xref: /openbmc/linux/drivers/tty/serial/sh-sci.c (revision a8fe58ce)
1 /*
2  * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
3  *
4  *  Copyright (C) 2002 - 2011  Paul Mundt
5  *  Copyright (C) 2015 Glider bvba
6  *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
7  *
8  * based off of the old drivers/char/sh-sci.c by:
9  *
10  *   Copyright (C) 1999, 2000  Niibe Yutaka
11  *   Copyright (C) 2000  Sugioka Toshinobu
12  *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
13  *   Modified to support SecureEdge. David McCullough (2002)
14  *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
15  *   Removed SH7300 support (Jul 2007).
16  *
17  * This file is subject to the terms and conditions of the GNU General Public
18  * License.  See the file "COPYING" in the main directory of this archive
19  * for more details.
20  */
21 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
22 #define SUPPORT_SYSRQ
23 #endif
24 
25 #undef DEBUG
26 
27 #include <linux/clk.h>
28 #include <linux/console.h>
29 #include <linux/ctype.h>
30 #include <linux/cpufreq.h>
31 #include <linux/delay.h>
32 #include <linux/dmaengine.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/err.h>
35 #include <linux/errno.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/ioport.h>
39 #include <linux/major.h>
40 #include <linux/module.h>
41 #include <linux/mm.h>
42 #include <linux/of.h>
43 #include <linux/platform_device.h>
44 #include <linux/pm_runtime.h>
45 #include <linux/scatterlist.h>
46 #include <linux/serial.h>
47 #include <linux/serial_sci.h>
48 #include <linux/sh_dma.h>
49 #include <linux/slab.h>
50 #include <linux/string.h>
51 #include <linux/sysrq.h>
52 #include <linux/timer.h>
53 #include <linux/tty.h>
54 #include <linux/tty_flip.h>
55 
56 #ifdef CONFIG_SUPERH
57 #include <asm/sh_bios.h>
58 #endif
59 
60 #include "sh-sci.h"
61 
62 /* Offsets into the sci_port->irqs array */
63 enum {
64 	SCIx_ERI_IRQ,
65 	SCIx_RXI_IRQ,
66 	SCIx_TXI_IRQ,
67 	SCIx_BRI_IRQ,
68 	SCIx_NR_IRQS,
69 
70 	SCIx_MUX_IRQ = SCIx_NR_IRQS,	/* special case */
71 };
72 
73 #define SCIx_IRQ_IS_MUXED(port)			\
74 	((port)->irqs[SCIx_ERI_IRQ] ==	\
75 	 (port)->irqs[SCIx_RXI_IRQ]) ||	\
76 	((port)->irqs[SCIx_ERI_IRQ] &&	\
77 	 ((port)->irqs[SCIx_RXI_IRQ] < 0))
78 
79 enum SCI_CLKS {
80 	SCI_FCK,		/* Functional Clock */
81 	SCI_SCK,		/* Optional External Clock */
82 	SCI_BRG_INT,		/* Optional BRG Internal Clock Source */
83 	SCI_SCIF_CLK,		/* Optional BRG External Clock Source */
84 	SCI_NUM_CLKS
85 };
86 
87 struct sci_port {
88 	struct uart_port	port;
89 
90 	/* Platform configuration */
91 	struct plat_sci_port	*cfg;
92 	unsigned int		overrun_reg;
93 	unsigned int		overrun_mask;
94 	unsigned int		error_mask;
95 	unsigned int		error_clear;
96 	unsigned int		sampling_rate;
97 	resource_size_t		reg_size;
98 
99 	/* Break timer */
100 	struct timer_list	break_timer;
101 	int			break_flag;
102 
103 	/* Clocks */
104 	struct clk		*clks[SCI_NUM_CLKS];
105 	unsigned long		clk_rates[SCI_NUM_CLKS];
106 
107 	int			irqs[SCIx_NR_IRQS];
108 	char			*irqstr[SCIx_NR_IRQS];
109 
110 	struct dma_chan			*chan_tx;
111 	struct dma_chan			*chan_rx;
112 
113 #ifdef CONFIG_SERIAL_SH_SCI_DMA
114 	dma_cookie_t			cookie_tx;
115 	dma_cookie_t			cookie_rx[2];
116 	dma_cookie_t			active_rx;
117 	dma_addr_t			tx_dma_addr;
118 	unsigned int			tx_dma_len;
119 	struct scatterlist		sg_rx[2];
120 	void				*rx_buf[2];
121 	size_t				buf_len_rx;
122 	struct work_struct		work_tx;
123 	struct timer_list		rx_timer;
124 	unsigned int			rx_timeout;
125 #endif
126 };
127 
128 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
129 
130 static struct sci_port sci_ports[SCI_NPORTS];
131 static struct uart_driver sci_uart_driver;
132 
133 static inline struct sci_port *
134 to_sci_port(struct uart_port *uart)
135 {
136 	return container_of(uart, struct sci_port, port);
137 }
138 
139 struct plat_sci_reg {
140 	u8 offset, size;
141 };
142 
143 /* Helper for invalidating specific entries of an inherited map. */
144 #define sci_reg_invalid	{ .offset = 0, .size = 0 }
145 
146 static const struct plat_sci_reg sci_regmap[SCIx_NR_REGTYPES][SCIx_NR_REGS] = {
147 	[SCIx_PROBE_REGTYPE] = {
148 		[0 ... SCIx_NR_REGS - 1] = sci_reg_invalid,
149 	},
150 
151 	/*
152 	 * Common SCI definitions, dependent on the port's regshift
153 	 * value.
154 	 */
155 	[SCIx_SCI_REGTYPE] = {
156 		[SCSMR]		= { 0x00,  8 },
157 		[SCBRR]		= { 0x01,  8 },
158 		[SCSCR]		= { 0x02,  8 },
159 		[SCxTDR]	= { 0x03,  8 },
160 		[SCxSR]		= { 0x04,  8 },
161 		[SCxRDR]	= { 0x05,  8 },
162 		[SCFCR]		= sci_reg_invalid,
163 		[SCFDR]		= sci_reg_invalid,
164 		[SCTFDR]	= sci_reg_invalid,
165 		[SCRFDR]	= sci_reg_invalid,
166 		[SCSPTR]	= sci_reg_invalid,
167 		[SCLSR]		= sci_reg_invalid,
168 		[HSSRR]		= sci_reg_invalid,
169 		[SCPCR]		= sci_reg_invalid,
170 		[SCPDR]		= sci_reg_invalid,
171 		[SCDL]		= sci_reg_invalid,
172 		[SCCKS]		= sci_reg_invalid,
173 	},
174 
175 	/*
176 	 * Common definitions for legacy IrDA ports, dependent on
177 	 * regshift value.
178 	 */
179 	[SCIx_IRDA_REGTYPE] = {
180 		[SCSMR]		= { 0x00,  8 },
181 		[SCBRR]		= { 0x01,  8 },
182 		[SCSCR]		= { 0x02,  8 },
183 		[SCxTDR]	= { 0x03,  8 },
184 		[SCxSR]		= { 0x04,  8 },
185 		[SCxRDR]	= { 0x05,  8 },
186 		[SCFCR]		= { 0x06,  8 },
187 		[SCFDR]		= { 0x07, 16 },
188 		[SCTFDR]	= sci_reg_invalid,
189 		[SCRFDR]	= sci_reg_invalid,
190 		[SCSPTR]	= sci_reg_invalid,
191 		[SCLSR]		= sci_reg_invalid,
192 		[HSSRR]		= sci_reg_invalid,
193 		[SCPCR]		= sci_reg_invalid,
194 		[SCPDR]		= sci_reg_invalid,
195 		[SCDL]		= sci_reg_invalid,
196 		[SCCKS]		= sci_reg_invalid,
197 	},
198 
199 	/*
200 	 * Common SCIFA definitions.
201 	 */
202 	[SCIx_SCIFA_REGTYPE] = {
203 		[SCSMR]		= { 0x00, 16 },
204 		[SCBRR]		= { 0x04,  8 },
205 		[SCSCR]		= { 0x08, 16 },
206 		[SCxTDR]	= { 0x20,  8 },
207 		[SCxSR]		= { 0x14, 16 },
208 		[SCxRDR]	= { 0x24,  8 },
209 		[SCFCR]		= { 0x18, 16 },
210 		[SCFDR]		= { 0x1c, 16 },
211 		[SCTFDR]	= sci_reg_invalid,
212 		[SCRFDR]	= sci_reg_invalid,
213 		[SCSPTR]	= sci_reg_invalid,
214 		[SCLSR]		= sci_reg_invalid,
215 		[HSSRR]		= sci_reg_invalid,
216 		[SCPCR]		= { 0x30, 16 },
217 		[SCPDR]		= { 0x34, 16 },
218 		[SCDL]		= sci_reg_invalid,
219 		[SCCKS]		= sci_reg_invalid,
220 	},
221 
222 	/*
223 	 * Common SCIFB definitions.
224 	 */
225 	[SCIx_SCIFB_REGTYPE] = {
226 		[SCSMR]		= { 0x00, 16 },
227 		[SCBRR]		= { 0x04,  8 },
228 		[SCSCR]		= { 0x08, 16 },
229 		[SCxTDR]	= { 0x40,  8 },
230 		[SCxSR]		= { 0x14, 16 },
231 		[SCxRDR]	= { 0x60,  8 },
232 		[SCFCR]		= { 0x18, 16 },
233 		[SCFDR]		= sci_reg_invalid,
234 		[SCTFDR]	= { 0x38, 16 },
235 		[SCRFDR]	= { 0x3c, 16 },
236 		[SCSPTR]	= sci_reg_invalid,
237 		[SCLSR]		= sci_reg_invalid,
238 		[HSSRR]		= sci_reg_invalid,
239 		[SCPCR]		= { 0x30, 16 },
240 		[SCPDR]		= { 0x34, 16 },
241 		[SCDL]		= sci_reg_invalid,
242 		[SCCKS]		= sci_reg_invalid,
243 	},
244 
245 	/*
246 	 * Common SH-2(A) SCIF definitions for ports with FIFO data
247 	 * count registers.
248 	 */
249 	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
250 		[SCSMR]		= { 0x00, 16 },
251 		[SCBRR]		= { 0x04,  8 },
252 		[SCSCR]		= { 0x08, 16 },
253 		[SCxTDR]	= { 0x0c,  8 },
254 		[SCxSR]		= { 0x10, 16 },
255 		[SCxRDR]	= { 0x14,  8 },
256 		[SCFCR]		= { 0x18, 16 },
257 		[SCFDR]		= { 0x1c, 16 },
258 		[SCTFDR]	= sci_reg_invalid,
259 		[SCRFDR]	= sci_reg_invalid,
260 		[SCSPTR]	= { 0x20, 16 },
261 		[SCLSR]		= { 0x24, 16 },
262 		[HSSRR]		= sci_reg_invalid,
263 		[SCPCR]		= sci_reg_invalid,
264 		[SCPDR]		= sci_reg_invalid,
265 		[SCDL]		= sci_reg_invalid,
266 		[SCCKS]		= sci_reg_invalid,
267 	},
268 
269 	/*
270 	 * Common SH-3 SCIF definitions.
271 	 */
272 	[SCIx_SH3_SCIF_REGTYPE] = {
273 		[SCSMR]		= { 0x00,  8 },
274 		[SCBRR]		= { 0x02,  8 },
275 		[SCSCR]		= { 0x04,  8 },
276 		[SCxTDR]	= { 0x06,  8 },
277 		[SCxSR]		= { 0x08, 16 },
278 		[SCxRDR]	= { 0x0a,  8 },
279 		[SCFCR]		= { 0x0c,  8 },
280 		[SCFDR]		= { 0x0e, 16 },
281 		[SCTFDR]	= sci_reg_invalid,
282 		[SCRFDR]	= sci_reg_invalid,
283 		[SCSPTR]	= sci_reg_invalid,
284 		[SCLSR]		= sci_reg_invalid,
285 		[HSSRR]		= sci_reg_invalid,
286 		[SCPCR]		= sci_reg_invalid,
287 		[SCPDR]		= sci_reg_invalid,
288 		[SCDL]		= sci_reg_invalid,
289 		[SCCKS]		= sci_reg_invalid,
290 	},
291 
292 	/*
293 	 * Common SH-4(A) SCIF(B) definitions.
294 	 */
295 	[SCIx_SH4_SCIF_REGTYPE] = {
296 		[SCSMR]		= { 0x00, 16 },
297 		[SCBRR]		= { 0x04,  8 },
298 		[SCSCR]		= { 0x08, 16 },
299 		[SCxTDR]	= { 0x0c,  8 },
300 		[SCxSR]		= { 0x10, 16 },
301 		[SCxRDR]	= { 0x14,  8 },
302 		[SCFCR]		= { 0x18, 16 },
303 		[SCFDR]		= { 0x1c, 16 },
304 		[SCTFDR]	= sci_reg_invalid,
305 		[SCRFDR]	= sci_reg_invalid,
306 		[SCSPTR]	= { 0x20, 16 },
307 		[SCLSR]		= { 0x24, 16 },
308 		[HSSRR]		= sci_reg_invalid,
309 		[SCPCR]		= sci_reg_invalid,
310 		[SCPDR]		= sci_reg_invalid,
311 		[SCDL]		= sci_reg_invalid,
312 		[SCCKS]		= sci_reg_invalid,
313 	},
314 
315 	/*
316 	 * Common SCIF definitions for ports with a Baud Rate Generator for
317 	 * External Clock (BRG).
318 	 */
319 	[SCIx_SH4_SCIF_BRG_REGTYPE] = {
320 		[SCSMR]		= { 0x00, 16 },
321 		[SCBRR]		= { 0x04,  8 },
322 		[SCSCR]		= { 0x08, 16 },
323 		[SCxTDR]	= { 0x0c,  8 },
324 		[SCxSR]		= { 0x10, 16 },
325 		[SCxRDR]	= { 0x14,  8 },
326 		[SCFCR]		= { 0x18, 16 },
327 		[SCFDR]		= { 0x1c, 16 },
328 		[SCTFDR]	= sci_reg_invalid,
329 		[SCRFDR]	= sci_reg_invalid,
330 		[SCSPTR]	= { 0x20, 16 },
331 		[SCLSR]		= { 0x24, 16 },
332 		[HSSRR]		= sci_reg_invalid,
333 		[SCPCR]		= sci_reg_invalid,
334 		[SCPDR]		= sci_reg_invalid,
335 		[SCDL]		= { 0x30, 16 },
336 		[SCCKS]		= { 0x34, 16 },
337 	},
338 
339 	/*
340 	 * Common HSCIF definitions.
341 	 */
342 	[SCIx_HSCIF_REGTYPE] = {
343 		[SCSMR]		= { 0x00, 16 },
344 		[SCBRR]		= { 0x04,  8 },
345 		[SCSCR]		= { 0x08, 16 },
346 		[SCxTDR]	= { 0x0c,  8 },
347 		[SCxSR]		= { 0x10, 16 },
348 		[SCxRDR]	= { 0x14,  8 },
349 		[SCFCR]		= { 0x18, 16 },
350 		[SCFDR]		= { 0x1c, 16 },
351 		[SCTFDR]	= sci_reg_invalid,
352 		[SCRFDR]	= sci_reg_invalid,
353 		[SCSPTR]	= { 0x20, 16 },
354 		[SCLSR]		= { 0x24, 16 },
355 		[HSSRR]		= { 0x40, 16 },
356 		[SCPCR]		= sci_reg_invalid,
357 		[SCPDR]		= sci_reg_invalid,
358 		[SCDL]		= { 0x30, 16 },
359 		[SCCKS]		= { 0x34, 16 },
360 	},
361 
362 	/*
363 	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
364 	 * register.
365 	 */
366 	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
367 		[SCSMR]		= { 0x00, 16 },
368 		[SCBRR]		= { 0x04,  8 },
369 		[SCSCR]		= { 0x08, 16 },
370 		[SCxTDR]	= { 0x0c,  8 },
371 		[SCxSR]		= { 0x10, 16 },
372 		[SCxRDR]	= { 0x14,  8 },
373 		[SCFCR]		= { 0x18, 16 },
374 		[SCFDR]		= { 0x1c, 16 },
375 		[SCTFDR]	= sci_reg_invalid,
376 		[SCRFDR]	= sci_reg_invalid,
377 		[SCSPTR]	= sci_reg_invalid,
378 		[SCLSR]		= { 0x24, 16 },
379 		[HSSRR]		= sci_reg_invalid,
380 		[SCPCR]		= sci_reg_invalid,
381 		[SCPDR]		= sci_reg_invalid,
382 		[SCDL]		= sci_reg_invalid,
383 		[SCCKS]		= sci_reg_invalid,
384 	},
385 
386 	/*
387 	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
388 	 * count registers.
389 	 */
390 	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
391 		[SCSMR]		= { 0x00, 16 },
392 		[SCBRR]		= { 0x04,  8 },
393 		[SCSCR]		= { 0x08, 16 },
394 		[SCxTDR]	= { 0x0c,  8 },
395 		[SCxSR]		= { 0x10, 16 },
396 		[SCxRDR]	= { 0x14,  8 },
397 		[SCFCR]		= { 0x18, 16 },
398 		[SCFDR]		= { 0x1c, 16 },
399 		[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
400 		[SCRFDR]	= { 0x20, 16 },
401 		[SCSPTR]	= { 0x24, 16 },
402 		[SCLSR]		= { 0x28, 16 },
403 		[HSSRR]		= sci_reg_invalid,
404 		[SCPCR]		= sci_reg_invalid,
405 		[SCPDR]		= sci_reg_invalid,
406 		[SCDL]		= sci_reg_invalid,
407 		[SCCKS]		= sci_reg_invalid,
408 	},
409 
410 	/*
411 	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
412 	 * registers.
413 	 */
414 	[SCIx_SH7705_SCIF_REGTYPE] = {
415 		[SCSMR]		= { 0x00, 16 },
416 		[SCBRR]		= { 0x04,  8 },
417 		[SCSCR]		= { 0x08, 16 },
418 		[SCxTDR]	= { 0x20,  8 },
419 		[SCxSR]		= { 0x14, 16 },
420 		[SCxRDR]	= { 0x24,  8 },
421 		[SCFCR]		= { 0x18, 16 },
422 		[SCFDR]		= { 0x1c, 16 },
423 		[SCTFDR]	= sci_reg_invalid,
424 		[SCRFDR]	= sci_reg_invalid,
425 		[SCSPTR]	= sci_reg_invalid,
426 		[SCLSR]		= sci_reg_invalid,
427 		[HSSRR]		= sci_reg_invalid,
428 		[SCPCR]		= sci_reg_invalid,
429 		[SCPDR]		= sci_reg_invalid,
430 		[SCDL]		= sci_reg_invalid,
431 		[SCCKS]		= sci_reg_invalid,
432 	},
433 };
434 
435 #define sci_getreg(up, offset)		(sci_regmap[to_sci_port(up)->cfg->regtype] + offset)
436 
437 /*
438  * The "offset" here is rather misleading, in that it refers to an enum
439  * value relative to the port mapping rather than the fixed offset
440  * itself, which needs to be manually retrieved from the platform's
441  * register map for the given port.
442  */
443 static unsigned int sci_serial_in(struct uart_port *p, int offset)
444 {
445 	const struct plat_sci_reg *reg = sci_getreg(p, offset);
446 
447 	if (reg->size == 8)
448 		return ioread8(p->membase + (reg->offset << p->regshift));
449 	else if (reg->size == 16)
450 		return ioread16(p->membase + (reg->offset << p->regshift));
451 	else
452 		WARN(1, "Invalid register access\n");
453 
454 	return 0;
455 }
456 
457 static void sci_serial_out(struct uart_port *p, int offset, int value)
458 {
459 	const struct plat_sci_reg *reg = sci_getreg(p, offset);
460 
461 	if (reg->size == 8)
462 		iowrite8(value, p->membase + (reg->offset << p->regshift));
463 	else if (reg->size == 16)
464 		iowrite16(value, p->membase + (reg->offset << p->regshift));
465 	else
466 		WARN(1, "Invalid register access\n");
467 }
468 
469 static int sci_probe_regmap(struct plat_sci_port *cfg)
470 {
471 	switch (cfg->type) {
472 	case PORT_SCI:
473 		cfg->regtype = SCIx_SCI_REGTYPE;
474 		break;
475 	case PORT_IRDA:
476 		cfg->regtype = SCIx_IRDA_REGTYPE;
477 		break;
478 	case PORT_SCIFA:
479 		cfg->regtype = SCIx_SCIFA_REGTYPE;
480 		break;
481 	case PORT_SCIFB:
482 		cfg->regtype = SCIx_SCIFB_REGTYPE;
483 		break;
484 	case PORT_SCIF:
485 		/*
486 		 * The SH-4 is a bit of a misnomer here, although that's
487 		 * where this particular port layout originated. This
488 		 * configuration (or some slight variation thereof)
489 		 * remains the dominant model for all SCIFs.
490 		 */
491 		cfg->regtype = SCIx_SH4_SCIF_REGTYPE;
492 		break;
493 	case PORT_HSCIF:
494 		cfg->regtype = SCIx_HSCIF_REGTYPE;
495 		break;
496 	default:
497 		pr_err("Can't probe register map for given port\n");
498 		return -EINVAL;
499 	}
500 
501 	return 0;
502 }
503 
504 static void sci_port_enable(struct sci_port *sci_port)
505 {
506 	unsigned int i;
507 
508 	if (!sci_port->port.dev)
509 		return;
510 
511 	pm_runtime_get_sync(sci_port->port.dev);
512 
513 	for (i = 0; i < SCI_NUM_CLKS; i++) {
514 		clk_prepare_enable(sci_port->clks[i]);
515 		sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]);
516 	}
517 	sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
518 }
519 
520 static void sci_port_disable(struct sci_port *sci_port)
521 {
522 	unsigned int i;
523 
524 	if (!sci_port->port.dev)
525 		return;
526 
527 	/* Cancel the break timer to ensure that the timer handler will not try
528 	 * to access the hardware with clocks and power disabled. Reset the
529 	 * break flag to make the break debouncing state machine ready for the
530 	 * next break.
531 	 */
532 	del_timer_sync(&sci_port->break_timer);
533 	sci_port->break_flag = 0;
534 
535 	for (i = SCI_NUM_CLKS; i-- > 0; )
536 		clk_disable_unprepare(sci_port->clks[i]);
537 
538 	pm_runtime_put_sync(sci_port->port.dev);
539 }
540 
541 static inline unsigned long port_rx_irq_mask(struct uart_port *port)
542 {
543 	/*
544 	 * Not all ports (such as SCIFA) will support REIE. Rather than
545 	 * special-casing the port type, we check the port initialization
546 	 * IRQ enable mask to see whether the IRQ is desired at all. If
547 	 * it's unset, it's logically inferred that there's no point in
548 	 * testing for it.
549 	 */
550 	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
551 }
552 
553 static void sci_start_tx(struct uart_port *port)
554 {
555 	struct sci_port *s = to_sci_port(port);
556 	unsigned short ctrl;
557 
558 #ifdef CONFIG_SERIAL_SH_SCI_DMA
559 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
560 		u16 new, scr = serial_port_in(port, SCSCR);
561 		if (s->chan_tx)
562 			new = scr | SCSCR_TDRQE;
563 		else
564 			new = scr & ~SCSCR_TDRQE;
565 		if (new != scr)
566 			serial_port_out(port, SCSCR, new);
567 	}
568 
569 	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
570 	    dma_submit_error(s->cookie_tx)) {
571 		s->cookie_tx = 0;
572 		schedule_work(&s->work_tx);
573 	}
574 #endif
575 
576 	if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
577 		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
578 		ctrl = serial_port_in(port, SCSCR);
579 		serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
580 	}
581 }
582 
583 static void sci_stop_tx(struct uart_port *port)
584 {
585 	unsigned short ctrl;
586 
587 	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
588 	ctrl = serial_port_in(port, SCSCR);
589 
590 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
591 		ctrl &= ~SCSCR_TDRQE;
592 
593 	ctrl &= ~SCSCR_TIE;
594 
595 	serial_port_out(port, SCSCR, ctrl);
596 }
597 
598 static void sci_start_rx(struct uart_port *port)
599 {
600 	unsigned short ctrl;
601 
602 	ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
603 
604 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
605 		ctrl &= ~SCSCR_RDRQE;
606 
607 	serial_port_out(port, SCSCR, ctrl);
608 }
609 
610 static void sci_stop_rx(struct uart_port *port)
611 {
612 	unsigned short ctrl;
613 
614 	ctrl = serial_port_in(port, SCSCR);
615 
616 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
617 		ctrl &= ~SCSCR_RDRQE;
618 
619 	ctrl &= ~port_rx_irq_mask(port);
620 
621 	serial_port_out(port, SCSCR, ctrl);
622 }
623 
624 static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
625 {
626 	if (port->type == PORT_SCI) {
627 		/* Just store the mask */
628 		serial_port_out(port, SCxSR, mask);
629 	} else if (to_sci_port(port)->overrun_mask == SCIFA_ORER) {
630 		/* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
631 		/* Only clear the status bits we want to clear */
632 		serial_port_out(port, SCxSR,
633 				serial_port_in(port, SCxSR) & mask);
634 	} else {
635 		/* Store the mask, clear parity/framing errors */
636 		serial_port_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
637 	}
638 }
639 
640 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
641 
642 #ifdef CONFIG_CONSOLE_POLL
643 static int sci_poll_get_char(struct uart_port *port)
644 {
645 	unsigned short status;
646 	int c;
647 
648 	do {
649 		status = serial_port_in(port, SCxSR);
650 		if (status & SCxSR_ERRORS(port)) {
651 			sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
652 			continue;
653 		}
654 		break;
655 	} while (1);
656 
657 	if (!(status & SCxSR_RDxF(port)))
658 		return NO_POLL_CHAR;
659 
660 	c = serial_port_in(port, SCxRDR);
661 
662 	/* Dummy read */
663 	serial_port_in(port, SCxSR);
664 	sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
665 
666 	return c;
667 }
668 #endif
669 
670 static void sci_poll_put_char(struct uart_port *port, unsigned char c)
671 {
672 	unsigned short status;
673 
674 	do {
675 		status = serial_port_in(port, SCxSR);
676 	} while (!(status & SCxSR_TDxE(port)));
677 
678 	serial_port_out(port, SCxTDR, c);
679 	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
680 }
681 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE */
682 
683 static void sci_init_pins(struct uart_port *port, unsigned int cflag)
684 {
685 	struct sci_port *s = to_sci_port(port);
686 	const struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
687 
688 	/*
689 	 * Use port-specific handler if provided.
690 	 */
691 	if (s->cfg->ops && s->cfg->ops->init_pins) {
692 		s->cfg->ops->init_pins(port, cflag);
693 		return;
694 	}
695 
696 	/*
697 	 * For the generic path SCSPTR is necessary. Bail out if that's
698 	 * unavailable, too.
699 	 */
700 	if (!reg->size)
701 		return;
702 
703 	if ((s->cfg->capabilities & SCIx_HAVE_RTSCTS) &&
704 	    ((!(cflag & CRTSCTS)))) {
705 		unsigned short status;
706 
707 		status = serial_port_in(port, SCSPTR);
708 		status &= ~SCSPTR_CTSIO;
709 		status |= SCSPTR_RTSIO;
710 		serial_port_out(port, SCSPTR, status); /* Set RTS = 1 */
711 	}
712 }
713 
714 static int sci_txfill(struct uart_port *port)
715 {
716 	const struct plat_sci_reg *reg;
717 
718 	reg = sci_getreg(port, SCTFDR);
719 	if (reg->size)
720 		return serial_port_in(port, SCTFDR) & ((port->fifosize << 1) - 1);
721 
722 	reg = sci_getreg(port, SCFDR);
723 	if (reg->size)
724 		return serial_port_in(port, SCFDR) >> 8;
725 
726 	return !(serial_port_in(port, SCxSR) & SCI_TDRE);
727 }
728 
729 static int sci_txroom(struct uart_port *port)
730 {
731 	return port->fifosize - sci_txfill(port);
732 }
733 
734 static int sci_rxfill(struct uart_port *port)
735 {
736 	const struct plat_sci_reg *reg;
737 
738 	reg = sci_getreg(port, SCRFDR);
739 	if (reg->size)
740 		return serial_port_in(port, SCRFDR) & ((port->fifosize << 1) - 1);
741 
742 	reg = sci_getreg(port, SCFDR);
743 	if (reg->size)
744 		return serial_port_in(port, SCFDR) & ((port->fifosize << 1) - 1);
745 
746 	return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
747 }
748 
749 /*
750  * SCI helper for checking the state of the muxed port/RXD pins.
751  */
752 static inline int sci_rxd_in(struct uart_port *port)
753 {
754 	struct sci_port *s = to_sci_port(port);
755 
756 	if (s->cfg->port_reg <= 0)
757 		return 1;
758 
759 	/* Cast for ARM damage */
760 	return !!__raw_readb((void __iomem *)(uintptr_t)s->cfg->port_reg);
761 }
762 
763 /* ********************************************************************** *
764  *                   the interrupt related routines                       *
765  * ********************************************************************** */
766 
767 static void sci_transmit_chars(struct uart_port *port)
768 {
769 	struct circ_buf *xmit = &port->state->xmit;
770 	unsigned int stopped = uart_tx_stopped(port);
771 	unsigned short status;
772 	unsigned short ctrl;
773 	int count;
774 
775 	status = serial_port_in(port, SCxSR);
776 	if (!(status & SCxSR_TDxE(port))) {
777 		ctrl = serial_port_in(port, SCSCR);
778 		if (uart_circ_empty(xmit))
779 			ctrl &= ~SCSCR_TIE;
780 		else
781 			ctrl |= SCSCR_TIE;
782 		serial_port_out(port, SCSCR, ctrl);
783 		return;
784 	}
785 
786 	count = sci_txroom(port);
787 
788 	do {
789 		unsigned char c;
790 
791 		if (port->x_char) {
792 			c = port->x_char;
793 			port->x_char = 0;
794 		} else if (!uart_circ_empty(xmit) && !stopped) {
795 			c = xmit->buf[xmit->tail];
796 			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
797 		} else {
798 			break;
799 		}
800 
801 		serial_port_out(port, SCxTDR, c);
802 
803 		port->icount.tx++;
804 	} while (--count > 0);
805 
806 	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
807 
808 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
809 		uart_write_wakeup(port);
810 	if (uart_circ_empty(xmit)) {
811 		sci_stop_tx(port);
812 	} else {
813 		ctrl = serial_port_in(port, SCSCR);
814 
815 		if (port->type != PORT_SCI) {
816 			serial_port_in(port, SCxSR); /* Dummy read */
817 			sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
818 		}
819 
820 		ctrl |= SCSCR_TIE;
821 		serial_port_out(port, SCSCR, ctrl);
822 	}
823 }
824 
825 /* On SH3, SCIF may read end-of-break as a space->mark char */
826 #define STEPFN(c)  ({int __c = (c); (((__c-1)|(__c)) == -1); })
827 
828 static void sci_receive_chars(struct uart_port *port)
829 {
830 	struct sci_port *sci_port = to_sci_port(port);
831 	struct tty_port *tport = &port->state->port;
832 	int i, count, copied = 0;
833 	unsigned short status;
834 	unsigned char flag;
835 
836 	status = serial_port_in(port, SCxSR);
837 	if (!(status & SCxSR_RDxF(port)))
838 		return;
839 
840 	while (1) {
841 		/* Don't copy more bytes than there is room for in the buffer */
842 		count = tty_buffer_request_room(tport, sci_rxfill(port));
843 
844 		/* If for any reason we can't copy more data, we're done! */
845 		if (count == 0)
846 			break;
847 
848 		if (port->type == PORT_SCI) {
849 			char c = serial_port_in(port, SCxRDR);
850 			if (uart_handle_sysrq_char(port, c) ||
851 			    sci_port->break_flag)
852 				count = 0;
853 			else
854 				tty_insert_flip_char(tport, c, TTY_NORMAL);
855 		} else {
856 			for (i = 0; i < count; i++) {
857 				char c = serial_port_in(port, SCxRDR);
858 
859 				status = serial_port_in(port, SCxSR);
860 #if defined(CONFIG_CPU_SH3)
861 				/* Skip "chars" during break */
862 				if (sci_port->break_flag) {
863 					if ((c == 0) &&
864 					    (status & SCxSR_FER(port))) {
865 						count--; i--;
866 						continue;
867 					}
868 
869 					/* Nonzero => end-of-break */
870 					dev_dbg(port->dev, "debounce<%02x>\n", c);
871 					sci_port->break_flag = 0;
872 
873 					if (STEPFN(c)) {
874 						count--; i--;
875 						continue;
876 					}
877 				}
878 #endif /* CONFIG_CPU_SH3 */
879 				if (uart_handle_sysrq_char(port, c)) {
880 					count--; i--;
881 					continue;
882 				}
883 
884 				/* Store data and status */
885 				if (status & SCxSR_FER(port)) {
886 					flag = TTY_FRAME;
887 					port->icount.frame++;
888 					dev_notice(port->dev, "frame error\n");
889 				} else if (status & SCxSR_PER(port)) {
890 					flag = TTY_PARITY;
891 					port->icount.parity++;
892 					dev_notice(port->dev, "parity error\n");
893 				} else
894 					flag = TTY_NORMAL;
895 
896 				tty_insert_flip_char(tport, c, flag);
897 			}
898 		}
899 
900 		serial_port_in(port, SCxSR); /* dummy read */
901 		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
902 
903 		copied += count;
904 		port->icount.rx += count;
905 	}
906 
907 	if (copied) {
908 		/* Tell the rest of the system the news. New characters! */
909 		tty_flip_buffer_push(tport);
910 	} else {
911 		serial_port_in(port, SCxSR); /* dummy read */
912 		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
913 	}
914 }
915 
916 #define SCI_BREAK_JIFFIES (HZ/20)
917 
918 /*
919  * The sci generates interrupts during the break,
920  * 1 per millisecond or so during the break period, for 9600 baud.
921  * So dont bother disabling interrupts.
922  * But dont want more than 1 break event.
923  * Use a kernel timer to periodically poll the rx line until
924  * the break is finished.
925  */
926 static inline void sci_schedule_break_timer(struct sci_port *port)
927 {
928 	mod_timer(&port->break_timer, jiffies + SCI_BREAK_JIFFIES);
929 }
930 
931 /* Ensure that two consecutive samples find the break over. */
932 static void sci_break_timer(unsigned long data)
933 {
934 	struct sci_port *port = (struct sci_port *)data;
935 
936 	if (sci_rxd_in(&port->port) == 0) {
937 		port->break_flag = 1;
938 		sci_schedule_break_timer(port);
939 	} else if (port->break_flag == 1) {
940 		/* break is over. */
941 		port->break_flag = 2;
942 		sci_schedule_break_timer(port);
943 	} else
944 		port->break_flag = 0;
945 }
946 
947 static int sci_handle_errors(struct uart_port *port)
948 {
949 	int copied = 0;
950 	unsigned short status = serial_port_in(port, SCxSR);
951 	struct tty_port *tport = &port->state->port;
952 	struct sci_port *s = to_sci_port(port);
953 
954 	/* Handle overruns */
955 	if (status & s->overrun_mask) {
956 		port->icount.overrun++;
957 
958 		/* overrun error */
959 		if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
960 			copied++;
961 
962 		dev_notice(port->dev, "overrun error\n");
963 	}
964 
965 	if (status & SCxSR_FER(port)) {
966 		if (sci_rxd_in(port) == 0) {
967 			/* Notify of BREAK */
968 			struct sci_port *sci_port = to_sci_port(port);
969 
970 			if (!sci_port->break_flag) {
971 				port->icount.brk++;
972 
973 				sci_port->break_flag = 1;
974 				sci_schedule_break_timer(sci_port);
975 
976 				/* Do sysrq handling. */
977 				if (uart_handle_break(port))
978 					return 0;
979 
980 				dev_dbg(port->dev, "BREAK detected\n");
981 
982 				if (tty_insert_flip_char(tport, 0, TTY_BREAK))
983 					copied++;
984 			}
985 
986 		} else {
987 			/* frame error */
988 			port->icount.frame++;
989 
990 			if (tty_insert_flip_char(tport, 0, TTY_FRAME))
991 				copied++;
992 
993 			dev_notice(port->dev, "frame error\n");
994 		}
995 	}
996 
997 	if (status & SCxSR_PER(port)) {
998 		/* parity error */
999 		port->icount.parity++;
1000 
1001 		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
1002 			copied++;
1003 
1004 		dev_notice(port->dev, "parity error\n");
1005 	}
1006 
1007 	if (copied)
1008 		tty_flip_buffer_push(tport);
1009 
1010 	return copied;
1011 }
1012 
1013 static int sci_handle_fifo_overrun(struct uart_port *port)
1014 {
1015 	struct tty_port *tport = &port->state->port;
1016 	struct sci_port *s = to_sci_port(port);
1017 	const struct plat_sci_reg *reg;
1018 	int copied = 0;
1019 	u16 status;
1020 
1021 	reg = sci_getreg(port, s->overrun_reg);
1022 	if (!reg->size)
1023 		return 0;
1024 
1025 	status = serial_port_in(port, s->overrun_reg);
1026 	if (status & s->overrun_mask) {
1027 		status &= ~s->overrun_mask;
1028 		serial_port_out(port, s->overrun_reg, status);
1029 
1030 		port->icount.overrun++;
1031 
1032 		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
1033 		tty_flip_buffer_push(tport);
1034 
1035 		dev_dbg(port->dev, "overrun error\n");
1036 		copied++;
1037 	}
1038 
1039 	return copied;
1040 }
1041 
1042 static int sci_handle_breaks(struct uart_port *port)
1043 {
1044 	int copied = 0;
1045 	unsigned short status = serial_port_in(port, SCxSR);
1046 	struct tty_port *tport = &port->state->port;
1047 	struct sci_port *s = to_sci_port(port);
1048 
1049 	if (uart_handle_break(port))
1050 		return 0;
1051 
1052 	if (!s->break_flag && status & SCxSR_BRK(port)) {
1053 #if defined(CONFIG_CPU_SH3)
1054 		/* Debounce break */
1055 		s->break_flag = 1;
1056 #endif
1057 
1058 		port->icount.brk++;
1059 
1060 		/* Notify of BREAK */
1061 		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
1062 			copied++;
1063 
1064 		dev_dbg(port->dev, "BREAK detected\n");
1065 	}
1066 
1067 	if (copied)
1068 		tty_flip_buffer_push(tport);
1069 
1070 	copied += sci_handle_fifo_overrun(port);
1071 
1072 	return copied;
1073 }
1074 
1075 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1076 static void sci_dma_tx_complete(void *arg)
1077 {
1078 	struct sci_port *s = arg;
1079 	struct uart_port *port = &s->port;
1080 	struct circ_buf *xmit = &port->state->xmit;
1081 	unsigned long flags;
1082 
1083 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1084 
1085 	spin_lock_irqsave(&port->lock, flags);
1086 
1087 	xmit->tail += s->tx_dma_len;
1088 	xmit->tail &= UART_XMIT_SIZE - 1;
1089 
1090 	port->icount.tx += s->tx_dma_len;
1091 
1092 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1093 		uart_write_wakeup(port);
1094 
1095 	if (!uart_circ_empty(xmit)) {
1096 		s->cookie_tx = 0;
1097 		schedule_work(&s->work_tx);
1098 	} else {
1099 		s->cookie_tx = -EINVAL;
1100 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1101 			u16 ctrl = serial_port_in(port, SCSCR);
1102 			serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1103 		}
1104 	}
1105 
1106 	spin_unlock_irqrestore(&port->lock, flags);
1107 }
1108 
1109 /* Locking: called with port lock held */
1110 static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1111 {
1112 	struct uart_port *port = &s->port;
1113 	struct tty_port *tport = &port->state->port;
1114 	int copied;
1115 
1116 	copied = tty_insert_flip_string(tport, buf, count);
1117 	if (copied < count) {
1118 		dev_warn(port->dev, "Rx overrun: dropping %zu bytes\n",
1119 			 count - copied);
1120 		port->icount.buf_overrun++;
1121 	}
1122 
1123 	port->icount.rx += copied;
1124 
1125 	return copied;
1126 }
1127 
1128 static int sci_dma_rx_find_active(struct sci_port *s)
1129 {
1130 	unsigned int i;
1131 
1132 	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1133 		if (s->active_rx == s->cookie_rx[i])
1134 			return i;
1135 
1136 	dev_err(s->port.dev, "%s: Rx cookie %d not found!\n", __func__,
1137 		s->active_rx);
1138 	return -1;
1139 }
1140 
1141 static void sci_rx_dma_release(struct sci_port *s, bool enable_pio)
1142 {
1143 	struct dma_chan *chan = s->chan_rx;
1144 	struct uart_port *port = &s->port;
1145 	unsigned long flags;
1146 
1147 	spin_lock_irqsave(&port->lock, flags);
1148 	s->chan_rx = NULL;
1149 	s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL;
1150 	spin_unlock_irqrestore(&port->lock, flags);
1151 	dmaengine_terminate_all(chan);
1152 	dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1153 			  sg_dma_address(&s->sg_rx[0]));
1154 	dma_release_channel(chan);
1155 	if (enable_pio)
1156 		sci_start_rx(port);
1157 }
1158 
1159 static void sci_dma_rx_complete(void *arg)
1160 {
1161 	struct sci_port *s = arg;
1162 	struct dma_chan *chan = s->chan_rx;
1163 	struct uart_port *port = &s->port;
1164 	struct dma_async_tx_descriptor *desc;
1165 	unsigned long flags;
1166 	int active, count = 0;
1167 
1168 	dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1169 		s->active_rx);
1170 
1171 	spin_lock_irqsave(&port->lock, flags);
1172 
1173 	active = sci_dma_rx_find_active(s);
1174 	if (active >= 0)
1175 		count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1176 
1177 	mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1178 
1179 	if (count)
1180 		tty_flip_buffer_push(&port->state->port);
1181 
1182 	desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1183 				       DMA_DEV_TO_MEM,
1184 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1185 	if (!desc)
1186 		goto fail;
1187 
1188 	desc->callback = sci_dma_rx_complete;
1189 	desc->callback_param = s;
1190 	s->cookie_rx[active] = dmaengine_submit(desc);
1191 	if (dma_submit_error(s->cookie_rx[active]))
1192 		goto fail;
1193 
1194 	s->active_rx = s->cookie_rx[!active];
1195 
1196 	dma_async_issue_pending(chan);
1197 
1198 	dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1199 		__func__, s->cookie_rx[active], active, s->active_rx);
1200 	spin_unlock_irqrestore(&port->lock, flags);
1201 	return;
1202 
1203 fail:
1204 	spin_unlock_irqrestore(&port->lock, flags);
1205 	dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1206 	sci_rx_dma_release(s, true);
1207 }
1208 
1209 static void sci_tx_dma_release(struct sci_port *s, bool enable_pio)
1210 {
1211 	struct dma_chan *chan = s->chan_tx;
1212 	struct uart_port *port = &s->port;
1213 	unsigned long flags;
1214 
1215 	spin_lock_irqsave(&port->lock, flags);
1216 	s->chan_tx = NULL;
1217 	s->cookie_tx = -EINVAL;
1218 	spin_unlock_irqrestore(&port->lock, flags);
1219 	dmaengine_terminate_all(chan);
1220 	dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1221 			 DMA_TO_DEVICE);
1222 	dma_release_channel(chan);
1223 	if (enable_pio)
1224 		sci_start_tx(port);
1225 }
1226 
1227 static void sci_submit_rx(struct sci_port *s)
1228 {
1229 	struct dma_chan *chan = s->chan_rx;
1230 	int i;
1231 
1232 	for (i = 0; i < 2; i++) {
1233 		struct scatterlist *sg = &s->sg_rx[i];
1234 		struct dma_async_tx_descriptor *desc;
1235 
1236 		desc = dmaengine_prep_slave_sg(chan,
1237 			sg, 1, DMA_DEV_TO_MEM,
1238 			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1239 		if (!desc)
1240 			goto fail;
1241 
1242 		desc->callback = sci_dma_rx_complete;
1243 		desc->callback_param = s;
1244 		s->cookie_rx[i] = dmaengine_submit(desc);
1245 		if (dma_submit_error(s->cookie_rx[i]))
1246 			goto fail;
1247 
1248 		dev_dbg(s->port.dev, "%s(): cookie %d to #%d\n", __func__,
1249 			s->cookie_rx[i], i);
1250 	}
1251 
1252 	s->active_rx = s->cookie_rx[0];
1253 
1254 	dma_async_issue_pending(chan);
1255 	return;
1256 
1257 fail:
1258 	if (i)
1259 		dmaengine_terminate_all(chan);
1260 	for (i = 0; i < 2; i++)
1261 		s->cookie_rx[i] = -EINVAL;
1262 	s->active_rx = -EINVAL;
1263 	dev_warn(s->port.dev, "Failed to re-start Rx DMA, using PIO\n");
1264 	sci_rx_dma_release(s, true);
1265 }
1266 
1267 static void work_fn_tx(struct work_struct *work)
1268 {
1269 	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1270 	struct dma_async_tx_descriptor *desc;
1271 	struct dma_chan *chan = s->chan_tx;
1272 	struct uart_port *port = &s->port;
1273 	struct circ_buf *xmit = &port->state->xmit;
1274 	dma_addr_t buf;
1275 
1276 	/*
1277 	 * DMA is idle now.
1278 	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1279 	 * offsets and lengths. Since it is a circular buffer, we have to
1280 	 * transmit till the end, and then the rest. Take the port lock to get a
1281 	 * consistent xmit buffer state.
1282 	 */
1283 	spin_lock_irq(&port->lock);
1284 	buf = s->tx_dma_addr + (xmit->tail & (UART_XMIT_SIZE - 1));
1285 	s->tx_dma_len = min_t(unsigned int,
1286 		CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
1287 		CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
1288 	spin_unlock_irq(&port->lock);
1289 
1290 	desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1291 					   DMA_MEM_TO_DEV,
1292 					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1293 	if (!desc) {
1294 		dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1295 		/* switch to PIO */
1296 		sci_tx_dma_release(s, true);
1297 		return;
1298 	}
1299 
1300 	dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1301 				   DMA_TO_DEVICE);
1302 
1303 	spin_lock_irq(&port->lock);
1304 	desc->callback = sci_dma_tx_complete;
1305 	desc->callback_param = s;
1306 	spin_unlock_irq(&port->lock);
1307 	s->cookie_tx = dmaengine_submit(desc);
1308 	if (dma_submit_error(s->cookie_tx)) {
1309 		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1310 		/* switch to PIO */
1311 		sci_tx_dma_release(s, true);
1312 		return;
1313 	}
1314 
1315 	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
1316 		__func__, xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
1317 
1318 	dma_async_issue_pending(chan);
1319 }
1320 
1321 static void rx_timer_fn(unsigned long arg)
1322 {
1323 	struct sci_port *s = (struct sci_port *)arg;
1324 	struct dma_chan *chan = s->chan_rx;
1325 	struct uart_port *port = &s->port;
1326 	struct dma_tx_state state;
1327 	enum dma_status status;
1328 	unsigned long flags;
1329 	unsigned int read;
1330 	int active, count;
1331 	u16 scr;
1332 
1333 	spin_lock_irqsave(&port->lock, flags);
1334 
1335 	dev_dbg(port->dev, "DMA Rx timed out\n");
1336 
1337 	active = sci_dma_rx_find_active(s);
1338 	if (active < 0) {
1339 		spin_unlock_irqrestore(&port->lock, flags);
1340 		return;
1341 	}
1342 
1343 	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1344 	if (status == DMA_COMPLETE) {
1345 		dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1346 			s->active_rx, active);
1347 		spin_unlock_irqrestore(&port->lock, flags);
1348 
1349 		/* Let packet complete handler take care of the packet */
1350 		return;
1351 	}
1352 
1353 	dmaengine_pause(chan);
1354 
1355 	/*
1356 	 * sometimes DMA transfer doesn't stop even if it is stopped and
1357 	 * data keeps on coming until transaction is complete so check
1358 	 * for DMA_COMPLETE again
1359 	 * Let packet complete handler take care of the packet
1360 	 */
1361 	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1362 	if (status == DMA_COMPLETE) {
1363 		spin_unlock_irqrestore(&port->lock, flags);
1364 		dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1365 		return;
1366 	}
1367 
1368 	/* Handle incomplete DMA receive */
1369 	dmaengine_terminate_all(s->chan_rx);
1370 	read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1371 	dev_dbg(port->dev, "Read %u bytes with cookie %d\n", read,
1372 		s->active_rx);
1373 
1374 	if (read) {
1375 		count = sci_dma_rx_push(s, s->rx_buf[active], read);
1376 		if (count)
1377 			tty_flip_buffer_push(&port->state->port);
1378 	}
1379 
1380 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1381 		sci_submit_rx(s);
1382 
1383 	/* Direct new serial port interrupts back to CPU */
1384 	scr = serial_port_in(port, SCSCR);
1385 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1386 		scr &= ~SCSCR_RDRQE;
1387 		enable_irq(s->irqs[SCIx_RXI_IRQ]);
1388 	}
1389 	serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1390 
1391 	spin_unlock_irqrestore(&port->lock, flags);
1392 }
1393 
1394 static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1395 					     enum dma_transfer_direction dir,
1396 					     unsigned int id)
1397 {
1398 	dma_cap_mask_t mask;
1399 	struct dma_chan *chan;
1400 	struct dma_slave_config cfg;
1401 	int ret;
1402 
1403 	dma_cap_zero(mask);
1404 	dma_cap_set(DMA_SLAVE, mask);
1405 
1406 	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1407 					(void *)(unsigned long)id, port->dev,
1408 					dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1409 	if (!chan) {
1410 		dev_warn(port->dev,
1411 			 "dma_request_slave_channel_compat failed\n");
1412 		return NULL;
1413 	}
1414 
1415 	memset(&cfg, 0, sizeof(cfg));
1416 	cfg.direction = dir;
1417 	if (dir == DMA_MEM_TO_DEV) {
1418 		cfg.dst_addr = port->mapbase +
1419 			(sci_getreg(port, SCxTDR)->offset << port->regshift);
1420 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1421 	} else {
1422 		cfg.src_addr = port->mapbase +
1423 			(sci_getreg(port, SCxRDR)->offset << port->regshift);
1424 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1425 	}
1426 
1427 	ret = dmaengine_slave_config(chan, &cfg);
1428 	if (ret) {
1429 		dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1430 		dma_release_channel(chan);
1431 		return NULL;
1432 	}
1433 
1434 	return chan;
1435 }
1436 
1437 static void sci_request_dma(struct uart_port *port)
1438 {
1439 	struct sci_port *s = to_sci_port(port);
1440 	struct dma_chan *chan;
1441 
1442 	dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1443 
1444 	if (!port->dev->of_node &&
1445 	    (s->cfg->dma_slave_tx <= 0 || s->cfg->dma_slave_rx <= 0))
1446 		return;
1447 
1448 	s->cookie_tx = -EINVAL;
1449 	chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV, s->cfg->dma_slave_tx);
1450 	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1451 	if (chan) {
1452 		s->chan_tx = chan;
1453 		/* UART circular tx buffer is an aligned page. */
1454 		s->tx_dma_addr = dma_map_single(chan->device->dev,
1455 						port->state->xmit.buf,
1456 						UART_XMIT_SIZE,
1457 						DMA_TO_DEVICE);
1458 		if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1459 			dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1460 			dma_release_channel(chan);
1461 			s->chan_tx = NULL;
1462 		} else {
1463 			dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1464 				__func__, UART_XMIT_SIZE,
1465 				port->state->xmit.buf, &s->tx_dma_addr);
1466 		}
1467 
1468 		INIT_WORK(&s->work_tx, work_fn_tx);
1469 	}
1470 
1471 	chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM, s->cfg->dma_slave_rx);
1472 	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1473 	if (chan) {
1474 		unsigned int i;
1475 		dma_addr_t dma;
1476 		void *buf;
1477 
1478 		s->chan_rx = chan;
1479 
1480 		s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1481 		buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1482 					 &dma, GFP_KERNEL);
1483 		if (!buf) {
1484 			dev_warn(port->dev,
1485 				 "Failed to allocate Rx dma buffer, using PIO\n");
1486 			dma_release_channel(chan);
1487 			s->chan_rx = NULL;
1488 			return;
1489 		}
1490 
1491 		for (i = 0; i < 2; i++) {
1492 			struct scatterlist *sg = &s->sg_rx[i];
1493 
1494 			sg_init_table(sg, 1);
1495 			s->rx_buf[i] = buf;
1496 			sg_dma_address(sg) = dma;
1497 			sg_dma_len(sg) = s->buf_len_rx;
1498 
1499 			buf += s->buf_len_rx;
1500 			dma += s->buf_len_rx;
1501 		}
1502 
1503 		setup_timer(&s->rx_timer, rx_timer_fn, (unsigned long)s);
1504 
1505 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1506 			sci_submit_rx(s);
1507 	}
1508 }
1509 
1510 static void sci_free_dma(struct uart_port *port)
1511 {
1512 	struct sci_port *s = to_sci_port(port);
1513 
1514 	if (s->chan_tx)
1515 		sci_tx_dma_release(s, false);
1516 	if (s->chan_rx)
1517 		sci_rx_dma_release(s, false);
1518 }
1519 #else
1520 static inline void sci_request_dma(struct uart_port *port)
1521 {
1522 }
1523 
1524 static inline void sci_free_dma(struct uart_port *port)
1525 {
1526 }
1527 #endif
1528 
1529 static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1530 {
1531 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1532 	struct uart_port *port = ptr;
1533 	struct sci_port *s = to_sci_port(port);
1534 
1535 	if (s->chan_rx) {
1536 		u16 scr = serial_port_in(port, SCSCR);
1537 		u16 ssr = serial_port_in(port, SCxSR);
1538 
1539 		/* Disable future Rx interrupts */
1540 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1541 			disable_irq_nosync(irq);
1542 			scr |= SCSCR_RDRQE;
1543 		} else {
1544 			scr &= ~SCSCR_RIE;
1545 			sci_submit_rx(s);
1546 		}
1547 		serial_port_out(port, SCSCR, scr);
1548 		/* Clear current interrupt */
1549 		serial_port_out(port, SCxSR,
1550 				ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1551 		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n",
1552 			jiffies, s->rx_timeout);
1553 		mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1554 
1555 		return IRQ_HANDLED;
1556 	}
1557 #endif
1558 
1559 	/* I think sci_receive_chars has to be called irrespective
1560 	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
1561 	 * to be disabled?
1562 	 */
1563 	sci_receive_chars(ptr);
1564 
1565 	return IRQ_HANDLED;
1566 }
1567 
1568 static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1569 {
1570 	struct uart_port *port = ptr;
1571 	unsigned long flags;
1572 
1573 	spin_lock_irqsave(&port->lock, flags);
1574 	sci_transmit_chars(port);
1575 	spin_unlock_irqrestore(&port->lock, flags);
1576 
1577 	return IRQ_HANDLED;
1578 }
1579 
1580 static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1581 {
1582 	struct uart_port *port = ptr;
1583 	struct sci_port *s = to_sci_port(port);
1584 
1585 	/* Handle errors */
1586 	if (port->type == PORT_SCI) {
1587 		if (sci_handle_errors(port)) {
1588 			/* discard character in rx buffer */
1589 			serial_port_in(port, SCxSR);
1590 			sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1591 		}
1592 	} else {
1593 		sci_handle_fifo_overrun(port);
1594 		if (!s->chan_rx)
1595 			sci_receive_chars(ptr);
1596 	}
1597 
1598 	sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1599 
1600 	/* Kick the transmission */
1601 	if (!s->chan_tx)
1602 		sci_tx_interrupt(irq, ptr);
1603 
1604 	return IRQ_HANDLED;
1605 }
1606 
1607 static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1608 {
1609 	struct uart_port *port = ptr;
1610 
1611 	/* Handle BREAKs */
1612 	sci_handle_breaks(port);
1613 	sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1614 
1615 	return IRQ_HANDLED;
1616 }
1617 
1618 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1619 {
1620 	unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1621 	struct uart_port *port = ptr;
1622 	struct sci_port *s = to_sci_port(port);
1623 	irqreturn_t ret = IRQ_NONE;
1624 
1625 	ssr_status = serial_port_in(port, SCxSR);
1626 	scr_status = serial_port_in(port, SCSCR);
1627 	if (s->overrun_reg == SCxSR)
1628 		orer_status = ssr_status;
1629 	else {
1630 		if (sci_getreg(port, s->overrun_reg)->size)
1631 			orer_status = serial_port_in(port, s->overrun_reg);
1632 	}
1633 
1634 	err_enabled = scr_status & port_rx_irq_mask(port);
1635 
1636 	/* Tx Interrupt */
1637 	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1638 	    !s->chan_tx)
1639 		ret = sci_tx_interrupt(irq, ptr);
1640 
1641 	/*
1642 	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1643 	 * DR flags
1644 	 */
1645 	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1646 	    (scr_status & SCSCR_RIE))
1647 		ret = sci_rx_interrupt(irq, ptr);
1648 
1649 	/* Error Interrupt */
1650 	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1651 		ret = sci_er_interrupt(irq, ptr);
1652 
1653 	/* Break Interrupt */
1654 	if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
1655 		ret = sci_br_interrupt(irq, ptr);
1656 
1657 	/* Overrun Interrupt */
1658 	if (orer_status & s->overrun_mask) {
1659 		sci_handle_fifo_overrun(port);
1660 		ret = IRQ_HANDLED;
1661 	}
1662 
1663 	return ret;
1664 }
1665 
1666 static const struct sci_irq_desc {
1667 	const char	*desc;
1668 	irq_handler_t	handler;
1669 } sci_irq_desc[] = {
1670 	/*
1671 	 * Split out handlers, the default case.
1672 	 */
1673 	[SCIx_ERI_IRQ] = {
1674 		.desc = "rx err",
1675 		.handler = sci_er_interrupt,
1676 	},
1677 
1678 	[SCIx_RXI_IRQ] = {
1679 		.desc = "rx full",
1680 		.handler = sci_rx_interrupt,
1681 	},
1682 
1683 	[SCIx_TXI_IRQ] = {
1684 		.desc = "tx empty",
1685 		.handler = sci_tx_interrupt,
1686 	},
1687 
1688 	[SCIx_BRI_IRQ] = {
1689 		.desc = "break",
1690 		.handler = sci_br_interrupt,
1691 	},
1692 
1693 	/*
1694 	 * Special muxed handler.
1695 	 */
1696 	[SCIx_MUX_IRQ] = {
1697 		.desc = "mux",
1698 		.handler = sci_mpxed_interrupt,
1699 	},
1700 };
1701 
1702 static int sci_request_irq(struct sci_port *port)
1703 {
1704 	struct uart_port *up = &port->port;
1705 	int i, j, ret = 0;
1706 
1707 	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1708 		const struct sci_irq_desc *desc;
1709 		int irq;
1710 
1711 		if (SCIx_IRQ_IS_MUXED(port)) {
1712 			i = SCIx_MUX_IRQ;
1713 			irq = up->irq;
1714 		} else {
1715 			irq = port->irqs[i];
1716 
1717 			/*
1718 			 * Certain port types won't support all of the
1719 			 * available interrupt sources.
1720 			 */
1721 			if (unlikely(irq < 0))
1722 				continue;
1723 		}
1724 
1725 		desc = sci_irq_desc + i;
1726 		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1727 					    dev_name(up->dev), desc->desc);
1728 		if (!port->irqstr[j])
1729 			goto out_nomem;
1730 
1731 		ret = request_irq(irq, desc->handler, up->irqflags,
1732 				  port->irqstr[j], port);
1733 		if (unlikely(ret)) {
1734 			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1735 			goto out_noirq;
1736 		}
1737 	}
1738 
1739 	return 0;
1740 
1741 out_noirq:
1742 	while (--i >= 0)
1743 		free_irq(port->irqs[i], port);
1744 
1745 out_nomem:
1746 	while (--j >= 0)
1747 		kfree(port->irqstr[j]);
1748 
1749 	return ret;
1750 }
1751 
1752 static void sci_free_irq(struct sci_port *port)
1753 {
1754 	int i;
1755 
1756 	/*
1757 	 * Intentionally in reverse order so we iterate over the muxed
1758 	 * IRQ first.
1759 	 */
1760 	for (i = 0; i < SCIx_NR_IRQS; i++) {
1761 		int irq = port->irqs[i];
1762 
1763 		/*
1764 		 * Certain port types won't support all of the available
1765 		 * interrupt sources.
1766 		 */
1767 		if (unlikely(irq < 0))
1768 			continue;
1769 
1770 		free_irq(port->irqs[i], port);
1771 		kfree(port->irqstr[i]);
1772 
1773 		if (SCIx_IRQ_IS_MUXED(port)) {
1774 			/* If there's only one IRQ, we're done. */
1775 			return;
1776 		}
1777 	}
1778 }
1779 
1780 static unsigned int sci_tx_empty(struct uart_port *port)
1781 {
1782 	unsigned short status = serial_port_in(port, SCxSR);
1783 	unsigned short in_tx_fifo = sci_txfill(port);
1784 
1785 	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1786 }
1787 
1788 /*
1789  * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
1790  * CTS/RTS is supported in hardware by at least one port and controlled
1791  * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
1792  * handled via the ->init_pins() op, which is a bit of a one-way street,
1793  * lacking any ability to defer pin control -- this will later be
1794  * converted over to the GPIO framework).
1795  *
1796  * Other modes (such as loopback) are supported generically on certain
1797  * port types, but not others. For these it's sufficient to test for the
1798  * existence of the support register and simply ignore the port type.
1799  */
1800 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
1801 {
1802 	if (mctrl & TIOCM_LOOP) {
1803 		const struct plat_sci_reg *reg;
1804 
1805 		/*
1806 		 * Standard loopback mode for SCFCR ports.
1807 		 */
1808 		reg = sci_getreg(port, SCFCR);
1809 		if (reg->size)
1810 			serial_port_out(port, SCFCR,
1811 					serial_port_in(port, SCFCR) |
1812 					SCFCR_LOOP);
1813 	}
1814 }
1815 
1816 static unsigned int sci_get_mctrl(struct uart_port *port)
1817 {
1818 	/*
1819 	 * CTS/RTS is handled in hardware when supported, while nothing
1820 	 * else is wired up. Keep it simple and simply assert DSR/CAR.
1821 	 */
1822 	return TIOCM_DSR | TIOCM_CAR;
1823 }
1824 
1825 static void sci_break_ctl(struct uart_port *port, int break_state)
1826 {
1827 	struct sci_port *s = to_sci_port(port);
1828 	const struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
1829 	unsigned short scscr, scsptr;
1830 
1831 	/* check wheter the port has SCSPTR */
1832 	if (!reg->size) {
1833 		/*
1834 		 * Not supported by hardware. Most parts couple break and rx
1835 		 * interrupts together, with break detection always enabled.
1836 		 */
1837 		return;
1838 	}
1839 
1840 	scsptr = serial_port_in(port, SCSPTR);
1841 	scscr = serial_port_in(port, SCSCR);
1842 
1843 	if (break_state == -1) {
1844 		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
1845 		scscr &= ~SCSCR_TE;
1846 	} else {
1847 		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
1848 		scscr |= SCSCR_TE;
1849 	}
1850 
1851 	serial_port_out(port, SCSPTR, scsptr);
1852 	serial_port_out(port, SCSCR, scscr);
1853 }
1854 
1855 static int sci_startup(struct uart_port *port)
1856 {
1857 	struct sci_port *s = to_sci_port(port);
1858 	unsigned long flags;
1859 	int ret;
1860 
1861 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1862 
1863 	ret = sci_request_irq(s);
1864 	if (unlikely(ret < 0))
1865 		return ret;
1866 
1867 	sci_request_dma(port);
1868 
1869 	spin_lock_irqsave(&port->lock, flags);
1870 	sci_start_tx(port);
1871 	sci_start_rx(port);
1872 	spin_unlock_irqrestore(&port->lock, flags);
1873 
1874 	return 0;
1875 }
1876 
1877 static void sci_shutdown(struct uart_port *port)
1878 {
1879 	struct sci_port *s = to_sci_port(port);
1880 	unsigned long flags;
1881 
1882 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1883 
1884 	spin_lock_irqsave(&port->lock, flags);
1885 	sci_stop_rx(port);
1886 	sci_stop_tx(port);
1887 	spin_unlock_irqrestore(&port->lock, flags);
1888 
1889 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1890 	if (s->chan_rx) {
1891 		dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
1892 			port->line);
1893 		del_timer_sync(&s->rx_timer);
1894 	}
1895 #endif
1896 
1897 	sci_free_dma(port);
1898 	sci_free_irq(s);
1899 }
1900 
1901 static int sci_sck_calc(struct sci_port *s, unsigned int bps,
1902 			unsigned int *srr)
1903 {
1904 	unsigned long freq = s->clk_rates[SCI_SCK];
1905 	unsigned int min_sr, max_sr, sr;
1906 	int err, min_err = INT_MAX;
1907 
1908 	if (s->sampling_rate) {
1909 		/* SCI(F) has a fixed sampling rate */
1910 		min_sr = max_sr = s->sampling_rate / 2;
1911 	} else {
1912 		/* HSCIF has a variable 1/(8..32) sampling rate */
1913 		min_sr = 8;
1914 		max_sr = 32;
1915 	}
1916 
1917 	for (sr = max_sr; sr >= min_sr; sr--) {
1918 		err = DIV_ROUND_CLOSEST(freq, sr) - bps;
1919 		if (abs(err) >= abs(min_err))
1920 			continue;
1921 
1922 		min_err = err;
1923 		*srr = sr - 1;
1924 
1925 		if (!err)
1926 			break;
1927 	}
1928 
1929 	dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
1930 		*srr + 1);
1931 	return min_err;
1932 }
1933 
1934 static int sci_brg_calc(struct sci_port *s, unsigned int bps,
1935 			unsigned long freq, unsigned int *dlr,
1936 			unsigned int *srr)
1937 {
1938 	unsigned int min_sr, max_sr, sr, dl;
1939 	int err, min_err = INT_MAX;
1940 
1941 	if (s->sampling_rate) {
1942 		/* SCIF has a fixed sampling rate */
1943 		min_sr = max_sr = s->sampling_rate / 2;
1944 	} else {
1945 		/* HSCIF has a variable 1/(8..32) sampling rate */
1946 		min_sr = 8;
1947 		max_sr = 32;
1948 	}
1949 
1950 	for (sr = max_sr; sr >= min_sr; sr--) {
1951 		dl = DIV_ROUND_CLOSEST(freq, sr * bps);
1952 		dl = clamp(dl, 1U, 65535U);
1953 
1954 		err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
1955 		if (abs(err) >= abs(min_err))
1956 			continue;
1957 
1958 		min_err = err;
1959 		*dlr = dl;
1960 		*srr = sr - 1;
1961 
1962 		if (!err)
1963 			break;
1964 	}
1965 
1966 	dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
1967 		min_err, *dlr, *srr + 1);
1968 	return min_err;
1969 }
1970 
1971 /* calculate sample rate, BRR, and clock select */
1972 static int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
1973 			  unsigned int *brr, unsigned int *srr,
1974 			  unsigned int *cks)
1975 {
1976 	unsigned int min_sr, max_sr, shift, sr, br, prediv, scrate, c;
1977 	unsigned long freq = s->clk_rates[SCI_FCK];
1978 	int err, min_err = INT_MAX;
1979 
1980 	if (s->sampling_rate) {
1981 		min_sr = max_sr = s->sampling_rate;
1982 		shift = 0;
1983 	} else {
1984 		/* HSCIF has a variable sample rate */
1985 		min_sr = 8;
1986 		max_sr = 32;
1987 		shift = 1;
1988 	}
1989 
1990 	/*
1991 	 * Find the combination of sample rate and clock select with the
1992 	 * smallest deviation from the desired baud rate.
1993 	 * Prefer high sample rates to maximise the receive margin.
1994 	 *
1995 	 * M: Receive margin (%)
1996 	 * N: Ratio of bit rate to clock (N = sampling rate)
1997 	 * D: Clock duty (D = 0 to 1.0)
1998 	 * L: Frame length (L = 9 to 12)
1999 	 * F: Absolute value of clock frequency deviation
2000 	 *
2001 	 *  M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
2002 	 *      (|D - 0.5| / N * (1 + F))|
2003 	 *  NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
2004 	 */
2005 	for (sr = max_sr; sr >= min_sr; sr--) {
2006 		for (c = 0; c <= 3; c++) {
2007 			/* integerized formulas from HSCIF documentation */
2008 			prediv = sr * (1 << (2 * c + shift));
2009 
2010 			/*
2011 			 * We need to calculate:
2012 			 *
2013 			 *     br = freq / (prediv * bps) clamped to [1..256]
2014 			 *     err = freq / (br * prediv) - bps
2015 			 *
2016 			 * Watch out for overflow when calculating the desired
2017 			 * sampling clock rate!
2018 			 */
2019 			if (bps > UINT_MAX / prediv)
2020 				break;
2021 
2022 			scrate = prediv * bps;
2023 			br = DIV_ROUND_CLOSEST(freq, scrate);
2024 			br = clamp(br, 1U, 256U);
2025 
2026 			err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
2027 			if (abs(err) >= abs(min_err))
2028 				continue;
2029 
2030 			min_err = err;
2031 			*brr = br - 1;
2032 			*srr = sr - 1;
2033 			*cks = c;
2034 
2035 			if (!err)
2036 				goto found;
2037 		}
2038 	}
2039 
2040 found:
2041 	dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
2042 		min_err, *brr, *srr + 1, *cks);
2043 	return min_err;
2044 }
2045 
2046 static void sci_reset(struct uart_port *port)
2047 {
2048 	const struct plat_sci_reg *reg;
2049 	unsigned int status;
2050 
2051 	do {
2052 		status = serial_port_in(port, SCxSR);
2053 	} while (!(status & SCxSR_TEND(port)));
2054 
2055 	serial_port_out(port, SCSCR, 0x00);	/* TE=0, RE=0, CKE1=0 */
2056 
2057 	reg = sci_getreg(port, SCFCR);
2058 	if (reg->size)
2059 		serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
2060 }
2061 
2062 static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
2063 			    struct ktermios *old)
2064 {
2065 	unsigned int baud, smr_val = 0, scr_val = 0, i;
2066 	unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
2067 	unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
2068 	struct sci_port *s = to_sci_port(port);
2069 	const struct plat_sci_reg *reg;
2070 	int min_err = INT_MAX, err;
2071 	unsigned long max_freq = 0;
2072 	int best_clk = -1;
2073 
2074 	if ((termios->c_cflag & CSIZE) == CS7)
2075 		smr_val |= SCSMR_CHR;
2076 	if (termios->c_cflag & PARENB)
2077 		smr_val |= SCSMR_PE;
2078 	if (termios->c_cflag & PARODD)
2079 		smr_val |= SCSMR_PE | SCSMR_ODD;
2080 	if (termios->c_cflag & CSTOPB)
2081 		smr_val |= SCSMR_STOP;
2082 
2083 	/*
2084 	 * earlyprintk comes here early on with port->uartclk set to zero.
2085 	 * the clock framework is not up and running at this point so here
2086 	 * we assume that 115200 is the maximum baud rate. please note that
2087 	 * the baud rate is not programmed during earlyprintk - it is assumed
2088 	 * that the previous boot loader has enabled required clocks and
2089 	 * setup the baud rate generator hardware for us already.
2090 	 */
2091 	if (!port->uartclk) {
2092 		baud = uart_get_baud_rate(port, termios, old, 0, 115200);
2093 		goto done;
2094 	}
2095 
2096 	for (i = 0; i < SCI_NUM_CLKS; i++)
2097 		max_freq = max(max_freq, s->clk_rates[i]);
2098 
2099 	baud = uart_get_baud_rate(port, termios, old, 0,
2100 				  max_freq / max(s->sampling_rate, 8U));
2101 	if (!baud)
2102 		goto done;
2103 
2104 	/*
2105 	 * There can be multiple sources for the sampling clock.  Find the one
2106 	 * that gives us the smallest deviation from the desired baud rate.
2107 	 */
2108 
2109 	/* Optional Undivided External Clock */
2110 	if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA &&
2111 	    port->type != PORT_SCIFB) {
2112 		err = sci_sck_calc(s, baud, &srr1);
2113 		if (abs(err) < abs(min_err)) {
2114 			best_clk = SCI_SCK;
2115 			scr_val = SCSCR_CKE1;
2116 			sccks = SCCKS_CKS;
2117 			min_err = err;
2118 			srr = srr1;
2119 			if (!err)
2120 				goto done;
2121 		}
2122 	}
2123 
2124 	/* Optional BRG Frequency Divided External Clock */
2125 	if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
2126 		err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1,
2127 				   &srr1);
2128 		if (abs(err) < abs(min_err)) {
2129 			best_clk = SCI_SCIF_CLK;
2130 			scr_val = SCSCR_CKE1;
2131 			sccks = 0;
2132 			min_err = err;
2133 			dl = dl1;
2134 			srr = srr1;
2135 			if (!err)
2136 				goto done;
2137 		}
2138 	}
2139 
2140 	/* Optional BRG Frequency Divided Internal Clock */
2141 	if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
2142 		err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1,
2143 				   &srr1);
2144 		if (abs(err) < abs(min_err)) {
2145 			best_clk = SCI_BRG_INT;
2146 			scr_val = SCSCR_CKE1;
2147 			sccks = SCCKS_XIN;
2148 			min_err = err;
2149 			dl = dl1;
2150 			srr = srr1;
2151 			if (!min_err)
2152 				goto done;
2153 		}
2154 	}
2155 
2156 	/* Divided Functional Clock using standard Bit Rate Register */
2157 	err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1);
2158 	if (abs(err) < abs(min_err)) {
2159 		best_clk = SCI_FCK;
2160 		scr_val = 0;
2161 		min_err = err;
2162 		brr = brr1;
2163 		srr = srr1;
2164 		cks = cks1;
2165 	}
2166 
2167 done:
2168 	if (best_clk >= 0)
2169 		dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
2170 			s->clks[best_clk], baud, min_err);
2171 
2172 	sci_port_enable(s);
2173 
2174 	/*
2175 	 * Program the optional External Baud Rate Generator (BRG) first.
2176 	 * It controls the mux to select (H)SCK or frequency divided clock.
2177 	 */
2178 	if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
2179 		serial_port_out(port, SCDL, dl);
2180 		serial_port_out(port, SCCKS, sccks);
2181 	}
2182 
2183 	sci_reset(port);
2184 
2185 	uart_update_timeout(port, termios->c_cflag, baud);
2186 
2187 	if (best_clk >= 0) {
2188 		smr_val |= cks;
2189 		dev_dbg(port->dev,
2190 			 "SCR 0x%x SMR 0x%x BRR %u CKS 0x%x DL %u SRR %u\n",
2191 			 scr_val, smr_val, brr, sccks, dl, srr);
2192 		serial_port_out(port, SCSCR, scr_val);
2193 		serial_port_out(port, SCSMR, smr_val);
2194 		serial_port_out(port, SCBRR, brr);
2195 		if (sci_getreg(port, HSSRR)->size)
2196 			serial_port_out(port, HSSRR, srr | HSCIF_SRE);
2197 
2198 		/* Wait one bit interval */
2199 		udelay((1000000 + (baud - 1)) / baud);
2200 	} else {
2201 		/* Don't touch the bit rate configuration */
2202 		scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
2203 		smr_val |= serial_port_in(port, SCSMR) & SCSMR_CKS;
2204 		dev_dbg(port->dev, "SCR 0x%x SMR 0x%x\n", scr_val, smr_val);
2205 		serial_port_out(port, SCSCR, scr_val);
2206 		serial_port_out(port, SCSMR, smr_val);
2207 	}
2208 
2209 	sci_init_pins(port, termios->c_cflag);
2210 
2211 	reg = sci_getreg(port, SCFCR);
2212 	if (reg->size) {
2213 		unsigned short ctrl = serial_port_in(port, SCFCR);
2214 
2215 		if (s->cfg->capabilities & SCIx_HAVE_RTSCTS) {
2216 			if (termios->c_cflag & CRTSCTS)
2217 				ctrl |= SCFCR_MCE;
2218 			else
2219 				ctrl &= ~SCFCR_MCE;
2220 		}
2221 
2222 		/*
2223 		 * As we've done a sci_reset() above, ensure we don't
2224 		 * interfere with the FIFOs while toggling MCE. As the
2225 		 * reset values could still be set, simply mask them out.
2226 		 */
2227 		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2228 
2229 		serial_port_out(port, SCFCR, ctrl);
2230 	}
2231 
2232 	scr_val |= s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0);
2233 	dev_dbg(port->dev, "SCSCR 0x%x\n", scr_val);
2234 	serial_port_out(port, SCSCR, scr_val);
2235 
2236 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2237 	/*
2238 	 * Calculate delay for 2 DMA buffers (4 FIFO).
2239 	 * See serial_core.c::uart_update_timeout().
2240 	 * With 10 bits (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above
2241 	 * function calculates 1 jiffie for the data plus 5 jiffies for the
2242 	 * "slop(e)." Then below we calculate 5 jiffies (20ms) for 2 DMA
2243 	 * buffers (4 FIFO sizes), but when performing a faster transfer, the
2244 	 * value obtained by this formula is too small. Therefore, if the value
2245 	 * is smaller than 20ms, use 20ms as the timeout value for DMA.
2246 	 */
2247 	if (s->chan_rx) {
2248 		unsigned int bits;
2249 
2250 		/* byte size and parity */
2251 		switch (termios->c_cflag & CSIZE) {
2252 		case CS5:
2253 			bits = 7;
2254 			break;
2255 		case CS6:
2256 			bits = 8;
2257 			break;
2258 		case CS7:
2259 			bits = 9;
2260 			break;
2261 		default:
2262 			bits = 10;
2263 			break;
2264 		}
2265 
2266 		if (termios->c_cflag & CSTOPB)
2267 			bits++;
2268 		if (termios->c_cflag & PARENB)
2269 			bits++;
2270 		s->rx_timeout = DIV_ROUND_UP((s->buf_len_rx * 2 * bits * HZ) /
2271 					     (baud / 10), 10);
2272 		dev_dbg(port->dev, "DMA Rx t-out %ums, tty t-out %u jiffies\n",
2273 			s->rx_timeout * 1000 / HZ, port->timeout);
2274 		if (s->rx_timeout < msecs_to_jiffies(20))
2275 			s->rx_timeout = msecs_to_jiffies(20);
2276 	}
2277 #endif
2278 
2279 	if ((termios->c_cflag & CREAD) != 0)
2280 		sci_start_rx(port);
2281 
2282 	sci_port_disable(s);
2283 }
2284 
2285 static void sci_pm(struct uart_port *port, unsigned int state,
2286 		   unsigned int oldstate)
2287 {
2288 	struct sci_port *sci_port = to_sci_port(port);
2289 
2290 	switch (state) {
2291 	case UART_PM_STATE_OFF:
2292 		sci_port_disable(sci_port);
2293 		break;
2294 	default:
2295 		sci_port_enable(sci_port);
2296 		break;
2297 	}
2298 }
2299 
2300 static const char *sci_type(struct uart_port *port)
2301 {
2302 	switch (port->type) {
2303 	case PORT_IRDA:
2304 		return "irda";
2305 	case PORT_SCI:
2306 		return "sci";
2307 	case PORT_SCIF:
2308 		return "scif";
2309 	case PORT_SCIFA:
2310 		return "scifa";
2311 	case PORT_SCIFB:
2312 		return "scifb";
2313 	case PORT_HSCIF:
2314 		return "hscif";
2315 	}
2316 
2317 	return NULL;
2318 }
2319 
2320 static int sci_remap_port(struct uart_port *port)
2321 {
2322 	struct sci_port *sport = to_sci_port(port);
2323 
2324 	/*
2325 	 * Nothing to do if there's already an established membase.
2326 	 */
2327 	if (port->membase)
2328 		return 0;
2329 
2330 	if (port->flags & UPF_IOREMAP) {
2331 		port->membase = ioremap_nocache(port->mapbase, sport->reg_size);
2332 		if (unlikely(!port->membase)) {
2333 			dev_err(port->dev, "can't remap port#%d\n", port->line);
2334 			return -ENXIO;
2335 		}
2336 	} else {
2337 		/*
2338 		 * For the simple (and majority of) cases where we don't
2339 		 * need to do any remapping, just cast the cookie
2340 		 * directly.
2341 		 */
2342 		port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2343 	}
2344 
2345 	return 0;
2346 }
2347 
2348 static void sci_release_port(struct uart_port *port)
2349 {
2350 	struct sci_port *sport = to_sci_port(port);
2351 
2352 	if (port->flags & UPF_IOREMAP) {
2353 		iounmap(port->membase);
2354 		port->membase = NULL;
2355 	}
2356 
2357 	release_mem_region(port->mapbase, sport->reg_size);
2358 }
2359 
2360 static int sci_request_port(struct uart_port *port)
2361 {
2362 	struct resource *res;
2363 	struct sci_port *sport = to_sci_port(port);
2364 	int ret;
2365 
2366 	res = request_mem_region(port->mapbase, sport->reg_size,
2367 				 dev_name(port->dev));
2368 	if (unlikely(res == NULL)) {
2369 		dev_err(port->dev, "request_mem_region failed.");
2370 		return -EBUSY;
2371 	}
2372 
2373 	ret = sci_remap_port(port);
2374 	if (unlikely(ret != 0)) {
2375 		release_resource(res);
2376 		return ret;
2377 	}
2378 
2379 	return 0;
2380 }
2381 
2382 static void sci_config_port(struct uart_port *port, int flags)
2383 {
2384 	if (flags & UART_CONFIG_TYPE) {
2385 		struct sci_port *sport = to_sci_port(port);
2386 
2387 		port->type = sport->cfg->type;
2388 		sci_request_port(port);
2389 	}
2390 }
2391 
2392 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2393 {
2394 	if (ser->baud_base < 2400)
2395 		/* No paper tape reader for Mitch.. */
2396 		return -EINVAL;
2397 
2398 	return 0;
2399 }
2400 
2401 static struct uart_ops sci_uart_ops = {
2402 	.tx_empty	= sci_tx_empty,
2403 	.set_mctrl	= sci_set_mctrl,
2404 	.get_mctrl	= sci_get_mctrl,
2405 	.start_tx	= sci_start_tx,
2406 	.stop_tx	= sci_stop_tx,
2407 	.stop_rx	= sci_stop_rx,
2408 	.break_ctl	= sci_break_ctl,
2409 	.startup	= sci_startup,
2410 	.shutdown	= sci_shutdown,
2411 	.set_termios	= sci_set_termios,
2412 	.pm		= sci_pm,
2413 	.type		= sci_type,
2414 	.release_port	= sci_release_port,
2415 	.request_port	= sci_request_port,
2416 	.config_port	= sci_config_port,
2417 	.verify_port	= sci_verify_port,
2418 #ifdef CONFIG_CONSOLE_POLL
2419 	.poll_get_char	= sci_poll_get_char,
2420 	.poll_put_char	= sci_poll_put_char,
2421 #endif
2422 };
2423 
2424 static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
2425 {
2426 	const char *clk_names[] = {
2427 		[SCI_FCK] = "fck",
2428 		[SCI_SCK] = "sck",
2429 		[SCI_BRG_INT] = "brg_int",
2430 		[SCI_SCIF_CLK] = "scif_clk",
2431 	};
2432 	struct clk *clk;
2433 	unsigned int i;
2434 
2435 	if (sci_port->cfg->type == PORT_HSCIF)
2436 		clk_names[SCI_SCK] = "hsck";
2437 
2438 	for (i = 0; i < SCI_NUM_CLKS; i++) {
2439 		clk = devm_clk_get(dev, clk_names[i]);
2440 		if (PTR_ERR(clk) == -EPROBE_DEFER)
2441 			return -EPROBE_DEFER;
2442 
2443 		if (IS_ERR(clk) && i == SCI_FCK) {
2444 			/*
2445 			 * "fck" used to be called "sci_ick", and we need to
2446 			 * maintain DT backward compatibility.
2447 			 */
2448 			clk = devm_clk_get(dev, "sci_ick");
2449 			if (PTR_ERR(clk) == -EPROBE_DEFER)
2450 				return -EPROBE_DEFER;
2451 
2452 			if (!IS_ERR(clk))
2453 				goto found;
2454 
2455 			/*
2456 			 * Not all SH platforms declare a clock lookup entry
2457 			 * for SCI devices, in which case we need to get the
2458 			 * global "peripheral_clk" clock.
2459 			 */
2460 			clk = devm_clk_get(dev, "peripheral_clk");
2461 			if (!IS_ERR(clk))
2462 				goto found;
2463 
2464 			dev_err(dev, "failed to get %s (%ld)\n", clk_names[i],
2465 				PTR_ERR(clk));
2466 			return PTR_ERR(clk);
2467 		}
2468 
2469 found:
2470 		if (IS_ERR(clk))
2471 			dev_dbg(dev, "failed to get %s (%ld)\n", clk_names[i],
2472 				PTR_ERR(clk));
2473 		else
2474 			dev_dbg(dev, "clk %s is %pC rate %pCr\n", clk_names[i],
2475 				clk, clk);
2476 		sci_port->clks[i] = IS_ERR(clk) ? NULL : clk;
2477 	}
2478 	return 0;
2479 }
2480 
2481 static int sci_init_single(struct platform_device *dev,
2482 			   struct sci_port *sci_port, unsigned int index,
2483 			   struct plat_sci_port *p, bool early)
2484 {
2485 	struct uart_port *port = &sci_port->port;
2486 	const struct resource *res;
2487 	unsigned int i;
2488 	int ret;
2489 
2490 	sci_port->cfg	= p;
2491 
2492 	port->ops	= &sci_uart_ops;
2493 	port->iotype	= UPIO_MEM;
2494 	port->line	= index;
2495 
2496 	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2497 	if (res == NULL)
2498 		return -ENOMEM;
2499 
2500 	port->mapbase = res->start;
2501 	sci_port->reg_size = resource_size(res);
2502 
2503 	for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i)
2504 		sci_port->irqs[i] = platform_get_irq(dev, i);
2505 
2506 	/* The SCI generates several interrupts. They can be muxed together or
2507 	 * connected to different interrupt lines. In the muxed case only one
2508 	 * interrupt resource is specified. In the non-muxed case three or four
2509 	 * interrupt resources are specified, as the BRI interrupt is optional.
2510 	 */
2511 	if (sci_port->irqs[0] < 0)
2512 		return -ENXIO;
2513 
2514 	if (sci_port->irqs[1] < 0) {
2515 		sci_port->irqs[1] = sci_port->irqs[0];
2516 		sci_port->irqs[2] = sci_port->irqs[0];
2517 		sci_port->irqs[3] = sci_port->irqs[0];
2518 	}
2519 
2520 	if (p->regtype == SCIx_PROBE_REGTYPE) {
2521 		ret = sci_probe_regmap(p);
2522 		if (unlikely(ret))
2523 			return ret;
2524 	}
2525 
2526 	switch (p->type) {
2527 	case PORT_SCIFB:
2528 		port->fifosize = 256;
2529 		sci_port->overrun_reg = SCxSR;
2530 		sci_port->overrun_mask = SCIFA_ORER;
2531 		sci_port->sampling_rate = 16;
2532 		break;
2533 	case PORT_HSCIF:
2534 		port->fifosize = 128;
2535 		sci_port->overrun_reg = SCLSR;
2536 		sci_port->overrun_mask = SCLSR_ORER;
2537 		sci_port->sampling_rate = 0;
2538 		break;
2539 	case PORT_SCIFA:
2540 		port->fifosize = 64;
2541 		sci_port->overrun_reg = SCxSR;
2542 		sci_port->overrun_mask = SCIFA_ORER;
2543 		sci_port->sampling_rate = 16;
2544 		break;
2545 	case PORT_SCIF:
2546 		port->fifosize = 16;
2547 		if (p->regtype == SCIx_SH7705_SCIF_REGTYPE) {
2548 			sci_port->overrun_reg = SCxSR;
2549 			sci_port->overrun_mask = SCIFA_ORER;
2550 			sci_port->sampling_rate = 16;
2551 		} else {
2552 			sci_port->overrun_reg = SCLSR;
2553 			sci_port->overrun_mask = SCLSR_ORER;
2554 			sci_port->sampling_rate = 32;
2555 		}
2556 		break;
2557 	default:
2558 		port->fifosize = 1;
2559 		sci_port->overrun_reg = SCxSR;
2560 		sci_port->overrun_mask = SCI_ORER;
2561 		sci_port->sampling_rate = 32;
2562 		break;
2563 	}
2564 
2565 	/* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2566 	 * match the SoC datasheet, this should be investigated. Let platform
2567 	 * data override the sampling rate for now.
2568 	 */
2569 	if (p->sampling_rate)
2570 		sci_port->sampling_rate = p->sampling_rate;
2571 
2572 	if (!early) {
2573 		ret = sci_init_clocks(sci_port, &dev->dev);
2574 		if (ret < 0)
2575 			return ret;
2576 
2577 		port->dev = &dev->dev;
2578 
2579 		pm_runtime_enable(&dev->dev);
2580 	}
2581 
2582 	sci_port->break_timer.data = (unsigned long)sci_port;
2583 	sci_port->break_timer.function = sci_break_timer;
2584 	init_timer(&sci_port->break_timer);
2585 
2586 	/*
2587 	 * Establish some sensible defaults for the error detection.
2588 	 */
2589 	if (p->type == PORT_SCI) {
2590 		sci_port->error_mask = SCI_DEFAULT_ERROR_MASK;
2591 		sci_port->error_clear = SCI_ERROR_CLEAR;
2592 	} else {
2593 		sci_port->error_mask = SCIF_DEFAULT_ERROR_MASK;
2594 		sci_port->error_clear = SCIF_ERROR_CLEAR;
2595 	}
2596 
2597 	/*
2598 	 * Make the error mask inclusive of overrun detection, if
2599 	 * supported.
2600 	 */
2601 	if (sci_port->overrun_reg == SCxSR) {
2602 		sci_port->error_mask |= sci_port->overrun_mask;
2603 		sci_port->error_clear &= ~sci_port->overrun_mask;
2604 	}
2605 
2606 	port->type		= p->type;
2607 	port->flags		= UPF_FIXED_PORT | p->flags;
2608 	port->regshift		= p->regshift;
2609 
2610 	/*
2611 	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
2612 	 * for the multi-IRQ ports, which is where we are primarily
2613 	 * concerned with the shutdown path synchronization.
2614 	 *
2615 	 * For the muxed case there's nothing more to do.
2616 	 */
2617 	port->irq		= sci_port->irqs[SCIx_RXI_IRQ];
2618 	port->irqflags		= 0;
2619 
2620 	port->serial_in		= sci_serial_in;
2621 	port->serial_out	= sci_serial_out;
2622 
2623 	if (p->dma_slave_tx > 0 && p->dma_slave_rx > 0)
2624 		dev_dbg(port->dev, "DMA tx %d, rx %d\n",
2625 			p->dma_slave_tx, p->dma_slave_rx);
2626 
2627 	return 0;
2628 }
2629 
2630 static void sci_cleanup_single(struct sci_port *port)
2631 {
2632 	pm_runtime_disable(port->port.dev);
2633 }
2634 
2635 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
2636 static void serial_console_putchar(struct uart_port *port, int ch)
2637 {
2638 	sci_poll_put_char(port, ch);
2639 }
2640 
2641 /*
2642  *	Print a string to the serial port trying not to disturb
2643  *	any possible real use of the port...
2644  */
2645 static void serial_console_write(struct console *co, const char *s,
2646 				 unsigned count)
2647 {
2648 	struct sci_port *sci_port = &sci_ports[co->index];
2649 	struct uart_port *port = &sci_port->port;
2650 	unsigned short bits, ctrl, ctrl_temp;
2651 	unsigned long flags;
2652 	int locked = 1;
2653 
2654 	local_irq_save(flags);
2655 	if (port->sysrq)
2656 		locked = 0;
2657 	else if (oops_in_progress)
2658 		locked = spin_trylock(&port->lock);
2659 	else
2660 		spin_lock(&port->lock);
2661 
2662 	/* first save SCSCR then disable interrupts, keep clock source */
2663 	ctrl = serial_port_in(port, SCSCR);
2664 	ctrl_temp = (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
2665 		    (ctrl & (SCSCR_CKE1 | SCSCR_CKE0));
2666 	serial_port_out(port, SCSCR, ctrl_temp);
2667 
2668 	uart_console_write(port, s, count, serial_console_putchar);
2669 
2670 	/* wait until fifo is empty and last bit has been transmitted */
2671 	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
2672 	while ((serial_port_in(port, SCxSR) & bits) != bits)
2673 		cpu_relax();
2674 
2675 	/* restore the SCSCR */
2676 	serial_port_out(port, SCSCR, ctrl);
2677 
2678 	if (locked)
2679 		spin_unlock(&port->lock);
2680 	local_irq_restore(flags);
2681 }
2682 
2683 static int serial_console_setup(struct console *co, char *options)
2684 {
2685 	struct sci_port *sci_port;
2686 	struct uart_port *port;
2687 	int baud = 115200;
2688 	int bits = 8;
2689 	int parity = 'n';
2690 	int flow = 'n';
2691 	int ret;
2692 
2693 	/*
2694 	 * Refuse to handle any bogus ports.
2695 	 */
2696 	if (co->index < 0 || co->index >= SCI_NPORTS)
2697 		return -ENODEV;
2698 
2699 	sci_port = &sci_ports[co->index];
2700 	port = &sci_port->port;
2701 
2702 	/*
2703 	 * Refuse to handle uninitialized ports.
2704 	 */
2705 	if (!port->ops)
2706 		return -ENODEV;
2707 
2708 	ret = sci_remap_port(port);
2709 	if (unlikely(ret != 0))
2710 		return ret;
2711 
2712 	if (options)
2713 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2714 
2715 	return uart_set_options(port, co, baud, parity, bits, flow);
2716 }
2717 
2718 static struct console serial_console = {
2719 	.name		= "ttySC",
2720 	.device		= uart_console_device,
2721 	.write		= serial_console_write,
2722 	.setup		= serial_console_setup,
2723 	.flags		= CON_PRINTBUFFER,
2724 	.index		= -1,
2725 	.data		= &sci_uart_driver,
2726 };
2727 
2728 static struct console early_serial_console = {
2729 	.name           = "early_ttySC",
2730 	.write          = serial_console_write,
2731 	.flags          = CON_PRINTBUFFER,
2732 	.index		= -1,
2733 };
2734 
2735 static char early_serial_buf[32];
2736 
2737 static int sci_probe_earlyprintk(struct platform_device *pdev)
2738 {
2739 	struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
2740 
2741 	if (early_serial_console.data)
2742 		return -EEXIST;
2743 
2744 	early_serial_console.index = pdev->id;
2745 
2746 	sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
2747 
2748 	serial_console_setup(&early_serial_console, early_serial_buf);
2749 
2750 	if (!strstr(early_serial_buf, "keep"))
2751 		early_serial_console.flags |= CON_BOOT;
2752 
2753 	register_console(&early_serial_console);
2754 	return 0;
2755 }
2756 
2757 #define SCI_CONSOLE	(&serial_console)
2758 
2759 #else
2760 static inline int sci_probe_earlyprintk(struct platform_device *pdev)
2761 {
2762 	return -EINVAL;
2763 }
2764 
2765 #define SCI_CONSOLE	NULL
2766 
2767 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE */
2768 
2769 static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
2770 
2771 static struct uart_driver sci_uart_driver = {
2772 	.owner		= THIS_MODULE,
2773 	.driver_name	= "sci",
2774 	.dev_name	= "ttySC",
2775 	.major		= SCI_MAJOR,
2776 	.minor		= SCI_MINOR_START,
2777 	.nr		= SCI_NPORTS,
2778 	.cons		= SCI_CONSOLE,
2779 };
2780 
2781 static int sci_remove(struct platform_device *dev)
2782 {
2783 	struct sci_port *port = platform_get_drvdata(dev);
2784 
2785 	uart_remove_one_port(&sci_uart_driver, &port->port);
2786 
2787 	sci_cleanup_single(port);
2788 
2789 	return 0;
2790 }
2791 
2792 
2793 #define SCI_OF_DATA(type, regtype)	(void *)((type) << 16 | (regtype))
2794 #define SCI_OF_TYPE(data)		((unsigned long)(data) >> 16)
2795 #define SCI_OF_REGTYPE(data)		((unsigned long)(data) & 0xffff)
2796 
2797 static const struct of_device_id of_sci_match[] = {
2798 	/* SoC-specific types */
2799 	{
2800 		.compatible = "renesas,scif-r7s72100",
2801 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE),
2802 	},
2803 	/* Family-specific types */
2804 	{
2805 		.compatible = "renesas,rcar-gen1-scif",
2806 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
2807 	}, {
2808 		.compatible = "renesas,rcar-gen2-scif",
2809 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
2810 	}, {
2811 		.compatible = "renesas,rcar-gen3-scif",
2812 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
2813 	},
2814 	/* Generic types */
2815 	{
2816 		.compatible = "renesas,scif",
2817 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE),
2818 	}, {
2819 		.compatible = "renesas,scifa",
2820 		.data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE),
2821 	}, {
2822 		.compatible = "renesas,scifb",
2823 		.data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE),
2824 	}, {
2825 		.compatible = "renesas,hscif",
2826 		.data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE),
2827 	}, {
2828 		.compatible = "renesas,sci",
2829 		.data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE),
2830 	}, {
2831 		/* Terminator */
2832 	},
2833 };
2834 MODULE_DEVICE_TABLE(of, of_sci_match);
2835 
2836 static struct plat_sci_port *
2837 sci_parse_dt(struct platform_device *pdev, unsigned int *dev_id)
2838 {
2839 	struct device_node *np = pdev->dev.of_node;
2840 	const struct of_device_id *match;
2841 	struct plat_sci_port *p;
2842 	int id;
2843 
2844 	if (!IS_ENABLED(CONFIG_OF) || !np)
2845 		return NULL;
2846 
2847 	match = of_match_node(of_sci_match, np);
2848 	if (!match)
2849 		return NULL;
2850 
2851 	p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
2852 	if (!p)
2853 		return NULL;
2854 
2855 	/* Get the line number from the aliases node. */
2856 	id = of_alias_get_id(np, "serial");
2857 	if (id < 0) {
2858 		dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
2859 		return NULL;
2860 	}
2861 
2862 	*dev_id = id;
2863 
2864 	p->flags = UPF_IOREMAP | UPF_BOOT_AUTOCONF;
2865 	p->type = SCI_OF_TYPE(match->data);
2866 	p->regtype = SCI_OF_REGTYPE(match->data);
2867 	p->scscr = SCSCR_RE | SCSCR_TE;
2868 
2869 	return p;
2870 }
2871 
2872 static int sci_probe_single(struct platform_device *dev,
2873 				      unsigned int index,
2874 				      struct plat_sci_port *p,
2875 				      struct sci_port *sciport)
2876 {
2877 	int ret;
2878 
2879 	/* Sanity check */
2880 	if (unlikely(index >= SCI_NPORTS)) {
2881 		dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
2882 			   index+1, SCI_NPORTS);
2883 		dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
2884 		return -EINVAL;
2885 	}
2886 
2887 	ret = sci_init_single(dev, sciport, index, p, false);
2888 	if (ret)
2889 		return ret;
2890 
2891 	ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
2892 	if (ret) {
2893 		sci_cleanup_single(sciport);
2894 		return ret;
2895 	}
2896 
2897 	return 0;
2898 }
2899 
2900 static int sci_probe(struct platform_device *dev)
2901 {
2902 	struct plat_sci_port *p;
2903 	struct sci_port *sp;
2904 	unsigned int dev_id;
2905 	int ret;
2906 
2907 	/*
2908 	 * If we've come here via earlyprintk initialization, head off to
2909 	 * the special early probe. We don't have sufficient device state
2910 	 * to make it beyond this yet.
2911 	 */
2912 	if (is_early_platform_device(dev))
2913 		return sci_probe_earlyprintk(dev);
2914 
2915 	if (dev->dev.of_node) {
2916 		p = sci_parse_dt(dev, &dev_id);
2917 		if (p == NULL)
2918 			return -EINVAL;
2919 	} else {
2920 		p = dev->dev.platform_data;
2921 		if (p == NULL) {
2922 			dev_err(&dev->dev, "no platform data supplied\n");
2923 			return -EINVAL;
2924 		}
2925 
2926 		dev_id = dev->id;
2927 	}
2928 
2929 	sp = &sci_ports[dev_id];
2930 	platform_set_drvdata(dev, sp);
2931 
2932 	ret = sci_probe_single(dev, dev_id, p, sp);
2933 	if (ret)
2934 		return ret;
2935 
2936 #ifdef CONFIG_SH_STANDARD_BIOS
2937 	sh_bios_gdb_detach();
2938 #endif
2939 
2940 	return 0;
2941 }
2942 
2943 static __maybe_unused int sci_suspend(struct device *dev)
2944 {
2945 	struct sci_port *sport = dev_get_drvdata(dev);
2946 
2947 	if (sport)
2948 		uart_suspend_port(&sci_uart_driver, &sport->port);
2949 
2950 	return 0;
2951 }
2952 
2953 static __maybe_unused int sci_resume(struct device *dev)
2954 {
2955 	struct sci_port *sport = dev_get_drvdata(dev);
2956 
2957 	if (sport)
2958 		uart_resume_port(&sci_uart_driver, &sport->port);
2959 
2960 	return 0;
2961 }
2962 
2963 static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
2964 
2965 static struct platform_driver sci_driver = {
2966 	.probe		= sci_probe,
2967 	.remove		= sci_remove,
2968 	.driver		= {
2969 		.name	= "sh-sci",
2970 		.pm	= &sci_dev_pm_ops,
2971 		.of_match_table = of_match_ptr(of_sci_match),
2972 	},
2973 };
2974 
2975 static int __init sci_init(void)
2976 {
2977 	int ret;
2978 
2979 	pr_info("%s\n", banner);
2980 
2981 	ret = uart_register_driver(&sci_uart_driver);
2982 	if (likely(ret == 0)) {
2983 		ret = platform_driver_register(&sci_driver);
2984 		if (unlikely(ret))
2985 			uart_unregister_driver(&sci_uart_driver);
2986 	}
2987 
2988 	return ret;
2989 }
2990 
2991 static void __exit sci_exit(void)
2992 {
2993 	platform_driver_unregister(&sci_driver);
2994 	uart_unregister_driver(&sci_uart_driver);
2995 }
2996 
2997 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
2998 early_platform_init_buffer("earlyprintk", &sci_driver,
2999 			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
3000 #endif
3001 module_init(sci_init);
3002 module_exit(sci_exit);
3003 
3004 MODULE_LICENSE("GPL");
3005 MODULE_ALIAS("platform:sh-sci");
3006 MODULE_AUTHOR("Paul Mundt");
3007 MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");
3008