xref: /openbmc/linux/drivers/tty/serial/sh-sci.c (revision b016b646)
1 /*
2  * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
3  *
4  *  Copyright (C) 2002 - 2011  Paul Mundt
5  *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
6  *
7  * based off of the old drivers/char/sh-sci.c by:
8  *
9  *   Copyright (C) 1999, 2000  Niibe Yutaka
10  *   Copyright (C) 2000  Sugioka Toshinobu
11  *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
12  *   Modified to support SecureEdge. David McCullough (2002)
13  *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
14  *   Removed SH7300 support (Jul 2007).
15  *
16  * This file is subject to the terms and conditions of the GNU General Public
17  * License.  See the file "COPYING" in the main directory of this archive
18  * for more details.
19  */
20 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
21 #define SUPPORT_SYSRQ
22 #endif
23 
24 #undef DEBUG
25 
26 #include <linux/module.h>
27 #include <linux/errno.h>
28 #include <linux/sh_dma.h>
29 #include <linux/timer.h>
30 #include <linux/interrupt.h>
31 #include <linux/tty.h>
32 #include <linux/tty_flip.h>
33 #include <linux/serial.h>
34 #include <linux/major.h>
35 #include <linux/string.h>
36 #include <linux/sysrq.h>
37 #include <linux/ioport.h>
38 #include <linux/mm.h>
39 #include <linux/init.h>
40 #include <linux/delay.h>
41 #include <linux/console.h>
42 #include <linux/platform_device.h>
43 #include <linux/serial_sci.h>
44 #include <linux/notifier.h>
45 #include <linux/pm_runtime.h>
46 #include <linux/cpufreq.h>
47 #include <linux/clk.h>
48 #include <linux/ctype.h>
49 #include <linux/err.h>
50 #include <linux/dmaengine.h>
51 #include <linux/dma-mapping.h>
52 #include <linux/scatterlist.h>
53 #include <linux/slab.h>
54 #include <linux/gpio.h>
55 
56 #ifdef CONFIG_SUPERH
57 #include <asm/sh_bios.h>
58 #endif
59 
60 #include "sh-sci.h"
61 
62 struct sci_port {
63 	struct uart_port	port;
64 
65 	/* Platform configuration */
66 	struct plat_sci_port	*cfg;
67 
68 	/* Break timer */
69 	struct timer_list	break_timer;
70 	int			break_flag;
71 
72 	/* Interface clock */
73 	struct clk		*iclk;
74 	/* Function clock */
75 	struct clk		*fclk;
76 
77 	char			*irqstr[SCIx_NR_IRQS];
78 	char			*gpiostr[SCIx_NR_FNS];
79 
80 	struct dma_chan			*chan_tx;
81 	struct dma_chan			*chan_rx;
82 
83 #ifdef CONFIG_SERIAL_SH_SCI_DMA
84 	struct dma_async_tx_descriptor	*desc_tx;
85 	struct dma_async_tx_descriptor	*desc_rx[2];
86 	dma_cookie_t			cookie_tx;
87 	dma_cookie_t			cookie_rx[2];
88 	dma_cookie_t			active_rx;
89 	struct scatterlist		sg_tx;
90 	unsigned int			sg_len_tx;
91 	struct scatterlist		sg_rx[2];
92 	size_t				buf_len_rx;
93 	struct sh_dmae_slave		param_tx;
94 	struct sh_dmae_slave		param_rx;
95 	struct work_struct		work_tx;
96 	struct work_struct		work_rx;
97 	struct timer_list		rx_timer;
98 	unsigned int			rx_timeout;
99 #endif
100 
101 	struct notifier_block		freq_transition;
102 };
103 
104 /* Function prototypes */
105 static void sci_start_tx(struct uart_port *port);
106 static void sci_stop_tx(struct uart_port *port);
107 static void sci_start_rx(struct uart_port *port);
108 
109 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
110 
111 static struct sci_port sci_ports[SCI_NPORTS];
112 static struct uart_driver sci_uart_driver;
113 
114 static inline struct sci_port *
115 to_sci_port(struct uart_port *uart)
116 {
117 	return container_of(uart, struct sci_port, port);
118 }
119 
120 struct plat_sci_reg {
121 	u8 offset, size;
122 };
123 
124 /* Helper for invalidating specific entries of an inherited map. */
125 #define sci_reg_invalid	{ .offset = 0, .size = 0 }
126 
127 static struct plat_sci_reg sci_regmap[SCIx_NR_REGTYPES][SCIx_NR_REGS] = {
128 	[SCIx_PROBE_REGTYPE] = {
129 		[0 ... SCIx_NR_REGS - 1] = sci_reg_invalid,
130 	},
131 
132 	/*
133 	 * Common SCI definitions, dependent on the port's regshift
134 	 * value.
135 	 */
136 	[SCIx_SCI_REGTYPE] = {
137 		[SCSMR]		= { 0x00,  8 },
138 		[SCBRR]		= { 0x01,  8 },
139 		[SCSCR]		= { 0x02,  8 },
140 		[SCxTDR]	= { 0x03,  8 },
141 		[SCxSR]		= { 0x04,  8 },
142 		[SCxRDR]	= { 0x05,  8 },
143 		[SCFCR]		= sci_reg_invalid,
144 		[SCFDR]		= sci_reg_invalid,
145 		[SCTFDR]	= sci_reg_invalid,
146 		[SCRFDR]	= sci_reg_invalid,
147 		[SCSPTR]	= sci_reg_invalid,
148 		[SCLSR]		= sci_reg_invalid,
149 		[HSSRR]		= sci_reg_invalid,
150 	},
151 
152 	/*
153 	 * Common definitions for legacy IrDA ports, dependent on
154 	 * regshift value.
155 	 */
156 	[SCIx_IRDA_REGTYPE] = {
157 		[SCSMR]		= { 0x00,  8 },
158 		[SCBRR]		= { 0x01,  8 },
159 		[SCSCR]		= { 0x02,  8 },
160 		[SCxTDR]	= { 0x03,  8 },
161 		[SCxSR]		= { 0x04,  8 },
162 		[SCxRDR]	= { 0x05,  8 },
163 		[SCFCR]		= { 0x06,  8 },
164 		[SCFDR]		= { 0x07, 16 },
165 		[SCTFDR]	= sci_reg_invalid,
166 		[SCRFDR]	= sci_reg_invalid,
167 		[SCSPTR]	= sci_reg_invalid,
168 		[SCLSR]		= sci_reg_invalid,
169 		[HSSRR]		= sci_reg_invalid,
170 	},
171 
172 	/*
173 	 * Common SCIFA definitions.
174 	 */
175 	[SCIx_SCIFA_REGTYPE] = {
176 		[SCSMR]		= { 0x00, 16 },
177 		[SCBRR]		= { 0x04,  8 },
178 		[SCSCR]		= { 0x08, 16 },
179 		[SCxTDR]	= { 0x20,  8 },
180 		[SCxSR]		= { 0x14, 16 },
181 		[SCxRDR]	= { 0x24,  8 },
182 		[SCFCR]		= { 0x18, 16 },
183 		[SCFDR]		= { 0x1c, 16 },
184 		[SCTFDR]	= sci_reg_invalid,
185 		[SCRFDR]	= sci_reg_invalid,
186 		[SCSPTR]	= sci_reg_invalid,
187 		[SCLSR]		= sci_reg_invalid,
188 		[HSSRR]		= sci_reg_invalid,
189 	},
190 
191 	/*
192 	 * Common SCIFB definitions.
193 	 */
194 	[SCIx_SCIFB_REGTYPE] = {
195 		[SCSMR]		= { 0x00, 16 },
196 		[SCBRR]		= { 0x04,  8 },
197 		[SCSCR]		= { 0x08, 16 },
198 		[SCxTDR]	= { 0x40,  8 },
199 		[SCxSR]		= { 0x14, 16 },
200 		[SCxRDR]	= { 0x60,  8 },
201 		[SCFCR]		= { 0x18, 16 },
202 		[SCFDR]		= sci_reg_invalid,
203 		[SCTFDR]	= { 0x38, 16 },
204 		[SCRFDR]	= { 0x3c, 16 },
205 		[SCSPTR]	= sci_reg_invalid,
206 		[SCLSR]		= sci_reg_invalid,
207 		[HSSRR]		= sci_reg_invalid,
208 	},
209 
210 	/*
211 	 * Common SH-2(A) SCIF definitions for ports with FIFO data
212 	 * count registers.
213 	 */
214 	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
215 		[SCSMR]		= { 0x00, 16 },
216 		[SCBRR]		= { 0x04,  8 },
217 		[SCSCR]		= { 0x08, 16 },
218 		[SCxTDR]	= { 0x0c,  8 },
219 		[SCxSR]		= { 0x10, 16 },
220 		[SCxRDR]	= { 0x14,  8 },
221 		[SCFCR]		= { 0x18, 16 },
222 		[SCFDR]		= { 0x1c, 16 },
223 		[SCTFDR]	= sci_reg_invalid,
224 		[SCRFDR]	= sci_reg_invalid,
225 		[SCSPTR]	= { 0x20, 16 },
226 		[SCLSR]		= { 0x24, 16 },
227 		[HSSRR]		= sci_reg_invalid,
228 	},
229 
230 	/*
231 	 * Common SH-3 SCIF definitions.
232 	 */
233 	[SCIx_SH3_SCIF_REGTYPE] = {
234 		[SCSMR]		= { 0x00,  8 },
235 		[SCBRR]		= { 0x02,  8 },
236 		[SCSCR]		= { 0x04,  8 },
237 		[SCxTDR]	= { 0x06,  8 },
238 		[SCxSR]		= { 0x08, 16 },
239 		[SCxRDR]	= { 0x0a,  8 },
240 		[SCFCR]		= { 0x0c,  8 },
241 		[SCFDR]		= { 0x0e, 16 },
242 		[SCTFDR]	= sci_reg_invalid,
243 		[SCRFDR]	= sci_reg_invalid,
244 		[SCSPTR]	= sci_reg_invalid,
245 		[SCLSR]		= sci_reg_invalid,
246 		[HSSRR]		= sci_reg_invalid,
247 	},
248 
249 	/*
250 	 * Common SH-4(A) SCIF(B) definitions.
251 	 */
252 	[SCIx_SH4_SCIF_REGTYPE] = {
253 		[SCSMR]		= { 0x00, 16 },
254 		[SCBRR]		= { 0x04,  8 },
255 		[SCSCR]		= { 0x08, 16 },
256 		[SCxTDR]	= { 0x0c,  8 },
257 		[SCxSR]		= { 0x10, 16 },
258 		[SCxRDR]	= { 0x14,  8 },
259 		[SCFCR]		= { 0x18, 16 },
260 		[SCFDR]		= { 0x1c, 16 },
261 		[SCTFDR]	= sci_reg_invalid,
262 		[SCRFDR]	= sci_reg_invalid,
263 		[SCSPTR]	= { 0x20, 16 },
264 		[SCLSR]		= { 0x24, 16 },
265 		[HSSRR]		= sci_reg_invalid,
266 	},
267 
268 	/*
269 	 * Common HSCIF definitions.
270 	 */
271 	[SCIx_HSCIF_REGTYPE] = {
272 		[SCSMR]		= { 0x00, 16 },
273 		[SCBRR]		= { 0x04,  8 },
274 		[SCSCR]		= { 0x08, 16 },
275 		[SCxTDR]	= { 0x0c,  8 },
276 		[SCxSR]		= { 0x10, 16 },
277 		[SCxRDR]	= { 0x14,  8 },
278 		[SCFCR]		= { 0x18, 16 },
279 		[SCFDR]		= { 0x1c, 16 },
280 		[SCTFDR]	= sci_reg_invalid,
281 		[SCRFDR]	= sci_reg_invalid,
282 		[SCSPTR]	= { 0x20, 16 },
283 		[SCLSR]		= { 0x24, 16 },
284 		[HSSRR]		= { 0x40, 16 },
285 	},
286 
287 	/*
288 	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
289 	 * register.
290 	 */
291 	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
292 		[SCSMR]		= { 0x00, 16 },
293 		[SCBRR]		= { 0x04,  8 },
294 		[SCSCR]		= { 0x08, 16 },
295 		[SCxTDR]	= { 0x0c,  8 },
296 		[SCxSR]		= { 0x10, 16 },
297 		[SCxRDR]	= { 0x14,  8 },
298 		[SCFCR]		= { 0x18, 16 },
299 		[SCFDR]		= { 0x1c, 16 },
300 		[SCTFDR]	= sci_reg_invalid,
301 		[SCRFDR]	= sci_reg_invalid,
302 		[SCSPTR]	= sci_reg_invalid,
303 		[SCLSR]		= { 0x24, 16 },
304 		[HSSRR]		= sci_reg_invalid,
305 	},
306 
307 	/*
308 	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
309 	 * count registers.
310 	 */
311 	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
312 		[SCSMR]		= { 0x00, 16 },
313 		[SCBRR]		= { 0x04,  8 },
314 		[SCSCR]		= { 0x08, 16 },
315 		[SCxTDR]	= { 0x0c,  8 },
316 		[SCxSR]		= { 0x10, 16 },
317 		[SCxRDR]	= { 0x14,  8 },
318 		[SCFCR]		= { 0x18, 16 },
319 		[SCFDR]		= { 0x1c, 16 },
320 		[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
321 		[SCRFDR]	= { 0x20, 16 },
322 		[SCSPTR]	= { 0x24, 16 },
323 		[SCLSR]		= { 0x28, 16 },
324 		[HSSRR]		= sci_reg_invalid,
325 	},
326 
327 	/*
328 	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
329 	 * registers.
330 	 */
331 	[SCIx_SH7705_SCIF_REGTYPE] = {
332 		[SCSMR]		= { 0x00, 16 },
333 		[SCBRR]		= { 0x04,  8 },
334 		[SCSCR]		= { 0x08, 16 },
335 		[SCxTDR]	= { 0x20,  8 },
336 		[SCxSR]		= { 0x14, 16 },
337 		[SCxRDR]	= { 0x24,  8 },
338 		[SCFCR]		= { 0x18, 16 },
339 		[SCFDR]		= { 0x1c, 16 },
340 		[SCTFDR]	= sci_reg_invalid,
341 		[SCRFDR]	= sci_reg_invalid,
342 		[SCSPTR]	= sci_reg_invalid,
343 		[SCLSR]		= sci_reg_invalid,
344 		[HSSRR]		= sci_reg_invalid,
345 	},
346 };
347 
348 #define sci_getreg(up, offset)		(sci_regmap[to_sci_port(up)->cfg->regtype] + offset)
349 
350 /*
351  * The "offset" here is rather misleading, in that it refers to an enum
352  * value relative to the port mapping rather than the fixed offset
353  * itself, which needs to be manually retrieved from the platform's
354  * register map for the given port.
355  */
356 static unsigned int sci_serial_in(struct uart_port *p, int offset)
357 {
358 	struct plat_sci_reg *reg = sci_getreg(p, offset);
359 
360 	if (reg->size == 8)
361 		return ioread8(p->membase + (reg->offset << p->regshift));
362 	else if (reg->size == 16)
363 		return ioread16(p->membase + (reg->offset << p->regshift));
364 	else
365 		WARN(1, "Invalid register access\n");
366 
367 	return 0;
368 }
369 
370 static void sci_serial_out(struct uart_port *p, int offset, int value)
371 {
372 	struct plat_sci_reg *reg = sci_getreg(p, offset);
373 
374 	if (reg->size == 8)
375 		iowrite8(value, p->membase + (reg->offset << p->regshift));
376 	else if (reg->size == 16)
377 		iowrite16(value, p->membase + (reg->offset << p->regshift));
378 	else
379 		WARN(1, "Invalid register access\n");
380 }
381 
382 static int sci_probe_regmap(struct plat_sci_port *cfg)
383 {
384 	switch (cfg->type) {
385 	case PORT_SCI:
386 		cfg->regtype = SCIx_SCI_REGTYPE;
387 		break;
388 	case PORT_IRDA:
389 		cfg->regtype = SCIx_IRDA_REGTYPE;
390 		break;
391 	case PORT_SCIFA:
392 		cfg->regtype = SCIx_SCIFA_REGTYPE;
393 		break;
394 	case PORT_SCIFB:
395 		cfg->regtype = SCIx_SCIFB_REGTYPE;
396 		break;
397 	case PORT_SCIF:
398 		/*
399 		 * The SH-4 is a bit of a misnomer here, although that's
400 		 * where this particular port layout originated. This
401 		 * configuration (or some slight variation thereof)
402 		 * remains the dominant model for all SCIFs.
403 		 */
404 		cfg->regtype = SCIx_SH4_SCIF_REGTYPE;
405 		break;
406 	case PORT_HSCIF:
407 		cfg->regtype = SCIx_HSCIF_REGTYPE;
408 		break;
409 	default:
410 		printk(KERN_ERR "Can't probe register map for given port\n");
411 		return -EINVAL;
412 	}
413 
414 	return 0;
415 }
416 
417 static void sci_port_enable(struct sci_port *sci_port)
418 {
419 	if (!sci_port->port.dev)
420 		return;
421 
422 	pm_runtime_get_sync(sci_port->port.dev);
423 
424 	clk_prepare_enable(sci_port->iclk);
425 	sci_port->port.uartclk = clk_get_rate(sci_port->iclk);
426 	clk_prepare_enable(sci_port->fclk);
427 }
428 
429 static void sci_port_disable(struct sci_port *sci_port)
430 {
431 	if (!sci_port->port.dev)
432 		return;
433 
434 	/* Cancel the break timer to ensure that the timer handler will not try
435 	 * to access the hardware with clocks and power disabled. Reset the
436 	 * break flag to make the break debouncing state machine ready for the
437 	 * next break.
438 	 */
439 	del_timer_sync(&sci_port->break_timer);
440 	sci_port->break_flag = 0;
441 
442 	clk_disable_unprepare(sci_port->fclk);
443 	clk_disable_unprepare(sci_port->iclk);
444 
445 	pm_runtime_put_sync(sci_port->port.dev);
446 }
447 
448 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
449 
450 #ifdef CONFIG_CONSOLE_POLL
451 static int sci_poll_get_char(struct uart_port *port)
452 {
453 	unsigned short status;
454 	int c;
455 
456 	do {
457 		status = serial_port_in(port, SCxSR);
458 		if (status & SCxSR_ERRORS(port)) {
459 			serial_port_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
460 			continue;
461 		}
462 		break;
463 	} while (1);
464 
465 	if (!(status & SCxSR_RDxF(port)))
466 		return NO_POLL_CHAR;
467 
468 	c = serial_port_in(port, SCxRDR);
469 
470 	/* Dummy read */
471 	serial_port_in(port, SCxSR);
472 	serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
473 
474 	return c;
475 }
476 #endif
477 
478 static void sci_poll_put_char(struct uart_port *port, unsigned char c)
479 {
480 	unsigned short status;
481 
482 	do {
483 		status = serial_port_in(port, SCxSR);
484 	} while (!(status & SCxSR_TDxE(port)));
485 
486 	serial_port_out(port, SCxTDR, c);
487 	serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
488 }
489 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE */
490 
491 static void sci_init_pins(struct uart_port *port, unsigned int cflag)
492 {
493 	struct sci_port *s = to_sci_port(port);
494 	struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
495 
496 	/*
497 	 * Use port-specific handler if provided.
498 	 */
499 	if (s->cfg->ops && s->cfg->ops->init_pins) {
500 		s->cfg->ops->init_pins(port, cflag);
501 		return;
502 	}
503 
504 	/*
505 	 * For the generic path SCSPTR is necessary. Bail out if that's
506 	 * unavailable, too.
507 	 */
508 	if (!reg->size)
509 		return;
510 
511 	if ((s->cfg->capabilities & SCIx_HAVE_RTSCTS) &&
512 	    ((!(cflag & CRTSCTS)))) {
513 		unsigned short status;
514 
515 		status = serial_port_in(port, SCSPTR);
516 		status &= ~SCSPTR_CTSIO;
517 		status |= SCSPTR_RTSIO;
518 		serial_port_out(port, SCSPTR, status); /* Set RTS = 1 */
519 	}
520 }
521 
522 static int sci_txfill(struct uart_port *port)
523 {
524 	struct plat_sci_reg *reg;
525 
526 	reg = sci_getreg(port, SCTFDR);
527 	if (reg->size)
528 		return serial_port_in(port, SCTFDR) & ((port->fifosize << 1) - 1);
529 
530 	reg = sci_getreg(port, SCFDR);
531 	if (reg->size)
532 		return serial_port_in(port, SCFDR) >> 8;
533 
534 	return !(serial_port_in(port, SCxSR) & SCI_TDRE);
535 }
536 
537 static int sci_txroom(struct uart_port *port)
538 {
539 	return port->fifosize - sci_txfill(port);
540 }
541 
542 static int sci_rxfill(struct uart_port *port)
543 {
544 	struct plat_sci_reg *reg;
545 
546 	reg = sci_getreg(port, SCRFDR);
547 	if (reg->size)
548 		return serial_port_in(port, SCRFDR) & ((port->fifosize << 1) - 1);
549 
550 	reg = sci_getreg(port, SCFDR);
551 	if (reg->size)
552 		return serial_port_in(port, SCFDR) & ((port->fifosize << 1) - 1);
553 
554 	return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
555 }
556 
557 /*
558  * SCI helper for checking the state of the muxed port/RXD pins.
559  */
560 static inline int sci_rxd_in(struct uart_port *port)
561 {
562 	struct sci_port *s = to_sci_port(port);
563 
564 	if (s->cfg->port_reg <= 0)
565 		return 1;
566 
567 	/* Cast for ARM damage */
568 	return !!__raw_readb((void __iomem *)(uintptr_t)s->cfg->port_reg);
569 }
570 
571 /* ********************************************************************** *
572  *                   the interrupt related routines                       *
573  * ********************************************************************** */
574 
575 static void sci_transmit_chars(struct uart_port *port)
576 {
577 	struct circ_buf *xmit = &port->state->xmit;
578 	unsigned int stopped = uart_tx_stopped(port);
579 	unsigned short status;
580 	unsigned short ctrl;
581 	int count;
582 
583 	status = serial_port_in(port, SCxSR);
584 	if (!(status & SCxSR_TDxE(port))) {
585 		ctrl = serial_port_in(port, SCSCR);
586 		if (uart_circ_empty(xmit))
587 			ctrl &= ~SCSCR_TIE;
588 		else
589 			ctrl |= SCSCR_TIE;
590 		serial_port_out(port, SCSCR, ctrl);
591 		return;
592 	}
593 
594 	count = sci_txroom(port);
595 
596 	do {
597 		unsigned char c;
598 
599 		if (port->x_char) {
600 			c = port->x_char;
601 			port->x_char = 0;
602 		} else if (!uart_circ_empty(xmit) && !stopped) {
603 			c = xmit->buf[xmit->tail];
604 			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
605 		} else {
606 			break;
607 		}
608 
609 		serial_port_out(port, SCxTDR, c);
610 
611 		port->icount.tx++;
612 	} while (--count > 0);
613 
614 	serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
615 
616 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
617 		uart_write_wakeup(port);
618 	if (uart_circ_empty(xmit)) {
619 		sci_stop_tx(port);
620 	} else {
621 		ctrl = serial_port_in(port, SCSCR);
622 
623 		if (port->type != PORT_SCI) {
624 			serial_port_in(port, SCxSR); /* Dummy read */
625 			serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
626 		}
627 
628 		ctrl |= SCSCR_TIE;
629 		serial_port_out(port, SCSCR, ctrl);
630 	}
631 }
632 
633 /* On SH3, SCIF may read end-of-break as a space->mark char */
634 #define STEPFN(c)  ({int __c = (c); (((__c-1)|(__c)) == -1); })
635 
636 static void sci_receive_chars(struct uart_port *port)
637 {
638 	struct sci_port *sci_port = to_sci_port(port);
639 	struct tty_port *tport = &port->state->port;
640 	int i, count, copied = 0;
641 	unsigned short status;
642 	unsigned char flag;
643 
644 	status = serial_port_in(port, SCxSR);
645 	if (!(status & SCxSR_RDxF(port)))
646 		return;
647 
648 	while (1) {
649 		/* Don't copy more bytes than there is room for in the buffer */
650 		count = tty_buffer_request_room(tport, sci_rxfill(port));
651 
652 		/* If for any reason we can't copy more data, we're done! */
653 		if (count == 0)
654 			break;
655 
656 		if (port->type == PORT_SCI) {
657 			char c = serial_port_in(port, SCxRDR);
658 			if (uart_handle_sysrq_char(port, c) ||
659 			    sci_port->break_flag)
660 				count = 0;
661 			else
662 				tty_insert_flip_char(tport, c, TTY_NORMAL);
663 		} else {
664 			for (i = 0; i < count; i++) {
665 				char c = serial_port_in(port, SCxRDR);
666 
667 				status = serial_port_in(port, SCxSR);
668 #if defined(CONFIG_CPU_SH3)
669 				/* Skip "chars" during break */
670 				if (sci_port->break_flag) {
671 					if ((c == 0) &&
672 					    (status & SCxSR_FER(port))) {
673 						count--; i--;
674 						continue;
675 					}
676 
677 					/* Nonzero => end-of-break */
678 					dev_dbg(port->dev, "debounce<%02x>\n", c);
679 					sci_port->break_flag = 0;
680 
681 					if (STEPFN(c)) {
682 						count--; i--;
683 						continue;
684 					}
685 				}
686 #endif /* CONFIG_CPU_SH3 */
687 				if (uart_handle_sysrq_char(port, c)) {
688 					count--; i--;
689 					continue;
690 				}
691 
692 				/* Store data and status */
693 				if (status & SCxSR_FER(port)) {
694 					flag = TTY_FRAME;
695 					port->icount.frame++;
696 					dev_notice(port->dev, "frame error\n");
697 				} else if (status & SCxSR_PER(port)) {
698 					flag = TTY_PARITY;
699 					port->icount.parity++;
700 					dev_notice(port->dev, "parity error\n");
701 				} else
702 					flag = TTY_NORMAL;
703 
704 				tty_insert_flip_char(tport, c, flag);
705 			}
706 		}
707 
708 		serial_port_in(port, SCxSR); /* dummy read */
709 		serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
710 
711 		copied += count;
712 		port->icount.rx += count;
713 	}
714 
715 	if (copied) {
716 		/* Tell the rest of the system the news. New characters! */
717 		tty_flip_buffer_push(tport);
718 	} else {
719 		serial_port_in(port, SCxSR); /* dummy read */
720 		serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
721 	}
722 }
723 
724 #define SCI_BREAK_JIFFIES (HZ/20)
725 
726 /*
727  * The sci generates interrupts during the break,
728  * 1 per millisecond or so during the break period, for 9600 baud.
729  * So dont bother disabling interrupts.
730  * But dont want more than 1 break event.
731  * Use a kernel timer to periodically poll the rx line until
732  * the break is finished.
733  */
734 static inline void sci_schedule_break_timer(struct sci_port *port)
735 {
736 	mod_timer(&port->break_timer, jiffies + SCI_BREAK_JIFFIES);
737 }
738 
739 /* Ensure that two consecutive samples find the break over. */
740 static void sci_break_timer(unsigned long data)
741 {
742 	struct sci_port *port = (struct sci_port *)data;
743 
744 	if (sci_rxd_in(&port->port) == 0) {
745 		port->break_flag = 1;
746 		sci_schedule_break_timer(port);
747 	} else if (port->break_flag == 1) {
748 		/* break is over. */
749 		port->break_flag = 2;
750 		sci_schedule_break_timer(port);
751 	} else
752 		port->break_flag = 0;
753 }
754 
755 static int sci_handle_errors(struct uart_port *port)
756 {
757 	int copied = 0;
758 	unsigned short status = serial_port_in(port, SCxSR);
759 	struct tty_port *tport = &port->state->port;
760 	struct sci_port *s = to_sci_port(port);
761 
762 	/*
763 	 * Handle overruns, if supported.
764 	 */
765 	if (s->cfg->overrun_bit != SCIx_NOT_SUPPORTED) {
766 		if (status & (1 << s->cfg->overrun_bit)) {
767 			port->icount.overrun++;
768 
769 			/* overrun error */
770 			if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
771 				copied++;
772 
773 			dev_notice(port->dev, "overrun error");
774 		}
775 	}
776 
777 	if (status & SCxSR_FER(port)) {
778 		if (sci_rxd_in(port) == 0) {
779 			/* Notify of BREAK */
780 			struct sci_port *sci_port = to_sci_port(port);
781 
782 			if (!sci_port->break_flag) {
783 				port->icount.brk++;
784 
785 				sci_port->break_flag = 1;
786 				sci_schedule_break_timer(sci_port);
787 
788 				/* Do sysrq handling. */
789 				if (uart_handle_break(port))
790 					return 0;
791 
792 				dev_dbg(port->dev, "BREAK detected\n");
793 
794 				if (tty_insert_flip_char(tport, 0, TTY_BREAK))
795 					copied++;
796 			}
797 
798 		} else {
799 			/* frame error */
800 			port->icount.frame++;
801 
802 			if (tty_insert_flip_char(tport, 0, TTY_FRAME))
803 				copied++;
804 
805 			dev_notice(port->dev, "frame error\n");
806 		}
807 	}
808 
809 	if (status & SCxSR_PER(port)) {
810 		/* parity error */
811 		port->icount.parity++;
812 
813 		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
814 			copied++;
815 
816 		dev_notice(port->dev, "parity error");
817 	}
818 
819 	if (copied)
820 		tty_flip_buffer_push(tport);
821 
822 	return copied;
823 }
824 
825 static int sci_handle_fifo_overrun(struct uart_port *port)
826 {
827 	struct tty_port *tport = &port->state->port;
828 	struct sci_port *s = to_sci_port(port);
829 	struct plat_sci_reg *reg;
830 	int copied = 0;
831 
832 	reg = sci_getreg(port, SCLSR);
833 	if (!reg->size)
834 		return 0;
835 
836 	if ((serial_port_in(port, SCLSR) & (1 << s->cfg->overrun_bit))) {
837 		serial_port_out(port, SCLSR, 0);
838 
839 		port->icount.overrun++;
840 
841 		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
842 		tty_flip_buffer_push(tport);
843 
844 		dev_notice(port->dev, "overrun error\n");
845 		copied++;
846 	}
847 
848 	return copied;
849 }
850 
851 static int sci_handle_breaks(struct uart_port *port)
852 {
853 	int copied = 0;
854 	unsigned short status = serial_port_in(port, SCxSR);
855 	struct tty_port *tport = &port->state->port;
856 	struct sci_port *s = to_sci_port(port);
857 
858 	if (uart_handle_break(port))
859 		return 0;
860 
861 	if (!s->break_flag && status & SCxSR_BRK(port)) {
862 #if defined(CONFIG_CPU_SH3)
863 		/* Debounce break */
864 		s->break_flag = 1;
865 #endif
866 
867 		port->icount.brk++;
868 
869 		/* Notify of BREAK */
870 		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
871 			copied++;
872 
873 		dev_dbg(port->dev, "BREAK detected\n");
874 	}
875 
876 	if (copied)
877 		tty_flip_buffer_push(tport);
878 
879 	copied += sci_handle_fifo_overrun(port);
880 
881 	return copied;
882 }
883 
884 static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
885 {
886 #ifdef CONFIG_SERIAL_SH_SCI_DMA
887 	struct uart_port *port = ptr;
888 	struct sci_port *s = to_sci_port(port);
889 
890 	if (s->chan_rx) {
891 		u16 scr = serial_port_in(port, SCSCR);
892 		u16 ssr = serial_port_in(port, SCxSR);
893 
894 		/* Disable future Rx interrupts */
895 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
896 			disable_irq_nosync(irq);
897 			scr |= 0x4000;
898 		} else {
899 			scr &= ~SCSCR_RIE;
900 		}
901 		serial_port_out(port, SCSCR, scr);
902 		/* Clear current interrupt */
903 		serial_port_out(port, SCxSR, ssr & ~(1 | SCxSR_RDxF(port)));
904 		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n",
905 			jiffies, s->rx_timeout);
906 		mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
907 
908 		return IRQ_HANDLED;
909 	}
910 #endif
911 
912 	/* I think sci_receive_chars has to be called irrespective
913 	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
914 	 * to be disabled?
915 	 */
916 	sci_receive_chars(ptr);
917 
918 	return IRQ_HANDLED;
919 }
920 
921 static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
922 {
923 	struct uart_port *port = ptr;
924 	unsigned long flags;
925 
926 	spin_lock_irqsave(&port->lock, flags);
927 	sci_transmit_chars(port);
928 	spin_unlock_irqrestore(&port->lock, flags);
929 
930 	return IRQ_HANDLED;
931 }
932 
933 static irqreturn_t sci_er_interrupt(int irq, void *ptr)
934 {
935 	struct uart_port *port = ptr;
936 
937 	/* Handle errors */
938 	if (port->type == PORT_SCI) {
939 		if (sci_handle_errors(port)) {
940 			/* discard character in rx buffer */
941 			serial_port_in(port, SCxSR);
942 			serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
943 		}
944 	} else {
945 		sci_handle_fifo_overrun(port);
946 		sci_rx_interrupt(irq, ptr);
947 	}
948 
949 	serial_port_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
950 
951 	/* Kick the transmission */
952 	sci_tx_interrupt(irq, ptr);
953 
954 	return IRQ_HANDLED;
955 }
956 
957 static irqreturn_t sci_br_interrupt(int irq, void *ptr)
958 {
959 	struct uart_port *port = ptr;
960 
961 	/* Handle BREAKs */
962 	sci_handle_breaks(port);
963 	serial_port_out(port, SCxSR, SCxSR_BREAK_CLEAR(port));
964 
965 	return IRQ_HANDLED;
966 }
967 
968 static inline unsigned long port_rx_irq_mask(struct uart_port *port)
969 {
970 	/*
971 	 * Not all ports (such as SCIFA) will support REIE. Rather than
972 	 * special-casing the port type, we check the port initialization
973 	 * IRQ enable mask to see whether the IRQ is desired at all. If
974 	 * it's unset, it's logically inferred that there's no point in
975 	 * testing for it.
976 	 */
977 	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
978 }
979 
980 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
981 {
982 	unsigned short ssr_status, scr_status, err_enabled;
983 	struct uart_port *port = ptr;
984 	struct sci_port *s = to_sci_port(port);
985 	irqreturn_t ret = IRQ_NONE;
986 
987 	ssr_status = serial_port_in(port, SCxSR);
988 	scr_status = serial_port_in(port, SCSCR);
989 	err_enabled = scr_status & port_rx_irq_mask(port);
990 
991 	/* Tx Interrupt */
992 	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
993 	    !s->chan_tx)
994 		ret = sci_tx_interrupt(irq, ptr);
995 
996 	/*
997 	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
998 	 * DR flags
999 	 */
1000 	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1001 	    (scr_status & SCSCR_RIE))
1002 		ret = sci_rx_interrupt(irq, ptr);
1003 
1004 	/* Error Interrupt */
1005 	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1006 		ret = sci_er_interrupt(irq, ptr);
1007 
1008 	/* Break Interrupt */
1009 	if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
1010 		ret = sci_br_interrupt(irq, ptr);
1011 
1012 	return ret;
1013 }
1014 
1015 /*
1016  * Here we define a transition notifier so that we can update all of our
1017  * ports' baud rate when the peripheral clock changes.
1018  */
1019 static int sci_notifier(struct notifier_block *self,
1020 			unsigned long phase, void *p)
1021 {
1022 	struct sci_port *sci_port;
1023 	unsigned long flags;
1024 
1025 	sci_port = container_of(self, struct sci_port, freq_transition);
1026 
1027 	if ((phase == CPUFREQ_POSTCHANGE) ||
1028 	    (phase == CPUFREQ_RESUMECHANGE)) {
1029 		struct uart_port *port = &sci_port->port;
1030 
1031 		spin_lock_irqsave(&port->lock, flags);
1032 		port->uartclk = clk_get_rate(sci_port->iclk);
1033 		spin_unlock_irqrestore(&port->lock, flags);
1034 	}
1035 
1036 	return NOTIFY_OK;
1037 }
1038 
1039 static struct sci_irq_desc {
1040 	const char	*desc;
1041 	irq_handler_t	handler;
1042 } sci_irq_desc[] = {
1043 	/*
1044 	 * Split out handlers, the default case.
1045 	 */
1046 	[SCIx_ERI_IRQ] = {
1047 		.desc = "rx err",
1048 		.handler = sci_er_interrupt,
1049 	},
1050 
1051 	[SCIx_RXI_IRQ] = {
1052 		.desc = "rx full",
1053 		.handler = sci_rx_interrupt,
1054 	},
1055 
1056 	[SCIx_TXI_IRQ] = {
1057 		.desc = "tx empty",
1058 		.handler = sci_tx_interrupt,
1059 	},
1060 
1061 	[SCIx_BRI_IRQ] = {
1062 		.desc = "break",
1063 		.handler = sci_br_interrupt,
1064 	},
1065 
1066 	/*
1067 	 * Special muxed handler.
1068 	 */
1069 	[SCIx_MUX_IRQ] = {
1070 		.desc = "mux",
1071 		.handler = sci_mpxed_interrupt,
1072 	},
1073 };
1074 
1075 static int sci_request_irq(struct sci_port *port)
1076 {
1077 	struct uart_port *up = &port->port;
1078 	int i, j, ret = 0;
1079 
1080 	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1081 		struct sci_irq_desc *desc;
1082 		unsigned int irq;
1083 
1084 		if (SCIx_IRQ_IS_MUXED(port)) {
1085 			i = SCIx_MUX_IRQ;
1086 			irq = up->irq;
1087 		} else {
1088 			irq = port->cfg->irqs[i];
1089 
1090 			/*
1091 			 * Certain port types won't support all of the
1092 			 * available interrupt sources.
1093 			 */
1094 			if (unlikely(!irq))
1095 				continue;
1096 		}
1097 
1098 		desc = sci_irq_desc + i;
1099 		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1100 					    dev_name(up->dev), desc->desc);
1101 		if (!port->irqstr[j]) {
1102 			dev_err(up->dev, "Failed to allocate %s IRQ string\n",
1103 				desc->desc);
1104 			goto out_nomem;
1105 		}
1106 
1107 		ret = request_irq(irq, desc->handler, up->irqflags,
1108 				  port->irqstr[j], port);
1109 		if (unlikely(ret)) {
1110 			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1111 			goto out_noirq;
1112 		}
1113 	}
1114 
1115 	return 0;
1116 
1117 out_noirq:
1118 	while (--i >= 0)
1119 		free_irq(port->cfg->irqs[i], port);
1120 
1121 out_nomem:
1122 	while (--j >= 0)
1123 		kfree(port->irqstr[j]);
1124 
1125 	return ret;
1126 }
1127 
1128 static void sci_free_irq(struct sci_port *port)
1129 {
1130 	int i;
1131 
1132 	/*
1133 	 * Intentionally in reverse order so we iterate over the muxed
1134 	 * IRQ first.
1135 	 */
1136 	for (i = 0; i < SCIx_NR_IRQS; i++) {
1137 		unsigned int irq = port->cfg->irqs[i];
1138 
1139 		/*
1140 		 * Certain port types won't support all of the available
1141 		 * interrupt sources.
1142 		 */
1143 		if (unlikely(!irq))
1144 			continue;
1145 
1146 		free_irq(port->cfg->irqs[i], port);
1147 		kfree(port->irqstr[i]);
1148 
1149 		if (SCIx_IRQ_IS_MUXED(port)) {
1150 			/* If there's only one IRQ, we're done. */
1151 			return;
1152 		}
1153 	}
1154 }
1155 
1156 static const char *sci_gpio_names[SCIx_NR_FNS] = {
1157 	"sck", "rxd", "txd", "cts", "rts",
1158 };
1159 
1160 static const char *sci_gpio_str(unsigned int index)
1161 {
1162 	return sci_gpio_names[index];
1163 }
1164 
1165 static void sci_init_gpios(struct sci_port *port)
1166 {
1167 	struct uart_port *up = &port->port;
1168 	int i;
1169 
1170 	if (!port->cfg)
1171 		return;
1172 
1173 	for (i = 0; i < SCIx_NR_FNS; i++) {
1174 		const char *desc;
1175 		int ret;
1176 
1177 		if (!port->cfg->gpios[i])
1178 			continue;
1179 
1180 		desc = sci_gpio_str(i);
1181 
1182 		port->gpiostr[i] = kasprintf(GFP_KERNEL, "%s:%s",
1183 					     dev_name(up->dev), desc);
1184 
1185 		/*
1186 		 * If we've failed the allocation, we can still continue
1187 		 * on with a NULL string.
1188 		 */
1189 		if (!port->gpiostr[i])
1190 			dev_notice(up->dev, "%s string allocation failure\n",
1191 				   desc);
1192 
1193 		ret = gpio_request(port->cfg->gpios[i], port->gpiostr[i]);
1194 		if (unlikely(ret != 0)) {
1195 			dev_notice(up->dev, "failed %s gpio request\n", desc);
1196 
1197 			/*
1198 			 * If we can't get the GPIO for whatever reason,
1199 			 * no point in keeping the verbose string around.
1200 			 */
1201 			kfree(port->gpiostr[i]);
1202 		}
1203 	}
1204 }
1205 
1206 static void sci_free_gpios(struct sci_port *port)
1207 {
1208 	int i;
1209 
1210 	for (i = 0; i < SCIx_NR_FNS; i++)
1211 		if (port->cfg->gpios[i]) {
1212 			gpio_free(port->cfg->gpios[i]);
1213 			kfree(port->gpiostr[i]);
1214 		}
1215 }
1216 
1217 static unsigned int sci_tx_empty(struct uart_port *port)
1218 {
1219 	unsigned short status = serial_port_in(port, SCxSR);
1220 	unsigned short in_tx_fifo = sci_txfill(port);
1221 
1222 	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1223 }
1224 
1225 /*
1226  * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
1227  * CTS/RTS is supported in hardware by at least one port and controlled
1228  * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
1229  * handled via the ->init_pins() op, which is a bit of a one-way street,
1230  * lacking any ability to defer pin control -- this will later be
1231  * converted over to the GPIO framework).
1232  *
1233  * Other modes (such as loopback) are supported generically on certain
1234  * port types, but not others. For these it's sufficient to test for the
1235  * existence of the support register and simply ignore the port type.
1236  */
1237 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
1238 {
1239 	if (mctrl & TIOCM_LOOP) {
1240 		struct plat_sci_reg *reg;
1241 
1242 		/*
1243 		 * Standard loopback mode for SCFCR ports.
1244 		 */
1245 		reg = sci_getreg(port, SCFCR);
1246 		if (reg->size)
1247 			serial_port_out(port, SCFCR, serial_port_in(port, SCFCR) | 1);
1248 	}
1249 }
1250 
1251 static unsigned int sci_get_mctrl(struct uart_port *port)
1252 {
1253 	/*
1254 	 * CTS/RTS is handled in hardware when supported, while nothing
1255 	 * else is wired up. Keep it simple and simply assert DSR/CAR.
1256 	 */
1257 	return TIOCM_DSR | TIOCM_CAR;
1258 }
1259 
1260 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1261 static void sci_dma_tx_complete(void *arg)
1262 {
1263 	struct sci_port *s = arg;
1264 	struct uart_port *port = &s->port;
1265 	struct circ_buf *xmit = &port->state->xmit;
1266 	unsigned long flags;
1267 
1268 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1269 
1270 	spin_lock_irqsave(&port->lock, flags);
1271 
1272 	xmit->tail += sg_dma_len(&s->sg_tx);
1273 	xmit->tail &= UART_XMIT_SIZE - 1;
1274 
1275 	port->icount.tx += sg_dma_len(&s->sg_tx);
1276 
1277 	async_tx_ack(s->desc_tx);
1278 	s->desc_tx = NULL;
1279 
1280 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1281 		uart_write_wakeup(port);
1282 
1283 	if (!uart_circ_empty(xmit)) {
1284 		s->cookie_tx = 0;
1285 		schedule_work(&s->work_tx);
1286 	} else {
1287 		s->cookie_tx = -EINVAL;
1288 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1289 			u16 ctrl = serial_port_in(port, SCSCR);
1290 			serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1291 		}
1292 	}
1293 
1294 	spin_unlock_irqrestore(&port->lock, flags);
1295 }
1296 
1297 /* Locking: called with port lock held */
1298 static int sci_dma_rx_push(struct sci_port *s, size_t count)
1299 {
1300 	struct uart_port *port = &s->port;
1301 	struct tty_port *tport = &port->state->port;
1302 	int i, active, room;
1303 
1304 	room = tty_buffer_request_room(tport, count);
1305 
1306 	if (s->active_rx == s->cookie_rx[0]) {
1307 		active = 0;
1308 	} else if (s->active_rx == s->cookie_rx[1]) {
1309 		active = 1;
1310 	} else {
1311 		dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
1312 		return 0;
1313 	}
1314 
1315 	if (room < count)
1316 		dev_warn(port->dev, "Rx overrun: dropping %zu bytes\n",
1317 			 count - room);
1318 	if (!room)
1319 		return room;
1320 
1321 	for (i = 0; i < room; i++)
1322 		tty_insert_flip_char(tport, ((u8 *)sg_virt(&s->sg_rx[active]))[i],
1323 				     TTY_NORMAL);
1324 
1325 	port->icount.rx += room;
1326 
1327 	return room;
1328 }
1329 
1330 static void sci_dma_rx_complete(void *arg)
1331 {
1332 	struct sci_port *s = arg;
1333 	struct uart_port *port = &s->port;
1334 	unsigned long flags;
1335 	int count;
1336 
1337 	dev_dbg(port->dev, "%s(%d) active #%d\n", __func__, port->line, s->active_rx);
1338 
1339 	spin_lock_irqsave(&port->lock, flags);
1340 
1341 	count = sci_dma_rx_push(s, s->buf_len_rx);
1342 
1343 	mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1344 
1345 	spin_unlock_irqrestore(&port->lock, flags);
1346 
1347 	if (count)
1348 		tty_flip_buffer_push(&port->state->port);
1349 
1350 	schedule_work(&s->work_rx);
1351 }
1352 
1353 static void sci_rx_dma_release(struct sci_port *s, bool enable_pio)
1354 {
1355 	struct dma_chan *chan = s->chan_rx;
1356 	struct uart_port *port = &s->port;
1357 
1358 	s->chan_rx = NULL;
1359 	s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL;
1360 	dma_release_channel(chan);
1361 	if (sg_dma_address(&s->sg_rx[0]))
1362 		dma_free_coherent(port->dev, s->buf_len_rx * 2,
1363 				  sg_virt(&s->sg_rx[0]), sg_dma_address(&s->sg_rx[0]));
1364 	if (enable_pio)
1365 		sci_start_rx(port);
1366 }
1367 
1368 static void sci_tx_dma_release(struct sci_port *s, bool enable_pio)
1369 {
1370 	struct dma_chan *chan = s->chan_tx;
1371 	struct uart_port *port = &s->port;
1372 
1373 	s->chan_tx = NULL;
1374 	s->cookie_tx = -EINVAL;
1375 	dma_release_channel(chan);
1376 	if (enable_pio)
1377 		sci_start_tx(port);
1378 }
1379 
1380 static void sci_submit_rx(struct sci_port *s)
1381 {
1382 	struct dma_chan *chan = s->chan_rx;
1383 	int i;
1384 
1385 	for (i = 0; i < 2; i++) {
1386 		struct scatterlist *sg = &s->sg_rx[i];
1387 		struct dma_async_tx_descriptor *desc;
1388 
1389 		desc = dmaengine_prep_slave_sg(chan,
1390 			sg, 1, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
1391 
1392 		if (desc) {
1393 			s->desc_rx[i] = desc;
1394 			desc->callback = sci_dma_rx_complete;
1395 			desc->callback_param = s;
1396 			s->cookie_rx[i] = desc->tx_submit(desc);
1397 		}
1398 
1399 		if (!desc || s->cookie_rx[i] < 0) {
1400 			if (i) {
1401 				async_tx_ack(s->desc_rx[0]);
1402 				s->cookie_rx[0] = -EINVAL;
1403 			}
1404 			if (desc) {
1405 				async_tx_ack(desc);
1406 				s->cookie_rx[i] = -EINVAL;
1407 			}
1408 			dev_warn(s->port.dev,
1409 				 "failed to re-start DMA, using PIO\n");
1410 			sci_rx_dma_release(s, true);
1411 			return;
1412 		}
1413 		dev_dbg(s->port.dev, "%s(): cookie %d to #%d\n", __func__,
1414 			s->cookie_rx[i], i);
1415 	}
1416 
1417 	s->active_rx = s->cookie_rx[0];
1418 
1419 	dma_async_issue_pending(chan);
1420 }
1421 
1422 static void work_fn_rx(struct work_struct *work)
1423 {
1424 	struct sci_port *s = container_of(work, struct sci_port, work_rx);
1425 	struct uart_port *port = &s->port;
1426 	struct dma_async_tx_descriptor *desc;
1427 	int new;
1428 
1429 	if (s->active_rx == s->cookie_rx[0]) {
1430 		new = 0;
1431 	} else if (s->active_rx == s->cookie_rx[1]) {
1432 		new = 1;
1433 	} else {
1434 		dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
1435 		return;
1436 	}
1437 	desc = s->desc_rx[new];
1438 
1439 	if (dma_async_is_tx_complete(s->chan_rx, s->active_rx, NULL, NULL) !=
1440 	    DMA_COMPLETE) {
1441 		/* Handle incomplete DMA receive */
1442 		struct dma_chan *chan = s->chan_rx;
1443 		struct shdma_desc *sh_desc = container_of(desc,
1444 					struct shdma_desc, async_tx);
1445 		unsigned long flags;
1446 		int count;
1447 
1448 		chan->device->device_control(chan, DMA_TERMINATE_ALL, 0);
1449 		dev_dbg(port->dev, "Read %zu bytes with cookie %d\n",
1450 			sh_desc->partial, sh_desc->cookie);
1451 
1452 		spin_lock_irqsave(&port->lock, flags);
1453 		count = sci_dma_rx_push(s, sh_desc->partial);
1454 		spin_unlock_irqrestore(&port->lock, flags);
1455 
1456 		if (count)
1457 			tty_flip_buffer_push(&port->state->port);
1458 
1459 		sci_submit_rx(s);
1460 
1461 		return;
1462 	}
1463 
1464 	s->cookie_rx[new] = desc->tx_submit(desc);
1465 	if (s->cookie_rx[new] < 0) {
1466 		dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1467 		sci_rx_dma_release(s, true);
1468 		return;
1469 	}
1470 
1471 	s->active_rx = s->cookie_rx[!new];
1472 
1473 	dev_dbg(port->dev, "%s: cookie %d #%d, new active #%d\n", __func__,
1474 		s->cookie_rx[new], new, s->active_rx);
1475 }
1476 
1477 static void work_fn_tx(struct work_struct *work)
1478 {
1479 	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1480 	struct dma_async_tx_descriptor *desc;
1481 	struct dma_chan *chan = s->chan_tx;
1482 	struct uart_port *port = &s->port;
1483 	struct circ_buf *xmit = &port->state->xmit;
1484 	struct scatterlist *sg = &s->sg_tx;
1485 
1486 	/*
1487 	 * DMA is idle now.
1488 	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1489 	 * offsets and lengths. Since it is a circular buffer, we have to
1490 	 * transmit till the end, and then the rest. Take the port lock to get a
1491 	 * consistent xmit buffer state.
1492 	 */
1493 	spin_lock_irq(&port->lock);
1494 	sg->offset = xmit->tail & (UART_XMIT_SIZE - 1);
1495 	sg_dma_address(sg) = (sg_dma_address(sg) & ~(UART_XMIT_SIZE - 1)) +
1496 		sg->offset;
1497 	sg_dma_len(sg) = min((int)CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
1498 		CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
1499 	spin_unlock_irq(&port->lock);
1500 
1501 	BUG_ON(!sg_dma_len(sg));
1502 
1503 	desc = dmaengine_prep_slave_sg(chan,
1504 			sg, s->sg_len_tx, DMA_MEM_TO_DEV,
1505 			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1506 	if (!desc) {
1507 		/* switch to PIO */
1508 		sci_tx_dma_release(s, true);
1509 		return;
1510 	}
1511 
1512 	dma_sync_sg_for_device(port->dev, sg, 1, DMA_TO_DEVICE);
1513 
1514 	spin_lock_irq(&port->lock);
1515 	s->desc_tx = desc;
1516 	desc->callback = sci_dma_tx_complete;
1517 	desc->callback_param = s;
1518 	spin_unlock_irq(&port->lock);
1519 	s->cookie_tx = desc->tx_submit(desc);
1520 	if (s->cookie_tx < 0) {
1521 		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1522 		/* switch to PIO */
1523 		sci_tx_dma_release(s, true);
1524 		return;
1525 	}
1526 
1527 	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n", __func__,
1528 		xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
1529 
1530 	dma_async_issue_pending(chan);
1531 }
1532 #endif
1533 
1534 static void sci_start_tx(struct uart_port *port)
1535 {
1536 	struct sci_port *s = to_sci_port(port);
1537 	unsigned short ctrl;
1538 
1539 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1540 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1541 		u16 new, scr = serial_port_in(port, SCSCR);
1542 		if (s->chan_tx)
1543 			new = scr | 0x8000;
1544 		else
1545 			new = scr & ~0x8000;
1546 		if (new != scr)
1547 			serial_port_out(port, SCSCR, new);
1548 	}
1549 
1550 	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
1551 	    s->cookie_tx < 0) {
1552 		s->cookie_tx = 0;
1553 		schedule_work(&s->work_tx);
1554 	}
1555 #endif
1556 
1557 	if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1558 		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
1559 		ctrl = serial_port_in(port, SCSCR);
1560 		serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
1561 	}
1562 }
1563 
1564 static void sci_stop_tx(struct uart_port *port)
1565 {
1566 	unsigned short ctrl;
1567 
1568 	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
1569 	ctrl = serial_port_in(port, SCSCR);
1570 
1571 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1572 		ctrl &= ~0x8000;
1573 
1574 	ctrl &= ~SCSCR_TIE;
1575 
1576 	serial_port_out(port, SCSCR, ctrl);
1577 }
1578 
1579 static void sci_start_rx(struct uart_port *port)
1580 {
1581 	unsigned short ctrl;
1582 
1583 	ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
1584 
1585 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1586 		ctrl &= ~0x4000;
1587 
1588 	serial_port_out(port, SCSCR, ctrl);
1589 }
1590 
1591 static void sci_stop_rx(struct uart_port *port)
1592 {
1593 	unsigned short ctrl;
1594 
1595 	ctrl = serial_port_in(port, SCSCR);
1596 
1597 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1598 		ctrl &= ~0x4000;
1599 
1600 	ctrl &= ~port_rx_irq_mask(port);
1601 
1602 	serial_port_out(port, SCSCR, ctrl);
1603 }
1604 
1605 static void sci_enable_ms(struct uart_port *port)
1606 {
1607 	/*
1608 	 * Not supported by hardware, always a nop.
1609 	 */
1610 }
1611 
1612 static void sci_break_ctl(struct uart_port *port, int break_state)
1613 {
1614 	struct sci_port *s = to_sci_port(port);
1615 	struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
1616 	unsigned short scscr, scsptr;
1617 
1618 	/* check wheter the port has SCSPTR */
1619 	if (!reg->size) {
1620 		/*
1621 		 * Not supported by hardware. Most parts couple break and rx
1622 		 * interrupts together, with break detection always enabled.
1623 		 */
1624 		return;
1625 	}
1626 
1627 	scsptr = serial_port_in(port, SCSPTR);
1628 	scscr = serial_port_in(port, SCSCR);
1629 
1630 	if (break_state == -1) {
1631 		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
1632 		scscr &= ~SCSCR_TE;
1633 	} else {
1634 		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
1635 		scscr |= SCSCR_TE;
1636 	}
1637 
1638 	serial_port_out(port, SCSPTR, scsptr);
1639 	serial_port_out(port, SCSCR, scscr);
1640 }
1641 
1642 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1643 static bool filter(struct dma_chan *chan, void *slave)
1644 {
1645 	struct sh_dmae_slave *param = slave;
1646 
1647 	dev_dbg(chan->device->dev, "%s: slave ID %d\n", __func__,
1648 		param->shdma_slave.slave_id);
1649 
1650 	chan->private = &param->shdma_slave;
1651 	return true;
1652 }
1653 
1654 static void rx_timer_fn(unsigned long arg)
1655 {
1656 	struct sci_port *s = (struct sci_port *)arg;
1657 	struct uart_port *port = &s->port;
1658 	u16 scr = serial_port_in(port, SCSCR);
1659 
1660 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1661 		scr &= ~0x4000;
1662 		enable_irq(s->cfg->irqs[1]);
1663 	}
1664 	serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1665 	dev_dbg(port->dev, "DMA Rx timed out\n");
1666 	schedule_work(&s->work_rx);
1667 }
1668 
1669 static void sci_request_dma(struct uart_port *port)
1670 {
1671 	struct sci_port *s = to_sci_port(port);
1672 	struct sh_dmae_slave *param;
1673 	struct dma_chan *chan;
1674 	dma_cap_mask_t mask;
1675 	int nent;
1676 
1677 	dev_dbg(port->dev, "%s: port %d\n", __func__,
1678 		port->line);
1679 
1680 	if (s->cfg->dma_slave_tx <= 0 || s->cfg->dma_slave_rx <= 0)
1681 		return;
1682 
1683 	dma_cap_zero(mask);
1684 	dma_cap_set(DMA_SLAVE, mask);
1685 
1686 	param = &s->param_tx;
1687 
1688 	/* Slave ID, e.g., SHDMA_SLAVE_SCIF0_TX */
1689 	param->shdma_slave.slave_id = s->cfg->dma_slave_tx;
1690 
1691 	s->cookie_tx = -EINVAL;
1692 	chan = dma_request_channel(mask, filter, param);
1693 	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1694 	if (chan) {
1695 		s->chan_tx = chan;
1696 		sg_init_table(&s->sg_tx, 1);
1697 		/* UART circular tx buffer is an aligned page. */
1698 		BUG_ON((uintptr_t)port->state->xmit.buf & ~PAGE_MASK);
1699 		sg_set_page(&s->sg_tx, virt_to_page(port->state->xmit.buf),
1700 			    UART_XMIT_SIZE,
1701 			    (uintptr_t)port->state->xmit.buf & ~PAGE_MASK);
1702 		nent = dma_map_sg(port->dev, &s->sg_tx, 1, DMA_TO_DEVICE);
1703 		if (!nent)
1704 			sci_tx_dma_release(s, false);
1705 		else
1706 			dev_dbg(port->dev, "%s: mapped %d@%p to %pad\n", __func__,
1707 				sg_dma_len(&s->sg_tx), port->state->xmit.buf,
1708 				&sg_dma_address(&s->sg_tx));
1709 
1710 		s->sg_len_tx = nent;
1711 
1712 		INIT_WORK(&s->work_tx, work_fn_tx);
1713 	}
1714 
1715 	param = &s->param_rx;
1716 
1717 	/* Slave ID, e.g., SHDMA_SLAVE_SCIF0_RX */
1718 	param->shdma_slave.slave_id = s->cfg->dma_slave_rx;
1719 
1720 	chan = dma_request_channel(mask, filter, param);
1721 	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1722 	if (chan) {
1723 		dma_addr_t dma[2];
1724 		void *buf[2];
1725 		int i;
1726 
1727 		s->chan_rx = chan;
1728 
1729 		s->buf_len_rx = 2 * max(16, (int)port->fifosize);
1730 		buf[0] = dma_alloc_coherent(port->dev, s->buf_len_rx * 2,
1731 					    &dma[0], GFP_KERNEL);
1732 
1733 		if (!buf[0]) {
1734 			dev_warn(port->dev,
1735 				 "failed to allocate dma buffer, using PIO\n");
1736 			sci_rx_dma_release(s, true);
1737 			return;
1738 		}
1739 
1740 		buf[1] = buf[0] + s->buf_len_rx;
1741 		dma[1] = dma[0] + s->buf_len_rx;
1742 
1743 		for (i = 0; i < 2; i++) {
1744 			struct scatterlist *sg = &s->sg_rx[i];
1745 
1746 			sg_init_table(sg, 1);
1747 			sg_set_page(sg, virt_to_page(buf[i]), s->buf_len_rx,
1748 				    (uintptr_t)buf[i] & ~PAGE_MASK);
1749 			sg_dma_address(sg) = dma[i];
1750 		}
1751 
1752 		INIT_WORK(&s->work_rx, work_fn_rx);
1753 		setup_timer(&s->rx_timer, rx_timer_fn, (unsigned long)s);
1754 
1755 		sci_submit_rx(s);
1756 	}
1757 }
1758 
1759 static void sci_free_dma(struct uart_port *port)
1760 {
1761 	struct sci_port *s = to_sci_port(port);
1762 
1763 	if (s->chan_tx)
1764 		sci_tx_dma_release(s, false);
1765 	if (s->chan_rx)
1766 		sci_rx_dma_release(s, false);
1767 }
1768 #else
1769 static inline void sci_request_dma(struct uart_port *port)
1770 {
1771 }
1772 
1773 static inline void sci_free_dma(struct uart_port *port)
1774 {
1775 }
1776 #endif
1777 
1778 static int sci_startup(struct uart_port *port)
1779 {
1780 	struct sci_port *s = to_sci_port(port);
1781 	unsigned long flags;
1782 	int ret;
1783 
1784 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1785 
1786 	ret = sci_request_irq(s);
1787 	if (unlikely(ret < 0))
1788 		return ret;
1789 
1790 	sci_request_dma(port);
1791 
1792 	spin_lock_irqsave(&port->lock, flags);
1793 	sci_start_tx(port);
1794 	sci_start_rx(port);
1795 	spin_unlock_irqrestore(&port->lock, flags);
1796 
1797 	return 0;
1798 }
1799 
1800 static void sci_shutdown(struct uart_port *port)
1801 {
1802 	struct sci_port *s = to_sci_port(port);
1803 	unsigned long flags;
1804 
1805 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1806 
1807 	spin_lock_irqsave(&port->lock, flags);
1808 	sci_stop_rx(port);
1809 	sci_stop_tx(port);
1810 	spin_unlock_irqrestore(&port->lock, flags);
1811 
1812 	sci_free_dma(port);
1813 	sci_free_irq(s);
1814 }
1815 
1816 static unsigned int sci_scbrr_calc(unsigned int algo_id, unsigned int bps,
1817 				   unsigned long freq)
1818 {
1819 	switch (algo_id) {
1820 	case SCBRR_ALGO_1:
1821 		return ((freq + 16 * bps) / (16 * bps) - 1);
1822 	case SCBRR_ALGO_2:
1823 		return ((freq + 16 * bps) / (32 * bps) - 1);
1824 	case SCBRR_ALGO_3:
1825 		return (((freq * 2) + 16 * bps) / (16 * bps) - 1);
1826 	case SCBRR_ALGO_4:
1827 		return (((freq * 2) + 16 * bps) / (32 * bps) - 1);
1828 	case SCBRR_ALGO_5:
1829 		return (((freq * 1000 / 32) / bps) - 1);
1830 	}
1831 
1832 	/* Warn, but use a safe default */
1833 	WARN_ON(1);
1834 
1835 	return ((freq + 16 * bps) / (32 * bps) - 1);
1836 }
1837 
1838 /* calculate sample rate, BRR, and clock select for HSCIF */
1839 static void sci_baud_calc_hscif(unsigned int bps, unsigned long freq,
1840 				int *brr, unsigned int *srr,
1841 				unsigned int *cks)
1842 {
1843 	int sr, c, br, err;
1844 	int min_err = 1000; /* 100% */
1845 
1846 	/* Find the combination of sample rate and clock select with the
1847 	   smallest deviation from the desired baud rate. */
1848 	for (sr = 8; sr <= 32; sr++) {
1849 		for (c = 0; c <= 3; c++) {
1850 			/* integerized formulas from HSCIF documentation */
1851 			br = freq / (sr * (1 << (2 * c + 1)) * bps) - 1;
1852 			if (br < 0 || br > 255)
1853 				continue;
1854 			err = freq / ((br + 1) * bps * sr *
1855 			      (1 << (2 * c + 1)) / 1000) - 1000;
1856 			if (min_err > err) {
1857 				min_err = err;
1858 				*brr = br;
1859 				*srr = sr - 1;
1860 				*cks = c;
1861 			}
1862 		}
1863 	}
1864 
1865 	if (min_err == 1000) {
1866 		WARN_ON(1);
1867 		/* use defaults */
1868 		*brr = 255;
1869 		*srr = 15;
1870 		*cks = 0;
1871 	}
1872 }
1873 
1874 static void sci_reset(struct uart_port *port)
1875 {
1876 	struct plat_sci_reg *reg;
1877 	unsigned int status;
1878 
1879 	do {
1880 		status = serial_port_in(port, SCxSR);
1881 	} while (!(status & SCxSR_TEND(port)));
1882 
1883 	serial_port_out(port, SCSCR, 0x00);	/* TE=0, RE=0, CKE1=0 */
1884 
1885 	reg = sci_getreg(port, SCFCR);
1886 	if (reg->size)
1887 		serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
1888 }
1889 
1890 static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
1891 			    struct ktermios *old)
1892 {
1893 	struct sci_port *s = to_sci_port(port);
1894 	struct plat_sci_reg *reg;
1895 	unsigned int baud, smr_val, max_baud, cks = 0;
1896 	int t = -1;
1897 	unsigned int srr = 15;
1898 
1899 	/*
1900 	 * earlyprintk comes here early on with port->uartclk set to zero.
1901 	 * the clock framework is not up and running at this point so here
1902 	 * we assume that 115200 is the maximum baud rate. please note that
1903 	 * the baud rate is not programmed during earlyprintk - it is assumed
1904 	 * that the previous boot loader has enabled required clocks and
1905 	 * setup the baud rate generator hardware for us already.
1906 	 */
1907 	max_baud = port->uartclk ? port->uartclk / 16 : 115200;
1908 
1909 	baud = uart_get_baud_rate(port, termios, old, 0, max_baud);
1910 	if (likely(baud && port->uartclk)) {
1911 		if (s->cfg->scbrr_algo_id == SCBRR_ALGO_6) {
1912 			sci_baud_calc_hscif(baud, port->uartclk, &t, &srr,
1913 					    &cks);
1914 		} else {
1915 			t = sci_scbrr_calc(s->cfg->scbrr_algo_id, baud,
1916 					   port->uartclk);
1917 			for (cks = 0; t >= 256 && cks <= 3; cks++)
1918 				t >>= 2;
1919 		}
1920 	}
1921 
1922 	sci_port_enable(s);
1923 
1924 	sci_reset(port);
1925 
1926 	smr_val = serial_port_in(port, SCSMR) & 3;
1927 
1928 	if ((termios->c_cflag & CSIZE) == CS7)
1929 		smr_val |= 0x40;
1930 	if (termios->c_cflag & PARENB)
1931 		smr_val |= 0x20;
1932 	if (termios->c_cflag & PARODD)
1933 		smr_val |= 0x30;
1934 	if (termios->c_cflag & CSTOPB)
1935 		smr_val |= 0x08;
1936 
1937 	uart_update_timeout(port, termios->c_cflag, baud);
1938 
1939 	dev_dbg(port->dev, "%s: SMR %x, cks %x, t %x, SCSCR %x\n",
1940 		__func__, smr_val, cks, t, s->cfg->scscr);
1941 
1942 	if (t >= 0) {
1943 		serial_port_out(port, SCSMR, (smr_val & ~3) | cks);
1944 		serial_port_out(port, SCBRR, t);
1945 		reg = sci_getreg(port, HSSRR);
1946 		if (reg->size)
1947 			serial_port_out(port, HSSRR, srr | HSCIF_SRE);
1948 		udelay((1000000+(baud-1)) / baud); /* Wait one bit interval */
1949 	} else
1950 		serial_port_out(port, SCSMR, smr_val);
1951 
1952 	sci_init_pins(port, termios->c_cflag);
1953 
1954 	reg = sci_getreg(port, SCFCR);
1955 	if (reg->size) {
1956 		unsigned short ctrl = serial_port_in(port, SCFCR);
1957 
1958 		if (s->cfg->capabilities & SCIx_HAVE_RTSCTS) {
1959 			if (termios->c_cflag & CRTSCTS)
1960 				ctrl |= SCFCR_MCE;
1961 			else
1962 				ctrl &= ~SCFCR_MCE;
1963 		}
1964 
1965 		/*
1966 		 * As we've done a sci_reset() above, ensure we don't
1967 		 * interfere with the FIFOs while toggling MCE. As the
1968 		 * reset values could still be set, simply mask them out.
1969 		 */
1970 		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
1971 
1972 		serial_port_out(port, SCFCR, ctrl);
1973 	}
1974 
1975 	serial_port_out(port, SCSCR, s->cfg->scscr);
1976 
1977 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1978 	/*
1979 	 * Calculate delay for 1.5 DMA buffers: see
1980 	 * drivers/serial/serial_core.c::uart_update_timeout(). With 10 bits
1981 	 * (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above function
1982 	 * calculates 1 jiffie for the data plus 5 jiffies for the "slop(e)."
1983 	 * Then below we calculate 3 jiffies (12ms) for 1.5 DMA buffers (3 FIFO
1984 	 * sizes), but it has been found out experimentally, that this is not
1985 	 * enough: the driver too often needlessly runs on a DMA timeout. 20ms
1986 	 * as a minimum seem to work perfectly.
1987 	 */
1988 	if (s->chan_rx) {
1989 		s->rx_timeout = (port->timeout - HZ / 50) * s->buf_len_rx * 3 /
1990 			port->fifosize / 2;
1991 		dev_dbg(port->dev,
1992 			"DMA Rx t-out %ums, tty t-out %u jiffies\n",
1993 			s->rx_timeout * 1000 / HZ, port->timeout);
1994 		if (s->rx_timeout < msecs_to_jiffies(20))
1995 			s->rx_timeout = msecs_to_jiffies(20);
1996 	}
1997 #endif
1998 
1999 	if ((termios->c_cflag & CREAD) != 0)
2000 		sci_start_rx(port);
2001 
2002 	sci_port_disable(s);
2003 }
2004 
2005 static void sci_pm(struct uart_port *port, unsigned int state,
2006 		   unsigned int oldstate)
2007 {
2008 	struct sci_port *sci_port = to_sci_port(port);
2009 
2010 	switch (state) {
2011 	case 3:
2012 		sci_port_disable(sci_port);
2013 		break;
2014 	default:
2015 		sci_port_enable(sci_port);
2016 		break;
2017 	}
2018 }
2019 
2020 static const char *sci_type(struct uart_port *port)
2021 {
2022 	switch (port->type) {
2023 	case PORT_IRDA:
2024 		return "irda";
2025 	case PORT_SCI:
2026 		return "sci";
2027 	case PORT_SCIF:
2028 		return "scif";
2029 	case PORT_SCIFA:
2030 		return "scifa";
2031 	case PORT_SCIFB:
2032 		return "scifb";
2033 	case PORT_HSCIF:
2034 		return "hscif";
2035 	}
2036 
2037 	return NULL;
2038 }
2039 
2040 static inline unsigned long sci_port_size(struct uart_port *port)
2041 {
2042 	/*
2043 	 * Pick an arbitrary size that encapsulates all of the base
2044 	 * registers by default. This can be optimized later, or derived
2045 	 * from platform resource data at such a time that ports begin to
2046 	 * behave more erratically.
2047 	 */
2048 	if (port->type == PORT_HSCIF)
2049 		return 96;
2050 	else
2051 		return 64;
2052 }
2053 
2054 static int sci_remap_port(struct uart_port *port)
2055 {
2056 	unsigned long size = sci_port_size(port);
2057 
2058 	/*
2059 	 * Nothing to do if there's already an established membase.
2060 	 */
2061 	if (port->membase)
2062 		return 0;
2063 
2064 	if (port->flags & UPF_IOREMAP) {
2065 		port->membase = ioremap_nocache(port->mapbase, size);
2066 		if (unlikely(!port->membase)) {
2067 			dev_err(port->dev, "can't remap port#%d\n", port->line);
2068 			return -ENXIO;
2069 		}
2070 	} else {
2071 		/*
2072 		 * For the simple (and majority of) cases where we don't
2073 		 * need to do any remapping, just cast the cookie
2074 		 * directly.
2075 		 */
2076 		port->membase = (void __iomem *)port->mapbase;
2077 	}
2078 
2079 	return 0;
2080 }
2081 
2082 static void sci_release_port(struct uart_port *port)
2083 {
2084 	if (port->flags & UPF_IOREMAP) {
2085 		iounmap(port->membase);
2086 		port->membase = NULL;
2087 	}
2088 
2089 	release_mem_region(port->mapbase, sci_port_size(port));
2090 }
2091 
2092 static int sci_request_port(struct uart_port *port)
2093 {
2094 	unsigned long size = sci_port_size(port);
2095 	struct resource *res;
2096 	int ret;
2097 
2098 	res = request_mem_region(port->mapbase, size, dev_name(port->dev));
2099 	if (unlikely(res == NULL))
2100 		return -EBUSY;
2101 
2102 	ret = sci_remap_port(port);
2103 	if (unlikely(ret != 0)) {
2104 		release_resource(res);
2105 		return ret;
2106 	}
2107 
2108 	return 0;
2109 }
2110 
2111 static void sci_config_port(struct uart_port *port, int flags)
2112 {
2113 	if (flags & UART_CONFIG_TYPE) {
2114 		struct sci_port *sport = to_sci_port(port);
2115 
2116 		port->type = sport->cfg->type;
2117 		sci_request_port(port);
2118 	}
2119 }
2120 
2121 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2122 {
2123 	struct sci_port *s = to_sci_port(port);
2124 
2125 	if (ser->irq != s->cfg->irqs[SCIx_TXI_IRQ] || ser->irq > nr_irqs)
2126 		return -EINVAL;
2127 	if (ser->baud_base < 2400)
2128 		/* No paper tape reader for Mitch.. */
2129 		return -EINVAL;
2130 
2131 	return 0;
2132 }
2133 
2134 static struct uart_ops sci_uart_ops = {
2135 	.tx_empty	= sci_tx_empty,
2136 	.set_mctrl	= sci_set_mctrl,
2137 	.get_mctrl	= sci_get_mctrl,
2138 	.start_tx	= sci_start_tx,
2139 	.stop_tx	= sci_stop_tx,
2140 	.stop_rx	= sci_stop_rx,
2141 	.enable_ms	= sci_enable_ms,
2142 	.break_ctl	= sci_break_ctl,
2143 	.startup	= sci_startup,
2144 	.shutdown	= sci_shutdown,
2145 	.set_termios	= sci_set_termios,
2146 	.pm		= sci_pm,
2147 	.type		= sci_type,
2148 	.release_port	= sci_release_port,
2149 	.request_port	= sci_request_port,
2150 	.config_port	= sci_config_port,
2151 	.verify_port	= sci_verify_port,
2152 #ifdef CONFIG_CONSOLE_POLL
2153 	.poll_get_char	= sci_poll_get_char,
2154 	.poll_put_char	= sci_poll_put_char,
2155 #endif
2156 };
2157 
2158 static int sci_init_single(struct platform_device *dev,
2159 				     struct sci_port *sci_port,
2160 				     unsigned int index,
2161 				     struct plat_sci_port *p)
2162 {
2163 	struct uart_port *port = &sci_port->port;
2164 	int ret;
2165 
2166 	sci_port->cfg	= p;
2167 
2168 	port->ops	= &sci_uart_ops;
2169 	port->iotype	= UPIO_MEM;
2170 	port->line	= index;
2171 
2172 	switch (p->type) {
2173 	case PORT_SCIFB:
2174 		port->fifosize = 256;
2175 		break;
2176 	case PORT_HSCIF:
2177 		port->fifosize = 128;
2178 		break;
2179 	case PORT_SCIFA:
2180 		port->fifosize = 64;
2181 		break;
2182 	case PORT_SCIF:
2183 		port->fifosize = 16;
2184 		break;
2185 	default:
2186 		port->fifosize = 1;
2187 		break;
2188 	}
2189 
2190 	if (p->regtype == SCIx_PROBE_REGTYPE) {
2191 		ret = sci_probe_regmap(p);
2192 		if (unlikely(ret))
2193 			return ret;
2194 	}
2195 
2196 	if (dev) {
2197 		sci_port->iclk = clk_get(&dev->dev, "sci_ick");
2198 		if (IS_ERR(sci_port->iclk)) {
2199 			sci_port->iclk = clk_get(&dev->dev, "peripheral_clk");
2200 			if (IS_ERR(sci_port->iclk)) {
2201 				dev_err(&dev->dev, "can't get iclk\n");
2202 				return PTR_ERR(sci_port->iclk);
2203 			}
2204 		}
2205 
2206 		/*
2207 		 * The function clock is optional, ignore it if we can't
2208 		 * find it.
2209 		 */
2210 		sci_port->fclk = clk_get(&dev->dev, "sci_fck");
2211 		if (IS_ERR(sci_port->fclk))
2212 			sci_port->fclk = NULL;
2213 
2214 		port->dev = &dev->dev;
2215 
2216 		sci_init_gpios(sci_port);
2217 
2218 		pm_runtime_enable(&dev->dev);
2219 	}
2220 
2221 	sci_port->break_timer.data = (unsigned long)sci_port;
2222 	sci_port->break_timer.function = sci_break_timer;
2223 	init_timer(&sci_port->break_timer);
2224 
2225 	/*
2226 	 * Establish some sensible defaults for the error detection.
2227 	 */
2228 	if (!p->error_mask)
2229 		p->error_mask = (p->type == PORT_SCI) ?
2230 			SCI_DEFAULT_ERROR_MASK : SCIF_DEFAULT_ERROR_MASK;
2231 
2232 	/*
2233 	 * Establish sensible defaults for the overrun detection, unless
2234 	 * the part has explicitly disabled support for it.
2235 	 */
2236 	if (p->overrun_bit != SCIx_NOT_SUPPORTED) {
2237 		if (p->type == PORT_SCI)
2238 			p->overrun_bit = 5;
2239 		else if (p->scbrr_algo_id == SCBRR_ALGO_4)
2240 			p->overrun_bit = 9;
2241 		else
2242 			p->overrun_bit = 0;
2243 
2244 		/*
2245 		 * Make the error mask inclusive of overrun detection, if
2246 		 * supported.
2247 		 */
2248 		p->error_mask |= (1 << p->overrun_bit);
2249 	}
2250 
2251 	port->mapbase		= p->mapbase;
2252 	port->type		= p->type;
2253 	port->flags		= p->flags;
2254 	port->regshift		= p->regshift;
2255 
2256 	/*
2257 	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
2258 	 * for the multi-IRQ ports, which is where we are primarily
2259 	 * concerned with the shutdown path synchronization.
2260 	 *
2261 	 * For the muxed case there's nothing more to do.
2262 	 */
2263 	port->irq		= p->irqs[SCIx_RXI_IRQ];
2264 	port->irqflags		= 0;
2265 
2266 	port->serial_in		= sci_serial_in;
2267 	port->serial_out	= sci_serial_out;
2268 
2269 	if (p->dma_slave_tx > 0 && p->dma_slave_rx > 0)
2270 		dev_dbg(port->dev, "DMA tx %d, rx %d\n",
2271 			p->dma_slave_tx, p->dma_slave_rx);
2272 
2273 	return 0;
2274 }
2275 
2276 static void sci_cleanup_single(struct sci_port *port)
2277 {
2278 	sci_free_gpios(port);
2279 
2280 	clk_put(port->iclk);
2281 	clk_put(port->fclk);
2282 
2283 	pm_runtime_disable(port->port.dev);
2284 }
2285 
2286 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
2287 static void serial_console_putchar(struct uart_port *port, int ch)
2288 {
2289 	sci_poll_put_char(port, ch);
2290 }
2291 
2292 /*
2293  *	Print a string to the serial port trying not to disturb
2294  *	any possible real use of the port...
2295  */
2296 static void serial_console_write(struct console *co, const char *s,
2297 				 unsigned count)
2298 {
2299 	struct sci_port *sci_port = &sci_ports[co->index];
2300 	struct uart_port *port = &sci_port->port;
2301 	unsigned short bits, ctrl;
2302 	unsigned long flags;
2303 	int locked = 1;
2304 
2305 	local_irq_save(flags);
2306 	if (port->sysrq)
2307 		locked = 0;
2308 	else if (oops_in_progress)
2309 		locked = spin_trylock(&port->lock);
2310 	else
2311 		spin_lock(&port->lock);
2312 
2313 	/* first save the SCSCR then disable the interrupts */
2314 	ctrl = serial_port_in(port, SCSCR);
2315 	serial_port_out(port, SCSCR, sci_port->cfg->scscr);
2316 
2317 	uart_console_write(port, s, count, serial_console_putchar);
2318 
2319 	/* wait until fifo is empty and last bit has been transmitted */
2320 	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
2321 	while ((serial_port_in(port, SCxSR) & bits) != bits)
2322 		cpu_relax();
2323 
2324 	/* restore the SCSCR */
2325 	serial_port_out(port, SCSCR, ctrl);
2326 
2327 	if (locked)
2328 		spin_unlock(&port->lock);
2329 	local_irq_restore(flags);
2330 }
2331 
2332 static int serial_console_setup(struct console *co, char *options)
2333 {
2334 	struct sci_port *sci_port;
2335 	struct uart_port *port;
2336 	int baud = 115200;
2337 	int bits = 8;
2338 	int parity = 'n';
2339 	int flow = 'n';
2340 	int ret;
2341 
2342 	/*
2343 	 * Refuse to handle any bogus ports.
2344 	 */
2345 	if (co->index < 0 || co->index >= SCI_NPORTS)
2346 		return -ENODEV;
2347 
2348 	sci_port = &sci_ports[co->index];
2349 	port = &sci_port->port;
2350 
2351 	/*
2352 	 * Refuse to handle uninitialized ports.
2353 	 */
2354 	if (!port->ops)
2355 		return -ENODEV;
2356 
2357 	ret = sci_remap_port(port);
2358 	if (unlikely(ret != 0))
2359 		return ret;
2360 
2361 	if (options)
2362 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2363 
2364 	return uart_set_options(port, co, baud, parity, bits, flow);
2365 }
2366 
2367 static struct console serial_console = {
2368 	.name		= "ttySC",
2369 	.device		= uart_console_device,
2370 	.write		= serial_console_write,
2371 	.setup		= serial_console_setup,
2372 	.flags		= CON_PRINTBUFFER,
2373 	.index		= -1,
2374 	.data		= &sci_uart_driver,
2375 };
2376 
2377 static struct console early_serial_console = {
2378 	.name           = "early_ttySC",
2379 	.write          = serial_console_write,
2380 	.flags          = CON_PRINTBUFFER,
2381 	.index		= -1,
2382 };
2383 
2384 static char early_serial_buf[32];
2385 
2386 static int sci_probe_earlyprintk(struct platform_device *pdev)
2387 {
2388 	struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
2389 
2390 	if (early_serial_console.data)
2391 		return -EEXIST;
2392 
2393 	early_serial_console.index = pdev->id;
2394 
2395 	sci_init_single(NULL, &sci_ports[pdev->id], pdev->id, cfg);
2396 
2397 	serial_console_setup(&early_serial_console, early_serial_buf);
2398 
2399 	if (!strstr(early_serial_buf, "keep"))
2400 		early_serial_console.flags |= CON_BOOT;
2401 
2402 	register_console(&early_serial_console);
2403 	return 0;
2404 }
2405 
2406 #define SCI_CONSOLE	(&serial_console)
2407 
2408 #else
2409 static inline int sci_probe_earlyprintk(struct platform_device *pdev)
2410 {
2411 	return -EINVAL;
2412 }
2413 
2414 #define SCI_CONSOLE	NULL
2415 
2416 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE */
2417 
2418 static char banner[] __initdata =
2419 	KERN_INFO "SuperH (H)SCI(F) driver initialized\n";
2420 
2421 static struct uart_driver sci_uart_driver = {
2422 	.owner		= THIS_MODULE,
2423 	.driver_name	= "sci",
2424 	.dev_name	= "ttySC",
2425 	.major		= SCI_MAJOR,
2426 	.minor		= SCI_MINOR_START,
2427 	.nr		= SCI_NPORTS,
2428 	.cons		= SCI_CONSOLE,
2429 };
2430 
2431 static int sci_remove(struct platform_device *dev)
2432 {
2433 	struct sci_port *port = platform_get_drvdata(dev);
2434 
2435 	cpufreq_unregister_notifier(&port->freq_transition,
2436 				    CPUFREQ_TRANSITION_NOTIFIER);
2437 
2438 	uart_remove_one_port(&sci_uart_driver, &port->port);
2439 
2440 	sci_cleanup_single(port);
2441 
2442 	return 0;
2443 }
2444 
2445 static int sci_probe_single(struct platform_device *dev,
2446 				      unsigned int index,
2447 				      struct plat_sci_port *p,
2448 				      struct sci_port *sciport)
2449 {
2450 	int ret;
2451 
2452 	/* Sanity check */
2453 	if (unlikely(index >= SCI_NPORTS)) {
2454 		dev_notice(&dev->dev, "Attempting to register port "
2455 			   "%d when only %d are available.\n",
2456 			   index+1, SCI_NPORTS);
2457 		dev_notice(&dev->dev, "Consider bumping "
2458 			   "CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
2459 		return -EINVAL;
2460 	}
2461 
2462 	ret = sci_init_single(dev, sciport, index, p);
2463 	if (ret)
2464 		return ret;
2465 
2466 	ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
2467 	if (ret) {
2468 		sci_cleanup_single(sciport);
2469 		return ret;
2470 	}
2471 
2472 	return 0;
2473 }
2474 
2475 static int sci_probe(struct platform_device *dev)
2476 {
2477 	struct plat_sci_port *p = dev_get_platdata(&dev->dev);
2478 	struct sci_port *sp = &sci_ports[dev->id];
2479 	int ret;
2480 
2481 	/*
2482 	 * If we've come here via earlyprintk initialization, head off to
2483 	 * the special early probe. We don't have sufficient device state
2484 	 * to make it beyond this yet.
2485 	 */
2486 	if (is_early_platform_device(dev))
2487 		return sci_probe_earlyprintk(dev);
2488 
2489 	platform_set_drvdata(dev, sp);
2490 
2491 	ret = sci_probe_single(dev, dev->id, p, sp);
2492 	if (ret)
2493 		return ret;
2494 
2495 	sp->freq_transition.notifier_call = sci_notifier;
2496 
2497 	ret = cpufreq_register_notifier(&sp->freq_transition,
2498 					CPUFREQ_TRANSITION_NOTIFIER);
2499 	if (unlikely(ret < 0)) {
2500 		sci_cleanup_single(sp);
2501 		return ret;
2502 	}
2503 
2504 #ifdef CONFIG_SH_STANDARD_BIOS
2505 	sh_bios_gdb_detach();
2506 #endif
2507 
2508 	return 0;
2509 }
2510 
2511 static int sci_suspend(struct device *dev)
2512 {
2513 	struct sci_port *sport = dev_get_drvdata(dev);
2514 
2515 	if (sport)
2516 		uart_suspend_port(&sci_uart_driver, &sport->port);
2517 
2518 	return 0;
2519 }
2520 
2521 static int sci_resume(struct device *dev)
2522 {
2523 	struct sci_port *sport = dev_get_drvdata(dev);
2524 
2525 	if (sport)
2526 		uart_resume_port(&sci_uart_driver, &sport->port);
2527 
2528 	return 0;
2529 }
2530 
2531 static const struct dev_pm_ops sci_dev_pm_ops = {
2532 	.suspend	= sci_suspend,
2533 	.resume		= sci_resume,
2534 };
2535 
2536 static struct platform_driver sci_driver = {
2537 	.probe		= sci_probe,
2538 	.remove		= sci_remove,
2539 	.driver		= {
2540 		.name	= "sh-sci",
2541 		.owner	= THIS_MODULE,
2542 		.pm	= &sci_dev_pm_ops,
2543 	},
2544 };
2545 
2546 static int __init sci_init(void)
2547 {
2548 	int ret;
2549 
2550 	printk(banner);
2551 
2552 	ret = uart_register_driver(&sci_uart_driver);
2553 	if (likely(ret == 0)) {
2554 		ret = platform_driver_register(&sci_driver);
2555 		if (unlikely(ret))
2556 			uart_unregister_driver(&sci_uart_driver);
2557 	}
2558 
2559 	return ret;
2560 }
2561 
2562 static void __exit sci_exit(void)
2563 {
2564 	platform_driver_unregister(&sci_driver);
2565 	uart_unregister_driver(&sci_uart_driver);
2566 }
2567 
2568 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
2569 early_platform_init_buffer("earlyprintk", &sci_driver,
2570 			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
2571 #endif
2572 module_init(sci_init);
2573 module_exit(sci_exit);
2574 
2575 MODULE_LICENSE("GPL");
2576 MODULE_ALIAS("platform:sh-sci");
2577 MODULE_AUTHOR("Paul Mundt");
2578 MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");
2579