_fifo_overrun(port);
914 		sci_rx_interrupt(irq, ptr);
915 	}
916 
917 	serial_port_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
918 
919 	/* Kick the transmission */
920 	sci_tx_interrupt(irq, ptr);
921 
922 	return IRQ_HANDLED;
923 }
924 
925 static irqreturn_t sci_br_interrupt(int irq, void *ptr)
926 {
927 	struct uart_port *port = ptr;
928 
929 	/* Handle BREAKs */
930 	sci_handle_breaks(port);
931 	serial_port_out(port, SCxSR, SCxSR_BREAK_CLEAR(port));
932 
933 	return IRQ_HANDLED;
934 }
935 
936 static inline unsigned long port_rx_irq_mask(struct uart_port *port)
937 {
938 	/*
939 	 * Not all ports (such as SCIFA) will support REIE. Rather than
940 	 * special-casing the port type, we check the port initialization
941 	 * IRQ enable mask to see whether the IRQ is desired at all. If
942 	 * it's unset, it's logically inferred that there's no point in
943 	 * testing for it.
944 	 */
945 	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
946 }
947 
948 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
949 {
950 	unsigned short ssr_status, scr_status, err_enabled;
951 	struct uart_port *port = ptr;
952 	struct sci_port *s = to_sci_port(port);
953 	irqreturn_t ret = IRQ_NONE;
954 
955 	ssr_status = serial_port_in(port, SCxSR);
956 	scr_status = serial_port_in(port, SCSCR);
957 	err_enabled = scr_status & port_rx_irq_mask(port);
958 
959 	/* Tx Interrupt */
960 	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
961 	    !s->chan_tx)
962 		ret = sci_tx_interrupt(irq, ptr);
963 
964 	/*
965 	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
966 	 * DR flags
967 	 */
968 	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
969 	    (scr_status & SCSCR_RIE))
970 		ret = sci_rx_interrupt(irq, ptr);
971 
972 	/* Error Interrupt */
973 	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
974 		ret = sci_er_interrupt(irq, ptr);
975 
976 	/* Break Interrupt */
977 	if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
978 		ret = sci_br_interrupt(irq, ptr);
979 
980 	return ret;
981 }
982 
983 /*
984  * Here we define a transition notifier so that we can update all of our
985  * ports' baud rate when the peripheral clock changes.
986  */
987 static int sci_notifier(struct notifier_block *self,
988 			unsigned long phase, void *p)
989 {
990 	struct sci_port *sci_port;
991 	unsigned long flags;
992 
993 	sci_port = container_of(self, struct sci_port, freq_transition);
994 
995 	if ((phase == CPUFREQ_POSTCHANGE) ||
996 	    (phase == CPUFREQ_RESUMECHANGE)) {
997 		struct uart_port *port = &sci_port->port;
998 
999 		spin_lock_irqsave(&port->lock, flags);
1000 		port->uartclk = clk_get_rate(sci_port->iclk);
1001 		spin_unlock_irqrestore(&port->lock, flags);
1002 	}
1003 
1004 	return NOTIFY_OK;
1005 }
1006 
1007 static struct sci_irq_desc {
1008 	const char	*desc;
1009 	irq_handler_t	handler;
1010 } sci_irq_desc[] = {
1011 	/*
1012 	 * Split out handlers, the default case.
1013 	 */
1014 	[SCIx_ERI_IRQ] = {
1015 		.desc = "rx err",
1016 		.handler = sci_er_interrupt,
1017 	},
1018 
1019 	[SCIx_RXI_IRQ] = {
1020 		.desc = "rx full",
1021 		.handler = sci_rx_interrupt,
1022 	},
1023 
1024 	[SCIx_TXI_IRQ] = {
1025 		.desc = "tx empty",
1026 		.handler = sci_tx_interrupt,
1027 	},
1028 
1029 	[SCIx_BRI_IRQ] = {
1030 		.desc = "break",
1031 		.handler = sci_br_interrupt,
1032 	},
1033 
1034 	/*
1035 	 * Special muxed handler.
1036 	 */
1037 	[SCIx_MUX_IRQ] = {
1038 		.desc = "mux",
1039 		.handler = sci_mpxed_interrupt,
1040 	},
1041 };
1042 
1043 static int sci_request_irq(struct sci_port *port)
1044 {
1045 	struct uart_port *up = &port->port;
1046 	int i, j, ret = 0;
1047 
1048 	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1049 		struct sci_irq_desc *desc;
1050 		unsigned int irq;
1051 
1052 		if (SCIx_IRQ_IS_MUXED(port)) {
1053 			i = SCIx_MUX_IRQ;
1054 			irq = up->irq;
1055 		} else
1056 			irq = port->cfg->irqs[i];
1057 
1058 		desc = sci_irq_desc + i;
1059 		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1060 					    dev_name(up->dev), desc->desc);
1061 		if (!port->irqstr[j]) {
1062 			dev_err(up->dev, "Failed to allocate %s IRQ string\n",
1063 				desc->desc);
1064 			goto out_nomem;
1065 		}
1066 
1067 		ret = request_irq(irq, desc->handler, up->irqflags,
1068 				  port->irqstr[j], port);
1069 		if (unlikely(ret)) {
1070 			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1071 			goto out_noirq;
1072 		}
1073 	}
1074 
1075 	return 0;
1076 
1077 out_noirq:
1078 	while (--i >= 0)
1079 		free_irq(port->cfg->irqs[i], port);
1080 
1081 out_nomem:
1082 	while (--j >= 0)
1083 		kfree(port->irqstr[j]);
1084 
1085 	return ret;
1086 }
1087 
1088 static void sci_free_irq(struct sci_port *port)
1089 {
1090 	int i;
1091 
1092 	/*
1093 	 * Intentionally in reverse order so we iterate over the muxed
1094 	 * IRQ first.
1095 	 */
1096 	for (i = 0; i < SCIx_NR_IRQS; i++) {
1097 		free_irq(port->cfg->irqs[i], port);
1098 		kfree(port->irqstr[i]);
1099 
1100 		if (SCIx_IRQ_IS_MUXED(port)) {
1101 			/* If there's only one IRQ, we're done. */
1102 			return;
1103 		}
1104 	}
1105 }
1106 
1107 static const char *sci_gpio_names[SCIx_NR_FNS] = {
1108 	"sck", "rxd", "txd", "cts", "rts",
1109 };
1110 
1111 static const char *sci_gpio_str(unsigned int index)
1112 {
1113 	return sci_gpio_names[index];
1114 }
1115 
1116 static void __devinit sci_init_gpios(struct sci_port *port)
1117 {
1118 	struct uart_port *up = &port->port;
1119 	int i;
1120 
1121 	if (!port->cfg)
1122 		return;
1123 
1124 	for (i = 0; i < SCIx_NR_FNS; i++) {
1125 		const char *desc;
1126 		int ret;
1127 
1128 		if (!port->cfg->gpios[i])
1129 			continue;
1130 
1131 		desc = sci_gpio_str(i);
1132 
1133 		port->gpiostr[i] = kasprintf(GFP_KERNEL, "%s:%s",
1134 					     dev_name(up->dev), desc);
1135 
1136 		/*
1137 		 * If we've failed the allocation, we can still continue
1138 		 * on with a NULL string.
1139 		 */
1140 		if (!port->gpiostr[i])
1141 			dev_notice(up->dev, "%s string allocation failure\n",
1142 				   desc);
1143 
1144 		ret = gpio_request(port->cfg->gpios[i], port->gpiostr[i]);
1145 		if (unlikely(ret != 0)) {
1146 			dev_notice(up->dev, "failed %s gpio request\n", desc);
1147 
1148 			/*
1149 			 * If we can't get the GPIO for whatever reason,
1150 			 * no point in keeping the verbose string around.
1151 			 */
1152 			kfree(port->gpiostr[i]);
1153 		}
1154 	}
1155 }
1156 
1157 static void sci_free_gpios(struct sci_port *port)
1158 {
1159 	int i;
1160 
1161 	for (i = 0; i < SCIx_NR_FNS; i++)
1162 		if (port->cfg->gpios[i]) {
1163 			gpio_free(port->cfg->gpios[i]);
1164 			kfree(port->gpiostr[i]);
1165 		}
1166 }
1167 
1168 static unsigned int sci_tx_empty(struct uart_port *port)
1169 {
1170 	unsigned short status = serial_port_in(port, SCxSR);
1171 	unsigned short in_tx_fifo = sci_txfill(port);
1172 
1173 	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1174 }
1175 
1176 /*
1177  * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
1178  * CTS/RTS is supported in hardware by at least one port and controlled
1179  * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
1180  * handled via the ->init_pins() op, which is a bit of a one-way street,
1181  * lacking any ability to defer pin control -- this will later be
1182  * converted over to the GPIO framework).
1183  *
1184  * Other modes (such as loopback) are supported generically on certain
1185  * port types, but not others. For these it's sufficient to test for the
1186  * existence of the support register and simply ignore the port type.
1187  */
1188 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
1189 {
1190 	if (mctrl & TIOCM_LOOP) {
1191 		struct plat_sci_reg *reg;
1192 
1193 		/*
1194 		 * Standard loopback mode for SCFCR ports.
1195 		 */
1196 		reg = sci_getreg(port, SCFCR);
1197 		if (reg->size)
1198 			serial_port_out(port, SCFCR, serial_port_in(port, SCFCR) | 1);
1199 	}
1200 }
1201 
1202 static unsigned int sci_get_mctrl(struct uart_port *port)
1203 {
1204 	/*
1205 	 * CTS/RTS is handled in hardware when supported, while nothing
1206 	 * else is wired up. Keep it simple and simply assert DSR/CAR.
1207 	 */
1208 	return TIOCM_DSR | TIOCM_CAR;
1209 }
1210 
1211 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1212 static void sci_dma_tx_complete(void *arg)
1213 {
1214 	struct sci_port *s = arg;
1215 	struct uart_port *port = &s->port;
1216 	struct circ_buf *xmit = &port->state->xmit;
1217 	unsigned long flags;
1218 
1219 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1220 
1221 	spin_lock_irqsave(&port->lock, flags);
1222 
1223 	xmit->tail += sg_dma_len(&s->sg_tx);
1224 	xmit->tail &= UART_XMIT_SIZE - 1;
1225 
1226 	port->icount.tx += sg_dma_len(&s->sg_tx);
1227 
1228 	async_tx_ack(s->desc_tx);
1229 	s->desc_tx = NULL;
1230 
1231 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1232 		uart_write_wakeup(port);
1233 
1234 	if (!uart_circ_empty(xmit)) {
1235 		s->cookie_tx = 0;
1236 		schedule_work(&s->work_tx);
1237 	} else {
1238 		s->cookie_tx = -EINVAL;
1239 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1240 			u16 ctrl = serial_port_in(port, SCSCR);
1241 			serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1242 		}
1243 	}
1244 
1245 	spin_unlock_irqrestore(&port->lock, flags);
1246 }
1247 
1248 /* Locking: called with port lock held */
1249 static int sci_dma_rx_push(struct sci_port *s, struct tty_struct *tty,
1250 			   size_t count)
1251 {
1252 	struct uart_port *port = &s->port;
1253 	int i, active, room;
1254 
1255 	room = tty_buffer_request_room(tty, count);
1256 
1257 	if (s->active_rx == s->cookie_rx[0]) {
1258 		active = 0;
1259 	} else if (s->active_rx == s->cookie_rx[1]) {
1260 		active = 1;
1261 	} else {
1262 		dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
1263 		return 0;
1264 	}
1265 
1266 	if (room < count)
1267 		dev_warn(port->dev, "Rx overrun: dropping %u bytes\n",
1268 			 count - room);
1269 	if (!room)
1270 		return room;
1271 
1272 	for (i = 0; i < room; i++)
1273 		tty_insert_flip_char(tty, ((u8 *)sg_virt(&s->sg_rx[active]))[i],
1274 				     TTY_NORMAL);
1275 
1276 	port->icount.rx += room;
1277 
1278 	return room;
1279 }
1280 
1281 static void sci_dma_rx_complete(void *arg)
1282 {
1283 	struct sci_port *s = arg;
1284 	struct uart_port *port = &s->port;
1285 	struct tty_struct *tty = port->state->port.tty;
1286 	unsigned long flags;
1287 	int count;
1288 
1289 	dev_dbg(port->dev, "%s(%d) active #%d\n", __func__, port->line, s->active_rx);
1290 
1291 	spin_lock_irqsave(&port->lock, flags);
1292 
1293 	count = sci_dma_rx_push(s, tty, s->buf_len_rx);
1294 
1295 	mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1296 
1297 	spin_unlock_irqrestore(&port->lock, flags);
1298 
1299 	if (count)
1300 		tty_flip_buffer_push(tty);
1301 
1302 	schedule_work(&s->work_rx);
1303 }
1304 
1305 static void sci_rx_dma_release(struct sci_port *s, bool enable_pio)
1306 {
1307 	struct dma_chan *chan = s->chan_rx;
1308 	struct uart_port *port = &s->port;
1309 
1310 	s->chan_rx = NULL;
1311 	s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL;
1312 	dma_release_channel(chan);
1313 	if (sg_dma_address(&s->sg_rx[0]))
1314 		dma_free_coherent(port->dev, s->buf_len_rx * 2,
1315 				  sg_virt(&s->sg_rx[0]), sg_dma_address(&s->sg_rx[0]));
1316 	if (enable_pio)
1317 		sci_start_rx(port);
1318 }
1319 
1320 static void sci_tx_dma_release(struct sci_port *s, bool enable_pio)
1321 {
1322 	struct dma_chan *chan = s->chan_tx;
1323 	struct uart_port *port = &s->port;
1324 
1325 	s->chan_tx = NULL;
1326 	s->cookie_tx = -EINVAL;
1327 	dma_release_channel(chan);
1328 	if (enable_pio)
1329 		sci_start_tx(port);
1330 }
1331 
1332 static void sci_submit_rx(struct sci_port *s)
1333 {
1334 	struct dma_chan *chan = s->chan_rx;
1335 	int i;
1336 
1337 	for (i = 0; i < 2; i++) {
1338 		struct scatterlist *sg = &s->sg_rx[i];
1339 		struct dma_async_tx_descriptor *desc;
1340 
1341 		desc = dmaengine_prep_slave_sg(chan,
1342 			sg, 1, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
1343 
1344 		if (desc) {
1345 			s->desc_rx[i] = desc;
1346 			desc->callback = sci_dma_rx_complete;
1347 			desc->callback_param = s;
1348 			s->cookie_rx[i] = desc->tx_submit(desc);
1349 		}
1350 
1351 		if (!desc || s->cookie_rx[i] < 0) {
1352 			if (i) {
1353 				async_tx_ack(s->desc_rx[0]);
1354 				s->cookie_rx[0] = -EINVAL;
1355 			}
1356 			if (desc) {
1357 				async_tx_ack(desc);
1358 				s->cookie_rx[i] = -EINVAL;
1359 			}
1360 			dev_warn(s->port.dev,
1361 				 "failed to re-start DMA, using PIO\n");
1362 			sci_rx_dma_release(s, true);
1363 			return;
1364 		}
1365 		dev_dbg(s->port.dev, "%s(): cookie %d to #%d\n", __func__,
1366 			s->cookie_rx[i], i);
1367 	}
1368 
1369 	s->active_rx = s->cookie_rx[0];
1370 
1371 	dma_async_issue_pending(chan);
1372 }
1373 
1374 static void work_fn_rx(struct work_struct *work)
1375 {
1376 	struct sci_port *s = container_of(work, struct sci_port, work_rx);
1377 	struct uart_port *port = &s->port;
1378 	struct dma_async_tx_descriptor *desc;
1379 	int new;
1380 
1381 	if (s->active_rx == s->cookie_rx[0]) {
1382 		new = 0;
1383 	} else if (s->active_rx == s->cookie_rx[1]) {
1384 		new = 1;
1385 	} else {
1386 		dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
1387 		return;
1388 	}
1389 	desc = s->desc_rx[new];
1390 
1391 	if (dma_async_is_tx_complete(s->chan_rx, s->active_rx, NULL, NULL) !=
1392 	    DMA_SUCCESS) {
1393 		/* Handle incomplete DMA receive */
1394 		struct tty_struct *tty = port->state->port.tty;
1395 		struct dma_chan *chan = s->chan_rx;
1396 		struct sh_desc *sh_desc = container_of(desc, struct sh_desc,
1397 						       async_tx);
1398 		unsigned long flags;
1399 		int count;
1400 
1401 		chan->device->device_control(chan, DMA_TERMINATE_ALL, 0);
1402 		dev_dbg(port->dev, "Read %u bytes with cookie %d\n",
1403 			sh_desc->partial, sh_desc->cookie);
1404 
1405 		spin_lock_irqsave(&port->lock, flags);
1406 		count = sci_dma_rx_push(s, tty, sh_desc->partial);
1407 		spin_unlock_irqrestore(&port->lock, flags);
1408 
1409 		if (count)
1410 			tty_flip_buffer_push(tty);
1411 
1412 		sci_submit_rx(s);
1413 
1414 		return;
1415 	}
1416 
1417 	s->cookie_rx[new] = desc->tx_submit(desc);
1418 	if (s->cookie_rx[new] < 0) {
1419 		dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1420 		sci_rx_dma_release(s, true);
1421 		return;
1422 	}
1423 
1424 	s->active_rx = s->cookie_rx[!new];
1425 
1426 	dev_dbg(port->dev, "%s: cookie %d #%d, new active #%d\n", __func__,
1427 		s->cookie_rx[new], new, s->active_rx);
1428 }
1429 
1430 static void work_fn_tx(struct work_struct *work)
1431 {
1432 	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1433 	struct dma_async_tx_descriptor *desc;
1434 	struct dma_chan *chan = s->chan_tx;
1435 	struct uart_port *port = &s->port;
1436 	struct circ_buf *xmit = &port->state->xmit;
1437 	struct scatterlist *sg = &s->sg_tx;
1438 
1439 	/*
1440 	 * DMA is idle now.
1441 	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1442 	 * offsets and lengths. Since it is a circular buffer, we have to
1443 	 * transmit till the end, and then the rest. Take the port lock to get a
1444 	 * consistent xmit buffer state.
1445 	 */
1446 	spin_lock_irq(&port->lock);
1447 	sg->offset = xmit->tail & (UART_XMIT_SIZE - 1);
1448 	sg_dma_address(sg) = (sg_dma_address(sg) & ~(UART_XMIT_SIZE - 1)) +
1449 		sg->offset;
1450 	sg_dma_len(sg) = min((int)CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
1451 		CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
1452 	spin_unlock_irq(&port->lock);
1453 
1454 	BUG_ON(!sg_dma_len(sg));
1455 
1456 	desc = dmaengine_prep_slave_sg(chan,
1457 			sg, s->sg_len_tx, DMA_MEM_TO_DEV,
1458 			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1459 	if (!desc) {
1460 		/* switch to PIO */
1461 		sci_tx_dma_release(s, true);
1462 		return;
1463 	}
1464 
1465 	dma_sync_sg_for_device(port->dev, sg, 1, DMA_TO_DEVICE);
1466 
1467 	spin_lock_irq(&port->lock);
1468 	s->desc_tx = desc;
1469 	desc->callback = sci_dma_tx_complete;
1470 	desc->callback_param = s;
1471 	spin_unlock_irq(&port->lock);
1472 	s->cookie_tx = desc->tx_submit(desc);
1473 	if (s->cookie_tx < 0) {
1474 		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1475 		/* switch to PIO */
1476 		sci_tx_dma_release(s, true);
1477 		return;
1478 	}
1479 
1480 	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n", __func__,
1481 		xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
1482 
1483 	dma_async_issue_pending(chan);
1484 }
1485 #endif
1486 
1487 static void sci_start_tx(struct uart_port *port)
1488 {
1489 	struct sci_port *s = to_sci_port(port);
1490 	unsigned short ctrl;
1491 
1492 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1493 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1494 		u16 new, scr = serial_port_in(port, SCSCR);
1495 		if (s->chan_tx)
1496 			new = scr | 0x8000;
1497 		else
1498 			new = scr & ~0x8000;
1499 		if (new != scr)
1500 			serial_port_out(port, SCSCR, new);
1501 	}
1502 
1503 	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
1504 	    s->cookie_tx < 0) {
1505 		s->cookie_tx = 0;
1506 		schedule_work(&s->work_tx);
1507 	}
1508 #endif
1509 
1510 	if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1511 		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
1512 		ctrl = serial_port_in(port, SCSCR);
1513 		serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
1514 	}
1515 }
1516 
1517 static void sci_stop_tx(struct uart_port *port)
1518 {
1519 	unsigned short ctrl;
1520 
1521 	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
1522 	ctrl = serial_port_in(port, SCSCR);
1523 
1524 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1525 		ctrl &= ~0x8000;
1526 
1527 	ctrl &= ~SCSCR_TIE;
1528 
1529 	serial_port_out(port, SCSCR, ctrl);
1530 }
1531 
1532 static void sci_start_rx(struct uart_port *port)
1533 {
1534 	unsigned short ctrl;
1535 
1536 	ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
1537 
1538 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1539 		ctrl &= ~0x4000;
1540 
1541 	serial_port_out(port, SCSCR, ctrl);
1542 }
1543 
1544 static void sci_stop_rx(struct uart_port *port)
1545 {
1546 	unsigned short ctrl;
1547 
1548 	ctrl = serial_port_in(port, SCSCR);
1549 
1550 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1551 		ctrl &= ~0x4000;
1552 
1553 	ctrl &= ~port_rx_irq_mask(port);
1554 
1555 	serial_port_out(port, SCSCR, ctrl);
1556 }
1557 
1558 static void sci_enable_ms(struct uart_port *port)
1559 {
1560 	/*
1561 	 * Not supported by hardware, always a nop.
1562 	 */
1563 }
1564 
1565 static void sci_break_ctl(struct uart_port *port, int break_state)
1566 {
1567 	/*
1568 	 * Not supported by hardware. Most parts couple break and rx
1569 	 * interrupts together, with break detection always enabled.
1570 	 */
1571 }
1572 
1573 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1574 static bool filter(struct dma_chan *chan, void *slave)
1575 {
1576 	struct sh_dmae_slave *param = slave;
1577 
1578 	dev_dbg(chan->device->dev, "%s: slave ID %d\n", __func__,
1579 		param->slave_id);
1580 
1581 	chan->private = param;
1582 	return true;
1583 }
1584 
1585 static void rx_timer_fn(unsigned long arg)
1586 {
1587 	struct sci_port *s = (struct sci_port *)arg;
1588 	struct uart_port *port = &s->port;
1589 	u16 scr = serial_port_in(port, SCSCR);
1590 
1591 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1592 		scr &= ~0x4000;
1593 		enable_irq(s->cfg->irqs[1]);
1594 	}
1595 	serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1596 	dev_dbg(port->dev, "DMA Rx timed out\n");
1597 	schedule_work(&s->work_rx);
1598 }
1599 
1600 static void sci_request_dma(struct uart_port *port)
1601 {
1602 	struct sci_port *s = to_sci_port(port);
1603 	struct sh_dmae_slave *param;
1604 	struct dma_chan *chan;
1605 	dma_cap_mask_t mask;
1606 	int nent;
1607 
1608 	dev_dbg(port->dev, "%s: port %d\n", __func__,
1609 		port->line);
1610 
1611 	if (s->cfg->dma_slave_tx <= 0 || s->cfg->dma_slave_rx <= 0)
1612 		return;
1613 
1614 	dma_cap_zero(mask);
1615 	dma_cap_set(DMA_SLAVE, mask);
1616 
1617 	param = &s->param_tx;
1618 
1619 	/* Slave ID, e.g., SHDMA_SLAVE_SCIF0_TX */
1620 	param->slave_id = s->cfg->dma_slave_tx;
1621 
1622 	s->cookie_tx = -EINVAL;
1623 	chan = dma_request_channel(mask, filter, param);
1624 	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1625 	if (chan) {
1626 		s->chan_tx = chan;
1627 		sg_init_table(&s->sg_tx, 1);
1628 		/* UART circular tx buffer is an aligned page. */
1629 		BUG_ON((int)port->state->xmit.buf & ~PAGE_MASK);
1630 		sg_set_page(&s->sg_tx, virt_to_page(port->state->xmit.buf),
1631 			    UART_XMIT_SIZE, (int)port->state->xmit.buf & ~PAGE_MASK);
1632 		nent = dma_map_sg(port->dev, &s->sg_tx, 1, DMA_TO_DEVICE);
1633 		if (!nent)
1634 			sci_tx_dma_release(s, false);
1635 		else
1636 			dev_dbg(port->dev, "%s: mapped %d@%p to %x\n", __func__,
1637 				sg_dma_len(&s->sg_tx),
1638 				port->state->xmit.buf, sg_dma_address(&s->sg_tx));
1639 
1640 		s->sg_len_tx = nent;
1641 
1642 		INIT_WORK(&s->work_tx, work_fn_tx);
1643 	}
1644 
1645 	param = &s->param_rx;
1646 
1647 	/* Slave ID, e.g., SHDMA_SLAVE_SCIF0_RX */
1648 	param->slave_id = s->cfg->dma_slave_rx;
1649 
1650 	chan = dma_request_channel(mask, filter, param);
1651 	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1652 	if (chan) {
1653 		dma_addr_t dma[2];
1654 		void *buf[2];
1655 		int i;
1656 
1657 		s->chan_rx = chan;
1658 
1659 		s->buf_len_rx = 2 * max(16, (int)port->fifosize);
1660 		buf[0] = dma_alloc_coherent(port->dev, s->buf_len_rx * 2,
1661 					    &dma[0], GFP_KERNEL);
1662 
1663 		if (!buf[0]) {
1664 			dev_warn(port->dev,
1665 				 "failed to allocate dma buffer, using PIO\n");
1666 			sci_rx_dma_release(s, true);
1667 			return;
1668 		}
1669 
1670 		buf[1] = buf[0] + s->buf_len_rx;
1671 		dma[1] = dma[0] + s->buf_len_rx;
1672 
1673 		for (i = 0; i < 2; i++) {
1674 			struct scatterlist *sg = &s->sg_rx[i];
1675 
1676 			sg_init_table(sg, 1);
1677 			sg_set_page(sg, virt_to_page(buf[i]), s->buf_len_rx,
1678 				    (int)buf[i] & ~PAGE_MASK);
1679 			sg_dma_address(sg) = dma[i];
1680 		}
1681 
1682 		INIT_WORK(&s->work_rx, work_fn_rx);
1683 		setup_timer(&s->rx_timer, rx_timer_fn, (unsigned long)s);
1684 
1685 		sci_submit_rx(s);
1686 	}
1687 }
1688 
1689 static void sci_free_dma(struct uart_port *port)
1690 {
1691 	struct sci_port *s = to_sci_port(port);
1692 
1693 	if (s->chan_tx)
1694 		sci_tx_dma_release(s, false);
1695 	if (s->chan_rx)
1696 		sci_rx_dma_release(s, false);
1697 }
1698 #else
1699 static inline void sci_request_dma(struct uart_port *port)
1700 {
1701 }
1702 
1703 static inline void sci_free_dma(struct uart_port *port)
1704 {
1705 }
1706 #endif
1707 
1708 static int sci_startup(struct uart_port *port)
1709 {
1710 	struct sci_port *s = to_sci_port(port);
1711 	int ret;
1712 
1713 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1714 
1715 	pm_runtime_put_noidle(port->dev);
1716 
1717 	sci_port_enable(s);
1718 
1719 	ret = sci_request_irq(s);
1720 	if (unlikely(ret < 0))
1721 		return ret;
1722 
1723 	sci_request_dma(port);
1724 
1725 	sci_start_tx(port);
1726 	sci_start_rx(port);
1727 
1728 	return 0;
1729 }
1730 
1731 static void sci_shutdown(struct uart_port *port)
1732 {
1733 	struct sci_port *s = to_sci_port(port);
1734 
1735 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1736 
1737 	sci_stop_rx(port);
1738 	sci_stop_tx(port);
1739 
1740 	sci_free_dma(port);
1741 	sci_free_irq(s);
1742 
1743 	sci_port_disable(s);
1744 
1745 	pm_runtime_get_noresume(port->dev);
1746 }
1747 
1748 static unsigned int sci_scbrr_calc(unsigned int algo_id, unsigned int bps,
1749 				   unsigned long freq)
1750 {
1751 	switch (algo_id) {
1752 	case SCBRR_ALGO_1:
1753 		return ((freq + 16 * bps) / (16 * bps) - 1);
1754 	case SCBRR_ALGO_2:
1755 		return ((freq + 16 * bps) / (32 * bps) - 1);
1756 	case SCBRR_ALGO_3:
1757 		return (((freq * 2) + 16 * bps) / (16 * bps) - 1);
1758 	case SCBRR_ALGO_4:
1759 		return (((freq * 2) + 16 * bps) / (32 * bps) - 1);
1760 	case SCBRR_ALGO_5:
1761 		return (((freq * 1000 / 32) / bps) - 1);
1762 	}
1763 
1764 	/* Warn, but use a safe default */
1765 	WARN_ON(1);
1766 
1767 	return ((freq + 16 * bps) / (32 * bps) - 1);
1768 }
1769 
1770 static void sci_reset(struct uart_port *port)
1771 {
1772 	struct plat_sci_reg *reg;
1773 	unsigned int status;
1774 
1775 	do {
1776 		status = serial_port_in(port, SCxSR);
1777 	} while (!(status & SCxSR_TEND(port)));
1778 
1779 	serial_port_out(port, SCSCR, 0x00);	/* TE=0, RE=0, CKE1=0 */
1780 
1781 	reg = sci_getreg(port, SCFCR);
1782 	if (reg->size)
1783 		serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
1784 }
1785 
1786 static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
1787 			    struct ktermios *old)
1788 {
1789 	struct sci_port *s = to_sci_port(port);
1790 	struct plat_sci_reg *reg;
1791 	unsigned int baud, smr_val, max_baud;
1792 	int t = -1;
1793 
1794 	/*
1795 	 * earlyprintk comes here early on with port->uartclk set to zero.
1796 	 * the clock framework is not up and running at this point so here
1797 	 * we assume that 115200 is the maximum baud rate. please note that
1798 	 * the baud rate is not programmed during earlyprintk - it is assumed
1799 	 * that the previous boot loader has enabled required clocks and
1800 	 * setup the baud rate generator hardware for us already.
1801 	 */
1802 	max_baud = port->uartclk ? port->uartclk / 16 : 115200;
1803 
1804 	baud = uart_get_baud_rate(port, termios, old, 0, max_baud);
1805 	if (likely(baud && port->uartclk))
1806 		t = sci_scbrr_calc(s->cfg->scbrr_algo_id, baud, port->uartclk);
1807 
1808 	sci_port_enable(s);
1809 
1810 	sci_reset(port);
1811 
1812 	smr_val = serial_port_in(port, SCSMR) & 3;
1813 
1814 	if ((termios->c_cflag & CSIZE) == CS7)
1815 		smr_val |= 0x40;
1816 	if (termios->c_cflag & PARENB)
1817 		smr_val |= 0x20;
1818 	if (termios->c_cflag & PARODD)
1819 		smr_val |= 0x30;
1820 	if (termios->c_cflag & CSTOPB)
1821 		smr_val |= 0x08;
1822 
1823 	uart_update_timeout(port, termios->c_cflag, baud);
1824 
1825 	serial_port_out(port, SCSMR, smr_val);
1826 
1827 	dev_dbg(port->dev, "%s: SMR %x, t %x, SCSCR %x\n", __func__, smr_val, t,
1828 		s->cfg->scscr);
1829 
1830 	if (t > 0) {
1831 		if (t >= 256) {
1832 			serial_port_out(port, SCSMR, (serial_port_in(port, SCSMR) & ~3) | 1);
1833 			t >>= 2;
1834 		} else
1835 			serial_port_out(port, SCSMR, serial_port_in(port, SCSMR) & ~3);
1836 
1837 		serial_port_out(port, SCBRR, t);
1838 		udelay((1000000+(baud-1)) / baud); /* Wait one bit interval */
1839 	}
1840 
1841 	sci_init_pins(port, termios->c_cflag);
1842 
1843 	reg = sci_getreg(port, SCFCR);
1844 	if (reg->size) {
1845 		unsigned short ctrl = serial_port_in(port, SCFCR);
1846 
1847 		if (s->cfg->capabilities & SCIx_HAVE_RTSCTS) {
1848 			if (termios->c_cflag & CRTSCTS)
1849 				ctrl |= SCFCR_MCE;
1850 			else
1851 				ctrl &= ~SCFCR_MCE;
1852 		}
1853 
1854 		/*
1855 		 * As we've done a sci_reset() above, ensure we don't
1856 		 * interfere with the FIFOs while toggling MCE. As the
1857 		 * reset values could still be set, simply mask them out.
1858 		 */
1859 		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
1860 
1861 		serial_port_out(port, SCFCR, ctrl);
1862 	}
1863 
1864 	serial_port_out(port, SCSCR, s->cfg->scscr);
1865 
1866 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1867 	/*
1868 	 * Calculate delay for 1.5 DMA buffers: see
1869 	 * drivers/serial/serial_core.c::uart_update_timeout(). With 10 bits
1870 	 * (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above function
1871 	 * calculates 1 jiffie for the data plus 5 jiffies for the "slop(e)."
1872 	 * Then below we calculate 3 jiffies (12ms) for 1.5 DMA buffers (3 FIFO
1873 	 * sizes), but it has been found out experimentally, that this is not
1874 	 * enough: the driver too often needlessly runs on a DMA timeout. 20ms
1875 	 * as a minimum seem to work perfectly.
1876 	 */
1877 	if (s->chan_rx) {
1878 		s->rx_timeout = (port->timeout - HZ / 50) * s->buf_len_rx * 3 /
1879 			port->fifosize / 2;
1880 		dev_dbg(port->dev,
1881 			"DMA Rx t-out %ums, tty t-out %u jiffies\n",
1882 			s->rx_timeout * 1000 / HZ, port->timeout);
1883 		if (s->rx_timeout < msecs_to_jiffies(20))
1884 			s->rx_timeout = msecs_to_jiffies(20);
1885 	}
1886 #endif
1887 
1888 	if ((termios->c_cflag & CREAD) != 0)
1889 		sci_start_rx(port);
1890 
1891 	sci_port_disable(s);
1892 }
1893 
1894 static const char *sci_type(struct uart_port *port)
1895 {
1896 	switch (port->type) {
1897 	case PORT_IRDA:
1898 		return "irda";
1899 	case PORT_SCI:
1900 		return "sci";
1901 	case PORT_SCIF:
1902 		return "scif";
1903 	case PORT_SCIFA:
1904 		return "scifa";
1905 	case PORT_SCIFB:
1906 		return "scifb";
1907 	}
1908 
1909 	return NULL;
1910 }
1911 
1912 static inline unsigned long sci_port_size(struct uart_port *port)
1913 {
1914 	/*
1915 	 * Pick an arbitrary size that encapsulates all of the base
1916 	 * registers by default. This can be optimized later, or derived
1917 	 * from platform resource data at such a time that ports begin to
1918 	 * behave more erratically.
1919 	 */
1920 	return 64;
1921 }
1922 
1923 static int sci_remap_port(struct uart_port *port)
1924 {
1925 	unsigned long size = sci_port_size(port);
1926 
1927 	/*
1928 	 * Nothing to do if there's already an established membase.
1929 	 */
1930 	if (port->membase)
1931 		return 0;
1932 
1933 	if (port->flags & UPF_IOREMAP) {
1934 		port->membase = ioremap_nocache(port->mapbase, size);
1935 		if (unlikely(!port->membase)) {
1936 			dev_err(port->dev, "can't remap port#%d\n", port->line);
1937 			return -ENXIO;
1938 		}
1939 	} else {
1940 		/*
1941 		 * For the simple (and majority of) cases where we don't
1942 		 * need to do any remapping, just cast the cookie
1943 		 * directly.
1944 		 */
1945 		port->membase = (void __iomem *)port->mapbase;
1946 	}
1947 
1948 	return 0;
1949 }
1950 
1951 static void sci_release_port(struct uart_port *port)
1952 {
1953 	if (port->flags & UPF_IOREMAP) {
1954 		iounmap(port->membase);
1955 		port->membase = NULL;
1956 	}
1957 
1958 	release_mem_region(port->mapbase, sci_port_size(port));
1959 }
1960 
1961 static int sci_request_port(struct uart_port *port)
1962 {
1963 	unsigned long size = sci_port_size(port);
1964 	struct resource *res;
1965 	int ret;
1966 
1967 	res = request_mem_region(port->mapbase, size, dev_name(port->dev));
1968 	if (unlikely(res == NULL))
1969 		return -EBUSY;
1970 
1971 	ret = sci_remap_port(port);
1972 	if (unlikely(ret != 0)) {
1973 		release_resource(res);
1974 		return ret;
1975 	}
1976 
1977 	return 0;
1978 }
1979 
1980 static void sci_config_port(struct uart_port *port, int flags)
1981 {
1982 	if (flags & UART_CONFIG_TYPE) {
1983 		struct sci_port *sport = to_sci_port(port);
1984 
1985 		port->type = sport->cfg->type;
1986 		sci_request_port(port);
1987 	}
1988 }
1989 
1990 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
1991 {
1992 	struct sci_port *s = to_sci_port(port);
1993 
1994 	if (ser->irq != s->cfg->irqs[SCIx_TXI_IRQ] || ser->irq > nr_irqs)
1995 		return -EINVAL;
1996 	if (ser->baud_base < 2400)
1997 		/* No paper tape reader for Mitch.. */
1998 		return -EINVAL;
1999 
2000 	return 0;
2001 }
2002 
2003 static struct uart_ops sci_uart_ops = {
2004 	.tx_empty	= sci_tx_empty,
2005 	.set_mctrl	= sci_set_mctrl,
2006 	.get_mctrl	= sci_get_mctrl,
2007 	.start_tx	= sci_start_tx,
2008 	.stop_tx	= sci_stop_tx,
2009 	.stop_rx	= sci_stop_rx,
2010 	.enable_ms	= sci_enable_ms,
2011 	.break_ctl	= sci_break_ctl,
2012 	.startup	= sci_startup,
2013 	.shutdown	= sci_shutdown,
2014 	.set_termios	= sci_set_termios,
2015 	.type		= sci_type,
2016 	.release_port	= sci_release_port,
2017 	.request_port	= sci_request_port,
2018 	.config_port	= sci_config_port,
2019 	.verify_port	= sci_verify_port,
2020 #ifdef CONFIG_CONSOLE_POLL
2021 	.poll_get_char	= sci_poll_get_char,
2022 	.poll_put_char	= sci_poll_put_char,
2023 #endif
2024 };
2025 
2026 static int __devinit sci_init_single(struct platform_device *dev,
2027 				     struct sci_port *sci_port,
2028 				     unsigned int index,
2029 				     struct plat_sci_port *p)
2030 {
2031 	struct uart_port *port = &sci_port->port;
2032 	int ret;
2033 
2034 	sci_port->cfg	= p;
2035 
2036 	port->ops	= &sci_uart_ops;
2037 	port->iotype	= UPIO_MEM;
2038 	port->line	= index;
2039 
2040 	switch (p->type) {
2041 	case PORT_SCIFB:
2042 		port->fifosize = 256;
2043 		break;
2044 	case PORT_SCIFA:
2045 		port->fifosize = 64;
2046 		break;
2047 	case PORT_SCIF:
2048 		port->fifosize = 16;
2049 		break;
2050 	default:
2051 		port->fifosize = 1;
2052 		break;
2053 	}
2054 
2055 	if (p->regtype == SCIx_PROBE_REGTYPE) {
2056 		ret = sci_probe_regmap(p);
2057 		if (unlikely(ret))
2058 			return ret;
2059 	}
2060 
2061 	if (dev) {
2062 		sci_port->iclk = clk_get(&dev->dev, "sci_ick");
2063 		if (IS_ERR(sci_port->iclk)) {
2064 			sci_port->iclk = clk_get(&dev->dev, "peripheral_clk");
2065 			if (IS_ERR(sci_port->iclk)) {
2066 				dev_err(&dev->dev, "can't get iclk\n");
2067 				return PTR_ERR(sci_port->iclk);
2068 			}
2069 		}
2070 
2071 		/*
2072 		 * The function clock is optional, ignore it if we can't
2073 		 * find it.
2074 		 */
2075 		sci_port->fclk = clk_get(&dev->dev, "sci_fck");
2076 		if (IS_ERR(sci_port->fclk))
2077 			sci_port->fclk = NULL;
2078 
2079 		port->dev = &dev->dev;
2080 
2081 		sci_init_gpios(sci_port);
2082 
2083 		pm_runtime_irq_safe(&dev->dev);
2084 		pm_runtime_get_noresume(&dev->dev);
2085 		pm_runtime_enable(&dev->dev);
2086 	}
2087 
2088 	sci_port->break_timer.data = (unsigned long)sci_port;
2089 	sci_port->break_timer.function = sci_break_timer;
2090 	init_timer(&sci_port->break_timer);
2091 
2092 	/*
2093 	 * Establish some sensible defaults for the error detection.
2094 	 */
2095 	if (!p->error_mask)
2096 		p->error_mask = (p->type == PORT_SCI) ?
2097 			SCI_DEFAULT_ERROR_MASK : SCIF_DEFAULT_ERROR_MASK;
2098 
2099 	/*
2100 	 * Establish sensible defaults for the overrun detection, unless
2101 	 * the part has explicitly disabled support for it.
2102 	 */
2103 	if (p->overrun_bit != SCIx_NOT_SUPPORTED) {
2104 		if (p->type == PORT_SCI)
2105 			p->overrun_bit = 5;
2106 		else if (p->scbrr_algo_id == SCBRR_ALGO_4)
2107 			p->overrun_bit = 9;
2108 		else
2109 			p->overrun_bit = 0;
2110 
2111 		/*
2112 		 * Make the error mask inclusive of overrun detection, if
2113 		 * supported.
2114 		 */
2115 		p->error_mask |= (1 << p->overrun_bit);
2116 	}
2117 
2118 	port->mapbase		= p->mapbase;
2119 	port->type		= p->type;
2120 	port->flags		= p->flags;
2121 	port->regshift		= p->regshift;
2122 
2123 	/*
2124 	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
2125 	 * for the multi-IRQ ports, which is where we are primarily
2126 	 * concerned with the shutdown path synchronization.
2127 	 *
2128 	 * For the muxed case there's nothing more to do.
2129 	 */
2130 	port->irq		= p->irqs[SCIx_RXI_IRQ];
2131 	port->irqflags		= 0;
2132 
2133 	port->serial_in		= sci_serial_in;
2134 	port->serial_out	= sci_serial_out;
2135 
2136 	if (p->dma_slave_tx > 0 && p->dma_slave_rx > 0)
2137 		dev_dbg(port->dev, "DMA tx %d, rx %d\n",
2138 			p->dma_slave_tx, p->dma_slave_rx);
2139 
2140 	return 0;
2141 }
2142 
2143 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
2144 static void serial_console_putchar(struct uart_port *port, int ch)
2145 {
2146 	sci_poll_put_char(port, ch);
2147 }
2148 
2149 /*
2150  *	Print a string to the serial port trying not to disturb
2151  *	any possible real use of the port...
2152  */
2153 static void serial_console_write(struct console *co, const char *s,
2154 				 unsigned count)
2155 {
2156 	struct sci_port *sci_port = &sci_ports[co->index];
2157 	struct uart_port *port = &sci_port->port;
2158 	unsigned short bits;
2159 
2160 	sci_port_enable(sci_port);
2161 
2162 	uart_console_write(port, s, count, serial_console_putchar);
2163 
2164 	/* wait until fifo is empty and last bit has been transmitted */
2165 	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
2166 	while ((serial_port_in(port, SCxSR) & bits) != bits)
2167 		cpu_relax();
2168 
2169 	sci_port_disable(sci_port);
2170 }
2171 
2172 static int __devinit serial_console_setup(struct console *co, char *options)
2173 {
2174 	struct sci_port *sci_port;
2175 	struct uart_port *port;
2176 	int baud = 115200;
2177 	int bits = 8;
2178 	int parity = 'n';
2179 	int flow = 'n';
2180 	int ret;
2181 
2182 	/*
2183 	 * Refuse to handle any bogus ports.
2184 	 */
2185 	if (co->index < 0 || co->index >= SCI_NPORTS)
2186 		return -ENODEV;
2187 
2188 	sci_port = &sci_ports[co->index];
2189 	port = &sci_port->port;
2190 
2191 	/*
2192 	 * Refuse to handle uninitialized ports.
2193 	 */
2194 	if (!port->ops)
2195 		return -ENODEV;
2196 
2197 	ret = sci_remap_port(port);
2198 	if (unlikely(ret != 0))
2199 		return ret;
2200 
2201 	sci_port_enable(sci_port);
2202 
2203 	if (options)
2204 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2205 
2206 	sci_port_disable(sci_port);
2207 
2208 	return uart_set_options(port, co, baud, parity, bits, flow);
2209 }
2210 
2211 static struct console serial_console = {
2212 	.name		= "ttySC",
2213 	.device		= uart_console_device,
2214 	.write		= serial_console_write,
2215 	.setup		= serial_console_setup,
2216 	.flags		= CON_PRINTBUFFER,
2217 	.index		= -1,
2218 	.data		= &sci_uart_driver,
2219 };
2220 
2221 static struct console early_serial_console = {
2222 	.name           = "early_ttySC",
2223 	.write          = serial_console_write,
2224 	.flags          = CON_PRINTBUFFER,
2225 	.index		= -1,
2226 };
2227 
2228 static char early_serial_buf[32];
2229 
2230 static int __devinit sci_probe_earlyprintk(struct platform_device *pdev)
2231 {
2232 	struct plat_sci_port *cfg = pdev->dev.platform_data;
2233 
2234 	if (early_serial_console.data)
2235 		return -EEXIST;
2236 
2237 	early_serial_console.index = pdev->id;
2238 
2239 	sci_init_single(NULL, &sci_ports[pdev->id], pdev->id, cfg);
2240 
2241 	serial_console_setup(&early_serial_console, early_serial_buf);
2242 
2243 	if (!strstr(early_serial_buf, "keep"))
2244 		early_serial_console.flags |= CON_BOOT;
2245 
2246 	register_console(&early_serial_console);
2247 	return 0;
2248 }
2249 
2250 #define uart_console(port)	((port)->cons->index == (port)->line)
2251 
2252 static int sci_runtime_suspend(struct device *dev)
2253 {
2254 	struct sci_port *sci_port = dev_get_drvdata(dev);
2255 	struct uart_port *port = &sci_port->port;
2256 
2257 	if (uart_console(port)) {
2258 		struct plat_sci_reg *reg;
2259 
2260 		sci_port->saved_smr = serial_port_in(port, SCSMR);
2261 		sci_port->saved_brr = serial_port_in(port, SCBRR);
2262 
2263 		reg = sci_getreg(port, SCFCR);
2264 		if (reg->size)
2265 			sci_port->saved_fcr = serial_port_in(port, SCFCR);
2266 		else
2267 			sci_port->saved_fcr = 0;
2268 	}
2269 	return 0;
2270 }
2271 
2272 static int sci_runtime_resume(struct device *dev)
2273 {
2274 	struct sci_port *sci_port = dev_get_drvdata(dev);
2275 	struct uart_port *port = &sci_port->port;
2276 
2277 	if (uart_console(port)) {
2278 		sci_reset(port);
2279 		serial_port_out(port, SCSMR, sci_port->saved_smr);
2280 		serial_port_out(port, SCBRR, sci_port->saved_brr);
2281 
2282 		if (sci_port->saved_fcr)
2283 			serial_port_out(port, SCFCR, sci_port->saved_fcr);
2284 
2285 		serial_port_out(port, SCSCR, sci_port->cfg->scscr);
2286 	}
2287 	return 0;
2288 }
2289 
2290 #define SCI_CONSOLE	(&serial_console)
2291 
2292 #else
2293 static inline int __devinit sci_probe_earlyprintk(struct platform_device *pdev)
2294 {
2295 	return -EINVAL;
2296 }
2297 
2298 #define SCI_CONSOLE	NULL
2299 #define sci_runtime_suspend	NULL
2300 #define sci_runtime_resume	NULL
2301 
2302 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE */
2303 
2304 static char banner[] __initdata =
2305 	KERN_INFO "SuperH SCI(F) driver initialized\n";
2306 
2307 static struct uart_driver sci_uart_driver = {
2308 	.owner		= THIS_MODULE,
2309 	.driver_name	= "sci",
2310 	.dev_name	= "ttySC",
2311 	.major		= SCI_MAJOR,
2312 	.minor		= SCI_MINOR_START,
2313 	.nr		= SCI_NPORTS,
2314 	.cons		= SCI_CONSOLE,
2315 };
2316 
2317 static int sci_remove(struct platform_device *dev)
2318 {
2319 	struct sci_port *port = platform_get_drvdata(dev);
2320 
2321 	cpufreq_unregister_notifier(&port->freq_transition,
2322 				    CPUFREQ_TRANSITION_NOTIFIER);
2323 
2324 	sci_free_gpios(port);
2325 
2326 	uart_remove_one_port(&sci_uart_driver, &port->port);
2327 
2328 	clk_put(port->iclk);
2329 	clk_put(port->fclk);
2330 
2331 	pm_runtime_disable(&dev->dev);
2332 	return 0;
2333 }
2334 
2335 static int __devinit sci_probe_single(struct platform_device *dev,
2336 				      unsigned int index,
2337 				      struct plat_sci_port *p,
2338 				      struct sci_port *sciport)
2339 {
2340 	int ret;
2341 
2342 	/* Sanity check */
2343 	if (unlikely(index >= SCI_NPORTS)) {
2344 		dev_notice(&dev->dev, "Attempting to register port "
2345 			   "%d when only %d are available.\n",
2346 			   index+1, SCI_NPORTS);
2347 		dev_notice(&dev->dev, "Consider bumping "
2348 			   "CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
2349 		return 0;
2350 	}
2351 
2352 	ret = sci_init_single(dev, sciport, index, p);
2353 	if (ret)
2354 		return ret;
2355 
2356 	return uart_add_one_port(&sci_uart_driver, &sciport->port);
2357 }
2358 
2359 static int __devinit sci_probe(struct platform_device *dev)
2360 {
2361 	struct plat_sci_port *p = dev->dev.platform_data;
2362 	struct sci_port *sp = &sci_ports[dev->id];
2363 	int ret;
2364 
2365 	/*
2366 	 * If we've come here via earlyprintk initialization, head off to
2367 	 * the special early probe. We don't have sufficient device state
2368 	 * to make it beyond this yet.
2369 	 */
2370 	if (is_early_platform_device(dev))
2371 		return sci_probe_earlyprintk(dev);
2372 
2373 	platform_set_drvdata(dev, sp);
2374 
2375 	ret = sci_probe_single(dev, dev->id, p, sp);
2376 	if (ret)
2377 		goto err_unreg;
2378 
2379 	sp->freq_transition.notifier_call = sci_notifier;
2380 
2381 	ret = cpufreq_register_notifier(&sp->freq_transition,
2382 					CPUFREQ_TRANSITION_NOTIFIER);
2383 	if (unlikely(ret < 0))
2384 		goto err_unreg;
2385 
2386 #ifdef CONFIG_SH_STANDARD_BIOS
2387 	sh_bios_gdb_detach();
2388 #endif
2389 
2390 	return 0;
2391 
2392 err_unreg:
2393 	sci_remove(dev);
2394 	return ret;
2395 }
2396 
2397 static int sci_suspend(struct device *dev)
2398 {
2399 	struct sci_port *sport = dev_get_drvdata(dev);
2400 
2401 	if (sport)
2402 		uart_suspend_port(&sci_uart_driver, &sport->port);
2403 
2404 	return 0;
2405 }
2406 
2407 static int sci_resume(struct device *dev)
2408 {
2409 	struct sci_port *sport = dev_get_drvdata(dev);
2410 
2411 	if (sport)
2412 		uart_resume_port(&sci_uart_driver, &sport->port);
2413 
2414 	return 0;
2415 }
2416 
2417 static const struct dev_pm_ops sci_dev_pm_ops = {
2418 	.runtime_suspend = sci_runtime_suspend,
2419 	.runtime_resume = sci_runtime_resume,
2420 	.suspend	= sci_suspend,
2421 	.resume		= sci_resume,
2422 };
2423 
2424 static struct platform_driver sci_driver = {
2425 	.probe		= sci_probe,
2426 	.remove		= sci_remove,
2427 	.driver		= {
2428 		.name	= "sh-sci",
2429 		.owner	= THIS_MODULE,
2430 		.pm	= &sci_dev_pm_ops,
2431 	},
2432 };
2433 
2434 static int __init sci_init(void)
2435 {
2436 	int ret;
2437 
2438 	printk(banner);
2439 
2440 	ret = uart_register_driver(&sci_uart_driver);
2441 	if (likely(ret == 0)) {
2442 		ret = platform_driver_register(&sci_driver);
2443 		if (unlikely(ret))
2444 			uart_unregister_driver(&sci_uart_driver);
2445 	}
2446 
2447 	return ret;
2448 }
2449 
2450 static void __exit sci_exit(void)
2451 {
2452 	platform_driver_unregister(&sci_driver);
2453 	uart_unregister_driver(&sci_uart_driver);
2454 }
2455 
2456 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
2457 early_platform_init_buffer("earlyprintk", &sci_driver,
2458 			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
2459 #endif
2460 module_init(sci_init);
2461 module_exit(sci_exit);
2462 
2463 MODULE_LICENSE("GPL");
2464 MODULE_ALIAS("platform:sh-sci");
2465 MODULE_AUTHOR("Paul Mundt");
2466 MODULE_DESCRIPTION("SuperH SCI(F) serial driver");
2467