xref: /openbmc/linux/drivers/tty/serial/sh-sci.c (revision aac5987a)
1 /*
2  * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
3  *
4  *  Copyright (C) 2002 - 2011  Paul Mundt
5  *  Copyright (C) 2015 Glider bvba
6  *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
7  *
8  * based off of the old drivers/char/sh-sci.c by:
9  *
10  *   Copyright (C) 1999, 2000  Niibe Yutaka
11  *   Copyright (C) 2000  Sugioka Toshinobu
12  *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
13  *   Modified to support SecureEdge. David McCullough (2002)
14  *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
15  *   Removed SH7300 support (Jul 2007).
16  *
17  * This file is subject to the terms and conditions of the GNU General Public
18  * License.  See the file "COPYING" in the main directory of this archive
19  * for more details.
20  */
21 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
22 #define SUPPORT_SYSRQ
23 #endif
24 
25 #undef DEBUG
26 
27 #include <linux/clk.h>
28 #include <linux/console.h>
29 #include <linux/ctype.h>
30 #include <linux/cpufreq.h>
31 #include <linux/delay.h>
32 #include <linux/dmaengine.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/err.h>
35 #include <linux/errno.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/ioport.h>
39 #include <linux/major.h>
40 #include <linux/module.h>
41 #include <linux/mm.h>
42 #include <linux/of.h>
43 #include <linux/platform_device.h>
44 #include <linux/pm_runtime.h>
45 #include <linux/scatterlist.h>
46 #include <linux/serial.h>
47 #include <linux/serial_sci.h>
48 #include <linux/sh_dma.h>
49 #include <linux/slab.h>
50 #include <linux/string.h>
51 #include <linux/sysrq.h>
52 #include <linux/timer.h>
53 #include <linux/tty.h>
54 #include <linux/tty_flip.h>
55 
56 #ifdef CONFIG_SUPERH
57 #include <asm/sh_bios.h>
58 #endif
59 
60 #include "serial_mctrl_gpio.h"
61 #include "sh-sci.h"
62 
63 /* Offsets into the sci_port->irqs array */
64 enum {
65 	SCIx_ERI_IRQ,
66 	SCIx_RXI_IRQ,
67 	SCIx_TXI_IRQ,
68 	SCIx_BRI_IRQ,
69 	SCIx_NR_IRQS,
70 
71 	SCIx_MUX_IRQ = SCIx_NR_IRQS,	/* special case */
72 };
73 
74 #define SCIx_IRQ_IS_MUXED(port)			\
75 	((port)->irqs[SCIx_ERI_IRQ] ==	\
76 	 (port)->irqs[SCIx_RXI_IRQ]) ||	\
77 	((port)->irqs[SCIx_ERI_IRQ] &&	\
78 	 ((port)->irqs[SCIx_RXI_IRQ] < 0))
79 
80 enum SCI_CLKS {
81 	SCI_FCK,		/* Functional Clock */
82 	SCI_SCK,		/* Optional External Clock */
83 	SCI_BRG_INT,		/* Optional BRG Internal Clock Source */
84 	SCI_SCIF_CLK,		/* Optional BRG External Clock Source */
85 	SCI_NUM_CLKS
86 };
87 
88 /* Bit x set means sampling rate x + 1 is supported */
89 #define SCI_SR(x)		BIT((x) - 1)
90 #define SCI_SR_RANGE(x, y)	GENMASK((y) - 1, (x) - 1)
91 
92 #define SCI_SR_SCIFAB		SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \
93 				SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \
94 				SCI_SR(19) | SCI_SR(27)
95 
96 #define min_sr(_port)		ffs((_port)->sampling_rate_mask)
97 #define max_sr(_port)		fls((_port)->sampling_rate_mask)
98 
99 /* Iterate over all supported sampling rates, from high to low */
100 #define for_each_sr(_sr, _port)						\
101 	for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--)	\
102 		if ((_port)->sampling_rate_mask & SCI_SR((_sr)))
103 
104 struct plat_sci_reg {
105 	u8 offset, size;
106 };
107 
108 struct sci_port_params {
109 	const struct plat_sci_reg regs[SCIx_NR_REGS];
110 	unsigned int fifosize;
111 	unsigned int overrun_reg;
112 	unsigned int overrun_mask;
113 	unsigned int sampling_rate_mask;
114 	unsigned int error_mask;
115 	unsigned int error_clear;
116 };
117 
118 struct sci_port {
119 	struct uart_port	port;
120 
121 	/* Platform configuration */
122 	const struct sci_port_params *params;
123 	const struct plat_sci_port *cfg;
124 	unsigned int		sampling_rate_mask;
125 	resource_size_t		reg_size;
126 	struct mctrl_gpios	*gpios;
127 
128 	/* Clocks */
129 	struct clk		*clks[SCI_NUM_CLKS];
130 	unsigned long		clk_rates[SCI_NUM_CLKS];
131 
132 	int			irqs[SCIx_NR_IRQS];
133 	char			*irqstr[SCIx_NR_IRQS];
134 
135 	struct dma_chan			*chan_tx;
136 	struct dma_chan			*chan_rx;
137 
138 #ifdef CONFIG_SERIAL_SH_SCI_DMA
139 	dma_cookie_t			cookie_tx;
140 	dma_cookie_t			cookie_rx[2];
141 	dma_cookie_t			active_rx;
142 	dma_addr_t			tx_dma_addr;
143 	unsigned int			tx_dma_len;
144 	struct scatterlist		sg_rx[2];
145 	void				*rx_buf[2];
146 	size_t				buf_len_rx;
147 	struct work_struct		work_tx;
148 	struct timer_list		rx_timer;
149 	unsigned int			rx_timeout;
150 #endif
151 	unsigned int			rx_frame;
152 	int				rx_trigger;
153 	struct timer_list		rx_fifo_timer;
154 	int				rx_fifo_timeout;
155 
156 	bool has_rtscts;
157 	bool autorts;
158 };
159 
160 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
161 
162 static struct sci_port sci_ports[SCI_NPORTS];
163 static struct uart_driver sci_uart_driver;
164 
165 static inline struct sci_port *
166 to_sci_port(struct uart_port *uart)
167 {
168 	return container_of(uart, struct sci_port, port);
169 }
170 
171 static const struct sci_port_params sci_port_params[SCIx_NR_REGTYPES] = {
172 	/*
173 	 * Common SCI definitions, dependent on the port's regshift
174 	 * value.
175 	 */
176 	[SCIx_SCI_REGTYPE] = {
177 		.regs = {
178 			[SCSMR]		= { 0x00,  8 },
179 			[SCBRR]		= { 0x01,  8 },
180 			[SCSCR]		= { 0x02,  8 },
181 			[SCxTDR]	= { 0x03,  8 },
182 			[SCxSR]		= { 0x04,  8 },
183 			[SCxRDR]	= { 0x05,  8 },
184 		},
185 		.fifosize = 1,
186 		.overrun_reg = SCxSR,
187 		.overrun_mask = SCI_ORER,
188 		.sampling_rate_mask = SCI_SR(32),
189 		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
190 		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
191 	},
192 
193 	/*
194 	 * Common definitions for legacy IrDA ports.
195 	 */
196 	[SCIx_IRDA_REGTYPE] = {
197 		.regs = {
198 			[SCSMR]		= { 0x00,  8 },
199 			[SCBRR]		= { 0x02,  8 },
200 			[SCSCR]		= { 0x04,  8 },
201 			[SCxTDR]	= { 0x06,  8 },
202 			[SCxSR]		= { 0x08, 16 },
203 			[SCxRDR]	= { 0x0a,  8 },
204 			[SCFCR]		= { 0x0c,  8 },
205 			[SCFDR]		= { 0x0e, 16 },
206 		},
207 		.fifosize = 1,
208 		.overrun_reg = SCxSR,
209 		.overrun_mask = SCI_ORER,
210 		.sampling_rate_mask = SCI_SR(32),
211 		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
212 		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
213 	},
214 
215 	/*
216 	 * Common SCIFA definitions.
217 	 */
218 	[SCIx_SCIFA_REGTYPE] = {
219 		.regs = {
220 			[SCSMR]		= { 0x00, 16 },
221 			[SCBRR]		= { 0x04,  8 },
222 			[SCSCR]		= { 0x08, 16 },
223 			[SCxTDR]	= { 0x20,  8 },
224 			[SCxSR]		= { 0x14, 16 },
225 			[SCxRDR]	= { 0x24,  8 },
226 			[SCFCR]		= { 0x18, 16 },
227 			[SCFDR]		= { 0x1c, 16 },
228 			[SCPCR]		= { 0x30, 16 },
229 			[SCPDR]		= { 0x34, 16 },
230 		},
231 		.fifosize = 64,
232 		.overrun_reg = SCxSR,
233 		.overrun_mask = SCIFA_ORER,
234 		.sampling_rate_mask = SCI_SR_SCIFAB,
235 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
236 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
237 	},
238 
239 	/*
240 	 * Common SCIFB definitions.
241 	 */
242 	[SCIx_SCIFB_REGTYPE] = {
243 		.regs = {
244 			[SCSMR]		= { 0x00, 16 },
245 			[SCBRR]		= { 0x04,  8 },
246 			[SCSCR]		= { 0x08, 16 },
247 			[SCxTDR]	= { 0x40,  8 },
248 			[SCxSR]		= { 0x14, 16 },
249 			[SCxRDR]	= { 0x60,  8 },
250 			[SCFCR]		= { 0x18, 16 },
251 			[SCTFDR]	= { 0x38, 16 },
252 			[SCRFDR]	= { 0x3c, 16 },
253 			[SCPCR]		= { 0x30, 16 },
254 			[SCPDR]		= { 0x34, 16 },
255 		},
256 		.fifosize = 256,
257 		.overrun_reg = SCxSR,
258 		.overrun_mask = SCIFA_ORER,
259 		.sampling_rate_mask = SCI_SR_SCIFAB,
260 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
261 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
262 	},
263 
264 	/*
265 	 * Common SH-2(A) SCIF definitions for ports with FIFO data
266 	 * count registers.
267 	 */
268 	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
269 		.regs = {
270 			[SCSMR]		= { 0x00, 16 },
271 			[SCBRR]		= { 0x04,  8 },
272 			[SCSCR]		= { 0x08, 16 },
273 			[SCxTDR]	= { 0x0c,  8 },
274 			[SCxSR]		= { 0x10, 16 },
275 			[SCxRDR]	= { 0x14,  8 },
276 			[SCFCR]		= { 0x18, 16 },
277 			[SCFDR]		= { 0x1c, 16 },
278 			[SCSPTR]	= { 0x20, 16 },
279 			[SCLSR]		= { 0x24, 16 },
280 		},
281 		.fifosize = 16,
282 		.overrun_reg = SCLSR,
283 		.overrun_mask = SCLSR_ORER,
284 		.sampling_rate_mask = SCI_SR(32),
285 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
286 		.error_clear = SCIF_ERROR_CLEAR,
287 	},
288 
289 	/*
290 	 * Common SH-3 SCIF definitions.
291 	 */
292 	[SCIx_SH3_SCIF_REGTYPE] = {
293 		.regs = {
294 			[SCSMR]		= { 0x00,  8 },
295 			[SCBRR]		= { 0x02,  8 },
296 			[SCSCR]		= { 0x04,  8 },
297 			[SCxTDR]	= { 0x06,  8 },
298 			[SCxSR]		= { 0x08, 16 },
299 			[SCxRDR]	= { 0x0a,  8 },
300 			[SCFCR]		= { 0x0c,  8 },
301 			[SCFDR]		= { 0x0e, 16 },
302 		},
303 		.fifosize = 16,
304 		.overrun_reg = SCLSR,
305 		.overrun_mask = SCLSR_ORER,
306 		.sampling_rate_mask = SCI_SR(32),
307 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
308 		.error_clear = SCIF_ERROR_CLEAR,
309 	},
310 
311 	/*
312 	 * Common SH-4(A) SCIF(B) definitions.
313 	 */
314 	[SCIx_SH4_SCIF_REGTYPE] = {
315 		.regs = {
316 			[SCSMR]		= { 0x00, 16 },
317 			[SCBRR]		= { 0x04,  8 },
318 			[SCSCR]		= { 0x08, 16 },
319 			[SCxTDR]	= { 0x0c,  8 },
320 			[SCxSR]		= { 0x10, 16 },
321 			[SCxRDR]	= { 0x14,  8 },
322 			[SCFCR]		= { 0x18, 16 },
323 			[SCFDR]		= { 0x1c, 16 },
324 			[SCSPTR]	= { 0x20, 16 },
325 			[SCLSR]		= { 0x24, 16 },
326 		},
327 		.fifosize = 16,
328 		.overrun_reg = SCLSR,
329 		.overrun_mask = SCLSR_ORER,
330 		.sampling_rate_mask = SCI_SR(32),
331 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
332 		.error_clear = SCIF_ERROR_CLEAR,
333 	},
334 
335 	/*
336 	 * Common SCIF definitions for ports with a Baud Rate Generator for
337 	 * External Clock (BRG).
338 	 */
339 	[SCIx_SH4_SCIF_BRG_REGTYPE] = {
340 		.regs = {
341 			[SCSMR]		= { 0x00, 16 },
342 			[SCBRR]		= { 0x04,  8 },
343 			[SCSCR]		= { 0x08, 16 },
344 			[SCxTDR]	= { 0x0c,  8 },
345 			[SCxSR]		= { 0x10, 16 },
346 			[SCxRDR]	= { 0x14,  8 },
347 			[SCFCR]		= { 0x18, 16 },
348 			[SCFDR]		= { 0x1c, 16 },
349 			[SCSPTR]	= { 0x20, 16 },
350 			[SCLSR]		= { 0x24, 16 },
351 			[SCDL]		= { 0x30, 16 },
352 			[SCCKS]		= { 0x34, 16 },
353 		},
354 		.fifosize = 16,
355 		.overrun_reg = SCLSR,
356 		.overrun_mask = SCLSR_ORER,
357 		.sampling_rate_mask = SCI_SR(32),
358 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
359 		.error_clear = SCIF_ERROR_CLEAR,
360 	},
361 
362 	/*
363 	 * Common HSCIF definitions.
364 	 */
365 	[SCIx_HSCIF_REGTYPE] = {
366 		.regs = {
367 			[SCSMR]		= { 0x00, 16 },
368 			[SCBRR]		= { 0x04,  8 },
369 			[SCSCR]		= { 0x08, 16 },
370 			[SCxTDR]	= { 0x0c,  8 },
371 			[SCxSR]		= { 0x10, 16 },
372 			[SCxRDR]	= { 0x14,  8 },
373 			[SCFCR]		= { 0x18, 16 },
374 			[SCFDR]		= { 0x1c, 16 },
375 			[SCSPTR]	= { 0x20, 16 },
376 			[SCLSR]		= { 0x24, 16 },
377 			[HSSRR]		= { 0x40, 16 },
378 			[SCDL]		= { 0x30, 16 },
379 			[SCCKS]		= { 0x34, 16 },
380 			[HSRTRGR]	= { 0x54, 16 },
381 			[HSTTRGR]	= { 0x58, 16 },
382 		},
383 		.fifosize = 128,
384 		.overrun_reg = SCLSR,
385 		.overrun_mask = SCLSR_ORER,
386 		.sampling_rate_mask = SCI_SR_RANGE(8, 32),
387 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
388 		.error_clear = SCIF_ERROR_CLEAR,
389 	},
390 
391 	/*
392 	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
393 	 * register.
394 	 */
395 	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
396 		.regs = {
397 			[SCSMR]		= { 0x00, 16 },
398 			[SCBRR]		= { 0x04,  8 },
399 			[SCSCR]		= { 0x08, 16 },
400 			[SCxTDR]	= { 0x0c,  8 },
401 			[SCxSR]		= { 0x10, 16 },
402 			[SCxRDR]	= { 0x14,  8 },
403 			[SCFCR]		= { 0x18, 16 },
404 			[SCFDR]		= { 0x1c, 16 },
405 			[SCLSR]		= { 0x24, 16 },
406 		},
407 		.fifosize = 16,
408 		.overrun_reg = SCLSR,
409 		.overrun_mask = SCLSR_ORER,
410 		.sampling_rate_mask = SCI_SR(32),
411 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
412 		.error_clear = SCIF_ERROR_CLEAR,
413 	},
414 
415 	/*
416 	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
417 	 * count registers.
418 	 */
419 	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
420 		.regs = {
421 			[SCSMR]		= { 0x00, 16 },
422 			[SCBRR]		= { 0x04,  8 },
423 			[SCSCR]		= { 0x08, 16 },
424 			[SCxTDR]	= { 0x0c,  8 },
425 			[SCxSR]		= { 0x10, 16 },
426 			[SCxRDR]	= { 0x14,  8 },
427 			[SCFCR]		= { 0x18, 16 },
428 			[SCFDR]		= { 0x1c, 16 },
429 			[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
430 			[SCRFDR]	= { 0x20, 16 },
431 			[SCSPTR]	= { 0x24, 16 },
432 			[SCLSR]		= { 0x28, 16 },
433 		},
434 		.fifosize = 16,
435 		.overrun_reg = SCLSR,
436 		.overrun_mask = SCLSR_ORER,
437 		.sampling_rate_mask = SCI_SR(32),
438 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
439 		.error_clear = SCIF_ERROR_CLEAR,
440 	},
441 
442 	/*
443 	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
444 	 * registers.
445 	 */
446 	[SCIx_SH7705_SCIF_REGTYPE] = {
447 		.regs = {
448 			[SCSMR]		= { 0x00, 16 },
449 			[SCBRR]		= { 0x04,  8 },
450 			[SCSCR]		= { 0x08, 16 },
451 			[SCxTDR]	= { 0x20,  8 },
452 			[SCxSR]		= { 0x14, 16 },
453 			[SCxRDR]	= { 0x24,  8 },
454 			[SCFCR]		= { 0x18, 16 },
455 			[SCFDR]		= { 0x1c, 16 },
456 		},
457 		.fifosize = 64,
458 		.overrun_reg = SCxSR,
459 		.overrun_mask = SCIFA_ORER,
460 		.sampling_rate_mask = SCI_SR(16),
461 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
462 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
463 	},
464 };
465 
466 #define sci_getreg(up, offset)		(&to_sci_port(up)->params->regs[offset])
467 
468 /*
469  * The "offset" here is rather misleading, in that it refers to an enum
470  * value relative to the port mapping rather than the fixed offset
471  * itself, which needs to be manually retrieved from the platform's
472  * register map for the given port.
473  */
474 static unsigned int sci_serial_in(struct uart_port *p, int offset)
475 {
476 	const struct plat_sci_reg *reg = sci_getreg(p, offset);
477 
478 	if (reg->size == 8)
479 		return ioread8(p->membase + (reg->offset << p->regshift));
480 	else if (reg->size == 16)
481 		return ioread16(p->membase + (reg->offset << p->regshift));
482 	else
483 		WARN(1, "Invalid register access\n");
484 
485 	return 0;
486 }
487 
488 static void sci_serial_out(struct uart_port *p, int offset, int value)
489 {
490 	const struct plat_sci_reg *reg = sci_getreg(p, offset);
491 
492 	if (reg->size == 8)
493 		iowrite8(value, p->membase + (reg->offset << p->regshift));
494 	else if (reg->size == 16)
495 		iowrite16(value, p->membase + (reg->offset << p->regshift));
496 	else
497 		WARN(1, "Invalid register access\n");
498 }
499 
500 static void sci_port_enable(struct sci_port *sci_port)
501 {
502 	unsigned int i;
503 
504 	if (!sci_port->port.dev)
505 		return;
506 
507 	pm_runtime_get_sync(sci_port->port.dev);
508 
509 	for (i = 0; i < SCI_NUM_CLKS; i++) {
510 		clk_prepare_enable(sci_port->clks[i]);
511 		sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]);
512 	}
513 	sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
514 }
515 
516 static void sci_port_disable(struct sci_port *sci_port)
517 {
518 	unsigned int i;
519 
520 	if (!sci_port->port.dev)
521 		return;
522 
523 	for (i = SCI_NUM_CLKS; i-- > 0; )
524 		clk_disable_unprepare(sci_port->clks[i]);
525 
526 	pm_runtime_put_sync(sci_port->port.dev);
527 }
528 
529 static inline unsigned long port_rx_irq_mask(struct uart_port *port)
530 {
531 	/*
532 	 * Not all ports (such as SCIFA) will support REIE. Rather than
533 	 * special-casing the port type, we check the port initialization
534 	 * IRQ enable mask to see whether the IRQ is desired at all. If
535 	 * it's unset, it's logically inferred that there's no point in
536 	 * testing for it.
537 	 */
538 	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
539 }
540 
541 static void sci_start_tx(struct uart_port *port)
542 {
543 	struct sci_port *s = to_sci_port(port);
544 	unsigned short ctrl;
545 
546 #ifdef CONFIG_SERIAL_SH_SCI_DMA
547 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
548 		u16 new, scr = serial_port_in(port, SCSCR);
549 		if (s->chan_tx)
550 			new = scr | SCSCR_TDRQE;
551 		else
552 			new = scr & ~SCSCR_TDRQE;
553 		if (new != scr)
554 			serial_port_out(port, SCSCR, new);
555 	}
556 
557 	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
558 	    dma_submit_error(s->cookie_tx)) {
559 		s->cookie_tx = 0;
560 		schedule_work(&s->work_tx);
561 	}
562 #endif
563 
564 	if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
565 		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
566 		ctrl = serial_port_in(port, SCSCR);
567 		serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
568 	}
569 }
570 
571 static void sci_stop_tx(struct uart_port *port)
572 {
573 	unsigned short ctrl;
574 
575 	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
576 	ctrl = serial_port_in(port, SCSCR);
577 
578 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
579 		ctrl &= ~SCSCR_TDRQE;
580 
581 	ctrl &= ~SCSCR_TIE;
582 
583 	serial_port_out(port, SCSCR, ctrl);
584 }
585 
586 static void sci_start_rx(struct uart_port *port)
587 {
588 	unsigned short ctrl;
589 
590 	ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
591 
592 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
593 		ctrl &= ~SCSCR_RDRQE;
594 
595 	serial_port_out(port, SCSCR, ctrl);
596 }
597 
598 static void sci_stop_rx(struct uart_port *port)
599 {
600 	unsigned short ctrl;
601 
602 	ctrl = serial_port_in(port, SCSCR);
603 
604 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
605 		ctrl &= ~SCSCR_RDRQE;
606 
607 	ctrl &= ~port_rx_irq_mask(port);
608 
609 	serial_port_out(port, SCSCR, ctrl);
610 }
611 
612 static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
613 {
614 	if (port->type == PORT_SCI) {
615 		/* Just store the mask */
616 		serial_port_out(port, SCxSR, mask);
617 	} else if (to_sci_port(port)->params->overrun_mask == SCIFA_ORER) {
618 		/* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
619 		/* Only clear the status bits we want to clear */
620 		serial_port_out(port, SCxSR,
621 				serial_port_in(port, SCxSR) & mask);
622 	} else {
623 		/* Store the mask, clear parity/framing errors */
624 		serial_port_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
625 	}
626 }
627 
628 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
629     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
630 
631 #ifdef CONFIG_CONSOLE_POLL
632 static int sci_poll_get_char(struct uart_port *port)
633 {
634 	unsigned short status;
635 	int c;
636 
637 	do {
638 		status = serial_port_in(port, SCxSR);
639 		if (status & SCxSR_ERRORS(port)) {
640 			sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
641 			continue;
642 		}
643 		break;
644 	} while (1);
645 
646 	if (!(status & SCxSR_RDxF(port)))
647 		return NO_POLL_CHAR;
648 
649 	c = serial_port_in(port, SCxRDR);
650 
651 	/* Dummy read */
652 	serial_port_in(port, SCxSR);
653 	sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
654 
655 	return c;
656 }
657 #endif
658 
659 static void sci_poll_put_char(struct uart_port *port, unsigned char c)
660 {
661 	unsigned short status;
662 
663 	do {
664 		status = serial_port_in(port, SCxSR);
665 	} while (!(status & SCxSR_TDxE(port)));
666 
667 	serial_port_out(port, SCxTDR, c);
668 	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
669 }
670 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE ||
671 	  CONFIG_SERIAL_SH_SCI_EARLYCON */
672 
673 static void sci_init_pins(struct uart_port *port, unsigned int cflag)
674 {
675 	struct sci_port *s = to_sci_port(port);
676 
677 	/*
678 	 * Use port-specific handler if provided.
679 	 */
680 	if (s->cfg->ops && s->cfg->ops->init_pins) {
681 		s->cfg->ops->init_pins(port, cflag);
682 		return;
683 	}
684 
685 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
686 		u16 ctrl = serial_port_in(port, SCPCR);
687 
688 		/* Enable RXD and TXD pin functions */
689 		ctrl &= ~(SCPCR_RXDC | SCPCR_TXDC);
690 		if (to_sci_port(port)->has_rtscts) {
691 			/* RTS# is output, driven 1 */
692 			ctrl |= SCPCR_RTSC;
693 			serial_port_out(port, SCPDR,
694 				serial_port_in(port, SCPDR) | SCPDR_RTSD);
695 			/* Enable CTS# pin function */
696 			ctrl &= ~SCPCR_CTSC;
697 		}
698 		serial_port_out(port, SCPCR, ctrl);
699 	} else if (sci_getreg(port, SCSPTR)->size) {
700 		u16 status = serial_port_in(port, SCSPTR);
701 
702 		/* RTS# is output, driven 1 */
703 		status |= SCSPTR_RTSIO | SCSPTR_RTSDT;
704 		/* CTS# and SCK are inputs */
705 		status &= ~(SCSPTR_CTSIO | SCSPTR_SCKIO);
706 		serial_port_out(port, SCSPTR, status);
707 	}
708 }
709 
710 static int sci_txfill(struct uart_port *port)
711 {
712 	struct sci_port *s = to_sci_port(port);
713 	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
714 	const struct plat_sci_reg *reg;
715 
716 	reg = sci_getreg(port, SCTFDR);
717 	if (reg->size)
718 		return serial_port_in(port, SCTFDR) & fifo_mask;
719 
720 	reg = sci_getreg(port, SCFDR);
721 	if (reg->size)
722 		return serial_port_in(port, SCFDR) >> 8;
723 
724 	return !(serial_port_in(port, SCxSR) & SCI_TDRE);
725 }
726 
727 static int sci_txroom(struct uart_port *port)
728 {
729 	return port->fifosize - sci_txfill(port);
730 }
731 
732 static int sci_rxfill(struct uart_port *port)
733 {
734 	struct sci_port *s = to_sci_port(port);
735 	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
736 	const struct plat_sci_reg *reg;
737 
738 	reg = sci_getreg(port, SCRFDR);
739 	if (reg->size)
740 		return serial_port_in(port, SCRFDR) & fifo_mask;
741 
742 	reg = sci_getreg(port, SCFDR);
743 	if (reg->size)
744 		return serial_port_in(port, SCFDR) & fifo_mask;
745 
746 	return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
747 }
748 
749 /* ********************************************************************** *
750  *                   the interrupt related routines                       *
751  * ********************************************************************** */
752 
753 static void sci_transmit_chars(struct uart_port *port)
754 {
755 	struct circ_buf *xmit = &port->state->xmit;
756 	unsigned int stopped = uart_tx_stopped(port);
757 	unsigned short status;
758 	unsigned short ctrl;
759 	int count;
760 
761 	status = serial_port_in(port, SCxSR);
762 	if (!(status & SCxSR_TDxE(port))) {
763 		ctrl = serial_port_in(port, SCSCR);
764 		if (uart_circ_empty(xmit))
765 			ctrl &= ~SCSCR_TIE;
766 		else
767 			ctrl |= SCSCR_TIE;
768 		serial_port_out(port, SCSCR, ctrl);
769 		return;
770 	}
771 
772 	count = sci_txroom(port);
773 
774 	do {
775 		unsigned char c;
776 
777 		if (port->x_char) {
778 			c = port->x_char;
779 			port->x_char = 0;
780 		} else if (!uart_circ_empty(xmit) && !stopped) {
781 			c = xmit->buf[xmit->tail];
782 			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
783 		} else {
784 			break;
785 		}
786 
787 		serial_port_out(port, SCxTDR, c);
788 
789 		port->icount.tx++;
790 	} while (--count > 0);
791 
792 	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
793 
794 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
795 		uart_write_wakeup(port);
796 	if (uart_circ_empty(xmit)) {
797 		sci_stop_tx(port);
798 	} else {
799 		ctrl = serial_port_in(port, SCSCR);
800 
801 		if (port->type != PORT_SCI) {
802 			serial_port_in(port, SCxSR); /* Dummy read */
803 			sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
804 		}
805 
806 		ctrl |= SCSCR_TIE;
807 		serial_port_out(port, SCSCR, ctrl);
808 	}
809 }
810 
811 /* On SH3, SCIF may read end-of-break as a space->mark char */
812 #define STEPFN(c)  ({int __c = (c); (((__c-1)|(__c)) == -1); })
813 
814 static void sci_receive_chars(struct uart_port *port)
815 {
816 	struct tty_port *tport = &port->state->port;
817 	int i, count, copied = 0;
818 	unsigned short status;
819 	unsigned char flag;
820 
821 	status = serial_port_in(port, SCxSR);
822 	if (!(status & SCxSR_RDxF(port)))
823 		return;
824 
825 	while (1) {
826 		/* Don't copy more bytes than there is room for in the buffer */
827 		count = tty_buffer_request_room(tport, sci_rxfill(port));
828 
829 		/* If for any reason we can't copy more data, we're done! */
830 		if (count == 0)
831 			break;
832 
833 		if (port->type == PORT_SCI) {
834 			char c = serial_port_in(port, SCxRDR);
835 			if (uart_handle_sysrq_char(port, c))
836 				count = 0;
837 			else
838 				tty_insert_flip_char(tport, c, TTY_NORMAL);
839 		} else {
840 			for (i = 0; i < count; i++) {
841 				char c = serial_port_in(port, SCxRDR);
842 
843 				status = serial_port_in(port, SCxSR);
844 				if (uart_handle_sysrq_char(port, c)) {
845 					count--; i--;
846 					continue;
847 				}
848 
849 				/* Store data and status */
850 				if (status & SCxSR_FER(port)) {
851 					flag = TTY_FRAME;
852 					port->icount.frame++;
853 					dev_notice(port->dev, "frame error\n");
854 				} else if (status & SCxSR_PER(port)) {
855 					flag = TTY_PARITY;
856 					port->icount.parity++;
857 					dev_notice(port->dev, "parity error\n");
858 				} else
859 					flag = TTY_NORMAL;
860 
861 				tty_insert_flip_char(tport, c, flag);
862 			}
863 		}
864 
865 		serial_port_in(port, SCxSR); /* dummy read */
866 		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
867 
868 		copied += count;
869 		port->icount.rx += count;
870 	}
871 
872 	if (copied) {
873 		/* Tell the rest of the system the news. New characters! */
874 		tty_flip_buffer_push(tport);
875 	} else {
876 		serial_port_in(port, SCxSR); /* dummy read */
877 		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
878 	}
879 }
880 
881 static int sci_handle_errors(struct uart_port *port)
882 {
883 	int copied = 0;
884 	unsigned short status = serial_port_in(port, SCxSR);
885 	struct tty_port *tport = &port->state->port;
886 	struct sci_port *s = to_sci_port(port);
887 
888 	/* Handle overruns */
889 	if (status & s->params->overrun_mask) {
890 		port->icount.overrun++;
891 
892 		/* overrun error */
893 		if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
894 			copied++;
895 
896 		dev_notice(port->dev, "overrun error\n");
897 	}
898 
899 	if (status & SCxSR_FER(port)) {
900 		/* frame error */
901 		port->icount.frame++;
902 
903 		if (tty_insert_flip_char(tport, 0, TTY_FRAME))
904 			copied++;
905 
906 		dev_notice(port->dev, "frame error\n");
907 	}
908 
909 	if (status & SCxSR_PER(port)) {
910 		/* parity error */
911 		port->icount.parity++;
912 
913 		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
914 			copied++;
915 
916 		dev_notice(port->dev, "parity error\n");
917 	}
918 
919 	if (copied)
920 		tty_flip_buffer_push(tport);
921 
922 	return copied;
923 }
924 
925 static int sci_handle_fifo_overrun(struct uart_port *port)
926 {
927 	struct tty_port *tport = &port->state->port;
928 	struct sci_port *s = to_sci_port(port);
929 	const struct plat_sci_reg *reg;
930 	int copied = 0;
931 	u16 status;
932 
933 	reg = sci_getreg(port, s->params->overrun_reg);
934 	if (!reg->size)
935 		return 0;
936 
937 	status = serial_port_in(port, s->params->overrun_reg);
938 	if (status & s->params->overrun_mask) {
939 		status &= ~s->params->overrun_mask;
940 		serial_port_out(port, s->params->overrun_reg, status);
941 
942 		port->icount.overrun++;
943 
944 		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
945 		tty_flip_buffer_push(tport);
946 
947 		dev_dbg(port->dev, "overrun error\n");
948 		copied++;
949 	}
950 
951 	return copied;
952 }
953 
954 static int sci_handle_breaks(struct uart_port *port)
955 {
956 	int copied = 0;
957 	unsigned short status = serial_port_in(port, SCxSR);
958 	struct tty_port *tport = &port->state->port;
959 
960 	if (uart_handle_break(port))
961 		return 0;
962 
963 	if (status & SCxSR_BRK(port)) {
964 		port->icount.brk++;
965 
966 		/* Notify of BREAK */
967 		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
968 			copied++;
969 
970 		dev_dbg(port->dev, "BREAK detected\n");
971 	}
972 
973 	if (copied)
974 		tty_flip_buffer_push(tport);
975 
976 	copied += sci_handle_fifo_overrun(port);
977 
978 	return copied;
979 }
980 
981 static int scif_set_rtrg(struct uart_port *port, int rx_trig)
982 {
983 	unsigned int bits;
984 
985 	if (rx_trig < 1)
986 		rx_trig = 1;
987 	if (rx_trig >= port->fifosize)
988 		rx_trig = port->fifosize;
989 
990 	/* HSCIF can be set to an arbitrary level. */
991 	if (sci_getreg(port, HSRTRGR)->size) {
992 		serial_port_out(port, HSRTRGR, rx_trig);
993 		return rx_trig;
994 	}
995 
996 	switch (port->type) {
997 	case PORT_SCIF:
998 		if (rx_trig < 4) {
999 			bits = 0;
1000 			rx_trig = 1;
1001 		} else if (rx_trig < 8) {
1002 			bits = SCFCR_RTRG0;
1003 			rx_trig = 4;
1004 		} else if (rx_trig < 14) {
1005 			bits = SCFCR_RTRG1;
1006 			rx_trig = 8;
1007 		} else {
1008 			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1009 			rx_trig = 14;
1010 		}
1011 		break;
1012 	case PORT_SCIFA:
1013 	case PORT_SCIFB:
1014 		if (rx_trig < 16) {
1015 			bits = 0;
1016 			rx_trig = 1;
1017 		} else if (rx_trig < 32) {
1018 			bits = SCFCR_RTRG0;
1019 			rx_trig = 16;
1020 		} else if (rx_trig < 48) {
1021 			bits = SCFCR_RTRG1;
1022 			rx_trig = 32;
1023 		} else {
1024 			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1025 			rx_trig = 48;
1026 		}
1027 		break;
1028 	default:
1029 		WARN(1, "unknown FIFO configuration");
1030 		return 1;
1031 	}
1032 
1033 	serial_port_out(port, SCFCR,
1034 		(serial_port_in(port, SCFCR) &
1035 		~(SCFCR_RTRG1 | SCFCR_RTRG0)) | bits);
1036 
1037 	return rx_trig;
1038 }
1039 
1040 static int scif_rtrg_enabled(struct uart_port *port)
1041 {
1042 	if (sci_getreg(port, HSRTRGR)->size)
1043 		return serial_port_in(port, HSRTRGR) != 0;
1044 	else
1045 		return (serial_port_in(port, SCFCR) &
1046 			(SCFCR_RTRG0 | SCFCR_RTRG1)) != 0;
1047 }
1048 
1049 static void rx_fifo_timer_fn(unsigned long arg)
1050 {
1051 	struct sci_port *s = (struct sci_port *)arg;
1052 	struct uart_port *port = &s->port;
1053 
1054 	dev_dbg(port->dev, "Rx timed out\n");
1055 	scif_set_rtrg(port, 1);
1056 }
1057 
1058 static ssize_t rx_trigger_show(struct device *dev,
1059 			       struct device_attribute *attr,
1060 			       char *buf)
1061 {
1062 	struct uart_port *port = dev_get_drvdata(dev);
1063 	struct sci_port *sci = to_sci_port(port);
1064 
1065 	return sprintf(buf, "%d\n", sci->rx_trigger);
1066 }
1067 
1068 static ssize_t rx_trigger_store(struct device *dev,
1069 				struct device_attribute *attr,
1070 				const char *buf,
1071 				size_t count)
1072 {
1073 	struct uart_port *port = dev_get_drvdata(dev);
1074 	struct sci_port *sci = to_sci_port(port);
1075 	long r;
1076 
1077 	if (kstrtol(buf, 0, &r) == -EINVAL)
1078 		return -EINVAL;
1079 
1080 	sci->rx_trigger = scif_set_rtrg(port, r);
1081 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1082 		scif_set_rtrg(port, 1);
1083 
1084 	return count;
1085 }
1086 
1087 static DEVICE_ATTR(rx_fifo_trigger, 0644, rx_trigger_show, rx_trigger_store);
1088 
1089 static ssize_t rx_fifo_timeout_show(struct device *dev,
1090 			       struct device_attribute *attr,
1091 			       char *buf)
1092 {
1093 	struct uart_port *port = dev_get_drvdata(dev);
1094 	struct sci_port *sci = to_sci_port(port);
1095 
1096 	return sprintf(buf, "%d\n", sci->rx_fifo_timeout);
1097 }
1098 
1099 static ssize_t rx_fifo_timeout_store(struct device *dev,
1100 				struct device_attribute *attr,
1101 				const char *buf,
1102 				size_t count)
1103 {
1104 	struct uart_port *port = dev_get_drvdata(dev);
1105 	struct sci_port *sci = to_sci_port(port);
1106 	long r;
1107 
1108 	if (kstrtol(buf, 0, &r) == -EINVAL)
1109 		return -EINVAL;
1110 	sci->rx_fifo_timeout = r;
1111 	scif_set_rtrg(port, 1);
1112 	if (r > 0)
1113 		setup_timer(&sci->rx_fifo_timer, rx_fifo_timer_fn,
1114 			    (unsigned long)sci);
1115 	return count;
1116 }
1117 
1118 static DEVICE_ATTR(rx_fifo_timeout, 0644, rx_fifo_timeout_show, rx_fifo_timeout_store);
1119 
1120 
1121 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1122 static void sci_dma_tx_complete(void *arg)
1123 {
1124 	struct sci_port *s = arg;
1125 	struct uart_port *port = &s->port;
1126 	struct circ_buf *xmit = &port->state->xmit;
1127 	unsigned long flags;
1128 
1129 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1130 
1131 	spin_lock_irqsave(&port->lock, flags);
1132 
1133 	xmit->tail += s->tx_dma_len;
1134 	xmit->tail &= UART_XMIT_SIZE - 1;
1135 
1136 	port->icount.tx += s->tx_dma_len;
1137 
1138 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1139 		uart_write_wakeup(port);
1140 
1141 	if (!uart_circ_empty(xmit)) {
1142 		s->cookie_tx = 0;
1143 		schedule_work(&s->work_tx);
1144 	} else {
1145 		s->cookie_tx = -EINVAL;
1146 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1147 			u16 ctrl = serial_port_in(port, SCSCR);
1148 			serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1149 		}
1150 	}
1151 
1152 	spin_unlock_irqrestore(&port->lock, flags);
1153 }
1154 
1155 /* Locking: called with port lock held */
1156 static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1157 {
1158 	struct uart_port *port = &s->port;
1159 	struct tty_port *tport = &port->state->port;
1160 	int copied;
1161 
1162 	copied = tty_insert_flip_string(tport, buf, count);
1163 	if (copied < count)
1164 		port->icount.buf_overrun++;
1165 
1166 	port->icount.rx += copied;
1167 
1168 	return copied;
1169 }
1170 
1171 static int sci_dma_rx_find_active(struct sci_port *s)
1172 {
1173 	unsigned int i;
1174 
1175 	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1176 		if (s->active_rx == s->cookie_rx[i])
1177 			return i;
1178 
1179 	return -1;
1180 }
1181 
1182 static void sci_rx_dma_release(struct sci_port *s, bool enable_pio)
1183 {
1184 	struct dma_chan *chan = s->chan_rx;
1185 	struct uart_port *port = &s->port;
1186 	unsigned long flags;
1187 
1188 	spin_lock_irqsave(&port->lock, flags);
1189 	s->chan_rx = NULL;
1190 	s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL;
1191 	spin_unlock_irqrestore(&port->lock, flags);
1192 	dmaengine_terminate_all(chan);
1193 	dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1194 			  sg_dma_address(&s->sg_rx[0]));
1195 	dma_release_channel(chan);
1196 	if (enable_pio)
1197 		sci_start_rx(port);
1198 }
1199 
1200 static void sci_dma_rx_complete(void *arg)
1201 {
1202 	struct sci_port *s = arg;
1203 	struct dma_chan *chan = s->chan_rx;
1204 	struct uart_port *port = &s->port;
1205 	struct dma_async_tx_descriptor *desc;
1206 	unsigned long flags;
1207 	int active, count = 0;
1208 
1209 	dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1210 		s->active_rx);
1211 
1212 	spin_lock_irqsave(&port->lock, flags);
1213 
1214 	active = sci_dma_rx_find_active(s);
1215 	if (active >= 0)
1216 		count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1217 
1218 	mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1219 
1220 	if (count)
1221 		tty_flip_buffer_push(&port->state->port);
1222 
1223 	desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1224 				       DMA_DEV_TO_MEM,
1225 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1226 	if (!desc)
1227 		goto fail;
1228 
1229 	desc->callback = sci_dma_rx_complete;
1230 	desc->callback_param = s;
1231 	s->cookie_rx[active] = dmaengine_submit(desc);
1232 	if (dma_submit_error(s->cookie_rx[active]))
1233 		goto fail;
1234 
1235 	s->active_rx = s->cookie_rx[!active];
1236 
1237 	dma_async_issue_pending(chan);
1238 
1239 	spin_unlock_irqrestore(&port->lock, flags);
1240 	dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1241 		__func__, s->cookie_rx[active], active, s->active_rx);
1242 	return;
1243 
1244 fail:
1245 	spin_unlock_irqrestore(&port->lock, flags);
1246 	dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1247 	sci_rx_dma_release(s, true);
1248 }
1249 
1250 static void sci_tx_dma_release(struct sci_port *s, bool enable_pio)
1251 {
1252 	struct dma_chan *chan = s->chan_tx;
1253 	struct uart_port *port = &s->port;
1254 	unsigned long flags;
1255 
1256 	spin_lock_irqsave(&port->lock, flags);
1257 	s->chan_tx = NULL;
1258 	s->cookie_tx = -EINVAL;
1259 	spin_unlock_irqrestore(&port->lock, flags);
1260 	dmaengine_terminate_all(chan);
1261 	dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1262 			 DMA_TO_DEVICE);
1263 	dma_release_channel(chan);
1264 	if (enable_pio)
1265 		sci_start_tx(port);
1266 }
1267 
1268 static void sci_submit_rx(struct sci_port *s)
1269 {
1270 	struct dma_chan *chan = s->chan_rx;
1271 	int i;
1272 
1273 	for (i = 0; i < 2; i++) {
1274 		struct scatterlist *sg = &s->sg_rx[i];
1275 		struct dma_async_tx_descriptor *desc;
1276 
1277 		desc = dmaengine_prep_slave_sg(chan,
1278 			sg, 1, DMA_DEV_TO_MEM,
1279 			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1280 		if (!desc)
1281 			goto fail;
1282 
1283 		desc->callback = sci_dma_rx_complete;
1284 		desc->callback_param = s;
1285 		s->cookie_rx[i] = dmaengine_submit(desc);
1286 		if (dma_submit_error(s->cookie_rx[i]))
1287 			goto fail;
1288 
1289 	}
1290 
1291 	s->active_rx = s->cookie_rx[0];
1292 
1293 	dma_async_issue_pending(chan);
1294 	return;
1295 
1296 fail:
1297 	if (i)
1298 		dmaengine_terminate_all(chan);
1299 	for (i = 0; i < 2; i++)
1300 		s->cookie_rx[i] = -EINVAL;
1301 	s->active_rx = -EINVAL;
1302 	sci_rx_dma_release(s, true);
1303 }
1304 
1305 static void work_fn_tx(struct work_struct *work)
1306 {
1307 	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1308 	struct dma_async_tx_descriptor *desc;
1309 	struct dma_chan *chan = s->chan_tx;
1310 	struct uart_port *port = &s->port;
1311 	struct circ_buf *xmit = &port->state->xmit;
1312 	dma_addr_t buf;
1313 
1314 	/*
1315 	 * DMA is idle now.
1316 	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1317 	 * offsets and lengths. Since it is a circular buffer, we have to
1318 	 * transmit till the end, and then the rest. Take the port lock to get a
1319 	 * consistent xmit buffer state.
1320 	 */
1321 	spin_lock_irq(&port->lock);
1322 	buf = s->tx_dma_addr + (xmit->tail & (UART_XMIT_SIZE - 1));
1323 	s->tx_dma_len = min_t(unsigned int,
1324 		CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
1325 		CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
1326 	spin_unlock_irq(&port->lock);
1327 
1328 	desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1329 					   DMA_MEM_TO_DEV,
1330 					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1331 	if (!desc) {
1332 		dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1333 		/* switch to PIO */
1334 		sci_tx_dma_release(s, true);
1335 		return;
1336 	}
1337 
1338 	dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1339 				   DMA_TO_DEVICE);
1340 
1341 	spin_lock_irq(&port->lock);
1342 	desc->callback = sci_dma_tx_complete;
1343 	desc->callback_param = s;
1344 	spin_unlock_irq(&port->lock);
1345 	s->cookie_tx = dmaengine_submit(desc);
1346 	if (dma_submit_error(s->cookie_tx)) {
1347 		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1348 		/* switch to PIO */
1349 		sci_tx_dma_release(s, true);
1350 		return;
1351 	}
1352 
1353 	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
1354 		__func__, xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
1355 
1356 	dma_async_issue_pending(chan);
1357 }
1358 
1359 static void rx_timer_fn(unsigned long arg)
1360 {
1361 	struct sci_port *s = (struct sci_port *)arg;
1362 	struct dma_chan *chan = s->chan_rx;
1363 	struct uart_port *port = &s->port;
1364 	struct dma_tx_state state;
1365 	enum dma_status status;
1366 	unsigned long flags;
1367 	unsigned int read;
1368 	int active, count;
1369 	u16 scr;
1370 
1371 	dev_dbg(port->dev, "DMA Rx timed out\n");
1372 
1373 	spin_lock_irqsave(&port->lock, flags);
1374 
1375 	active = sci_dma_rx_find_active(s);
1376 	if (active < 0) {
1377 		spin_unlock_irqrestore(&port->lock, flags);
1378 		return;
1379 	}
1380 
1381 	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1382 	if (status == DMA_COMPLETE) {
1383 		spin_unlock_irqrestore(&port->lock, flags);
1384 		dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1385 			s->active_rx, active);
1386 
1387 		/* Let packet complete handler take care of the packet */
1388 		return;
1389 	}
1390 
1391 	dmaengine_pause(chan);
1392 
1393 	/*
1394 	 * sometimes DMA transfer doesn't stop even if it is stopped and
1395 	 * data keeps on coming until transaction is complete so check
1396 	 * for DMA_COMPLETE again
1397 	 * Let packet complete handler take care of the packet
1398 	 */
1399 	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1400 	if (status == DMA_COMPLETE) {
1401 		spin_unlock_irqrestore(&port->lock, flags);
1402 		dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1403 		return;
1404 	}
1405 
1406 	/* Handle incomplete DMA receive */
1407 	dmaengine_terminate_all(s->chan_rx);
1408 	read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1409 
1410 	if (read) {
1411 		count = sci_dma_rx_push(s, s->rx_buf[active], read);
1412 		if (count)
1413 			tty_flip_buffer_push(&port->state->port);
1414 	}
1415 
1416 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1417 		sci_submit_rx(s);
1418 
1419 	/* Direct new serial port interrupts back to CPU */
1420 	scr = serial_port_in(port, SCSCR);
1421 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1422 		scr &= ~SCSCR_RDRQE;
1423 		enable_irq(s->irqs[SCIx_RXI_IRQ]);
1424 	}
1425 	serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1426 
1427 	spin_unlock_irqrestore(&port->lock, flags);
1428 }
1429 
1430 static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1431 					     enum dma_transfer_direction dir)
1432 {
1433 	struct dma_chan *chan;
1434 	struct dma_slave_config cfg;
1435 	int ret;
1436 
1437 	chan = dma_request_slave_channel(port->dev,
1438 					 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1439 	if (!chan) {
1440 		dev_warn(port->dev,
1441 			 "dma_request_slave_channel_compat failed\n");
1442 		return NULL;
1443 	}
1444 
1445 	memset(&cfg, 0, sizeof(cfg));
1446 	cfg.direction = dir;
1447 	if (dir == DMA_MEM_TO_DEV) {
1448 		cfg.dst_addr = port->mapbase +
1449 			(sci_getreg(port, SCxTDR)->offset << port->regshift);
1450 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1451 	} else {
1452 		cfg.src_addr = port->mapbase +
1453 			(sci_getreg(port, SCxRDR)->offset << port->regshift);
1454 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1455 	}
1456 
1457 	ret = dmaengine_slave_config(chan, &cfg);
1458 	if (ret) {
1459 		dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1460 		dma_release_channel(chan);
1461 		return NULL;
1462 	}
1463 
1464 	return chan;
1465 }
1466 
1467 static void sci_request_dma(struct uart_port *port)
1468 {
1469 	struct sci_port *s = to_sci_port(port);
1470 	struct dma_chan *chan;
1471 
1472 	dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1473 
1474 	if (!port->dev->of_node)
1475 		return;
1476 
1477 	s->cookie_tx = -EINVAL;
1478 	chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV);
1479 	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1480 	if (chan) {
1481 		s->chan_tx = chan;
1482 		/* UART circular tx buffer is an aligned page. */
1483 		s->tx_dma_addr = dma_map_single(chan->device->dev,
1484 						port->state->xmit.buf,
1485 						UART_XMIT_SIZE,
1486 						DMA_TO_DEVICE);
1487 		if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1488 			dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1489 			dma_release_channel(chan);
1490 			s->chan_tx = NULL;
1491 		} else {
1492 			dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1493 				__func__, UART_XMIT_SIZE,
1494 				port->state->xmit.buf, &s->tx_dma_addr);
1495 		}
1496 
1497 		INIT_WORK(&s->work_tx, work_fn_tx);
1498 	}
1499 
1500 	chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM);
1501 	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1502 	if (chan) {
1503 		unsigned int i;
1504 		dma_addr_t dma;
1505 		void *buf;
1506 
1507 		s->chan_rx = chan;
1508 
1509 		s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1510 		buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1511 					 &dma, GFP_KERNEL);
1512 		if (!buf) {
1513 			dev_warn(port->dev,
1514 				 "Failed to allocate Rx dma buffer, using PIO\n");
1515 			dma_release_channel(chan);
1516 			s->chan_rx = NULL;
1517 			return;
1518 		}
1519 
1520 		for (i = 0; i < 2; i++) {
1521 			struct scatterlist *sg = &s->sg_rx[i];
1522 
1523 			sg_init_table(sg, 1);
1524 			s->rx_buf[i] = buf;
1525 			sg_dma_address(sg) = dma;
1526 			sg_dma_len(sg) = s->buf_len_rx;
1527 
1528 			buf += s->buf_len_rx;
1529 			dma += s->buf_len_rx;
1530 		}
1531 
1532 		setup_timer(&s->rx_timer, rx_timer_fn, (unsigned long)s);
1533 
1534 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1535 			sci_submit_rx(s);
1536 	}
1537 }
1538 
1539 static void sci_free_dma(struct uart_port *port)
1540 {
1541 	struct sci_port *s = to_sci_port(port);
1542 
1543 	if (s->chan_tx)
1544 		sci_tx_dma_release(s, false);
1545 	if (s->chan_rx)
1546 		sci_rx_dma_release(s, false);
1547 }
1548 #else
1549 static inline void sci_request_dma(struct uart_port *port)
1550 {
1551 }
1552 
1553 static inline void sci_free_dma(struct uart_port *port)
1554 {
1555 }
1556 #endif
1557 
1558 static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1559 {
1560 	struct uart_port *port = ptr;
1561 	struct sci_port *s = to_sci_port(port);
1562 
1563 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1564 	if (s->chan_rx) {
1565 		u16 scr = serial_port_in(port, SCSCR);
1566 		u16 ssr = serial_port_in(port, SCxSR);
1567 
1568 		/* Disable future Rx interrupts */
1569 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1570 			disable_irq_nosync(irq);
1571 			scr |= SCSCR_RDRQE;
1572 		} else {
1573 			scr &= ~SCSCR_RIE;
1574 			sci_submit_rx(s);
1575 		}
1576 		serial_port_out(port, SCSCR, scr);
1577 		/* Clear current interrupt */
1578 		serial_port_out(port, SCxSR,
1579 				ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1580 		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n",
1581 			jiffies, s->rx_timeout);
1582 		mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1583 
1584 		return IRQ_HANDLED;
1585 	}
1586 #endif
1587 
1588 	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0) {
1589 		if (!scif_rtrg_enabled(port))
1590 			scif_set_rtrg(port, s->rx_trigger);
1591 
1592 		mod_timer(&s->rx_fifo_timer, jiffies + DIV_ROUND_UP(
1593 			  s->rx_frame * s->rx_fifo_timeout, 1000));
1594 	}
1595 
1596 	/* I think sci_receive_chars has to be called irrespective
1597 	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
1598 	 * to be disabled?
1599 	 */
1600 	sci_receive_chars(ptr);
1601 
1602 	return IRQ_HANDLED;
1603 }
1604 
1605 static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1606 {
1607 	struct uart_port *port = ptr;
1608 	unsigned long flags;
1609 
1610 	spin_lock_irqsave(&port->lock, flags);
1611 	sci_transmit_chars(port);
1612 	spin_unlock_irqrestore(&port->lock, flags);
1613 
1614 	return IRQ_HANDLED;
1615 }
1616 
1617 static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1618 {
1619 	struct uart_port *port = ptr;
1620 	struct sci_port *s = to_sci_port(port);
1621 
1622 	/* Handle errors */
1623 	if (port->type == PORT_SCI) {
1624 		if (sci_handle_errors(port)) {
1625 			/* discard character in rx buffer */
1626 			serial_port_in(port, SCxSR);
1627 			sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1628 		}
1629 	} else {
1630 		sci_handle_fifo_overrun(port);
1631 		if (!s->chan_rx)
1632 			sci_receive_chars(ptr);
1633 	}
1634 
1635 	sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1636 
1637 	/* Kick the transmission */
1638 	if (!s->chan_tx)
1639 		sci_tx_interrupt(irq, ptr);
1640 
1641 	return IRQ_HANDLED;
1642 }
1643 
1644 static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1645 {
1646 	struct uart_port *port = ptr;
1647 
1648 	/* Handle BREAKs */
1649 	sci_handle_breaks(port);
1650 	sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1651 
1652 	return IRQ_HANDLED;
1653 }
1654 
1655 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1656 {
1657 	unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1658 	struct uart_port *port = ptr;
1659 	struct sci_port *s = to_sci_port(port);
1660 	irqreturn_t ret = IRQ_NONE;
1661 
1662 	ssr_status = serial_port_in(port, SCxSR);
1663 	scr_status = serial_port_in(port, SCSCR);
1664 	if (s->params->overrun_reg == SCxSR)
1665 		orer_status = ssr_status;
1666 	else if (sci_getreg(port, s->params->overrun_reg)->size)
1667 		orer_status = serial_port_in(port, s->params->overrun_reg);
1668 
1669 	err_enabled = scr_status & port_rx_irq_mask(port);
1670 
1671 	/* Tx Interrupt */
1672 	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1673 	    !s->chan_tx)
1674 		ret = sci_tx_interrupt(irq, ptr);
1675 
1676 	/*
1677 	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1678 	 * DR flags
1679 	 */
1680 	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1681 	    (scr_status & SCSCR_RIE))
1682 		ret = sci_rx_interrupt(irq, ptr);
1683 
1684 	/* Error Interrupt */
1685 	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1686 		ret = sci_er_interrupt(irq, ptr);
1687 
1688 	/* Break Interrupt */
1689 	if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
1690 		ret = sci_br_interrupt(irq, ptr);
1691 
1692 	/* Overrun Interrupt */
1693 	if (orer_status & s->params->overrun_mask) {
1694 		sci_handle_fifo_overrun(port);
1695 		ret = IRQ_HANDLED;
1696 	}
1697 
1698 	return ret;
1699 }
1700 
1701 static const struct sci_irq_desc {
1702 	const char	*desc;
1703 	irq_handler_t	handler;
1704 } sci_irq_desc[] = {
1705 	/*
1706 	 * Split out handlers, the default case.
1707 	 */
1708 	[SCIx_ERI_IRQ] = {
1709 		.desc = "rx err",
1710 		.handler = sci_er_interrupt,
1711 	},
1712 
1713 	[SCIx_RXI_IRQ] = {
1714 		.desc = "rx full",
1715 		.handler = sci_rx_interrupt,
1716 	},
1717 
1718 	[SCIx_TXI_IRQ] = {
1719 		.desc = "tx empty",
1720 		.handler = sci_tx_interrupt,
1721 	},
1722 
1723 	[SCIx_BRI_IRQ] = {
1724 		.desc = "break",
1725 		.handler = sci_br_interrupt,
1726 	},
1727 
1728 	/*
1729 	 * Special muxed handler.
1730 	 */
1731 	[SCIx_MUX_IRQ] = {
1732 		.desc = "mux",
1733 		.handler = sci_mpxed_interrupt,
1734 	},
1735 };
1736 
1737 static int sci_request_irq(struct sci_port *port)
1738 {
1739 	struct uart_port *up = &port->port;
1740 	int i, j, ret = 0;
1741 
1742 	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1743 		const struct sci_irq_desc *desc;
1744 		int irq;
1745 
1746 		if (SCIx_IRQ_IS_MUXED(port)) {
1747 			i = SCIx_MUX_IRQ;
1748 			irq = up->irq;
1749 		} else {
1750 			irq = port->irqs[i];
1751 
1752 			/*
1753 			 * Certain port types won't support all of the
1754 			 * available interrupt sources.
1755 			 */
1756 			if (unlikely(irq < 0))
1757 				continue;
1758 		}
1759 
1760 		desc = sci_irq_desc + i;
1761 		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1762 					    dev_name(up->dev), desc->desc);
1763 		if (!port->irqstr[j]) {
1764 			ret = -ENOMEM;
1765 			goto out_nomem;
1766 		}
1767 
1768 		ret = request_irq(irq, desc->handler, up->irqflags,
1769 				  port->irqstr[j], port);
1770 		if (unlikely(ret)) {
1771 			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1772 			goto out_noirq;
1773 		}
1774 	}
1775 
1776 	return 0;
1777 
1778 out_noirq:
1779 	while (--i >= 0)
1780 		free_irq(port->irqs[i], port);
1781 
1782 out_nomem:
1783 	while (--j >= 0)
1784 		kfree(port->irqstr[j]);
1785 
1786 	return ret;
1787 }
1788 
1789 static void sci_free_irq(struct sci_port *port)
1790 {
1791 	int i;
1792 
1793 	/*
1794 	 * Intentionally in reverse order so we iterate over the muxed
1795 	 * IRQ first.
1796 	 */
1797 	for (i = 0; i < SCIx_NR_IRQS; i++) {
1798 		int irq = port->irqs[i];
1799 
1800 		/*
1801 		 * Certain port types won't support all of the available
1802 		 * interrupt sources.
1803 		 */
1804 		if (unlikely(irq < 0))
1805 			continue;
1806 
1807 		free_irq(port->irqs[i], port);
1808 		kfree(port->irqstr[i]);
1809 
1810 		if (SCIx_IRQ_IS_MUXED(port)) {
1811 			/* If there's only one IRQ, we're done. */
1812 			return;
1813 		}
1814 	}
1815 }
1816 
1817 static unsigned int sci_tx_empty(struct uart_port *port)
1818 {
1819 	unsigned short status = serial_port_in(port, SCxSR);
1820 	unsigned short in_tx_fifo = sci_txfill(port);
1821 
1822 	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1823 }
1824 
1825 static void sci_set_rts(struct uart_port *port, bool state)
1826 {
1827 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1828 		u16 data = serial_port_in(port, SCPDR);
1829 
1830 		/* Active low */
1831 		if (state)
1832 			data &= ~SCPDR_RTSD;
1833 		else
1834 			data |= SCPDR_RTSD;
1835 		serial_port_out(port, SCPDR, data);
1836 
1837 		/* RTS# is output */
1838 		serial_port_out(port, SCPCR,
1839 				serial_port_in(port, SCPCR) | SCPCR_RTSC);
1840 	} else if (sci_getreg(port, SCSPTR)->size) {
1841 		u16 ctrl = serial_port_in(port, SCSPTR);
1842 
1843 		/* Active low */
1844 		if (state)
1845 			ctrl &= ~SCSPTR_RTSDT;
1846 		else
1847 			ctrl |= SCSPTR_RTSDT;
1848 		serial_port_out(port, SCSPTR, ctrl);
1849 	}
1850 }
1851 
1852 static bool sci_get_cts(struct uart_port *port)
1853 {
1854 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1855 		/* Active low */
1856 		return !(serial_port_in(port, SCPDR) & SCPDR_CTSD);
1857 	} else if (sci_getreg(port, SCSPTR)->size) {
1858 		/* Active low */
1859 		return !(serial_port_in(port, SCSPTR) & SCSPTR_CTSDT);
1860 	}
1861 
1862 	return true;
1863 }
1864 
1865 /*
1866  * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
1867  * CTS/RTS is supported in hardware by at least one port and controlled
1868  * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
1869  * handled via the ->init_pins() op, which is a bit of a one-way street,
1870  * lacking any ability to defer pin control -- this will later be
1871  * converted over to the GPIO framework).
1872  *
1873  * Other modes (such as loopback) are supported generically on certain
1874  * port types, but not others. For these it's sufficient to test for the
1875  * existence of the support register and simply ignore the port type.
1876  */
1877 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
1878 {
1879 	struct sci_port *s = to_sci_port(port);
1880 
1881 	if (mctrl & TIOCM_LOOP) {
1882 		const struct plat_sci_reg *reg;
1883 
1884 		/*
1885 		 * Standard loopback mode for SCFCR ports.
1886 		 */
1887 		reg = sci_getreg(port, SCFCR);
1888 		if (reg->size)
1889 			serial_port_out(port, SCFCR,
1890 					serial_port_in(port, SCFCR) |
1891 					SCFCR_LOOP);
1892 	}
1893 
1894 	mctrl_gpio_set(s->gpios, mctrl);
1895 
1896 	if (!s->has_rtscts)
1897 		return;
1898 
1899 	if (!(mctrl & TIOCM_RTS)) {
1900 		/* Disable Auto RTS */
1901 		serial_port_out(port, SCFCR,
1902 				serial_port_in(port, SCFCR) & ~SCFCR_MCE);
1903 
1904 		/* Clear RTS */
1905 		sci_set_rts(port, 0);
1906 	} else if (s->autorts) {
1907 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1908 			/* Enable RTS# pin function */
1909 			serial_port_out(port, SCPCR,
1910 				serial_port_in(port, SCPCR) & ~SCPCR_RTSC);
1911 		}
1912 
1913 		/* Enable Auto RTS */
1914 		serial_port_out(port, SCFCR,
1915 				serial_port_in(port, SCFCR) | SCFCR_MCE);
1916 	} else {
1917 		/* Set RTS */
1918 		sci_set_rts(port, 1);
1919 	}
1920 }
1921 
1922 static unsigned int sci_get_mctrl(struct uart_port *port)
1923 {
1924 	struct sci_port *s = to_sci_port(port);
1925 	struct mctrl_gpios *gpios = s->gpios;
1926 	unsigned int mctrl = 0;
1927 
1928 	mctrl_gpio_get(gpios, &mctrl);
1929 
1930 	/*
1931 	 * CTS/RTS is handled in hardware when supported, while nothing
1932 	 * else is wired up.
1933 	 */
1934 	if (s->autorts) {
1935 		if (sci_get_cts(port))
1936 			mctrl |= TIOCM_CTS;
1937 	} else if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_CTS))) {
1938 		mctrl |= TIOCM_CTS;
1939 	}
1940 	if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_DSR)))
1941 		mctrl |= TIOCM_DSR;
1942 	if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_DCD)))
1943 		mctrl |= TIOCM_CAR;
1944 
1945 	return mctrl;
1946 }
1947 
1948 static void sci_enable_ms(struct uart_port *port)
1949 {
1950 	mctrl_gpio_enable_ms(to_sci_port(port)->gpios);
1951 }
1952 
1953 static void sci_break_ctl(struct uart_port *port, int break_state)
1954 {
1955 	unsigned short scscr, scsptr;
1956 
1957 	/* check wheter the port has SCSPTR */
1958 	if (!sci_getreg(port, SCSPTR)->size) {
1959 		/*
1960 		 * Not supported by hardware. Most parts couple break and rx
1961 		 * interrupts together, with break detection always enabled.
1962 		 */
1963 		return;
1964 	}
1965 
1966 	scsptr = serial_port_in(port, SCSPTR);
1967 	scscr = serial_port_in(port, SCSCR);
1968 
1969 	if (break_state == -1) {
1970 		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
1971 		scscr &= ~SCSCR_TE;
1972 	} else {
1973 		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
1974 		scscr |= SCSCR_TE;
1975 	}
1976 
1977 	serial_port_out(port, SCSPTR, scsptr);
1978 	serial_port_out(port, SCSCR, scscr);
1979 }
1980 
1981 static int sci_startup(struct uart_port *port)
1982 {
1983 	struct sci_port *s = to_sci_port(port);
1984 	int ret;
1985 
1986 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1987 
1988 	ret = sci_request_irq(s);
1989 	if (unlikely(ret < 0))
1990 		return ret;
1991 
1992 	sci_request_dma(port);
1993 
1994 	return 0;
1995 }
1996 
1997 static void sci_shutdown(struct uart_port *port)
1998 {
1999 	struct sci_port *s = to_sci_port(port);
2000 	unsigned long flags;
2001 	u16 scr;
2002 
2003 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2004 
2005 	s->autorts = false;
2006 	mctrl_gpio_disable_ms(to_sci_port(port)->gpios);
2007 
2008 	spin_lock_irqsave(&port->lock, flags);
2009 	sci_stop_rx(port);
2010 	sci_stop_tx(port);
2011 	/* Stop RX and TX, disable related interrupts, keep clock source */
2012 	scr = serial_port_in(port, SCSCR);
2013 	serial_port_out(port, SCSCR, scr & (SCSCR_CKE1 | SCSCR_CKE0));
2014 	spin_unlock_irqrestore(&port->lock, flags);
2015 
2016 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2017 	if (s->chan_rx) {
2018 		dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
2019 			port->line);
2020 		del_timer_sync(&s->rx_timer);
2021 	}
2022 #endif
2023 
2024 	sci_free_dma(port);
2025 	sci_free_irq(s);
2026 }
2027 
2028 static int sci_sck_calc(struct sci_port *s, unsigned int bps,
2029 			unsigned int *srr)
2030 {
2031 	unsigned long freq = s->clk_rates[SCI_SCK];
2032 	int err, min_err = INT_MAX;
2033 	unsigned int sr;
2034 
2035 	if (s->port.type != PORT_HSCIF)
2036 		freq *= 2;
2037 
2038 	for_each_sr(sr, s) {
2039 		err = DIV_ROUND_CLOSEST(freq, sr) - bps;
2040 		if (abs(err) >= abs(min_err))
2041 			continue;
2042 
2043 		min_err = err;
2044 		*srr = sr - 1;
2045 
2046 		if (!err)
2047 			break;
2048 	}
2049 
2050 	dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
2051 		*srr + 1);
2052 	return min_err;
2053 }
2054 
2055 static int sci_brg_calc(struct sci_port *s, unsigned int bps,
2056 			unsigned long freq, unsigned int *dlr,
2057 			unsigned int *srr)
2058 {
2059 	int err, min_err = INT_MAX;
2060 	unsigned int sr, dl;
2061 
2062 	if (s->port.type != PORT_HSCIF)
2063 		freq *= 2;
2064 
2065 	for_each_sr(sr, s) {
2066 		dl = DIV_ROUND_CLOSEST(freq, sr * bps);
2067 		dl = clamp(dl, 1U, 65535U);
2068 
2069 		err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
2070 		if (abs(err) >= abs(min_err))
2071 			continue;
2072 
2073 		min_err = err;
2074 		*dlr = dl;
2075 		*srr = sr - 1;
2076 
2077 		if (!err)
2078 			break;
2079 	}
2080 
2081 	dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
2082 		min_err, *dlr, *srr + 1);
2083 	return min_err;
2084 }
2085 
2086 /* calculate sample rate, BRR, and clock select */
2087 static int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
2088 			  unsigned int *brr, unsigned int *srr,
2089 			  unsigned int *cks)
2090 {
2091 	unsigned long freq = s->clk_rates[SCI_FCK];
2092 	unsigned int sr, br, prediv, scrate, c;
2093 	int err, min_err = INT_MAX;
2094 
2095 	if (s->port.type != PORT_HSCIF)
2096 		freq *= 2;
2097 
2098 	/*
2099 	 * Find the combination of sample rate and clock select with the
2100 	 * smallest deviation from the desired baud rate.
2101 	 * Prefer high sample rates to maximise the receive margin.
2102 	 *
2103 	 * M: Receive margin (%)
2104 	 * N: Ratio of bit rate to clock (N = sampling rate)
2105 	 * D: Clock duty (D = 0 to 1.0)
2106 	 * L: Frame length (L = 9 to 12)
2107 	 * F: Absolute value of clock frequency deviation
2108 	 *
2109 	 *  M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
2110 	 *      (|D - 0.5| / N * (1 + F))|
2111 	 *  NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
2112 	 */
2113 	for_each_sr(sr, s) {
2114 		for (c = 0; c <= 3; c++) {
2115 			/* integerized formulas from HSCIF documentation */
2116 			prediv = sr * (1 << (2 * c + 1));
2117 
2118 			/*
2119 			 * We need to calculate:
2120 			 *
2121 			 *     br = freq / (prediv * bps) clamped to [1..256]
2122 			 *     err = freq / (br * prediv) - bps
2123 			 *
2124 			 * Watch out for overflow when calculating the desired
2125 			 * sampling clock rate!
2126 			 */
2127 			if (bps > UINT_MAX / prediv)
2128 				break;
2129 
2130 			scrate = prediv * bps;
2131 			br = DIV_ROUND_CLOSEST(freq, scrate);
2132 			br = clamp(br, 1U, 256U);
2133 
2134 			err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
2135 			if (abs(err) >= abs(min_err))
2136 				continue;
2137 
2138 			min_err = err;
2139 			*brr = br - 1;
2140 			*srr = sr - 1;
2141 			*cks = c;
2142 
2143 			if (!err)
2144 				goto found;
2145 		}
2146 	}
2147 
2148 found:
2149 	dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
2150 		min_err, *brr, *srr + 1, *cks);
2151 	return min_err;
2152 }
2153 
2154 static void sci_reset(struct uart_port *port)
2155 {
2156 	const struct plat_sci_reg *reg;
2157 	unsigned int status;
2158 	struct sci_port *s = to_sci_port(port);
2159 
2160 	do {
2161 		status = serial_port_in(port, SCxSR);
2162 	} while (!(status & SCxSR_TEND(port)));
2163 
2164 	serial_port_out(port, SCSCR, 0x00);	/* TE=0, RE=0, CKE1=0 */
2165 
2166 	reg = sci_getreg(port, SCFCR);
2167 	if (reg->size)
2168 		serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
2169 
2170 	sci_clear_SCxSR(port,
2171 			SCxSR_RDxF_CLEAR(port) & SCxSR_ERROR_CLEAR(port) &
2172 			SCxSR_BREAK_CLEAR(port));
2173 	if (sci_getreg(port, SCLSR)->size) {
2174 		status = serial_port_in(port, SCLSR);
2175 		status &= ~(SCLSR_TO | SCLSR_ORER);
2176 		serial_port_out(port, SCLSR, status);
2177 	}
2178 
2179 	if (s->rx_trigger > 1) {
2180 		if (s->rx_fifo_timeout) {
2181 			scif_set_rtrg(port, 1);
2182 			setup_timer(&s->rx_fifo_timer, rx_fifo_timer_fn,
2183 				    (unsigned long)s);
2184 		} else {
2185 			if (port->type == PORT_SCIFA ||
2186 			    port->type == PORT_SCIFB)
2187 				scif_set_rtrg(port, 1);
2188 			else
2189 				scif_set_rtrg(port, s->rx_trigger);
2190 		}
2191 	}
2192 }
2193 
2194 static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
2195 			    struct ktermios *old)
2196 {
2197 	unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i, bits;
2198 	unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
2199 	unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
2200 	struct sci_port *s = to_sci_port(port);
2201 	const struct plat_sci_reg *reg;
2202 	int min_err = INT_MAX, err;
2203 	unsigned long max_freq = 0;
2204 	int best_clk = -1;
2205 
2206 	if ((termios->c_cflag & CSIZE) == CS7)
2207 		smr_val |= SCSMR_CHR;
2208 	if (termios->c_cflag & PARENB)
2209 		smr_val |= SCSMR_PE;
2210 	if (termios->c_cflag & PARODD)
2211 		smr_val |= SCSMR_PE | SCSMR_ODD;
2212 	if (termios->c_cflag & CSTOPB)
2213 		smr_val |= SCSMR_STOP;
2214 
2215 	/*
2216 	 * earlyprintk comes here early on with port->uartclk set to zero.
2217 	 * the clock framework is not up and running at this point so here
2218 	 * we assume that 115200 is the maximum baud rate. please note that
2219 	 * the baud rate is not programmed during earlyprintk - it is assumed
2220 	 * that the previous boot loader has enabled required clocks and
2221 	 * setup the baud rate generator hardware for us already.
2222 	 */
2223 	if (!port->uartclk) {
2224 		baud = uart_get_baud_rate(port, termios, old, 0, 115200);
2225 		goto done;
2226 	}
2227 
2228 	for (i = 0; i < SCI_NUM_CLKS; i++)
2229 		max_freq = max(max_freq, s->clk_rates[i]);
2230 
2231 	baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s));
2232 	if (!baud)
2233 		goto done;
2234 
2235 	/*
2236 	 * There can be multiple sources for the sampling clock.  Find the one
2237 	 * that gives us the smallest deviation from the desired baud rate.
2238 	 */
2239 
2240 	/* Optional Undivided External Clock */
2241 	if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA &&
2242 	    port->type != PORT_SCIFB) {
2243 		err = sci_sck_calc(s, baud, &srr1);
2244 		if (abs(err) < abs(min_err)) {
2245 			best_clk = SCI_SCK;
2246 			scr_val = SCSCR_CKE1;
2247 			sccks = SCCKS_CKS;
2248 			min_err = err;
2249 			srr = srr1;
2250 			if (!err)
2251 				goto done;
2252 		}
2253 	}
2254 
2255 	/* Optional BRG Frequency Divided External Clock */
2256 	if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
2257 		err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1,
2258 				   &srr1);
2259 		if (abs(err) < abs(min_err)) {
2260 			best_clk = SCI_SCIF_CLK;
2261 			scr_val = SCSCR_CKE1;
2262 			sccks = 0;
2263 			min_err = err;
2264 			dl = dl1;
2265 			srr = srr1;
2266 			if (!err)
2267 				goto done;
2268 		}
2269 	}
2270 
2271 	/* Optional BRG Frequency Divided Internal Clock */
2272 	if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
2273 		err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1,
2274 				   &srr1);
2275 		if (abs(err) < abs(min_err)) {
2276 			best_clk = SCI_BRG_INT;
2277 			scr_val = SCSCR_CKE1;
2278 			sccks = SCCKS_XIN;
2279 			min_err = err;
2280 			dl = dl1;
2281 			srr = srr1;
2282 			if (!min_err)
2283 				goto done;
2284 		}
2285 	}
2286 
2287 	/* Divided Functional Clock using standard Bit Rate Register */
2288 	err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1);
2289 	if (abs(err) < abs(min_err)) {
2290 		best_clk = SCI_FCK;
2291 		scr_val = 0;
2292 		min_err = err;
2293 		brr = brr1;
2294 		srr = srr1;
2295 		cks = cks1;
2296 	}
2297 
2298 done:
2299 	if (best_clk >= 0)
2300 		dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
2301 			s->clks[best_clk], baud, min_err);
2302 
2303 	sci_port_enable(s);
2304 
2305 	/*
2306 	 * Program the optional External Baud Rate Generator (BRG) first.
2307 	 * It controls the mux to select (H)SCK or frequency divided clock.
2308 	 */
2309 	if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
2310 		serial_port_out(port, SCDL, dl);
2311 		serial_port_out(port, SCCKS, sccks);
2312 	}
2313 
2314 	sci_reset(port);
2315 
2316 	uart_update_timeout(port, termios->c_cflag, baud);
2317 
2318 	if (best_clk >= 0) {
2319 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
2320 			switch (srr + 1) {
2321 			case 5:  smr_val |= SCSMR_SRC_5;  break;
2322 			case 7:  smr_val |= SCSMR_SRC_7;  break;
2323 			case 11: smr_val |= SCSMR_SRC_11; break;
2324 			case 13: smr_val |= SCSMR_SRC_13; break;
2325 			case 16: smr_val |= SCSMR_SRC_16; break;
2326 			case 17: smr_val |= SCSMR_SRC_17; break;
2327 			case 19: smr_val |= SCSMR_SRC_19; break;
2328 			case 27: smr_val |= SCSMR_SRC_27; break;
2329 			}
2330 		smr_val |= cks;
2331 		dev_dbg(port->dev,
2332 			 "SCR 0x%x SMR 0x%x BRR %u CKS 0x%x DL %u SRR %u\n",
2333 			 scr_val, smr_val, brr, sccks, dl, srr);
2334 		serial_port_out(port, SCSCR, scr_val);
2335 		serial_port_out(port, SCSMR, smr_val);
2336 		serial_port_out(port, SCBRR, brr);
2337 		if (sci_getreg(port, HSSRR)->size)
2338 			serial_port_out(port, HSSRR, srr | HSCIF_SRE);
2339 
2340 		/* Wait one bit interval */
2341 		udelay((1000000 + (baud - 1)) / baud);
2342 	} else {
2343 		/* Don't touch the bit rate configuration */
2344 		scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
2345 		smr_val |= serial_port_in(port, SCSMR) &
2346 			   (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS);
2347 		dev_dbg(port->dev, "SCR 0x%x SMR 0x%x\n", scr_val, smr_val);
2348 		serial_port_out(port, SCSCR, scr_val);
2349 		serial_port_out(port, SCSMR, smr_val);
2350 	}
2351 
2352 	sci_init_pins(port, termios->c_cflag);
2353 
2354 	port->status &= ~UPSTAT_AUTOCTS;
2355 	s->autorts = false;
2356 	reg = sci_getreg(port, SCFCR);
2357 	if (reg->size) {
2358 		unsigned short ctrl = serial_port_in(port, SCFCR);
2359 
2360 		if ((port->flags & UPF_HARD_FLOW) &&
2361 		    (termios->c_cflag & CRTSCTS)) {
2362 			/* There is no CTS interrupt to restart the hardware */
2363 			port->status |= UPSTAT_AUTOCTS;
2364 			/* MCE is enabled when RTS is raised */
2365 			s->autorts = true;
2366 		}
2367 
2368 		/*
2369 		 * As we've done a sci_reset() above, ensure we don't
2370 		 * interfere with the FIFOs while toggling MCE. As the
2371 		 * reset values could still be set, simply mask them out.
2372 		 */
2373 		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2374 
2375 		serial_port_out(port, SCFCR, ctrl);
2376 	}
2377 
2378 	scr_val |= SCSCR_RE | SCSCR_TE |
2379 		   (s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0));
2380 	dev_dbg(port->dev, "SCSCR 0x%x\n", scr_val);
2381 	serial_port_out(port, SCSCR, scr_val);
2382 	if ((srr + 1 == 5) &&
2383 	    (port->type == PORT_SCIFA || port->type == PORT_SCIFB)) {
2384 		/*
2385 		 * In asynchronous mode, when the sampling rate is 1/5, first
2386 		 * received data may become invalid on some SCIFA and SCIFB.
2387 		 * To avoid this problem wait more than 1 serial data time (1
2388 		 * bit time x serial data number) after setting SCSCR.RE = 1.
2389 		 */
2390 		udelay(DIV_ROUND_UP(10 * 1000000, baud));
2391 	}
2392 
2393 	/*
2394 	 * Calculate delay for 2 DMA buffers (4 FIFO).
2395 	 * See serial_core.c::uart_update_timeout().
2396 	 * With 10 bits (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above
2397 	 * function calculates 1 jiffie for the data plus 5 jiffies for the
2398 	 * "slop(e)." Then below we calculate 5 jiffies (20ms) for 2 DMA
2399 	 * buffers (4 FIFO sizes), but when performing a faster transfer, the
2400 	 * value obtained by this formula is too small. Therefore, if the value
2401 	 * is smaller than 20ms, use 20ms as the timeout value for DMA.
2402 	 */
2403 	/* byte size and parity */
2404 	switch (termios->c_cflag & CSIZE) {
2405 	case CS5:
2406 		bits = 7;
2407 		break;
2408 	case CS6:
2409 		bits = 8;
2410 		break;
2411 	case CS7:
2412 		bits = 9;
2413 		break;
2414 	default:
2415 		bits = 10;
2416 		break;
2417 	}
2418 
2419 	if (termios->c_cflag & CSTOPB)
2420 		bits++;
2421 	if (termios->c_cflag & PARENB)
2422 		bits++;
2423 
2424 	s->rx_frame = (100 * bits * HZ) / (baud / 10);
2425 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2426 	s->rx_timeout = DIV_ROUND_UP(s->buf_len_rx * 2 * s->rx_frame, 1000);
2427 	dev_dbg(port->dev, "DMA Rx t-out %ums, tty t-out %u jiffies\n",
2428 		s->rx_timeout * 1000 / HZ, port->timeout);
2429 	if (s->rx_timeout < msecs_to_jiffies(20))
2430 		s->rx_timeout = msecs_to_jiffies(20);
2431 #endif
2432 
2433 	if ((termios->c_cflag & CREAD) != 0)
2434 		sci_start_rx(port);
2435 
2436 	sci_port_disable(s);
2437 
2438 	if (UART_ENABLE_MS(port, termios->c_cflag))
2439 		sci_enable_ms(port);
2440 }
2441 
2442 static void sci_pm(struct uart_port *port, unsigned int state,
2443 		   unsigned int oldstate)
2444 {
2445 	struct sci_port *sci_port = to_sci_port(port);
2446 
2447 	switch (state) {
2448 	case UART_PM_STATE_OFF:
2449 		sci_port_disable(sci_port);
2450 		break;
2451 	default:
2452 		sci_port_enable(sci_port);
2453 		break;
2454 	}
2455 }
2456 
2457 static const char *sci_type(struct uart_port *port)
2458 {
2459 	switch (port->type) {
2460 	case PORT_IRDA:
2461 		return "irda";
2462 	case PORT_SCI:
2463 		return "sci";
2464 	case PORT_SCIF:
2465 		return "scif";
2466 	case PORT_SCIFA:
2467 		return "scifa";
2468 	case PORT_SCIFB:
2469 		return "scifb";
2470 	case PORT_HSCIF:
2471 		return "hscif";
2472 	}
2473 
2474 	return NULL;
2475 }
2476 
2477 static int sci_remap_port(struct uart_port *port)
2478 {
2479 	struct sci_port *sport = to_sci_port(port);
2480 
2481 	/*
2482 	 * Nothing to do if there's already an established membase.
2483 	 */
2484 	if (port->membase)
2485 		return 0;
2486 
2487 	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2488 		port->membase = ioremap_nocache(port->mapbase, sport->reg_size);
2489 		if (unlikely(!port->membase)) {
2490 			dev_err(port->dev, "can't remap port#%d\n", port->line);
2491 			return -ENXIO;
2492 		}
2493 	} else {
2494 		/*
2495 		 * For the simple (and majority of) cases where we don't
2496 		 * need to do any remapping, just cast the cookie
2497 		 * directly.
2498 		 */
2499 		port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2500 	}
2501 
2502 	return 0;
2503 }
2504 
2505 static void sci_release_port(struct uart_port *port)
2506 {
2507 	struct sci_port *sport = to_sci_port(port);
2508 
2509 	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2510 		iounmap(port->membase);
2511 		port->membase = NULL;
2512 	}
2513 
2514 	release_mem_region(port->mapbase, sport->reg_size);
2515 }
2516 
2517 static int sci_request_port(struct uart_port *port)
2518 {
2519 	struct resource *res;
2520 	struct sci_port *sport = to_sci_port(port);
2521 	int ret;
2522 
2523 	res = request_mem_region(port->mapbase, sport->reg_size,
2524 				 dev_name(port->dev));
2525 	if (unlikely(res == NULL)) {
2526 		dev_err(port->dev, "request_mem_region failed.");
2527 		return -EBUSY;
2528 	}
2529 
2530 	ret = sci_remap_port(port);
2531 	if (unlikely(ret != 0)) {
2532 		release_resource(res);
2533 		return ret;
2534 	}
2535 
2536 	return 0;
2537 }
2538 
2539 static void sci_config_port(struct uart_port *port, int flags)
2540 {
2541 	if (flags & UART_CONFIG_TYPE) {
2542 		struct sci_port *sport = to_sci_port(port);
2543 
2544 		port->type = sport->cfg->type;
2545 		sci_request_port(port);
2546 	}
2547 }
2548 
2549 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2550 {
2551 	if (ser->baud_base < 2400)
2552 		/* No paper tape reader for Mitch.. */
2553 		return -EINVAL;
2554 
2555 	return 0;
2556 }
2557 
2558 static const struct uart_ops sci_uart_ops = {
2559 	.tx_empty	= sci_tx_empty,
2560 	.set_mctrl	= sci_set_mctrl,
2561 	.get_mctrl	= sci_get_mctrl,
2562 	.start_tx	= sci_start_tx,
2563 	.stop_tx	= sci_stop_tx,
2564 	.stop_rx	= sci_stop_rx,
2565 	.enable_ms	= sci_enable_ms,
2566 	.break_ctl	= sci_break_ctl,
2567 	.startup	= sci_startup,
2568 	.shutdown	= sci_shutdown,
2569 	.set_termios	= sci_set_termios,
2570 	.pm		= sci_pm,
2571 	.type		= sci_type,
2572 	.release_port	= sci_release_port,
2573 	.request_port	= sci_request_port,
2574 	.config_port	= sci_config_port,
2575 	.verify_port	= sci_verify_port,
2576 #ifdef CONFIG_CONSOLE_POLL
2577 	.poll_get_char	= sci_poll_get_char,
2578 	.poll_put_char	= sci_poll_put_char,
2579 #endif
2580 };
2581 
2582 static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
2583 {
2584 	const char *clk_names[] = {
2585 		[SCI_FCK] = "fck",
2586 		[SCI_SCK] = "sck",
2587 		[SCI_BRG_INT] = "brg_int",
2588 		[SCI_SCIF_CLK] = "scif_clk",
2589 	};
2590 	struct clk *clk;
2591 	unsigned int i;
2592 
2593 	if (sci_port->cfg->type == PORT_HSCIF)
2594 		clk_names[SCI_SCK] = "hsck";
2595 
2596 	for (i = 0; i < SCI_NUM_CLKS; i++) {
2597 		clk = devm_clk_get(dev, clk_names[i]);
2598 		if (PTR_ERR(clk) == -EPROBE_DEFER)
2599 			return -EPROBE_DEFER;
2600 
2601 		if (IS_ERR(clk) && i == SCI_FCK) {
2602 			/*
2603 			 * "fck" used to be called "sci_ick", and we need to
2604 			 * maintain DT backward compatibility.
2605 			 */
2606 			clk = devm_clk_get(dev, "sci_ick");
2607 			if (PTR_ERR(clk) == -EPROBE_DEFER)
2608 				return -EPROBE_DEFER;
2609 
2610 			if (!IS_ERR(clk))
2611 				goto found;
2612 
2613 			/*
2614 			 * Not all SH platforms declare a clock lookup entry
2615 			 * for SCI devices, in which case we need to get the
2616 			 * global "peripheral_clk" clock.
2617 			 */
2618 			clk = devm_clk_get(dev, "peripheral_clk");
2619 			if (!IS_ERR(clk))
2620 				goto found;
2621 
2622 			dev_err(dev, "failed to get %s (%ld)\n", clk_names[i],
2623 				PTR_ERR(clk));
2624 			return PTR_ERR(clk);
2625 		}
2626 
2627 found:
2628 		if (IS_ERR(clk))
2629 			dev_dbg(dev, "failed to get %s (%ld)\n", clk_names[i],
2630 				PTR_ERR(clk));
2631 		else
2632 			dev_dbg(dev, "clk %s is %pC rate %pCr\n", clk_names[i],
2633 				clk, clk);
2634 		sci_port->clks[i] = IS_ERR(clk) ? NULL : clk;
2635 	}
2636 	return 0;
2637 }
2638 
2639 static const struct sci_port_params *
2640 sci_probe_regmap(const struct plat_sci_port *cfg)
2641 {
2642 	unsigned int regtype;
2643 
2644 	if (cfg->regtype != SCIx_PROBE_REGTYPE)
2645 		return &sci_port_params[cfg->regtype];
2646 
2647 	switch (cfg->type) {
2648 	case PORT_SCI:
2649 		regtype = SCIx_SCI_REGTYPE;
2650 		break;
2651 	case PORT_IRDA:
2652 		regtype = SCIx_IRDA_REGTYPE;
2653 		break;
2654 	case PORT_SCIFA:
2655 		regtype = SCIx_SCIFA_REGTYPE;
2656 		break;
2657 	case PORT_SCIFB:
2658 		regtype = SCIx_SCIFB_REGTYPE;
2659 		break;
2660 	case PORT_SCIF:
2661 		/*
2662 		 * The SH-4 is a bit of a misnomer here, although that's
2663 		 * where this particular port layout originated. This
2664 		 * configuration (or some slight variation thereof)
2665 		 * remains the dominant model for all SCIFs.
2666 		 */
2667 		regtype = SCIx_SH4_SCIF_REGTYPE;
2668 		break;
2669 	case PORT_HSCIF:
2670 		regtype = SCIx_HSCIF_REGTYPE;
2671 		break;
2672 	default:
2673 		pr_err("Can't probe register map for given port\n");
2674 		return NULL;
2675 	}
2676 
2677 	return &sci_port_params[regtype];
2678 }
2679 
2680 static int sci_init_single(struct platform_device *dev,
2681 			   struct sci_port *sci_port, unsigned int index,
2682 			   const struct plat_sci_port *p, bool early)
2683 {
2684 	struct uart_port *port = &sci_port->port;
2685 	const struct resource *res;
2686 	unsigned int i;
2687 	int ret;
2688 
2689 	sci_port->cfg	= p;
2690 
2691 	port->ops	= &sci_uart_ops;
2692 	port->iotype	= UPIO_MEM;
2693 	port->line	= index;
2694 
2695 	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2696 	if (res == NULL)
2697 		return -ENOMEM;
2698 
2699 	port->mapbase = res->start;
2700 	sci_port->reg_size = resource_size(res);
2701 
2702 	for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i)
2703 		sci_port->irqs[i] = platform_get_irq(dev, i);
2704 
2705 	/* The SCI generates several interrupts. They can be muxed together or
2706 	 * connected to different interrupt lines. In the muxed case only one
2707 	 * interrupt resource is specified. In the non-muxed case three or four
2708 	 * interrupt resources are specified, as the BRI interrupt is optional.
2709 	 */
2710 	if (sci_port->irqs[0] < 0)
2711 		return -ENXIO;
2712 
2713 	if (sci_port->irqs[1] < 0) {
2714 		sci_port->irqs[1] = sci_port->irqs[0];
2715 		sci_port->irqs[2] = sci_port->irqs[0];
2716 		sci_port->irqs[3] = sci_port->irqs[0];
2717 	}
2718 
2719 	sci_port->params = sci_probe_regmap(p);
2720 	if (unlikely(sci_port->params == NULL))
2721 		return -EINVAL;
2722 
2723 	switch (p->type) {
2724 	case PORT_SCIFB:
2725 		sci_port->rx_trigger = 48;
2726 		break;
2727 	case PORT_HSCIF:
2728 		sci_port->rx_trigger = 64;
2729 		break;
2730 	case PORT_SCIFA:
2731 		sci_port->rx_trigger = 32;
2732 		break;
2733 	case PORT_SCIF:
2734 		if (p->regtype == SCIx_SH7705_SCIF_REGTYPE)
2735 			/* RX triggering not implemented for this IP */
2736 			sci_port->rx_trigger = 1;
2737 		else
2738 			sci_port->rx_trigger = 8;
2739 		break;
2740 	default:
2741 		sci_port->rx_trigger = 1;
2742 		break;
2743 	}
2744 
2745 	sci_port->rx_fifo_timeout = 0;
2746 
2747 	/* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2748 	 * match the SoC datasheet, this should be investigated. Let platform
2749 	 * data override the sampling rate for now.
2750 	 */
2751 	sci_port->sampling_rate_mask = p->sampling_rate
2752 				     ? SCI_SR(p->sampling_rate)
2753 				     : sci_port->params->sampling_rate_mask;
2754 
2755 	if (!early) {
2756 		ret = sci_init_clocks(sci_port, &dev->dev);
2757 		if (ret < 0)
2758 			return ret;
2759 
2760 		port->dev = &dev->dev;
2761 
2762 		pm_runtime_enable(&dev->dev);
2763 	}
2764 
2765 	port->type		= p->type;
2766 	port->flags		= UPF_FIXED_PORT | UPF_BOOT_AUTOCONF | p->flags;
2767 	port->fifosize		= sci_port->params->fifosize;
2768 
2769 	if (port->type == PORT_SCI) {
2770 		if (sci_port->reg_size >= 0x20)
2771 			port->regshift = 2;
2772 		else
2773 			port->regshift = 1;
2774 	}
2775 
2776 	/*
2777 	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
2778 	 * for the multi-IRQ ports, which is where we are primarily
2779 	 * concerned with the shutdown path synchronization.
2780 	 *
2781 	 * For the muxed case there's nothing more to do.
2782 	 */
2783 	port->irq		= sci_port->irqs[SCIx_RXI_IRQ];
2784 	port->irqflags		= 0;
2785 
2786 	port->serial_in		= sci_serial_in;
2787 	port->serial_out	= sci_serial_out;
2788 
2789 	return 0;
2790 }
2791 
2792 static void sci_cleanup_single(struct sci_port *port)
2793 {
2794 	pm_runtime_disable(port->port.dev);
2795 }
2796 
2797 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
2798     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
2799 static void serial_console_putchar(struct uart_port *port, int ch)
2800 {
2801 	sci_poll_put_char(port, ch);
2802 }
2803 
2804 /*
2805  *	Print a string to the serial port trying not to disturb
2806  *	any possible real use of the port...
2807  */
2808 static void serial_console_write(struct console *co, const char *s,
2809 				 unsigned count)
2810 {
2811 	struct sci_port *sci_port = &sci_ports[co->index];
2812 	struct uart_port *port = &sci_port->port;
2813 	unsigned short bits, ctrl, ctrl_temp;
2814 	unsigned long flags;
2815 	int locked = 1;
2816 
2817 	local_irq_save(flags);
2818 #if defined(SUPPORT_SYSRQ)
2819 	if (port->sysrq)
2820 		locked = 0;
2821 	else
2822 #endif
2823 	if (oops_in_progress)
2824 		locked = spin_trylock(&port->lock);
2825 	else
2826 		spin_lock(&port->lock);
2827 
2828 	/* first save SCSCR then disable interrupts, keep clock source */
2829 	ctrl = serial_port_in(port, SCSCR);
2830 	ctrl_temp = SCSCR_RE | SCSCR_TE |
2831 		    (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
2832 		    (ctrl & (SCSCR_CKE1 | SCSCR_CKE0));
2833 	serial_port_out(port, SCSCR, ctrl_temp);
2834 
2835 	uart_console_write(port, s, count, serial_console_putchar);
2836 
2837 	/* wait until fifo is empty and last bit has been transmitted */
2838 	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
2839 	while ((serial_port_in(port, SCxSR) & bits) != bits)
2840 		cpu_relax();
2841 
2842 	/* restore the SCSCR */
2843 	serial_port_out(port, SCSCR, ctrl);
2844 
2845 	if (locked)
2846 		spin_unlock(&port->lock);
2847 	local_irq_restore(flags);
2848 }
2849 
2850 static int serial_console_setup(struct console *co, char *options)
2851 {
2852 	struct sci_port *sci_port;
2853 	struct uart_port *port;
2854 	int baud = 115200;
2855 	int bits = 8;
2856 	int parity = 'n';
2857 	int flow = 'n';
2858 	int ret;
2859 
2860 	/*
2861 	 * Refuse to handle any bogus ports.
2862 	 */
2863 	if (co->index < 0 || co->index >= SCI_NPORTS)
2864 		return -ENODEV;
2865 
2866 	sci_port = &sci_ports[co->index];
2867 	port = &sci_port->port;
2868 
2869 	/*
2870 	 * Refuse to handle uninitialized ports.
2871 	 */
2872 	if (!port->ops)
2873 		return -ENODEV;
2874 
2875 	ret = sci_remap_port(port);
2876 	if (unlikely(ret != 0))
2877 		return ret;
2878 
2879 	if (options)
2880 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2881 
2882 	return uart_set_options(port, co, baud, parity, bits, flow);
2883 }
2884 
2885 static struct console serial_console = {
2886 	.name		= "ttySC",
2887 	.device		= uart_console_device,
2888 	.write		= serial_console_write,
2889 	.setup		= serial_console_setup,
2890 	.flags		= CON_PRINTBUFFER,
2891 	.index		= -1,
2892 	.data		= &sci_uart_driver,
2893 };
2894 
2895 static struct console early_serial_console = {
2896 	.name           = "early_ttySC",
2897 	.write          = serial_console_write,
2898 	.flags          = CON_PRINTBUFFER,
2899 	.index		= -1,
2900 };
2901 
2902 static char early_serial_buf[32];
2903 
2904 static int sci_probe_earlyprintk(struct platform_device *pdev)
2905 {
2906 	const struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
2907 
2908 	if (early_serial_console.data)
2909 		return -EEXIST;
2910 
2911 	early_serial_console.index = pdev->id;
2912 
2913 	sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
2914 
2915 	serial_console_setup(&early_serial_console, early_serial_buf);
2916 
2917 	if (!strstr(early_serial_buf, "keep"))
2918 		early_serial_console.flags |= CON_BOOT;
2919 
2920 	register_console(&early_serial_console);
2921 	return 0;
2922 }
2923 
2924 #define SCI_CONSOLE	(&serial_console)
2925 
2926 #else
2927 static inline int sci_probe_earlyprintk(struct platform_device *pdev)
2928 {
2929 	return -EINVAL;
2930 }
2931 
2932 #define SCI_CONSOLE	NULL
2933 
2934 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */
2935 
2936 static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
2937 
2938 static struct uart_driver sci_uart_driver = {
2939 	.owner		= THIS_MODULE,
2940 	.driver_name	= "sci",
2941 	.dev_name	= "ttySC",
2942 	.major		= SCI_MAJOR,
2943 	.minor		= SCI_MINOR_START,
2944 	.nr		= SCI_NPORTS,
2945 	.cons		= SCI_CONSOLE,
2946 };
2947 
2948 static int sci_remove(struct platform_device *dev)
2949 {
2950 	struct sci_port *port = platform_get_drvdata(dev);
2951 
2952 	uart_remove_one_port(&sci_uart_driver, &port->port);
2953 
2954 	sci_cleanup_single(port);
2955 
2956 	if (port->port.fifosize > 1) {
2957 		sysfs_remove_file(&dev->dev.kobj,
2958 				  &dev_attr_rx_fifo_trigger.attr);
2959 	}
2960 	if (port->port.type == PORT_SCIFA || port->port.type == PORT_SCIFB) {
2961 		sysfs_remove_file(&dev->dev.kobj,
2962 				  &dev_attr_rx_fifo_timeout.attr);
2963 	}
2964 
2965 	return 0;
2966 }
2967 
2968 
2969 #define SCI_OF_DATA(type, regtype)	(void *)((type) << 16 | (regtype))
2970 #define SCI_OF_TYPE(data)		((unsigned long)(data) >> 16)
2971 #define SCI_OF_REGTYPE(data)		((unsigned long)(data) & 0xffff)
2972 
2973 static const struct of_device_id of_sci_match[] = {
2974 	/* SoC-specific types */
2975 	{
2976 		.compatible = "renesas,scif-r7s72100",
2977 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE),
2978 	},
2979 	/* Family-specific types */
2980 	{
2981 		.compatible = "renesas,rcar-gen1-scif",
2982 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
2983 	}, {
2984 		.compatible = "renesas,rcar-gen2-scif",
2985 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
2986 	}, {
2987 		.compatible = "renesas,rcar-gen3-scif",
2988 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
2989 	},
2990 	/* Generic types */
2991 	{
2992 		.compatible = "renesas,scif",
2993 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE),
2994 	}, {
2995 		.compatible = "renesas,scifa",
2996 		.data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE),
2997 	}, {
2998 		.compatible = "renesas,scifb",
2999 		.data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE),
3000 	}, {
3001 		.compatible = "renesas,hscif",
3002 		.data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE),
3003 	}, {
3004 		.compatible = "renesas,sci",
3005 		.data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE),
3006 	}, {
3007 		/* Terminator */
3008 	},
3009 };
3010 MODULE_DEVICE_TABLE(of, of_sci_match);
3011 
3012 static struct plat_sci_port *sci_parse_dt(struct platform_device *pdev,
3013 					  unsigned int *dev_id)
3014 {
3015 	struct device_node *np = pdev->dev.of_node;
3016 	const struct of_device_id *match;
3017 	struct plat_sci_port *p;
3018 	struct sci_port *sp;
3019 	int id;
3020 
3021 	if (!IS_ENABLED(CONFIG_OF) || !np)
3022 		return NULL;
3023 
3024 	match = of_match_node(of_sci_match, np);
3025 	if (!match)
3026 		return NULL;
3027 
3028 	p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
3029 	if (!p)
3030 		return NULL;
3031 
3032 	/* Get the line number from the aliases node. */
3033 	id = of_alias_get_id(np, "serial");
3034 	if (id < 0) {
3035 		dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
3036 		return NULL;
3037 	}
3038 
3039 	sp = &sci_ports[id];
3040 	*dev_id = id;
3041 
3042 	p->type = SCI_OF_TYPE(match->data);
3043 	p->regtype = SCI_OF_REGTYPE(match->data);
3044 
3045 	if (of_find_property(np, "uart-has-rtscts", NULL))
3046 		sp->has_rtscts = true;
3047 
3048 	return p;
3049 }
3050 
3051 static int sci_probe_single(struct platform_device *dev,
3052 				      unsigned int index,
3053 				      struct plat_sci_port *p,
3054 				      struct sci_port *sciport)
3055 {
3056 	int ret;
3057 
3058 	/* Sanity check */
3059 	if (unlikely(index >= SCI_NPORTS)) {
3060 		dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
3061 			   index+1, SCI_NPORTS);
3062 		dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
3063 		return -EINVAL;
3064 	}
3065 
3066 	ret = sci_init_single(dev, sciport, index, p, false);
3067 	if (ret)
3068 		return ret;
3069 
3070 	sciport->gpios = mctrl_gpio_init(&sciport->port, 0);
3071 	if (IS_ERR(sciport->gpios) && PTR_ERR(sciport->gpios) != -ENOSYS)
3072 		return PTR_ERR(sciport->gpios);
3073 
3074 	if (sciport->has_rtscts) {
3075 		if (!IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(sciport->gpios,
3076 							UART_GPIO_CTS)) ||
3077 		    !IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(sciport->gpios,
3078 							UART_GPIO_RTS))) {
3079 			dev_err(&dev->dev, "Conflicting RTS/CTS config\n");
3080 			return -EINVAL;
3081 		}
3082 		sciport->port.flags |= UPF_HARD_FLOW;
3083 	}
3084 
3085 	ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
3086 	if (ret) {
3087 		sci_cleanup_single(sciport);
3088 		return ret;
3089 	}
3090 
3091 	return 0;
3092 }
3093 
3094 static int sci_probe(struct platform_device *dev)
3095 {
3096 	struct plat_sci_port *p;
3097 	struct sci_port *sp;
3098 	unsigned int dev_id;
3099 	int ret;
3100 
3101 	/*
3102 	 * If we've come here via earlyprintk initialization, head off to
3103 	 * the special early probe. We don't have sufficient device state
3104 	 * to make it beyond this yet.
3105 	 */
3106 	if (is_early_platform_device(dev))
3107 		return sci_probe_earlyprintk(dev);
3108 
3109 	if (dev->dev.of_node) {
3110 		p = sci_parse_dt(dev, &dev_id);
3111 		if (p == NULL)
3112 			return -EINVAL;
3113 	} else {
3114 		p = dev->dev.platform_data;
3115 		if (p == NULL) {
3116 			dev_err(&dev->dev, "no platform data supplied\n");
3117 			return -EINVAL;
3118 		}
3119 
3120 		dev_id = dev->id;
3121 	}
3122 
3123 	sp = &sci_ports[dev_id];
3124 	platform_set_drvdata(dev, sp);
3125 
3126 	ret = sci_probe_single(dev, dev_id, p, sp);
3127 	if (ret)
3128 		return ret;
3129 
3130 	if (sp->port.fifosize > 1) {
3131 		ret = sysfs_create_file(&dev->dev.kobj,
3132 				&dev_attr_rx_fifo_trigger.attr);
3133 		if (ret)
3134 			return ret;
3135 	}
3136 	if (sp->port.type == PORT_SCIFA || sp->port.type ==  PORT_SCIFB) {
3137 		ret = sysfs_create_file(&dev->dev.kobj,
3138 				&dev_attr_rx_fifo_timeout.attr);
3139 		if (ret) {
3140 			if (sp->port.fifosize > 1) {
3141 				sysfs_remove_file(&dev->dev.kobj,
3142 					&dev_attr_rx_fifo_trigger.attr);
3143 			}
3144 			return ret;
3145 		}
3146 	}
3147 
3148 #ifdef CONFIG_SH_STANDARD_BIOS
3149 	sh_bios_gdb_detach();
3150 #endif
3151 
3152 	return 0;
3153 }
3154 
3155 static __maybe_unused int sci_suspend(struct device *dev)
3156 {
3157 	struct sci_port *sport = dev_get_drvdata(dev);
3158 
3159 	if (sport)
3160 		uart_suspend_port(&sci_uart_driver, &sport->port);
3161 
3162 	return 0;
3163 }
3164 
3165 static __maybe_unused int sci_resume(struct device *dev)
3166 {
3167 	struct sci_port *sport = dev_get_drvdata(dev);
3168 
3169 	if (sport)
3170 		uart_resume_port(&sci_uart_driver, &sport->port);
3171 
3172 	return 0;
3173 }
3174 
3175 static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
3176 
3177 static struct platform_driver sci_driver = {
3178 	.probe		= sci_probe,
3179 	.remove		= sci_remove,
3180 	.driver		= {
3181 		.name	= "sh-sci",
3182 		.pm	= &sci_dev_pm_ops,
3183 		.of_match_table = of_match_ptr(of_sci_match),
3184 	},
3185 };
3186 
3187 static int __init sci_init(void)
3188 {
3189 	int ret;
3190 
3191 	pr_info("%s\n", banner);
3192 
3193 	ret = uart_register_driver(&sci_uart_driver);
3194 	if (likely(ret == 0)) {
3195 		ret = platform_driver_register(&sci_driver);
3196 		if (unlikely(ret))
3197 			uart_unregister_driver(&sci_uart_driver);
3198 	}
3199 
3200 	return ret;
3201 }
3202 
3203 static void __exit sci_exit(void)
3204 {
3205 	platform_driver_unregister(&sci_driver);
3206 	uart_unregister_driver(&sci_uart_driver);
3207 }
3208 
3209 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
3210 early_platform_init_buffer("earlyprintk", &sci_driver,
3211 			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
3212 #endif
3213 #ifdef CONFIG_SERIAL_SH_SCI_EARLYCON
3214 static struct __init plat_sci_port port_cfg;
3215 
3216 static int __init early_console_setup(struct earlycon_device *device,
3217 				      int type)
3218 {
3219 	if (!device->port.membase)
3220 		return -ENODEV;
3221 
3222 	device->port.serial_in = sci_serial_in;
3223 	device->port.serial_out	= sci_serial_out;
3224 	device->port.type = type;
3225 	memcpy(&sci_ports[0].port, &device->port, sizeof(struct uart_port));
3226 	port_cfg.type = type;
3227 	sci_ports[0].cfg = &port_cfg;
3228 	sci_ports[0].params = sci_probe_regmap(&port_cfg);
3229 	port_cfg.scscr = sci_serial_in(&sci_ports[0].port, SCSCR);
3230 	sci_serial_out(&sci_ports[0].port, SCSCR,
3231 		       SCSCR_RE | SCSCR_TE | port_cfg.scscr);
3232 
3233 	device->con->write = serial_console_write;
3234 	return 0;
3235 }
3236 static int __init sci_early_console_setup(struct earlycon_device *device,
3237 					  const char *opt)
3238 {
3239 	return early_console_setup(device, PORT_SCI);
3240 }
3241 static int __init scif_early_console_setup(struct earlycon_device *device,
3242 					  const char *opt)
3243 {
3244 	return early_console_setup(device, PORT_SCIF);
3245 }
3246 static int __init scifa_early_console_setup(struct earlycon_device *device,
3247 					  const char *opt)
3248 {
3249 	return early_console_setup(device, PORT_SCIFA);
3250 }
3251 static int __init scifb_early_console_setup(struct earlycon_device *device,
3252 					  const char *opt)
3253 {
3254 	return early_console_setup(device, PORT_SCIFB);
3255 }
3256 static int __init hscif_early_console_setup(struct earlycon_device *device,
3257 					  const char *opt)
3258 {
3259 	return early_console_setup(device, PORT_HSCIF);
3260 }
3261 
3262 OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup);
3263 OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup);
3264 OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup);
3265 OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup);
3266 OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup);
3267 #endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */
3268 
3269 module_init(sci_init);
3270 module_exit(sci_exit);
3271 
3272 MODULE_LICENSE("GPL");
3273 MODULE_ALIAS("platform:sh-sci");
3274 MODULE_AUTHOR("Paul Mundt");
3275 MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");
3276