xref: /openbmc/linux/drivers/tty/serial/sh-sci.c (revision bd329f028f1cd51c7623c326147af07c6d832193)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
4  *
5  *  Copyright (C) 2002 - 2011  Paul Mundt
6  *  Copyright (C) 2015 Glider bvba
7  *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
8  *
9  * based off of the old drivers/char/sh-sci.c by:
10  *
11  *   Copyright (C) 1999, 2000  Niibe Yutaka
12  *   Copyright (C) 2000  Sugioka Toshinobu
13  *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
14  *   Modified to support SecureEdge. David McCullough (2002)
15  *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
16  *   Removed SH7300 support (Jul 2007).
17  */
18 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
19 #define SUPPORT_SYSRQ
20 #endif
21 
22 #undef DEBUG
23 
24 #include <linux/clk.h>
25 #include <linux/console.h>
26 #include <linux/ctype.h>
27 #include <linux/cpufreq.h>
28 #include <linux/delay.h>
29 #include <linux/dmaengine.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/err.h>
32 #include <linux/errno.h>
33 #include <linux/init.h>
34 #include <linux/interrupt.h>
35 #include <linux/ioport.h>
36 #include <linux/major.h>
37 #include <linux/module.h>
38 #include <linux/mm.h>
39 #include <linux/of.h>
40 #include <linux/of_device.h>
41 #include <linux/platform_device.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/scatterlist.h>
44 #include <linux/serial.h>
45 #include <linux/serial_sci.h>
46 #include <linux/sh_dma.h>
47 #include <linux/slab.h>
48 #include <linux/string.h>
49 #include <linux/sysrq.h>
50 #include <linux/timer.h>
51 #include <linux/tty.h>
52 #include <linux/tty_flip.h>
53 
54 #ifdef CONFIG_SUPERH
55 #include <asm/sh_bios.h>
56 #endif
57 
58 #include "serial_mctrl_gpio.h"
59 #include "sh-sci.h"
60 
61 /* Offsets into the sci_port->irqs array */
62 enum {
63 	SCIx_ERI_IRQ,
64 	SCIx_RXI_IRQ,
65 	SCIx_TXI_IRQ,
66 	SCIx_BRI_IRQ,
67 	SCIx_NR_IRQS,
68 
69 	SCIx_MUX_IRQ = SCIx_NR_IRQS,	/* special case */
70 };
71 
72 #define SCIx_IRQ_IS_MUXED(port)			\
73 	((port)->irqs[SCIx_ERI_IRQ] ==	\
74 	 (port)->irqs[SCIx_RXI_IRQ]) ||	\
75 	((port)->irqs[SCIx_ERI_IRQ] &&	\
76 	 ((port)->irqs[SCIx_RXI_IRQ] < 0))
77 
78 enum SCI_CLKS {
79 	SCI_FCK,		/* Functional Clock */
80 	SCI_SCK,		/* Optional External Clock */
81 	SCI_BRG_INT,		/* Optional BRG Internal Clock Source */
82 	SCI_SCIF_CLK,		/* Optional BRG External Clock Source */
83 	SCI_NUM_CLKS
84 };
85 
86 /* Bit x set means sampling rate x + 1 is supported */
87 #define SCI_SR(x)		BIT((x) - 1)
88 #define SCI_SR_RANGE(x, y)	GENMASK((y) - 1, (x) - 1)
89 
90 #define SCI_SR_SCIFAB		SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \
91 				SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \
92 				SCI_SR(19) | SCI_SR(27)
93 
94 #define min_sr(_port)		ffs((_port)->sampling_rate_mask)
95 #define max_sr(_port)		fls((_port)->sampling_rate_mask)
96 
97 /* Iterate over all supported sampling rates, from high to low */
98 #define for_each_sr(_sr, _port)						\
99 	for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--)	\
100 		if ((_port)->sampling_rate_mask & SCI_SR((_sr)))
101 
102 struct plat_sci_reg {
103 	u8 offset, size;
104 };
105 
106 struct sci_port_params {
107 	const struct plat_sci_reg regs[SCIx_NR_REGS];
108 	unsigned int fifosize;
109 	unsigned int overrun_reg;
110 	unsigned int overrun_mask;
111 	unsigned int sampling_rate_mask;
112 	unsigned int error_mask;
113 	unsigned int error_clear;
114 };
115 
116 struct sci_port {
117 	struct uart_port	port;
118 
119 	/* Platform configuration */
120 	const struct sci_port_params *params;
121 	const struct plat_sci_port *cfg;
122 	unsigned int		sampling_rate_mask;
123 	resource_size_t		reg_size;
124 	struct mctrl_gpios	*gpios;
125 
126 	/* Clocks */
127 	struct clk		*clks[SCI_NUM_CLKS];
128 	unsigned long		clk_rates[SCI_NUM_CLKS];
129 
130 	int			irqs[SCIx_NR_IRQS];
131 	char			*irqstr[SCIx_NR_IRQS];
132 
133 	struct dma_chan			*chan_tx;
134 	struct dma_chan			*chan_rx;
135 
136 #ifdef CONFIG_SERIAL_SH_SCI_DMA
137 	dma_cookie_t			cookie_tx;
138 	dma_cookie_t			cookie_rx[2];
139 	dma_cookie_t			active_rx;
140 	dma_addr_t			tx_dma_addr;
141 	unsigned int			tx_dma_len;
142 	struct scatterlist		sg_rx[2];
143 	void				*rx_buf[2];
144 	size_t				buf_len_rx;
145 	struct work_struct		work_tx;
146 	struct timer_list		rx_timer;
147 	unsigned int			rx_timeout;
148 #endif
149 	unsigned int			rx_frame;
150 	int				rx_trigger;
151 	struct timer_list		rx_fifo_timer;
152 	int				rx_fifo_timeout;
153 	u16				hscif_tot;
154 
155 	bool has_rtscts;
156 	bool autorts;
157 };
158 
159 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
160 
161 static struct sci_port sci_ports[SCI_NPORTS];
162 static struct uart_driver sci_uart_driver;
163 
164 static inline struct sci_port *
165 to_sci_port(struct uart_port *uart)
166 {
167 	return container_of(uart, struct sci_port, port);
168 }
169 
170 static const struct sci_port_params sci_port_params[SCIx_NR_REGTYPES] = {
171 	/*
172 	 * Common SCI definitions, dependent on the port's regshift
173 	 * value.
174 	 */
175 	[SCIx_SCI_REGTYPE] = {
176 		.regs = {
177 			[SCSMR]		= { 0x00,  8 },
178 			[SCBRR]		= { 0x01,  8 },
179 			[SCSCR]		= { 0x02,  8 },
180 			[SCxTDR]	= { 0x03,  8 },
181 			[SCxSR]		= { 0x04,  8 },
182 			[SCxRDR]	= { 0x05,  8 },
183 		},
184 		.fifosize = 1,
185 		.overrun_reg = SCxSR,
186 		.overrun_mask = SCI_ORER,
187 		.sampling_rate_mask = SCI_SR(32),
188 		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
189 		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
190 	},
191 
192 	/*
193 	 * Common definitions for legacy IrDA ports.
194 	 */
195 	[SCIx_IRDA_REGTYPE] = {
196 		.regs = {
197 			[SCSMR]		= { 0x00,  8 },
198 			[SCBRR]		= { 0x02,  8 },
199 			[SCSCR]		= { 0x04,  8 },
200 			[SCxTDR]	= { 0x06,  8 },
201 			[SCxSR]		= { 0x08, 16 },
202 			[SCxRDR]	= { 0x0a,  8 },
203 			[SCFCR]		= { 0x0c,  8 },
204 			[SCFDR]		= { 0x0e, 16 },
205 		},
206 		.fifosize = 1,
207 		.overrun_reg = SCxSR,
208 		.overrun_mask = SCI_ORER,
209 		.sampling_rate_mask = SCI_SR(32),
210 		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
211 		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
212 	},
213 
214 	/*
215 	 * Common SCIFA definitions.
216 	 */
217 	[SCIx_SCIFA_REGTYPE] = {
218 		.regs = {
219 			[SCSMR]		= { 0x00, 16 },
220 			[SCBRR]		= { 0x04,  8 },
221 			[SCSCR]		= { 0x08, 16 },
222 			[SCxTDR]	= { 0x20,  8 },
223 			[SCxSR]		= { 0x14, 16 },
224 			[SCxRDR]	= { 0x24,  8 },
225 			[SCFCR]		= { 0x18, 16 },
226 			[SCFDR]		= { 0x1c, 16 },
227 			[SCPCR]		= { 0x30, 16 },
228 			[SCPDR]		= { 0x34, 16 },
229 		},
230 		.fifosize = 64,
231 		.overrun_reg = SCxSR,
232 		.overrun_mask = SCIFA_ORER,
233 		.sampling_rate_mask = SCI_SR_SCIFAB,
234 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
235 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
236 	},
237 
238 	/*
239 	 * Common SCIFB definitions.
240 	 */
241 	[SCIx_SCIFB_REGTYPE] = {
242 		.regs = {
243 			[SCSMR]		= { 0x00, 16 },
244 			[SCBRR]		= { 0x04,  8 },
245 			[SCSCR]		= { 0x08, 16 },
246 			[SCxTDR]	= { 0x40,  8 },
247 			[SCxSR]		= { 0x14, 16 },
248 			[SCxRDR]	= { 0x60,  8 },
249 			[SCFCR]		= { 0x18, 16 },
250 			[SCTFDR]	= { 0x38, 16 },
251 			[SCRFDR]	= { 0x3c, 16 },
252 			[SCPCR]		= { 0x30, 16 },
253 			[SCPDR]		= { 0x34, 16 },
254 		},
255 		.fifosize = 256,
256 		.overrun_reg = SCxSR,
257 		.overrun_mask = SCIFA_ORER,
258 		.sampling_rate_mask = SCI_SR_SCIFAB,
259 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
260 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
261 	},
262 
263 	/*
264 	 * Common SH-2(A) SCIF definitions for ports with FIFO data
265 	 * count registers.
266 	 */
267 	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
268 		.regs = {
269 			[SCSMR]		= { 0x00, 16 },
270 			[SCBRR]		= { 0x04,  8 },
271 			[SCSCR]		= { 0x08, 16 },
272 			[SCxTDR]	= { 0x0c,  8 },
273 			[SCxSR]		= { 0x10, 16 },
274 			[SCxRDR]	= { 0x14,  8 },
275 			[SCFCR]		= { 0x18, 16 },
276 			[SCFDR]		= { 0x1c, 16 },
277 			[SCSPTR]	= { 0x20, 16 },
278 			[SCLSR]		= { 0x24, 16 },
279 		},
280 		.fifosize = 16,
281 		.overrun_reg = SCLSR,
282 		.overrun_mask = SCLSR_ORER,
283 		.sampling_rate_mask = SCI_SR(32),
284 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
285 		.error_clear = SCIF_ERROR_CLEAR,
286 	},
287 
288 	/*
289 	 * Common SH-3 SCIF definitions.
290 	 */
291 	[SCIx_SH3_SCIF_REGTYPE] = {
292 		.regs = {
293 			[SCSMR]		= { 0x00,  8 },
294 			[SCBRR]		= { 0x02,  8 },
295 			[SCSCR]		= { 0x04,  8 },
296 			[SCxTDR]	= { 0x06,  8 },
297 			[SCxSR]		= { 0x08, 16 },
298 			[SCxRDR]	= { 0x0a,  8 },
299 			[SCFCR]		= { 0x0c,  8 },
300 			[SCFDR]		= { 0x0e, 16 },
301 		},
302 		.fifosize = 16,
303 		.overrun_reg = SCLSR,
304 		.overrun_mask = SCLSR_ORER,
305 		.sampling_rate_mask = SCI_SR(32),
306 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
307 		.error_clear = SCIF_ERROR_CLEAR,
308 	},
309 
310 	/*
311 	 * Common SH-4(A) SCIF(B) definitions.
312 	 */
313 	[SCIx_SH4_SCIF_REGTYPE] = {
314 		.regs = {
315 			[SCSMR]		= { 0x00, 16 },
316 			[SCBRR]		= { 0x04,  8 },
317 			[SCSCR]		= { 0x08, 16 },
318 			[SCxTDR]	= { 0x0c,  8 },
319 			[SCxSR]		= { 0x10, 16 },
320 			[SCxRDR]	= { 0x14,  8 },
321 			[SCFCR]		= { 0x18, 16 },
322 			[SCFDR]		= { 0x1c, 16 },
323 			[SCSPTR]	= { 0x20, 16 },
324 			[SCLSR]		= { 0x24, 16 },
325 		},
326 		.fifosize = 16,
327 		.overrun_reg = SCLSR,
328 		.overrun_mask = SCLSR_ORER,
329 		.sampling_rate_mask = SCI_SR(32),
330 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
331 		.error_clear = SCIF_ERROR_CLEAR,
332 	},
333 
334 	/*
335 	 * Common SCIF definitions for ports with a Baud Rate Generator for
336 	 * External Clock (BRG).
337 	 */
338 	[SCIx_SH4_SCIF_BRG_REGTYPE] = {
339 		.regs = {
340 			[SCSMR]		= { 0x00, 16 },
341 			[SCBRR]		= { 0x04,  8 },
342 			[SCSCR]		= { 0x08, 16 },
343 			[SCxTDR]	= { 0x0c,  8 },
344 			[SCxSR]		= { 0x10, 16 },
345 			[SCxRDR]	= { 0x14,  8 },
346 			[SCFCR]		= { 0x18, 16 },
347 			[SCFDR]		= { 0x1c, 16 },
348 			[SCSPTR]	= { 0x20, 16 },
349 			[SCLSR]		= { 0x24, 16 },
350 			[SCDL]		= { 0x30, 16 },
351 			[SCCKS]		= { 0x34, 16 },
352 		},
353 		.fifosize = 16,
354 		.overrun_reg = SCLSR,
355 		.overrun_mask = SCLSR_ORER,
356 		.sampling_rate_mask = SCI_SR(32),
357 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
358 		.error_clear = SCIF_ERROR_CLEAR,
359 	},
360 
361 	/*
362 	 * Common HSCIF definitions.
363 	 */
364 	[SCIx_HSCIF_REGTYPE] = {
365 		.regs = {
366 			[SCSMR]		= { 0x00, 16 },
367 			[SCBRR]		= { 0x04,  8 },
368 			[SCSCR]		= { 0x08, 16 },
369 			[SCxTDR]	= { 0x0c,  8 },
370 			[SCxSR]		= { 0x10, 16 },
371 			[SCxRDR]	= { 0x14,  8 },
372 			[SCFCR]		= { 0x18, 16 },
373 			[SCFDR]		= { 0x1c, 16 },
374 			[SCSPTR]	= { 0x20, 16 },
375 			[SCLSR]		= { 0x24, 16 },
376 			[HSSRR]		= { 0x40, 16 },
377 			[SCDL]		= { 0x30, 16 },
378 			[SCCKS]		= { 0x34, 16 },
379 			[HSRTRGR]	= { 0x54, 16 },
380 			[HSTTRGR]	= { 0x58, 16 },
381 		},
382 		.fifosize = 128,
383 		.overrun_reg = SCLSR,
384 		.overrun_mask = SCLSR_ORER,
385 		.sampling_rate_mask = SCI_SR_RANGE(8, 32),
386 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
387 		.error_clear = SCIF_ERROR_CLEAR,
388 	},
389 
390 	/*
391 	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
392 	 * register.
393 	 */
394 	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
395 		.regs = {
396 			[SCSMR]		= { 0x00, 16 },
397 			[SCBRR]		= { 0x04,  8 },
398 			[SCSCR]		= { 0x08, 16 },
399 			[SCxTDR]	= { 0x0c,  8 },
400 			[SCxSR]		= { 0x10, 16 },
401 			[SCxRDR]	= { 0x14,  8 },
402 			[SCFCR]		= { 0x18, 16 },
403 			[SCFDR]		= { 0x1c, 16 },
404 			[SCLSR]		= { 0x24, 16 },
405 		},
406 		.fifosize = 16,
407 		.overrun_reg = SCLSR,
408 		.overrun_mask = SCLSR_ORER,
409 		.sampling_rate_mask = SCI_SR(32),
410 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
411 		.error_clear = SCIF_ERROR_CLEAR,
412 	},
413 
414 	/*
415 	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
416 	 * count registers.
417 	 */
418 	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
419 		.regs = {
420 			[SCSMR]		= { 0x00, 16 },
421 			[SCBRR]		= { 0x04,  8 },
422 			[SCSCR]		= { 0x08, 16 },
423 			[SCxTDR]	= { 0x0c,  8 },
424 			[SCxSR]		= { 0x10, 16 },
425 			[SCxRDR]	= { 0x14,  8 },
426 			[SCFCR]		= { 0x18, 16 },
427 			[SCFDR]		= { 0x1c, 16 },
428 			[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
429 			[SCRFDR]	= { 0x20, 16 },
430 			[SCSPTR]	= { 0x24, 16 },
431 			[SCLSR]		= { 0x28, 16 },
432 		},
433 		.fifosize = 16,
434 		.overrun_reg = SCLSR,
435 		.overrun_mask = SCLSR_ORER,
436 		.sampling_rate_mask = SCI_SR(32),
437 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
438 		.error_clear = SCIF_ERROR_CLEAR,
439 	},
440 
441 	/*
442 	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
443 	 * registers.
444 	 */
445 	[SCIx_SH7705_SCIF_REGTYPE] = {
446 		.regs = {
447 			[SCSMR]		= { 0x00, 16 },
448 			[SCBRR]		= { 0x04,  8 },
449 			[SCSCR]		= { 0x08, 16 },
450 			[SCxTDR]	= { 0x20,  8 },
451 			[SCxSR]		= { 0x14, 16 },
452 			[SCxRDR]	= { 0x24,  8 },
453 			[SCFCR]		= { 0x18, 16 },
454 			[SCFDR]		= { 0x1c, 16 },
455 		},
456 		.fifosize = 64,
457 		.overrun_reg = SCxSR,
458 		.overrun_mask = SCIFA_ORER,
459 		.sampling_rate_mask = SCI_SR(16),
460 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
461 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
462 	},
463 };
464 
465 #define sci_getreg(up, offset)		(&to_sci_port(up)->params->regs[offset])
466 
467 /*
468  * The "offset" here is rather misleading, in that it refers to an enum
469  * value relative to the port mapping rather than the fixed offset
470  * itself, which needs to be manually retrieved from the platform's
471  * register map for the given port.
472  */
473 static unsigned int sci_serial_in(struct uart_port *p, int offset)
474 {
475 	const struct plat_sci_reg *reg = sci_getreg(p, offset);
476 
477 	if (reg->size == 8)
478 		return ioread8(p->membase + (reg->offset << p->regshift));
479 	else if (reg->size == 16)
480 		return ioread16(p->membase + (reg->offset << p->regshift));
481 	else
482 		WARN(1, "Invalid register access\n");
483 
484 	return 0;
485 }
486 
487 static void sci_serial_out(struct uart_port *p, int offset, int value)
488 {
489 	const struct plat_sci_reg *reg = sci_getreg(p, offset);
490 
491 	if (reg->size == 8)
492 		iowrite8(value, p->membase + (reg->offset << p->regshift));
493 	else if (reg->size == 16)
494 		iowrite16(value, p->membase + (reg->offset << p->regshift));
495 	else
496 		WARN(1, "Invalid register access\n");
497 }
498 
499 static void sci_port_enable(struct sci_port *sci_port)
500 {
501 	unsigned int i;
502 
503 	if (!sci_port->port.dev)
504 		return;
505 
506 	pm_runtime_get_sync(sci_port->port.dev);
507 
508 	for (i = 0; i < SCI_NUM_CLKS; i++) {
509 		clk_prepare_enable(sci_port->clks[i]);
510 		sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]);
511 	}
512 	sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
513 }
514 
515 static void sci_port_disable(struct sci_port *sci_port)
516 {
517 	unsigned int i;
518 
519 	if (!sci_port->port.dev)
520 		return;
521 
522 	for (i = SCI_NUM_CLKS; i-- > 0; )
523 		clk_disable_unprepare(sci_port->clks[i]);
524 
525 	pm_runtime_put_sync(sci_port->port.dev);
526 }
527 
528 static inline unsigned long port_rx_irq_mask(struct uart_port *port)
529 {
530 	/*
531 	 * Not all ports (such as SCIFA) will support REIE. Rather than
532 	 * special-casing the port type, we check the port initialization
533 	 * IRQ enable mask to see whether the IRQ is desired at all. If
534 	 * it's unset, it's logically inferred that there's no point in
535 	 * testing for it.
536 	 */
537 	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
538 }
539 
540 static void sci_start_tx(struct uart_port *port)
541 {
542 	struct sci_port *s = to_sci_port(port);
543 	unsigned short ctrl;
544 
545 #ifdef CONFIG_SERIAL_SH_SCI_DMA
546 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
547 		u16 new, scr = serial_port_in(port, SCSCR);
548 		if (s->chan_tx)
549 			new = scr | SCSCR_TDRQE;
550 		else
551 			new = scr & ~SCSCR_TDRQE;
552 		if (new != scr)
553 			serial_port_out(port, SCSCR, new);
554 	}
555 
556 	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
557 	    dma_submit_error(s->cookie_tx)) {
558 		s->cookie_tx = 0;
559 		schedule_work(&s->work_tx);
560 	}
561 #endif
562 
563 	if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
564 		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
565 		ctrl = serial_port_in(port, SCSCR);
566 		serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
567 	}
568 }
569 
570 static void sci_stop_tx(struct uart_port *port)
571 {
572 	unsigned short ctrl;
573 
574 	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
575 	ctrl = serial_port_in(port, SCSCR);
576 
577 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
578 		ctrl &= ~SCSCR_TDRQE;
579 
580 	ctrl &= ~SCSCR_TIE;
581 
582 	serial_port_out(port, SCSCR, ctrl);
583 }
584 
585 static void sci_start_rx(struct uart_port *port)
586 {
587 	unsigned short ctrl;
588 
589 	ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
590 
591 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
592 		ctrl &= ~SCSCR_RDRQE;
593 
594 	serial_port_out(port, SCSCR, ctrl);
595 }
596 
597 static void sci_stop_rx(struct uart_port *port)
598 {
599 	unsigned short ctrl;
600 
601 	ctrl = serial_port_in(port, SCSCR);
602 
603 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
604 		ctrl &= ~SCSCR_RDRQE;
605 
606 	ctrl &= ~port_rx_irq_mask(port);
607 
608 	serial_port_out(port, SCSCR, ctrl);
609 }
610 
611 static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
612 {
613 	if (port->type == PORT_SCI) {
614 		/* Just store the mask */
615 		serial_port_out(port, SCxSR, mask);
616 	} else if (to_sci_port(port)->params->overrun_mask == SCIFA_ORER) {
617 		/* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
618 		/* Only clear the status bits we want to clear */
619 		serial_port_out(port, SCxSR,
620 				serial_port_in(port, SCxSR) & mask);
621 	} else {
622 		/* Store the mask, clear parity/framing errors */
623 		serial_port_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
624 	}
625 }
626 
627 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
628     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
629 
630 #ifdef CONFIG_CONSOLE_POLL
631 static int sci_poll_get_char(struct uart_port *port)
632 {
633 	unsigned short status;
634 	int c;
635 
636 	do {
637 		status = serial_port_in(port, SCxSR);
638 		if (status & SCxSR_ERRORS(port)) {
639 			sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
640 			continue;
641 		}
642 		break;
643 	} while (1);
644 
645 	if (!(status & SCxSR_RDxF(port)))
646 		return NO_POLL_CHAR;
647 
648 	c = serial_port_in(port, SCxRDR);
649 
650 	/* Dummy read */
651 	serial_port_in(port, SCxSR);
652 	sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
653 
654 	return c;
655 }
656 #endif
657 
658 static void sci_poll_put_char(struct uart_port *port, unsigned char c)
659 {
660 	unsigned short status;
661 
662 	do {
663 		status = serial_port_in(port, SCxSR);
664 	} while (!(status & SCxSR_TDxE(port)));
665 
666 	serial_port_out(port, SCxTDR, c);
667 	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
668 }
669 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE ||
670 	  CONFIG_SERIAL_SH_SCI_EARLYCON */
671 
672 static void sci_init_pins(struct uart_port *port, unsigned int cflag)
673 {
674 	struct sci_port *s = to_sci_port(port);
675 
676 	/*
677 	 * Use port-specific handler if provided.
678 	 */
679 	if (s->cfg->ops && s->cfg->ops->init_pins) {
680 		s->cfg->ops->init_pins(port, cflag);
681 		return;
682 	}
683 
684 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
685 		u16 data = serial_port_in(port, SCPDR);
686 		u16 ctrl = serial_port_in(port, SCPCR);
687 
688 		/* Enable RXD and TXD pin functions */
689 		ctrl &= ~(SCPCR_RXDC | SCPCR_TXDC);
690 		if (to_sci_port(port)->has_rtscts) {
691 			/* RTS# is output, active low, unless autorts */
692 			if (!(port->mctrl & TIOCM_RTS)) {
693 				ctrl |= SCPCR_RTSC;
694 				data |= SCPDR_RTSD;
695 			} else if (!s->autorts) {
696 				ctrl |= SCPCR_RTSC;
697 				data &= ~SCPDR_RTSD;
698 			} else {
699 				/* Enable RTS# pin function */
700 				ctrl &= ~SCPCR_RTSC;
701 			}
702 			/* Enable CTS# pin function */
703 			ctrl &= ~SCPCR_CTSC;
704 		}
705 		serial_port_out(port, SCPDR, data);
706 		serial_port_out(port, SCPCR, ctrl);
707 	} else if (sci_getreg(port, SCSPTR)->size) {
708 		u16 status = serial_port_in(port, SCSPTR);
709 
710 		/* RTS# is always output; and active low, unless autorts */
711 		status |= SCSPTR_RTSIO;
712 		if (!(port->mctrl & TIOCM_RTS))
713 			status |= SCSPTR_RTSDT;
714 		else if (!s->autorts)
715 			status &= ~SCSPTR_RTSDT;
716 		/* CTS# and SCK are inputs */
717 		status &= ~(SCSPTR_CTSIO | SCSPTR_SCKIO);
718 		serial_port_out(port, SCSPTR, status);
719 	}
720 }
721 
722 static int sci_txfill(struct uart_port *port)
723 {
724 	struct sci_port *s = to_sci_port(port);
725 	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
726 	const struct plat_sci_reg *reg;
727 
728 	reg = sci_getreg(port, SCTFDR);
729 	if (reg->size)
730 		return serial_port_in(port, SCTFDR) & fifo_mask;
731 
732 	reg = sci_getreg(port, SCFDR);
733 	if (reg->size)
734 		return serial_port_in(port, SCFDR) >> 8;
735 
736 	return !(serial_port_in(port, SCxSR) & SCI_TDRE);
737 }
738 
739 static int sci_txroom(struct uart_port *port)
740 {
741 	return port->fifosize - sci_txfill(port);
742 }
743 
744 static int sci_rxfill(struct uart_port *port)
745 {
746 	struct sci_port *s = to_sci_port(port);
747 	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
748 	const struct plat_sci_reg *reg;
749 
750 	reg = sci_getreg(port, SCRFDR);
751 	if (reg->size)
752 		return serial_port_in(port, SCRFDR) & fifo_mask;
753 
754 	reg = sci_getreg(port, SCFDR);
755 	if (reg->size)
756 		return serial_port_in(port, SCFDR) & fifo_mask;
757 
758 	return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
759 }
760 
761 /* ********************************************************************** *
762  *                   the interrupt related routines                       *
763  * ********************************************************************** */
764 
765 static void sci_transmit_chars(struct uart_port *port)
766 {
767 	struct circ_buf *xmit = &port->state->xmit;
768 	unsigned int stopped = uart_tx_stopped(port);
769 	unsigned short status;
770 	unsigned short ctrl;
771 	int count;
772 
773 	status = serial_port_in(port, SCxSR);
774 	if (!(status & SCxSR_TDxE(port))) {
775 		ctrl = serial_port_in(port, SCSCR);
776 		if (uart_circ_empty(xmit))
777 			ctrl &= ~SCSCR_TIE;
778 		else
779 			ctrl |= SCSCR_TIE;
780 		serial_port_out(port, SCSCR, ctrl);
781 		return;
782 	}
783 
784 	count = sci_txroom(port);
785 
786 	do {
787 		unsigned char c;
788 
789 		if (port->x_char) {
790 			c = port->x_char;
791 			port->x_char = 0;
792 		} else if (!uart_circ_empty(xmit) && !stopped) {
793 			c = xmit->buf[xmit->tail];
794 			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
795 		} else {
796 			break;
797 		}
798 
799 		serial_port_out(port, SCxTDR, c);
800 
801 		port->icount.tx++;
802 	} while (--count > 0);
803 
804 	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
805 
806 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
807 		uart_write_wakeup(port);
808 	if (uart_circ_empty(xmit)) {
809 		sci_stop_tx(port);
810 	} else {
811 		ctrl = serial_port_in(port, SCSCR);
812 
813 		if (port->type != PORT_SCI) {
814 			serial_port_in(port, SCxSR); /* Dummy read */
815 			sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
816 		}
817 
818 		ctrl |= SCSCR_TIE;
819 		serial_port_out(port, SCSCR, ctrl);
820 	}
821 }
822 
823 /* On SH3, SCIF may read end-of-break as a space->mark char */
824 #define STEPFN(c)  ({int __c = (c); (((__c-1)|(__c)) == -1); })
825 
826 static void sci_receive_chars(struct uart_port *port)
827 {
828 	struct tty_port *tport = &port->state->port;
829 	int i, count, copied = 0;
830 	unsigned short status;
831 	unsigned char flag;
832 
833 	status = serial_port_in(port, SCxSR);
834 	if (!(status & SCxSR_RDxF(port)))
835 		return;
836 
837 	while (1) {
838 		/* Don't copy more bytes than there is room for in the buffer */
839 		count = tty_buffer_request_room(tport, sci_rxfill(port));
840 
841 		/* If for any reason we can't copy more data, we're done! */
842 		if (count == 0)
843 			break;
844 
845 		if (port->type == PORT_SCI) {
846 			char c = serial_port_in(port, SCxRDR);
847 			if (uart_handle_sysrq_char(port, c))
848 				count = 0;
849 			else
850 				tty_insert_flip_char(tport, c, TTY_NORMAL);
851 		} else {
852 			for (i = 0; i < count; i++) {
853 				char c = serial_port_in(port, SCxRDR);
854 
855 				status = serial_port_in(port, SCxSR);
856 				if (uart_handle_sysrq_char(port, c)) {
857 					count--; i--;
858 					continue;
859 				}
860 
861 				/* Store data and status */
862 				if (status & SCxSR_FER(port)) {
863 					flag = TTY_FRAME;
864 					port->icount.frame++;
865 					dev_notice(port->dev, "frame error\n");
866 				} else if (status & SCxSR_PER(port)) {
867 					flag = TTY_PARITY;
868 					port->icount.parity++;
869 					dev_notice(port->dev, "parity error\n");
870 				} else
871 					flag = TTY_NORMAL;
872 
873 				tty_insert_flip_char(tport, c, flag);
874 			}
875 		}
876 
877 		serial_port_in(port, SCxSR); /* dummy read */
878 		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
879 
880 		copied += count;
881 		port->icount.rx += count;
882 	}
883 
884 	if (copied) {
885 		/* Tell the rest of the system the news. New characters! */
886 		tty_flip_buffer_push(tport);
887 	} else {
888 		serial_port_in(port, SCxSR); /* dummy read */
889 		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
890 	}
891 }
892 
893 static int sci_handle_errors(struct uart_port *port)
894 {
895 	int copied = 0;
896 	unsigned short status = serial_port_in(port, SCxSR);
897 	struct tty_port *tport = &port->state->port;
898 	struct sci_port *s = to_sci_port(port);
899 
900 	/* Handle overruns */
901 	if (status & s->params->overrun_mask) {
902 		port->icount.overrun++;
903 
904 		/* overrun error */
905 		if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
906 			copied++;
907 
908 		dev_notice(port->dev, "overrun error\n");
909 	}
910 
911 	if (status & SCxSR_FER(port)) {
912 		/* frame error */
913 		port->icount.frame++;
914 
915 		if (tty_insert_flip_char(tport, 0, TTY_FRAME))
916 			copied++;
917 
918 		dev_notice(port->dev, "frame error\n");
919 	}
920 
921 	if (status & SCxSR_PER(port)) {
922 		/* parity error */
923 		port->icount.parity++;
924 
925 		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
926 			copied++;
927 
928 		dev_notice(port->dev, "parity error\n");
929 	}
930 
931 	if (copied)
932 		tty_flip_buffer_push(tport);
933 
934 	return copied;
935 }
936 
937 static int sci_handle_fifo_overrun(struct uart_port *port)
938 {
939 	struct tty_port *tport = &port->state->port;
940 	struct sci_port *s = to_sci_port(port);
941 	const struct plat_sci_reg *reg;
942 	int copied = 0;
943 	u16 status;
944 
945 	reg = sci_getreg(port, s->params->overrun_reg);
946 	if (!reg->size)
947 		return 0;
948 
949 	status = serial_port_in(port, s->params->overrun_reg);
950 	if (status & s->params->overrun_mask) {
951 		status &= ~s->params->overrun_mask;
952 		serial_port_out(port, s->params->overrun_reg, status);
953 
954 		port->icount.overrun++;
955 
956 		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
957 		tty_flip_buffer_push(tport);
958 
959 		dev_dbg(port->dev, "overrun error\n");
960 		copied++;
961 	}
962 
963 	return copied;
964 }
965 
966 static int sci_handle_breaks(struct uart_port *port)
967 {
968 	int copied = 0;
969 	unsigned short status = serial_port_in(port, SCxSR);
970 	struct tty_port *tport = &port->state->port;
971 
972 	if (uart_handle_break(port))
973 		return 0;
974 
975 	if (status & SCxSR_BRK(port)) {
976 		port->icount.brk++;
977 
978 		/* Notify of BREAK */
979 		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
980 			copied++;
981 
982 		dev_dbg(port->dev, "BREAK detected\n");
983 	}
984 
985 	if (copied)
986 		tty_flip_buffer_push(tport);
987 
988 	copied += sci_handle_fifo_overrun(port);
989 
990 	return copied;
991 }
992 
993 static int scif_set_rtrg(struct uart_port *port, int rx_trig)
994 {
995 	unsigned int bits;
996 
997 	if (rx_trig < 1)
998 		rx_trig = 1;
999 	if (rx_trig >= port->fifosize)
1000 		rx_trig = port->fifosize;
1001 
1002 	/* HSCIF can be set to an arbitrary level. */
1003 	if (sci_getreg(port, HSRTRGR)->size) {
1004 		serial_port_out(port, HSRTRGR, rx_trig);
1005 		return rx_trig;
1006 	}
1007 
1008 	switch (port->type) {
1009 	case PORT_SCIF:
1010 		if (rx_trig < 4) {
1011 			bits = 0;
1012 			rx_trig = 1;
1013 		} else if (rx_trig < 8) {
1014 			bits = SCFCR_RTRG0;
1015 			rx_trig = 4;
1016 		} else if (rx_trig < 14) {
1017 			bits = SCFCR_RTRG1;
1018 			rx_trig = 8;
1019 		} else {
1020 			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1021 			rx_trig = 14;
1022 		}
1023 		break;
1024 	case PORT_SCIFA:
1025 	case PORT_SCIFB:
1026 		if (rx_trig < 16) {
1027 			bits = 0;
1028 			rx_trig = 1;
1029 		} else if (rx_trig < 32) {
1030 			bits = SCFCR_RTRG0;
1031 			rx_trig = 16;
1032 		} else if (rx_trig < 48) {
1033 			bits = SCFCR_RTRG1;
1034 			rx_trig = 32;
1035 		} else {
1036 			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1037 			rx_trig = 48;
1038 		}
1039 		break;
1040 	default:
1041 		WARN(1, "unknown FIFO configuration");
1042 		return 1;
1043 	}
1044 
1045 	serial_port_out(port, SCFCR,
1046 		(serial_port_in(port, SCFCR) &
1047 		~(SCFCR_RTRG1 | SCFCR_RTRG0)) | bits);
1048 
1049 	return rx_trig;
1050 }
1051 
1052 static int scif_rtrg_enabled(struct uart_port *port)
1053 {
1054 	if (sci_getreg(port, HSRTRGR)->size)
1055 		return serial_port_in(port, HSRTRGR) != 0;
1056 	else
1057 		return (serial_port_in(port, SCFCR) &
1058 			(SCFCR_RTRG0 | SCFCR_RTRG1)) != 0;
1059 }
1060 
1061 static void rx_fifo_timer_fn(struct timer_list *t)
1062 {
1063 	struct sci_port *s = from_timer(s, t, rx_fifo_timer);
1064 	struct uart_port *port = &s->port;
1065 
1066 	dev_dbg(port->dev, "Rx timed out\n");
1067 	scif_set_rtrg(port, 1);
1068 }
1069 
1070 static ssize_t rx_trigger_show(struct device *dev,
1071 			       struct device_attribute *attr,
1072 			       char *buf)
1073 {
1074 	struct uart_port *port = dev_get_drvdata(dev);
1075 	struct sci_port *sci = to_sci_port(port);
1076 
1077 	return sprintf(buf, "%d\n", sci->rx_trigger);
1078 }
1079 
1080 static ssize_t rx_trigger_store(struct device *dev,
1081 				struct device_attribute *attr,
1082 				const char *buf,
1083 				size_t count)
1084 {
1085 	struct uart_port *port = dev_get_drvdata(dev);
1086 	struct sci_port *sci = to_sci_port(port);
1087 	int ret;
1088 	long r;
1089 
1090 	ret = kstrtol(buf, 0, &r);
1091 	if (ret)
1092 		return ret;
1093 
1094 	sci->rx_trigger = scif_set_rtrg(port, r);
1095 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1096 		scif_set_rtrg(port, 1);
1097 
1098 	return count;
1099 }
1100 
1101 static DEVICE_ATTR(rx_fifo_trigger, 0644, rx_trigger_show, rx_trigger_store);
1102 
1103 static ssize_t rx_fifo_timeout_show(struct device *dev,
1104 			       struct device_attribute *attr,
1105 			       char *buf)
1106 {
1107 	struct uart_port *port = dev_get_drvdata(dev);
1108 	struct sci_port *sci = to_sci_port(port);
1109 	int v;
1110 
1111 	if (port->type == PORT_HSCIF)
1112 		v = sci->hscif_tot >> HSSCR_TOT_SHIFT;
1113 	else
1114 		v = sci->rx_fifo_timeout;
1115 
1116 	return sprintf(buf, "%d\n", v);
1117 }
1118 
1119 static ssize_t rx_fifo_timeout_store(struct device *dev,
1120 				struct device_attribute *attr,
1121 				const char *buf,
1122 				size_t count)
1123 {
1124 	struct uart_port *port = dev_get_drvdata(dev);
1125 	struct sci_port *sci = to_sci_port(port);
1126 	int ret;
1127 	long r;
1128 
1129 	ret = kstrtol(buf, 0, &r);
1130 	if (ret)
1131 		return ret;
1132 
1133 	if (port->type == PORT_HSCIF) {
1134 		if (r < 0 || r > 3)
1135 			return -EINVAL;
1136 		sci->hscif_tot = r << HSSCR_TOT_SHIFT;
1137 	} else {
1138 		sci->rx_fifo_timeout = r;
1139 		scif_set_rtrg(port, 1);
1140 		if (r > 0)
1141 			timer_setup(&sci->rx_fifo_timer, rx_fifo_timer_fn, 0);
1142 	}
1143 
1144 	return count;
1145 }
1146 
1147 static DEVICE_ATTR_RW(rx_fifo_timeout);
1148 
1149 
1150 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1151 static void sci_dma_tx_complete(void *arg)
1152 {
1153 	struct sci_port *s = arg;
1154 	struct uart_port *port = &s->port;
1155 	struct circ_buf *xmit = &port->state->xmit;
1156 	unsigned long flags;
1157 
1158 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1159 
1160 	spin_lock_irqsave(&port->lock, flags);
1161 
1162 	xmit->tail += s->tx_dma_len;
1163 	xmit->tail &= UART_XMIT_SIZE - 1;
1164 
1165 	port->icount.tx += s->tx_dma_len;
1166 
1167 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1168 		uart_write_wakeup(port);
1169 
1170 	if (!uart_circ_empty(xmit)) {
1171 		s->cookie_tx = 0;
1172 		schedule_work(&s->work_tx);
1173 	} else {
1174 		s->cookie_tx = -EINVAL;
1175 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1176 			u16 ctrl = serial_port_in(port, SCSCR);
1177 			serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1178 		}
1179 	}
1180 
1181 	spin_unlock_irqrestore(&port->lock, flags);
1182 }
1183 
1184 /* Locking: called with port lock held */
1185 static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1186 {
1187 	struct uart_port *port = &s->port;
1188 	struct tty_port *tport = &port->state->port;
1189 	int copied;
1190 
1191 	copied = tty_insert_flip_string(tport, buf, count);
1192 	if (copied < count)
1193 		port->icount.buf_overrun++;
1194 
1195 	port->icount.rx += copied;
1196 
1197 	return copied;
1198 }
1199 
1200 static int sci_dma_rx_find_active(struct sci_port *s)
1201 {
1202 	unsigned int i;
1203 
1204 	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1205 		if (s->active_rx == s->cookie_rx[i])
1206 			return i;
1207 
1208 	return -1;
1209 }
1210 
1211 static void sci_rx_dma_release(struct sci_port *s, bool enable_pio)
1212 {
1213 	struct dma_chan *chan = s->chan_rx;
1214 	struct uart_port *port = &s->port;
1215 	unsigned long flags;
1216 
1217 	spin_lock_irqsave(&port->lock, flags);
1218 	s->chan_rx = NULL;
1219 	s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL;
1220 	spin_unlock_irqrestore(&port->lock, flags);
1221 	dmaengine_terminate_all(chan);
1222 	dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1223 			  sg_dma_address(&s->sg_rx[0]));
1224 	dma_release_channel(chan);
1225 	if (enable_pio) {
1226 		spin_lock_irqsave(&port->lock, flags);
1227 		sci_start_rx(port);
1228 		spin_unlock_irqrestore(&port->lock, flags);
1229 	}
1230 }
1231 
1232 static void sci_dma_rx_complete(void *arg)
1233 {
1234 	struct sci_port *s = arg;
1235 	struct dma_chan *chan = s->chan_rx;
1236 	struct uart_port *port = &s->port;
1237 	struct dma_async_tx_descriptor *desc;
1238 	unsigned long flags;
1239 	int active, count = 0;
1240 
1241 	dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1242 		s->active_rx);
1243 
1244 	spin_lock_irqsave(&port->lock, flags);
1245 
1246 	active = sci_dma_rx_find_active(s);
1247 	if (active >= 0)
1248 		count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1249 
1250 	mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1251 
1252 	if (count)
1253 		tty_flip_buffer_push(&port->state->port);
1254 
1255 	desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1256 				       DMA_DEV_TO_MEM,
1257 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1258 	if (!desc)
1259 		goto fail;
1260 
1261 	desc->callback = sci_dma_rx_complete;
1262 	desc->callback_param = s;
1263 	s->cookie_rx[active] = dmaengine_submit(desc);
1264 	if (dma_submit_error(s->cookie_rx[active]))
1265 		goto fail;
1266 
1267 	s->active_rx = s->cookie_rx[!active];
1268 
1269 	dma_async_issue_pending(chan);
1270 
1271 	spin_unlock_irqrestore(&port->lock, flags);
1272 	dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1273 		__func__, s->cookie_rx[active], active, s->active_rx);
1274 	return;
1275 
1276 fail:
1277 	spin_unlock_irqrestore(&port->lock, flags);
1278 	dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1279 	sci_rx_dma_release(s, true);
1280 }
1281 
1282 static void sci_tx_dma_release(struct sci_port *s, bool enable_pio)
1283 {
1284 	struct dma_chan *chan = s->chan_tx;
1285 	struct uart_port *port = &s->port;
1286 	unsigned long flags;
1287 
1288 	spin_lock_irqsave(&port->lock, flags);
1289 	s->chan_tx = NULL;
1290 	s->cookie_tx = -EINVAL;
1291 	spin_unlock_irqrestore(&port->lock, flags);
1292 	dmaengine_terminate_all(chan);
1293 	dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1294 			 DMA_TO_DEVICE);
1295 	dma_release_channel(chan);
1296 	if (enable_pio) {
1297 		spin_lock_irqsave(&port->lock, flags);
1298 		sci_start_tx(port);
1299 		spin_unlock_irqrestore(&port->lock, flags);
1300 	}
1301 }
1302 
1303 static void sci_submit_rx(struct sci_port *s)
1304 {
1305 	struct dma_chan *chan = s->chan_rx;
1306 	int i;
1307 
1308 	for (i = 0; i < 2; i++) {
1309 		struct scatterlist *sg = &s->sg_rx[i];
1310 		struct dma_async_tx_descriptor *desc;
1311 
1312 		desc = dmaengine_prep_slave_sg(chan,
1313 			sg, 1, DMA_DEV_TO_MEM,
1314 			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1315 		if (!desc)
1316 			goto fail;
1317 
1318 		desc->callback = sci_dma_rx_complete;
1319 		desc->callback_param = s;
1320 		s->cookie_rx[i] = dmaengine_submit(desc);
1321 		if (dma_submit_error(s->cookie_rx[i]))
1322 			goto fail;
1323 
1324 	}
1325 
1326 	s->active_rx = s->cookie_rx[0];
1327 
1328 	dma_async_issue_pending(chan);
1329 	return;
1330 
1331 fail:
1332 	if (i)
1333 		dmaengine_terminate_all(chan);
1334 	for (i = 0; i < 2; i++)
1335 		s->cookie_rx[i] = -EINVAL;
1336 	s->active_rx = -EINVAL;
1337 	sci_rx_dma_release(s, true);
1338 }
1339 
1340 static void work_fn_tx(struct work_struct *work)
1341 {
1342 	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1343 	struct dma_async_tx_descriptor *desc;
1344 	struct dma_chan *chan = s->chan_tx;
1345 	struct uart_port *port = &s->port;
1346 	struct circ_buf *xmit = &port->state->xmit;
1347 	dma_addr_t buf;
1348 
1349 	/*
1350 	 * DMA is idle now.
1351 	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1352 	 * offsets and lengths. Since it is a circular buffer, we have to
1353 	 * transmit till the end, and then the rest. Take the port lock to get a
1354 	 * consistent xmit buffer state.
1355 	 */
1356 	spin_lock_irq(&port->lock);
1357 	buf = s->tx_dma_addr + (xmit->tail & (UART_XMIT_SIZE - 1));
1358 	s->tx_dma_len = min_t(unsigned int,
1359 		CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
1360 		CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
1361 	spin_unlock_irq(&port->lock);
1362 
1363 	desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1364 					   DMA_MEM_TO_DEV,
1365 					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1366 	if (!desc) {
1367 		dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1368 		/* switch to PIO */
1369 		sci_tx_dma_release(s, true);
1370 		return;
1371 	}
1372 
1373 	dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1374 				   DMA_TO_DEVICE);
1375 
1376 	spin_lock_irq(&port->lock);
1377 	desc->callback = sci_dma_tx_complete;
1378 	desc->callback_param = s;
1379 	spin_unlock_irq(&port->lock);
1380 	s->cookie_tx = dmaengine_submit(desc);
1381 	if (dma_submit_error(s->cookie_tx)) {
1382 		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1383 		/* switch to PIO */
1384 		sci_tx_dma_release(s, true);
1385 		return;
1386 	}
1387 
1388 	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
1389 		__func__, xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
1390 
1391 	dma_async_issue_pending(chan);
1392 }
1393 
1394 static void rx_timer_fn(struct timer_list *t)
1395 {
1396 	struct sci_port *s = from_timer(s, t, rx_timer);
1397 	struct dma_chan *chan = s->chan_rx;
1398 	struct uart_port *port = &s->port;
1399 	struct dma_tx_state state;
1400 	enum dma_status status;
1401 	unsigned long flags;
1402 	unsigned int read;
1403 	int active, count;
1404 	u16 scr;
1405 
1406 	dev_dbg(port->dev, "DMA Rx timed out\n");
1407 
1408 	spin_lock_irqsave(&port->lock, flags);
1409 
1410 	active = sci_dma_rx_find_active(s);
1411 	if (active < 0) {
1412 		spin_unlock_irqrestore(&port->lock, flags);
1413 		return;
1414 	}
1415 
1416 	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1417 	if (status == DMA_COMPLETE) {
1418 		spin_unlock_irqrestore(&port->lock, flags);
1419 		dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1420 			s->active_rx, active);
1421 
1422 		/* Let packet complete handler take care of the packet */
1423 		return;
1424 	}
1425 
1426 	dmaengine_pause(chan);
1427 
1428 	/*
1429 	 * sometimes DMA transfer doesn't stop even if it is stopped and
1430 	 * data keeps on coming until transaction is complete so check
1431 	 * for DMA_COMPLETE again
1432 	 * Let packet complete handler take care of the packet
1433 	 */
1434 	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1435 	if (status == DMA_COMPLETE) {
1436 		spin_unlock_irqrestore(&port->lock, flags);
1437 		dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1438 		return;
1439 	}
1440 
1441 	/* Handle incomplete DMA receive */
1442 	dmaengine_terminate_all(s->chan_rx);
1443 	read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1444 
1445 	if (read) {
1446 		count = sci_dma_rx_push(s, s->rx_buf[active], read);
1447 		if (count)
1448 			tty_flip_buffer_push(&port->state->port);
1449 	}
1450 
1451 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1452 		sci_submit_rx(s);
1453 
1454 	/* Direct new serial port interrupts back to CPU */
1455 	scr = serial_port_in(port, SCSCR);
1456 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1457 		scr &= ~SCSCR_RDRQE;
1458 		enable_irq(s->irqs[SCIx_RXI_IRQ]);
1459 	}
1460 	serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1461 
1462 	spin_unlock_irqrestore(&port->lock, flags);
1463 }
1464 
1465 static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1466 					     enum dma_transfer_direction dir)
1467 {
1468 	struct dma_chan *chan;
1469 	struct dma_slave_config cfg;
1470 	int ret;
1471 
1472 	chan = dma_request_slave_channel(port->dev,
1473 					 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1474 	if (!chan) {
1475 		dev_warn(port->dev, "dma_request_slave_channel failed\n");
1476 		return NULL;
1477 	}
1478 
1479 	memset(&cfg, 0, sizeof(cfg));
1480 	cfg.direction = dir;
1481 	if (dir == DMA_MEM_TO_DEV) {
1482 		cfg.dst_addr = port->mapbase +
1483 			(sci_getreg(port, SCxTDR)->offset << port->regshift);
1484 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1485 	} else {
1486 		cfg.src_addr = port->mapbase +
1487 			(sci_getreg(port, SCxRDR)->offset << port->regshift);
1488 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1489 	}
1490 
1491 	ret = dmaengine_slave_config(chan, &cfg);
1492 	if (ret) {
1493 		dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1494 		dma_release_channel(chan);
1495 		return NULL;
1496 	}
1497 
1498 	return chan;
1499 }
1500 
1501 static void sci_request_dma(struct uart_port *port)
1502 {
1503 	struct sci_port *s = to_sci_port(port);
1504 	struct dma_chan *chan;
1505 
1506 	dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1507 
1508 	if (!port->dev->of_node)
1509 		return;
1510 
1511 	s->cookie_tx = -EINVAL;
1512 
1513 	/*
1514 	 * Don't request a dma channel if no channel was specified
1515 	 * in the device tree.
1516 	 */
1517 	if (!of_find_property(port->dev->of_node, "dmas", NULL))
1518 		return;
1519 
1520 	chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV);
1521 	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1522 	if (chan) {
1523 		s->chan_tx = chan;
1524 		/* UART circular tx buffer is an aligned page. */
1525 		s->tx_dma_addr = dma_map_single(chan->device->dev,
1526 						port->state->xmit.buf,
1527 						UART_XMIT_SIZE,
1528 						DMA_TO_DEVICE);
1529 		if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1530 			dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1531 			dma_release_channel(chan);
1532 			s->chan_tx = NULL;
1533 		} else {
1534 			dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1535 				__func__, UART_XMIT_SIZE,
1536 				port->state->xmit.buf, &s->tx_dma_addr);
1537 		}
1538 
1539 		INIT_WORK(&s->work_tx, work_fn_tx);
1540 	}
1541 
1542 	chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM);
1543 	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1544 	if (chan) {
1545 		unsigned int i;
1546 		dma_addr_t dma;
1547 		void *buf;
1548 
1549 		s->chan_rx = chan;
1550 
1551 		s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1552 		buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1553 					 &dma, GFP_KERNEL);
1554 		if (!buf) {
1555 			dev_warn(port->dev,
1556 				 "Failed to allocate Rx dma buffer, using PIO\n");
1557 			dma_release_channel(chan);
1558 			s->chan_rx = NULL;
1559 			return;
1560 		}
1561 
1562 		for (i = 0; i < 2; i++) {
1563 			struct scatterlist *sg = &s->sg_rx[i];
1564 
1565 			sg_init_table(sg, 1);
1566 			s->rx_buf[i] = buf;
1567 			sg_dma_address(sg) = dma;
1568 			sg_dma_len(sg) = s->buf_len_rx;
1569 
1570 			buf += s->buf_len_rx;
1571 			dma += s->buf_len_rx;
1572 		}
1573 
1574 		timer_setup(&s->rx_timer, rx_timer_fn, 0);
1575 
1576 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1577 			sci_submit_rx(s);
1578 	}
1579 }
1580 
1581 static void sci_free_dma(struct uart_port *port)
1582 {
1583 	struct sci_port *s = to_sci_port(port);
1584 
1585 	if (s->chan_tx)
1586 		sci_tx_dma_release(s, false);
1587 	if (s->chan_rx)
1588 		sci_rx_dma_release(s, false);
1589 }
1590 
1591 static void sci_flush_buffer(struct uart_port *port)
1592 {
1593 	/*
1594 	 * In uart_flush_buffer(), the xmit circular buffer has just been
1595 	 * cleared, so we have to reset tx_dma_len accordingly.
1596 	 */
1597 	to_sci_port(port)->tx_dma_len = 0;
1598 }
1599 #else /* !CONFIG_SERIAL_SH_SCI_DMA */
1600 static inline void sci_request_dma(struct uart_port *port)
1601 {
1602 }
1603 
1604 static inline void sci_free_dma(struct uart_port *port)
1605 {
1606 }
1607 
1608 #define sci_flush_buffer	NULL
1609 #endif /* !CONFIG_SERIAL_SH_SCI_DMA */
1610 
1611 static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1612 {
1613 	struct uart_port *port = ptr;
1614 	struct sci_port *s = to_sci_port(port);
1615 
1616 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1617 	if (s->chan_rx) {
1618 		u16 scr = serial_port_in(port, SCSCR);
1619 		u16 ssr = serial_port_in(port, SCxSR);
1620 
1621 		/* Disable future Rx interrupts */
1622 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1623 			disable_irq_nosync(irq);
1624 			scr |= SCSCR_RDRQE;
1625 		} else {
1626 			scr &= ~SCSCR_RIE;
1627 			sci_submit_rx(s);
1628 		}
1629 		serial_port_out(port, SCSCR, scr);
1630 		/* Clear current interrupt */
1631 		serial_port_out(port, SCxSR,
1632 				ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1633 		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n",
1634 			jiffies, s->rx_timeout);
1635 		mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1636 
1637 		return IRQ_HANDLED;
1638 	}
1639 #endif
1640 
1641 	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0) {
1642 		if (!scif_rtrg_enabled(port))
1643 			scif_set_rtrg(port, s->rx_trigger);
1644 
1645 		mod_timer(&s->rx_fifo_timer, jiffies + DIV_ROUND_UP(
1646 			  s->rx_frame * s->rx_fifo_timeout, 1000));
1647 	}
1648 
1649 	/* I think sci_receive_chars has to be called irrespective
1650 	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
1651 	 * to be disabled?
1652 	 */
1653 	sci_receive_chars(ptr);
1654 
1655 	return IRQ_HANDLED;
1656 }
1657 
1658 static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1659 {
1660 	struct uart_port *port = ptr;
1661 	unsigned long flags;
1662 
1663 	spin_lock_irqsave(&port->lock, flags);
1664 	sci_transmit_chars(port);
1665 	spin_unlock_irqrestore(&port->lock, flags);
1666 
1667 	return IRQ_HANDLED;
1668 }
1669 
1670 static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1671 {
1672 	struct uart_port *port = ptr;
1673 	struct sci_port *s = to_sci_port(port);
1674 
1675 	/* Handle errors */
1676 	if (port->type == PORT_SCI) {
1677 		if (sci_handle_errors(port)) {
1678 			/* discard character in rx buffer */
1679 			serial_port_in(port, SCxSR);
1680 			sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1681 		}
1682 	} else {
1683 		sci_handle_fifo_overrun(port);
1684 		if (!s->chan_rx)
1685 			sci_receive_chars(ptr);
1686 	}
1687 
1688 	sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1689 
1690 	/* Kick the transmission */
1691 	if (!s->chan_tx)
1692 		sci_tx_interrupt(irq, ptr);
1693 
1694 	return IRQ_HANDLED;
1695 }
1696 
1697 static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1698 {
1699 	struct uart_port *port = ptr;
1700 
1701 	/* Handle BREAKs */
1702 	sci_handle_breaks(port);
1703 	sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1704 
1705 	return IRQ_HANDLED;
1706 }
1707 
1708 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1709 {
1710 	unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1711 	struct uart_port *port = ptr;
1712 	struct sci_port *s = to_sci_port(port);
1713 	irqreturn_t ret = IRQ_NONE;
1714 
1715 	ssr_status = serial_port_in(port, SCxSR);
1716 	scr_status = serial_port_in(port, SCSCR);
1717 	if (s->params->overrun_reg == SCxSR)
1718 		orer_status = ssr_status;
1719 	else if (sci_getreg(port, s->params->overrun_reg)->size)
1720 		orer_status = serial_port_in(port, s->params->overrun_reg);
1721 
1722 	err_enabled = scr_status & port_rx_irq_mask(port);
1723 
1724 	/* Tx Interrupt */
1725 	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1726 	    !s->chan_tx)
1727 		ret = sci_tx_interrupt(irq, ptr);
1728 
1729 	/*
1730 	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1731 	 * DR flags
1732 	 */
1733 	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1734 	    (scr_status & SCSCR_RIE))
1735 		ret = sci_rx_interrupt(irq, ptr);
1736 
1737 	/* Error Interrupt */
1738 	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1739 		ret = sci_er_interrupt(irq, ptr);
1740 
1741 	/* Break Interrupt */
1742 	if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
1743 		ret = sci_br_interrupt(irq, ptr);
1744 
1745 	/* Overrun Interrupt */
1746 	if (orer_status & s->params->overrun_mask) {
1747 		sci_handle_fifo_overrun(port);
1748 		ret = IRQ_HANDLED;
1749 	}
1750 
1751 	return ret;
1752 }
1753 
1754 static const struct sci_irq_desc {
1755 	const char	*desc;
1756 	irq_handler_t	handler;
1757 } sci_irq_desc[] = {
1758 	/*
1759 	 * Split out handlers, the default case.
1760 	 */
1761 	[SCIx_ERI_IRQ] = {
1762 		.desc = "rx err",
1763 		.handler = sci_er_interrupt,
1764 	},
1765 
1766 	[SCIx_RXI_IRQ] = {
1767 		.desc = "rx full",
1768 		.handler = sci_rx_interrupt,
1769 	},
1770 
1771 	[SCIx_TXI_IRQ] = {
1772 		.desc = "tx empty",
1773 		.handler = sci_tx_interrupt,
1774 	},
1775 
1776 	[SCIx_BRI_IRQ] = {
1777 		.desc = "break",
1778 		.handler = sci_br_interrupt,
1779 	},
1780 
1781 	/*
1782 	 * Special muxed handler.
1783 	 */
1784 	[SCIx_MUX_IRQ] = {
1785 		.desc = "mux",
1786 		.handler = sci_mpxed_interrupt,
1787 	},
1788 };
1789 
1790 static int sci_request_irq(struct sci_port *port)
1791 {
1792 	struct uart_port *up = &port->port;
1793 	int i, j, ret = 0;
1794 
1795 	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1796 		const struct sci_irq_desc *desc;
1797 		int irq;
1798 
1799 		if (SCIx_IRQ_IS_MUXED(port)) {
1800 			i = SCIx_MUX_IRQ;
1801 			irq = up->irq;
1802 		} else {
1803 			irq = port->irqs[i];
1804 
1805 			/*
1806 			 * Certain port types won't support all of the
1807 			 * available interrupt sources.
1808 			 */
1809 			if (unlikely(irq < 0))
1810 				continue;
1811 		}
1812 
1813 		desc = sci_irq_desc + i;
1814 		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1815 					    dev_name(up->dev), desc->desc);
1816 		if (!port->irqstr[j]) {
1817 			ret = -ENOMEM;
1818 			goto out_nomem;
1819 		}
1820 
1821 		ret = request_irq(irq, desc->handler, up->irqflags,
1822 				  port->irqstr[j], port);
1823 		if (unlikely(ret)) {
1824 			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1825 			goto out_noirq;
1826 		}
1827 	}
1828 
1829 	return 0;
1830 
1831 out_noirq:
1832 	while (--i >= 0)
1833 		free_irq(port->irqs[i], port);
1834 
1835 out_nomem:
1836 	while (--j >= 0)
1837 		kfree(port->irqstr[j]);
1838 
1839 	return ret;
1840 }
1841 
1842 static void sci_free_irq(struct sci_port *port)
1843 {
1844 	int i;
1845 
1846 	/*
1847 	 * Intentionally in reverse order so we iterate over the muxed
1848 	 * IRQ first.
1849 	 */
1850 	for (i = 0; i < SCIx_NR_IRQS; i++) {
1851 		int irq = port->irqs[i];
1852 
1853 		/*
1854 		 * Certain port types won't support all of the available
1855 		 * interrupt sources.
1856 		 */
1857 		if (unlikely(irq < 0))
1858 			continue;
1859 
1860 		free_irq(port->irqs[i], port);
1861 		kfree(port->irqstr[i]);
1862 
1863 		if (SCIx_IRQ_IS_MUXED(port)) {
1864 			/* If there's only one IRQ, we're done. */
1865 			return;
1866 		}
1867 	}
1868 }
1869 
1870 static unsigned int sci_tx_empty(struct uart_port *port)
1871 {
1872 	unsigned short status = serial_port_in(port, SCxSR);
1873 	unsigned short in_tx_fifo = sci_txfill(port);
1874 
1875 	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1876 }
1877 
1878 static void sci_set_rts(struct uart_port *port, bool state)
1879 {
1880 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1881 		u16 data = serial_port_in(port, SCPDR);
1882 
1883 		/* Active low */
1884 		if (state)
1885 			data &= ~SCPDR_RTSD;
1886 		else
1887 			data |= SCPDR_RTSD;
1888 		serial_port_out(port, SCPDR, data);
1889 
1890 		/* RTS# is output */
1891 		serial_port_out(port, SCPCR,
1892 				serial_port_in(port, SCPCR) | SCPCR_RTSC);
1893 	} else if (sci_getreg(port, SCSPTR)->size) {
1894 		u16 ctrl = serial_port_in(port, SCSPTR);
1895 
1896 		/* Active low */
1897 		if (state)
1898 			ctrl &= ~SCSPTR_RTSDT;
1899 		else
1900 			ctrl |= SCSPTR_RTSDT;
1901 		serial_port_out(port, SCSPTR, ctrl);
1902 	}
1903 }
1904 
1905 static bool sci_get_cts(struct uart_port *port)
1906 {
1907 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1908 		/* Active low */
1909 		return !(serial_port_in(port, SCPDR) & SCPDR_CTSD);
1910 	} else if (sci_getreg(port, SCSPTR)->size) {
1911 		/* Active low */
1912 		return !(serial_port_in(port, SCSPTR) & SCSPTR_CTSDT);
1913 	}
1914 
1915 	return true;
1916 }
1917 
1918 /*
1919  * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
1920  * CTS/RTS is supported in hardware by at least one port and controlled
1921  * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
1922  * handled via the ->init_pins() op, which is a bit of a one-way street,
1923  * lacking any ability to defer pin control -- this will later be
1924  * converted over to the GPIO framework).
1925  *
1926  * Other modes (such as loopback) are supported generically on certain
1927  * port types, but not others. For these it's sufficient to test for the
1928  * existence of the support register and simply ignore the port type.
1929  */
1930 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
1931 {
1932 	struct sci_port *s = to_sci_port(port);
1933 
1934 	if (mctrl & TIOCM_LOOP) {
1935 		const struct plat_sci_reg *reg;
1936 
1937 		/*
1938 		 * Standard loopback mode for SCFCR ports.
1939 		 */
1940 		reg = sci_getreg(port, SCFCR);
1941 		if (reg->size)
1942 			serial_port_out(port, SCFCR,
1943 					serial_port_in(port, SCFCR) |
1944 					SCFCR_LOOP);
1945 	}
1946 
1947 	mctrl_gpio_set(s->gpios, mctrl);
1948 
1949 	if (!s->has_rtscts)
1950 		return;
1951 
1952 	if (!(mctrl & TIOCM_RTS)) {
1953 		/* Disable Auto RTS */
1954 		serial_port_out(port, SCFCR,
1955 				serial_port_in(port, SCFCR) & ~SCFCR_MCE);
1956 
1957 		/* Clear RTS */
1958 		sci_set_rts(port, 0);
1959 	} else if (s->autorts) {
1960 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1961 			/* Enable RTS# pin function */
1962 			serial_port_out(port, SCPCR,
1963 				serial_port_in(port, SCPCR) & ~SCPCR_RTSC);
1964 		}
1965 
1966 		/* Enable Auto RTS */
1967 		serial_port_out(port, SCFCR,
1968 				serial_port_in(port, SCFCR) | SCFCR_MCE);
1969 	} else {
1970 		/* Set RTS */
1971 		sci_set_rts(port, 1);
1972 	}
1973 }
1974 
1975 static unsigned int sci_get_mctrl(struct uart_port *port)
1976 {
1977 	struct sci_port *s = to_sci_port(port);
1978 	struct mctrl_gpios *gpios = s->gpios;
1979 	unsigned int mctrl = 0;
1980 
1981 	mctrl_gpio_get(gpios, &mctrl);
1982 
1983 	/*
1984 	 * CTS/RTS is handled in hardware when supported, while nothing
1985 	 * else is wired up.
1986 	 */
1987 	if (s->autorts) {
1988 		if (sci_get_cts(port))
1989 			mctrl |= TIOCM_CTS;
1990 	} else if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_CTS))) {
1991 		mctrl |= TIOCM_CTS;
1992 	}
1993 	if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_DSR)))
1994 		mctrl |= TIOCM_DSR;
1995 	if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_DCD)))
1996 		mctrl |= TIOCM_CAR;
1997 
1998 	return mctrl;
1999 }
2000 
2001 static void sci_enable_ms(struct uart_port *port)
2002 {
2003 	mctrl_gpio_enable_ms(to_sci_port(port)->gpios);
2004 }
2005 
2006 static void sci_break_ctl(struct uart_port *port, int break_state)
2007 {
2008 	unsigned short scscr, scsptr;
2009 	unsigned long flags;
2010 
2011 	/* check wheter the port has SCSPTR */
2012 	if (!sci_getreg(port, SCSPTR)->size) {
2013 		/*
2014 		 * Not supported by hardware. Most parts couple break and rx
2015 		 * interrupts together, with break detection always enabled.
2016 		 */
2017 		return;
2018 	}
2019 
2020 	spin_lock_irqsave(&port->lock, flags);
2021 	scsptr = serial_port_in(port, SCSPTR);
2022 	scscr = serial_port_in(port, SCSCR);
2023 
2024 	if (break_state == -1) {
2025 		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
2026 		scscr &= ~SCSCR_TE;
2027 	} else {
2028 		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
2029 		scscr |= SCSCR_TE;
2030 	}
2031 
2032 	serial_port_out(port, SCSPTR, scsptr);
2033 	serial_port_out(port, SCSCR, scscr);
2034 	spin_unlock_irqrestore(&port->lock, flags);
2035 }
2036 
2037 static int sci_startup(struct uart_port *port)
2038 {
2039 	struct sci_port *s = to_sci_port(port);
2040 	int ret;
2041 
2042 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2043 
2044 	sci_request_dma(port);
2045 
2046 	ret = sci_request_irq(s);
2047 	if (unlikely(ret < 0)) {
2048 		sci_free_dma(port);
2049 		return ret;
2050 	}
2051 
2052 	return 0;
2053 }
2054 
2055 static void sci_shutdown(struct uart_port *port)
2056 {
2057 	struct sci_port *s = to_sci_port(port);
2058 	unsigned long flags;
2059 	u16 scr;
2060 
2061 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2062 
2063 	s->autorts = false;
2064 	mctrl_gpio_disable_ms(to_sci_port(port)->gpios);
2065 
2066 	spin_lock_irqsave(&port->lock, flags);
2067 	sci_stop_rx(port);
2068 	sci_stop_tx(port);
2069 	/*
2070 	 * Stop RX and TX, disable related interrupts, keep clock source
2071 	 * and HSCIF TOT bits
2072 	 */
2073 	scr = serial_port_in(port, SCSCR);
2074 	serial_port_out(port, SCSCR, scr &
2075 			(SCSCR_CKE1 | SCSCR_CKE0 | s->hscif_tot));
2076 	spin_unlock_irqrestore(&port->lock, flags);
2077 
2078 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2079 	if (s->chan_rx) {
2080 		dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
2081 			port->line);
2082 		del_timer_sync(&s->rx_timer);
2083 	}
2084 #endif
2085 
2086 	sci_free_irq(s);
2087 	sci_free_dma(port);
2088 }
2089 
2090 static int sci_sck_calc(struct sci_port *s, unsigned int bps,
2091 			unsigned int *srr)
2092 {
2093 	unsigned long freq = s->clk_rates[SCI_SCK];
2094 	int err, min_err = INT_MAX;
2095 	unsigned int sr;
2096 
2097 	if (s->port.type != PORT_HSCIF)
2098 		freq *= 2;
2099 
2100 	for_each_sr(sr, s) {
2101 		err = DIV_ROUND_CLOSEST(freq, sr) - bps;
2102 		if (abs(err) >= abs(min_err))
2103 			continue;
2104 
2105 		min_err = err;
2106 		*srr = sr - 1;
2107 
2108 		if (!err)
2109 			break;
2110 	}
2111 
2112 	dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
2113 		*srr + 1);
2114 	return min_err;
2115 }
2116 
2117 static int sci_brg_calc(struct sci_port *s, unsigned int bps,
2118 			unsigned long freq, unsigned int *dlr,
2119 			unsigned int *srr)
2120 {
2121 	int err, min_err = INT_MAX;
2122 	unsigned int sr, dl;
2123 
2124 	if (s->port.type != PORT_HSCIF)
2125 		freq *= 2;
2126 
2127 	for_each_sr(sr, s) {
2128 		dl = DIV_ROUND_CLOSEST(freq, sr * bps);
2129 		dl = clamp(dl, 1U, 65535U);
2130 
2131 		err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
2132 		if (abs(err) >= abs(min_err))
2133 			continue;
2134 
2135 		min_err = err;
2136 		*dlr = dl;
2137 		*srr = sr - 1;
2138 
2139 		if (!err)
2140 			break;
2141 	}
2142 
2143 	dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
2144 		min_err, *dlr, *srr + 1);
2145 	return min_err;
2146 }
2147 
2148 /* calculate sample rate, BRR, and clock select */
2149 static int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
2150 			  unsigned int *brr, unsigned int *srr,
2151 			  unsigned int *cks)
2152 {
2153 	unsigned long freq = s->clk_rates[SCI_FCK];
2154 	unsigned int sr, br, prediv, scrate, c;
2155 	int err, min_err = INT_MAX;
2156 
2157 	if (s->port.type != PORT_HSCIF)
2158 		freq *= 2;
2159 
2160 	/*
2161 	 * Find the combination of sample rate and clock select with the
2162 	 * smallest deviation from the desired baud rate.
2163 	 * Prefer high sample rates to maximise the receive margin.
2164 	 *
2165 	 * M: Receive margin (%)
2166 	 * N: Ratio of bit rate to clock (N = sampling rate)
2167 	 * D: Clock duty (D = 0 to 1.0)
2168 	 * L: Frame length (L = 9 to 12)
2169 	 * F: Absolute value of clock frequency deviation
2170 	 *
2171 	 *  M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
2172 	 *      (|D - 0.5| / N * (1 + F))|
2173 	 *  NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
2174 	 */
2175 	for_each_sr(sr, s) {
2176 		for (c = 0; c <= 3; c++) {
2177 			/* integerized formulas from HSCIF documentation */
2178 			prediv = sr * (1 << (2 * c + 1));
2179 
2180 			/*
2181 			 * We need to calculate:
2182 			 *
2183 			 *     br = freq / (prediv * bps) clamped to [1..256]
2184 			 *     err = freq / (br * prediv) - bps
2185 			 *
2186 			 * Watch out for overflow when calculating the desired
2187 			 * sampling clock rate!
2188 			 */
2189 			if (bps > UINT_MAX / prediv)
2190 				break;
2191 
2192 			scrate = prediv * bps;
2193 			br = DIV_ROUND_CLOSEST(freq, scrate);
2194 			br = clamp(br, 1U, 256U);
2195 
2196 			err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
2197 			if (abs(err) >= abs(min_err))
2198 				continue;
2199 
2200 			min_err = err;
2201 			*brr = br - 1;
2202 			*srr = sr - 1;
2203 			*cks = c;
2204 
2205 			if (!err)
2206 				goto found;
2207 		}
2208 	}
2209 
2210 found:
2211 	dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
2212 		min_err, *brr, *srr + 1, *cks);
2213 	return min_err;
2214 }
2215 
2216 static void sci_reset(struct uart_port *port)
2217 {
2218 	const struct plat_sci_reg *reg;
2219 	unsigned int status;
2220 	struct sci_port *s = to_sci_port(port);
2221 
2222 	serial_port_out(port, SCSCR, s->hscif_tot);	/* TE=0, RE=0, CKE1=0 */
2223 
2224 	reg = sci_getreg(port, SCFCR);
2225 	if (reg->size)
2226 		serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
2227 
2228 	sci_clear_SCxSR(port,
2229 			SCxSR_RDxF_CLEAR(port) & SCxSR_ERROR_CLEAR(port) &
2230 			SCxSR_BREAK_CLEAR(port));
2231 	if (sci_getreg(port, SCLSR)->size) {
2232 		status = serial_port_in(port, SCLSR);
2233 		status &= ~(SCLSR_TO | SCLSR_ORER);
2234 		serial_port_out(port, SCLSR, status);
2235 	}
2236 
2237 	if (s->rx_trigger > 1) {
2238 		if (s->rx_fifo_timeout) {
2239 			scif_set_rtrg(port, 1);
2240 			timer_setup(&s->rx_fifo_timer, rx_fifo_timer_fn, 0);
2241 		} else {
2242 			if (port->type == PORT_SCIFA ||
2243 			    port->type == PORT_SCIFB)
2244 				scif_set_rtrg(port, 1);
2245 			else
2246 				scif_set_rtrg(port, s->rx_trigger);
2247 		}
2248 	}
2249 }
2250 
2251 static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
2252 			    struct ktermios *old)
2253 {
2254 	unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i, bits;
2255 	unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
2256 	unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
2257 	struct sci_port *s = to_sci_port(port);
2258 	const struct plat_sci_reg *reg;
2259 	int min_err = INT_MAX, err;
2260 	unsigned long max_freq = 0;
2261 	int best_clk = -1;
2262 	unsigned long flags;
2263 
2264 	if ((termios->c_cflag & CSIZE) == CS7)
2265 		smr_val |= SCSMR_CHR;
2266 	if (termios->c_cflag & PARENB)
2267 		smr_val |= SCSMR_PE;
2268 	if (termios->c_cflag & PARODD)
2269 		smr_val |= SCSMR_PE | SCSMR_ODD;
2270 	if (termios->c_cflag & CSTOPB)
2271 		smr_val |= SCSMR_STOP;
2272 
2273 	/*
2274 	 * earlyprintk comes here early on with port->uartclk set to zero.
2275 	 * the clock framework is not up and running at this point so here
2276 	 * we assume that 115200 is the maximum baud rate. please note that
2277 	 * the baud rate is not programmed during earlyprintk - it is assumed
2278 	 * that the previous boot loader has enabled required clocks and
2279 	 * setup the baud rate generator hardware for us already.
2280 	 */
2281 	if (!port->uartclk) {
2282 		baud = uart_get_baud_rate(port, termios, old, 0, 115200);
2283 		goto done;
2284 	}
2285 
2286 	for (i = 0; i < SCI_NUM_CLKS; i++)
2287 		max_freq = max(max_freq, s->clk_rates[i]);
2288 
2289 	baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s));
2290 	if (!baud)
2291 		goto done;
2292 
2293 	/*
2294 	 * There can be multiple sources for the sampling clock.  Find the one
2295 	 * that gives us the smallest deviation from the desired baud rate.
2296 	 */
2297 
2298 	/* Optional Undivided External Clock */
2299 	if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA &&
2300 	    port->type != PORT_SCIFB) {
2301 		err = sci_sck_calc(s, baud, &srr1);
2302 		if (abs(err) < abs(min_err)) {
2303 			best_clk = SCI_SCK;
2304 			scr_val = SCSCR_CKE1;
2305 			sccks = SCCKS_CKS;
2306 			min_err = err;
2307 			srr = srr1;
2308 			if (!err)
2309 				goto done;
2310 		}
2311 	}
2312 
2313 	/* Optional BRG Frequency Divided External Clock */
2314 	if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
2315 		err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1,
2316 				   &srr1);
2317 		if (abs(err) < abs(min_err)) {
2318 			best_clk = SCI_SCIF_CLK;
2319 			scr_val = SCSCR_CKE1;
2320 			sccks = 0;
2321 			min_err = err;
2322 			dl = dl1;
2323 			srr = srr1;
2324 			if (!err)
2325 				goto done;
2326 		}
2327 	}
2328 
2329 	/* Optional BRG Frequency Divided Internal Clock */
2330 	if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
2331 		err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1,
2332 				   &srr1);
2333 		if (abs(err) < abs(min_err)) {
2334 			best_clk = SCI_BRG_INT;
2335 			scr_val = SCSCR_CKE1;
2336 			sccks = SCCKS_XIN;
2337 			min_err = err;
2338 			dl = dl1;
2339 			srr = srr1;
2340 			if (!min_err)
2341 				goto done;
2342 		}
2343 	}
2344 
2345 	/* Divided Functional Clock using standard Bit Rate Register */
2346 	err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1);
2347 	if (abs(err) < abs(min_err)) {
2348 		best_clk = SCI_FCK;
2349 		scr_val = 0;
2350 		min_err = err;
2351 		brr = brr1;
2352 		srr = srr1;
2353 		cks = cks1;
2354 	}
2355 
2356 done:
2357 	if (best_clk >= 0)
2358 		dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
2359 			s->clks[best_clk], baud, min_err);
2360 
2361 	sci_port_enable(s);
2362 
2363 	/*
2364 	 * Program the optional External Baud Rate Generator (BRG) first.
2365 	 * It controls the mux to select (H)SCK or frequency divided clock.
2366 	 */
2367 	if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
2368 		serial_port_out(port, SCDL, dl);
2369 		serial_port_out(port, SCCKS, sccks);
2370 	}
2371 
2372 	spin_lock_irqsave(&port->lock, flags);
2373 
2374 	sci_reset(port);
2375 
2376 	uart_update_timeout(port, termios->c_cflag, baud);
2377 
2378 	if (best_clk >= 0) {
2379 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
2380 			switch (srr + 1) {
2381 			case 5:  smr_val |= SCSMR_SRC_5;  break;
2382 			case 7:  smr_val |= SCSMR_SRC_7;  break;
2383 			case 11: smr_val |= SCSMR_SRC_11; break;
2384 			case 13: smr_val |= SCSMR_SRC_13; break;
2385 			case 16: smr_val |= SCSMR_SRC_16; break;
2386 			case 17: smr_val |= SCSMR_SRC_17; break;
2387 			case 19: smr_val |= SCSMR_SRC_19; break;
2388 			case 27: smr_val |= SCSMR_SRC_27; break;
2389 			}
2390 		smr_val |= cks;
2391 		serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2392 		serial_port_out(port, SCSMR, smr_val);
2393 		serial_port_out(port, SCBRR, brr);
2394 		if (sci_getreg(port, HSSRR)->size)
2395 			serial_port_out(port, HSSRR, srr | HSCIF_SRE);
2396 
2397 		/* Wait one bit interval */
2398 		udelay((1000000 + (baud - 1)) / baud);
2399 	} else {
2400 		/* Don't touch the bit rate configuration */
2401 		scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
2402 		smr_val |= serial_port_in(port, SCSMR) &
2403 			   (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS);
2404 		serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2405 		serial_port_out(port, SCSMR, smr_val);
2406 	}
2407 
2408 	sci_init_pins(port, termios->c_cflag);
2409 
2410 	port->status &= ~UPSTAT_AUTOCTS;
2411 	s->autorts = false;
2412 	reg = sci_getreg(port, SCFCR);
2413 	if (reg->size) {
2414 		unsigned short ctrl = serial_port_in(port, SCFCR);
2415 
2416 		if ((port->flags & UPF_HARD_FLOW) &&
2417 		    (termios->c_cflag & CRTSCTS)) {
2418 			/* There is no CTS interrupt to restart the hardware */
2419 			port->status |= UPSTAT_AUTOCTS;
2420 			/* MCE is enabled when RTS is raised */
2421 			s->autorts = true;
2422 		}
2423 
2424 		/*
2425 		 * As we've done a sci_reset() above, ensure we don't
2426 		 * interfere with the FIFOs while toggling MCE. As the
2427 		 * reset values could still be set, simply mask them out.
2428 		 */
2429 		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2430 
2431 		serial_port_out(port, SCFCR, ctrl);
2432 	}
2433 	if (port->flags & UPF_HARD_FLOW) {
2434 		/* Refresh (Auto) RTS */
2435 		sci_set_mctrl(port, port->mctrl);
2436 	}
2437 
2438 	scr_val |= SCSCR_RE | SCSCR_TE |
2439 		   (s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0));
2440 	serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2441 	if ((srr + 1 == 5) &&
2442 	    (port->type == PORT_SCIFA || port->type == PORT_SCIFB)) {
2443 		/*
2444 		 * In asynchronous mode, when the sampling rate is 1/5, first
2445 		 * received data may become invalid on some SCIFA and SCIFB.
2446 		 * To avoid this problem wait more than 1 serial data time (1
2447 		 * bit time x serial data number) after setting SCSCR.RE = 1.
2448 		 */
2449 		udelay(DIV_ROUND_UP(10 * 1000000, baud));
2450 	}
2451 
2452 	/*
2453 	 * Calculate delay for 2 DMA buffers (4 FIFO).
2454 	 * See serial_core.c::uart_update_timeout().
2455 	 * With 10 bits (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above
2456 	 * function calculates 1 jiffie for the data plus 5 jiffies for the
2457 	 * "slop(e)." Then below we calculate 5 jiffies (20ms) for 2 DMA
2458 	 * buffers (4 FIFO sizes), but when performing a faster transfer, the
2459 	 * value obtained by this formula is too small. Therefore, if the value
2460 	 * is smaller than 20ms, use 20ms as the timeout value for DMA.
2461 	 */
2462 	/* byte size and parity */
2463 	switch (termios->c_cflag & CSIZE) {
2464 	case CS5:
2465 		bits = 7;
2466 		break;
2467 	case CS6:
2468 		bits = 8;
2469 		break;
2470 	case CS7:
2471 		bits = 9;
2472 		break;
2473 	default:
2474 		bits = 10;
2475 		break;
2476 	}
2477 
2478 	if (termios->c_cflag & CSTOPB)
2479 		bits++;
2480 	if (termios->c_cflag & PARENB)
2481 		bits++;
2482 
2483 	s->rx_frame = (100 * bits * HZ) / (baud / 10);
2484 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2485 	s->rx_timeout = DIV_ROUND_UP(s->buf_len_rx * 2 * s->rx_frame, 1000);
2486 	if (s->rx_timeout < msecs_to_jiffies(20))
2487 		s->rx_timeout = msecs_to_jiffies(20);
2488 #endif
2489 
2490 	if ((termios->c_cflag & CREAD) != 0)
2491 		sci_start_rx(port);
2492 
2493 	spin_unlock_irqrestore(&port->lock, flags);
2494 
2495 	sci_port_disable(s);
2496 
2497 	if (UART_ENABLE_MS(port, termios->c_cflag))
2498 		sci_enable_ms(port);
2499 }
2500 
2501 static void sci_pm(struct uart_port *port, unsigned int state,
2502 		   unsigned int oldstate)
2503 {
2504 	struct sci_port *sci_port = to_sci_port(port);
2505 
2506 	switch (state) {
2507 	case UART_PM_STATE_OFF:
2508 		sci_port_disable(sci_port);
2509 		break;
2510 	default:
2511 		sci_port_enable(sci_port);
2512 		break;
2513 	}
2514 }
2515 
2516 static const char *sci_type(struct uart_port *port)
2517 {
2518 	switch (port->type) {
2519 	case PORT_IRDA:
2520 		return "irda";
2521 	case PORT_SCI:
2522 		return "sci";
2523 	case PORT_SCIF:
2524 		return "scif";
2525 	case PORT_SCIFA:
2526 		return "scifa";
2527 	case PORT_SCIFB:
2528 		return "scifb";
2529 	case PORT_HSCIF:
2530 		return "hscif";
2531 	}
2532 
2533 	return NULL;
2534 }
2535 
2536 static int sci_remap_port(struct uart_port *port)
2537 {
2538 	struct sci_port *sport = to_sci_port(port);
2539 
2540 	/*
2541 	 * Nothing to do if there's already an established membase.
2542 	 */
2543 	if (port->membase)
2544 		return 0;
2545 
2546 	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2547 		port->membase = ioremap_nocache(port->mapbase, sport->reg_size);
2548 		if (unlikely(!port->membase)) {
2549 			dev_err(port->dev, "can't remap port#%d\n", port->line);
2550 			return -ENXIO;
2551 		}
2552 	} else {
2553 		/*
2554 		 * For the simple (and majority of) cases where we don't
2555 		 * need to do any remapping, just cast the cookie
2556 		 * directly.
2557 		 */
2558 		port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2559 	}
2560 
2561 	return 0;
2562 }
2563 
2564 static void sci_release_port(struct uart_port *port)
2565 {
2566 	struct sci_port *sport = to_sci_port(port);
2567 
2568 	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2569 		iounmap(port->membase);
2570 		port->membase = NULL;
2571 	}
2572 
2573 	release_mem_region(port->mapbase, sport->reg_size);
2574 }
2575 
2576 static int sci_request_port(struct uart_port *port)
2577 {
2578 	struct resource *res;
2579 	struct sci_port *sport = to_sci_port(port);
2580 	int ret;
2581 
2582 	res = request_mem_region(port->mapbase, sport->reg_size,
2583 				 dev_name(port->dev));
2584 	if (unlikely(res == NULL)) {
2585 		dev_err(port->dev, "request_mem_region failed.");
2586 		return -EBUSY;
2587 	}
2588 
2589 	ret = sci_remap_port(port);
2590 	if (unlikely(ret != 0)) {
2591 		release_resource(res);
2592 		return ret;
2593 	}
2594 
2595 	return 0;
2596 }
2597 
2598 static void sci_config_port(struct uart_port *port, int flags)
2599 {
2600 	if (flags & UART_CONFIG_TYPE) {
2601 		struct sci_port *sport = to_sci_port(port);
2602 
2603 		port->type = sport->cfg->type;
2604 		sci_request_port(port);
2605 	}
2606 }
2607 
2608 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2609 {
2610 	if (ser->baud_base < 2400)
2611 		/* No paper tape reader for Mitch.. */
2612 		return -EINVAL;
2613 
2614 	return 0;
2615 }
2616 
2617 static const struct uart_ops sci_uart_ops = {
2618 	.tx_empty	= sci_tx_empty,
2619 	.set_mctrl	= sci_set_mctrl,
2620 	.get_mctrl	= sci_get_mctrl,
2621 	.start_tx	= sci_start_tx,
2622 	.stop_tx	= sci_stop_tx,
2623 	.stop_rx	= sci_stop_rx,
2624 	.enable_ms	= sci_enable_ms,
2625 	.break_ctl	= sci_break_ctl,
2626 	.startup	= sci_startup,
2627 	.shutdown	= sci_shutdown,
2628 	.flush_buffer	= sci_flush_buffer,
2629 	.set_termios	= sci_set_termios,
2630 	.pm		= sci_pm,
2631 	.type		= sci_type,
2632 	.release_port	= sci_release_port,
2633 	.request_port	= sci_request_port,
2634 	.config_port	= sci_config_port,
2635 	.verify_port	= sci_verify_port,
2636 #ifdef CONFIG_CONSOLE_POLL
2637 	.poll_get_char	= sci_poll_get_char,
2638 	.poll_put_char	= sci_poll_put_char,
2639 #endif
2640 };
2641 
2642 static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
2643 {
2644 	const char *clk_names[] = {
2645 		[SCI_FCK] = "fck",
2646 		[SCI_SCK] = "sck",
2647 		[SCI_BRG_INT] = "brg_int",
2648 		[SCI_SCIF_CLK] = "scif_clk",
2649 	};
2650 	struct clk *clk;
2651 	unsigned int i;
2652 
2653 	if (sci_port->cfg->type == PORT_HSCIF)
2654 		clk_names[SCI_SCK] = "hsck";
2655 
2656 	for (i = 0; i < SCI_NUM_CLKS; i++) {
2657 		clk = devm_clk_get(dev, clk_names[i]);
2658 		if (PTR_ERR(clk) == -EPROBE_DEFER)
2659 			return -EPROBE_DEFER;
2660 
2661 		if (IS_ERR(clk) && i == SCI_FCK) {
2662 			/*
2663 			 * "fck" used to be called "sci_ick", and we need to
2664 			 * maintain DT backward compatibility.
2665 			 */
2666 			clk = devm_clk_get(dev, "sci_ick");
2667 			if (PTR_ERR(clk) == -EPROBE_DEFER)
2668 				return -EPROBE_DEFER;
2669 
2670 			if (!IS_ERR(clk))
2671 				goto found;
2672 
2673 			/*
2674 			 * Not all SH platforms declare a clock lookup entry
2675 			 * for SCI devices, in which case we need to get the
2676 			 * global "peripheral_clk" clock.
2677 			 */
2678 			clk = devm_clk_get(dev, "peripheral_clk");
2679 			if (!IS_ERR(clk))
2680 				goto found;
2681 
2682 			dev_err(dev, "failed to get %s (%ld)\n", clk_names[i],
2683 				PTR_ERR(clk));
2684 			return PTR_ERR(clk);
2685 		}
2686 
2687 found:
2688 		if (IS_ERR(clk))
2689 			dev_dbg(dev, "failed to get %s (%ld)\n", clk_names[i],
2690 				PTR_ERR(clk));
2691 		else
2692 			dev_dbg(dev, "clk %s is %pC rate %pCr\n", clk_names[i],
2693 				clk, clk);
2694 		sci_port->clks[i] = IS_ERR(clk) ? NULL : clk;
2695 	}
2696 	return 0;
2697 }
2698 
2699 static const struct sci_port_params *
2700 sci_probe_regmap(const struct plat_sci_port *cfg)
2701 {
2702 	unsigned int regtype;
2703 
2704 	if (cfg->regtype != SCIx_PROBE_REGTYPE)
2705 		return &sci_port_params[cfg->regtype];
2706 
2707 	switch (cfg->type) {
2708 	case PORT_SCI:
2709 		regtype = SCIx_SCI_REGTYPE;
2710 		break;
2711 	case PORT_IRDA:
2712 		regtype = SCIx_IRDA_REGTYPE;
2713 		break;
2714 	case PORT_SCIFA:
2715 		regtype = SCIx_SCIFA_REGTYPE;
2716 		break;
2717 	case PORT_SCIFB:
2718 		regtype = SCIx_SCIFB_REGTYPE;
2719 		break;
2720 	case PORT_SCIF:
2721 		/*
2722 		 * The SH-4 is a bit of a misnomer here, although that's
2723 		 * where this particular port layout originated. This
2724 		 * configuration (or some slight variation thereof)
2725 		 * remains the dominant model for all SCIFs.
2726 		 */
2727 		regtype = SCIx_SH4_SCIF_REGTYPE;
2728 		break;
2729 	case PORT_HSCIF:
2730 		regtype = SCIx_HSCIF_REGTYPE;
2731 		break;
2732 	default:
2733 		pr_err("Can't probe register map for given port\n");
2734 		return NULL;
2735 	}
2736 
2737 	return &sci_port_params[regtype];
2738 }
2739 
2740 static int sci_init_single(struct platform_device *dev,
2741 			   struct sci_port *sci_port, unsigned int index,
2742 			   const struct plat_sci_port *p, bool early)
2743 {
2744 	struct uart_port *port = &sci_port->port;
2745 	const struct resource *res;
2746 	unsigned int i;
2747 	int ret;
2748 
2749 	sci_port->cfg	= p;
2750 
2751 	port->ops	= &sci_uart_ops;
2752 	port->iotype	= UPIO_MEM;
2753 	port->line	= index;
2754 
2755 	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2756 	if (res == NULL)
2757 		return -ENOMEM;
2758 
2759 	port->mapbase = res->start;
2760 	sci_port->reg_size = resource_size(res);
2761 
2762 	for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i)
2763 		sci_port->irqs[i] = platform_get_irq(dev, i);
2764 
2765 	/* The SCI generates several interrupts. They can be muxed together or
2766 	 * connected to different interrupt lines. In the muxed case only one
2767 	 * interrupt resource is specified. In the non-muxed case three or four
2768 	 * interrupt resources are specified, as the BRI interrupt is optional.
2769 	 */
2770 	if (sci_port->irqs[0] < 0)
2771 		return -ENXIO;
2772 
2773 	if (sci_port->irqs[1] < 0) {
2774 		sci_port->irqs[1] = sci_port->irqs[0];
2775 		sci_port->irqs[2] = sci_port->irqs[0];
2776 		sci_port->irqs[3] = sci_port->irqs[0];
2777 	}
2778 
2779 	sci_port->params = sci_probe_regmap(p);
2780 	if (unlikely(sci_port->params == NULL))
2781 		return -EINVAL;
2782 
2783 	switch (p->type) {
2784 	case PORT_SCIFB:
2785 		sci_port->rx_trigger = 48;
2786 		break;
2787 	case PORT_HSCIF:
2788 		sci_port->rx_trigger = 64;
2789 		break;
2790 	case PORT_SCIFA:
2791 		sci_port->rx_trigger = 32;
2792 		break;
2793 	case PORT_SCIF:
2794 		if (p->regtype == SCIx_SH7705_SCIF_REGTYPE)
2795 			/* RX triggering not implemented for this IP */
2796 			sci_port->rx_trigger = 1;
2797 		else
2798 			sci_port->rx_trigger = 8;
2799 		break;
2800 	default:
2801 		sci_port->rx_trigger = 1;
2802 		break;
2803 	}
2804 
2805 	sci_port->rx_fifo_timeout = 0;
2806 	sci_port->hscif_tot = 0;
2807 
2808 	/* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2809 	 * match the SoC datasheet, this should be investigated. Let platform
2810 	 * data override the sampling rate for now.
2811 	 */
2812 	sci_port->sampling_rate_mask = p->sampling_rate
2813 				     ? SCI_SR(p->sampling_rate)
2814 				     : sci_port->params->sampling_rate_mask;
2815 
2816 	if (!early) {
2817 		ret = sci_init_clocks(sci_port, &dev->dev);
2818 		if (ret < 0)
2819 			return ret;
2820 
2821 		port->dev = &dev->dev;
2822 
2823 		pm_runtime_enable(&dev->dev);
2824 	}
2825 
2826 	port->type		= p->type;
2827 	port->flags		= UPF_FIXED_PORT | UPF_BOOT_AUTOCONF | p->flags;
2828 	port->fifosize		= sci_port->params->fifosize;
2829 
2830 	if (port->type == PORT_SCI) {
2831 		if (sci_port->reg_size >= 0x20)
2832 			port->regshift = 2;
2833 		else
2834 			port->regshift = 1;
2835 	}
2836 
2837 	/*
2838 	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
2839 	 * for the multi-IRQ ports, which is where we are primarily
2840 	 * concerned with the shutdown path synchronization.
2841 	 *
2842 	 * For the muxed case there's nothing more to do.
2843 	 */
2844 	port->irq		= sci_port->irqs[SCIx_RXI_IRQ];
2845 	port->irqflags		= 0;
2846 
2847 	port->serial_in		= sci_serial_in;
2848 	port->serial_out	= sci_serial_out;
2849 
2850 	return 0;
2851 }
2852 
2853 static void sci_cleanup_single(struct sci_port *port)
2854 {
2855 	pm_runtime_disable(port->port.dev);
2856 }
2857 
2858 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
2859     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
2860 static void serial_console_putchar(struct uart_port *port, int ch)
2861 {
2862 	sci_poll_put_char(port, ch);
2863 }
2864 
2865 /*
2866  *	Print a string to the serial port trying not to disturb
2867  *	any possible real use of the port...
2868  */
2869 static void serial_console_write(struct console *co, const char *s,
2870 				 unsigned count)
2871 {
2872 	struct sci_port *sci_port = &sci_ports[co->index];
2873 	struct uart_port *port = &sci_port->port;
2874 	unsigned short bits, ctrl, ctrl_temp;
2875 	unsigned long flags;
2876 	int locked = 1;
2877 
2878 	local_irq_save(flags);
2879 #if defined(SUPPORT_SYSRQ)
2880 	if (port->sysrq)
2881 		locked = 0;
2882 	else
2883 #endif
2884 	if (oops_in_progress)
2885 		locked = spin_trylock(&port->lock);
2886 	else
2887 		spin_lock(&port->lock);
2888 
2889 	/* first save SCSCR then disable interrupts, keep clock source */
2890 	ctrl = serial_port_in(port, SCSCR);
2891 	ctrl_temp = SCSCR_RE | SCSCR_TE |
2892 		    (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
2893 		    (ctrl & (SCSCR_CKE1 | SCSCR_CKE0));
2894 	serial_port_out(port, SCSCR, ctrl_temp | sci_port->hscif_tot);
2895 
2896 	uart_console_write(port, s, count, serial_console_putchar);
2897 
2898 	/* wait until fifo is empty and last bit has been transmitted */
2899 	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
2900 	while ((serial_port_in(port, SCxSR) & bits) != bits)
2901 		cpu_relax();
2902 
2903 	/* restore the SCSCR */
2904 	serial_port_out(port, SCSCR, ctrl);
2905 
2906 	if (locked)
2907 		spin_unlock(&port->lock);
2908 	local_irq_restore(flags);
2909 }
2910 
2911 static int serial_console_setup(struct console *co, char *options)
2912 {
2913 	struct sci_port *sci_port;
2914 	struct uart_port *port;
2915 	int baud = 115200;
2916 	int bits = 8;
2917 	int parity = 'n';
2918 	int flow = 'n';
2919 	int ret;
2920 
2921 	/*
2922 	 * Refuse to handle any bogus ports.
2923 	 */
2924 	if (co->index < 0 || co->index >= SCI_NPORTS)
2925 		return -ENODEV;
2926 
2927 	sci_port = &sci_ports[co->index];
2928 	port = &sci_port->port;
2929 
2930 	/*
2931 	 * Refuse to handle uninitialized ports.
2932 	 */
2933 	if (!port->ops)
2934 		return -ENODEV;
2935 
2936 	ret = sci_remap_port(port);
2937 	if (unlikely(ret != 0))
2938 		return ret;
2939 
2940 	if (options)
2941 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2942 
2943 	return uart_set_options(port, co, baud, parity, bits, flow);
2944 }
2945 
2946 static struct console serial_console = {
2947 	.name		= "ttySC",
2948 	.device		= uart_console_device,
2949 	.write		= serial_console_write,
2950 	.setup		= serial_console_setup,
2951 	.flags		= CON_PRINTBUFFER,
2952 	.index		= -1,
2953 	.data		= &sci_uart_driver,
2954 };
2955 
2956 static struct console early_serial_console = {
2957 	.name           = "early_ttySC",
2958 	.write          = serial_console_write,
2959 	.flags          = CON_PRINTBUFFER,
2960 	.index		= -1,
2961 };
2962 
2963 static char early_serial_buf[32];
2964 
2965 static int sci_probe_earlyprintk(struct platform_device *pdev)
2966 {
2967 	const struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
2968 
2969 	if (early_serial_console.data)
2970 		return -EEXIST;
2971 
2972 	early_serial_console.index = pdev->id;
2973 
2974 	sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
2975 
2976 	serial_console_setup(&early_serial_console, early_serial_buf);
2977 
2978 	if (!strstr(early_serial_buf, "keep"))
2979 		early_serial_console.flags |= CON_BOOT;
2980 
2981 	register_console(&early_serial_console);
2982 	return 0;
2983 }
2984 
2985 #define SCI_CONSOLE	(&serial_console)
2986 
2987 #else
2988 static inline int sci_probe_earlyprintk(struct platform_device *pdev)
2989 {
2990 	return -EINVAL;
2991 }
2992 
2993 #define SCI_CONSOLE	NULL
2994 
2995 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */
2996 
2997 static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
2998 
2999 static DEFINE_MUTEX(sci_uart_registration_lock);
3000 static struct uart_driver sci_uart_driver = {
3001 	.owner		= THIS_MODULE,
3002 	.driver_name	= "sci",
3003 	.dev_name	= "ttySC",
3004 	.major		= SCI_MAJOR,
3005 	.minor		= SCI_MINOR_START,
3006 	.nr		= SCI_NPORTS,
3007 	.cons		= SCI_CONSOLE,
3008 };
3009 
3010 static int sci_remove(struct platform_device *dev)
3011 {
3012 	struct sci_port *port = platform_get_drvdata(dev);
3013 
3014 	uart_remove_one_port(&sci_uart_driver, &port->port);
3015 
3016 	sci_cleanup_single(port);
3017 
3018 	if (port->port.fifosize > 1) {
3019 		sysfs_remove_file(&dev->dev.kobj,
3020 				  &dev_attr_rx_fifo_trigger.attr);
3021 	}
3022 	if (port->port.type == PORT_SCIFA || port->port.type == PORT_SCIFB ||
3023 	    port->port.type == PORT_HSCIF) {
3024 		sysfs_remove_file(&dev->dev.kobj,
3025 				  &dev_attr_rx_fifo_timeout.attr);
3026 	}
3027 
3028 	return 0;
3029 }
3030 
3031 
3032 #define SCI_OF_DATA(type, regtype)	(void *)((type) << 16 | (regtype))
3033 #define SCI_OF_TYPE(data)		((unsigned long)(data) >> 16)
3034 #define SCI_OF_REGTYPE(data)		((unsigned long)(data) & 0xffff)
3035 
3036 static const struct of_device_id of_sci_match[] = {
3037 	/* SoC-specific types */
3038 	{
3039 		.compatible = "renesas,scif-r7s72100",
3040 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE),
3041 	},
3042 	/* Family-specific types */
3043 	{
3044 		.compatible = "renesas,rcar-gen1-scif",
3045 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3046 	}, {
3047 		.compatible = "renesas,rcar-gen2-scif",
3048 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3049 	}, {
3050 		.compatible = "renesas,rcar-gen3-scif",
3051 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3052 	},
3053 	/* Generic types */
3054 	{
3055 		.compatible = "renesas,scif",
3056 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE),
3057 	}, {
3058 		.compatible = "renesas,scifa",
3059 		.data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE),
3060 	}, {
3061 		.compatible = "renesas,scifb",
3062 		.data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE),
3063 	}, {
3064 		.compatible = "renesas,hscif",
3065 		.data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE),
3066 	}, {
3067 		.compatible = "renesas,sci",
3068 		.data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE),
3069 	}, {
3070 		/* Terminator */
3071 	},
3072 };
3073 MODULE_DEVICE_TABLE(of, of_sci_match);
3074 
3075 static struct plat_sci_port *sci_parse_dt(struct platform_device *pdev,
3076 					  unsigned int *dev_id)
3077 {
3078 	struct device_node *np = pdev->dev.of_node;
3079 	struct plat_sci_port *p;
3080 	struct sci_port *sp;
3081 	const void *data;
3082 	int id;
3083 
3084 	if (!IS_ENABLED(CONFIG_OF) || !np)
3085 		return NULL;
3086 
3087 	data = of_device_get_match_data(&pdev->dev);
3088 
3089 	p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
3090 	if (!p)
3091 		return NULL;
3092 
3093 	/* Get the line number from the aliases node. */
3094 	id = of_alias_get_id(np, "serial");
3095 	if (id < 0) {
3096 		dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
3097 		return NULL;
3098 	}
3099 
3100 	sp = &sci_ports[id];
3101 	*dev_id = id;
3102 
3103 	p->type = SCI_OF_TYPE(data);
3104 	p->regtype = SCI_OF_REGTYPE(data);
3105 
3106 	sp->has_rtscts = of_property_read_bool(np, "uart-has-rtscts");
3107 
3108 	return p;
3109 }
3110 
3111 static int sci_probe_single(struct platform_device *dev,
3112 				      unsigned int index,
3113 				      struct plat_sci_port *p,
3114 				      struct sci_port *sciport)
3115 {
3116 	int ret;
3117 
3118 	/* Sanity check */
3119 	if (unlikely(index >= SCI_NPORTS)) {
3120 		dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
3121 			   index+1, SCI_NPORTS);
3122 		dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
3123 		return -EINVAL;
3124 	}
3125 
3126 	mutex_lock(&sci_uart_registration_lock);
3127 	if (!sci_uart_driver.state) {
3128 		ret = uart_register_driver(&sci_uart_driver);
3129 		if (ret) {
3130 			mutex_unlock(&sci_uart_registration_lock);
3131 			return ret;
3132 		}
3133 	}
3134 	mutex_unlock(&sci_uart_registration_lock);
3135 
3136 	ret = sci_init_single(dev, sciport, index, p, false);
3137 	if (ret)
3138 		return ret;
3139 
3140 	sciport->gpios = mctrl_gpio_init(&sciport->port, 0);
3141 	if (IS_ERR(sciport->gpios) && PTR_ERR(sciport->gpios) != -ENOSYS)
3142 		return PTR_ERR(sciport->gpios);
3143 
3144 	if (sciport->has_rtscts) {
3145 		if (!IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(sciport->gpios,
3146 							UART_GPIO_CTS)) ||
3147 		    !IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(sciport->gpios,
3148 							UART_GPIO_RTS))) {
3149 			dev_err(&dev->dev, "Conflicting RTS/CTS config\n");
3150 			return -EINVAL;
3151 		}
3152 		sciport->port.flags |= UPF_HARD_FLOW;
3153 	}
3154 
3155 	ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
3156 	if (ret) {
3157 		sci_cleanup_single(sciport);
3158 		return ret;
3159 	}
3160 
3161 	return 0;
3162 }
3163 
3164 static int sci_probe(struct platform_device *dev)
3165 {
3166 	struct plat_sci_port *p;
3167 	struct sci_port *sp;
3168 	unsigned int dev_id;
3169 	int ret;
3170 
3171 	/*
3172 	 * If we've come here via earlyprintk initialization, head off to
3173 	 * the special early probe. We don't have sufficient device state
3174 	 * to make it beyond this yet.
3175 	 */
3176 	if (is_early_platform_device(dev))
3177 		return sci_probe_earlyprintk(dev);
3178 
3179 	if (dev->dev.of_node) {
3180 		p = sci_parse_dt(dev, &dev_id);
3181 		if (p == NULL)
3182 			return -EINVAL;
3183 	} else {
3184 		p = dev->dev.platform_data;
3185 		if (p == NULL) {
3186 			dev_err(&dev->dev, "no platform data supplied\n");
3187 			return -EINVAL;
3188 		}
3189 
3190 		dev_id = dev->id;
3191 	}
3192 
3193 	sp = &sci_ports[dev_id];
3194 	platform_set_drvdata(dev, sp);
3195 
3196 	ret = sci_probe_single(dev, dev_id, p, sp);
3197 	if (ret)
3198 		return ret;
3199 
3200 	if (sp->port.fifosize > 1) {
3201 		ret = sysfs_create_file(&dev->dev.kobj,
3202 				&dev_attr_rx_fifo_trigger.attr);
3203 		if (ret)
3204 			return ret;
3205 	}
3206 	if (sp->port.type == PORT_SCIFA || sp->port.type == PORT_SCIFB ||
3207 	    sp->port.type == PORT_HSCIF) {
3208 		ret = sysfs_create_file(&dev->dev.kobj,
3209 				&dev_attr_rx_fifo_timeout.attr);
3210 		if (ret) {
3211 			if (sp->port.fifosize > 1) {
3212 				sysfs_remove_file(&dev->dev.kobj,
3213 					&dev_attr_rx_fifo_trigger.attr);
3214 			}
3215 			return ret;
3216 		}
3217 	}
3218 
3219 #ifdef CONFIG_SH_STANDARD_BIOS
3220 	sh_bios_gdb_detach();
3221 #endif
3222 
3223 	return 0;
3224 }
3225 
3226 static __maybe_unused int sci_suspend(struct device *dev)
3227 {
3228 	struct sci_port *sport = dev_get_drvdata(dev);
3229 
3230 	if (sport)
3231 		uart_suspend_port(&sci_uart_driver, &sport->port);
3232 
3233 	return 0;
3234 }
3235 
3236 static __maybe_unused int sci_resume(struct device *dev)
3237 {
3238 	struct sci_port *sport = dev_get_drvdata(dev);
3239 
3240 	if (sport)
3241 		uart_resume_port(&sci_uart_driver, &sport->port);
3242 
3243 	return 0;
3244 }
3245 
3246 static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
3247 
3248 static struct platform_driver sci_driver = {
3249 	.probe		= sci_probe,
3250 	.remove		= sci_remove,
3251 	.driver		= {
3252 		.name	= "sh-sci",
3253 		.pm	= &sci_dev_pm_ops,
3254 		.of_match_table = of_match_ptr(of_sci_match),
3255 	},
3256 };
3257 
3258 static int __init sci_init(void)
3259 {
3260 	pr_info("%s\n", banner);
3261 
3262 	return platform_driver_register(&sci_driver);
3263 }
3264 
3265 static void __exit sci_exit(void)
3266 {
3267 	platform_driver_unregister(&sci_driver);
3268 
3269 	if (sci_uart_driver.state)
3270 		uart_unregister_driver(&sci_uart_driver);
3271 }
3272 
3273 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
3274 early_platform_init_buffer("earlyprintk", &sci_driver,
3275 			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
3276 #endif
3277 #ifdef CONFIG_SERIAL_SH_SCI_EARLYCON
3278 static struct plat_sci_port port_cfg __initdata;
3279 
3280 static int __init early_console_setup(struct earlycon_device *device,
3281 				      int type)
3282 {
3283 	if (!device->port.membase)
3284 		return -ENODEV;
3285 
3286 	device->port.serial_in = sci_serial_in;
3287 	device->port.serial_out	= sci_serial_out;
3288 	device->port.type = type;
3289 	memcpy(&sci_ports[0].port, &device->port, sizeof(struct uart_port));
3290 	port_cfg.type = type;
3291 	sci_ports[0].cfg = &port_cfg;
3292 	sci_ports[0].params = sci_probe_regmap(&port_cfg);
3293 	port_cfg.scscr = sci_serial_in(&sci_ports[0].port, SCSCR);
3294 	sci_serial_out(&sci_ports[0].port, SCSCR,
3295 		       SCSCR_RE | SCSCR_TE | port_cfg.scscr);
3296 
3297 	device->con->write = serial_console_write;
3298 	return 0;
3299 }
3300 static int __init sci_early_console_setup(struct earlycon_device *device,
3301 					  const char *opt)
3302 {
3303 	return early_console_setup(device, PORT_SCI);
3304 }
3305 static int __init scif_early_console_setup(struct earlycon_device *device,
3306 					  const char *opt)
3307 {
3308 	return early_console_setup(device, PORT_SCIF);
3309 }
3310 static int __init scifa_early_console_setup(struct earlycon_device *device,
3311 					  const char *opt)
3312 {
3313 	return early_console_setup(device, PORT_SCIFA);
3314 }
3315 static int __init scifb_early_console_setup(struct earlycon_device *device,
3316 					  const char *opt)
3317 {
3318 	return early_console_setup(device, PORT_SCIFB);
3319 }
3320 static int __init hscif_early_console_setup(struct earlycon_device *device,
3321 					  const char *opt)
3322 {
3323 	return early_console_setup(device, PORT_HSCIF);
3324 }
3325 
3326 OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup);
3327 OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup);
3328 OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup);
3329 OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup);
3330 OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup);
3331 #endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */
3332 
3333 module_init(sci_init);
3334 module_exit(sci_exit);
3335 
3336 MODULE_LICENSE("GPL");
3337 MODULE_ALIAS("platform:sh-sci");
3338 MODULE_AUTHOR("Paul Mundt");
3339 MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");
3340