1 /* 2 * SuperH on-chip serial module support. (SCI with no FIFO / with FIFO) 3 * 4 * Copyright (C) 2002 - 2011 Paul Mundt 5 * Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007). 6 * 7 * based off of the old drivers/char/sh-sci.c by: 8 * 9 * Copyright (C) 1999, 2000 Niibe Yutaka 10 * Copyright (C) 2000 Sugioka Toshinobu 11 * Modified to support multiple serial ports. Stuart Menefy (May 2000). 12 * Modified to support SecureEdge. David McCullough (2002) 13 * Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003). 14 * Removed SH7300 support (Jul 2007). 15 * 16 * This file is subject to the terms and conditions of the GNU General Public 17 * License. See the file "COPYING" in the main directory of this archive 18 * for more details. 19 */ 20 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) 21 #define SUPPORT_SYSRQ 22 #endif 23 24 #undef DEBUG 25 26 #include <linux/clk.h> 27 #include <linux/console.h> 28 #include <linux/ctype.h> 29 #include <linux/cpufreq.h> 30 #include <linux/delay.h> 31 #include <linux/dmaengine.h> 32 #include <linux/dma-mapping.h> 33 #include <linux/err.h> 34 #include <linux/errno.h> 35 #include <linux/init.h> 36 #include <linux/interrupt.h> 37 #include <linux/ioport.h> 38 #include <linux/major.h> 39 #include <linux/module.h> 40 #include <linux/mm.h> 41 #include <linux/notifier.h> 42 #include <linux/of.h> 43 #include <linux/platform_device.h> 44 #include <linux/pm_runtime.h> 45 #include <linux/scatterlist.h> 46 #include <linux/serial.h> 47 #include <linux/serial_sci.h> 48 #include <linux/sh_dma.h> 49 #include <linux/slab.h> 50 #include <linux/string.h> 51 #include <linux/sysrq.h> 52 #include <linux/timer.h> 53 #include <linux/tty.h> 54 #include <linux/tty_flip.h> 55 56 #ifdef CONFIG_SUPERH 57 #include <asm/sh_bios.h> 58 #endif 59 60 #include "sh-sci.h" 61 62 /* Offsets into the sci_port->irqs array */ 63 enum { 64 SCIx_ERI_IRQ, 65 SCIx_RXI_IRQ, 66 SCIx_TXI_IRQ, 67 SCIx_BRI_IRQ, 68 SCIx_NR_IRQS, 69 70 SCIx_MUX_IRQ = SCIx_NR_IRQS, /* special case */ 71 }; 72 73 #define SCIx_IRQ_IS_MUXED(port) \ 74 ((port)->irqs[SCIx_ERI_IRQ] == \ 75 (port)->irqs[SCIx_RXI_IRQ]) || \ 76 ((port)->irqs[SCIx_ERI_IRQ] && \ 77 ((port)->irqs[SCIx_RXI_IRQ] < 0)) 78 79 struct sci_port { 80 struct uart_port port; 81 82 /* Platform configuration */ 83 struct plat_sci_port *cfg; 84 unsigned int overrun_reg; 85 unsigned int overrun_mask; 86 unsigned int error_mask; 87 unsigned int error_clear; 88 unsigned int sampling_rate; 89 resource_size_t reg_size; 90 91 /* Break timer */ 92 struct timer_list break_timer; 93 int break_flag; 94 95 /* Interface clock */ 96 struct clk *iclk; 97 /* Function clock */ 98 struct clk *fclk; 99 100 int irqs[SCIx_NR_IRQS]; 101 char *irqstr[SCIx_NR_IRQS]; 102 103 struct dma_chan *chan_tx; 104 struct dma_chan *chan_rx; 105 106 #ifdef CONFIG_SERIAL_SH_SCI_DMA 107 dma_cookie_t cookie_tx; 108 dma_cookie_t cookie_rx[2]; 109 dma_cookie_t active_rx; 110 dma_addr_t tx_dma_addr; 111 unsigned int tx_dma_len; 112 struct scatterlist sg_rx[2]; 113 void *rx_buf[2]; 114 size_t buf_len_rx; 115 struct work_struct work_tx; 116 struct timer_list rx_timer; 117 unsigned int rx_timeout; 118 #endif 119 120 struct notifier_block freq_transition; 121 }; 122 123 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS 124 125 static struct sci_port sci_ports[SCI_NPORTS]; 126 static struct uart_driver sci_uart_driver; 127 128 static inline struct sci_port * 129 to_sci_port(struct uart_port *uart) 130 { 131 return container_of(uart, struct sci_port, port); 132 } 133 134 struct plat_sci_reg { 135 u8 offset, size; 136 }; 137 138 /* Helper for invalidating specific entries of an inherited map. */ 139 #define sci_reg_invalid { .offset = 0, .size = 0 } 140 141 static const struct plat_sci_reg sci_regmap[SCIx_NR_REGTYPES][SCIx_NR_REGS] = { 142 [SCIx_PROBE_REGTYPE] = { 143 [0 ... SCIx_NR_REGS - 1] = sci_reg_invalid, 144 }, 145 146 /* 147 * Common SCI definitions, dependent on the port's regshift 148 * value. 149 */ 150 [SCIx_SCI_REGTYPE] = { 151 [SCSMR] = { 0x00, 8 }, 152 [SCBRR] = { 0x01, 8 }, 153 [SCSCR] = { 0x02, 8 }, 154 [SCxTDR] = { 0x03, 8 }, 155 [SCxSR] = { 0x04, 8 }, 156 [SCxRDR] = { 0x05, 8 }, 157 [SCFCR] = sci_reg_invalid, 158 [SCFDR] = sci_reg_invalid, 159 [SCTFDR] = sci_reg_invalid, 160 [SCRFDR] = sci_reg_invalid, 161 [SCSPTR] = sci_reg_invalid, 162 [SCLSR] = sci_reg_invalid, 163 [HSSRR] = sci_reg_invalid, 164 [SCPCR] = sci_reg_invalid, 165 [SCPDR] = sci_reg_invalid, 166 }, 167 168 /* 169 * Common definitions for legacy IrDA ports, dependent on 170 * regshift value. 171 */ 172 [SCIx_IRDA_REGTYPE] = { 173 [SCSMR] = { 0x00, 8 }, 174 [SCBRR] = { 0x01, 8 }, 175 [SCSCR] = { 0x02, 8 }, 176 [SCxTDR] = { 0x03, 8 }, 177 [SCxSR] = { 0x04, 8 }, 178 [SCxRDR] = { 0x05, 8 }, 179 [SCFCR] = { 0x06, 8 }, 180 [SCFDR] = { 0x07, 16 }, 181 [SCTFDR] = sci_reg_invalid, 182 [SCRFDR] = sci_reg_invalid, 183 [SCSPTR] = sci_reg_invalid, 184 [SCLSR] = sci_reg_invalid, 185 [HSSRR] = sci_reg_invalid, 186 [SCPCR] = sci_reg_invalid, 187 [SCPDR] = sci_reg_invalid, 188 }, 189 190 /* 191 * Common SCIFA definitions. 192 */ 193 [SCIx_SCIFA_REGTYPE] = { 194 [SCSMR] = { 0x00, 16 }, 195 [SCBRR] = { 0x04, 8 }, 196 [SCSCR] = { 0x08, 16 }, 197 [SCxTDR] = { 0x20, 8 }, 198 [SCxSR] = { 0x14, 16 }, 199 [SCxRDR] = { 0x24, 8 }, 200 [SCFCR] = { 0x18, 16 }, 201 [SCFDR] = { 0x1c, 16 }, 202 [SCTFDR] = sci_reg_invalid, 203 [SCRFDR] = sci_reg_invalid, 204 [SCSPTR] = sci_reg_invalid, 205 [SCLSR] = sci_reg_invalid, 206 [HSSRR] = sci_reg_invalid, 207 [SCPCR] = { 0x30, 16 }, 208 [SCPDR] = { 0x34, 16 }, 209 }, 210 211 /* 212 * Common SCIFB definitions. 213 */ 214 [SCIx_SCIFB_REGTYPE] = { 215 [SCSMR] = { 0x00, 16 }, 216 [SCBRR] = { 0x04, 8 }, 217 [SCSCR] = { 0x08, 16 }, 218 [SCxTDR] = { 0x40, 8 }, 219 [SCxSR] = { 0x14, 16 }, 220 [SCxRDR] = { 0x60, 8 }, 221 [SCFCR] = { 0x18, 16 }, 222 [SCFDR] = sci_reg_invalid, 223 [SCTFDR] = { 0x38, 16 }, 224 [SCRFDR] = { 0x3c, 16 }, 225 [SCSPTR] = sci_reg_invalid, 226 [SCLSR] = sci_reg_invalid, 227 [HSSRR] = sci_reg_invalid, 228 [SCPCR] = { 0x30, 16 }, 229 [SCPDR] = { 0x34, 16 }, 230 }, 231 232 /* 233 * Common SH-2(A) SCIF definitions for ports with FIFO data 234 * count registers. 235 */ 236 [SCIx_SH2_SCIF_FIFODATA_REGTYPE] = { 237 [SCSMR] = { 0x00, 16 }, 238 [SCBRR] = { 0x04, 8 }, 239 [SCSCR] = { 0x08, 16 }, 240 [SCxTDR] = { 0x0c, 8 }, 241 [SCxSR] = { 0x10, 16 }, 242 [SCxRDR] = { 0x14, 8 }, 243 [SCFCR] = { 0x18, 16 }, 244 [SCFDR] = { 0x1c, 16 }, 245 [SCTFDR] = sci_reg_invalid, 246 [SCRFDR] = sci_reg_invalid, 247 [SCSPTR] = { 0x20, 16 }, 248 [SCLSR] = { 0x24, 16 }, 249 [HSSRR] = sci_reg_invalid, 250 [SCPCR] = sci_reg_invalid, 251 [SCPDR] = sci_reg_invalid, 252 }, 253 254 /* 255 * Common SH-3 SCIF definitions. 256 */ 257 [SCIx_SH3_SCIF_REGTYPE] = { 258 [SCSMR] = { 0x00, 8 }, 259 [SCBRR] = { 0x02, 8 }, 260 [SCSCR] = { 0x04, 8 }, 261 [SCxTDR] = { 0x06, 8 }, 262 [SCxSR] = { 0x08, 16 }, 263 [SCxRDR] = { 0x0a, 8 }, 264 [SCFCR] = { 0x0c, 8 }, 265 [SCFDR] = { 0x0e, 16 }, 266 [SCTFDR] = sci_reg_invalid, 267 [SCRFDR] = sci_reg_invalid, 268 [SCSPTR] = sci_reg_invalid, 269 [SCLSR] = sci_reg_invalid, 270 [HSSRR] = sci_reg_invalid, 271 [SCPCR] = sci_reg_invalid, 272 [SCPDR] = sci_reg_invalid, 273 }, 274 275 /* 276 * Common SH-4(A) SCIF(B) definitions. 277 */ 278 [SCIx_SH4_SCIF_REGTYPE] = { 279 [SCSMR] = { 0x00, 16 }, 280 [SCBRR] = { 0x04, 8 }, 281 [SCSCR] = { 0x08, 16 }, 282 [SCxTDR] = { 0x0c, 8 }, 283 [SCxSR] = { 0x10, 16 }, 284 [SCxRDR] = { 0x14, 8 }, 285 [SCFCR] = { 0x18, 16 }, 286 [SCFDR] = { 0x1c, 16 }, 287 [SCTFDR] = sci_reg_invalid, 288 [SCRFDR] = sci_reg_invalid, 289 [SCSPTR] = { 0x20, 16 }, 290 [SCLSR] = { 0x24, 16 }, 291 [HSSRR] = sci_reg_invalid, 292 [SCPCR] = sci_reg_invalid, 293 [SCPDR] = sci_reg_invalid, 294 }, 295 296 /* 297 * Common HSCIF definitions. 298 */ 299 [SCIx_HSCIF_REGTYPE] = { 300 [SCSMR] = { 0x00, 16 }, 301 [SCBRR] = { 0x04, 8 }, 302 [SCSCR] = { 0x08, 16 }, 303 [SCxTDR] = { 0x0c, 8 }, 304 [SCxSR] = { 0x10, 16 }, 305 [SCxRDR] = { 0x14, 8 }, 306 [SCFCR] = { 0x18, 16 }, 307 [SCFDR] = { 0x1c, 16 }, 308 [SCTFDR] = sci_reg_invalid, 309 [SCRFDR] = sci_reg_invalid, 310 [SCSPTR] = { 0x20, 16 }, 311 [SCLSR] = { 0x24, 16 }, 312 [HSSRR] = { 0x40, 16 }, 313 [SCPCR] = sci_reg_invalid, 314 [SCPDR] = sci_reg_invalid, 315 }, 316 317 /* 318 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR 319 * register. 320 */ 321 [SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = { 322 [SCSMR] = { 0x00, 16 }, 323 [SCBRR] = { 0x04, 8 }, 324 [SCSCR] = { 0x08, 16 }, 325 [SCxTDR] = { 0x0c, 8 }, 326 [SCxSR] = { 0x10, 16 }, 327 [SCxRDR] = { 0x14, 8 }, 328 [SCFCR] = { 0x18, 16 }, 329 [SCFDR] = { 0x1c, 16 }, 330 [SCTFDR] = sci_reg_invalid, 331 [SCRFDR] = sci_reg_invalid, 332 [SCSPTR] = sci_reg_invalid, 333 [SCLSR] = { 0x24, 16 }, 334 [HSSRR] = sci_reg_invalid, 335 [SCPCR] = sci_reg_invalid, 336 [SCPDR] = sci_reg_invalid, 337 }, 338 339 /* 340 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data 341 * count registers. 342 */ 343 [SCIx_SH4_SCIF_FIFODATA_REGTYPE] = { 344 [SCSMR] = { 0x00, 16 }, 345 [SCBRR] = { 0x04, 8 }, 346 [SCSCR] = { 0x08, 16 }, 347 [SCxTDR] = { 0x0c, 8 }, 348 [SCxSR] = { 0x10, 16 }, 349 [SCxRDR] = { 0x14, 8 }, 350 [SCFCR] = { 0x18, 16 }, 351 [SCFDR] = { 0x1c, 16 }, 352 [SCTFDR] = { 0x1c, 16 }, /* aliased to SCFDR */ 353 [SCRFDR] = { 0x20, 16 }, 354 [SCSPTR] = { 0x24, 16 }, 355 [SCLSR] = { 0x28, 16 }, 356 [HSSRR] = sci_reg_invalid, 357 [SCPCR] = sci_reg_invalid, 358 [SCPDR] = sci_reg_invalid, 359 }, 360 361 /* 362 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR 363 * registers. 364 */ 365 [SCIx_SH7705_SCIF_REGTYPE] = { 366 [SCSMR] = { 0x00, 16 }, 367 [SCBRR] = { 0x04, 8 }, 368 [SCSCR] = { 0x08, 16 }, 369 [SCxTDR] = { 0x20, 8 }, 370 [SCxSR] = { 0x14, 16 }, 371 [SCxRDR] = { 0x24, 8 }, 372 [SCFCR] = { 0x18, 16 }, 373 [SCFDR] = { 0x1c, 16 }, 374 [SCTFDR] = sci_reg_invalid, 375 [SCRFDR] = sci_reg_invalid, 376 [SCSPTR] = sci_reg_invalid, 377 [SCLSR] = sci_reg_invalid, 378 [HSSRR] = sci_reg_invalid, 379 [SCPCR] = sci_reg_invalid, 380 [SCPDR] = sci_reg_invalid, 381 }, 382 }; 383 384 #define sci_getreg(up, offset) (sci_regmap[to_sci_port(up)->cfg->regtype] + offset) 385 386 /* 387 * The "offset" here is rather misleading, in that it refers to an enum 388 * value relative to the port mapping rather than the fixed offset 389 * itself, which needs to be manually retrieved from the platform's 390 * register map for the given port. 391 */ 392 static unsigned int sci_serial_in(struct uart_port *p, int offset) 393 { 394 const struct plat_sci_reg *reg = sci_getreg(p, offset); 395 396 if (reg->size == 8) 397 return ioread8(p->membase + (reg->offset << p->regshift)); 398 else if (reg->size == 16) 399 return ioread16(p->membase + (reg->offset << p->regshift)); 400 else 401 WARN(1, "Invalid register access\n"); 402 403 return 0; 404 } 405 406 static void sci_serial_out(struct uart_port *p, int offset, int value) 407 { 408 const struct plat_sci_reg *reg = sci_getreg(p, offset); 409 410 if (reg->size == 8) 411 iowrite8(value, p->membase + (reg->offset << p->regshift)); 412 else if (reg->size == 16) 413 iowrite16(value, p->membase + (reg->offset << p->regshift)); 414 else 415 WARN(1, "Invalid register access\n"); 416 } 417 418 static int sci_probe_regmap(struct plat_sci_port *cfg) 419 { 420 switch (cfg->type) { 421 case PORT_SCI: 422 cfg->regtype = SCIx_SCI_REGTYPE; 423 break; 424 case PORT_IRDA: 425 cfg->regtype = SCIx_IRDA_REGTYPE; 426 break; 427 case PORT_SCIFA: 428 cfg->regtype = SCIx_SCIFA_REGTYPE; 429 break; 430 case PORT_SCIFB: 431 cfg->regtype = SCIx_SCIFB_REGTYPE; 432 break; 433 case PORT_SCIF: 434 /* 435 * The SH-4 is a bit of a misnomer here, although that's 436 * where this particular port layout originated. This 437 * configuration (or some slight variation thereof) 438 * remains the dominant model for all SCIFs. 439 */ 440 cfg->regtype = SCIx_SH4_SCIF_REGTYPE; 441 break; 442 case PORT_HSCIF: 443 cfg->regtype = SCIx_HSCIF_REGTYPE; 444 break; 445 default: 446 pr_err("Can't probe register map for given port\n"); 447 return -EINVAL; 448 } 449 450 return 0; 451 } 452 453 static void sci_port_enable(struct sci_port *sci_port) 454 { 455 if (!sci_port->port.dev) 456 return; 457 458 pm_runtime_get_sync(sci_port->port.dev); 459 460 clk_prepare_enable(sci_port->iclk); 461 sci_port->port.uartclk = clk_get_rate(sci_port->iclk); 462 clk_prepare_enable(sci_port->fclk); 463 } 464 465 static void sci_port_disable(struct sci_port *sci_port) 466 { 467 if (!sci_port->port.dev) 468 return; 469 470 /* Cancel the break timer to ensure that the timer handler will not try 471 * to access the hardware with clocks and power disabled. Reset the 472 * break flag to make the break debouncing state machine ready for the 473 * next break. 474 */ 475 del_timer_sync(&sci_port->break_timer); 476 sci_port->break_flag = 0; 477 478 clk_disable_unprepare(sci_port->fclk); 479 clk_disable_unprepare(sci_port->iclk); 480 481 pm_runtime_put_sync(sci_port->port.dev); 482 } 483 484 static inline unsigned long port_rx_irq_mask(struct uart_port *port) 485 { 486 /* 487 * Not all ports (such as SCIFA) will support REIE. Rather than 488 * special-casing the port type, we check the port initialization 489 * IRQ enable mask to see whether the IRQ is desired at all. If 490 * it's unset, it's logically inferred that there's no point in 491 * testing for it. 492 */ 493 return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE); 494 } 495 496 static void sci_start_tx(struct uart_port *port) 497 { 498 struct sci_port *s = to_sci_port(port); 499 unsigned short ctrl; 500 501 #ifdef CONFIG_SERIAL_SH_SCI_DMA 502 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 503 u16 new, scr = serial_port_in(port, SCSCR); 504 if (s->chan_tx) 505 new = scr | SCSCR_TDRQE; 506 else 507 new = scr & ~SCSCR_TDRQE; 508 if (new != scr) 509 serial_port_out(port, SCSCR, new); 510 } 511 512 if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) && 513 dma_submit_error(s->cookie_tx)) { 514 s->cookie_tx = 0; 515 schedule_work(&s->work_tx); 516 } 517 #endif 518 519 if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 520 /* Set TIE (Transmit Interrupt Enable) bit in SCSCR */ 521 ctrl = serial_port_in(port, SCSCR); 522 serial_port_out(port, SCSCR, ctrl | SCSCR_TIE); 523 } 524 } 525 526 static void sci_stop_tx(struct uart_port *port) 527 { 528 unsigned short ctrl; 529 530 /* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */ 531 ctrl = serial_port_in(port, SCSCR); 532 533 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) 534 ctrl &= ~SCSCR_TDRQE; 535 536 ctrl &= ~SCSCR_TIE; 537 538 serial_port_out(port, SCSCR, ctrl); 539 } 540 541 static void sci_start_rx(struct uart_port *port) 542 { 543 unsigned short ctrl; 544 545 ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port); 546 547 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) 548 ctrl &= ~SCSCR_RDRQE; 549 550 serial_port_out(port, SCSCR, ctrl); 551 } 552 553 static void sci_stop_rx(struct uart_port *port) 554 { 555 unsigned short ctrl; 556 557 ctrl = serial_port_in(port, SCSCR); 558 559 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) 560 ctrl &= ~SCSCR_RDRQE; 561 562 ctrl &= ~port_rx_irq_mask(port); 563 564 serial_port_out(port, SCSCR, ctrl); 565 } 566 567 static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask) 568 { 569 if (port->type == PORT_SCI) { 570 /* Just store the mask */ 571 serial_port_out(port, SCxSR, mask); 572 } else if (to_sci_port(port)->overrun_mask == SCIFA_ORER) { 573 /* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */ 574 /* Only clear the status bits we want to clear */ 575 serial_port_out(port, SCxSR, 576 serial_port_in(port, SCxSR) & mask); 577 } else { 578 /* Store the mask, clear parity/framing errors */ 579 serial_port_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC)); 580 } 581 } 582 583 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) 584 585 #ifdef CONFIG_CONSOLE_POLL 586 static int sci_poll_get_char(struct uart_port *port) 587 { 588 unsigned short status; 589 int c; 590 591 do { 592 status = serial_port_in(port, SCxSR); 593 if (status & SCxSR_ERRORS(port)) { 594 sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port)); 595 continue; 596 } 597 break; 598 } while (1); 599 600 if (!(status & SCxSR_RDxF(port))) 601 return NO_POLL_CHAR; 602 603 c = serial_port_in(port, SCxRDR); 604 605 /* Dummy read */ 606 serial_port_in(port, SCxSR); 607 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port)); 608 609 return c; 610 } 611 #endif 612 613 static void sci_poll_put_char(struct uart_port *port, unsigned char c) 614 { 615 unsigned short status; 616 617 do { 618 status = serial_port_in(port, SCxSR); 619 } while (!(status & SCxSR_TDxE(port))); 620 621 serial_port_out(port, SCxTDR, c); 622 sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port)); 623 } 624 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE */ 625 626 static void sci_init_pins(struct uart_port *port, unsigned int cflag) 627 { 628 struct sci_port *s = to_sci_port(port); 629 const struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR; 630 631 /* 632 * Use port-specific handler if provided. 633 */ 634 if (s->cfg->ops && s->cfg->ops->init_pins) { 635 s->cfg->ops->init_pins(port, cflag); 636 return; 637 } 638 639 /* 640 * For the generic path SCSPTR is necessary. Bail out if that's 641 * unavailable, too. 642 */ 643 if (!reg->size) 644 return; 645 646 if ((s->cfg->capabilities & SCIx_HAVE_RTSCTS) && 647 ((!(cflag & CRTSCTS)))) { 648 unsigned short status; 649 650 status = serial_port_in(port, SCSPTR); 651 status &= ~SCSPTR_CTSIO; 652 status |= SCSPTR_RTSIO; 653 serial_port_out(port, SCSPTR, status); /* Set RTS = 1 */ 654 } 655 } 656 657 static int sci_txfill(struct uart_port *port) 658 { 659 const struct plat_sci_reg *reg; 660 661 reg = sci_getreg(port, SCTFDR); 662 if (reg->size) 663 return serial_port_in(port, SCTFDR) & ((port->fifosize << 1) - 1); 664 665 reg = sci_getreg(port, SCFDR); 666 if (reg->size) 667 return serial_port_in(port, SCFDR) >> 8; 668 669 return !(serial_port_in(port, SCxSR) & SCI_TDRE); 670 } 671 672 static int sci_txroom(struct uart_port *port) 673 { 674 return port->fifosize - sci_txfill(port); 675 } 676 677 static int sci_rxfill(struct uart_port *port) 678 { 679 const struct plat_sci_reg *reg; 680 681 reg = sci_getreg(port, SCRFDR); 682 if (reg->size) 683 return serial_port_in(port, SCRFDR) & ((port->fifosize << 1) - 1); 684 685 reg = sci_getreg(port, SCFDR); 686 if (reg->size) 687 return serial_port_in(port, SCFDR) & ((port->fifosize << 1) - 1); 688 689 return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0; 690 } 691 692 /* 693 * SCI helper for checking the state of the muxed port/RXD pins. 694 */ 695 static inline int sci_rxd_in(struct uart_port *port) 696 { 697 struct sci_port *s = to_sci_port(port); 698 699 if (s->cfg->port_reg <= 0) 700 return 1; 701 702 /* Cast for ARM damage */ 703 return !!__raw_readb((void __iomem *)(uintptr_t)s->cfg->port_reg); 704 } 705 706 /* ********************************************************************** * 707 * the interrupt related routines * 708 * ********************************************************************** */ 709 710 static void sci_transmit_chars(struct uart_port *port) 711 { 712 struct circ_buf *xmit = &port->state->xmit; 713 unsigned int stopped = uart_tx_stopped(port); 714 unsigned short status; 715 unsigned short ctrl; 716 int count; 717 718 status = serial_port_in(port, SCxSR); 719 if (!(status & SCxSR_TDxE(port))) { 720 ctrl = serial_port_in(port, SCSCR); 721 if (uart_circ_empty(xmit)) 722 ctrl &= ~SCSCR_TIE; 723 else 724 ctrl |= SCSCR_TIE; 725 serial_port_out(port, SCSCR, ctrl); 726 return; 727 } 728 729 count = sci_txroom(port); 730 731 do { 732 unsigned char c; 733 734 if (port->x_char) { 735 c = port->x_char; 736 port->x_char = 0; 737 } else if (!uart_circ_empty(xmit) && !stopped) { 738 c = xmit->buf[xmit->tail]; 739 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); 740 } else { 741 break; 742 } 743 744 serial_port_out(port, SCxTDR, c); 745 746 port->icount.tx++; 747 } while (--count > 0); 748 749 sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port)); 750 751 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 752 uart_write_wakeup(port); 753 if (uart_circ_empty(xmit)) { 754 sci_stop_tx(port); 755 } else { 756 ctrl = serial_port_in(port, SCSCR); 757 758 if (port->type != PORT_SCI) { 759 serial_port_in(port, SCxSR); /* Dummy read */ 760 sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port)); 761 } 762 763 ctrl |= SCSCR_TIE; 764 serial_port_out(port, SCSCR, ctrl); 765 } 766 } 767 768 /* On SH3, SCIF may read end-of-break as a space->mark char */ 769 #define STEPFN(c) ({int __c = (c); (((__c-1)|(__c)) == -1); }) 770 771 static void sci_receive_chars(struct uart_port *port) 772 { 773 struct sci_port *sci_port = to_sci_port(port); 774 struct tty_port *tport = &port->state->port; 775 int i, count, copied = 0; 776 unsigned short status; 777 unsigned char flag; 778 779 status = serial_port_in(port, SCxSR); 780 if (!(status & SCxSR_RDxF(port))) 781 return; 782 783 while (1) { 784 /* Don't copy more bytes than there is room for in the buffer */ 785 count = tty_buffer_request_room(tport, sci_rxfill(port)); 786 787 /* If for any reason we can't copy more data, we're done! */ 788 if (count == 0) 789 break; 790 791 if (port->type == PORT_SCI) { 792 char c = serial_port_in(port, SCxRDR); 793 if (uart_handle_sysrq_char(port, c) || 794 sci_port->break_flag) 795 count = 0; 796 else 797 tty_insert_flip_char(tport, c, TTY_NORMAL); 798 } else { 799 for (i = 0; i < count; i++) { 800 char c = serial_port_in(port, SCxRDR); 801 802 status = serial_port_in(port, SCxSR); 803 #if defined(CONFIG_CPU_SH3) 804 /* Skip "chars" during break */ 805 if (sci_port->break_flag) { 806 if ((c == 0) && 807 (status & SCxSR_FER(port))) { 808 count--; i--; 809 continue; 810 } 811 812 /* Nonzero => end-of-break */ 813 dev_dbg(port->dev, "debounce<%02x>\n", c); 814 sci_port->break_flag = 0; 815 816 if (STEPFN(c)) { 817 count--; i--; 818 continue; 819 } 820 } 821 #endif /* CONFIG_CPU_SH3 */ 822 if (uart_handle_sysrq_char(port, c)) { 823 count--; i--; 824 continue; 825 } 826 827 /* Store data and status */ 828 if (status & SCxSR_FER(port)) { 829 flag = TTY_FRAME; 830 port->icount.frame++; 831 dev_notice(port->dev, "frame error\n"); 832 } else if (status & SCxSR_PER(port)) { 833 flag = TTY_PARITY; 834 port->icount.parity++; 835 dev_notice(port->dev, "parity error\n"); 836 } else 837 flag = TTY_NORMAL; 838 839 tty_insert_flip_char(tport, c, flag); 840 } 841 } 842 843 serial_port_in(port, SCxSR); /* dummy read */ 844 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port)); 845 846 copied += count; 847 port->icount.rx += count; 848 } 849 850 if (copied) { 851 /* Tell the rest of the system the news. New characters! */ 852 tty_flip_buffer_push(tport); 853 } else { 854 serial_port_in(port, SCxSR); /* dummy read */ 855 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port)); 856 } 857 } 858 859 #define SCI_BREAK_JIFFIES (HZ/20) 860 861 /* 862 * The sci generates interrupts during the break, 863 * 1 per millisecond or so during the break period, for 9600 baud. 864 * So dont bother disabling interrupts. 865 * But dont want more than 1 break event. 866 * Use a kernel timer to periodically poll the rx line until 867 * the break is finished. 868 */ 869 static inline void sci_schedule_break_timer(struct sci_port *port) 870 { 871 mod_timer(&port->break_timer, jiffies + SCI_BREAK_JIFFIES); 872 } 873 874 /* Ensure that two consecutive samples find the break over. */ 875 static void sci_break_timer(unsigned long data) 876 { 877 struct sci_port *port = (struct sci_port *)data; 878 879 if (sci_rxd_in(&port->port) == 0) { 880 port->break_flag = 1; 881 sci_schedule_break_timer(port); 882 } else if (port->break_flag == 1) { 883 /* break is over. */ 884 port->break_flag = 2; 885 sci_schedule_break_timer(port); 886 } else 887 port->break_flag = 0; 888 } 889 890 static int sci_handle_errors(struct uart_port *port) 891 { 892 int copied = 0; 893 unsigned short status = serial_port_in(port, SCxSR); 894 struct tty_port *tport = &port->state->port; 895 struct sci_port *s = to_sci_port(port); 896 897 /* Handle overruns */ 898 if (status & s->overrun_mask) { 899 port->icount.overrun++; 900 901 /* overrun error */ 902 if (tty_insert_flip_char(tport, 0, TTY_OVERRUN)) 903 copied++; 904 905 dev_notice(port->dev, "overrun error\n"); 906 } 907 908 if (status & SCxSR_FER(port)) { 909 if (sci_rxd_in(port) == 0) { 910 /* Notify of BREAK */ 911 struct sci_port *sci_port = to_sci_port(port); 912 913 if (!sci_port->break_flag) { 914 port->icount.brk++; 915 916 sci_port->break_flag = 1; 917 sci_schedule_break_timer(sci_port); 918 919 /* Do sysrq handling. */ 920 if (uart_handle_break(port)) 921 return 0; 922 923 dev_dbg(port->dev, "BREAK detected\n"); 924 925 if (tty_insert_flip_char(tport, 0, TTY_BREAK)) 926 copied++; 927 } 928 929 } else { 930 /* frame error */ 931 port->icount.frame++; 932 933 if (tty_insert_flip_char(tport, 0, TTY_FRAME)) 934 copied++; 935 936 dev_notice(port->dev, "frame error\n"); 937 } 938 } 939 940 if (status & SCxSR_PER(port)) { 941 /* parity error */ 942 port->icount.parity++; 943 944 if (tty_insert_flip_char(tport, 0, TTY_PARITY)) 945 copied++; 946 947 dev_notice(port->dev, "parity error\n"); 948 } 949 950 if (copied) 951 tty_flip_buffer_push(tport); 952 953 return copied; 954 } 955 956 static int sci_handle_fifo_overrun(struct uart_port *port) 957 { 958 struct tty_port *tport = &port->state->port; 959 struct sci_port *s = to_sci_port(port); 960 const struct plat_sci_reg *reg; 961 int copied = 0; 962 u16 status; 963 964 reg = sci_getreg(port, s->overrun_reg); 965 if (!reg->size) 966 return 0; 967 968 status = serial_port_in(port, s->overrun_reg); 969 if (status & s->overrun_mask) { 970 status &= ~s->overrun_mask; 971 serial_port_out(port, s->overrun_reg, status); 972 973 port->icount.overrun++; 974 975 tty_insert_flip_char(tport, 0, TTY_OVERRUN); 976 tty_flip_buffer_push(tport); 977 978 dev_dbg(port->dev, "overrun error\n"); 979 copied++; 980 } 981 982 return copied; 983 } 984 985 static int sci_handle_breaks(struct uart_port *port) 986 { 987 int copied = 0; 988 unsigned short status = serial_port_in(port, SCxSR); 989 struct tty_port *tport = &port->state->port; 990 struct sci_port *s = to_sci_port(port); 991 992 if (uart_handle_break(port)) 993 return 0; 994 995 if (!s->break_flag && status & SCxSR_BRK(port)) { 996 #if defined(CONFIG_CPU_SH3) 997 /* Debounce break */ 998 s->break_flag = 1; 999 #endif 1000 1001 port->icount.brk++; 1002 1003 /* Notify of BREAK */ 1004 if (tty_insert_flip_char(tport, 0, TTY_BREAK)) 1005 copied++; 1006 1007 dev_dbg(port->dev, "BREAK detected\n"); 1008 } 1009 1010 if (copied) 1011 tty_flip_buffer_push(tport); 1012 1013 copied += sci_handle_fifo_overrun(port); 1014 1015 return copied; 1016 } 1017 1018 #ifdef CONFIG_SERIAL_SH_SCI_DMA 1019 static void sci_dma_tx_complete(void *arg) 1020 { 1021 struct sci_port *s = arg; 1022 struct uart_port *port = &s->port; 1023 struct circ_buf *xmit = &port->state->xmit; 1024 unsigned long flags; 1025 1026 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line); 1027 1028 spin_lock_irqsave(&port->lock, flags); 1029 1030 xmit->tail += s->tx_dma_len; 1031 xmit->tail &= UART_XMIT_SIZE - 1; 1032 1033 port->icount.tx += s->tx_dma_len; 1034 1035 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 1036 uart_write_wakeup(port); 1037 1038 if (!uart_circ_empty(xmit)) { 1039 s->cookie_tx = 0; 1040 schedule_work(&s->work_tx); 1041 } else { 1042 s->cookie_tx = -EINVAL; 1043 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 1044 u16 ctrl = serial_port_in(port, SCSCR); 1045 serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE); 1046 } 1047 } 1048 1049 spin_unlock_irqrestore(&port->lock, flags); 1050 } 1051 1052 /* Locking: called with port lock held */ 1053 static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count) 1054 { 1055 struct uart_port *port = &s->port; 1056 struct tty_port *tport = &port->state->port; 1057 int copied; 1058 1059 copied = tty_insert_flip_string(tport, buf, count); 1060 if (copied < count) { 1061 dev_warn(port->dev, "Rx overrun: dropping %zu bytes\n", 1062 count - copied); 1063 port->icount.buf_overrun++; 1064 } 1065 1066 port->icount.rx += copied; 1067 1068 return copied; 1069 } 1070 1071 static int sci_dma_rx_find_active(struct sci_port *s) 1072 { 1073 unsigned int i; 1074 1075 for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++) 1076 if (s->active_rx == s->cookie_rx[i]) 1077 return i; 1078 1079 dev_err(s->port.dev, "%s: Rx cookie %d not found!\n", __func__, 1080 s->active_rx); 1081 return -1; 1082 } 1083 1084 static void sci_rx_dma_release(struct sci_port *s, bool enable_pio) 1085 { 1086 struct dma_chan *chan = s->chan_rx; 1087 struct uart_port *port = &s->port; 1088 unsigned long flags; 1089 1090 spin_lock_irqsave(&port->lock, flags); 1091 s->chan_rx = NULL; 1092 s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL; 1093 spin_unlock_irqrestore(&port->lock, flags); 1094 dmaengine_terminate_all(chan); 1095 dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0], 1096 sg_dma_address(&s->sg_rx[0])); 1097 dma_release_channel(chan); 1098 if (enable_pio) 1099 sci_start_rx(port); 1100 } 1101 1102 static void sci_dma_rx_complete(void *arg) 1103 { 1104 struct sci_port *s = arg; 1105 struct dma_chan *chan = s->chan_rx; 1106 struct uart_port *port = &s->port; 1107 struct dma_async_tx_descriptor *desc; 1108 unsigned long flags; 1109 int active, count = 0; 1110 1111 dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line, 1112 s->active_rx); 1113 1114 spin_lock_irqsave(&port->lock, flags); 1115 1116 active = sci_dma_rx_find_active(s); 1117 if (active >= 0) 1118 count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx); 1119 1120 mod_timer(&s->rx_timer, jiffies + s->rx_timeout); 1121 1122 if (count) 1123 tty_flip_buffer_push(&port->state->port); 1124 1125 desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1, 1126 DMA_DEV_TO_MEM, 1127 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1128 if (!desc) 1129 goto fail; 1130 1131 desc->callback = sci_dma_rx_complete; 1132 desc->callback_param = s; 1133 s->cookie_rx[active] = dmaengine_submit(desc); 1134 if (dma_submit_error(s->cookie_rx[active])) 1135 goto fail; 1136 1137 s->active_rx = s->cookie_rx[!active]; 1138 1139 dma_async_issue_pending(chan); 1140 1141 dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n", 1142 __func__, s->cookie_rx[active], active, s->active_rx); 1143 spin_unlock_irqrestore(&port->lock, flags); 1144 return; 1145 1146 fail: 1147 spin_unlock_irqrestore(&port->lock, flags); 1148 dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n"); 1149 sci_rx_dma_release(s, true); 1150 } 1151 1152 static void sci_tx_dma_release(struct sci_port *s, bool enable_pio) 1153 { 1154 struct dma_chan *chan = s->chan_tx; 1155 struct uart_port *port = &s->port; 1156 unsigned long flags; 1157 1158 spin_lock_irqsave(&port->lock, flags); 1159 s->chan_tx = NULL; 1160 s->cookie_tx = -EINVAL; 1161 spin_unlock_irqrestore(&port->lock, flags); 1162 dmaengine_terminate_all(chan); 1163 dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE, 1164 DMA_TO_DEVICE); 1165 dma_release_channel(chan); 1166 if (enable_pio) 1167 sci_start_tx(port); 1168 } 1169 1170 static void sci_submit_rx(struct sci_port *s) 1171 { 1172 struct dma_chan *chan = s->chan_rx; 1173 int i; 1174 1175 for (i = 0; i < 2; i++) { 1176 struct scatterlist *sg = &s->sg_rx[i]; 1177 struct dma_async_tx_descriptor *desc; 1178 1179 desc = dmaengine_prep_slave_sg(chan, 1180 sg, 1, DMA_DEV_TO_MEM, 1181 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1182 if (!desc) 1183 goto fail; 1184 1185 desc->callback = sci_dma_rx_complete; 1186 desc->callback_param = s; 1187 s->cookie_rx[i] = dmaengine_submit(desc); 1188 if (dma_submit_error(s->cookie_rx[i])) 1189 goto fail; 1190 1191 dev_dbg(s->port.dev, "%s(): cookie %d to #%d\n", __func__, 1192 s->cookie_rx[i], i); 1193 } 1194 1195 s->active_rx = s->cookie_rx[0]; 1196 1197 dma_async_issue_pending(chan); 1198 return; 1199 1200 fail: 1201 if (i) 1202 dmaengine_terminate_all(chan); 1203 for (i = 0; i < 2; i++) 1204 s->cookie_rx[i] = -EINVAL; 1205 s->active_rx = -EINVAL; 1206 dev_warn(s->port.dev, "Failed to re-start Rx DMA, using PIO\n"); 1207 sci_rx_dma_release(s, true); 1208 } 1209 1210 static void work_fn_tx(struct work_struct *work) 1211 { 1212 struct sci_port *s = container_of(work, struct sci_port, work_tx); 1213 struct dma_async_tx_descriptor *desc; 1214 struct dma_chan *chan = s->chan_tx; 1215 struct uart_port *port = &s->port; 1216 struct circ_buf *xmit = &port->state->xmit; 1217 dma_addr_t buf; 1218 1219 /* 1220 * DMA is idle now. 1221 * Port xmit buffer is already mapped, and it is one page... Just adjust 1222 * offsets and lengths. Since it is a circular buffer, we have to 1223 * transmit till the end, and then the rest. Take the port lock to get a 1224 * consistent xmit buffer state. 1225 */ 1226 spin_lock_irq(&port->lock); 1227 buf = s->tx_dma_addr + (xmit->tail & (UART_XMIT_SIZE - 1)); 1228 s->tx_dma_len = min_t(unsigned int, 1229 CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE), 1230 CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE)); 1231 spin_unlock_irq(&port->lock); 1232 1233 desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len, 1234 DMA_MEM_TO_DEV, 1235 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1236 if (!desc) { 1237 dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n"); 1238 /* switch to PIO */ 1239 sci_tx_dma_release(s, true); 1240 return; 1241 } 1242 1243 dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len, 1244 DMA_TO_DEVICE); 1245 1246 spin_lock_irq(&port->lock); 1247 desc->callback = sci_dma_tx_complete; 1248 desc->callback_param = s; 1249 spin_unlock_irq(&port->lock); 1250 s->cookie_tx = dmaengine_submit(desc); 1251 if (dma_submit_error(s->cookie_tx)) { 1252 dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n"); 1253 /* switch to PIO */ 1254 sci_tx_dma_release(s, true); 1255 return; 1256 } 1257 1258 dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n", 1259 __func__, xmit->buf, xmit->tail, xmit->head, s->cookie_tx); 1260 1261 dma_async_issue_pending(chan); 1262 } 1263 1264 static void rx_timer_fn(unsigned long arg) 1265 { 1266 struct sci_port *s = (struct sci_port *)arg; 1267 struct dma_chan *chan = s->chan_rx; 1268 struct uart_port *port = &s->port; 1269 struct dma_tx_state state; 1270 enum dma_status status; 1271 unsigned long flags; 1272 unsigned int read; 1273 int active, count; 1274 u16 scr; 1275 1276 spin_lock_irqsave(&port->lock, flags); 1277 1278 dev_dbg(port->dev, "DMA Rx timed out\n"); 1279 1280 active = sci_dma_rx_find_active(s); 1281 if (active < 0) { 1282 spin_unlock_irqrestore(&port->lock, flags); 1283 return; 1284 } 1285 1286 status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state); 1287 if (status == DMA_COMPLETE) { 1288 dev_dbg(port->dev, "Cookie %d #%d has already completed\n", 1289 s->active_rx, active); 1290 spin_unlock_irqrestore(&port->lock, flags); 1291 1292 /* Let packet complete handler take care of the packet */ 1293 return; 1294 } 1295 1296 dmaengine_pause(chan); 1297 1298 /* 1299 * sometimes DMA transfer doesn't stop even if it is stopped and 1300 * data keeps on coming until transaction is complete so check 1301 * for DMA_COMPLETE again 1302 * Let packet complete handler take care of the packet 1303 */ 1304 status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state); 1305 if (status == DMA_COMPLETE) { 1306 spin_unlock_irqrestore(&port->lock, flags); 1307 dev_dbg(port->dev, "Transaction complete after DMA engine was stopped"); 1308 return; 1309 } 1310 1311 /* Handle incomplete DMA receive */ 1312 dmaengine_terminate_all(s->chan_rx); 1313 read = sg_dma_len(&s->sg_rx[active]) - state.residue; 1314 dev_dbg(port->dev, "Read %u bytes with cookie %d\n", read, 1315 s->active_rx); 1316 1317 if (read) { 1318 count = sci_dma_rx_push(s, s->rx_buf[active], read); 1319 if (count) 1320 tty_flip_buffer_push(&port->state->port); 1321 } 1322 1323 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) 1324 sci_submit_rx(s); 1325 1326 /* Direct new serial port interrupts back to CPU */ 1327 scr = serial_port_in(port, SCSCR); 1328 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 1329 scr &= ~SCSCR_RDRQE; 1330 enable_irq(s->irqs[SCIx_RXI_IRQ]); 1331 } 1332 serial_port_out(port, SCSCR, scr | SCSCR_RIE); 1333 1334 spin_unlock_irqrestore(&port->lock, flags); 1335 } 1336 1337 static struct dma_chan *sci_request_dma_chan(struct uart_port *port, 1338 enum dma_transfer_direction dir, 1339 unsigned int id) 1340 { 1341 dma_cap_mask_t mask; 1342 struct dma_chan *chan; 1343 struct dma_slave_config cfg; 1344 int ret; 1345 1346 dma_cap_zero(mask); 1347 dma_cap_set(DMA_SLAVE, mask); 1348 1349 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter, 1350 (void *)(unsigned long)id, port->dev, 1351 dir == DMA_MEM_TO_DEV ? "tx" : "rx"); 1352 if (!chan) { 1353 dev_warn(port->dev, 1354 "dma_request_slave_channel_compat failed\n"); 1355 return NULL; 1356 } 1357 1358 memset(&cfg, 0, sizeof(cfg)); 1359 cfg.direction = dir; 1360 if (dir == DMA_MEM_TO_DEV) { 1361 cfg.dst_addr = port->mapbase + 1362 (sci_getreg(port, SCxTDR)->offset << port->regshift); 1363 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1364 } else { 1365 cfg.src_addr = port->mapbase + 1366 (sci_getreg(port, SCxRDR)->offset << port->regshift); 1367 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1368 } 1369 1370 ret = dmaengine_slave_config(chan, &cfg); 1371 if (ret) { 1372 dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret); 1373 dma_release_channel(chan); 1374 return NULL; 1375 } 1376 1377 return chan; 1378 } 1379 1380 static void sci_request_dma(struct uart_port *port) 1381 { 1382 struct sci_port *s = to_sci_port(port); 1383 struct dma_chan *chan; 1384 1385 dev_dbg(port->dev, "%s: port %d\n", __func__, port->line); 1386 1387 if (!port->dev->of_node && 1388 (s->cfg->dma_slave_tx <= 0 || s->cfg->dma_slave_rx <= 0)) 1389 return; 1390 1391 s->cookie_tx = -EINVAL; 1392 chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV, s->cfg->dma_slave_tx); 1393 dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan); 1394 if (chan) { 1395 s->chan_tx = chan; 1396 /* UART circular tx buffer is an aligned page. */ 1397 s->tx_dma_addr = dma_map_single(chan->device->dev, 1398 port->state->xmit.buf, 1399 UART_XMIT_SIZE, 1400 DMA_TO_DEVICE); 1401 if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) { 1402 dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n"); 1403 dma_release_channel(chan); 1404 s->chan_tx = NULL; 1405 } else { 1406 dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n", 1407 __func__, UART_XMIT_SIZE, 1408 port->state->xmit.buf, &s->tx_dma_addr); 1409 } 1410 1411 INIT_WORK(&s->work_tx, work_fn_tx); 1412 } 1413 1414 chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM, s->cfg->dma_slave_rx); 1415 dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan); 1416 if (chan) { 1417 unsigned int i; 1418 dma_addr_t dma; 1419 void *buf; 1420 1421 s->chan_rx = chan; 1422 1423 s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize); 1424 buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2, 1425 &dma, GFP_KERNEL); 1426 if (!buf) { 1427 dev_warn(port->dev, 1428 "Failed to allocate Rx dma buffer, using PIO\n"); 1429 dma_release_channel(chan); 1430 s->chan_rx = NULL; 1431 return; 1432 } 1433 1434 for (i = 0; i < 2; i++) { 1435 struct scatterlist *sg = &s->sg_rx[i]; 1436 1437 sg_init_table(sg, 1); 1438 s->rx_buf[i] = buf; 1439 sg_dma_address(sg) = dma; 1440 sg_dma_len(sg) = s->buf_len_rx; 1441 1442 buf += s->buf_len_rx; 1443 dma += s->buf_len_rx; 1444 } 1445 1446 setup_timer(&s->rx_timer, rx_timer_fn, (unsigned long)s); 1447 1448 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) 1449 sci_submit_rx(s); 1450 } 1451 } 1452 1453 static void sci_free_dma(struct uart_port *port) 1454 { 1455 struct sci_port *s = to_sci_port(port); 1456 1457 if (s->chan_tx) 1458 sci_tx_dma_release(s, false); 1459 if (s->chan_rx) 1460 sci_rx_dma_release(s, false); 1461 } 1462 #else 1463 static inline void sci_request_dma(struct uart_port *port) 1464 { 1465 } 1466 1467 static inline void sci_free_dma(struct uart_port *port) 1468 { 1469 } 1470 #endif 1471 1472 static irqreturn_t sci_rx_interrupt(int irq, void *ptr) 1473 { 1474 #ifdef CONFIG_SERIAL_SH_SCI_DMA 1475 struct uart_port *port = ptr; 1476 struct sci_port *s = to_sci_port(port); 1477 1478 if (s->chan_rx) { 1479 u16 scr = serial_port_in(port, SCSCR); 1480 u16 ssr = serial_port_in(port, SCxSR); 1481 1482 /* Disable future Rx interrupts */ 1483 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 1484 disable_irq_nosync(irq); 1485 scr |= SCSCR_RDRQE; 1486 } else { 1487 scr &= ~SCSCR_RIE; 1488 sci_submit_rx(s); 1489 } 1490 serial_port_out(port, SCSCR, scr); 1491 /* Clear current interrupt */ 1492 serial_port_out(port, SCxSR, 1493 ssr & ~(SCIF_DR | SCxSR_RDxF(port))); 1494 dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n", 1495 jiffies, s->rx_timeout); 1496 mod_timer(&s->rx_timer, jiffies + s->rx_timeout); 1497 1498 return IRQ_HANDLED; 1499 } 1500 #endif 1501 1502 /* I think sci_receive_chars has to be called irrespective 1503 * of whether the I_IXOFF is set, otherwise, how is the interrupt 1504 * to be disabled? 1505 */ 1506 sci_receive_chars(ptr); 1507 1508 return IRQ_HANDLED; 1509 } 1510 1511 static irqreturn_t sci_tx_interrupt(int irq, void *ptr) 1512 { 1513 struct uart_port *port = ptr; 1514 unsigned long flags; 1515 1516 spin_lock_irqsave(&port->lock, flags); 1517 sci_transmit_chars(port); 1518 spin_unlock_irqrestore(&port->lock, flags); 1519 1520 return IRQ_HANDLED; 1521 } 1522 1523 static irqreturn_t sci_er_interrupt(int irq, void *ptr) 1524 { 1525 struct uart_port *port = ptr; 1526 struct sci_port *s = to_sci_port(port); 1527 1528 /* Handle errors */ 1529 if (port->type == PORT_SCI) { 1530 if (sci_handle_errors(port)) { 1531 /* discard character in rx buffer */ 1532 serial_port_in(port, SCxSR); 1533 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port)); 1534 } 1535 } else { 1536 sci_handle_fifo_overrun(port); 1537 if (!s->chan_rx) 1538 sci_receive_chars(ptr); 1539 } 1540 1541 sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port)); 1542 1543 /* Kick the transmission */ 1544 if (!s->chan_tx) 1545 sci_tx_interrupt(irq, ptr); 1546 1547 return IRQ_HANDLED; 1548 } 1549 1550 static irqreturn_t sci_br_interrupt(int irq, void *ptr) 1551 { 1552 struct uart_port *port = ptr; 1553 1554 /* Handle BREAKs */ 1555 sci_handle_breaks(port); 1556 sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port)); 1557 1558 return IRQ_HANDLED; 1559 } 1560 1561 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr) 1562 { 1563 unsigned short ssr_status, scr_status, err_enabled, orer_status = 0; 1564 struct uart_port *port = ptr; 1565 struct sci_port *s = to_sci_port(port); 1566 irqreturn_t ret = IRQ_NONE; 1567 1568 ssr_status = serial_port_in(port, SCxSR); 1569 scr_status = serial_port_in(port, SCSCR); 1570 if (s->overrun_reg == SCxSR) 1571 orer_status = ssr_status; 1572 else { 1573 if (sci_getreg(port, s->overrun_reg)->size) 1574 orer_status = serial_port_in(port, s->overrun_reg); 1575 } 1576 1577 err_enabled = scr_status & port_rx_irq_mask(port); 1578 1579 /* Tx Interrupt */ 1580 if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) && 1581 !s->chan_tx) 1582 ret = sci_tx_interrupt(irq, ptr); 1583 1584 /* 1585 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF / 1586 * DR flags 1587 */ 1588 if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) && 1589 (scr_status & SCSCR_RIE)) 1590 ret = sci_rx_interrupt(irq, ptr); 1591 1592 /* Error Interrupt */ 1593 if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled) 1594 ret = sci_er_interrupt(irq, ptr); 1595 1596 /* Break Interrupt */ 1597 if ((ssr_status & SCxSR_BRK(port)) && err_enabled) 1598 ret = sci_br_interrupt(irq, ptr); 1599 1600 /* Overrun Interrupt */ 1601 if (orer_status & s->overrun_mask) { 1602 sci_handle_fifo_overrun(port); 1603 ret = IRQ_HANDLED; 1604 } 1605 1606 return ret; 1607 } 1608 1609 /* 1610 * Here we define a transition notifier so that we can update all of our 1611 * ports' baud rate when the peripheral clock changes. 1612 */ 1613 static int sci_notifier(struct notifier_block *self, 1614 unsigned long phase, void *p) 1615 { 1616 struct sci_port *sci_port; 1617 unsigned long flags; 1618 1619 sci_port = container_of(self, struct sci_port, freq_transition); 1620 1621 if (phase == CPUFREQ_POSTCHANGE) { 1622 struct uart_port *port = &sci_port->port; 1623 1624 spin_lock_irqsave(&port->lock, flags); 1625 port->uartclk = clk_get_rate(sci_port->iclk); 1626 spin_unlock_irqrestore(&port->lock, flags); 1627 } 1628 1629 return NOTIFY_OK; 1630 } 1631 1632 static const struct sci_irq_desc { 1633 const char *desc; 1634 irq_handler_t handler; 1635 } sci_irq_desc[] = { 1636 /* 1637 * Split out handlers, the default case. 1638 */ 1639 [SCIx_ERI_IRQ] = { 1640 .desc = "rx err", 1641 .handler = sci_er_interrupt, 1642 }, 1643 1644 [SCIx_RXI_IRQ] = { 1645 .desc = "rx full", 1646 .handler = sci_rx_interrupt, 1647 }, 1648 1649 [SCIx_TXI_IRQ] = { 1650 .desc = "tx empty", 1651 .handler = sci_tx_interrupt, 1652 }, 1653 1654 [SCIx_BRI_IRQ] = { 1655 .desc = "break", 1656 .handler = sci_br_interrupt, 1657 }, 1658 1659 /* 1660 * Special muxed handler. 1661 */ 1662 [SCIx_MUX_IRQ] = { 1663 .desc = "mux", 1664 .handler = sci_mpxed_interrupt, 1665 }, 1666 }; 1667 1668 static int sci_request_irq(struct sci_port *port) 1669 { 1670 struct uart_port *up = &port->port; 1671 int i, j, ret = 0; 1672 1673 for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) { 1674 const struct sci_irq_desc *desc; 1675 int irq; 1676 1677 if (SCIx_IRQ_IS_MUXED(port)) { 1678 i = SCIx_MUX_IRQ; 1679 irq = up->irq; 1680 } else { 1681 irq = port->irqs[i]; 1682 1683 /* 1684 * Certain port types won't support all of the 1685 * available interrupt sources. 1686 */ 1687 if (unlikely(irq < 0)) 1688 continue; 1689 } 1690 1691 desc = sci_irq_desc + i; 1692 port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s", 1693 dev_name(up->dev), desc->desc); 1694 if (!port->irqstr[j]) 1695 goto out_nomem; 1696 1697 ret = request_irq(irq, desc->handler, up->irqflags, 1698 port->irqstr[j], port); 1699 if (unlikely(ret)) { 1700 dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc); 1701 goto out_noirq; 1702 } 1703 } 1704 1705 return 0; 1706 1707 out_noirq: 1708 while (--i >= 0) 1709 free_irq(port->irqs[i], port); 1710 1711 out_nomem: 1712 while (--j >= 0) 1713 kfree(port->irqstr[j]); 1714 1715 return ret; 1716 } 1717 1718 static void sci_free_irq(struct sci_port *port) 1719 { 1720 int i; 1721 1722 /* 1723 * Intentionally in reverse order so we iterate over the muxed 1724 * IRQ first. 1725 */ 1726 for (i = 0; i < SCIx_NR_IRQS; i++) { 1727 int irq = port->irqs[i]; 1728 1729 /* 1730 * Certain port types won't support all of the available 1731 * interrupt sources. 1732 */ 1733 if (unlikely(irq < 0)) 1734 continue; 1735 1736 free_irq(port->irqs[i], port); 1737 kfree(port->irqstr[i]); 1738 1739 if (SCIx_IRQ_IS_MUXED(port)) { 1740 /* If there's only one IRQ, we're done. */ 1741 return; 1742 } 1743 } 1744 } 1745 1746 static unsigned int sci_tx_empty(struct uart_port *port) 1747 { 1748 unsigned short status = serial_port_in(port, SCxSR); 1749 unsigned short in_tx_fifo = sci_txfill(port); 1750 1751 return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0; 1752 } 1753 1754 /* 1755 * Modem control is a bit of a mixed bag for SCI(F) ports. Generally 1756 * CTS/RTS is supported in hardware by at least one port and controlled 1757 * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently 1758 * handled via the ->init_pins() op, which is a bit of a one-way street, 1759 * lacking any ability to defer pin control -- this will later be 1760 * converted over to the GPIO framework). 1761 * 1762 * Other modes (such as loopback) are supported generically on certain 1763 * port types, but not others. For these it's sufficient to test for the 1764 * existence of the support register and simply ignore the port type. 1765 */ 1766 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl) 1767 { 1768 if (mctrl & TIOCM_LOOP) { 1769 const struct plat_sci_reg *reg; 1770 1771 /* 1772 * Standard loopback mode for SCFCR ports. 1773 */ 1774 reg = sci_getreg(port, SCFCR); 1775 if (reg->size) 1776 serial_port_out(port, SCFCR, 1777 serial_port_in(port, SCFCR) | 1778 SCFCR_LOOP); 1779 } 1780 } 1781 1782 static unsigned int sci_get_mctrl(struct uart_port *port) 1783 { 1784 /* 1785 * CTS/RTS is handled in hardware when supported, while nothing 1786 * else is wired up. Keep it simple and simply assert DSR/CAR. 1787 */ 1788 return TIOCM_DSR | TIOCM_CAR; 1789 } 1790 1791 static void sci_break_ctl(struct uart_port *port, int break_state) 1792 { 1793 struct sci_port *s = to_sci_port(port); 1794 const struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR; 1795 unsigned short scscr, scsptr; 1796 1797 /* check wheter the port has SCSPTR */ 1798 if (!reg->size) { 1799 /* 1800 * Not supported by hardware. Most parts couple break and rx 1801 * interrupts together, with break detection always enabled. 1802 */ 1803 return; 1804 } 1805 1806 scsptr = serial_port_in(port, SCSPTR); 1807 scscr = serial_port_in(port, SCSCR); 1808 1809 if (break_state == -1) { 1810 scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT; 1811 scscr &= ~SCSCR_TE; 1812 } else { 1813 scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO; 1814 scscr |= SCSCR_TE; 1815 } 1816 1817 serial_port_out(port, SCSPTR, scsptr); 1818 serial_port_out(port, SCSCR, scscr); 1819 } 1820 1821 static int sci_startup(struct uart_port *port) 1822 { 1823 struct sci_port *s = to_sci_port(port); 1824 unsigned long flags; 1825 int ret; 1826 1827 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line); 1828 1829 ret = sci_request_irq(s); 1830 if (unlikely(ret < 0)) 1831 return ret; 1832 1833 sci_request_dma(port); 1834 1835 spin_lock_irqsave(&port->lock, flags); 1836 sci_start_tx(port); 1837 sci_start_rx(port); 1838 spin_unlock_irqrestore(&port->lock, flags); 1839 1840 return 0; 1841 } 1842 1843 static void sci_shutdown(struct uart_port *port) 1844 { 1845 struct sci_port *s = to_sci_port(port); 1846 unsigned long flags; 1847 1848 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line); 1849 1850 spin_lock_irqsave(&port->lock, flags); 1851 sci_stop_rx(port); 1852 sci_stop_tx(port); 1853 spin_unlock_irqrestore(&port->lock, flags); 1854 1855 #ifdef CONFIG_SERIAL_SH_SCI_DMA 1856 if (s->chan_rx) { 1857 dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__, 1858 port->line); 1859 del_timer_sync(&s->rx_timer); 1860 } 1861 #endif 1862 1863 sci_free_dma(port); 1864 sci_free_irq(s); 1865 } 1866 1867 static unsigned int sci_scbrr_calc(struct sci_port *s, unsigned int bps, 1868 unsigned long freq) 1869 { 1870 if (s->sampling_rate) 1871 return DIV_ROUND_CLOSEST(freq, s->sampling_rate * bps) - 1; 1872 1873 /* Warn, but use a safe default */ 1874 WARN_ON(1); 1875 1876 return ((freq + 16 * bps) / (32 * bps) - 1); 1877 } 1878 1879 /* calculate frame length from SMR */ 1880 static int sci_baud_calc_frame_len(unsigned int smr_val) 1881 { 1882 int len = 10; 1883 1884 if (smr_val & SCSMR_CHR) 1885 len--; 1886 if (smr_val & SCSMR_PE) 1887 len++; 1888 if (smr_val & SCSMR_STOP) 1889 len++; 1890 1891 return len; 1892 } 1893 1894 1895 /* calculate sample rate, BRR, and clock select for HSCIF */ 1896 static void sci_baud_calc_hscif(unsigned int bps, unsigned long freq, 1897 int *brr, unsigned int *srr, 1898 unsigned int *cks, int frame_len) 1899 { 1900 int sr, c, br, err, recv_margin; 1901 int min_err = 1000; /* 100% */ 1902 int recv_max_margin = 0; 1903 1904 /* Find the combination of sample rate and clock select with the 1905 smallest deviation from the desired baud rate. */ 1906 for (sr = 8; sr <= 32; sr++) { 1907 for (c = 0; c <= 3; c++) { 1908 /* integerized formulas from HSCIF documentation */ 1909 br = DIV_ROUND_CLOSEST(freq, (sr * 1910 (1 << (2 * c + 1)) * bps)) - 1; 1911 br = clamp(br, 0, 255); 1912 err = DIV_ROUND_CLOSEST(freq, ((br + 1) * bps * sr * 1913 (1 << (2 * c + 1)) / 1000)) - 1914 1000; 1915 /* Calc recv margin 1916 * M: Receive margin (%) 1917 * N: Ratio of bit rate to clock (N = sampling rate) 1918 * D: Clock duty (D = 0 to 1.0) 1919 * L: Frame length (L = 9 to 12) 1920 * F: Absolute value of clock frequency deviation 1921 * 1922 * M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) - 1923 * (|D - 0.5| / N * (1 + F))| 1924 * NOTE: Usually, treat D for 0.5, F is 0 by this 1925 * calculation. 1926 */ 1927 recv_margin = abs((500 - 1928 DIV_ROUND_CLOSEST(1000, sr << 1)) / 10); 1929 if (abs(min_err) > abs(err)) { 1930 min_err = err; 1931 recv_max_margin = recv_margin; 1932 } else if ((min_err == err) && 1933 (recv_margin > recv_max_margin)) 1934 recv_max_margin = recv_margin; 1935 else 1936 continue; 1937 1938 *brr = br; 1939 *srr = sr - 1; 1940 *cks = c; 1941 } 1942 } 1943 1944 if (min_err == 1000) { 1945 WARN_ON(1); 1946 /* use defaults */ 1947 *brr = 255; 1948 *srr = 15; 1949 *cks = 0; 1950 } 1951 } 1952 1953 static void sci_reset(struct uart_port *port) 1954 { 1955 const struct plat_sci_reg *reg; 1956 unsigned int status; 1957 1958 do { 1959 status = serial_port_in(port, SCxSR); 1960 } while (!(status & SCxSR_TEND(port))); 1961 1962 serial_port_out(port, SCSCR, 0x00); /* TE=0, RE=0, CKE1=0 */ 1963 1964 reg = sci_getreg(port, SCFCR); 1965 if (reg->size) 1966 serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST); 1967 } 1968 1969 static void sci_set_termios(struct uart_port *port, struct ktermios *termios, 1970 struct ktermios *old) 1971 { 1972 struct sci_port *s = to_sci_port(port); 1973 const struct plat_sci_reg *reg; 1974 unsigned int baud, smr_val = 0, max_baud, cks = 0; 1975 int t = -1; 1976 unsigned int srr = 15; 1977 1978 if ((termios->c_cflag & CSIZE) == CS7) 1979 smr_val |= SCSMR_CHR; 1980 if (termios->c_cflag & PARENB) 1981 smr_val |= SCSMR_PE; 1982 if (termios->c_cflag & PARODD) 1983 smr_val |= SCSMR_PE | SCSMR_ODD; 1984 if (termios->c_cflag & CSTOPB) 1985 smr_val |= SCSMR_STOP; 1986 1987 /* 1988 * earlyprintk comes here early on with port->uartclk set to zero. 1989 * the clock framework is not up and running at this point so here 1990 * we assume that 115200 is the maximum baud rate. please note that 1991 * the baud rate is not programmed during earlyprintk - it is assumed 1992 * that the previous boot loader has enabled required clocks and 1993 * setup the baud rate generator hardware for us already. 1994 */ 1995 max_baud = port->uartclk ? port->uartclk / 16 : 115200; 1996 1997 baud = uart_get_baud_rate(port, termios, old, 0, max_baud); 1998 if (likely(baud && port->uartclk)) { 1999 if (s->cfg->type == PORT_HSCIF) { 2000 int frame_len = sci_baud_calc_frame_len(smr_val); 2001 sci_baud_calc_hscif(baud, port->uartclk, &t, &srr, 2002 &cks, frame_len); 2003 } else { 2004 t = sci_scbrr_calc(s, baud, port->uartclk); 2005 for (cks = 0; t >= 256 && cks <= 3; cks++) 2006 t >>= 2; 2007 } 2008 } 2009 2010 sci_port_enable(s); 2011 2012 sci_reset(port); 2013 2014 smr_val |= serial_port_in(port, SCSMR) & SCSMR_CKS; 2015 2016 uart_update_timeout(port, termios->c_cflag, baud); 2017 2018 dev_dbg(port->dev, "%s: SMR %x, cks %x, t %x, SCSCR %x\n", 2019 __func__, smr_val, cks, t, s->cfg->scscr); 2020 2021 if (t >= 0) { 2022 serial_port_out(port, SCSMR, (smr_val & ~SCSMR_CKS) | cks); 2023 serial_port_out(port, SCBRR, t); 2024 reg = sci_getreg(port, HSSRR); 2025 if (reg->size) 2026 serial_port_out(port, HSSRR, srr | HSCIF_SRE); 2027 udelay((1000000+(baud-1)) / baud); /* Wait one bit interval */ 2028 } else 2029 serial_port_out(port, SCSMR, smr_val); 2030 2031 sci_init_pins(port, termios->c_cflag); 2032 2033 reg = sci_getreg(port, SCFCR); 2034 if (reg->size) { 2035 unsigned short ctrl = serial_port_in(port, SCFCR); 2036 2037 if (s->cfg->capabilities & SCIx_HAVE_RTSCTS) { 2038 if (termios->c_cflag & CRTSCTS) 2039 ctrl |= SCFCR_MCE; 2040 else 2041 ctrl &= ~SCFCR_MCE; 2042 } 2043 2044 /* 2045 * As we've done a sci_reset() above, ensure we don't 2046 * interfere with the FIFOs while toggling MCE. As the 2047 * reset values could still be set, simply mask them out. 2048 */ 2049 ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST); 2050 2051 serial_port_out(port, SCFCR, ctrl); 2052 } 2053 2054 serial_port_out(port, SCSCR, s->cfg->scscr); 2055 2056 #ifdef CONFIG_SERIAL_SH_SCI_DMA 2057 /* 2058 * Calculate delay for 2 DMA buffers (4 FIFO). 2059 * See serial_core.c::uart_update_timeout(). 2060 * With 10 bits (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above 2061 * function calculates 1 jiffie for the data plus 5 jiffies for the 2062 * "slop(e)." Then below we calculate 5 jiffies (20ms) for 2 DMA 2063 * buffers (4 FIFO sizes), but when performing a faster transfer, the 2064 * value obtained by this formula is too small. Therefore, if the value 2065 * is smaller than 20ms, use 20ms as the timeout value for DMA. 2066 */ 2067 if (s->chan_rx) { 2068 unsigned int bits; 2069 2070 /* byte size and parity */ 2071 switch (termios->c_cflag & CSIZE) { 2072 case CS5: 2073 bits = 7; 2074 break; 2075 case CS6: 2076 bits = 8; 2077 break; 2078 case CS7: 2079 bits = 9; 2080 break; 2081 default: 2082 bits = 10; 2083 break; 2084 } 2085 2086 if (termios->c_cflag & CSTOPB) 2087 bits++; 2088 if (termios->c_cflag & PARENB) 2089 bits++; 2090 s->rx_timeout = DIV_ROUND_UP((s->buf_len_rx * 2 * bits * HZ) / 2091 (baud / 10), 10); 2092 dev_dbg(port->dev, "DMA Rx t-out %ums, tty t-out %u jiffies\n", 2093 s->rx_timeout * 1000 / HZ, port->timeout); 2094 if (s->rx_timeout < msecs_to_jiffies(20)) 2095 s->rx_timeout = msecs_to_jiffies(20); 2096 } 2097 #endif 2098 2099 if ((termios->c_cflag & CREAD) != 0) 2100 sci_start_rx(port); 2101 2102 sci_port_disable(s); 2103 } 2104 2105 static void sci_pm(struct uart_port *port, unsigned int state, 2106 unsigned int oldstate) 2107 { 2108 struct sci_port *sci_port = to_sci_port(port); 2109 2110 switch (state) { 2111 case UART_PM_STATE_OFF: 2112 sci_port_disable(sci_port); 2113 break; 2114 default: 2115 sci_port_enable(sci_port); 2116 break; 2117 } 2118 } 2119 2120 static const char *sci_type(struct uart_port *port) 2121 { 2122 switch (port->type) { 2123 case PORT_IRDA: 2124 return "irda"; 2125 case PORT_SCI: 2126 return "sci"; 2127 case PORT_SCIF: 2128 return "scif"; 2129 case PORT_SCIFA: 2130 return "scifa"; 2131 case PORT_SCIFB: 2132 return "scifb"; 2133 case PORT_HSCIF: 2134 return "hscif"; 2135 } 2136 2137 return NULL; 2138 } 2139 2140 static int sci_remap_port(struct uart_port *port) 2141 { 2142 struct sci_port *sport = to_sci_port(port); 2143 2144 /* 2145 * Nothing to do if there's already an established membase. 2146 */ 2147 if (port->membase) 2148 return 0; 2149 2150 if (port->flags & UPF_IOREMAP) { 2151 port->membase = ioremap_nocache(port->mapbase, sport->reg_size); 2152 if (unlikely(!port->membase)) { 2153 dev_err(port->dev, "can't remap port#%d\n", port->line); 2154 return -ENXIO; 2155 } 2156 } else { 2157 /* 2158 * For the simple (and majority of) cases where we don't 2159 * need to do any remapping, just cast the cookie 2160 * directly. 2161 */ 2162 port->membase = (void __iomem *)(uintptr_t)port->mapbase; 2163 } 2164 2165 return 0; 2166 } 2167 2168 static void sci_release_port(struct uart_port *port) 2169 { 2170 struct sci_port *sport = to_sci_port(port); 2171 2172 if (port->flags & UPF_IOREMAP) { 2173 iounmap(port->membase); 2174 port->membase = NULL; 2175 } 2176 2177 release_mem_region(port->mapbase, sport->reg_size); 2178 } 2179 2180 static int sci_request_port(struct uart_port *port) 2181 { 2182 struct resource *res; 2183 struct sci_port *sport = to_sci_port(port); 2184 int ret; 2185 2186 res = request_mem_region(port->mapbase, sport->reg_size, 2187 dev_name(port->dev)); 2188 if (unlikely(res == NULL)) { 2189 dev_err(port->dev, "request_mem_region failed."); 2190 return -EBUSY; 2191 } 2192 2193 ret = sci_remap_port(port); 2194 if (unlikely(ret != 0)) { 2195 release_resource(res); 2196 return ret; 2197 } 2198 2199 return 0; 2200 } 2201 2202 static void sci_config_port(struct uart_port *port, int flags) 2203 { 2204 if (flags & UART_CONFIG_TYPE) { 2205 struct sci_port *sport = to_sci_port(port); 2206 2207 port->type = sport->cfg->type; 2208 sci_request_port(port); 2209 } 2210 } 2211 2212 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser) 2213 { 2214 if (ser->baud_base < 2400) 2215 /* No paper tape reader for Mitch.. */ 2216 return -EINVAL; 2217 2218 return 0; 2219 } 2220 2221 static struct uart_ops sci_uart_ops = { 2222 .tx_empty = sci_tx_empty, 2223 .set_mctrl = sci_set_mctrl, 2224 .get_mctrl = sci_get_mctrl, 2225 .start_tx = sci_start_tx, 2226 .stop_tx = sci_stop_tx, 2227 .stop_rx = sci_stop_rx, 2228 .break_ctl = sci_break_ctl, 2229 .startup = sci_startup, 2230 .shutdown = sci_shutdown, 2231 .set_termios = sci_set_termios, 2232 .pm = sci_pm, 2233 .type = sci_type, 2234 .release_port = sci_release_port, 2235 .request_port = sci_request_port, 2236 .config_port = sci_config_port, 2237 .verify_port = sci_verify_port, 2238 #ifdef CONFIG_CONSOLE_POLL 2239 .poll_get_char = sci_poll_get_char, 2240 .poll_put_char = sci_poll_put_char, 2241 #endif 2242 }; 2243 2244 static int sci_init_single(struct platform_device *dev, 2245 struct sci_port *sci_port, unsigned int index, 2246 struct plat_sci_port *p, bool early) 2247 { 2248 struct uart_port *port = &sci_port->port; 2249 const struct resource *res; 2250 unsigned int i; 2251 int ret; 2252 2253 sci_port->cfg = p; 2254 2255 port->ops = &sci_uart_ops; 2256 port->iotype = UPIO_MEM; 2257 port->line = index; 2258 2259 res = platform_get_resource(dev, IORESOURCE_MEM, 0); 2260 if (res == NULL) 2261 return -ENOMEM; 2262 2263 port->mapbase = res->start; 2264 sci_port->reg_size = resource_size(res); 2265 2266 for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i) 2267 sci_port->irqs[i] = platform_get_irq(dev, i); 2268 2269 /* The SCI generates several interrupts. They can be muxed together or 2270 * connected to different interrupt lines. In the muxed case only one 2271 * interrupt resource is specified. In the non-muxed case three or four 2272 * interrupt resources are specified, as the BRI interrupt is optional. 2273 */ 2274 if (sci_port->irqs[0] < 0) 2275 return -ENXIO; 2276 2277 if (sci_port->irqs[1] < 0) { 2278 sci_port->irqs[1] = sci_port->irqs[0]; 2279 sci_port->irqs[2] = sci_port->irqs[0]; 2280 sci_port->irqs[3] = sci_port->irqs[0]; 2281 } 2282 2283 if (p->regtype == SCIx_PROBE_REGTYPE) { 2284 ret = sci_probe_regmap(p); 2285 if (unlikely(ret)) 2286 return ret; 2287 } 2288 2289 switch (p->type) { 2290 case PORT_SCIFB: 2291 port->fifosize = 256; 2292 sci_port->overrun_reg = SCxSR; 2293 sci_port->overrun_mask = SCIFA_ORER; 2294 sci_port->sampling_rate = 16; 2295 break; 2296 case PORT_HSCIF: 2297 port->fifosize = 128; 2298 sci_port->overrun_reg = SCLSR; 2299 sci_port->overrun_mask = SCLSR_ORER; 2300 sci_port->sampling_rate = 0; 2301 break; 2302 case PORT_SCIFA: 2303 port->fifosize = 64; 2304 sci_port->overrun_reg = SCxSR; 2305 sci_port->overrun_mask = SCIFA_ORER; 2306 sci_port->sampling_rate = 16; 2307 break; 2308 case PORT_SCIF: 2309 port->fifosize = 16; 2310 if (p->regtype == SCIx_SH7705_SCIF_REGTYPE) { 2311 sci_port->overrun_reg = SCxSR; 2312 sci_port->overrun_mask = SCIFA_ORER; 2313 sci_port->sampling_rate = 16; 2314 } else { 2315 sci_port->overrun_reg = SCLSR; 2316 sci_port->overrun_mask = SCLSR_ORER; 2317 sci_port->sampling_rate = 32; 2318 } 2319 break; 2320 default: 2321 port->fifosize = 1; 2322 sci_port->overrun_reg = SCxSR; 2323 sci_port->overrun_mask = SCI_ORER; 2324 sci_port->sampling_rate = 32; 2325 break; 2326 } 2327 2328 /* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't 2329 * match the SoC datasheet, this should be investigated. Let platform 2330 * data override the sampling rate for now. 2331 */ 2332 if (p->sampling_rate) 2333 sci_port->sampling_rate = p->sampling_rate; 2334 2335 if (!early) { 2336 sci_port->iclk = clk_get(&dev->dev, "sci_ick"); 2337 if (IS_ERR(sci_port->iclk)) { 2338 sci_port->iclk = clk_get(&dev->dev, "peripheral_clk"); 2339 if (IS_ERR(sci_port->iclk)) { 2340 dev_err(&dev->dev, "can't get iclk\n"); 2341 return PTR_ERR(sci_port->iclk); 2342 } 2343 } 2344 2345 /* 2346 * The function clock is optional, ignore it if we can't 2347 * find it. 2348 */ 2349 sci_port->fclk = clk_get(&dev->dev, "sci_fck"); 2350 if (IS_ERR(sci_port->fclk)) 2351 sci_port->fclk = NULL; 2352 2353 port->dev = &dev->dev; 2354 2355 pm_runtime_enable(&dev->dev); 2356 } 2357 2358 sci_port->break_timer.data = (unsigned long)sci_port; 2359 sci_port->break_timer.function = sci_break_timer; 2360 init_timer(&sci_port->break_timer); 2361 2362 /* 2363 * Establish some sensible defaults for the error detection. 2364 */ 2365 if (p->type == PORT_SCI) { 2366 sci_port->error_mask = SCI_DEFAULT_ERROR_MASK; 2367 sci_port->error_clear = SCI_ERROR_CLEAR; 2368 } else { 2369 sci_port->error_mask = SCIF_DEFAULT_ERROR_MASK; 2370 sci_port->error_clear = SCIF_ERROR_CLEAR; 2371 } 2372 2373 /* 2374 * Make the error mask inclusive of overrun detection, if 2375 * supported. 2376 */ 2377 if (sci_port->overrun_reg == SCxSR) { 2378 sci_port->error_mask |= sci_port->overrun_mask; 2379 sci_port->error_clear &= ~sci_port->overrun_mask; 2380 } 2381 2382 port->type = p->type; 2383 port->flags = UPF_FIXED_PORT | p->flags; 2384 port->regshift = p->regshift; 2385 2386 /* 2387 * The UART port needs an IRQ value, so we peg this to the RX IRQ 2388 * for the multi-IRQ ports, which is where we are primarily 2389 * concerned with the shutdown path synchronization. 2390 * 2391 * For the muxed case there's nothing more to do. 2392 */ 2393 port->irq = sci_port->irqs[SCIx_RXI_IRQ]; 2394 port->irqflags = 0; 2395 2396 port->serial_in = sci_serial_in; 2397 port->serial_out = sci_serial_out; 2398 2399 if (p->dma_slave_tx > 0 && p->dma_slave_rx > 0) 2400 dev_dbg(port->dev, "DMA tx %d, rx %d\n", 2401 p->dma_slave_tx, p->dma_slave_rx); 2402 2403 return 0; 2404 } 2405 2406 static void sci_cleanup_single(struct sci_port *port) 2407 { 2408 clk_put(port->iclk); 2409 clk_put(port->fclk); 2410 2411 pm_runtime_disable(port->port.dev); 2412 } 2413 2414 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE 2415 static void serial_console_putchar(struct uart_port *port, int ch) 2416 { 2417 sci_poll_put_char(port, ch); 2418 } 2419 2420 /* 2421 * Print a string to the serial port trying not to disturb 2422 * any possible real use of the port... 2423 */ 2424 static void serial_console_write(struct console *co, const char *s, 2425 unsigned count) 2426 { 2427 struct sci_port *sci_port = &sci_ports[co->index]; 2428 struct uart_port *port = &sci_port->port; 2429 unsigned short bits, ctrl; 2430 unsigned long flags; 2431 int locked = 1; 2432 2433 local_irq_save(flags); 2434 if (port->sysrq) 2435 locked = 0; 2436 else if (oops_in_progress) 2437 locked = spin_trylock(&port->lock); 2438 else 2439 spin_lock(&port->lock); 2440 2441 /* first save the SCSCR then disable the interrupts */ 2442 ctrl = serial_port_in(port, SCSCR); 2443 serial_port_out(port, SCSCR, sci_port->cfg->scscr); 2444 2445 uart_console_write(port, s, count, serial_console_putchar); 2446 2447 /* wait until fifo is empty and last bit has been transmitted */ 2448 bits = SCxSR_TDxE(port) | SCxSR_TEND(port); 2449 while ((serial_port_in(port, SCxSR) & bits) != bits) 2450 cpu_relax(); 2451 2452 /* restore the SCSCR */ 2453 serial_port_out(port, SCSCR, ctrl); 2454 2455 if (locked) 2456 spin_unlock(&port->lock); 2457 local_irq_restore(flags); 2458 } 2459 2460 static int serial_console_setup(struct console *co, char *options) 2461 { 2462 struct sci_port *sci_port; 2463 struct uart_port *port; 2464 int baud = 115200; 2465 int bits = 8; 2466 int parity = 'n'; 2467 int flow = 'n'; 2468 int ret; 2469 2470 /* 2471 * Refuse to handle any bogus ports. 2472 */ 2473 if (co->index < 0 || co->index >= SCI_NPORTS) 2474 return -ENODEV; 2475 2476 sci_port = &sci_ports[co->index]; 2477 port = &sci_port->port; 2478 2479 /* 2480 * Refuse to handle uninitialized ports. 2481 */ 2482 if (!port->ops) 2483 return -ENODEV; 2484 2485 ret = sci_remap_port(port); 2486 if (unlikely(ret != 0)) 2487 return ret; 2488 2489 if (options) 2490 uart_parse_options(options, &baud, &parity, &bits, &flow); 2491 2492 return uart_set_options(port, co, baud, parity, bits, flow); 2493 } 2494 2495 static struct console serial_console = { 2496 .name = "ttySC", 2497 .device = uart_console_device, 2498 .write = serial_console_write, 2499 .setup = serial_console_setup, 2500 .flags = CON_PRINTBUFFER, 2501 .index = -1, 2502 .data = &sci_uart_driver, 2503 }; 2504 2505 static struct console early_serial_console = { 2506 .name = "early_ttySC", 2507 .write = serial_console_write, 2508 .flags = CON_PRINTBUFFER, 2509 .index = -1, 2510 }; 2511 2512 static char early_serial_buf[32]; 2513 2514 static int sci_probe_earlyprintk(struct platform_device *pdev) 2515 { 2516 struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev); 2517 2518 if (early_serial_console.data) 2519 return -EEXIST; 2520 2521 early_serial_console.index = pdev->id; 2522 2523 sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true); 2524 2525 serial_console_setup(&early_serial_console, early_serial_buf); 2526 2527 if (!strstr(early_serial_buf, "keep")) 2528 early_serial_console.flags |= CON_BOOT; 2529 2530 register_console(&early_serial_console); 2531 return 0; 2532 } 2533 2534 #define SCI_CONSOLE (&serial_console) 2535 2536 #else 2537 static inline int sci_probe_earlyprintk(struct platform_device *pdev) 2538 { 2539 return -EINVAL; 2540 } 2541 2542 #define SCI_CONSOLE NULL 2543 2544 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE */ 2545 2546 static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized"; 2547 2548 static struct uart_driver sci_uart_driver = { 2549 .owner = THIS_MODULE, 2550 .driver_name = "sci", 2551 .dev_name = "ttySC", 2552 .major = SCI_MAJOR, 2553 .minor = SCI_MINOR_START, 2554 .nr = SCI_NPORTS, 2555 .cons = SCI_CONSOLE, 2556 }; 2557 2558 static int sci_remove(struct platform_device *dev) 2559 { 2560 struct sci_port *port = platform_get_drvdata(dev); 2561 2562 cpufreq_unregister_notifier(&port->freq_transition, 2563 CPUFREQ_TRANSITION_NOTIFIER); 2564 2565 uart_remove_one_port(&sci_uart_driver, &port->port); 2566 2567 sci_cleanup_single(port); 2568 2569 return 0; 2570 } 2571 2572 struct sci_port_info { 2573 unsigned int type; 2574 unsigned int regtype; 2575 }; 2576 2577 static const struct of_device_id of_sci_match[] = { 2578 { 2579 .compatible = "renesas,scif", 2580 .data = &(const struct sci_port_info) { 2581 .type = PORT_SCIF, 2582 .regtype = SCIx_SH4_SCIF_REGTYPE, 2583 }, 2584 }, { 2585 .compatible = "renesas,scifa", 2586 .data = &(const struct sci_port_info) { 2587 .type = PORT_SCIFA, 2588 .regtype = SCIx_SCIFA_REGTYPE, 2589 }, 2590 }, { 2591 .compatible = "renesas,scifb", 2592 .data = &(const struct sci_port_info) { 2593 .type = PORT_SCIFB, 2594 .regtype = SCIx_SCIFB_REGTYPE, 2595 }, 2596 }, { 2597 .compatible = "renesas,hscif", 2598 .data = &(const struct sci_port_info) { 2599 .type = PORT_HSCIF, 2600 .regtype = SCIx_HSCIF_REGTYPE, 2601 }, 2602 }, { 2603 .compatible = "renesas,sci", 2604 .data = &(const struct sci_port_info) { 2605 .type = PORT_SCI, 2606 .regtype = SCIx_SCI_REGTYPE, 2607 }, 2608 }, { 2609 /* Terminator */ 2610 }, 2611 }; 2612 MODULE_DEVICE_TABLE(of, of_sci_match); 2613 2614 static struct plat_sci_port * 2615 sci_parse_dt(struct platform_device *pdev, unsigned int *dev_id) 2616 { 2617 struct device_node *np = pdev->dev.of_node; 2618 const struct of_device_id *match; 2619 const struct sci_port_info *info; 2620 struct plat_sci_port *p; 2621 int id; 2622 2623 if (!IS_ENABLED(CONFIG_OF) || !np) 2624 return NULL; 2625 2626 match = of_match_node(of_sci_match, pdev->dev.of_node); 2627 if (!match) 2628 return NULL; 2629 2630 info = match->data; 2631 2632 p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL); 2633 if (!p) 2634 return NULL; 2635 2636 /* Get the line number for the aliases node. */ 2637 id = of_alias_get_id(np, "serial"); 2638 if (id < 0) { 2639 dev_err(&pdev->dev, "failed to get alias id (%d)\n", id); 2640 return NULL; 2641 } 2642 2643 *dev_id = id; 2644 2645 p->flags = UPF_IOREMAP | UPF_BOOT_AUTOCONF; 2646 p->type = info->type; 2647 p->regtype = info->regtype; 2648 p->scscr = SCSCR_RE | SCSCR_TE; 2649 2650 return p; 2651 } 2652 2653 static int sci_probe_single(struct platform_device *dev, 2654 unsigned int index, 2655 struct plat_sci_port *p, 2656 struct sci_port *sciport) 2657 { 2658 int ret; 2659 2660 /* Sanity check */ 2661 if (unlikely(index >= SCI_NPORTS)) { 2662 dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n", 2663 index+1, SCI_NPORTS); 2664 dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n"); 2665 return -EINVAL; 2666 } 2667 2668 ret = sci_init_single(dev, sciport, index, p, false); 2669 if (ret) 2670 return ret; 2671 2672 ret = uart_add_one_port(&sci_uart_driver, &sciport->port); 2673 if (ret) { 2674 sci_cleanup_single(sciport); 2675 return ret; 2676 } 2677 2678 return 0; 2679 } 2680 2681 static int sci_probe(struct platform_device *dev) 2682 { 2683 struct plat_sci_port *p; 2684 struct sci_port *sp; 2685 unsigned int dev_id; 2686 int ret; 2687 2688 /* 2689 * If we've come here via earlyprintk initialization, head off to 2690 * the special early probe. We don't have sufficient device state 2691 * to make it beyond this yet. 2692 */ 2693 if (is_early_platform_device(dev)) 2694 return sci_probe_earlyprintk(dev); 2695 2696 if (dev->dev.of_node) { 2697 p = sci_parse_dt(dev, &dev_id); 2698 if (p == NULL) 2699 return -EINVAL; 2700 } else { 2701 p = dev->dev.platform_data; 2702 if (p == NULL) { 2703 dev_err(&dev->dev, "no platform data supplied\n"); 2704 return -EINVAL; 2705 } 2706 2707 dev_id = dev->id; 2708 } 2709 2710 sp = &sci_ports[dev_id]; 2711 platform_set_drvdata(dev, sp); 2712 2713 ret = sci_probe_single(dev, dev_id, p, sp); 2714 if (ret) 2715 return ret; 2716 2717 sp->freq_transition.notifier_call = sci_notifier; 2718 2719 ret = cpufreq_register_notifier(&sp->freq_transition, 2720 CPUFREQ_TRANSITION_NOTIFIER); 2721 if (unlikely(ret < 0)) { 2722 uart_remove_one_port(&sci_uart_driver, &sp->port); 2723 sci_cleanup_single(sp); 2724 return ret; 2725 } 2726 2727 #ifdef CONFIG_SH_STANDARD_BIOS 2728 sh_bios_gdb_detach(); 2729 #endif 2730 2731 return 0; 2732 } 2733 2734 static __maybe_unused int sci_suspend(struct device *dev) 2735 { 2736 struct sci_port *sport = dev_get_drvdata(dev); 2737 2738 if (sport) 2739 uart_suspend_port(&sci_uart_driver, &sport->port); 2740 2741 return 0; 2742 } 2743 2744 static __maybe_unused int sci_resume(struct device *dev) 2745 { 2746 struct sci_port *sport = dev_get_drvdata(dev); 2747 2748 if (sport) 2749 uart_resume_port(&sci_uart_driver, &sport->port); 2750 2751 return 0; 2752 } 2753 2754 static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume); 2755 2756 static struct platform_driver sci_driver = { 2757 .probe = sci_probe, 2758 .remove = sci_remove, 2759 .driver = { 2760 .name = "sh-sci", 2761 .pm = &sci_dev_pm_ops, 2762 .of_match_table = of_match_ptr(of_sci_match), 2763 }, 2764 }; 2765 2766 static int __init sci_init(void) 2767 { 2768 int ret; 2769 2770 pr_info("%s\n", banner); 2771 2772 ret = uart_register_driver(&sci_uart_driver); 2773 if (likely(ret == 0)) { 2774 ret = platform_driver_register(&sci_driver); 2775 if (unlikely(ret)) 2776 uart_unregister_driver(&sci_uart_driver); 2777 } 2778 2779 return ret; 2780 } 2781 2782 static void __exit sci_exit(void) 2783 { 2784 platform_driver_unregister(&sci_driver); 2785 uart_unregister_driver(&sci_uart_driver); 2786 } 2787 2788 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE 2789 early_platform_init_buffer("earlyprintk", &sci_driver, 2790 early_serial_buf, ARRAY_SIZE(early_serial_buf)); 2791 #endif 2792 module_init(sci_init); 2793 module_exit(sci_exit); 2794 2795 MODULE_LICENSE("GPL"); 2796 MODULE_ALIAS("platform:sh-sci"); 2797 MODULE_AUTHOR("Paul Mundt"); 2798 MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver"); 2799