1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SuperH on-chip serial module support. (SCI with no FIFO / with FIFO) 4 * 5 * Copyright (C) 2002 - 2011 Paul Mundt 6 * Copyright (C) 2015 Glider bvba 7 * Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007). 8 * 9 * based off of the old drivers/char/sh-sci.c by: 10 * 11 * Copyright (C) 1999, 2000 Niibe Yutaka 12 * Copyright (C) 2000 Sugioka Toshinobu 13 * Modified to support multiple serial ports. Stuart Menefy (May 2000). 14 * Modified to support SecureEdge. David McCullough (2002) 15 * Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003). 16 * Removed SH7300 support (Jul 2007). 17 */ 18 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) 19 #define SUPPORT_SYSRQ 20 #endif 21 22 #undef DEBUG 23 24 #include <linux/clk.h> 25 #include <linux/console.h> 26 #include <linux/ctype.h> 27 #include <linux/cpufreq.h> 28 #include <linux/delay.h> 29 #include <linux/dmaengine.h> 30 #include <linux/dma-mapping.h> 31 #include <linux/err.h> 32 #include <linux/errno.h> 33 #include <linux/init.h> 34 #include <linux/interrupt.h> 35 #include <linux/ioport.h> 36 #include <linux/ktime.h> 37 #include <linux/major.h> 38 #include <linux/module.h> 39 #include <linux/mm.h> 40 #include <linux/of.h> 41 #include <linux/of_device.h> 42 #include <linux/platform_device.h> 43 #include <linux/pm_runtime.h> 44 #include <linux/scatterlist.h> 45 #include <linux/serial.h> 46 #include <linux/serial_sci.h> 47 #include <linux/sh_dma.h> 48 #include <linux/slab.h> 49 #include <linux/string.h> 50 #include <linux/sysrq.h> 51 #include <linux/timer.h> 52 #include <linux/tty.h> 53 #include <linux/tty_flip.h> 54 55 #ifdef CONFIG_SUPERH 56 #include <asm/sh_bios.h> 57 #endif 58 59 #include "serial_mctrl_gpio.h" 60 #include "sh-sci.h" 61 62 /* Offsets into the sci_port->irqs array */ 63 enum { 64 SCIx_ERI_IRQ, 65 SCIx_RXI_IRQ, 66 SCIx_TXI_IRQ, 67 SCIx_BRI_IRQ, 68 SCIx_DRI_IRQ, 69 SCIx_TEI_IRQ, 70 SCIx_NR_IRQS, 71 72 SCIx_MUX_IRQ = SCIx_NR_IRQS, /* special case */ 73 }; 74 75 #define SCIx_IRQ_IS_MUXED(port) \ 76 ((port)->irqs[SCIx_ERI_IRQ] == \ 77 (port)->irqs[SCIx_RXI_IRQ]) || \ 78 ((port)->irqs[SCIx_ERI_IRQ] && \ 79 ((port)->irqs[SCIx_RXI_IRQ] < 0)) 80 81 enum SCI_CLKS { 82 SCI_FCK, /* Functional Clock */ 83 SCI_SCK, /* Optional External Clock */ 84 SCI_BRG_INT, /* Optional BRG Internal Clock Source */ 85 SCI_SCIF_CLK, /* Optional BRG External Clock Source */ 86 SCI_NUM_CLKS 87 }; 88 89 /* Bit x set means sampling rate x + 1 is supported */ 90 #define SCI_SR(x) BIT((x) - 1) 91 #define SCI_SR_RANGE(x, y) GENMASK((y) - 1, (x) - 1) 92 93 #define SCI_SR_SCIFAB SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \ 94 SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \ 95 SCI_SR(19) | SCI_SR(27) 96 97 #define min_sr(_port) ffs((_port)->sampling_rate_mask) 98 #define max_sr(_port) fls((_port)->sampling_rate_mask) 99 100 /* Iterate over all supported sampling rates, from high to low */ 101 #define for_each_sr(_sr, _port) \ 102 for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--) \ 103 if ((_port)->sampling_rate_mask & SCI_SR((_sr))) 104 105 struct plat_sci_reg { 106 u8 offset, size; 107 }; 108 109 struct sci_port_params { 110 const struct plat_sci_reg regs[SCIx_NR_REGS]; 111 unsigned int fifosize; 112 unsigned int overrun_reg; 113 unsigned int overrun_mask; 114 unsigned int sampling_rate_mask; 115 unsigned int error_mask; 116 unsigned int error_clear; 117 }; 118 119 struct sci_port { 120 struct uart_port port; 121 122 /* Platform configuration */ 123 const struct sci_port_params *params; 124 const struct plat_sci_port *cfg; 125 unsigned int sampling_rate_mask; 126 resource_size_t reg_size; 127 struct mctrl_gpios *gpios; 128 129 /* Clocks */ 130 struct clk *clks[SCI_NUM_CLKS]; 131 unsigned long clk_rates[SCI_NUM_CLKS]; 132 133 int irqs[SCIx_NR_IRQS]; 134 char *irqstr[SCIx_NR_IRQS]; 135 136 struct dma_chan *chan_tx; 137 struct dma_chan *chan_rx; 138 139 #ifdef CONFIG_SERIAL_SH_SCI_DMA 140 struct dma_chan *chan_tx_saved; 141 struct dma_chan *chan_rx_saved; 142 dma_cookie_t cookie_tx; 143 dma_cookie_t cookie_rx[2]; 144 dma_cookie_t active_rx; 145 dma_addr_t tx_dma_addr; 146 unsigned int tx_dma_len; 147 struct scatterlist sg_rx[2]; 148 void *rx_buf[2]; 149 size_t buf_len_rx; 150 struct work_struct work_tx; 151 struct hrtimer rx_timer; 152 unsigned int rx_timeout; /* microseconds */ 153 #endif 154 unsigned int rx_frame; 155 int rx_trigger; 156 struct timer_list rx_fifo_timer; 157 int rx_fifo_timeout; 158 u16 hscif_tot; 159 160 bool has_rtscts; 161 bool autorts; 162 }; 163 164 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS 165 166 static struct sci_port sci_ports[SCI_NPORTS]; 167 static unsigned long sci_ports_in_use; 168 static struct uart_driver sci_uart_driver; 169 170 static inline struct sci_port * 171 to_sci_port(struct uart_port *uart) 172 { 173 return container_of(uart, struct sci_port, port); 174 } 175 176 static const struct sci_port_params sci_port_params[SCIx_NR_REGTYPES] = { 177 /* 178 * Common SCI definitions, dependent on the port's regshift 179 * value. 180 */ 181 [SCIx_SCI_REGTYPE] = { 182 .regs = { 183 [SCSMR] = { 0x00, 8 }, 184 [SCBRR] = { 0x01, 8 }, 185 [SCSCR] = { 0x02, 8 }, 186 [SCxTDR] = { 0x03, 8 }, 187 [SCxSR] = { 0x04, 8 }, 188 [SCxRDR] = { 0x05, 8 }, 189 }, 190 .fifosize = 1, 191 .overrun_reg = SCxSR, 192 .overrun_mask = SCI_ORER, 193 .sampling_rate_mask = SCI_SR(32), 194 .error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER, 195 .error_clear = SCI_ERROR_CLEAR & ~SCI_ORER, 196 }, 197 198 /* 199 * Common definitions for legacy IrDA ports. 200 */ 201 [SCIx_IRDA_REGTYPE] = { 202 .regs = { 203 [SCSMR] = { 0x00, 8 }, 204 [SCBRR] = { 0x02, 8 }, 205 [SCSCR] = { 0x04, 8 }, 206 [SCxTDR] = { 0x06, 8 }, 207 [SCxSR] = { 0x08, 16 }, 208 [SCxRDR] = { 0x0a, 8 }, 209 [SCFCR] = { 0x0c, 8 }, 210 [SCFDR] = { 0x0e, 16 }, 211 }, 212 .fifosize = 1, 213 .overrun_reg = SCxSR, 214 .overrun_mask = SCI_ORER, 215 .sampling_rate_mask = SCI_SR(32), 216 .error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER, 217 .error_clear = SCI_ERROR_CLEAR & ~SCI_ORER, 218 }, 219 220 /* 221 * Common SCIFA definitions. 222 */ 223 [SCIx_SCIFA_REGTYPE] = { 224 .regs = { 225 [SCSMR] = { 0x00, 16 }, 226 [SCBRR] = { 0x04, 8 }, 227 [SCSCR] = { 0x08, 16 }, 228 [SCxTDR] = { 0x20, 8 }, 229 [SCxSR] = { 0x14, 16 }, 230 [SCxRDR] = { 0x24, 8 }, 231 [SCFCR] = { 0x18, 16 }, 232 [SCFDR] = { 0x1c, 16 }, 233 [SCPCR] = { 0x30, 16 }, 234 [SCPDR] = { 0x34, 16 }, 235 }, 236 .fifosize = 64, 237 .overrun_reg = SCxSR, 238 .overrun_mask = SCIFA_ORER, 239 .sampling_rate_mask = SCI_SR_SCIFAB, 240 .error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER, 241 .error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER, 242 }, 243 244 /* 245 * Common SCIFB definitions. 246 */ 247 [SCIx_SCIFB_REGTYPE] = { 248 .regs = { 249 [SCSMR] = { 0x00, 16 }, 250 [SCBRR] = { 0x04, 8 }, 251 [SCSCR] = { 0x08, 16 }, 252 [SCxTDR] = { 0x40, 8 }, 253 [SCxSR] = { 0x14, 16 }, 254 [SCxRDR] = { 0x60, 8 }, 255 [SCFCR] = { 0x18, 16 }, 256 [SCTFDR] = { 0x38, 16 }, 257 [SCRFDR] = { 0x3c, 16 }, 258 [SCPCR] = { 0x30, 16 }, 259 [SCPDR] = { 0x34, 16 }, 260 }, 261 .fifosize = 256, 262 .overrun_reg = SCxSR, 263 .overrun_mask = SCIFA_ORER, 264 .sampling_rate_mask = SCI_SR_SCIFAB, 265 .error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER, 266 .error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER, 267 }, 268 269 /* 270 * Common SH-2(A) SCIF definitions for ports with FIFO data 271 * count registers. 272 */ 273 [SCIx_SH2_SCIF_FIFODATA_REGTYPE] = { 274 .regs = { 275 [SCSMR] = { 0x00, 16 }, 276 [SCBRR] = { 0x04, 8 }, 277 [SCSCR] = { 0x08, 16 }, 278 [SCxTDR] = { 0x0c, 8 }, 279 [SCxSR] = { 0x10, 16 }, 280 [SCxRDR] = { 0x14, 8 }, 281 [SCFCR] = { 0x18, 16 }, 282 [SCFDR] = { 0x1c, 16 }, 283 [SCSPTR] = { 0x20, 16 }, 284 [SCLSR] = { 0x24, 16 }, 285 }, 286 .fifosize = 16, 287 .overrun_reg = SCLSR, 288 .overrun_mask = SCLSR_ORER, 289 .sampling_rate_mask = SCI_SR(32), 290 .error_mask = SCIF_DEFAULT_ERROR_MASK, 291 .error_clear = SCIF_ERROR_CLEAR, 292 }, 293 294 /* 295 * The "SCIFA" that is in RZ/T and RZ/A2. 296 * It looks like a normal SCIF with FIFO data, but with a 297 * compressed address space. Also, the break out of interrupts 298 * are different: ERI/BRI, RXI, TXI, TEI, DRI. 299 */ 300 [SCIx_RZ_SCIFA_REGTYPE] = { 301 .regs = { 302 [SCSMR] = { 0x00, 16 }, 303 [SCBRR] = { 0x02, 8 }, 304 [SCSCR] = { 0x04, 16 }, 305 [SCxTDR] = { 0x06, 8 }, 306 [SCxSR] = { 0x08, 16 }, 307 [SCxRDR] = { 0x0A, 8 }, 308 [SCFCR] = { 0x0C, 16 }, 309 [SCFDR] = { 0x0E, 16 }, 310 [SCSPTR] = { 0x10, 16 }, 311 [SCLSR] = { 0x12, 16 }, 312 }, 313 .fifosize = 16, 314 .overrun_reg = SCLSR, 315 .overrun_mask = SCLSR_ORER, 316 .sampling_rate_mask = SCI_SR(32), 317 .error_mask = SCIF_DEFAULT_ERROR_MASK, 318 .error_clear = SCIF_ERROR_CLEAR, 319 }, 320 321 /* 322 * Common SH-3 SCIF definitions. 323 */ 324 [SCIx_SH3_SCIF_REGTYPE] = { 325 .regs = { 326 [SCSMR] = { 0x00, 8 }, 327 [SCBRR] = { 0x02, 8 }, 328 [SCSCR] = { 0x04, 8 }, 329 [SCxTDR] = { 0x06, 8 }, 330 [SCxSR] = { 0x08, 16 }, 331 [SCxRDR] = { 0x0a, 8 }, 332 [SCFCR] = { 0x0c, 8 }, 333 [SCFDR] = { 0x0e, 16 }, 334 }, 335 .fifosize = 16, 336 .overrun_reg = SCLSR, 337 .overrun_mask = SCLSR_ORER, 338 .sampling_rate_mask = SCI_SR(32), 339 .error_mask = SCIF_DEFAULT_ERROR_MASK, 340 .error_clear = SCIF_ERROR_CLEAR, 341 }, 342 343 /* 344 * Common SH-4(A) SCIF(B) definitions. 345 */ 346 [SCIx_SH4_SCIF_REGTYPE] = { 347 .regs = { 348 [SCSMR] = { 0x00, 16 }, 349 [SCBRR] = { 0x04, 8 }, 350 [SCSCR] = { 0x08, 16 }, 351 [SCxTDR] = { 0x0c, 8 }, 352 [SCxSR] = { 0x10, 16 }, 353 [SCxRDR] = { 0x14, 8 }, 354 [SCFCR] = { 0x18, 16 }, 355 [SCFDR] = { 0x1c, 16 }, 356 [SCSPTR] = { 0x20, 16 }, 357 [SCLSR] = { 0x24, 16 }, 358 }, 359 .fifosize = 16, 360 .overrun_reg = SCLSR, 361 .overrun_mask = SCLSR_ORER, 362 .sampling_rate_mask = SCI_SR(32), 363 .error_mask = SCIF_DEFAULT_ERROR_MASK, 364 .error_clear = SCIF_ERROR_CLEAR, 365 }, 366 367 /* 368 * Common SCIF definitions for ports with a Baud Rate Generator for 369 * External Clock (BRG). 370 */ 371 [SCIx_SH4_SCIF_BRG_REGTYPE] = { 372 .regs = { 373 [SCSMR] = { 0x00, 16 }, 374 [SCBRR] = { 0x04, 8 }, 375 [SCSCR] = { 0x08, 16 }, 376 [SCxTDR] = { 0x0c, 8 }, 377 [SCxSR] = { 0x10, 16 }, 378 [SCxRDR] = { 0x14, 8 }, 379 [SCFCR] = { 0x18, 16 }, 380 [SCFDR] = { 0x1c, 16 }, 381 [SCSPTR] = { 0x20, 16 }, 382 [SCLSR] = { 0x24, 16 }, 383 [SCDL] = { 0x30, 16 }, 384 [SCCKS] = { 0x34, 16 }, 385 }, 386 .fifosize = 16, 387 .overrun_reg = SCLSR, 388 .overrun_mask = SCLSR_ORER, 389 .sampling_rate_mask = SCI_SR(32), 390 .error_mask = SCIF_DEFAULT_ERROR_MASK, 391 .error_clear = SCIF_ERROR_CLEAR, 392 }, 393 394 /* 395 * Common HSCIF definitions. 396 */ 397 [SCIx_HSCIF_REGTYPE] = { 398 .regs = { 399 [SCSMR] = { 0x00, 16 }, 400 [SCBRR] = { 0x04, 8 }, 401 [SCSCR] = { 0x08, 16 }, 402 [SCxTDR] = { 0x0c, 8 }, 403 [SCxSR] = { 0x10, 16 }, 404 [SCxRDR] = { 0x14, 8 }, 405 [SCFCR] = { 0x18, 16 }, 406 [SCFDR] = { 0x1c, 16 }, 407 [SCSPTR] = { 0x20, 16 }, 408 [SCLSR] = { 0x24, 16 }, 409 [HSSRR] = { 0x40, 16 }, 410 [SCDL] = { 0x30, 16 }, 411 [SCCKS] = { 0x34, 16 }, 412 [HSRTRGR] = { 0x54, 16 }, 413 [HSTTRGR] = { 0x58, 16 }, 414 }, 415 .fifosize = 128, 416 .overrun_reg = SCLSR, 417 .overrun_mask = SCLSR_ORER, 418 .sampling_rate_mask = SCI_SR_RANGE(8, 32), 419 .error_mask = SCIF_DEFAULT_ERROR_MASK, 420 .error_clear = SCIF_ERROR_CLEAR, 421 }, 422 423 /* 424 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR 425 * register. 426 */ 427 [SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = { 428 .regs = { 429 [SCSMR] = { 0x00, 16 }, 430 [SCBRR] = { 0x04, 8 }, 431 [SCSCR] = { 0x08, 16 }, 432 [SCxTDR] = { 0x0c, 8 }, 433 [SCxSR] = { 0x10, 16 }, 434 [SCxRDR] = { 0x14, 8 }, 435 [SCFCR] = { 0x18, 16 }, 436 [SCFDR] = { 0x1c, 16 }, 437 [SCLSR] = { 0x24, 16 }, 438 }, 439 .fifosize = 16, 440 .overrun_reg = SCLSR, 441 .overrun_mask = SCLSR_ORER, 442 .sampling_rate_mask = SCI_SR(32), 443 .error_mask = SCIF_DEFAULT_ERROR_MASK, 444 .error_clear = SCIF_ERROR_CLEAR, 445 }, 446 447 /* 448 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data 449 * count registers. 450 */ 451 [SCIx_SH4_SCIF_FIFODATA_REGTYPE] = { 452 .regs = { 453 [SCSMR] = { 0x00, 16 }, 454 [SCBRR] = { 0x04, 8 }, 455 [SCSCR] = { 0x08, 16 }, 456 [SCxTDR] = { 0x0c, 8 }, 457 [SCxSR] = { 0x10, 16 }, 458 [SCxRDR] = { 0x14, 8 }, 459 [SCFCR] = { 0x18, 16 }, 460 [SCFDR] = { 0x1c, 16 }, 461 [SCTFDR] = { 0x1c, 16 }, /* aliased to SCFDR */ 462 [SCRFDR] = { 0x20, 16 }, 463 [SCSPTR] = { 0x24, 16 }, 464 [SCLSR] = { 0x28, 16 }, 465 }, 466 .fifosize = 16, 467 .overrun_reg = SCLSR, 468 .overrun_mask = SCLSR_ORER, 469 .sampling_rate_mask = SCI_SR(32), 470 .error_mask = SCIF_DEFAULT_ERROR_MASK, 471 .error_clear = SCIF_ERROR_CLEAR, 472 }, 473 474 /* 475 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR 476 * registers. 477 */ 478 [SCIx_SH7705_SCIF_REGTYPE] = { 479 .regs = { 480 [SCSMR] = { 0x00, 16 }, 481 [SCBRR] = { 0x04, 8 }, 482 [SCSCR] = { 0x08, 16 }, 483 [SCxTDR] = { 0x20, 8 }, 484 [SCxSR] = { 0x14, 16 }, 485 [SCxRDR] = { 0x24, 8 }, 486 [SCFCR] = { 0x18, 16 }, 487 [SCFDR] = { 0x1c, 16 }, 488 }, 489 .fifosize = 64, 490 .overrun_reg = SCxSR, 491 .overrun_mask = SCIFA_ORER, 492 .sampling_rate_mask = SCI_SR(16), 493 .error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER, 494 .error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER, 495 }, 496 }; 497 498 #define sci_getreg(up, offset) (&to_sci_port(up)->params->regs[offset]) 499 500 /* 501 * The "offset" here is rather misleading, in that it refers to an enum 502 * value relative to the port mapping rather than the fixed offset 503 * itself, which needs to be manually retrieved from the platform's 504 * register map for the given port. 505 */ 506 static unsigned int sci_serial_in(struct uart_port *p, int offset) 507 { 508 const struct plat_sci_reg *reg = sci_getreg(p, offset); 509 510 if (reg->size == 8) 511 return ioread8(p->membase + (reg->offset << p->regshift)); 512 else if (reg->size == 16) 513 return ioread16(p->membase + (reg->offset << p->regshift)); 514 else 515 WARN(1, "Invalid register access\n"); 516 517 return 0; 518 } 519 520 static void sci_serial_out(struct uart_port *p, int offset, int value) 521 { 522 const struct plat_sci_reg *reg = sci_getreg(p, offset); 523 524 if (reg->size == 8) 525 iowrite8(value, p->membase + (reg->offset << p->regshift)); 526 else if (reg->size == 16) 527 iowrite16(value, p->membase + (reg->offset << p->regshift)); 528 else 529 WARN(1, "Invalid register access\n"); 530 } 531 532 static void sci_port_enable(struct sci_port *sci_port) 533 { 534 unsigned int i; 535 536 if (!sci_port->port.dev) 537 return; 538 539 pm_runtime_get_sync(sci_port->port.dev); 540 541 for (i = 0; i < SCI_NUM_CLKS; i++) { 542 clk_prepare_enable(sci_port->clks[i]); 543 sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]); 544 } 545 sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK]; 546 } 547 548 static void sci_port_disable(struct sci_port *sci_port) 549 { 550 unsigned int i; 551 552 if (!sci_port->port.dev) 553 return; 554 555 for (i = SCI_NUM_CLKS; i-- > 0; ) 556 clk_disable_unprepare(sci_port->clks[i]); 557 558 pm_runtime_put_sync(sci_port->port.dev); 559 } 560 561 static inline unsigned long port_rx_irq_mask(struct uart_port *port) 562 { 563 /* 564 * Not all ports (such as SCIFA) will support REIE. Rather than 565 * special-casing the port type, we check the port initialization 566 * IRQ enable mask to see whether the IRQ is desired at all. If 567 * it's unset, it's logically inferred that there's no point in 568 * testing for it. 569 */ 570 return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE); 571 } 572 573 static void sci_start_tx(struct uart_port *port) 574 { 575 struct sci_port *s = to_sci_port(port); 576 unsigned short ctrl; 577 578 #ifdef CONFIG_SERIAL_SH_SCI_DMA 579 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 580 u16 new, scr = serial_port_in(port, SCSCR); 581 if (s->chan_tx) 582 new = scr | SCSCR_TDRQE; 583 else 584 new = scr & ~SCSCR_TDRQE; 585 if (new != scr) 586 serial_port_out(port, SCSCR, new); 587 } 588 589 if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) && 590 dma_submit_error(s->cookie_tx)) { 591 s->cookie_tx = 0; 592 schedule_work(&s->work_tx); 593 } 594 #endif 595 596 if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 597 /* Set TIE (Transmit Interrupt Enable) bit in SCSCR */ 598 ctrl = serial_port_in(port, SCSCR); 599 serial_port_out(port, SCSCR, ctrl | SCSCR_TIE); 600 } 601 } 602 603 static void sci_stop_tx(struct uart_port *port) 604 { 605 unsigned short ctrl; 606 607 /* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */ 608 ctrl = serial_port_in(port, SCSCR); 609 610 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) 611 ctrl &= ~SCSCR_TDRQE; 612 613 ctrl &= ~SCSCR_TIE; 614 615 serial_port_out(port, SCSCR, ctrl); 616 } 617 618 static void sci_start_rx(struct uart_port *port) 619 { 620 unsigned short ctrl; 621 622 ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port); 623 624 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) 625 ctrl &= ~SCSCR_RDRQE; 626 627 serial_port_out(port, SCSCR, ctrl); 628 } 629 630 static void sci_stop_rx(struct uart_port *port) 631 { 632 unsigned short ctrl; 633 634 ctrl = serial_port_in(port, SCSCR); 635 636 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) 637 ctrl &= ~SCSCR_RDRQE; 638 639 ctrl &= ~port_rx_irq_mask(port); 640 641 serial_port_out(port, SCSCR, ctrl); 642 } 643 644 static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask) 645 { 646 if (port->type == PORT_SCI) { 647 /* Just store the mask */ 648 serial_port_out(port, SCxSR, mask); 649 } else if (to_sci_port(port)->params->overrun_mask == SCIFA_ORER) { 650 /* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */ 651 /* Only clear the status bits we want to clear */ 652 serial_port_out(port, SCxSR, 653 serial_port_in(port, SCxSR) & mask); 654 } else { 655 /* Store the mask, clear parity/framing errors */ 656 serial_port_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC)); 657 } 658 } 659 660 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \ 661 defined(CONFIG_SERIAL_SH_SCI_EARLYCON) 662 663 #ifdef CONFIG_CONSOLE_POLL 664 static int sci_poll_get_char(struct uart_port *port) 665 { 666 unsigned short status; 667 int c; 668 669 do { 670 status = serial_port_in(port, SCxSR); 671 if (status & SCxSR_ERRORS(port)) { 672 sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port)); 673 continue; 674 } 675 break; 676 } while (1); 677 678 if (!(status & SCxSR_RDxF(port))) 679 return NO_POLL_CHAR; 680 681 c = serial_port_in(port, SCxRDR); 682 683 /* Dummy read */ 684 serial_port_in(port, SCxSR); 685 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port)); 686 687 return c; 688 } 689 #endif 690 691 static void sci_poll_put_char(struct uart_port *port, unsigned char c) 692 { 693 unsigned short status; 694 695 do { 696 status = serial_port_in(port, SCxSR); 697 } while (!(status & SCxSR_TDxE(port))); 698 699 serial_port_out(port, SCxTDR, c); 700 sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port)); 701 } 702 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE || 703 CONFIG_SERIAL_SH_SCI_EARLYCON */ 704 705 static void sci_init_pins(struct uart_port *port, unsigned int cflag) 706 { 707 struct sci_port *s = to_sci_port(port); 708 709 /* 710 * Use port-specific handler if provided. 711 */ 712 if (s->cfg->ops && s->cfg->ops->init_pins) { 713 s->cfg->ops->init_pins(port, cflag); 714 return; 715 } 716 717 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 718 u16 data = serial_port_in(port, SCPDR); 719 u16 ctrl = serial_port_in(port, SCPCR); 720 721 /* Enable RXD and TXD pin functions */ 722 ctrl &= ~(SCPCR_RXDC | SCPCR_TXDC); 723 if (to_sci_port(port)->has_rtscts) { 724 /* RTS# is output, active low, unless autorts */ 725 if (!(port->mctrl & TIOCM_RTS)) { 726 ctrl |= SCPCR_RTSC; 727 data |= SCPDR_RTSD; 728 } else if (!s->autorts) { 729 ctrl |= SCPCR_RTSC; 730 data &= ~SCPDR_RTSD; 731 } else { 732 /* Enable RTS# pin function */ 733 ctrl &= ~SCPCR_RTSC; 734 } 735 /* Enable CTS# pin function */ 736 ctrl &= ~SCPCR_CTSC; 737 } 738 serial_port_out(port, SCPDR, data); 739 serial_port_out(port, SCPCR, ctrl); 740 } else if (sci_getreg(port, SCSPTR)->size) { 741 u16 status = serial_port_in(port, SCSPTR); 742 743 /* RTS# is always output; and active low, unless autorts */ 744 status |= SCSPTR_RTSIO; 745 if (!(port->mctrl & TIOCM_RTS)) 746 status |= SCSPTR_RTSDT; 747 else if (!s->autorts) 748 status &= ~SCSPTR_RTSDT; 749 /* CTS# and SCK are inputs */ 750 status &= ~(SCSPTR_CTSIO | SCSPTR_SCKIO); 751 serial_port_out(port, SCSPTR, status); 752 } 753 } 754 755 static int sci_txfill(struct uart_port *port) 756 { 757 struct sci_port *s = to_sci_port(port); 758 unsigned int fifo_mask = (s->params->fifosize << 1) - 1; 759 const struct plat_sci_reg *reg; 760 761 reg = sci_getreg(port, SCTFDR); 762 if (reg->size) 763 return serial_port_in(port, SCTFDR) & fifo_mask; 764 765 reg = sci_getreg(port, SCFDR); 766 if (reg->size) 767 return serial_port_in(port, SCFDR) >> 8; 768 769 return !(serial_port_in(port, SCxSR) & SCI_TDRE); 770 } 771 772 static int sci_txroom(struct uart_port *port) 773 { 774 return port->fifosize - sci_txfill(port); 775 } 776 777 static int sci_rxfill(struct uart_port *port) 778 { 779 struct sci_port *s = to_sci_port(port); 780 unsigned int fifo_mask = (s->params->fifosize << 1) - 1; 781 const struct plat_sci_reg *reg; 782 783 reg = sci_getreg(port, SCRFDR); 784 if (reg->size) 785 return serial_port_in(port, SCRFDR) & fifo_mask; 786 787 reg = sci_getreg(port, SCFDR); 788 if (reg->size) 789 return serial_port_in(port, SCFDR) & fifo_mask; 790 791 return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0; 792 } 793 794 /* ********************************************************************** * 795 * the interrupt related routines * 796 * ********************************************************************** */ 797 798 static void sci_transmit_chars(struct uart_port *port) 799 { 800 struct circ_buf *xmit = &port->state->xmit; 801 unsigned int stopped = uart_tx_stopped(port); 802 unsigned short status; 803 unsigned short ctrl; 804 int count; 805 806 status = serial_port_in(port, SCxSR); 807 if (!(status & SCxSR_TDxE(port))) { 808 ctrl = serial_port_in(port, SCSCR); 809 if (uart_circ_empty(xmit)) 810 ctrl &= ~SCSCR_TIE; 811 else 812 ctrl |= SCSCR_TIE; 813 serial_port_out(port, SCSCR, ctrl); 814 return; 815 } 816 817 count = sci_txroom(port); 818 819 do { 820 unsigned char c; 821 822 if (port->x_char) { 823 c = port->x_char; 824 port->x_char = 0; 825 } else if (!uart_circ_empty(xmit) && !stopped) { 826 c = xmit->buf[xmit->tail]; 827 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); 828 } else { 829 break; 830 } 831 832 serial_port_out(port, SCxTDR, c); 833 834 port->icount.tx++; 835 } while (--count > 0); 836 837 sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port)); 838 839 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 840 uart_write_wakeup(port); 841 if (uart_circ_empty(xmit)) { 842 sci_stop_tx(port); 843 } else { 844 ctrl = serial_port_in(port, SCSCR); 845 846 if (port->type != PORT_SCI) { 847 serial_port_in(port, SCxSR); /* Dummy read */ 848 sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port)); 849 } 850 851 ctrl |= SCSCR_TIE; 852 serial_port_out(port, SCSCR, ctrl); 853 } 854 } 855 856 /* On SH3, SCIF may read end-of-break as a space->mark char */ 857 #define STEPFN(c) ({int __c = (c); (((__c-1)|(__c)) == -1); }) 858 859 static void sci_receive_chars(struct uart_port *port) 860 { 861 struct tty_port *tport = &port->state->port; 862 int i, count, copied = 0; 863 unsigned short status; 864 unsigned char flag; 865 866 status = serial_port_in(port, SCxSR); 867 if (!(status & SCxSR_RDxF(port))) 868 return; 869 870 while (1) { 871 /* Don't copy more bytes than there is room for in the buffer */ 872 count = tty_buffer_request_room(tport, sci_rxfill(port)); 873 874 /* If for any reason we can't copy more data, we're done! */ 875 if (count == 0) 876 break; 877 878 if (port->type == PORT_SCI) { 879 char c = serial_port_in(port, SCxRDR); 880 if (uart_handle_sysrq_char(port, c)) 881 count = 0; 882 else 883 tty_insert_flip_char(tport, c, TTY_NORMAL); 884 } else { 885 for (i = 0; i < count; i++) { 886 char c = serial_port_in(port, SCxRDR); 887 888 status = serial_port_in(port, SCxSR); 889 if (uart_handle_sysrq_char(port, c)) { 890 count--; i--; 891 continue; 892 } 893 894 /* Store data and status */ 895 if (status & SCxSR_FER(port)) { 896 flag = TTY_FRAME; 897 port->icount.frame++; 898 dev_notice(port->dev, "frame error\n"); 899 } else if (status & SCxSR_PER(port)) { 900 flag = TTY_PARITY; 901 port->icount.parity++; 902 dev_notice(port->dev, "parity error\n"); 903 } else 904 flag = TTY_NORMAL; 905 906 tty_insert_flip_char(tport, c, flag); 907 } 908 } 909 910 serial_port_in(port, SCxSR); /* dummy read */ 911 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port)); 912 913 copied += count; 914 port->icount.rx += count; 915 } 916 917 if (copied) { 918 /* Tell the rest of the system the news. New characters! */ 919 tty_flip_buffer_push(tport); 920 } else { 921 /* TTY buffers full; read from RX reg to prevent lockup */ 922 serial_port_in(port, SCxRDR); 923 serial_port_in(port, SCxSR); /* dummy read */ 924 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port)); 925 } 926 } 927 928 static int sci_handle_errors(struct uart_port *port) 929 { 930 int copied = 0; 931 unsigned short status = serial_port_in(port, SCxSR); 932 struct tty_port *tport = &port->state->port; 933 struct sci_port *s = to_sci_port(port); 934 935 /* Handle overruns */ 936 if (status & s->params->overrun_mask) { 937 port->icount.overrun++; 938 939 /* overrun error */ 940 if (tty_insert_flip_char(tport, 0, TTY_OVERRUN)) 941 copied++; 942 943 dev_notice(port->dev, "overrun error\n"); 944 } 945 946 if (status & SCxSR_FER(port)) { 947 /* frame error */ 948 port->icount.frame++; 949 950 if (tty_insert_flip_char(tport, 0, TTY_FRAME)) 951 copied++; 952 953 dev_notice(port->dev, "frame error\n"); 954 } 955 956 if (status & SCxSR_PER(port)) { 957 /* parity error */ 958 port->icount.parity++; 959 960 if (tty_insert_flip_char(tport, 0, TTY_PARITY)) 961 copied++; 962 963 dev_notice(port->dev, "parity error\n"); 964 } 965 966 if (copied) 967 tty_flip_buffer_push(tport); 968 969 return copied; 970 } 971 972 static int sci_handle_fifo_overrun(struct uart_port *port) 973 { 974 struct tty_port *tport = &port->state->port; 975 struct sci_port *s = to_sci_port(port); 976 const struct plat_sci_reg *reg; 977 int copied = 0; 978 u16 status; 979 980 reg = sci_getreg(port, s->params->overrun_reg); 981 if (!reg->size) 982 return 0; 983 984 status = serial_port_in(port, s->params->overrun_reg); 985 if (status & s->params->overrun_mask) { 986 status &= ~s->params->overrun_mask; 987 serial_port_out(port, s->params->overrun_reg, status); 988 989 port->icount.overrun++; 990 991 tty_insert_flip_char(tport, 0, TTY_OVERRUN); 992 tty_flip_buffer_push(tport); 993 994 dev_dbg(port->dev, "overrun error\n"); 995 copied++; 996 } 997 998 return copied; 999 } 1000 1001 static int sci_handle_breaks(struct uart_port *port) 1002 { 1003 int copied = 0; 1004 unsigned short status = serial_port_in(port, SCxSR); 1005 struct tty_port *tport = &port->state->port; 1006 1007 if (uart_handle_break(port)) 1008 return 0; 1009 1010 if (status & SCxSR_BRK(port)) { 1011 port->icount.brk++; 1012 1013 /* Notify of BREAK */ 1014 if (tty_insert_flip_char(tport, 0, TTY_BREAK)) 1015 copied++; 1016 1017 dev_dbg(port->dev, "BREAK detected\n"); 1018 } 1019 1020 if (copied) 1021 tty_flip_buffer_push(tport); 1022 1023 copied += sci_handle_fifo_overrun(port); 1024 1025 return copied; 1026 } 1027 1028 static int scif_set_rtrg(struct uart_port *port, int rx_trig) 1029 { 1030 unsigned int bits; 1031 1032 if (rx_trig < 1) 1033 rx_trig = 1; 1034 if (rx_trig >= port->fifosize) 1035 rx_trig = port->fifosize; 1036 1037 /* HSCIF can be set to an arbitrary level. */ 1038 if (sci_getreg(port, HSRTRGR)->size) { 1039 serial_port_out(port, HSRTRGR, rx_trig); 1040 return rx_trig; 1041 } 1042 1043 switch (port->type) { 1044 case PORT_SCIF: 1045 if (rx_trig < 4) { 1046 bits = 0; 1047 rx_trig = 1; 1048 } else if (rx_trig < 8) { 1049 bits = SCFCR_RTRG0; 1050 rx_trig = 4; 1051 } else if (rx_trig < 14) { 1052 bits = SCFCR_RTRG1; 1053 rx_trig = 8; 1054 } else { 1055 bits = SCFCR_RTRG0 | SCFCR_RTRG1; 1056 rx_trig = 14; 1057 } 1058 break; 1059 case PORT_SCIFA: 1060 case PORT_SCIFB: 1061 if (rx_trig < 16) { 1062 bits = 0; 1063 rx_trig = 1; 1064 } else if (rx_trig < 32) { 1065 bits = SCFCR_RTRG0; 1066 rx_trig = 16; 1067 } else if (rx_trig < 48) { 1068 bits = SCFCR_RTRG1; 1069 rx_trig = 32; 1070 } else { 1071 bits = SCFCR_RTRG0 | SCFCR_RTRG1; 1072 rx_trig = 48; 1073 } 1074 break; 1075 default: 1076 WARN(1, "unknown FIFO configuration"); 1077 return 1; 1078 } 1079 1080 serial_port_out(port, SCFCR, 1081 (serial_port_in(port, SCFCR) & 1082 ~(SCFCR_RTRG1 | SCFCR_RTRG0)) | bits); 1083 1084 return rx_trig; 1085 } 1086 1087 static int scif_rtrg_enabled(struct uart_port *port) 1088 { 1089 if (sci_getreg(port, HSRTRGR)->size) 1090 return serial_port_in(port, HSRTRGR) != 0; 1091 else 1092 return (serial_port_in(port, SCFCR) & 1093 (SCFCR_RTRG0 | SCFCR_RTRG1)) != 0; 1094 } 1095 1096 static void rx_fifo_timer_fn(struct timer_list *t) 1097 { 1098 struct sci_port *s = from_timer(s, t, rx_fifo_timer); 1099 struct uart_port *port = &s->port; 1100 1101 dev_dbg(port->dev, "Rx timed out\n"); 1102 scif_set_rtrg(port, 1); 1103 } 1104 1105 static ssize_t rx_trigger_show(struct device *dev, 1106 struct device_attribute *attr, 1107 char *buf) 1108 { 1109 struct uart_port *port = dev_get_drvdata(dev); 1110 struct sci_port *sci = to_sci_port(port); 1111 1112 return sprintf(buf, "%d\n", sci->rx_trigger); 1113 } 1114 1115 static ssize_t rx_trigger_store(struct device *dev, 1116 struct device_attribute *attr, 1117 const char *buf, 1118 size_t count) 1119 { 1120 struct uart_port *port = dev_get_drvdata(dev); 1121 struct sci_port *sci = to_sci_port(port); 1122 int ret; 1123 long r; 1124 1125 ret = kstrtol(buf, 0, &r); 1126 if (ret) 1127 return ret; 1128 1129 sci->rx_trigger = scif_set_rtrg(port, r); 1130 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) 1131 scif_set_rtrg(port, 1); 1132 1133 return count; 1134 } 1135 1136 static DEVICE_ATTR(rx_fifo_trigger, 0644, rx_trigger_show, rx_trigger_store); 1137 1138 static ssize_t rx_fifo_timeout_show(struct device *dev, 1139 struct device_attribute *attr, 1140 char *buf) 1141 { 1142 struct uart_port *port = dev_get_drvdata(dev); 1143 struct sci_port *sci = to_sci_port(port); 1144 int v; 1145 1146 if (port->type == PORT_HSCIF) 1147 v = sci->hscif_tot >> HSSCR_TOT_SHIFT; 1148 else 1149 v = sci->rx_fifo_timeout; 1150 1151 return sprintf(buf, "%d\n", v); 1152 } 1153 1154 static ssize_t rx_fifo_timeout_store(struct device *dev, 1155 struct device_attribute *attr, 1156 const char *buf, 1157 size_t count) 1158 { 1159 struct uart_port *port = dev_get_drvdata(dev); 1160 struct sci_port *sci = to_sci_port(port); 1161 int ret; 1162 long r; 1163 1164 ret = kstrtol(buf, 0, &r); 1165 if (ret) 1166 return ret; 1167 1168 if (port->type == PORT_HSCIF) { 1169 if (r < 0 || r > 3) 1170 return -EINVAL; 1171 sci->hscif_tot = r << HSSCR_TOT_SHIFT; 1172 } else { 1173 sci->rx_fifo_timeout = r; 1174 scif_set_rtrg(port, 1); 1175 if (r > 0) 1176 timer_setup(&sci->rx_fifo_timer, rx_fifo_timer_fn, 0); 1177 } 1178 1179 return count; 1180 } 1181 1182 static DEVICE_ATTR_RW(rx_fifo_timeout); 1183 1184 1185 #ifdef CONFIG_SERIAL_SH_SCI_DMA 1186 static void sci_dma_tx_complete(void *arg) 1187 { 1188 struct sci_port *s = arg; 1189 struct uart_port *port = &s->port; 1190 struct circ_buf *xmit = &port->state->xmit; 1191 unsigned long flags; 1192 1193 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line); 1194 1195 spin_lock_irqsave(&port->lock, flags); 1196 1197 xmit->tail += s->tx_dma_len; 1198 xmit->tail &= UART_XMIT_SIZE - 1; 1199 1200 port->icount.tx += s->tx_dma_len; 1201 1202 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 1203 uart_write_wakeup(port); 1204 1205 if (!uart_circ_empty(xmit)) { 1206 s->cookie_tx = 0; 1207 schedule_work(&s->work_tx); 1208 } else { 1209 s->cookie_tx = -EINVAL; 1210 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 1211 u16 ctrl = serial_port_in(port, SCSCR); 1212 serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE); 1213 } 1214 } 1215 1216 spin_unlock_irqrestore(&port->lock, flags); 1217 } 1218 1219 /* Locking: called with port lock held */ 1220 static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count) 1221 { 1222 struct uart_port *port = &s->port; 1223 struct tty_port *tport = &port->state->port; 1224 int copied; 1225 1226 copied = tty_insert_flip_string(tport, buf, count); 1227 if (copied < count) 1228 port->icount.buf_overrun++; 1229 1230 port->icount.rx += copied; 1231 1232 return copied; 1233 } 1234 1235 static int sci_dma_rx_find_active(struct sci_port *s) 1236 { 1237 unsigned int i; 1238 1239 for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++) 1240 if (s->active_rx == s->cookie_rx[i]) 1241 return i; 1242 1243 return -1; 1244 } 1245 1246 static void sci_rx_dma_release(struct sci_port *s) 1247 { 1248 struct dma_chan *chan = s->chan_rx_saved; 1249 1250 s->chan_rx_saved = s->chan_rx = NULL; 1251 s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL; 1252 dmaengine_terminate_sync(chan); 1253 dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0], 1254 sg_dma_address(&s->sg_rx[0])); 1255 dma_release_channel(chan); 1256 } 1257 1258 static void start_hrtimer_us(struct hrtimer *hrt, unsigned long usec) 1259 { 1260 long sec = usec / 1000000; 1261 long nsec = (usec % 1000000) * 1000; 1262 ktime_t t = ktime_set(sec, nsec); 1263 1264 hrtimer_start(hrt, t, HRTIMER_MODE_REL); 1265 } 1266 1267 static void sci_dma_rx_complete(void *arg) 1268 { 1269 struct sci_port *s = arg; 1270 struct dma_chan *chan = s->chan_rx; 1271 struct uart_port *port = &s->port; 1272 struct dma_async_tx_descriptor *desc; 1273 unsigned long flags; 1274 int active, count = 0; 1275 1276 dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line, 1277 s->active_rx); 1278 1279 spin_lock_irqsave(&port->lock, flags); 1280 1281 active = sci_dma_rx_find_active(s); 1282 if (active >= 0) 1283 count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx); 1284 1285 start_hrtimer_us(&s->rx_timer, s->rx_timeout); 1286 1287 if (count) 1288 tty_flip_buffer_push(&port->state->port); 1289 1290 desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1, 1291 DMA_DEV_TO_MEM, 1292 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1293 if (!desc) 1294 goto fail; 1295 1296 desc->callback = sci_dma_rx_complete; 1297 desc->callback_param = s; 1298 s->cookie_rx[active] = dmaengine_submit(desc); 1299 if (dma_submit_error(s->cookie_rx[active])) 1300 goto fail; 1301 1302 s->active_rx = s->cookie_rx[!active]; 1303 1304 dma_async_issue_pending(chan); 1305 1306 spin_unlock_irqrestore(&port->lock, flags); 1307 dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n", 1308 __func__, s->cookie_rx[active], active, s->active_rx); 1309 return; 1310 1311 fail: 1312 spin_unlock_irqrestore(&port->lock, flags); 1313 dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n"); 1314 /* Switch to PIO */ 1315 spin_lock_irqsave(&port->lock, flags); 1316 s->chan_rx = NULL; 1317 sci_start_rx(port); 1318 spin_unlock_irqrestore(&port->lock, flags); 1319 } 1320 1321 static void sci_tx_dma_release(struct sci_port *s) 1322 { 1323 struct dma_chan *chan = s->chan_tx_saved; 1324 1325 cancel_work_sync(&s->work_tx); 1326 s->chan_tx_saved = s->chan_tx = NULL; 1327 s->cookie_tx = -EINVAL; 1328 dmaengine_terminate_sync(chan); 1329 dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE, 1330 DMA_TO_DEVICE); 1331 dma_release_channel(chan); 1332 } 1333 1334 static void sci_submit_rx(struct sci_port *s) 1335 { 1336 struct dma_chan *chan = s->chan_rx; 1337 struct uart_port *port = &s->port; 1338 unsigned long flags; 1339 int i; 1340 1341 for (i = 0; i < 2; i++) { 1342 struct scatterlist *sg = &s->sg_rx[i]; 1343 struct dma_async_tx_descriptor *desc; 1344 1345 desc = dmaengine_prep_slave_sg(chan, 1346 sg, 1, DMA_DEV_TO_MEM, 1347 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1348 if (!desc) 1349 goto fail; 1350 1351 desc->callback = sci_dma_rx_complete; 1352 desc->callback_param = s; 1353 s->cookie_rx[i] = dmaengine_submit(desc); 1354 if (dma_submit_error(s->cookie_rx[i])) 1355 goto fail; 1356 1357 } 1358 1359 s->active_rx = s->cookie_rx[0]; 1360 1361 dma_async_issue_pending(chan); 1362 return; 1363 1364 fail: 1365 if (i) 1366 dmaengine_terminate_async(chan); 1367 for (i = 0; i < 2; i++) 1368 s->cookie_rx[i] = -EINVAL; 1369 s->active_rx = -EINVAL; 1370 /* Switch to PIO */ 1371 spin_lock_irqsave(&port->lock, flags); 1372 s->chan_rx = NULL; 1373 sci_start_rx(port); 1374 spin_unlock_irqrestore(&port->lock, flags); 1375 } 1376 1377 static void work_fn_tx(struct work_struct *work) 1378 { 1379 struct sci_port *s = container_of(work, struct sci_port, work_tx); 1380 struct dma_async_tx_descriptor *desc; 1381 struct dma_chan *chan = s->chan_tx; 1382 struct uart_port *port = &s->port; 1383 struct circ_buf *xmit = &port->state->xmit; 1384 unsigned long flags; 1385 dma_addr_t buf; 1386 1387 /* 1388 * DMA is idle now. 1389 * Port xmit buffer is already mapped, and it is one page... Just adjust 1390 * offsets and lengths. Since it is a circular buffer, we have to 1391 * transmit till the end, and then the rest. Take the port lock to get a 1392 * consistent xmit buffer state. 1393 */ 1394 spin_lock_irq(&port->lock); 1395 buf = s->tx_dma_addr + (xmit->tail & (UART_XMIT_SIZE - 1)); 1396 s->tx_dma_len = min_t(unsigned int, 1397 CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE), 1398 CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE)); 1399 spin_unlock_irq(&port->lock); 1400 1401 desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len, 1402 DMA_MEM_TO_DEV, 1403 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1404 if (!desc) { 1405 dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n"); 1406 goto switch_to_pio; 1407 } 1408 1409 dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len, 1410 DMA_TO_DEVICE); 1411 1412 spin_lock_irq(&port->lock); 1413 desc->callback = sci_dma_tx_complete; 1414 desc->callback_param = s; 1415 spin_unlock_irq(&port->lock); 1416 s->cookie_tx = dmaengine_submit(desc); 1417 if (dma_submit_error(s->cookie_tx)) { 1418 dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n"); 1419 goto switch_to_pio; 1420 } 1421 1422 dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n", 1423 __func__, xmit->buf, xmit->tail, xmit->head, s->cookie_tx); 1424 1425 dma_async_issue_pending(chan); 1426 return; 1427 1428 switch_to_pio: 1429 spin_lock_irqsave(&port->lock, flags); 1430 s->chan_tx = NULL; 1431 sci_start_tx(port); 1432 spin_unlock_irqrestore(&port->lock, flags); 1433 return; 1434 } 1435 1436 static enum hrtimer_restart rx_timer_fn(struct hrtimer *t) 1437 { 1438 struct sci_port *s = container_of(t, struct sci_port, rx_timer); 1439 struct dma_chan *chan = s->chan_rx; 1440 struct uart_port *port = &s->port; 1441 struct dma_tx_state state; 1442 enum dma_status status; 1443 unsigned long flags; 1444 unsigned int read; 1445 int active, count; 1446 u16 scr; 1447 1448 dev_dbg(port->dev, "DMA Rx timed out\n"); 1449 1450 spin_lock_irqsave(&port->lock, flags); 1451 1452 active = sci_dma_rx_find_active(s); 1453 if (active < 0) { 1454 spin_unlock_irqrestore(&port->lock, flags); 1455 return HRTIMER_NORESTART; 1456 } 1457 1458 status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state); 1459 if (status == DMA_COMPLETE) { 1460 spin_unlock_irqrestore(&port->lock, flags); 1461 dev_dbg(port->dev, "Cookie %d #%d has already completed\n", 1462 s->active_rx, active); 1463 1464 /* Let packet complete handler take care of the packet */ 1465 return HRTIMER_NORESTART; 1466 } 1467 1468 dmaengine_pause(chan); 1469 1470 /* 1471 * sometimes DMA transfer doesn't stop even if it is stopped and 1472 * data keeps on coming until transaction is complete so check 1473 * for DMA_COMPLETE again 1474 * Let packet complete handler take care of the packet 1475 */ 1476 status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state); 1477 if (status == DMA_COMPLETE) { 1478 spin_unlock_irqrestore(&port->lock, flags); 1479 dev_dbg(port->dev, "Transaction complete after DMA engine was stopped"); 1480 return HRTIMER_NORESTART; 1481 } 1482 1483 /* Handle incomplete DMA receive */ 1484 dmaengine_terminate_async(s->chan_rx); 1485 read = sg_dma_len(&s->sg_rx[active]) - state.residue; 1486 1487 if (read) { 1488 count = sci_dma_rx_push(s, s->rx_buf[active], read); 1489 if (count) 1490 tty_flip_buffer_push(&port->state->port); 1491 } 1492 1493 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) 1494 sci_submit_rx(s); 1495 1496 /* Direct new serial port interrupts back to CPU */ 1497 scr = serial_port_in(port, SCSCR); 1498 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 1499 scr &= ~SCSCR_RDRQE; 1500 enable_irq(s->irqs[SCIx_RXI_IRQ]); 1501 } 1502 serial_port_out(port, SCSCR, scr | SCSCR_RIE); 1503 1504 spin_unlock_irqrestore(&port->lock, flags); 1505 1506 return HRTIMER_NORESTART; 1507 } 1508 1509 static struct dma_chan *sci_request_dma_chan(struct uart_port *port, 1510 enum dma_transfer_direction dir) 1511 { 1512 struct dma_chan *chan; 1513 struct dma_slave_config cfg; 1514 int ret; 1515 1516 chan = dma_request_slave_channel(port->dev, 1517 dir == DMA_MEM_TO_DEV ? "tx" : "rx"); 1518 if (!chan) { 1519 dev_dbg(port->dev, "dma_request_slave_channel failed\n"); 1520 return NULL; 1521 } 1522 1523 memset(&cfg, 0, sizeof(cfg)); 1524 cfg.direction = dir; 1525 if (dir == DMA_MEM_TO_DEV) { 1526 cfg.dst_addr = port->mapbase + 1527 (sci_getreg(port, SCxTDR)->offset << port->regshift); 1528 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1529 } else { 1530 cfg.src_addr = port->mapbase + 1531 (sci_getreg(port, SCxRDR)->offset << port->regshift); 1532 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1533 } 1534 1535 ret = dmaengine_slave_config(chan, &cfg); 1536 if (ret) { 1537 dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret); 1538 dma_release_channel(chan); 1539 return NULL; 1540 } 1541 1542 return chan; 1543 } 1544 1545 static void sci_request_dma(struct uart_port *port) 1546 { 1547 struct sci_port *s = to_sci_port(port); 1548 struct dma_chan *chan; 1549 1550 dev_dbg(port->dev, "%s: port %d\n", __func__, port->line); 1551 1552 if (!port->dev->of_node) 1553 return; 1554 1555 s->cookie_tx = -EINVAL; 1556 1557 /* 1558 * Don't request a dma channel if no channel was specified 1559 * in the device tree. 1560 */ 1561 if (!of_find_property(port->dev->of_node, "dmas", NULL)) 1562 return; 1563 1564 chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV); 1565 dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan); 1566 if (chan) { 1567 /* UART circular tx buffer is an aligned page. */ 1568 s->tx_dma_addr = dma_map_single(chan->device->dev, 1569 port->state->xmit.buf, 1570 UART_XMIT_SIZE, 1571 DMA_TO_DEVICE); 1572 if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) { 1573 dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n"); 1574 dma_release_channel(chan); 1575 } else { 1576 dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n", 1577 __func__, UART_XMIT_SIZE, 1578 port->state->xmit.buf, &s->tx_dma_addr); 1579 1580 INIT_WORK(&s->work_tx, work_fn_tx); 1581 s->chan_tx_saved = s->chan_tx = chan; 1582 } 1583 } 1584 1585 chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM); 1586 dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan); 1587 if (chan) { 1588 unsigned int i; 1589 dma_addr_t dma; 1590 void *buf; 1591 1592 s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize); 1593 buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2, 1594 &dma, GFP_KERNEL); 1595 if (!buf) { 1596 dev_warn(port->dev, 1597 "Failed to allocate Rx dma buffer, using PIO\n"); 1598 dma_release_channel(chan); 1599 return; 1600 } 1601 1602 for (i = 0; i < 2; i++) { 1603 struct scatterlist *sg = &s->sg_rx[i]; 1604 1605 sg_init_table(sg, 1); 1606 s->rx_buf[i] = buf; 1607 sg_dma_address(sg) = dma; 1608 sg_dma_len(sg) = s->buf_len_rx; 1609 1610 buf += s->buf_len_rx; 1611 dma += s->buf_len_rx; 1612 } 1613 1614 hrtimer_init(&s->rx_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1615 s->rx_timer.function = rx_timer_fn; 1616 1617 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) 1618 sci_submit_rx(s); 1619 1620 s->chan_rx_saved = s->chan_rx = chan; 1621 } 1622 } 1623 1624 static void sci_free_dma(struct uart_port *port) 1625 { 1626 struct sci_port *s = to_sci_port(port); 1627 1628 if (s->chan_tx_saved) 1629 sci_tx_dma_release(s); 1630 if (s->chan_rx_saved) 1631 sci_rx_dma_release(s); 1632 } 1633 1634 static void sci_flush_buffer(struct uart_port *port) 1635 { 1636 /* 1637 * In uart_flush_buffer(), the xmit circular buffer has just been 1638 * cleared, so we have to reset tx_dma_len accordingly. 1639 */ 1640 to_sci_port(port)->tx_dma_len = 0; 1641 } 1642 #else /* !CONFIG_SERIAL_SH_SCI_DMA */ 1643 static inline void sci_request_dma(struct uart_port *port) 1644 { 1645 } 1646 1647 static inline void sci_free_dma(struct uart_port *port) 1648 { 1649 } 1650 1651 #define sci_flush_buffer NULL 1652 #endif /* !CONFIG_SERIAL_SH_SCI_DMA */ 1653 1654 static irqreturn_t sci_rx_interrupt(int irq, void *ptr) 1655 { 1656 struct uart_port *port = ptr; 1657 struct sci_port *s = to_sci_port(port); 1658 1659 #ifdef CONFIG_SERIAL_SH_SCI_DMA 1660 if (s->chan_rx) { 1661 u16 scr = serial_port_in(port, SCSCR); 1662 u16 ssr = serial_port_in(port, SCxSR); 1663 1664 /* Disable future Rx interrupts */ 1665 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 1666 disable_irq_nosync(irq); 1667 scr |= SCSCR_RDRQE; 1668 } else { 1669 scr &= ~SCSCR_RIE; 1670 sci_submit_rx(s); 1671 } 1672 serial_port_out(port, SCSCR, scr); 1673 /* Clear current interrupt */ 1674 serial_port_out(port, SCxSR, 1675 ssr & ~(SCIF_DR | SCxSR_RDxF(port))); 1676 dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u us\n", 1677 jiffies, s->rx_timeout); 1678 start_hrtimer_us(&s->rx_timer, s->rx_timeout); 1679 1680 return IRQ_HANDLED; 1681 } 1682 #endif 1683 1684 if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0) { 1685 if (!scif_rtrg_enabled(port)) 1686 scif_set_rtrg(port, s->rx_trigger); 1687 1688 mod_timer(&s->rx_fifo_timer, jiffies + DIV_ROUND_UP( 1689 s->rx_frame * HZ * s->rx_fifo_timeout, 1000000)); 1690 } 1691 1692 /* I think sci_receive_chars has to be called irrespective 1693 * of whether the I_IXOFF is set, otherwise, how is the interrupt 1694 * to be disabled? 1695 */ 1696 sci_receive_chars(ptr); 1697 1698 return IRQ_HANDLED; 1699 } 1700 1701 static irqreturn_t sci_tx_interrupt(int irq, void *ptr) 1702 { 1703 struct uart_port *port = ptr; 1704 unsigned long flags; 1705 1706 spin_lock_irqsave(&port->lock, flags); 1707 sci_transmit_chars(port); 1708 spin_unlock_irqrestore(&port->lock, flags); 1709 1710 return IRQ_HANDLED; 1711 } 1712 1713 static irqreturn_t sci_br_interrupt(int irq, void *ptr) 1714 { 1715 struct uart_port *port = ptr; 1716 1717 /* Handle BREAKs */ 1718 sci_handle_breaks(port); 1719 sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port)); 1720 1721 return IRQ_HANDLED; 1722 } 1723 1724 static irqreturn_t sci_er_interrupt(int irq, void *ptr) 1725 { 1726 struct uart_port *port = ptr; 1727 struct sci_port *s = to_sci_port(port); 1728 1729 if (s->irqs[SCIx_ERI_IRQ] == s->irqs[SCIx_BRI_IRQ]) { 1730 /* Break and Error interrupts are muxed */ 1731 unsigned short ssr_status = serial_port_in(port, SCxSR); 1732 1733 /* Break Interrupt */ 1734 if (ssr_status & SCxSR_BRK(port)) 1735 sci_br_interrupt(irq, ptr); 1736 1737 /* Break only? */ 1738 if (!(ssr_status & SCxSR_ERRORS(port))) 1739 return IRQ_HANDLED; 1740 } 1741 1742 /* Handle errors */ 1743 if (port->type == PORT_SCI) { 1744 if (sci_handle_errors(port)) { 1745 /* discard character in rx buffer */ 1746 serial_port_in(port, SCxSR); 1747 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port)); 1748 } 1749 } else { 1750 sci_handle_fifo_overrun(port); 1751 if (!s->chan_rx) 1752 sci_receive_chars(ptr); 1753 } 1754 1755 sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port)); 1756 1757 /* Kick the transmission */ 1758 if (!s->chan_tx) 1759 sci_tx_interrupt(irq, ptr); 1760 1761 return IRQ_HANDLED; 1762 } 1763 1764 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr) 1765 { 1766 unsigned short ssr_status, scr_status, err_enabled, orer_status = 0; 1767 struct uart_port *port = ptr; 1768 struct sci_port *s = to_sci_port(port); 1769 irqreturn_t ret = IRQ_NONE; 1770 1771 ssr_status = serial_port_in(port, SCxSR); 1772 scr_status = serial_port_in(port, SCSCR); 1773 if (s->params->overrun_reg == SCxSR) 1774 orer_status = ssr_status; 1775 else if (sci_getreg(port, s->params->overrun_reg)->size) 1776 orer_status = serial_port_in(port, s->params->overrun_reg); 1777 1778 err_enabled = scr_status & port_rx_irq_mask(port); 1779 1780 /* Tx Interrupt */ 1781 if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) && 1782 !s->chan_tx) 1783 ret = sci_tx_interrupt(irq, ptr); 1784 1785 /* 1786 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF / 1787 * DR flags 1788 */ 1789 if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) && 1790 (scr_status & SCSCR_RIE)) 1791 ret = sci_rx_interrupt(irq, ptr); 1792 1793 /* Error Interrupt */ 1794 if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled) 1795 ret = sci_er_interrupt(irq, ptr); 1796 1797 /* Break Interrupt */ 1798 if ((ssr_status & SCxSR_BRK(port)) && err_enabled) 1799 ret = sci_br_interrupt(irq, ptr); 1800 1801 /* Overrun Interrupt */ 1802 if (orer_status & s->params->overrun_mask) { 1803 sci_handle_fifo_overrun(port); 1804 ret = IRQ_HANDLED; 1805 } 1806 1807 return ret; 1808 } 1809 1810 static const struct sci_irq_desc { 1811 const char *desc; 1812 irq_handler_t handler; 1813 } sci_irq_desc[] = { 1814 /* 1815 * Split out handlers, the default case. 1816 */ 1817 [SCIx_ERI_IRQ] = { 1818 .desc = "rx err", 1819 .handler = sci_er_interrupt, 1820 }, 1821 1822 [SCIx_RXI_IRQ] = { 1823 .desc = "rx full", 1824 .handler = sci_rx_interrupt, 1825 }, 1826 1827 [SCIx_TXI_IRQ] = { 1828 .desc = "tx empty", 1829 .handler = sci_tx_interrupt, 1830 }, 1831 1832 [SCIx_BRI_IRQ] = { 1833 .desc = "break", 1834 .handler = sci_br_interrupt, 1835 }, 1836 1837 [SCIx_DRI_IRQ] = { 1838 .desc = "rx ready", 1839 .handler = sci_rx_interrupt, 1840 }, 1841 1842 [SCIx_TEI_IRQ] = { 1843 .desc = "tx end", 1844 .handler = sci_tx_interrupt, 1845 }, 1846 1847 /* 1848 * Special muxed handler. 1849 */ 1850 [SCIx_MUX_IRQ] = { 1851 .desc = "mux", 1852 .handler = sci_mpxed_interrupt, 1853 }, 1854 }; 1855 1856 static int sci_request_irq(struct sci_port *port) 1857 { 1858 struct uart_port *up = &port->port; 1859 int i, j, w, ret = 0; 1860 1861 for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) { 1862 const struct sci_irq_desc *desc; 1863 int irq; 1864 1865 /* Check if already registered (muxed) */ 1866 for (w = 0; w < i; w++) 1867 if (port->irqs[w] == port->irqs[i]) 1868 w = i + 1; 1869 if (w > i) 1870 continue; 1871 1872 if (SCIx_IRQ_IS_MUXED(port)) { 1873 i = SCIx_MUX_IRQ; 1874 irq = up->irq; 1875 } else { 1876 irq = port->irqs[i]; 1877 1878 /* 1879 * Certain port types won't support all of the 1880 * available interrupt sources. 1881 */ 1882 if (unlikely(irq < 0)) 1883 continue; 1884 } 1885 1886 desc = sci_irq_desc + i; 1887 port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s", 1888 dev_name(up->dev), desc->desc); 1889 if (!port->irqstr[j]) { 1890 ret = -ENOMEM; 1891 goto out_nomem; 1892 } 1893 1894 ret = request_irq(irq, desc->handler, up->irqflags, 1895 port->irqstr[j], port); 1896 if (unlikely(ret)) { 1897 dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc); 1898 goto out_noirq; 1899 } 1900 } 1901 1902 return 0; 1903 1904 out_noirq: 1905 while (--i >= 0) 1906 free_irq(port->irqs[i], port); 1907 1908 out_nomem: 1909 while (--j >= 0) 1910 kfree(port->irqstr[j]); 1911 1912 return ret; 1913 } 1914 1915 static void sci_free_irq(struct sci_port *port) 1916 { 1917 int i; 1918 1919 /* 1920 * Intentionally in reverse order so we iterate over the muxed 1921 * IRQ first. 1922 */ 1923 for (i = 0; i < SCIx_NR_IRQS; i++) { 1924 int irq = port->irqs[i]; 1925 1926 /* 1927 * Certain port types won't support all of the available 1928 * interrupt sources. 1929 */ 1930 if (unlikely(irq < 0)) 1931 continue; 1932 1933 free_irq(port->irqs[i], port); 1934 kfree(port->irqstr[i]); 1935 1936 if (SCIx_IRQ_IS_MUXED(port)) { 1937 /* If there's only one IRQ, we're done. */ 1938 return; 1939 } 1940 } 1941 } 1942 1943 static unsigned int sci_tx_empty(struct uart_port *port) 1944 { 1945 unsigned short status = serial_port_in(port, SCxSR); 1946 unsigned short in_tx_fifo = sci_txfill(port); 1947 1948 return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0; 1949 } 1950 1951 static void sci_set_rts(struct uart_port *port, bool state) 1952 { 1953 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 1954 u16 data = serial_port_in(port, SCPDR); 1955 1956 /* Active low */ 1957 if (state) 1958 data &= ~SCPDR_RTSD; 1959 else 1960 data |= SCPDR_RTSD; 1961 serial_port_out(port, SCPDR, data); 1962 1963 /* RTS# is output */ 1964 serial_port_out(port, SCPCR, 1965 serial_port_in(port, SCPCR) | SCPCR_RTSC); 1966 } else if (sci_getreg(port, SCSPTR)->size) { 1967 u16 ctrl = serial_port_in(port, SCSPTR); 1968 1969 /* Active low */ 1970 if (state) 1971 ctrl &= ~SCSPTR_RTSDT; 1972 else 1973 ctrl |= SCSPTR_RTSDT; 1974 serial_port_out(port, SCSPTR, ctrl); 1975 } 1976 } 1977 1978 static bool sci_get_cts(struct uart_port *port) 1979 { 1980 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 1981 /* Active low */ 1982 return !(serial_port_in(port, SCPDR) & SCPDR_CTSD); 1983 } else if (sci_getreg(port, SCSPTR)->size) { 1984 /* Active low */ 1985 return !(serial_port_in(port, SCSPTR) & SCSPTR_CTSDT); 1986 } 1987 1988 return true; 1989 } 1990 1991 /* 1992 * Modem control is a bit of a mixed bag for SCI(F) ports. Generally 1993 * CTS/RTS is supported in hardware by at least one port and controlled 1994 * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently 1995 * handled via the ->init_pins() op, which is a bit of a one-way street, 1996 * lacking any ability to defer pin control -- this will later be 1997 * converted over to the GPIO framework). 1998 * 1999 * Other modes (such as loopback) are supported generically on certain 2000 * port types, but not others. For these it's sufficient to test for the 2001 * existence of the support register and simply ignore the port type. 2002 */ 2003 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl) 2004 { 2005 struct sci_port *s = to_sci_port(port); 2006 2007 if (mctrl & TIOCM_LOOP) { 2008 const struct plat_sci_reg *reg; 2009 2010 /* 2011 * Standard loopback mode for SCFCR ports. 2012 */ 2013 reg = sci_getreg(port, SCFCR); 2014 if (reg->size) 2015 serial_port_out(port, SCFCR, 2016 serial_port_in(port, SCFCR) | 2017 SCFCR_LOOP); 2018 } 2019 2020 mctrl_gpio_set(s->gpios, mctrl); 2021 2022 if (!s->has_rtscts) 2023 return; 2024 2025 if (!(mctrl & TIOCM_RTS)) { 2026 /* Disable Auto RTS */ 2027 serial_port_out(port, SCFCR, 2028 serial_port_in(port, SCFCR) & ~SCFCR_MCE); 2029 2030 /* Clear RTS */ 2031 sci_set_rts(port, 0); 2032 } else if (s->autorts) { 2033 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 2034 /* Enable RTS# pin function */ 2035 serial_port_out(port, SCPCR, 2036 serial_port_in(port, SCPCR) & ~SCPCR_RTSC); 2037 } 2038 2039 /* Enable Auto RTS */ 2040 serial_port_out(port, SCFCR, 2041 serial_port_in(port, SCFCR) | SCFCR_MCE); 2042 } else { 2043 /* Set RTS */ 2044 sci_set_rts(port, 1); 2045 } 2046 } 2047 2048 static unsigned int sci_get_mctrl(struct uart_port *port) 2049 { 2050 struct sci_port *s = to_sci_port(port); 2051 struct mctrl_gpios *gpios = s->gpios; 2052 unsigned int mctrl = 0; 2053 2054 mctrl_gpio_get(gpios, &mctrl); 2055 2056 /* 2057 * CTS/RTS is handled in hardware when supported, while nothing 2058 * else is wired up. 2059 */ 2060 if (s->autorts) { 2061 if (sci_get_cts(port)) 2062 mctrl |= TIOCM_CTS; 2063 } else if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_CTS))) { 2064 mctrl |= TIOCM_CTS; 2065 } 2066 if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_DSR))) 2067 mctrl |= TIOCM_DSR; 2068 if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_DCD))) 2069 mctrl |= TIOCM_CAR; 2070 2071 return mctrl; 2072 } 2073 2074 static void sci_enable_ms(struct uart_port *port) 2075 { 2076 mctrl_gpio_enable_ms(to_sci_port(port)->gpios); 2077 } 2078 2079 static void sci_break_ctl(struct uart_port *port, int break_state) 2080 { 2081 unsigned short scscr, scsptr; 2082 unsigned long flags; 2083 2084 /* check wheter the port has SCSPTR */ 2085 if (!sci_getreg(port, SCSPTR)->size) { 2086 /* 2087 * Not supported by hardware. Most parts couple break and rx 2088 * interrupts together, with break detection always enabled. 2089 */ 2090 return; 2091 } 2092 2093 spin_lock_irqsave(&port->lock, flags); 2094 scsptr = serial_port_in(port, SCSPTR); 2095 scscr = serial_port_in(port, SCSCR); 2096 2097 if (break_state == -1) { 2098 scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT; 2099 scscr &= ~SCSCR_TE; 2100 } else { 2101 scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO; 2102 scscr |= SCSCR_TE; 2103 } 2104 2105 serial_port_out(port, SCSPTR, scsptr); 2106 serial_port_out(port, SCSCR, scscr); 2107 spin_unlock_irqrestore(&port->lock, flags); 2108 } 2109 2110 static int sci_startup(struct uart_port *port) 2111 { 2112 struct sci_port *s = to_sci_port(port); 2113 int ret; 2114 2115 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line); 2116 2117 sci_request_dma(port); 2118 2119 ret = sci_request_irq(s); 2120 if (unlikely(ret < 0)) { 2121 sci_free_dma(port); 2122 return ret; 2123 } 2124 2125 return 0; 2126 } 2127 2128 static void sci_shutdown(struct uart_port *port) 2129 { 2130 struct sci_port *s = to_sci_port(port); 2131 unsigned long flags; 2132 u16 scr; 2133 2134 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line); 2135 2136 s->autorts = false; 2137 mctrl_gpio_disable_ms(to_sci_port(port)->gpios); 2138 2139 spin_lock_irqsave(&port->lock, flags); 2140 sci_stop_rx(port); 2141 sci_stop_tx(port); 2142 /* 2143 * Stop RX and TX, disable related interrupts, keep clock source 2144 * and HSCIF TOT bits 2145 */ 2146 scr = serial_port_in(port, SCSCR); 2147 serial_port_out(port, SCSCR, scr & 2148 (SCSCR_CKE1 | SCSCR_CKE0 | s->hscif_tot)); 2149 spin_unlock_irqrestore(&port->lock, flags); 2150 2151 #ifdef CONFIG_SERIAL_SH_SCI_DMA 2152 if (s->chan_rx_saved) { 2153 dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__, 2154 port->line); 2155 hrtimer_cancel(&s->rx_timer); 2156 } 2157 #endif 2158 2159 if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0) 2160 del_timer_sync(&s->rx_fifo_timer); 2161 sci_free_irq(s); 2162 sci_free_dma(port); 2163 } 2164 2165 static int sci_sck_calc(struct sci_port *s, unsigned int bps, 2166 unsigned int *srr) 2167 { 2168 unsigned long freq = s->clk_rates[SCI_SCK]; 2169 int err, min_err = INT_MAX; 2170 unsigned int sr; 2171 2172 if (s->port.type != PORT_HSCIF) 2173 freq *= 2; 2174 2175 for_each_sr(sr, s) { 2176 err = DIV_ROUND_CLOSEST(freq, sr) - bps; 2177 if (abs(err) >= abs(min_err)) 2178 continue; 2179 2180 min_err = err; 2181 *srr = sr - 1; 2182 2183 if (!err) 2184 break; 2185 } 2186 2187 dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err, 2188 *srr + 1); 2189 return min_err; 2190 } 2191 2192 static int sci_brg_calc(struct sci_port *s, unsigned int bps, 2193 unsigned long freq, unsigned int *dlr, 2194 unsigned int *srr) 2195 { 2196 int err, min_err = INT_MAX; 2197 unsigned int sr, dl; 2198 2199 if (s->port.type != PORT_HSCIF) 2200 freq *= 2; 2201 2202 for_each_sr(sr, s) { 2203 dl = DIV_ROUND_CLOSEST(freq, sr * bps); 2204 dl = clamp(dl, 1U, 65535U); 2205 2206 err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps; 2207 if (abs(err) >= abs(min_err)) 2208 continue; 2209 2210 min_err = err; 2211 *dlr = dl; 2212 *srr = sr - 1; 2213 2214 if (!err) 2215 break; 2216 } 2217 2218 dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps, 2219 min_err, *dlr, *srr + 1); 2220 return min_err; 2221 } 2222 2223 /* calculate sample rate, BRR, and clock select */ 2224 static int sci_scbrr_calc(struct sci_port *s, unsigned int bps, 2225 unsigned int *brr, unsigned int *srr, 2226 unsigned int *cks) 2227 { 2228 unsigned long freq = s->clk_rates[SCI_FCK]; 2229 unsigned int sr, br, prediv, scrate, c; 2230 int err, min_err = INT_MAX; 2231 2232 if (s->port.type != PORT_HSCIF) 2233 freq *= 2; 2234 2235 /* 2236 * Find the combination of sample rate and clock select with the 2237 * smallest deviation from the desired baud rate. 2238 * Prefer high sample rates to maximise the receive margin. 2239 * 2240 * M: Receive margin (%) 2241 * N: Ratio of bit rate to clock (N = sampling rate) 2242 * D: Clock duty (D = 0 to 1.0) 2243 * L: Frame length (L = 9 to 12) 2244 * F: Absolute value of clock frequency deviation 2245 * 2246 * M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) - 2247 * (|D - 0.5| / N * (1 + F))| 2248 * NOTE: Usually, treat D for 0.5, F is 0 by this calculation. 2249 */ 2250 for_each_sr(sr, s) { 2251 for (c = 0; c <= 3; c++) { 2252 /* integerized formulas from HSCIF documentation */ 2253 prediv = sr * (1 << (2 * c + 1)); 2254 2255 /* 2256 * We need to calculate: 2257 * 2258 * br = freq / (prediv * bps) clamped to [1..256] 2259 * err = freq / (br * prediv) - bps 2260 * 2261 * Watch out for overflow when calculating the desired 2262 * sampling clock rate! 2263 */ 2264 if (bps > UINT_MAX / prediv) 2265 break; 2266 2267 scrate = prediv * bps; 2268 br = DIV_ROUND_CLOSEST(freq, scrate); 2269 br = clamp(br, 1U, 256U); 2270 2271 err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps; 2272 if (abs(err) >= abs(min_err)) 2273 continue; 2274 2275 min_err = err; 2276 *brr = br - 1; 2277 *srr = sr - 1; 2278 *cks = c; 2279 2280 if (!err) 2281 goto found; 2282 } 2283 } 2284 2285 found: 2286 dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps, 2287 min_err, *brr, *srr + 1, *cks); 2288 return min_err; 2289 } 2290 2291 static void sci_reset(struct uart_port *port) 2292 { 2293 const struct plat_sci_reg *reg; 2294 unsigned int status; 2295 struct sci_port *s = to_sci_port(port); 2296 2297 serial_port_out(port, SCSCR, s->hscif_tot); /* TE=0, RE=0, CKE1=0 */ 2298 2299 reg = sci_getreg(port, SCFCR); 2300 if (reg->size) 2301 serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST); 2302 2303 sci_clear_SCxSR(port, 2304 SCxSR_RDxF_CLEAR(port) & SCxSR_ERROR_CLEAR(port) & 2305 SCxSR_BREAK_CLEAR(port)); 2306 if (sci_getreg(port, SCLSR)->size) { 2307 status = serial_port_in(port, SCLSR); 2308 status &= ~(SCLSR_TO | SCLSR_ORER); 2309 serial_port_out(port, SCLSR, status); 2310 } 2311 2312 if (s->rx_trigger > 1) { 2313 if (s->rx_fifo_timeout) { 2314 scif_set_rtrg(port, 1); 2315 timer_setup(&s->rx_fifo_timer, rx_fifo_timer_fn, 0); 2316 } else { 2317 if (port->type == PORT_SCIFA || 2318 port->type == PORT_SCIFB) 2319 scif_set_rtrg(port, 1); 2320 else 2321 scif_set_rtrg(port, s->rx_trigger); 2322 } 2323 } 2324 } 2325 2326 static void sci_set_termios(struct uart_port *port, struct ktermios *termios, 2327 struct ktermios *old) 2328 { 2329 unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i, bits; 2330 unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0; 2331 unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0; 2332 struct sci_port *s = to_sci_port(port); 2333 const struct plat_sci_reg *reg; 2334 int min_err = INT_MAX, err; 2335 unsigned long max_freq = 0; 2336 int best_clk = -1; 2337 unsigned long flags; 2338 2339 if ((termios->c_cflag & CSIZE) == CS7) 2340 smr_val |= SCSMR_CHR; 2341 if (termios->c_cflag & PARENB) 2342 smr_val |= SCSMR_PE; 2343 if (termios->c_cflag & PARODD) 2344 smr_val |= SCSMR_PE | SCSMR_ODD; 2345 if (termios->c_cflag & CSTOPB) 2346 smr_val |= SCSMR_STOP; 2347 2348 /* 2349 * earlyprintk comes here early on with port->uartclk set to zero. 2350 * the clock framework is not up and running at this point so here 2351 * we assume that 115200 is the maximum baud rate. please note that 2352 * the baud rate is not programmed during earlyprintk - it is assumed 2353 * that the previous boot loader has enabled required clocks and 2354 * setup the baud rate generator hardware for us already. 2355 */ 2356 if (!port->uartclk) { 2357 baud = uart_get_baud_rate(port, termios, old, 0, 115200); 2358 goto done; 2359 } 2360 2361 for (i = 0; i < SCI_NUM_CLKS; i++) 2362 max_freq = max(max_freq, s->clk_rates[i]); 2363 2364 baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s)); 2365 if (!baud) 2366 goto done; 2367 2368 /* 2369 * There can be multiple sources for the sampling clock. Find the one 2370 * that gives us the smallest deviation from the desired baud rate. 2371 */ 2372 2373 /* Optional Undivided External Clock */ 2374 if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA && 2375 port->type != PORT_SCIFB) { 2376 err = sci_sck_calc(s, baud, &srr1); 2377 if (abs(err) < abs(min_err)) { 2378 best_clk = SCI_SCK; 2379 scr_val = SCSCR_CKE1; 2380 sccks = SCCKS_CKS; 2381 min_err = err; 2382 srr = srr1; 2383 if (!err) 2384 goto done; 2385 } 2386 } 2387 2388 /* Optional BRG Frequency Divided External Clock */ 2389 if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) { 2390 err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1, 2391 &srr1); 2392 if (abs(err) < abs(min_err)) { 2393 best_clk = SCI_SCIF_CLK; 2394 scr_val = SCSCR_CKE1; 2395 sccks = 0; 2396 min_err = err; 2397 dl = dl1; 2398 srr = srr1; 2399 if (!err) 2400 goto done; 2401 } 2402 } 2403 2404 /* Optional BRG Frequency Divided Internal Clock */ 2405 if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) { 2406 err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1, 2407 &srr1); 2408 if (abs(err) < abs(min_err)) { 2409 best_clk = SCI_BRG_INT; 2410 scr_val = SCSCR_CKE1; 2411 sccks = SCCKS_XIN; 2412 min_err = err; 2413 dl = dl1; 2414 srr = srr1; 2415 if (!min_err) 2416 goto done; 2417 } 2418 } 2419 2420 /* Divided Functional Clock using standard Bit Rate Register */ 2421 err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1); 2422 if (abs(err) < abs(min_err)) { 2423 best_clk = SCI_FCK; 2424 scr_val = 0; 2425 min_err = err; 2426 brr = brr1; 2427 srr = srr1; 2428 cks = cks1; 2429 } 2430 2431 done: 2432 if (best_clk >= 0) 2433 dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n", 2434 s->clks[best_clk], baud, min_err); 2435 2436 sci_port_enable(s); 2437 2438 /* 2439 * Program the optional External Baud Rate Generator (BRG) first. 2440 * It controls the mux to select (H)SCK or frequency divided clock. 2441 */ 2442 if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) { 2443 serial_port_out(port, SCDL, dl); 2444 serial_port_out(port, SCCKS, sccks); 2445 } 2446 2447 spin_lock_irqsave(&port->lock, flags); 2448 2449 sci_reset(port); 2450 2451 uart_update_timeout(port, termios->c_cflag, baud); 2452 2453 /* byte size and parity */ 2454 switch (termios->c_cflag & CSIZE) { 2455 case CS5: 2456 bits = 7; 2457 break; 2458 case CS6: 2459 bits = 8; 2460 break; 2461 case CS7: 2462 bits = 9; 2463 break; 2464 default: 2465 bits = 10; 2466 break; 2467 } 2468 2469 if (termios->c_cflag & CSTOPB) 2470 bits++; 2471 if (termios->c_cflag & PARENB) 2472 bits++; 2473 2474 if (best_clk >= 0) { 2475 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) 2476 switch (srr + 1) { 2477 case 5: smr_val |= SCSMR_SRC_5; break; 2478 case 7: smr_val |= SCSMR_SRC_7; break; 2479 case 11: smr_val |= SCSMR_SRC_11; break; 2480 case 13: smr_val |= SCSMR_SRC_13; break; 2481 case 16: smr_val |= SCSMR_SRC_16; break; 2482 case 17: smr_val |= SCSMR_SRC_17; break; 2483 case 19: smr_val |= SCSMR_SRC_19; break; 2484 case 27: smr_val |= SCSMR_SRC_27; break; 2485 } 2486 smr_val |= cks; 2487 serial_port_out(port, SCSCR, scr_val | s->hscif_tot); 2488 serial_port_out(port, SCSMR, smr_val); 2489 serial_port_out(port, SCBRR, brr); 2490 if (sci_getreg(port, HSSRR)->size) { 2491 unsigned int hssrr = srr | HSCIF_SRE; 2492 /* Calculate deviation from intended rate at the 2493 * center of the last stop bit in sampling clocks. 2494 */ 2495 int last_stop = bits * 2 - 1; 2496 int deviation = min_err * srr * last_stop / 2 / baud; 2497 2498 if (abs(deviation) >= 2) { 2499 /* At least two sampling clocks off at the 2500 * last stop bit; we can increase the error 2501 * margin by shifting the sampling point. 2502 */ 2503 int shift = min(-8, max(7, deviation / 2)); 2504 2505 hssrr |= (shift << HSCIF_SRHP_SHIFT) & 2506 HSCIF_SRHP_MASK; 2507 hssrr |= HSCIF_SRDE; 2508 } 2509 serial_port_out(port, HSSRR, hssrr); 2510 } 2511 2512 /* Wait one bit interval */ 2513 udelay((1000000 + (baud - 1)) / baud); 2514 } else { 2515 /* Don't touch the bit rate configuration */ 2516 scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0); 2517 smr_val |= serial_port_in(port, SCSMR) & 2518 (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS); 2519 serial_port_out(port, SCSCR, scr_val | s->hscif_tot); 2520 serial_port_out(port, SCSMR, smr_val); 2521 } 2522 2523 sci_init_pins(port, termios->c_cflag); 2524 2525 port->status &= ~UPSTAT_AUTOCTS; 2526 s->autorts = false; 2527 reg = sci_getreg(port, SCFCR); 2528 if (reg->size) { 2529 unsigned short ctrl = serial_port_in(port, SCFCR); 2530 2531 if ((port->flags & UPF_HARD_FLOW) && 2532 (termios->c_cflag & CRTSCTS)) { 2533 /* There is no CTS interrupt to restart the hardware */ 2534 port->status |= UPSTAT_AUTOCTS; 2535 /* MCE is enabled when RTS is raised */ 2536 s->autorts = true; 2537 } 2538 2539 /* 2540 * As we've done a sci_reset() above, ensure we don't 2541 * interfere with the FIFOs while toggling MCE. As the 2542 * reset values could still be set, simply mask them out. 2543 */ 2544 ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST); 2545 2546 serial_port_out(port, SCFCR, ctrl); 2547 } 2548 if (port->flags & UPF_HARD_FLOW) { 2549 /* Refresh (Auto) RTS */ 2550 sci_set_mctrl(port, port->mctrl); 2551 } 2552 2553 scr_val |= SCSCR_RE | SCSCR_TE | 2554 (s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)); 2555 serial_port_out(port, SCSCR, scr_val | s->hscif_tot); 2556 if ((srr + 1 == 5) && 2557 (port->type == PORT_SCIFA || port->type == PORT_SCIFB)) { 2558 /* 2559 * In asynchronous mode, when the sampling rate is 1/5, first 2560 * received data may become invalid on some SCIFA and SCIFB. 2561 * To avoid this problem wait more than 1 serial data time (1 2562 * bit time x serial data number) after setting SCSCR.RE = 1. 2563 */ 2564 udelay(DIV_ROUND_UP(10 * 1000000, baud)); 2565 } 2566 2567 /* 2568 * Calculate delay for 2 DMA buffers (4 FIFO). 2569 * See serial_core.c::uart_update_timeout(). 2570 * With 10 bits (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above 2571 * function calculates 1 jiffie for the data plus 5 jiffies for the 2572 * "slop(e)." Then below we calculate 5 jiffies (20ms) for 2 DMA 2573 * buffers (4 FIFO sizes), but when performing a faster transfer, the 2574 * value obtained by this formula is too small. Therefore, if the value 2575 * is smaller than 20ms, use 20ms as the timeout value for DMA. 2576 */ 2577 s->rx_frame = (10000 * bits) / (baud / 100); 2578 #ifdef CONFIG_SERIAL_SH_SCI_DMA 2579 s->rx_timeout = s->buf_len_rx * 2 * s->rx_frame; 2580 if (s->rx_timeout < 20) 2581 s->rx_timeout = 20; 2582 #endif 2583 2584 if ((termios->c_cflag & CREAD) != 0) 2585 sci_start_rx(port); 2586 2587 spin_unlock_irqrestore(&port->lock, flags); 2588 2589 sci_port_disable(s); 2590 2591 if (UART_ENABLE_MS(port, termios->c_cflag)) 2592 sci_enable_ms(port); 2593 } 2594 2595 static void sci_pm(struct uart_port *port, unsigned int state, 2596 unsigned int oldstate) 2597 { 2598 struct sci_port *sci_port = to_sci_port(port); 2599 2600 switch (state) { 2601 case UART_PM_STATE_OFF: 2602 sci_port_disable(sci_port); 2603 break; 2604 default: 2605 sci_port_enable(sci_port); 2606 break; 2607 } 2608 } 2609 2610 static const char *sci_type(struct uart_port *port) 2611 { 2612 switch (port->type) { 2613 case PORT_IRDA: 2614 return "irda"; 2615 case PORT_SCI: 2616 return "sci"; 2617 case PORT_SCIF: 2618 return "scif"; 2619 case PORT_SCIFA: 2620 return "scifa"; 2621 case PORT_SCIFB: 2622 return "scifb"; 2623 case PORT_HSCIF: 2624 return "hscif"; 2625 } 2626 2627 return NULL; 2628 } 2629 2630 static int sci_remap_port(struct uart_port *port) 2631 { 2632 struct sci_port *sport = to_sci_port(port); 2633 2634 /* 2635 * Nothing to do if there's already an established membase. 2636 */ 2637 if (port->membase) 2638 return 0; 2639 2640 if (port->dev->of_node || (port->flags & UPF_IOREMAP)) { 2641 port->membase = ioremap_nocache(port->mapbase, sport->reg_size); 2642 if (unlikely(!port->membase)) { 2643 dev_err(port->dev, "can't remap port#%d\n", port->line); 2644 return -ENXIO; 2645 } 2646 } else { 2647 /* 2648 * For the simple (and majority of) cases where we don't 2649 * need to do any remapping, just cast the cookie 2650 * directly. 2651 */ 2652 port->membase = (void __iomem *)(uintptr_t)port->mapbase; 2653 } 2654 2655 return 0; 2656 } 2657 2658 static void sci_release_port(struct uart_port *port) 2659 { 2660 struct sci_port *sport = to_sci_port(port); 2661 2662 if (port->dev->of_node || (port->flags & UPF_IOREMAP)) { 2663 iounmap(port->membase); 2664 port->membase = NULL; 2665 } 2666 2667 release_mem_region(port->mapbase, sport->reg_size); 2668 } 2669 2670 static int sci_request_port(struct uart_port *port) 2671 { 2672 struct resource *res; 2673 struct sci_port *sport = to_sci_port(port); 2674 int ret; 2675 2676 res = request_mem_region(port->mapbase, sport->reg_size, 2677 dev_name(port->dev)); 2678 if (unlikely(res == NULL)) { 2679 dev_err(port->dev, "request_mem_region failed."); 2680 return -EBUSY; 2681 } 2682 2683 ret = sci_remap_port(port); 2684 if (unlikely(ret != 0)) { 2685 release_resource(res); 2686 return ret; 2687 } 2688 2689 return 0; 2690 } 2691 2692 static void sci_config_port(struct uart_port *port, int flags) 2693 { 2694 if (flags & UART_CONFIG_TYPE) { 2695 struct sci_port *sport = to_sci_port(port); 2696 2697 port->type = sport->cfg->type; 2698 sci_request_port(port); 2699 } 2700 } 2701 2702 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser) 2703 { 2704 if (ser->baud_base < 2400) 2705 /* No paper tape reader for Mitch.. */ 2706 return -EINVAL; 2707 2708 return 0; 2709 } 2710 2711 static const struct uart_ops sci_uart_ops = { 2712 .tx_empty = sci_tx_empty, 2713 .set_mctrl = sci_set_mctrl, 2714 .get_mctrl = sci_get_mctrl, 2715 .start_tx = sci_start_tx, 2716 .stop_tx = sci_stop_tx, 2717 .stop_rx = sci_stop_rx, 2718 .enable_ms = sci_enable_ms, 2719 .break_ctl = sci_break_ctl, 2720 .startup = sci_startup, 2721 .shutdown = sci_shutdown, 2722 .flush_buffer = sci_flush_buffer, 2723 .set_termios = sci_set_termios, 2724 .pm = sci_pm, 2725 .type = sci_type, 2726 .release_port = sci_release_port, 2727 .request_port = sci_request_port, 2728 .config_port = sci_config_port, 2729 .verify_port = sci_verify_port, 2730 #ifdef CONFIG_CONSOLE_POLL 2731 .poll_get_char = sci_poll_get_char, 2732 .poll_put_char = sci_poll_put_char, 2733 #endif 2734 }; 2735 2736 static int sci_init_clocks(struct sci_port *sci_port, struct device *dev) 2737 { 2738 const char *clk_names[] = { 2739 [SCI_FCK] = "fck", 2740 [SCI_SCK] = "sck", 2741 [SCI_BRG_INT] = "brg_int", 2742 [SCI_SCIF_CLK] = "scif_clk", 2743 }; 2744 struct clk *clk; 2745 unsigned int i; 2746 2747 if (sci_port->cfg->type == PORT_HSCIF) 2748 clk_names[SCI_SCK] = "hsck"; 2749 2750 for (i = 0; i < SCI_NUM_CLKS; i++) { 2751 clk = devm_clk_get(dev, clk_names[i]); 2752 if (PTR_ERR(clk) == -EPROBE_DEFER) 2753 return -EPROBE_DEFER; 2754 2755 if (IS_ERR(clk) && i == SCI_FCK) { 2756 /* 2757 * "fck" used to be called "sci_ick", and we need to 2758 * maintain DT backward compatibility. 2759 */ 2760 clk = devm_clk_get(dev, "sci_ick"); 2761 if (PTR_ERR(clk) == -EPROBE_DEFER) 2762 return -EPROBE_DEFER; 2763 2764 if (!IS_ERR(clk)) 2765 goto found; 2766 2767 /* 2768 * Not all SH platforms declare a clock lookup entry 2769 * for SCI devices, in which case we need to get the 2770 * global "peripheral_clk" clock. 2771 */ 2772 clk = devm_clk_get(dev, "peripheral_clk"); 2773 if (!IS_ERR(clk)) 2774 goto found; 2775 2776 dev_err(dev, "failed to get %s (%ld)\n", clk_names[i], 2777 PTR_ERR(clk)); 2778 return PTR_ERR(clk); 2779 } 2780 2781 found: 2782 if (IS_ERR(clk)) 2783 dev_dbg(dev, "failed to get %s (%ld)\n", clk_names[i], 2784 PTR_ERR(clk)); 2785 else 2786 dev_dbg(dev, "clk %s is %pC rate %lu\n", clk_names[i], 2787 clk, clk_get_rate(clk)); 2788 sci_port->clks[i] = IS_ERR(clk) ? NULL : clk; 2789 } 2790 return 0; 2791 } 2792 2793 static const struct sci_port_params * 2794 sci_probe_regmap(const struct plat_sci_port *cfg) 2795 { 2796 unsigned int regtype; 2797 2798 if (cfg->regtype != SCIx_PROBE_REGTYPE) 2799 return &sci_port_params[cfg->regtype]; 2800 2801 switch (cfg->type) { 2802 case PORT_SCI: 2803 regtype = SCIx_SCI_REGTYPE; 2804 break; 2805 case PORT_IRDA: 2806 regtype = SCIx_IRDA_REGTYPE; 2807 break; 2808 case PORT_SCIFA: 2809 regtype = SCIx_SCIFA_REGTYPE; 2810 break; 2811 case PORT_SCIFB: 2812 regtype = SCIx_SCIFB_REGTYPE; 2813 break; 2814 case PORT_SCIF: 2815 /* 2816 * The SH-4 is a bit of a misnomer here, although that's 2817 * where this particular port layout originated. This 2818 * configuration (or some slight variation thereof) 2819 * remains the dominant model for all SCIFs. 2820 */ 2821 regtype = SCIx_SH4_SCIF_REGTYPE; 2822 break; 2823 case PORT_HSCIF: 2824 regtype = SCIx_HSCIF_REGTYPE; 2825 break; 2826 default: 2827 pr_err("Can't probe register map for given port\n"); 2828 return NULL; 2829 } 2830 2831 return &sci_port_params[regtype]; 2832 } 2833 2834 static int sci_init_single(struct platform_device *dev, 2835 struct sci_port *sci_port, unsigned int index, 2836 const struct plat_sci_port *p, bool early) 2837 { 2838 struct uart_port *port = &sci_port->port; 2839 const struct resource *res; 2840 unsigned int i; 2841 int ret; 2842 2843 sci_port->cfg = p; 2844 2845 port->ops = &sci_uart_ops; 2846 port->iotype = UPIO_MEM; 2847 port->line = index; 2848 2849 res = platform_get_resource(dev, IORESOURCE_MEM, 0); 2850 if (res == NULL) 2851 return -ENOMEM; 2852 2853 port->mapbase = res->start; 2854 sci_port->reg_size = resource_size(res); 2855 2856 for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i) 2857 sci_port->irqs[i] = platform_get_irq(dev, i); 2858 2859 /* The SCI generates several interrupts. They can be muxed together or 2860 * connected to different interrupt lines. In the muxed case only one 2861 * interrupt resource is specified as there is only one interrupt ID. 2862 * In the non-muxed case, up to 6 interrupt signals might be generated 2863 * from the SCI, however those signals might have their own individual 2864 * interrupt ID numbers, or muxed together with another interrupt. 2865 */ 2866 if (sci_port->irqs[0] < 0) 2867 return -ENXIO; 2868 2869 if (sci_port->irqs[1] < 0) 2870 for (i = 1; i < ARRAY_SIZE(sci_port->irqs); i++) 2871 sci_port->irqs[i] = sci_port->irqs[0]; 2872 2873 sci_port->params = sci_probe_regmap(p); 2874 if (unlikely(sci_port->params == NULL)) 2875 return -EINVAL; 2876 2877 switch (p->type) { 2878 case PORT_SCIFB: 2879 sci_port->rx_trigger = 48; 2880 break; 2881 case PORT_HSCIF: 2882 sci_port->rx_trigger = 64; 2883 break; 2884 case PORT_SCIFA: 2885 sci_port->rx_trigger = 32; 2886 break; 2887 case PORT_SCIF: 2888 if (p->regtype == SCIx_SH7705_SCIF_REGTYPE) 2889 /* RX triggering not implemented for this IP */ 2890 sci_port->rx_trigger = 1; 2891 else 2892 sci_port->rx_trigger = 8; 2893 break; 2894 default: 2895 sci_port->rx_trigger = 1; 2896 break; 2897 } 2898 2899 sci_port->rx_fifo_timeout = 0; 2900 sci_port->hscif_tot = 0; 2901 2902 /* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't 2903 * match the SoC datasheet, this should be investigated. Let platform 2904 * data override the sampling rate for now. 2905 */ 2906 sci_port->sampling_rate_mask = p->sampling_rate 2907 ? SCI_SR(p->sampling_rate) 2908 : sci_port->params->sampling_rate_mask; 2909 2910 if (!early) { 2911 ret = sci_init_clocks(sci_port, &dev->dev); 2912 if (ret < 0) 2913 return ret; 2914 2915 port->dev = &dev->dev; 2916 2917 pm_runtime_enable(&dev->dev); 2918 } 2919 2920 port->type = p->type; 2921 port->flags = UPF_FIXED_PORT | UPF_BOOT_AUTOCONF | p->flags; 2922 port->fifosize = sci_port->params->fifosize; 2923 2924 if (port->type == PORT_SCI) { 2925 if (sci_port->reg_size >= 0x20) 2926 port->regshift = 2; 2927 else 2928 port->regshift = 1; 2929 } 2930 2931 /* 2932 * The UART port needs an IRQ value, so we peg this to the RX IRQ 2933 * for the multi-IRQ ports, which is where we are primarily 2934 * concerned with the shutdown path synchronization. 2935 * 2936 * For the muxed case there's nothing more to do. 2937 */ 2938 port->irq = sci_port->irqs[SCIx_RXI_IRQ]; 2939 port->irqflags = 0; 2940 2941 port->serial_in = sci_serial_in; 2942 port->serial_out = sci_serial_out; 2943 2944 return 0; 2945 } 2946 2947 static void sci_cleanup_single(struct sci_port *port) 2948 { 2949 pm_runtime_disable(port->port.dev); 2950 } 2951 2952 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \ 2953 defined(CONFIG_SERIAL_SH_SCI_EARLYCON) 2954 static void serial_console_putchar(struct uart_port *port, int ch) 2955 { 2956 sci_poll_put_char(port, ch); 2957 } 2958 2959 /* 2960 * Print a string to the serial port trying not to disturb 2961 * any possible real use of the port... 2962 */ 2963 static void serial_console_write(struct console *co, const char *s, 2964 unsigned count) 2965 { 2966 struct sci_port *sci_port = &sci_ports[co->index]; 2967 struct uart_port *port = &sci_port->port; 2968 unsigned short bits, ctrl, ctrl_temp; 2969 unsigned long flags; 2970 int locked = 1; 2971 2972 #if defined(SUPPORT_SYSRQ) 2973 if (port->sysrq) 2974 locked = 0; 2975 else 2976 #endif 2977 if (oops_in_progress) 2978 locked = spin_trylock_irqsave(&port->lock, flags); 2979 else 2980 spin_lock_irqsave(&port->lock, flags); 2981 2982 /* first save SCSCR then disable interrupts, keep clock source */ 2983 ctrl = serial_port_in(port, SCSCR); 2984 ctrl_temp = SCSCR_RE | SCSCR_TE | 2985 (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) | 2986 (ctrl & (SCSCR_CKE1 | SCSCR_CKE0)); 2987 serial_port_out(port, SCSCR, ctrl_temp | sci_port->hscif_tot); 2988 2989 uart_console_write(port, s, count, serial_console_putchar); 2990 2991 /* wait until fifo is empty and last bit has been transmitted */ 2992 bits = SCxSR_TDxE(port) | SCxSR_TEND(port); 2993 while ((serial_port_in(port, SCxSR) & bits) != bits) 2994 cpu_relax(); 2995 2996 /* restore the SCSCR */ 2997 serial_port_out(port, SCSCR, ctrl); 2998 2999 if (locked) 3000 spin_unlock_irqrestore(&port->lock, flags); 3001 } 3002 3003 static int serial_console_setup(struct console *co, char *options) 3004 { 3005 struct sci_port *sci_port; 3006 struct uart_port *port; 3007 int baud = 115200; 3008 int bits = 8; 3009 int parity = 'n'; 3010 int flow = 'n'; 3011 int ret; 3012 3013 /* 3014 * Refuse to handle any bogus ports. 3015 */ 3016 if (co->index < 0 || co->index >= SCI_NPORTS) 3017 return -ENODEV; 3018 3019 sci_port = &sci_ports[co->index]; 3020 port = &sci_port->port; 3021 3022 /* 3023 * Refuse to handle uninitialized ports. 3024 */ 3025 if (!port->ops) 3026 return -ENODEV; 3027 3028 ret = sci_remap_port(port); 3029 if (unlikely(ret != 0)) 3030 return ret; 3031 3032 if (options) 3033 uart_parse_options(options, &baud, &parity, &bits, &flow); 3034 3035 return uart_set_options(port, co, baud, parity, bits, flow); 3036 } 3037 3038 static struct console serial_console = { 3039 .name = "ttySC", 3040 .device = uart_console_device, 3041 .write = serial_console_write, 3042 .setup = serial_console_setup, 3043 .flags = CON_PRINTBUFFER, 3044 .index = -1, 3045 .data = &sci_uart_driver, 3046 }; 3047 3048 static struct console early_serial_console = { 3049 .name = "early_ttySC", 3050 .write = serial_console_write, 3051 .flags = CON_PRINTBUFFER, 3052 .index = -1, 3053 }; 3054 3055 static char early_serial_buf[32]; 3056 3057 static int sci_probe_earlyprintk(struct platform_device *pdev) 3058 { 3059 const struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev); 3060 3061 if (early_serial_console.data) 3062 return -EEXIST; 3063 3064 early_serial_console.index = pdev->id; 3065 3066 sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true); 3067 3068 serial_console_setup(&early_serial_console, early_serial_buf); 3069 3070 if (!strstr(early_serial_buf, "keep")) 3071 early_serial_console.flags |= CON_BOOT; 3072 3073 register_console(&early_serial_console); 3074 return 0; 3075 } 3076 3077 #define SCI_CONSOLE (&serial_console) 3078 3079 #else 3080 static inline int sci_probe_earlyprintk(struct platform_device *pdev) 3081 { 3082 return -EINVAL; 3083 } 3084 3085 #define SCI_CONSOLE NULL 3086 3087 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */ 3088 3089 static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized"; 3090 3091 static DEFINE_MUTEX(sci_uart_registration_lock); 3092 static struct uart_driver sci_uart_driver = { 3093 .owner = THIS_MODULE, 3094 .driver_name = "sci", 3095 .dev_name = "ttySC", 3096 .major = SCI_MAJOR, 3097 .minor = SCI_MINOR_START, 3098 .nr = SCI_NPORTS, 3099 .cons = SCI_CONSOLE, 3100 }; 3101 3102 static int sci_remove(struct platform_device *dev) 3103 { 3104 struct sci_port *port = platform_get_drvdata(dev); 3105 3106 sci_ports_in_use &= ~BIT(port->port.line); 3107 uart_remove_one_port(&sci_uart_driver, &port->port); 3108 3109 sci_cleanup_single(port); 3110 3111 if (port->port.fifosize > 1) { 3112 sysfs_remove_file(&dev->dev.kobj, 3113 &dev_attr_rx_fifo_trigger.attr); 3114 } 3115 if (port->port.type == PORT_SCIFA || port->port.type == PORT_SCIFB || 3116 port->port.type == PORT_HSCIF) { 3117 sysfs_remove_file(&dev->dev.kobj, 3118 &dev_attr_rx_fifo_timeout.attr); 3119 } 3120 3121 return 0; 3122 } 3123 3124 3125 #define SCI_OF_DATA(type, regtype) (void *)((type) << 16 | (regtype)) 3126 #define SCI_OF_TYPE(data) ((unsigned long)(data) >> 16) 3127 #define SCI_OF_REGTYPE(data) ((unsigned long)(data) & 0xffff) 3128 3129 static const struct of_device_id of_sci_match[] = { 3130 /* SoC-specific types */ 3131 { 3132 .compatible = "renesas,scif-r7s72100", 3133 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE), 3134 }, 3135 { 3136 .compatible = "renesas,scif-r7s9210", 3137 .data = SCI_OF_DATA(PORT_SCIF, SCIx_RZ_SCIFA_REGTYPE), 3138 }, 3139 /* Family-specific types */ 3140 { 3141 .compatible = "renesas,rcar-gen1-scif", 3142 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE), 3143 }, { 3144 .compatible = "renesas,rcar-gen2-scif", 3145 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE), 3146 }, { 3147 .compatible = "renesas,rcar-gen3-scif", 3148 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE), 3149 }, 3150 /* Generic types */ 3151 { 3152 .compatible = "renesas,scif", 3153 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE), 3154 }, { 3155 .compatible = "renesas,scifa", 3156 .data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE), 3157 }, { 3158 .compatible = "renesas,scifb", 3159 .data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE), 3160 }, { 3161 .compatible = "renesas,hscif", 3162 .data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE), 3163 }, { 3164 .compatible = "renesas,sci", 3165 .data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE), 3166 }, { 3167 /* Terminator */ 3168 }, 3169 }; 3170 MODULE_DEVICE_TABLE(of, of_sci_match); 3171 3172 static struct plat_sci_port *sci_parse_dt(struct platform_device *pdev, 3173 unsigned int *dev_id) 3174 { 3175 struct device_node *np = pdev->dev.of_node; 3176 struct plat_sci_port *p; 3177 struct sci_port *sp; 3178 const void *data; 3179 int id; 3180 3181 if (!IS_ENABLED(CONFIG_OF) || !np) 3182 return NULL; 3183 3184 data = of_device_get_match_data(&pdev->dev); 3185 3186 p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL); 3187 if (!p) 3188 return NULL; 3189 3190 /* Get the line number from the aliases node. */ 3191 id = of_alias_get_id(np, "serial"); 3192 if (id < 0 && ~sci_ports_in_use) 3193 id = ffz(sci_ports_in_use); 3194 if (id < 0) { 3195 dev_err(&pdev->dev, "failed to get alias id (%d)\n", id); 3196 return NULL; 3197 } 3198 if (id >= ARRAY_SIZE(sci_ports)) { 3199 dev_err(&pdev->dev, "serial%d out of range\n", id); 3200 return NULL; 3201 } 3202 3203 sp = &sci_ports[id]; 3204 *dev_id = id; 3205 3206 p->type = SCI_OF_TYPE(data); 3207 p->regtype = SCI_OF_REGTYPE(data); 3208 3209 sp->has_rtscts = of_property_read_bool(np, "uart-has-rtscts"); 3210 3211 return p; 3212 } 3213 3214 static int sci_probe_single(struct platform_device *dev, 3215 unsigned int index, 3216 struct plat_sci_port *p, 3217 struct sci_port *sciport) 3218 { 3219 int ret; 3220 3221 /* Sanity check */ 3222 if (unlikely(index >= SCI_NPORTS)) { 3223 dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n", 3224 index+1, SCI_NPORTS); 3225 dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n"); 3226 return -EINVAL; 3227 } 3228 BUILD_BUG_ON(SCI_NPORTS > sizeof(sci_ports_in_use) * 8); 3229 if (sci_ports_in_use & BIT(index)) 3230 return -EBUSY; 3231 3232 mutex_lock(&sci_uart_registration_lock); 3233 if (!sci_uart_driver.state) { 3234 ret = uart_register_driver(&sci_uart_driver); 3235 if (ret) { 3236 mutex_unlock(&sci_uart_registration_lock); 3237 return ret; 3238 } 3239 } 3240 mutex_unlock(&sci_uart_registration_lock); 3241 3242 ret = sci_init_single(dev, sciport, index, p, false); 3243 if (ret) 3244 return ret; 3245 3246 sciport->gpios = mctrl_gpio_init(&sciport->port, 0); 3247 if (IS_ERR(sciport->gpios) && PTR_ERR(sciport->gpios) != -ENOSYS) 3248 return PTR_ERR(sciport->gpios); 3249 3250 if (sciport->has_rtscts) { 3251 if (!IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(sciport->gpios, 3252 UART_GPIO_CTS)) || 3253 !IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(sciport->gpios, 3254 UART_GPIO_RTS))) { 3255 dev_err(&dev->dev, "Conflicting RTS/CTS config\n"); 3256 return -EINVAL; 3257 } 3258 sciport->port.flags |= UPF_HARD_FLOW; 3259 } 3260 3261 ret = uart_add_one_port(&sci_uart_driver, &sciport->port); 3262 if (ret) { 3263 sci_cleanup_single(sciport); 3264 return ret; 3265 } 3266 3267 return 0; 3268 } 3269 3270 static int sci_probe(struct platform_device *dev) 3271 { 3272 struct plat_sci_port *p; 3273 struct sci_port *sp; 3274 unsigned int dev_id; 3275 int ret; 3276 3277 /* 3278 * If we've come here via earlyprintk initialization, head off to 3279 * the special early probe. We don't have sufficient device state 3280 * to make it beyond this yet. 3281 */ 3282 if (is_early_platform_device(dev)) 3283 return sci_probe_earlyprintk(dev); 3284 3285 if (dev->dev.of_node) { 3286 p = sci_parse_dt(dev, &dev_id); 3287 if (p == NULL) 3288 return -EINVAL; 3289 } else { 3290 p = dev->dev.platform_data; 3291 if (p == NULL) { 3292 dev_err(&dev->dev, "no platform data supplied\n"); 3293 return -EINVAL; 3294 } 3295 3296 dev_id = dev->id; 3297 } 3298 3299 sp = &sci_ports[dev_id]; 3300 platform_set_drvdata(dev, sp); 3301 3302 ret = sci_probe_single(dev, dev_id, p, sp); 3303 if (ret) 3304 return ret; 3305 3306 if (sp->port.fifosize > 1) { 3307 ret = sysfs_create_file(&dev->dev.kobj, 3308 &dev_attr_rx_fifo_trigger.attr); 3309 if (ret) 3310 return ret; 3311 } 3312 if (sp->port.type == PORT_SCIFA || sp->port.type == PORT_SCIFB || 3313 sp->port.type == PORT_HSCIF) { 3314 ret = sysfs_create_file(&dev->dev.kobj, 3315 &dev_attr_rx_fifo_timeout.attr); 3316 if (ret) { 3317 if (sp->port.fifosize > 1) { 3318 sysfs_remove_file(&dev->dev.kobj, 3319 &dev_attr_rx_fifo_trigger.attr); 3320 } 3321 return ret; 3322 } 3323 } 3324 3325 #ifdef CONFIG_SH_STANDARD_BIOS 3326 sh_bios_gdb_detach(); 3327 #endif 3328 3329 sci_ports_in_use |= BIT(dev_id); 3330 return 0; 3331 } 3332 3333 static __maybe_unused int sci_suspend(struct device *dev) 3334 { 3335 struct sci_port *sport = dev_get_drvdata(dev); 3336 3337 if (sport) 3338 uart_suspend_port(&sci_uart_driver, &sport->port); 3339 3340 return 0; 3341 } 3342 3343 static __maybe_unused int sci_resume(struct device *dev) 3344 { 3345 struct sci_port *sport = dev_get_drvdata(dev); 3346 3347 if (sport) 3348 uart_resume_port(&sci_uart_driver, &sport->port); 3349 3350 return 0; 3351 } 3352 3353 static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume); 3354 3355 static struct platform_driver sci_driver = { 3356 .probe = sci_probe, 3357 .remove = sci_remove, 3358 .driver = { 3359 .name = "sh-sci", 3360 .pm = &sci_dev_pm_ops, 3361 .of_match_table = of_match_ptr(of_sci_match), 3362 }, 3363 }; 3364 3365 static int __init sci_init(void) 3366 { 3367 pr_info("%s\n", banner); 3368 3369 return platform_driver_register(&sci_driver); 3370 } 3371 3372 static void __exit sci_exit(void) 3373 { 3374 platform_driver_unregister(&sci_driver); 3375 3376 if (sci_uart_driver.state) 3377 uart_unregister_driver(&sci_uart_driver); 3378 } 3379 3380 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE 3381 early_platform_init_buffer("earlyprintk", &sci_driver, 3382 early_serial_buf, ARRAY_SIZE(early_serial_buf)); 3383 #endif 3384 #ifdef CONFIG_SERIAL_SH_SCI_EARLYCON 3385 static struct plat_sci_port port_cfg __initdata; 3386 3387 static int __init early_console_setup(struct earlycon_device *device, 3388 int type) 3389 { 3390 if (!device->port.membase) 3391 return -ENODEV; 3392 3393 device->port.serial_in = sci_serial_in; 3394 device->port.serial_out = sci_serial_out; 3395 device->port.type = type; 3396 memcpy(&sci_ports[0].port, &device->port, sizeof(struct uart_port)); 3397 port_cfg.type = type; 3398 sci_ports[0].cfg = &port_cfg; 3399 sci_ports[0].params = sci_probe_regmap(&port_cfg); 3400 port_cfg.scscr = sci_serial_in(&sci_ports[0].port, SCSCR); 3401 sci_serial_out(&sci_ports[0].port, SCSCR, 3402 SCSCR_RE | SCSCR_TE | port_cfg.scscr); 3403 3404 device->con->write = serial_console_write; 3405 return 0; 3406 } 3407 static int __init sci_early_console_setup(struct earlycon_device *device, 3408 const char *opt) 3409 { 3410 return early_console_setup(device, PORT_SCI); 3411 } 3412 static int __init scif_early_console_setup(struct earlycon_device *device, 3413 const char *opt) 3414 { 3415 return early_console_setup(device, PORT_SCIF); 3416 } 3417 static int __init rzscifa_early_console_setup(struct earlycon_device *device, 3418 const char *opt) 3419 { 3420 port_cfg.regtype = SCIx_RZ_SCIFA_REGTYPE; 3421 return early_console_setup(device, PORT_SCIF); 3422 } 3423 static int __init scifa_early_console_setup(struct earlycon_device *device, 3424 const char *opt) 3425 { 3426 return early_console_setup(device, PORT_SCIFA); 3427 } 3428 static int __init scifb_early_console_setup(struct earlycon_device *device, 3429 const char *opt) 3430 { 3431 return early_console_setup(device, PORT_SCIFB); 3432 } 3433 static int __init hscif_early_console_setup(struct earlycon_device *device, 3434 const char *opt) 3435 { 3436 return early_console_setup(device, PORT_HSCIF); 3437 } 3438 3439 OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup); 3440 OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup); 3441 OF_EARLYCON_DECLARE(scif, "renesas,scif-r7s9210", rzscifa_early_console_setup); 3442 OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup); 3443 OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup); 3444 OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup); 3445 #endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */ 3446 3447 module_init(sci_init); 3448 module_exit(sci_exit); 3449 3450 MODULE_LICENSE("GPL"); 3451 MODULE_ALIAS("platform:sh-sci"); 3452 MODULE_AUTHOR("Paul Mundt"); 3453 MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver"); 3454