xref: /openbmc/linux/drivers/tty/serial/sh-sci.c (revision afc98d90)
1 /*
2  * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
3  *
4  *  Copyright (C) 2002 - 2011  Paul Mundt
5  *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
6  *
7  * based off of the old drivers/char/sh-sci.c by:
8  *
9  *   Copyright (C) 1999, 2000  Niibe Yutaka
10  *   Copyright (C) 2000  Sugioka Toshinobu
11  *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
12  *   Modified to support SecureEdge. David McCullough (2002)
13  *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
14  *   Removed SH7300 support (Jul 2007).
15  *
16  * This file is subject to the terms and conditions of the GNU General Public
17  * License.  See the file "COPYING" in the main directory of this archive
18  * for more details.
19  */
20 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
21 #define SUPPORT_SYSRQ
22 #endif
23 
24 #undef DEBUG
25 
26 #include <linux/clk.h>
27 #include <linux/console.h>
28 #include <linux/ctype.h>
29 #include <linux/cpufreq.h>
30 #include <linux/delay.h>
31 #include <linux/dmaengine.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/err.h>
34 #include <linux/errno.h>
35 #include <linux/init.h>
36 #include <linux/interrupt.h>
37 #include <linux/ioport.h>
38 #include <linux/major.h>
39 #include <linux/module.h>
40 #include <linux/mm.h>
41 #include <linux/notifier.h>
42 #include <linux/of.h>
43 #include <linux/platform_device.h>
44 #include <linux/pm_runtime.h>
45 #include <linux/scatterlist.h>
46 #include <linux/serial.h>
47 #include <linux/serial_sci.h>
48 #include <linux/sh_dma.h>
49 #include <linux/slab.h>
50 #include <linux/string.h>
51 #include <linux/sysrq.h>
52 #include <linux/timer.h>
53 #include <linux/tty.h>
54 #include <linux/tty_flip.h>
55 
56 #ifdef CONFIG_SUPERH
57 #include <asm/sh_bios.h>
58 #endif
59 
60 #include "sh-sci.h"
61 
62 /* Offsets into the sci_port->irqs array */
63 enum {
64 	SCIx_ERI_IRQ,
65 	SCIx_RXI_IRQ,
66 	SCIx_TXI_IRQ,
67 	SCIx_BRI_IRQ,
68 	SCIx_NR_IRQS,
69 
70 	SCIx_MUX_IRQ = SCIx_NR_IRQS,	/* special case */
71 };
72 
73 #define SCIx_IRQ_IS_MUXED(port)			\
74 	((port)->irqs[SCIx_ERI_IRQ] ==	\
75 	 (port)->irqs[SCIx_RXI_IRQ]) ||	\
76 	((port)->irqs[SCIx_ERI_IRQ] &&	\
77 	 ((port)->irqs[SCIx_RXI_IRQ] < 0))
78 
79 struct sci_port {
80 	struct uart_port	port;
81 
82 	/* Platform configuration */
83 	struct plat_sci_port	*cfg;
84 	int			overrun_bit;
85 	unsigned int		error_mask;
86 	unsigned int		sampling_rate;
87 
88 
89 	/* Break timer */
90 	struct timer_list	break_timer;
91 	int			break_flag;
92 
93 	/* Interface clock */
94 	struct clk		*iclk;
95 	/* Function clock */
96 	struct clk		*fclk;
97 
98 	int			irqs[SCIx_NR_IRQS];
99 	char			*irqstr[SCIx_NR_IRQS];
100 
101 	struct dma_chan			*chan_tx;
102 	struct dma_chan			*chan_rx;
103 
104 #ifdef CONFIG_SERIAL_SH_SCI_DMA
105 	struct dma_async_tx_descriptor	*desc_tx;
106 	struct dma_async_tx_descriptor	*desc_rx[2];
107 	dma_cookie_t			cookie_tx;
108 	dma_cookie_t			cookie_rx[2];
109 	dma_cookie_t			active_rx;
110 	struct scatterlist		sg_tx;
111 	unsigned int			sg_len_tx;
112 	struct scatterlist		sg_rx[2];
113 	size_t				buf_len_rx;
114 	struct sh_dmae_slave		param_tx;
115 	struct sh_dmae_slave		param_rx;
116 	struct work_struct		work_tx;
117 	struct work_struct		work_rx;
118 	struct timer_list		rx_timer;
119 	unsigned int			rx_timeout;
120 #endif
121 
122 	struct notifier_block		freq_transition;
123 };
124 
125 /* Function prototypes */
126 static void sci_start_tx(struct uart_port *port);
127 static void sci_stop_tx(struct uart_port *port);
128 static void sci_start_rx(struct uart_port *port);
129 
130 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
131 
132 static struct sci_port sci_ports[SCI_NPORTS];
133 static struct uart_driver sci_uart_driver;
134 
135 static inline struct sci_port *
136 to_sci_port(struct uart_port *uart)
137 {
138 	return container_of(uart, struct sci_port, port);
139 }
140 
141 struct plat_sci_reg {
142 	u8 offset, size;
143 };
144 
145 /* Helper for invalidating specific entries of an inherited map. */
146 #define sci_reg_invalid	{ .offset = 0, .size = 0 }
147 
148 static struct plat_sci_reg sci_regmap[SCIx_NR_REGTYPES][SCIx_NR_REGS] = {
149 	[SCIx_PROBE_REGTYPE] = {
150 		[0 ... SCIx_NR_REGS - 1] = sci_reg_invalid,
151 	},
152 
153 	/*
154 	 * Common SCI definitions, dependent on the port's regshift
155 	 * value.
156 	 */
157 	[SCIx_SCI_REGTYPE] = {
158 		[SCSMR]		= { 0x00,  8 },
159 		[SCBRR]		= { 0x01,  8 },
160 		[SCSCR]		= { 0x02,  8 },
161 		[SCxTDR]	= { 0x03,  8 },
162 		[SCxSR]		= { 0x04,  8 },
163 		[SCxRDR]	= { 0x05,  8 },
164 		[SCFCR]		= sci_reg_invalid,
165 		[SCFDR]		= sci_reg_invalid,
166 		[SCTFDR]	= sci_reg_invalid,
167 		[SCRFDR]	= sci_reg_invalid,
168 		[SCSPTR]	= sci_reg_invalid,
169 		[SCLSR]		= sci_reg_invalid,
170 		[HSSRR]		= sci_reg_invalid,
171 	},
172 
173 	/*
174 	 * Common definitions for legacy IrDA ports, dependent on
175 	 * regshift value.
176 	 */
177 	[SCIx_IRDA_REGTYPE] = {
178 		[SCSMR]		= { 0x00,  8 },
179 		[SCBRR]		= { 0x01,  8 },
180 		[SCSCR]		= { 0x02,  8 },
181 		[SCxTDR]	= { 0x03,  8 },
182 		[SCxSR]		= { 0x04,  8 },
183 		[SCxRDR]	= { 0x05,  8 },
184 		[SCFCR]		= { 0x06,  8 },
185 		[SCFDR]		= { 0x07, 16 },
186 		[SCTFDR]	= sci_reg_invalid,
187 		[SCRFDR]	= sci_reg_invalid,
188 		[SCSPTR]	= sci_reg_invalid,
189 		[SCLSR]		= sci_reg_invalid,
190 		[HSSRR]		= sci_reg_invalid,
191 	},
192 
193 	/*
194 	 * Common SCIFA definitions.
195 	 */
196 	[SCIx_SCIFA_REGTYPE] = {
197 		[SCSMR]		= { 0x00, 16 },
198 		[SCBRR]		= { 0x04,  8 },
199 		[SCSCR]		= { 0x08, 16 },
200 		[SCxTDR]	= { 0x20,  8 },
201 		[SCxSR]		= { 0x14, 16 },
202 		[SCxRDR]	= { 0x24,  8 },
203 		[SCFCR]		= { 0x18, 16 },
204 		[SCFDR]		= { 0x1c, 16 },
205 		[SCTFDR]	= sci_reg_invalid,
206 		[SCRFDR]	= sci_reg_invalid,
207 		[SCSPTR]	= sci_reg_invalid,
208 		[SCLSR]		= sci_reg_invalid,
209 		[HSSRR]		= sci_reg_invalid,
210 	},
211 
212 	/*
213 	 * Common SCIFB definitions.
214 	 */
215 	[SCIx_SCIFB_REGTYPE] = {
216 		[SCSMR]		= { 0x00, 16 },
217 		[SCBRR]		= { 0x04,  8 },
218 		[SCSCR]		= { 0x08, 16 },
219 		[SCxTDR]	= { 0x40,  8 },
220 		[SCxSR]		= { 0x14, 16 },
221 		[SCxRDR]	= { 0x60,  8 },
222 		[SCFCR]		= { 0x18, 16 },
223 		[SCFDR]		= sci_reg_invalid,
224 		[SCTFDR]	= { 0x38, 16 },
225 		[SCRFDR]	= { 0x3c, 16 },
226 		[SCSPTR]	= sci_reg_invalid,
227 		[SCLSR]		= sci_reg_invalid,
228 		[HSSRR]		= sci_reg_invalid,
229 	},
230 
231 	/*
232 	 * Common SH-2(A) SCIF definitions for ports with FIFO data
233 	 * count registers.
234 	 */
235 	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
236 		[SCSMR]		= { 0x00, 16 },
237 		[SCBRR]		= { 0x04,  8 },
238 		[SCSCR]		= { 0x08, 16 },
239 		[SCxTDR]	= { 0x0c,  8 },
240 		[SCxSR]		= { 0x10, 16 },
241 		[SCxRDR]	= { 0x14,  8 },
242 		[SCFCR]		= { 0x18, 16 },
243 		[SCFDR]		= { 0x1c, 16 },
244 		[SCTFDR]	= sci_reg_invalid,
245 		[SCRFDR]	= sci_reg_invalid,
246 		[SCSPTR]	= { 0x20, 16 },
247 		[SCLSR]		= { 0x24, 16 },
248 		[HSSRR]		= sci_reg_invalid,
249 	},
250 
251 	/*
252 	 * Common SH-3 SCIF definitions.
253 	 */
254 	[SCIx_SH3_SCIF_REGTYPE] = {
255 		[SCSMR]		= { 0x00,  8 },
256 		[SCBRR]		= { 0x02,  8 },
257 		[SCSCR]		= { 0x04,  8 },
258 		[SCxTDR]	= { 0x06,  8 },
259 		[SCxSR]		= { 0x08, 16 },
260 		[SCxRDR]	= { 0x0a,  8 },
261 		[SCFCR]		= { 0x0c,  8 },
262 		[SCFDR]		= { 0x0e, 16 },
263 		[SCTFDR]	= sci_reg_invalid,
264 		[SCRFDR]	= sci_reg_invalid,
265 		[SCSPTR]	= sci_reg_invalid,
266 		[SCLSR]		= sci_reg_invalid,
267 		[HSSRR]		= sci_reg_invalid,
268 	},
269 
270 	/*
271 	 * Common SH-4(A) SCIF(B) definitions.
272 	 */
273 	[SCIx_SH4_SCIF_REGTYPE] = {
274 		[SCSMR]		= { 0x00, 16 },
275 		[SCBRR]		= { 0x04,  8 },
276 		[SCSCR]		= { 0x08, 16 },
277 		[SCxTDR]	= { 0x0c,  8 },
278 		[SCxSR]		= { 0x10, 16 },
279 		[SCxRDR]	= { 0x14,  8 },
280 		[SCFCR]		= { 0x18, 16 },
281 		[SCFDR]		= { 0x1c, 16 },
282 		[SCTFDR]	= sci_reg_invalid,
283 		[SCRFDR]	= sci_reg_invalid,
284 		[SCSPTR]	= { 0x20, 16 },
285 		[SCLSR]		= { 0x24, 16 },
286 		[HSSRR]		= sci_reg_invalid,
287 	},
288 
289 	/*
290 	 * Common HSCIF definitions.
291 	 */
292 	[SCIx_HSCIF_REGTYPE] = {
293 		[SCSMR]		= { 0x00, 16 },
294 		[SCBRR]		= { 0x04,  8 },
295 		[SCSCR]		= { 0x08, 16 },
296 		[SCxTDR]	= { 0x0c,  8 },
297 		[SCxSR]		= { 0x10, 16 },
298 		[SCxRDR]	= { 0x14,  8 },
299 		[SCFCR]		= { 0x18, 16 },
300 		[SCFDR]		= { 0x1c, 16 },
301 		[SCTFDR]	= sci_reg_invalid,
302 		[SCRFDR]	= sci_reg_invalid,
303 		[SCSPTR]	= { 0x20, 16 },
304 		[SCLSR]		= { 0x24, 16 },
305 		[HSSRR]		= { 0x40, 16 },
306 	},
307 
308 	/*
309 	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
310 	 * register.
311 	 */
312 	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
313 		[SCSMR]		= { 0x00, 16 },
314 		[SCBRR]		= { 0x04,  8 },
315 		[SCSCR]		= { 0x08, 16 },
316 		[SCxTDR]	= { 0x0c,  8 },
317 		[SCxSR]		= { 0x10, 16 },
318 		[SCxRDR]	= { 0x14,  8 },
319 		[SCFCR]		= { 0x18, 16 },
320 		[SCFDR]		= { 0x1c, 16 },
321 		[SCTFDR]	= sci_reg_invalid,
322 		[SCRFDR]	= sci_reg_invalid,
323 		[SCSPTR]	= sci_reg_invalid,
324 		[SCLSR]		= { 0x24, 16 },
325 		[HSSRR]		= sci_reg_invalid,
326 	},
327 
328 	/*
329 	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
330 	 * count registers.
331 	 */
332 	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
333 		[SCSMR]		= { 0x00, 16 },
334 		[SCBRR]		= { 0x04,  8 },
335 		[SCSCR]		= { 0x08, 16 },
336 		[SCxTDR]	= { 0x0c,  8 },
337 		[SCxSR]		= { 0x10, 16 },
338 		[SCxRDR]	= { 0x14,  8 },
339 		[SCFCR]		= { 0x18, 16 },
340 		[SCFDR]		= { 0x1c, 16 },
341 		[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
342 		[SCRFDR]	= { 0x20, 16 },
343 		[SCSPTR]	= { 0x24, 16 },
344 		[SCLSR]		= { 0x28, 16 },
345 		[HSSRR]		= sci_reg_invalid,
346 	},
347 
348 	/*
349 	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
350 	 * registers.
351 	 */
352 	[SCIx_SH7705_SCIF_REGTYPE] = {
353 		[SCSMR]		= { 0x00, 16 },
354 		[SCBRR]		= { 0x04,  8 },
355 		[SCSCR]		= { 0x08, 16 },
356 		[SCxTDR]	= { 0x20,  8 },
357 		[SCxSR]		= { 0x14, 16 },
358 		[SCxRDR]	= { 0x24,  8 },
359 		[SCFCR]		= { 0x18, 16 },
360 		[SCFDR]		= { 0x1c, 16 },
361 		[SCTFDR]	= sci_reg_invalid,
362 		[SCRFDR]	= sci_reg_invalid,
363 		[SCSPTR]	= sci_reg_invalid,
364 		[SCLSR]		= sci_reg_invalid,
365 		[HSSRR]		= sci_reg_invalid,
366 	},
367 };
368 
369 #define sci_getreg(up, offset)		(sci_regmap[to_sci_port(up)->cfg->regtype] + offset)
370 
371 /*
372  * The "offset" here is rather misleading, in that it refers to an enum
373  * value relative to the port mapping rather than the fixed offset
374  * itself, which needs to be manually retrieved from the platform's
375  * register map for the given port.
376  */
377 static unsigned int sci_serial_in(struct uart_port *p, int offset)
378 {
379 	struct plat_sci_reg *reg = sci_getreg(p, offset);
380 
381 	if (reg->size == 8)
382 		return ioread8(p->membase + (reg->offset << p->regshift));
383 	else if (reg->size == 16)
384 		return ioread16(p->membase + (reg->offset << p->regshift));
385 	else
386 		WARN(1, "Invalid register access\n");
387 
388 	return 0;
389 }
390 
391 static void sci_serial_out(struct uart_port *p, int offset, int value)
392 {
393 	struct plat_sci_reg *reg = sci_getreg(p, offset);
394 
395 	if (reg->size == 8)
396 		iowrite8(value, p->membase + (reg->offset << p->regshift));
397 	else if (reg->size == 16)
398 		iowrite16(value, p->membase + (reg->offset << p->regshift));
399 	else
400 		WARN(1, "Invalid register access\n");
401 }
402 
403 static int sci_probe_regmap(struct plat_sci_port *cfg)
404 {
405 	switch (cfg->type) {
406 	case PORT_SCI:
407 		cfg->regtype = SCIx_SCI_REGTYPE;
408 		break;
409 	case PORT_IRDA:
410 		cfg->regtype = SCIx_IRDA_REGTYPE;
411 		break;
412 	case PORT_SCIFA:
413 		cfg->regtype = SCIx_SCIFA_REGTYPE;
414 		break;
415 	case PORT_SCIFB:
416 		cfg->regtype = SCIx_SCIFB_REGTYPE;
417 		break;
418 	case PORT_SCIF:
419 		/*
420 		 * The SH-4 is a bit of a misnomer here, although that's
421 		 * where this particular port layout originated. This
422 		 * configuration (or some slight variation thereof)
423 		 * remains the dominant model for all SCIFs.
424 		 */
425 		cfg->regtype = SCIx_SH4_SCIF_REGTYPE;
426 		break;
427 	case PORT_HSCIF:
428 		cfg->regtype = SCIx_HSCIF_REGTYPE;
429 		break;
430 	default:
431 		printk(KERN_ERR "Can't probe register map for given port\n");
432 		return -EINVAL;
433 	}
434 
435 	return 0;
436 }
437 
438 static void sci_port_enable(struct sci_port *sci_port)
439 {
440 	if (!sci_port->port.dev)
441 		return;
442 
443 	pm_runtime_get_sync(sci_port->port.dev);
444 
445 	clk_prepare_enable(sci_port->iclk);
446 	sci_port->port.uartclk = clk_get_rate(sci_port->iclk);
447 	clk_prepare_enable(sci_port->fclk);
448 }
449 
450 static void sci_port_disable(struct sci_port *sci_port)
451 {
452 	if (!sci_port->port.dev)
453 		return;
454 
455 	/* Cancel the break timer to ensure that the timer handler will not try
456 	 * to access the hardware with clocks and power disabled. Reset the
457 	 * break flag to make the break debouncing state machine ready for the
458 	 * next break.
459 	 */
460 	del_timer_sync(&sci_port->break_timer);
461 	sci_port->break_flag = 0;
462 
463 	clk_disable_unprepare(sci_port->fclk);
464 	clk_disable_unprepare(sci_port->iclk);
465 
466 	pm_runtime_put_sync(sci_port->port.dev);
467 }
468 
469 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
470 
471 #ifdef CONFIG_CONSOLE_POLL
472 static int sci_poll_get_char(struct uart_port *port)
473 {
474 	unsigned short status;
475 	int c;
476 
477 	do {
478 		status = serial_port_in(port, SCxSR);
479 		if (status & SCxSR_ERRORS(port)) {
480 			serial_port_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
481 			continue;
482 		}
483 		break;
484 	} while (1);
485 
486 	if (!(status & SCxSR_RDxF(port)))
487 		return NO_POLL_CHAR;
488 
489 	c = serial_port_in(port, SCxRDR);
490 
491 	/* Dummy read */
492 	serial_port_in(port, SCxSR);
493 	serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
494 
495 	return c;
496 }
497 #endif
498 
499 static void sci_poll_put_char(struct uart_port *port, unsigned char c)
500 {
501 	unsigned short status;
502 
503 	do {
504 		status = serial_port_in(port, SCxSR);
505 	} while (!(status & SCxSR_TDxE(port)));
506 
507 	serial_port_out(port, SCxTDR, c);
508 	serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
509 }
510 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE */
511 
512 static void sci_init_pins(struct uart_port *port, unsigned int cflag)
513 {
514 	struct sci_port *s = to_sci_port(port);
515 	struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
516 
517 	/*
518 	 * Use port-specific handler if provided.
519 	 */
520 	if (s->cfg->ops && s->cfg->ops->init_pins) {
521 		s->cfg->ops->init_pins(port, cflag);
522 		return;
523 	}
524 
525 	/*
526 	 * For the generic path SCSPTR is necessary. Bail out if that's
527 	 * unavailable, too.
528 	 */
529 	if (!reg->size)
530 		return;
531 
532 	if ((s->cfg->capabilities & SCIx_HAVE_RTSCTS) &&
533 	    ((!(cflag & CRTSCTS)))) {
534 		unsigned short status;
535 
536 		status = serial_port_in(port, SCSPTR);
537 		status &= ~SCSPTR_CTSIO;
538 		status |= SCSPTR_RTSIO;
539 		serial_port_out(port, SCSPTR, status); /* Set RTS = 1 */
540 	}
541 }
542 
543 static int sci_txfill(struct uart_port *port)
544 {
545 	struct plat_sci_reg *reg;
546 
547 	reg = sci_getreg(port, SCTFDR);
548 	if (reg->size)
549 		return serial_port_in(port, SCTFDR) & ((port->fifosize << 1) - 1);
550 
551 	reg = sci_getreg(port, SCFDR);
552 	if (reg->size)
553 		return serial_port_in(port, SCFDR) >> 8;
554 
555 	return !(serial_port_in(port, SCxSR) & SCI_TDRE);
556 }
557 
558 static int sci_txroom(struct uart_port *port)
559 {
560 	return port->fifosize - sci_txfill(port);
561 }
562 
563 static int sci_rxfill(struct uart_port *port)
564 {
565 	struct plat_sci_reg *reg;
566 
567 	reg = sci_getreg(port, SCRFDR);
568 	if (reg->size)
569 		return serial_port_in(port, SCRFDR) & ((port->fifosize << 1) - 1);
570 
571 	reg = sci_getreg(port, SCFDR);
572 	if (reg->size)
573 		return serial_port_in(port, SCFDR) & ((port->fifosize << 1) - 1);
574 
575 	return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
576 }
577 
578 /*
579  * SCI helper for checking the state of the muxed port/RXD pins.
580  */
581 static inline int sci_rxd_in(struct uart_port *port)
582 {
583 	struct sci_port *s = to_sci_port(port);
584 
585 	if (s->cfg->port_reg <= 0)
586 		return 1;
587 
588 	/* Cast for ARM damage */
589 	return !!__raw_readb((void __iomem *)(uintptr_t)s->cfg->port_reg);
590 }
591 
592 /* ********************************************************************** *
593  *                   the interrupt related routines                       *
594  * ********************************************************************** */
595 
596 static void sci_transmit_chars(struct uart_port *port)
597 {
598 	struct circ_buf *xmit = &port->state->xmit;
599 	unsigned int stopped = uart_tx_stopped(port);
600 	unsigned short status;
601 	unsigned short ctrl;
602 	int count;
603 
604 	status = serial_port_in(port, SCxSR);
605 	if (!(status & SCxSR_TDxE(port))) {
606 		ctrl = serial_port_in(port, SCSCR);
607 		if (uart_circ_empty(xmit))
608 			ctrl &= ~SCSCR_TIE;
609 		else
610 			ctrl |= SCSCR_TIE;
611 		serial_port_out(port, SCSCR, ctrl);
612 		return;
613 	}
614 
615 	count = sci_txroom(port);
616 
617 	do {
618 		unsigned char c;
619 
620 		if (port->x_char) {
621 			c = port->x_char;
622 			port->x_char = 0;
623 		} else if (!uart_circ_empty(xmit) && !stopped) {
624 			c = xmit->buf[xmit->tail];
625 			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
626 		} else {
627 			break;
628 		}
629 
630 		serial_port_out(port, SCxTDR, c);
631 
632 		port->icount.tx++;
633 	} while (--count > 0);
634 
635 	serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
636 
637 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
638 		uart_write_wakeup(port);
639 	if (uart_circ_empty(xmit)) {
640 		sci_stop_tx(port);
641 	} else {
642 		ctrl = serial_port_in(port, SCSCR);
643 
644 		if (port->type != PORT_SCI) {
645 			serial_port_in(port, SCxSR); /* Dummy read */
646 			serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
647 		}
648 
649 		ctrl |= SCSCR_TIE;
650 		serial_port_out(port, SCSCR, ctrl);
651 	}
652 }
653 
654 /* On SH3, SCIF may read end-of-break as a space->mark char */
655 #define STEPFN(c)  ({int __c = (c); (((__c-1)|(__c)) == -1); })
656 
657 static void sci_receive_chars(struct uart_port *port)
658 {
659 	struct sci_port *sci_port = to_sci_port(port);
660 	struct tty_port *tport = &port->state->port;
661 	int i, count, copied = 0;
662 	unsigned short status;
663 	unsigned char flag;
664 
665 	status = serial_port_in(port, SCxSR);
666 	if (!(status & SCxSR_RDxF(port)))
667 		return;
668 
669 	while (1) {
670 		/* Don't copy more bytes than there is room for in the buffer */
671 		count = tty_buffer_request_room(tport, sci_rxfill(port));
672 
673 		/* If for any reason we can't copy more data, we're done! */
674 		if (count == 0)
675 			break;
676 
677 		if (port->type == PORT_SCI) {
678 			char c = serial_port_in(port, SCxRDR);
679 			if (uart_handle_sysrq_char(port, c) ||
680 			    sci_port->break_flag)
681 				count = 0;
682 			else
683 				tty_insert_flip_char(tport, c, TTY_NORMAL);
684 		} else {
685 			for (i = 0; i < count; i++) {
686 				char c = serial_port_in(port, SCxRDR);
687 
688 				status = serial_port_in(port, SCxSR);
689 #if defined(CONFIG_CPU_SH3)
690 				/* Skip "chars" during break */
691 				if (sci_port->break_flag) {
692 					if ((c == 0) &&
693 					    (status & SCxSR_FER(port))) {
694 						count--; i--;
695 						continue;
696 					}
697 
698 					/* Nonzero => end-of-break */
699 					dev_dbg(port->dev, "debounce<%02x>\n", c);
700 					sci_port->break_flag = 0;
701 
702 					if (STEPFN(c)) {
703 						count--; i--;
704 						continue;
705 					}
706 				}
707 #endif /* CONFIG_CPU_SH3 */
708 				if (uart_handle_sysrq_char(port, c)) {
709 					count--; i--;
710 					continue;
711 				}
712 
713 				/* Store data and status */
714 				if (status & SCxSR_FER(port)) {
715 					flag = TTY_FRAME;
716 					port->icount.frame++;
717 					dev_notice(port->dev, "frame error\n");
718 				} else if (status & SCxSR_PER(port)) {
719 					flag = TTY_PARITY;
720 					port->icount.parity++;
721 					dev_notice(port->dev, "parity error\n");
722 				} else
723 					flag = TTY_NORMAL;
724 
725 				tty_insert_flip_char(tport, c, flag);
726 			}
727 		}
728 
729 		serial_port_in(port, SCxSR); /* dummy read */
730 		serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
731 
732 		copied += count;
733 		port->icount.rx += count;
734 	}
735 
736 	if (copied) {
737 		/* Tell the rest of the system the news. New characters! */
738 		tty_flip_buffer_push(tport);
739 	} else {
740 		serial_port_in(port, SCxSR); /* dummy read */
741 		serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
742 	}
743 }
744 
745 #define SCI_BREAK_JIFFIES (HZ/20)
746 
747 /*
748  * The sci generates interrupts during the break,
749  * 1 per millisecond or so during the break period, for 9600 baud.
750  * So dont bother disabling interrupts.
751  * But dont want more than 1 break event.
752  * Use a kernel timer to periodically poll the rx line until
753  * the break is finished.
754  */
755 static inline void sci_schedule_break_timer(struct sci_port *port)
756 {
757 	mod_timer(&port->break_timer, jiffies + SCI_BREAK_JIFFIES);
758 }
759 
760 /* Ensure that two consecutive samples find the break over. */
761 static void sci_break_timer(unsigned long data)
762 {
763 	struct sci_port *port = (struct sci_port *)data;
764 
765 	if (sci_rxd_in(&port->port) == 0) {
766 		port->break_flag = 1;
767 		sci_schedule_break_timer(port);
768 	} else if (port->break_flag == 1) {
769 		/* break is over. */
770 		port->break_flag = 2;
771 		sci_schedule_break_timer(port);
772 	} else
773 		port->break_flag = 0;
774 }
775 
776 static int sci_handle_errors(struct uart_port *port)
777 {
778 	int copied = 0;
779 	unsigned short status = serial_port_in(port, SCxSR);
780 	struct tty_port *tport = &port->state->port;
781 	struct sci_port *s = to_sci_port(port);
782 
783 	/* Handle overruns */
784 	if (status & (1 << s->overrun_bit)) {
785 		port->icount.overrun++;
786 
787 		/* overrun error */
788 		if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
789 			copied++;
790 
791 		dev_notice(port->dev, "overrun error");
792 	}
793 
794 	if (status & SCxSR_FER(port)) {
795 		if (sci_rxd_in(port) == 0) {
796 			/* Notify of BREAK */
797 			struct sci_port *sci_port = to_sci_port(port);
798 
799 			if (!sci_port->break_flag) {
800 				port->icount.brk++;
801 
802 				sci_port->break_flag = 1;
803 				sci_schedule_break_timer(sci_port);
804 
805 				/* Do sysrq handling. */
806 				if (uart_handle_break(port))
807 					return 0;
808 
809 				dev_dbg(port->dev, "BREAK detected\n");
810 
811 				if (tty_insert_flip_char(tport, 0, TTY_BREAK))
812 					copied++;
813 			}
814 
815 		} else {
816 			/* frame error */
817 			port->icount.frame++;
818 
819 			if (tty_insert_flip_char(tport, 0, TTY_FRAME))
820 				copied++;
821 
822 			dev_notice(port->dev, "frame error\n");
823 		}
824 	}
825 
826 	if (status & SCxSR_PER(port)) {
827 		/* parity error */
828 		port->icount.parity++;
829 
830 		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
831 			copied++;
832 
833 		dev_notice(port->dev, "parity error");
834 	}
835 
836 	if (copied)
837 		tty_flip_buffer_push(tport);
838 
839 	return copied;
840 }
841 
842 static int sci_handle_fifo_overrun(struct uart_port *port)
843 {
844 	struct tty_port *tport = &port->state->port;
845 	struct sci_port *s = to_sci_port(port);
846 	struct plat_sci_reg *reg;
847 	int copied = 0;
848 
849 	reg = sci_getreg(port, SCLSR);
850 	if (!reg->size)
851 		return 0;
852 
853 	if ((serial_port_in(port, SCLSR) & (1 << s->overrun_bit))) {
854 		serial_port_out(port, SCLSR, 0);
855 
856 		port->icount.overrun++;
857 
858 		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
859 		tty_flip_buffer_push(tport);
860 
861 		dev_notice(port->dev, "overrun error\n");
862 		copied++;
863 	}
864 
865 	return copied;
866 }
867 
868 static int sci_handle_breaks(struct uart_port *port)
869 {
870 	int copied = 0;
871 	unsigned short status = serial_port_in(port, SCxSR);
872 	struct tty_port *tport = &port->state->port;
873 	struct sci_port *s = to_sci_port(port);
874 
875 	if (uart_handle_break(port))
876 		return 0;
877 
878 	if (!s->break_flag && status & SCxSR_BRK(port)) {
879 #if defined(CONFIG_CPU_SH3)
880 		/* Debounce break */
881 		s->break_flag = 1;
882 #endif
883 
884 		port->icount.brk++;
885 
886 		/* Notify of BREAK */
887 		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
888 			copied++;
889 
890 		dev_dbg(port->dev, "BREAK detected\n");
891 	}
892 
893 	if (copied)
894 		tty_flip_buffer_push(tport);
895 
896 	copied += sci_handle_fifo_overrun(port);
897 
898 	return copied;
899 }
900 
901 static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
902 {
903 #ifdef CONFIG_SERIAL_SH_SCI_DMA
904 	struct uart_port *port = ptr;
905 	struct sci_port *s = to_sci_port(port);
906 
907 	if (s->chan_rx) {
908 		u16 scr = serial_port_in(port, SCSCR);
909 		u16 ssr = serial_port_in(port, SCxSR);
910 
911 		/* Disable future Rx interrupts */
912 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
913 			disable_irq_nosync(irq);
914 			scr |= 0x4000;
915 		} else {
916 			scr &= ~SCSCR_RIE;
917 		}
918 		serial_port_out(port, SCSCR, scr);
919 		/* Clear current interrupt */
920 		serial_port_out(port, SCxSR, ssr & ~(1 | SCxSR_RDxF(port)));
921 		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n",
922 			jiffies, s->rx_timeout);
923 		mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
924 
925 		return IRQ_HANDLED;
926 	}
927 #endif
928 
929 	/* I think sci_receive_chars has to be called irrespective
930 	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
931 	 * to be disabled?
932 	 */
933 	sci_receive_chars(ptr);
934 
935 	return IRQ_HANDLED;
936 }
937 
938 static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
939 {
940 	struct uart_port *port = ptr;
941 	unsigned long flags;
942 
943 	spin_lock_irqsave(&port->lock, flags);
944 	sci_transmit_chars(port);
945 	spin_unlock_irqrestore(&port->lock, flags);
946 
947 	return IRQ_HANDLED;
948 }
949 
950 static irqreturn_t sci_er_interrupt(int irq, void *ptr)
951 {
952 	struct uart_port *port = ptr;
953 
954 	/* Handle errors */
955 	if (port->type == PORT_SCI) {
956 		if (sci_handle_errors(port)) {
957 			/* discard character in rx buffer */
958 			serial_port_in(port, SCxSR);
959 			serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
960 		}
961 	} else {
962 		sci_handle_fifo_overrun(port);
963 		sci_rx_interrupt(irq, ptr);
964 	}
965 
966 	serial_port_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
967 
968 	/* Kick the transmission */
969 	sci_tx_interrupt(irq, ptr);
970 
971 	return IRQ_HANDLED;
972 }
973 
974 static irqreturn_t sci_br_interrupt(int irq, void *ptr)
975 {
976 	struct uart_port *port = ptr;
977 
978 	/* Handle BREAKs */
979 	sci_handle_breaks(port);
980 	serial_port_out(port, SCxSR, SCxSR_BREAK_CLEAR(port));
981 
982 	return IRQ_HANDLED;
983 }
984 
985 static inline unsigned long port_rx_irq_mask(struct uart_port *port)
986 {
987 	/*
988 	 * Not all ports (such as SCIFA) will support REIE. Rather than
989 	 * special-casing the port type, we check the port initialization
990 	 * IRQ enable mask to see whether the IRQ is desired at all. If
991 	 * it's unset, it's logically inferred that there's no point in
992 	 * testing for it.
993 	 */
994 	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
995 }
996 
997 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
998 {
999 	unsigned short ssr_status, scr_status, err_enabled;
1000 	struct uart_port *port = ptr;
1001 	struct sci_port *s = to_sci_port(port);
1002 	irqreturn_t ret = IRQ_NONE;
1003 
1004 	ssr_status = serial_port_in(port, SCxSR);
1005 	scr_status = serial_port_in(port, SCSCR);
1006 	err_enabled = scr_status & port_rx_irq_mask(port);
1007 
1008 	/* Tx Interrupt */
1009 	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1010 	    !s->chan_tx)
1011 		ret = sci_tx_interrupt(irq, ptr);
1012 
1013 	/*
1014 	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1015 	 * DR flags
1016 	 */
1017 	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1018 	    (scr_status & SCSCR_RIE))
1019 		ret = sci_rx_interrupt(irq, ptr);
1020 
1021 	/* Error Interrupt */
1022 	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1023 		ret = sci_er_interrupt(irq, ptr);
1024 
1025 	/* Break Interrupt */
1026 	if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
1027 		ret = sci_br_interrupt(irq, ptr);
1028 
1029 	return ret;
1030 }
1031 
1032 /*
1033  * Here we define a transition notifier so that we can update all of our
1034  * ports' baud rate when the peripheral clock changes.
1035  */
1036 static int sci_notifier(struct notifier_block *self,
1037 			unsigned long phase, void *p)
1038 {
1039 	struct sci_port *sci_port;
1040 	unsigned long flags;
1041 
1042 	sci_port = container_of(self, struct sci_port, freq_transition);
1043 
1044 	if ((phase == CPUFREQ_POSTCHANGE) ||
1045 	    (phase == CPUFREQ_RESUMECHANGE)) {
1046 		struct uart_port *port = &sci_port->port;
1047 
1048 		spin_lock_irqsave(&port->lock, flags);
1049 		port->uartclk = clk_get_rate(sci_port->iclk);
1050 		spin_unlock_irqrestore(&port->lock, flags);
1051 	}
1052 
1053 	return NOTIFY_OK;
1054 }
1055 
1056 static struct sci_irq_desc {
1057 	const char	*desc;
1058 	irq_handler_t	handler;
1059 } sci_irq_desc[] = {
1060 	/*
1061 	 * Split out handlers, the default case.
1062 	 */
1063 	[SCIx_ERI_IRQ] = {
1064 		.desc = "rx err",
1065 		.handler = sci_er_interrupt,
1066 	},
1067 
1068 	[SCIx_RXI_IRQ] = {
1069 		.desc = "rx full",
1070 		.handler = sci_rx_interrupt,
1071 	},
1072 
1073 	[SCIx_TXI_IRQ] = {
1074 		.desc = "tx empty",
1075 		.handler = sci_tx_interrupt,
1076 	},
1077 
1078 	[SCIx_BRI_IRQ] = {
1079 		.desc = "break",
1080 		.handler = sci_br_interrupt,
1081 	},
1082 
1083 	/*
1084 	 * Special muxed handler.
1085 	 */
1086 	[SCIx_MUX_IRQ] = {
1087 		.desc = "mux",
1088 		.handler = sci_mpxed_interrupt,
1089 	},
1090 };
1091 
1092 static int sci_request_irq(struct sci_port *port)
1093 {
1094 	struct uart_port *up = &port->port;
1095 	int i, j, ret = 0;
1096 
1097 	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1098 		struct sci_irq_desc *desc;
1099 		int irq;
1100 
1101 		if (SCIx_IRQ_IS_MUXED(port)) {
1102 			i = SCIx_MUX_IRQ;
1103 			irq = up->irq;
1104 		} else {
1105 			irq = port->irqs[i];
1106 
1107 			/*
1108 			 * Certain port types won't support all of the
1109 			 * available interrupt sources.
1110 			 */
1111 			if (unlikely(irq < 0))
1112 				continue;
1113 		}
1114 
1115 		desc = sci_irq_desc + i;
1116 		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1117 					    dev_name(up->dev), desc->desc);
1118 		if (!port->irqstr[j]) {
1119 			dev_err(up->dev, "Failed to allocate %s IRQ string\n",
1120 				desc->desc);
1121 			goto out_nomem;
1122 		}
1123 
1124 		ret = request_irq(irq, desc->handler, up->irqflags,
1125 				  port->irqstr[j], port);
1126 		if (unlikely(ret)) {
1127 			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1128 			goto out_noirq;
1129 		}
1130 	}
1131 
1132 	return 0;
1133 
1134 out_noirq:
1135 	while (--i >= 0)
1136 		free_irq(port->irqs[i], port);
1137 
1138 out_nomem:
1139 	while (--j >= 0)
1140 		kfree(port->irqstr[j]);
1141 
1142 	return ret;
1143 }
1144 
1145 static void sci_free_irq(struct sci_port *port)
1146 {
1147 	int i;
1148 
1149 	/*
1150 	 * Intentionally in reverse order so we iterate over the muxed
1151 	 * IRQ first.
1152 	 */
1153 	for (i = 0; i < SCIx_NR_IRQS; i++) {
1154 		int irq = port->irqs[i];
1155 
1156 		/*
1157 		 * Certain port types won't support all of the available
1158 		 * interrupt sources.
1159 		 */
1160 		if (unlikely(irq < 0))
1161 			continue;
1162 
1163 		free_irq(port->irqs[i], port);
1164 		kfree(port->irqstr[i]);
1165 
1166 		if (SCIx_IRQ_IS_MUXED(port)) {
1167 			/* If there's only one IRQ, we're done. */
1168 			return;
1169 		}
1170 	}
1171 }
1172 
1173 static unsigned int sci_tx_empty(struct uart_port *port)
1174 {
1175 	unsigned short status = serial_port_in(port, SCxSR);
1176 	unsigned short in_tx_fifo = sci_txfill(port);
1177 
1178 	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1179 }
1180 
1181 /*
1182  * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
1183  * CTS/RTS is supported in hardware by at least one port and controlled
1184  * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
1185  * handled via the ->init_pins() op, which is a bit of a one-way street,
1186  * lacking any ability to defer pin control -- this will later be
1187  * converted over to the GPIO framework).
1188  *
1189  * Other modes (such as loopback) are supported generically on certain
1190  * port types, but not others. For these it's sufficient to test for the
1191  * existence of the support register and simply ignore the port type.
1192  */
1193 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
1194 {
1195 	if (mctrl & TIOCM_LOOP) {
1196 		struct plat_sci_reg *reg;
1197 
1198 		/*
1199 		 * Standard loopback mode for SCFCR ports.
1200 		 */
1201 		reg = sci_getreg(port, SCFCR);
1202 		if (reg->size)
1203 			serial_port_out(port, SCFCR, serial_port_in(port, SCFCR) | 1);
1204 	}
1205 }
1206 
1207 static unsigned int sci_get_mctrl(struct uart_port *port)
1208 {
1209 	/*
1210 	 * CTS/RTS is handled in hardware when supported, while nothing
1211 	 * else is wired up. Keep it simple and simply assert DSR/CAR.
1212 	 */
1213 	return TIOCM_DSR | TIOCM_CAR;
1214 }
1215 
1216 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1217 static void sci_dma_tx_complete(void *arg)
1218 {
1219 	struct sci_port *s = arg;
1220 	struct uart_port *port = &s->port;
1221 	struct circ_buf *xmit = &port->state->xmit;
1222 	unsigned long flags;
1223 
1224 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1225 
1226 	spin_lock_irqsave(&port->lock, flags);
1227 
1228 	xmit->tail += sg_dma_len(&s->sg_tx);
1229 	xmit->tail &= UART_XMIT_SIZE - 1;
1230 
1231 	port->icount.tx += sg_dma_len(&s->sg_tx);
1232 
1233 	async_tx_ack(s->desc_tx);
1234 	s->desc_tx = NULL;
1235 
1236 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1237 		uart_write_wakeup(port);
1238 
1239 	if (!uart_circ_empty(xmit)) {
1240 		s->cookie_tx = 0;
1241 		schedule_work(&s->work_tx);
1242 	} else {
1243 		s->cookie_tx = -EINVAL;
1244 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1245 			u16 ctrl = serial_port_in(port, SCSCR);
1246 			serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1247 		}
1248 	}
1249 
1250 	spin_unlock_irqrestore(&port->lock, flags);
1251 }
1252 
1253 /* Locking: called with port lock held */
1254 static int sci_dma_rx_push(struct sci_port *s, size_t count)
1255 {
1256 	struct uart_port *port = &s->port;
1257 	struct tty_port *tport = &port->state->port;
1258 	int i, active, room;
1259 
1260 	room = tty_buffer_request_room(tport, count);
1261 
1262 	if (s->active_rx == s->cookie_rx[0]) {
1263 		active = 0;
1264 	} else if (s->active_rx == s->cookie_rx[1]) {
1265 		active = 1;
1266 	} else {
1267 		dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
1268 		return 0;
1269 	}
1270 
1271 	if (room < count)
1272 		dev_warn(port->dev, "Rx overrun: dropping %zu bytes\n",
1273 			 count - room);
1274 	if (!room)
1275 		return room;
1276 
1277 	for (i = 0; i < room; i++)
1278 		tty_insert_flip_char(tport, ((u8 *)sg_virt(&s->sg_rx[active]))[i],
1279 				     TTY_NORMAL);
1280 
1281 	port->icount.rx += room;
1282 
1283 	return room;
1284 }
1285 
1286 static void sci_dma_rx_complete(void *arg)
1287 {
1288 	struct sci_port *s = arg;
1289 	struct uart_port *port = &s->port;
1290 	unsigned long flags;
1291 	int count;
1292 
1293 	dev_dbg(port->dev, "%s(%d) active #%d\n", __func__, port->line, s->active_rx);
1294 
1295 	spin_lock_irqsave(&port->lock, flags);
1296 
1297 	count = sci_dma_rx_push(s, s->buf_len_rx);
1298 
1299 	mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1300 
1301 	spin_unlock_irqrestore(&port->lock, flags);
1302 
1303 	if (count)
1304 		tty_flip_buffer_push(&port->state->port);
1305 
1306 	schedule_work(&s->work_rx);
1307 }
1308 
1309 static void sci_rx_dma_release(struct sci_port *s, bool enable_pio)
1310 {
1311 	struct dma_chan *chan = s->chan_rx;
1312 	struct uart_port *port = &s->port;
1313 
1314 	s->chan_rx = NULL;
1315 	s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL;
1316 	dma_release_channel(chan);
1317 	if (sg_dma_address(&s->sg_rx[0]))
1318 		dma_free_coherent(port->dev, s->buf_len_rx * 2,
1319 				  sg_virt(&s->sg_rx[0]), sg_dma_address(&s->sg_rx[0]));
1320 	if (enable_pio)
1321 		sci_start_rx(port);
1322 }
1323 
1324 static void sci_tx_dma_release(struct sci_port *s, bool enable_pio)
1325 {
1326 	struct dma_chan *chan = s->chan_tx;
1327 	struct uart_port *port = &s->port;
1328 
1329 	s->chan_tx = NULL;
1330 	s->cookie_tx = -EINVAL;
1331 	dma_release_channel(chan);
1332 	if (enable_pio)
1333 		sci_start_tx(port);
1334 }
1335 
1336 static void sci_submit_rx(struct sci_port *s)
1337 {
1338 	struct dma_chan *chan = s->chan_rx;
1339 	int i;
1340 
1341 	for (i = 0; i < 2; i++) {
1342 		struct scatterlist *sg = &s->sg_rx[i];
1343 		struct dma_async_tx_descriptor *desc;
1344 
1345 		desc = dmaengine_prep_slave_sg(chan,
1346 			sg, 1, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
1347 
1348 		if (desc) {
1349 			s->desc_rx[i] = desc;
1350 			desc->callback = sci_dma_rx_complete;
1351 			desc->callback_param = s;
1352 			s->cookie_rx[i] = desc->tx_submit(desc);
1353 		}
1354 
1355 		if (!desc || s->cookie_rx[i] < 0) {
1356 			if (i) {
1357 				async_tx_ack(s->desc_rx[0]);
1358 				s->cookie_rx[0] = -EINVAL;
1359 			}
1360 			if (desc) {
1361 				async_tx_ack(desc);
1362 				s->cookie_rx[i] = -EINVAL;
1363 			}
1364 			dev_warn(s->port.dev,
1365 				 "failed to re-start DMA, using PIO\n");
1366 			sci_rx_dma_release(s, true);
1367 			return;
1368 		}
1369 		dev_dbg(s->port.dev, "%s(): cookie %d to #%d\n", __func__,
1370 			s->cookie_rx[i], i);
1371 	}
1372 
1373 	s->active_rx = s->cookie_rx[0];
1374 
1375 	dma_async_issue_pending(chan);
1376 }
1377 
1378 static void work_fn_rx(struct work_struct *work)
1379 {
1380 	struct sci_port *s = container_of(work, struct sci_port, work_rx);
1381 	struct uart_port *port = &s->port;
1382 	struct dma_async_tx_descriptor *desc;
1383 	int new;
1384 
1385 	if (s->active_rx == s->cookie_rx[0]) {
1386 		new = 0;
1387 	} else if (s->active_rx == s->cookie_rx[1]) {
1388 		new = 1;
1389 	} else {
1390 		dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
1391 		return;
1392 	}
1393 	desc = s->desc_rx[new];
1394 
1395 	if (dma_async_is_tx_complete(s->chan_rx, s->active_rx, NULL, NULL) !=
1396 	    DMA_COMPLETE) {
1397 		/* Handle incomplete DMA receive */
1398 		struct dma_chan *chan = s->chan_rx;
1399 		struct shdma_desc *sh_desc = container_of(desc,
1400 					struct shdma_desc, async_tx);
1401 		unsigned long flags;
1402 		int count;
1403 
1404 		chan->device->device_control(chan, DMA_TERMINATE_ALL, 0);
1405 		dev_dbg(port->dev, "Read %zu bytes with cookie %d\n",
1406 			sh_desc->partial, sh_desc->cookie);
1407 
1408 		spin_lock_irqsave(&port->lock, flags);
1409 		count = sci_dma_rx_push(s, sh_desc->partial);
1410 		spin_unlock_irqrestore(&port->lock, flags);
1411 
1412 		if (count)
1413 			tty_flip_buffer_push(&port->state->port);
1414 
1415 		sci_submit_rx(s);
1416 
1417 		return;
1418 	}
1419 
1420 	s->cookie_rx[new] = desc->tx_submit(desc);
1421 	if (s->cookie_rx[new] < 0) {
1422 		dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1423 		sci_rx_dma_release(s, true);
1424 		return;
1425 	}
1426 
1427 	s->active_rx = s->cookie_rx[!new];
1428 
1429 	dev_dbg(port->dev, "%s: cookie %d #%d, new active #%d\n", __func__,
1430 		s->cookie_rx[new], new, s->active_rx);
1431 }
1432 
1433 static void work_fn_tx(struct work_struct *work)
1434 {
1435 	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1436 	struct dma_async_tx_descriptor *desc;
1437 	struct dma_chan *chan = s->chan_tx;
1438 	struct uart_port *port = &s->port;
1439 	struct circ_buf *xmit = &port->state->xmit;
1440 	struct scatterlist *sg = &s->sg_tx;
1441 
1442 	/*
1443 	 * DMA is idle now.
1444 	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1445 	 * offsets and lengths. Since it is a circular buffer, we have to
1446 	 * transmit till the end, and then the rest. Take the port lock to get a
1447 	 * consistent xmit buffer state.
1448 	 */
1449 	spin_lock_irq(&port->lock);
1450 	sg->offset = xmit->tail & (UART_XMIT_SIZE - 1);
1451 	sg_dma_address(sg) = (sg_dma_address(sg) & ~(UART_XMIT_SIZE - 1)) +
1452 		sg->offset;
1453 	sg_dma_len(sg) = min((int)CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
1454 		CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
1455 	spin_unlock_irq(&port->lock);
1456 
1457 	BUG_ON(!sg_dma_len(sg));
1458 
1459 	desc = dmaengine_prep_slave_sg(chan,
1460 			sg, s->sg_len_tx, DMA_MEM_TO_DEV,
1461 			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1462 	if (!desc) {
1463 		/* switch to PIO */
1464 		sci_tx_dma_release(s, true);
1465 		return;
1466 	}
1467 
1468 	dma_sync_sg_for_device(port->dev, sg, 1, DMA_TO_DEVICE);
1469 
1470 	spin_lock_irq(&port->lock);
1471 	s->desc_tx = desc;
1472 	desc->callback = sci_dma_tx_complete;
1473 	desc->callback_param = s;
1474 	spin_unlock_irq(&port->lock);
1475 	s->cookie_tx = desc->tx_submit(desc);
1476 	if (s->cookie_tx < 0) {
1477 		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1478 		/* switch to PIO */
1479 		sci_tx_dma_release(s, true);
1480 		return;
1481 	}
1482 
1483 	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n", __func__,
1484 		xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
1485 
1486 	dma_async_issue_pending(chan);
1487 }
1488 #endif
1489 
1490 static void sci_start_tx(struct uart_port *port)
1491 {
1492 	struct sci_port *s = to_sci_port(port);
1493 	unsigned short ctrl;
1494 
1495 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1496 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1497 		u16 new, scr = serial_port_in(port, SCSCR);
1498 		if (s->chan_tx)
1499 			new = scr | 0x8000;
1500 		else
1501 			new = scr & ~0x8000;
1502 		if (new != scr)
1503 			serial_port_out(port, SCSCR, new);
1504 	}
1505 
1506 	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
1507 	    s->cookie_tx < 0) {
1508 		s->cookie_tx = 0;
1509 		schedule_work(&s->work_tx);
1510 	}
1511 #endif
1512 
1513 	if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1514 		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
1515 		ctrl = serial_port_in(port, SCSCR);
1516 		serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
1517 	}
1518 }
1519 
1520 static void sci_stop_tx(struct uart_port *port)
1521 {
1522 	unsigned short ctrl;
1523 
1524 	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
1525 	ctrl = serial_port_in(port, SCSCR);
1526 
1527 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1528 		ctrl &= ~0x8000;
1529 
1530 	ctrl &= ~SCSCR_TIE;
1531 
1532 	serial_port_out(port, SCSCR, ctrl);
1533 }
1534 
1535 static void sci_start_rx(struct uart_port *port)
1536 {
1537 	unsigned short ctrl;
1538 
1539 	ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
1540 
1541 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1542 		ctrl &= ~0x4000;
1543 
1544 	serial_port_out(port, SCSCR, ctrl);
1545 }
1546 
1547 static void sci_stop_rx(struct uart_port *port)
1548 {
1549 	unsigned short ctrl;
1550 
1551 	ctrl = serial_port_in(port, SCSCR);
1552 
1553 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1554 		ctrl &= ~0x4000;
1555 
1556 	ctrl &= ~port_rx_irq_mask(port);
1557 
1558 	serial_port_out(port, SCSCR, ctrl);
1559 }
1560 
1561 static void sci_enable_ms(struct uart_port *port)
1562 {
1563 	/*
1564 	 * Not supported by hardware, always a nop.
1565 	 */
1566 }
1567 
1568 static void sci_break_ctl(struct uart_port *port, int break_state)
1569 {
1570 	struct sci_port *s = to_sci_port(port);
1571 	struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
1572 	unsigned short scscr, scsptr;
1573 
1574 	/* check wheter the port has SCSPTR */
1575 	if (!reg->size) {
1576 		/*
1577 		 * Not supported by hardware. Most parts couple break and rx
1578 		 * interrupts together, with break detection always enabled.
1579 		 */
1580 		return;
1581 	}
1582 
1583 	scsptr = serial_port_in(port, SCSPTR);
1584 	scscr = serial_port_in(port, SCSCR);
1585 
1586 	if (break_state == -1) {
1587 		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
1588 		scscr &= ~SCSCR_TE;
1589 	} else {
1590 		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
1591 		scscr |= SCSCR_TE;
1592 	}
1593 
1594 	serial_port_out(port, SCSPTR, scsptr);
1595 	serial_port_out(port, SCSCR, scscr);
1596 }
1597 
1598 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1599 static bool filter(struct dma_chan *chan, void *slave)
1600 {
1601 	struct sh_dmae_slave *param = slave;
1602 
1603 	dev_dbg(chan->device->dev, "%s: slave ID %d\n", __func__,
1604 		param->shdma_slave.slave_id);
1605 
1606 	chan->private = &param->shdma_slave;
1607 	return true;
1608 }
1609 
1610 static void rx_timer_fn(unsigned long arg)
1611 {
1612 	struct sci_port *s = (struct sci_port *)arg;
1613 	struct uart_port *port = &s->port;
1614 	u16 scr = serial_port_in(port, SCSCR);
1615 
1616 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1617 		scr &= ~0x4000;
1618 		enable_irq(s->irqs[SCIx_RXI_IRQ]);
1619 	}
1620 	serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1621 	dev_dbg(port->dev, "DMA Rx timed out\n");
1622 	schedule_work(&s->work_rx);
1623 }
1624 
1625 static void sci_request_dma(struct uart_port *port)
1626 {
1627 	struct sci_port *s = to_sci_port(port);
1628 	struct sh_dmae_slave *param;
1629 	struct dma_chan *chan;
1630 	dma_cap_mask_t mask;
1631 	int nent;
1632 
1633 	dev_dbg(port->dev, "%s: port %d\n", __func__,
1634 		port->line);
1635 
1636 	if (s->cfg->dma_slave_tx <= 0 || s->cfg->dma_slave_rx <= 0)
1637 		return;
1638 
1639 	dma_cap_zero(mask);
1640 	dma_cap_set(DMA_SLAVE, mask);
1641 
1642 	param = &s->param_tx;
1643 
1644 	/* Slave ID, e.g., SHDMA_SLAVE_SCIF0_TX */
1645 	param->shdma_slave.slave_id = s->cfg->dma_slave_tx;
1646 
1647 	s->cookie_tx = -EINVAL;
1648 	chan = dma_request_channel(mask, filter, param);
1649 	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1650 	if (chan) {
1651 		s->chan_tx = chan;
1652 		sg_init_table(&s->sg_tx, 1);
1653 		/* UART circular tx buffer is an aligned page. */
1654 		BUG_ON((uintptr_t)port->state->xmit.buf & ~PAGE_MASK);
1655 		sg_set_page(&s->sg_tx, virt_to_page(port->state->xmit.buf),
1656 			    UART_XMIT_SIZE,
1657 			    (uintptr_t)port->state->xmit.buf & ~PAGE_MASK);
1658 		nent = dma_map_sg(port->dev, &s->sg_tx, 1, DMA_TO_DEVICE);
1659 		if (!nent)
1660 			sci_tx_dma_release(s, false);
1661 		else
1662 			dev_dbg(port->dev, "%s: mapped %d@%p to %pad\n", __func__,
1663 				sg_dma_len(&s->sg_tx), port->state->xmit.buf,
1664 				&sg_dma_address(&s->sg_tx));
1665 
1666 		s->sg_len_tx = nent;
1667 
1668 		INIT_WORK(&s->work_tx, work_fn_tx);
1669 	}
1670 
1671 	param = &s->param_rx;
1672 
1673 	/* Slave ID, e.g., SHDMA_SLAVE_SCIF0_RX */
1674 	param->shdma_slave.slave_id = s->cfg->dma_slave_rx;
1675 
1676 	chan = dma_request_channel(mask, filter, param);
1677 	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1678 	if (chan) {
1679 		dma_addr_t dma[2];
1680 		void *buf[2];
1681 		int i;
1682 
1683 		s->chan_rx = chan;
1684 
1685 		s->buf_len_rx = 2 * max(16, (int)port->fifosize);
1686 		buf[0] = dma_alloc_coherent(port->dev, s->buf_len_rx * 2,
1687 					    &dma[0], GFP_KERNEL);
1688 
1689 		if (!buf[0]) {
1690 			dev_warn(port->dev,
1691 				 "failed to allocate dma buffer, using PIO\n");
1692 			sci_rx_dma_release(s, true);
1693 			return;
1694 		}
1695 
1696 		buf[1] = buf[0] + s->buf_len_rx;
1697 		dma[1] = dma[0] + s->buf_len_rx;
1698 
1699 		for (i = 0; i < 2; i++) {
1700 			struct scatterlist *sg = &s->sg_rx[i];
1701 
1702 			sg_init_table(sg, 1);
1703 			sg_set_page(sg, virt_to_page(buf[i]), s->buf_len_rx,
1704 				    (uintptr_t)buf[i] & ~PAGE_MASK);
1705 			sg_dma_address(sg) = dma[i];
1706 		}
1707 
1708 		INIT_WORK(&s->work_rx, work_fn_rx);
1709 		setup_timer(&s->rx_timer, rx_timer_fn, (unsigned long)s);
1710 
1711 		sci_submit_rx(s);
1712 	}
1713 }
1714 
1715 static void sci_free_dma(struct uart_port *port)
1716 {
1717 	struct sci_port *s = to_sci_port(port);
1718 
1719 	if (s->chan_tx)
1720 		sci_tx_dma_release(s, false);
1721 	if (s->chan_rx)
1722 		sci_rx_dma_release(s, false);
1723 }
1724 #else
1725 static inline void sci_request_dma(struct uart_port *port)
1726 {
1727 }
1728 
1729 static inline void sci_free_dma(struct uart_port *port)
1730 {
1731 }
1732 #endif
1733 
1734 static int sci_startup(struct uart_port *port)
1735 {
1736 	struct sci_port *s = to_sci_port(port);
1737 	unsigned long flags;
1738 	int ret;
1739 
1740 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1741 
1742 	ret = sci_request_irq(s);
1743 	if (unlikely(ret < 0))
1744 		return ret;
1745 
1746 	sci_request_dma(port);
1747 
1748 	spin_lock_irqsave(&port->lock, flags);
1749 	sci_start_tx(port);
1750 	sci_start_rx(port);
1751 	spin_unlock_irqrestore(&port->lock, flags);
1752 
1753 	return 0;
1754 }
1755 
1756 static void sci_shutdown(struct uart_port *port)
1757 {
1758 	struct sci_port *s = to_sci_port(port);
1759 	unsigned long flags;
1760 
1761 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1762 
1763 	spin_lock_irqsave(&port->lock, flags);
1764 	sci_stop_rx(port);
1765 	sci_stop_tx(port);
1766 	spin_unlock_irqrestore(&port->lock, flags);
1767 
1768 	sci_free_dma(port);
1769 	sci_free_irq(s);
1770 }
1771 
1772 static unsigned int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
1773 				   unsigned long freq)
1774 {
1775 	if (s->sampling_rate)
1776 		return DIV_ROUND_CLOSEST(freq, s->sampling_rate * bps) - 1;
1777 
1778 	/* Warn, but use a safe default */
1779 	WARN_ON(1);
1780 
1781 	return ((freq + 16 * bps) / (32 * bps) - 1);
1782 }
1783 
1784 /* calculate sample rate, BRR, and clock select for HSCIF */
1785 static void sci_baud_calc_hscif(unsigned int bps, unsigned long freq,
1786 				int *brr, unsigned int *srr,
1787 				unsigned int *cks)
1788 {
1789 	int sr, c, br, err;
1790 	int min_err = 1000; /* 100% */
1791 
1792 	/* Find the combination of sample rate and clock select with the
1793 	   smallest deviation from the desired baud rate. */
1794 	for (sr = 8; sr <= 32; sr++) {
1795 		for (c = 0; c <= 3; c++) {
1796 			/* integerized formulas from HSCIF documentation */
1797 			br = freq / (sr * (1 << (2 * c + 1)) * bps) - 1;
1798 			if (br < 0 || br > 255)
1799 				continue;
1800 			err = freq / ((br + 1) * bps * sr *
1801 			      (1 << (2 * c + 1)) / 1000) - 1000;
1802 			if (min_err > err) {
1803 				min_err = err;
1804 				*brr = br;
1805 				*srr = sr - 1;
1806 				*cks = c;
1807 			}
1808 		}
1809 	}
1810 
1811 	if (min_err == 1000) {
1812 		WARN_ON(1);
1813 		/* use defaults */
1814 		*brr = 255;
1815 		*srr = 15;
1816 		*cks = 0;
1817 	}
1818 }
1819 
1820 static void sci_reset(struct uart_port *port)
1821 {
1822 	struct plat_sci_reg *reg;
1823 	unsigned int status;
1824 
1825 	do {
1826 		status = serial_port_in(port, SCxSR);
1827 	} while (!(status & SCxSR_TEND(port)));
1828 
1829 	serial_port_out(port, SCSCR, 0x00);	/* TE=0, RE=0, CKE1=0 */
1830 
1831 	reg = sci_getreg(port, SCFCR);
1832 	if (reg->size)
1833 		serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
1834 }
1835 
1836 static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
1837 			    struct ktermios *old)
1838 {
1839 	struct sci_port *s = to_sci_port(port);
1840 	struct plat_sci_reg *reg;
1841 	unsigned int baud, smr_val, max_baud, cks = 0;
1842 	int t = -1;
1843 	unsigned int srr = 15;
1844 
1845 	/*
1846 	 * earlyprintk comes here early on with port->uartclk set to zero.
1847 	 * the clock framework is not up and running at this point so here
1848 	 * we assume that 115200 is the maximum baud rate. please note that
1849 	 * the baud rate is not programmed during earlyprintk - it is assumed
1850 	 * that the previous boot loader has enabled required clocks and
1851 	 * setup the baud rate generator hardware for us already.
1852 	 */
1853 	max_baud = port->uartclk ? port->uartclk / 16 : 115200;
1854 
1855 	baud = uart_get_baud_rate(port, termios, old, 0, max_baud);
1856 	if (likely(baud && port->uartclk)) {
1857 		if (s->cfg->type == PORT_HSCIF) {
1858 			sci_baud_calc_hscif(baud, port->uartclk, &t, &srr,
1859 					    &cks);
1860 		} else {
1861 			t = sci_scbrr_calc(s, baud, port->uartclk);
1862 			for (cks = 0; t >= 256 && cks <= 3; cks++)
1863 				t >>= 2;
1864 		}
1865 	}
1866 
1867 	sci_port_enable(s);
1868 
1869 	sci_reset(port);
1870 
1871 	smr_val = serial_port_in(port, SCSMR) & 3;
1872 
1873 	if ((termios->c_cflag & CSIZE) == CS7)
1874 		smr_val |= 0x40;
1875 	if (termios->c_cflag & PARENB)
1876 		smr_val |= 0x20;
1877 	if (termios->c_cflag & PARODD)
1878 		smr_val |= 0x30;
1879 	if (termios->c_cflag & CSTOPB)
1880 		smr_val |= 0x08;
1881 
1882 	uart_update_timeout(port, termios->c_cflag, baud);
1883 
1884 	dev_dbg(port->dev, "%s: SMR %x, cks %x, t %x, SCSCR %x\n",
1885 		__func__, smr_val, cks, t, s->cfg->scscr);
1886 
1887 	if (t >= 0) {
1888 		serial_port_out(port, SCSMR, (smr_val & ~3) | cks);
1889 		serial_port_out(port, SCBRR, t);
1890 		reg = sci_getreg(port, HSSRR);
1891 		if (reg->size)
1892 			serial_port_out(port, HSSRR, srr | HSCIF_SRE);
1893 		udelay((1000000+(baud-1)) / baud); /* Wait one bit interval */
1894 	} else
1895 		serial_port_out(port, SCSMR, smr_val);
1896 
1897 	sci_init_pins(port, termios->c_cflag);
1898 
1899 	reg = sci_getreg(port, SCFCR);
1900 	if (reg->size) {
1901 		unsigned short ctrl = serial_port_in(port, SCFCR);
1902 
1903 		if (s->cfg->capabilities & SCIx_HAVE_RTSCTS) {
1904 			if (termios->c_cflag & CRTSCTS)
1905 				ctrl |= SCFCR_MCE;
1906 			else
1907 				ctrl &= ~SCFCR_MCE;
1908 		}
1909 
1910 		/*
1911 		 * As we've done a sci_reset() above, ensure we don't
1912 		 * interfere with the FIFOs while toggling MCE. As the
1913 		 * reset values could still be set, simply mask them out.
1914 		 */
1915 		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
1916 
1917 		serial_port_out(port, SCFCR, ctrl);
1918 	}
1919 
1920 	serial_port_out(port, SCSCR, s->cfg->scscr);
1921 
1922 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1923 	/*
1924 	 * Calculate delay for 1.5 DMA buffers: see
1925 	 * drivers/serial/serial_core.c::uart_update_timeout(). With 10 bits
1926 	 * (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above function
1927 	 * calculates 1 jiffie for the data plus 5 jiffies for the "slop(e)."
1928 	 * Then below we calculate 3 jiffies (12ms) for 1.5 DMA buffers (3 FIFO
1929 	 * sizes), but it has been found out experimentally, that this is not
1930 	 * enough: the driver too often needlessly runs on a DMA timeout. 20ms
1931 	 * as a minimum seem to work perfectly.
1932 	 */
1933 	if (s->chan_rx) {
1934 		s->rx_timeout = (port->timeout - HZ / 50) * s->buf_len_rx * 3 /
1935 			port->fifosize / 2;
1936 		dev_dbg(port->dev,
1937 			"DMA Rx t-out %ums, tty t-out %u jiffies\n",
1938 			s->rx_timeout * 1000 / HZ, port->timeout);
1939 		if (s->rx_timeout < msecs_to_jiffies(20))
1940 			s->rx_timeout = msecs_to_jiffies(20);
1941 	}
1942 #endif
1943 
1944 	if ((termios->c_cflag & CREAD) != 0)
1945 		sci_start_rx(port);
1946 
1947 	sci_port_disable(s);
1948 }
1949 
1950 static void sci_pm(struct uart_port *port, unsigned int state,
1951 		   unsigned int oldstate)
1952 {
1953 	struct sci_port *sci_port = to_sci_port(port);
1954 
1955 	switch (state) {
1956 	case 3:
1957 		sci_port_disable(sci_port);
1958 		break;
1959 	default:
1960 		sci_port_enable(sci_port);
1961 		break;
1962 	}
1963 }
1964 
1965 static const char *sci_type(struct uart_port *port)
1966 {
1967 	switch (port->type) {
1968 	case PORT_IRDA:
1969 		return "irda";
1970 	case PORT_SCI:
1971 		return "sci";
1972 	case PORT_SCIF:
1973 		return "scif";
1974 	case PORT_SCIFA:
1975 		return "scifa";
1976 	case PORT_SCIFB:
1977 		return "scifb";
1978 	case PORT_HSCIF:
1979 		return "hscif";
1980 	}
1981 
1982 	return NULL;
1983 }
1984 
1985 static inline unsigned long sci_port_size(struct uart_port *port)
1986 {
1987 	/*
1988 	 * Pick an arbitrary size that encapsulates all of the base
1989 	 * registers by default. This can be optimized later, or derived
1990 	 * from platform resource data at such a time that ports begin to
1991 	 * behave more erratically.
1992 	 */
1993 	if (port->type == PORT_HSCIF)
1994 		return 96;
1995 	else
1996 		return 64;
1997 }
1998 
1999 static int sci_remap_port(struct uart_port *port)
2000 {
2001 	unsigned long size = sci_port_size(port);
2002 
2003 	/*
2004 	 * Nothing to do if there's already an established membase.
2005 	 */
2006 	if (port->membase)
2007 		return 0;
2008 
2009 	if (port->flags & UPF_IOREMAP) {
2010 		port->membase = ioremap_nocache(port->mapbase, size);
2011 		if (unlikely(!port->membase)) {
2012 			dev_err(port->dev, "can't remap port#%d\n", port->line);
2013 			return -ENXIO;
2014 		}
2015 	} else {
2016 		/*
2017 		 * For the simple (and majority of) cases where we don't
2018 		 * need to do any remapping, just cast the cookie
2019 		 * directly.
2020 		 */
2021 		port->membase = (void __iomem *)port->mapbase;
2022 	}
2023 
2024 	return 0;
2025 }
2026 
2027 static void sci_release_port(struct uart_port *port)
2028 {
2029 	if (port->flags & UPF_IOREMAP) {
2030 		iounmap(port->membase);
2031 		port->membase = NULL;
2032 	}
2033 
2034 	release_mem_region(port->mapbase, sci_port_size(port));
2035 }
2036 
2037 static int sci_request_port(struct uart_port *port)
2038 {
2039 	unsigned long size = sci_port_size(port);
2040 	struct resource *res;
2041 	int ret;
2042 
2043 	res = request_mem_region(port->mapbase, size, dev_name(port->dev));
2044 	if (unlikely(res == NULL))
2045 		return -EBUSY;
2046 
2047 	ret = sci_remap_port(port);
2048 	if (unlikely(ret != 0)) {
2049 		release_resource(res);
2050 		return ret;
2051 	}
2052 
2053 	return 0;
2054 }
2055 
2056 static void sci_config_port(struct uart_port *port, int flags)
2057 {
2058 	if (flags & UART_CONFIG_TYPE) {
2059 		struct sci_port *sport = to_sci_port(port);
2060 
2061 		port->type = sport->cfg->type;
2062 		sci_request_port(port);
2063 	}
2064 }
2065 
2066 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2067 {
2068 	if (ser->baud_base < 2400)
2069 		/* No paper tape reader for Mitch.. */
2070 		return -EINVAL;
2071 
2072 	return 0;
2073 }
2074 
2075 static struct uart_ops sci_uart_ops = {
2076 	.tx_empty	= sci_tx_empty,
2077 	.set_mctrl	= sci_set_mctrl,
2078 	.get_mctrl	= sci_get_mctrl,
2079 	.start_tx	= sci_start_tx,
2080 	.stop_tx	= sci_stop_tx,
2081 	.stop_rx	= sci_stop_rx,
2082 	.enable_ms	= sci_enable_ms,
2083 	.break_ctl	= sci_break_ctl,
2084 	.startup	= sci_startup,
2085 	.shutdown	= sci_shutdown,
2086 	.set_termios	= sci_set_termios,
2087 	.pm		= sci_pm,
2088 	.type		= sci_type,
2089 	.release_port	= sci_release_port,
2090 	.request_port	= sci_request_port,
2091 	.config_port	= sci_config_port,
2092 	.verify_port	= sci_verify_port,
2093 #ifdef CONFIG_CONSOLE_POLL
2094 	.poll_get_char	= sci_poll_get_char,
2095 	.poll_put_char	= sci_poll_put_char,
2096 #endif
2097 };
2098 
2099 static int sci_init_single(struct platform_device *dev,
2100 			   struct sci_port *sci_port, unsigned int index,
2101 			   struct plat_sci_port *p, bool early)
2102 {
2103 	struct uart_port *port = &sci_port->port;
2104 	const struct resource *res;
2105 	unsigned int sampling_rate;
2106 	unsigned int i;
2107 	int ret;
2108 
2109 	sci_port->cfg	= p;
2110 
2111 	port->ops	= &sci_uart_ops;
2112 	port->iotype	= UPIO_MEM;
2113 	port->line	= index;
2114 
2115 	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2116 	if (res == NULL)
2117 		return -ENOMEM;
2118 
2119 	port->mapbase = res->start;
2120 
2121 	for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i)
2122 		sci_port->irqs[i] = platform_get_irq(dev, i);
2123 
2124 	/* The SCI generates several interrupts. They can be muxed together or
2125 	 * connected to different interrupt lines. In the muxed case only one
2126 	 * interrupt resource is specified. In the non-muxed case three or four
2127 	 * interrupt resources are specified, as the BRI interrupt is optional.
2128 	 */
2129 	if (sci_port->irqs[0] < 0)
2130 		return -ENXIO;
2131 
2132 	if (sci_port->irqs[1] < 0) {
2133 		sci_port->irqs[1] = sci_port->irqs[0];
2134 		sci_port->irqs[2] = sci_port->irqs[0];
2135 		sci_port->irqs[3] = sci_port->irqs[0];
2136 	}
2137 
2138 	if (p->regtype == SCIx_PROBE_REGTYPE) {
2139 		ret = sci_probe_regmap(p);
2140 		if (unlikely(ret))
2141 			return ret;
2142 	}
2143 
2144 	switch (p->type) {
2145 	case PORT_SCIFB:
2146 		port->fifosize = 256;
2147 		sci_port->overrun_bit = 9;
2148 		sampling_rate = 16;
2149 		break;
2150 	case PORT_HSCIF:
2151 		port->fifosize = 128;
2152 		sampling_rate = 0;
2153 		sci_port->overrun_bit = 0;
2154 		break;
2155 	case PORT_SCIFA:
2156 		port->fifosize = 64;
2157 		sci_port->overrun_bit = 9;
2158 		sampling_rate = 16;
2159 		break;
2160 	case PORT_SCIF:
2161 		port->fifosize = 16;
2162 		if (p->regtype == SCIx_SH7705_SCIF_REGTYPE) {
2163 			sci_port->overrun_bit = 9;
2164 			sampling_rate = 16;
2165 		} else {
2166 			sci_port->overrun_bit = 0;
2167 			sampling_rate = 32;
2168 		}
2169 		break;
2170 	default:
2171 		port->fifosize = 1;
2172 		sci_port->overrun_bit = 5;
2173 		sampling_rate = 32;
2174 		break;
2175 	}
2176 
2177 	/* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2178 	 * match the SoC datasheet, this should be investigated. Let platform
2179 	 * data override the sampling rate for now.
2180 	 */
2181 	sci_port->sampling_rate = p->sampling_rate ? p->sampling_rate
2182 				: sampling_rate;
2183 
2184 	if (!early) {
2185 		sci_port->iclk = clk_get(&dev->dev, "sci_ick");
2186 		if (IS_ERR(sci_port->iclk)) {
2187 			sci_port->iclk = clk_get(&dev->dev, "peripheral_clk");
2188 			if (IS_ERR(sci_port->iclk)) {
2189 				dev_err(&dev->dev, "can't get iclk\n");
2190 				return PTR_ERR(sci_port->iclk);
2191 			}
2192 		}
2193 
2194 		/*
2195 		 * The function clock is optional, ignore it if we can't
2196 		 * find it.
2197 		 */
2198 		sci_port->fclk = clk_get(&dev->dev, "sci_fck");
2199 		if (IS_ERR(sci_port->fclk))
2200 			sci_port->fclk = NULL;
2201 
2202 		port->dev = &dev->dev;
2203 
2204 		pm_runtime_enable(&dev->dev);
2205 	}
2206 
2207 	sci_port->break_timer.data = (unsigned long)sci_port;
2208 	sci_port->break_timer.function = sci_break_timer;
2209 	init_timer(&sci_port->break_timer);
2210 
2211 	/*
2212 	 * Establish some sensible defaults for the error detection.
2213 	 */
2214 	sci_port->error_mask = (p->type == PORT_SCI) ?
2215 			SCI_DEFAULT_ERROR_MASK : SCIF_DEFAULT_ERROR_MASK;
2216 
2217 	/*
2218 	 * Establish sensible defaults for the overrun detection, unless
2219 	 * the part has explicitly disabled support for it.
2220 	 */
2221 
2222 	/*
2223 	 * Make the error mask inclusive of overrun detection, if
2224 	 * supported.
2225 	 */
2226 	sci_port->error_mask |= 1 << sci_port->overrun_bit;
2227 
2228 	port->type		= p->type;
2229 	port->flags		= UPF_FIXED_PORT | p->flags;
2230 	port->regshift		= p->regshift;
2231 
2232 	/*
2233 	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
2234 	 * for the multi-IRQ ports, which is where we are primarily
2235 	 * concerned with the shutdown path synchronization.
2236 	 *
2237 	 * For the muxed case there's nothing more to do.
2238 	 */
2239 	port->irq		= sci_port->irqs[SCIx_RXI_IRQ];
2240 	port->irqflags		= 0;
2241 
2242 	port->serial_in		= sci_serial_in;
2243 	port->serial_out	= sci_serial_out;
2244 
2245 	if (p->dma_slave_tx > 0 && p->dma_slave_rx > 0)
2246 		dev_dbg(port->dev, "DMA tx %d, rx %d\n",
2247 			p->dma_slave_tx, p->dma_slave_rx);
2248 
2249 	return 0;
2250 }
2251 
2252 static void sci_cleanup_single(struct sci_port *port)
2253 {
2254 	clk_put(port->iclk);
2255 	clk_put(port->fclk);
2256 
2257 	pm_runtime_disable(port->port.dev);
2258 }
2259 
2260 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
2261 static void serial_console_putchar(struct uart_port *port, int ch)
2262 {
2263 	sci_poll_put_char(port, ch);
2264 }
2265 
2266 /*
2267  *	Print a string to the serial port trying not to disturb
2268  *	any possible real use of the port...
2269  */
2270 static void serial_console_write(struct console *co, const char *s,
2271 				 unsigned count)
2272 {
2273 	struct sci_port *sci_port = &sci_ports[co->index];
2274 	struct uart_port *port = &sci_port->port;
2275 	unsigned short bits, ctrl;
2276 	unsigned long flags;
2277 	int locked = 1;
2278 
2279 	local_irq_save(flags);
2280 	if (port->sysrq)
2281 		locked = 0;
2282 	else if (oops_in_progress)
2283 		locked = spin_trylock(&port->lock);
2284 	else
2285 		spin_lock(&port->lock);
2286 
2287 	/* first save the SCSCR then disable the interrupts */
2288 	ctrl = serial_port_in(port, SCSCR);
2289 	serial_port_out(port, SCSCR, sci_port->cfg->scscr);
2290 
2291 	uart_console_write(port, s, count, serial_console_putchar);
2292 
2293 	/* wait until fifo is empty and last bit has been transmitted */
2294 	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
2295 	while ((serial_port_in(port, SCxSR) & bits) != bits)
2296 		cpu_relax();
2297 
2298 	/* restore the SCSCR */
2299 	serial_port_out(port, SCSCR, ctrl);
2300 
2301 	if (locked)
2302 		spin_unlock(&port->lock);
2303 	local_irq_restore(flags);
2304 }
2305 
2306 static int serial_console_setup(struct console *co, char *options)
2307 {
2308 	struct sci_port *sci_port;
2309 	struct uart_port *port;
2310 	int baud = 115200;
2311 	int bits = 8;
2312 	int parity = 'n';
2313 	int flow = 'n';
2314 	int ret;
2315 
2316 	/*
2317 	 * Refuse to handle any bogus ports.
2318 	 */
2319 	if (co->index < 0 || co->index >= SCI_NPORTS)
2320 		return -ENODEV;
2321 
2322 	sci_port = &sci_ports[co->index];
2323 	port = &sci_port->port;
2324 
2325 	/*
2326 	 * Refuse to handle uninitialized ports.
2327 	 */
2328 	if (!port->ops)
2329 		return -ENODEV;
2330 
2331 	ret = sci_remap_port(port);
2332 	if (unlikely(ret != 0))
2333 		return ret;
2334 
2335 	if (options)
2336 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2337 
2338 	return uart_set_options(port, co, baud, parity, bits, flow);
2339 }
2340 
2341 static struct console serial_console = {
2342 	.name		= "ttySC",
2343 	.device		= uart_console_device,
2344 	.write		= serial_console_write,
2345 	.setup		= serial_console_setup,
2346 	.flags		= CON_PRINTBUFFER,
2347 	.index		= -1,
2348 	.data		= &sci_uart_driver,
2349 };
2350 
2351 static struct console early_serial_console = {
2352 	.name           = "early_ttySC",
2353 	.write          = serial_console_write,
2354 	.flags          = CON_PRINTBUFFER,
2355 	.index		= -1,
2356 };
2357 
2358 static char early_serial_buf[32];
2359 
2360 static int sci_probe_earlyprintk(struct platform_device *pdev)
2361 {
2362 	struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
2363 
2364 	if (early_serial_console.data)
2365 		return -EEXIST;
2366 
2367 	early_serial_console.index = pdev->id;
2368 
2369 	sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
2370 
2371 	serial_console_setup(&early_serial_console, early_serial_buf);
2372 
2373 	if (!strstr(early_serial_buf, "keep"))
2374 		early_serial_console.flags |= CON_BOOT;
2375 
2376 	register_console(&early_serial_console);
2377 	return 0;
2378 }
2379 
2380 #define SCI_CONSOLE	(&serial_console)
2381 
2382 #else
2383 static inline int sci_probe_earlyprintk(struct platform_device *pdev)
2384 {
2385 	return -EINVAL;
2386 }
2387 
2388 #define SCI_CONSOLE	NULL
2389 
2390 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE */
2391 
2392 static char banner[] __initdata =
2393 	KERN_INFO "SuperH (H)SCI(F) driver initialized\n";
2394 
2395 static struct uart_driver sci_uart_driver = {
2396 	.owner		= THIS_MODULE,
2397 	.driver_name	= "sci",
2398 	.dev_name	= "ttySC",
2399 	.major		= SCI_MAJOR,
2400 	.minor		= SCI_MINOR_START,
2401 	.nr		= SCI_NPORTS,
2402 	.cons		= SCI_CONSOLE,
2403 };
2404 
2405 static int sci_remove(struct platform_device *dev)
2406 {
2407 	struct sci_port *port = platform_get_drvdata(dev);
2408 
2409 	cpufreq_unregister_notifier(&port->freq_transition,
2410 				    CPUFREQ_TRANSITION_NOTIFIER);
2411 
2412 	uart_remove_one_port(&sci_uart_driver, &port->port);
2413 
2414 	sci_cleanup_single(port);
2415 
2416 	return 0;
2417 }
2418 
2419 struct sci_port_info {
2420 	unsigned int type;
2421 	unsigned int regtype;
2422 };
2423 
2424 static const struct of_device_id of_sci_match[] = {
2425 	{
2426 		.compatible = "renesas,scif",
2427 		.data = (void *)&(const struct sci_port_info) {
2428 			.type = PORT_SCIF,
2429 			.regtype = SCIx_SH4_SCIF_REGTYPE,
2430 		},
2431 	}, {
2432 		.compatible = "renesas,scifa",
2433 		.data = (void *)&(const struct sci_port_info) {
2434 			.type = PORT_SCIFA,
2435 			.regtype = SCIx_SCIFA_REGTYPE,
2436 		},
2437 	}, {
2438 		.compatible = "renesas,scifb",
2439 		.data = (void *)&(const struct sci_port_info) {
2440 			.type = PORT_SCIFB,
2441 			.regtype = SCIx_SCIFB_REGTYPE,
2442 		},
2443 	}, {
2444 		.compatible = "renesas,hscif",
2445 		.data = (void *)&(const struct sci_port_info) {
2446 			.type = PORT_HSCIF,
2447 			.regtype = SCIx_HSCIF_REGTYPE,
2448 		},
2449 	}, {
2450 		/* Terminator */
2451 	},
2452 };
2453 MODULE_DEVICE_TABLE(of, of_sci_match);
2454 
2455 static struct plat_sci_port *
2456 sci_parse_dt(struct platform_device *pdev, unsigned int *dev_id)
2457 {
2458 	struct device_node *np = pdev->dev.of_node;
2459 	const struct of_device_id *match;
2460 	const struct sci_port_info *info;
2461 	struct plat_sci_port *p;
2462 	int id;
2463 
2464 	if (!IS_ENABLED(CONFIG_OF) || !np)
2465 		return NULL;
2466 
2467 	match = of_match_node(of_sci_match, pdev->dev.of_node);
2468 	if (!match)
2469 		return NULL;
2470 
2471 	info = match->data;
2472 
2473 	p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
2474 	if (!p) {
2475 		dev_err(&pdev->dev, "failed to allocate DT config data\n");
2476 		return NULL;
2477 	}
2478 
2479 	/* Get the line number for the aliases node. */
2480 	id = of_alias_get_id(np, "serial");
2481 	if (id < 0) {
2482 		dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
2483 		return NULL;
2484 	}
2485 
2486 	*dev_id = id;
2487 
2488 	p->flags = UPF_IOREMAP | UPF_BOOT_AUTOCONF;
2489 	p->type = info->type;
2490 	p->regtype = info->regtype;
2491 	p->scscr = SCSCR_RE | SCSCR_TE;
2492 
2493 	return p;
2494 }
2495 
2496 static int sci_probe_single(struct platform_device *dev,
2497 				      unsigned int index,
2498 				      struct plat_sci_port *p,
2499 				      struct sci_port *sciport)
2500 {
2501 	int ret;
2502 
2503 	/* Sanity check */
2504 	if (unlikely(index >= SCI_NPORTS)) {
2505 		dev_notice(&dev->dev, "Attempting to register port "
2506 			   "%d when only %d are available.\n",
2507 			   index+1, SCI_NPORTS);
2508 		dev_notice(&dev->dev, "Consider bumping "
2509 			   "CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
2510 		return -EINVAL;
2511 	}
2512 
2513 	ret = sci_init_single(dev, sciport, index, p, false);
2514 	if (ret)
2515 		return ret;
2516 
2517 	ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
2518 	if (ret) {
2519 		sci_cleanup_single(sciport);
2520 		return ret;
2521 	}
2522 
2523 	return 0;
2524 }
2525 
2526 static int sci_probe(struct platform_device *dev)
2527 {
2528 	struct plat_sci_port *p;
2529 	struct sci_port *sp;
2530 	unsigned int dev_id;
2531 	int ret;
2532 
2533 	/*
2534 	 * If we've come here via earlyprintk initialization, head off to
2535 	 * the special early probe. We don't have sufficient device state
2536 	 * to make it beyond this yet.
2537 	 */
2538 	if (is_early_platform_device(dev))
2539 		return sci_probe_earlyprintk(dev);
2540 
2541 	if (dev->dev.of_node) {
2542 		p = sci_parse_dt(dev, &dev_id);
2543 		if (p == NULL)
2544 			return -EINVAL;
2545 	} else {
2546 		p = dev->dev.platform_data;
2547 		if (p == NULL) {
2548 			dev_err(&dev->dev, "no platform data supplied\n");
2549 			return -EINVAL;
2550 		}
2551 
2552 		dev_id = dev->id;
2553 	}
2554 
2555 	sp = &sci_ports[dev_id];
2556 	platform_set_drvdata(dev, sp);
2557 
2558 	ret = sci_probe_single(dev, dev_id, p, sp);
2559 	if (ret)
2560 		return ret;
2561 
2562 	sp->freq_transition.notifier_call = sci_notifier;
2563 
2564 	ret = cpufreq_register_notifier(&sp->freq_transition,
2565 					CPUFREQ_TRANSITION_NOTIFIER);
2566 	if (unlikely(ret < 0)) {
2567 		sci_cleanup_single(sp);
2568 		return ret;
2569 	}
2570 
2571 #ifdef CONFIG_SH_STANDARD_BIOS
2572 	sh_bios_gdb_detach();
2573 #endif
2574 
2575 	return 0;
2576 }
2577 
2578 static int sci_suspend(struct device *dev)
2579 {
2580 	struct sci_port *sport = dev_get_drvdata(dev);
2581 
2582 	if (sport)
2583 		uart_suspend_port(&sci_uart_driver, &sport->port);
2584 
2585 	return 0;
2586 }
2587 
2588 static int sci_resume(struct device *dev)
2589 {
2590 	struct sci_port *sport = dev_get_drvdata(dev);
2591 
2592 	if (sport)
2593 		uart_resume_port(&sci_uart_driver, &sport->port);
2594 
2595 	return 0;
2596 }
2597 
2598 static const struct dev_pm_ops sci_dev_pm_ops = {
2599 	.suspend	= sci_suspend,
2600 	.resume		= sci_resume,
2601 };
2602 
2603 static struct platform_driver sci_driver = {
2604 	.probe		= sci_probe,
2605 	.remove		= sci_remove,
2606 	.driver		= {
2607 		.name	= "sh-sci",
2608 		.owner	= THIS_MODULE,
2609 		.pm	= &sci_dev_pm_ops,
2610 		.of_match_table = of_match_ptr(of_sci_match),
2611 	},
2612 };
2613 
2614 static int __init sci_init(void)
2615 {
2616 	int ret;
2617 
2618 	printk(banner);
2619 
2620 	ret = uart_register_driver(&sci_uart_driver);
2621 	if (likely(ret == 0)) {
2622 		ret = platform_driver_register(&sci_driver);
2623 		if (unlikely(ret))
2624 			uart_unregister_driver(&sci_uart_driver);
2625 	}
2626 
2627 	return ret;
2628 }
2629 
2630 static void __exit sci_exit(void)
2631 {
2632 	platform_driver_unregister(&sci_driver);
2633 	uart_unregister_driver(&sci_uart_driver);
2634 }
2635 
2636 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
2637 early_platform_init_buffer("earlyprintk", &sci_driver,
2638 			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
2639 #endif
2640 module_init(sci_init);
2641 module_exit(sci_exit);
2642 
2643 MODULE_LICENSE("GPL");
2644 MODULE_ALIAS("platform:sh-sci");
2645 MODULE_AUTHOR("Paul Mundt");
2646 MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");
2647