1 /* 2 * SuperH on-chip serial module support. (SCI with no FIFO / with FIFO) 3 * 4 * Copyright (C) 2002 - 2011 Paul Mundt 5 * Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007). 6 * 7 * based off of the old drivers/char/sh-sci.c by: 8 * 9 * Copyright (C) 1999, 2000 Niibe Yutaka 10 * Copyright (C) 2000 Sugioka Toshinobu 11 * Modified to support multiple serial ports. Stuart Menefy (May 2000). 12 * Modified to support SecureEdge. David McCullough (2002) 13 * Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003). 14 * Removed SH7300 support (Jul 2007). 15 * 16 * This file is subject to the terms and conditions of the GNU General Public 17 * License. See the file "COPYING" in the main directory of this archive 18 * for more details. 19 */ 20 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) 21 #define SUPPORT_SYSRQ 22 #endif 23 24 #undef DEBUG 25 26 #include <linux/clk.h> 27 #include <linux/console.h> 28 #include <linux/ctype.h> 29 #include <linux/cpufreq.h> 30 #include <linux/delay.h> 31 #include <linux/dmaengine.h> 32 #include <linux/dma-mapping.h> 33 #include <linux/err.h> 34 #include <linux/errno.h> 35 #include <linux/init.h> 36 #include <linux/interrupt.h> 37 #include <linux/ioport.h> 38 #include <linux/major.h> 39 #include <linux/module.h> 40 #include <linux/mm.h> 41 #include <linux/notifier.h> 42 #include <linux/of.h> 43 #include <linux/platform_device.h> 44 #include <linux/pm_runtime.h> 45 #include <linux/scatterlist.h> 46 #include <linux/serial.h> 47 #include <linux/serial_sci.h> 48 #include <linux/sh_dma.h> 49 #include <linux/slab.h> 50 #include <linux/string.h> 51 #include <linux/sysrq.h> 52 #include <linux/timer.h> 53 #include <linux/tty.h> 54 #include <linux/tty_flip.h> 55 56 #ifdef CONFIG_SUPERH 57 #include <asm/sh_bios.h> 58 #endif 59 60 #include "sh-sci.h" 61 62 /* Offsets into the sci_port->irqs array */ 63 enum { 64 SCIx_ERI_IRQ, 65 SCIx_RXI_IRQ, 66 SCIx_TXI_IRQ, 67 SCIx_BRI_IRQ, 68 SCIx_NR_IRQS, 69 70 SCIx_MUX_IRQ = SCIx_NR_IRQS, /* special case */ 71 }; 72 73 #define SCIx_IRQ_IS_MUXED(port) \ 74 ((port)->irqs[SCIx_ERI_IRQ] == \ 75 (port)->irqs[SCIx_RXI_IRQ]) || \ 76 ((port)->irqs[SCIx_ERI_IRQ] && \ 77 ((port)->irqs[SCIx_RXI_IRQ] < 0)) 78 79 struct sci_port { 80 struct uart_port port; 81 82 /* Platform configuration */ 83 struct plat_sci_port *cfg; 84 int overrun_bit; 85 unsigned int error_mask; 86 unsigned int sampling_rate; 87 88 89 /* Break timer */ 90 struct timer_list break_timer; 91 int break_flag; 92 93 /* Interface clock */ 94 struct clk *iclk; 95 /* Function clock */ 96 struct clk *fclk; 97 98 int irqs[SCIx_NR_IRQS]; 99 char *irqstr[SCIx_NR_IRQS]; 100 101 struct dma_chan *chan_tx; 102 struct dma_chan *chan_rx; 103 104 #ifdef CONFIG_SERIAL_SH_SCI_DMA 105 struct dma_async_tx_descriptor *desc_tx; 106 struct dma_async_tx_descriptor *desc_rx[2]; 107 dma_cookie_t cookie_tx; 108 dma_cookie_t cookie_rx[2]; 109 dma_cookie_t active_rx; 110 struct scatterlist sg_tx; 111 unsigned int sg_len_tx; 112 struct scatterlist sg_rx[2]; 113 size_t buf_len_rx; 114 struct sh_dmae_slave param_tx; 115 struct sh_dmae_slave param_rx; 116 struct work_struct work_tx; 117 struct work_struct work_rx; 118 struct timer_list rx_timer; 119 unsigned int rx_timeout; 120 #endif 121 122 struct notifier_block freq_transition; 123 }; 124 125 /* Function prototypes */ 126 static void sci_start_tx(struct uart_port *port); 127 static void sci_stop_tx(struct uart_port *port); 128 static void sci_start_rx(struct uart_port *port); 129 130 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS 131 132 static struct sci_port sci_ports[SCI_NPORTS]; 133 static struct uart_driver sci_uart_driver; 134 135 static inline struct sci_port * 136 to_sci_port(struct uart_port *uart) 137 { 138 return container_of(uart, struct sci_port, port); 139 } 140 141 struct plat_sci_reg { 142 u8 offset, size; 143 }; 144 145 /* Helper for invalidating specific entries of an inherited map. */ 146 #define sci_reg_invalid { .offset = 0, .size = 0 } 147 148 static struct plat_sci_reg sci_regmap[SCIx_NR_REGTYPES][SCIx_NR_REGS] = { 149 [SCIx_PROBE_REGTYPE] = { 150 [0 ... SCIx_NR_REGS - 1] = sci_reg_invalid, 151 }, 152 153 /* 154 * Common SCI definitions, dependent on the port's regshift 155 * value. 156 */ 157 [SCIx_SCI_REGTYPE] = { 158 [SCSMR] = { 0x00, 8 }, 159 [SCBRR] = { 0x01, 8 }, 160 [SCSCR] = { 0x02, 8 }, 161 [SCxTDR] = { 0x03, 8 }, 162 [SCxSR] = { 0x04, 8 }, 163 [SCxRDR] = { 0x05, 8 }, 164 [SCFCR] = sci_reg_invalid, 165 [SCFDR] = sci_reg_invalid, 166 [SCTFDR] = sci_reg_invalid, 167 [SCRFDR] = sci_reg_invalid, 168 [SCSPTR] = sci_reg_invalid, 169 [SCLSR] = sci_reg_invalid, 170 [HSSRR] = sci_reg_invalid, 171 }, 172 173 /* 174 * Common definitions for legacy IrDA ports, dependent on 175 * regshift value. 176 */ 177 [SCIx_IRDA_REGTYPE] = { 178 [SCSMR] = { 0x00, 8 }, 179 [SCBRR] = { 0x01, 8 }, 180 [SCSCR] = { 0x02, 8 }, 181 [SCxTDR] = { 0x03, 8 }, 182 [SCxSR] = { 0x04, 8 }, 183 [SCxRDR] = { 0x05, 8 }, 184 [SCFCR] = { 0x06, 8 }, 185 [SCFDR] = { 0x07, 16 }, 186 [SCTFDR] = sci_reg_invalid, 187 [SCRFDR] = sci_reg_invalid, 188 [SCSPTR] = sci_reg_invalid, 189 [SCLSR] = sci_reg_invalid, 190 [HSSRR] = sci_reg_invalid, 191 }, 192 193 /* 194 * Common SCIFA definitions. 195 */ 196 [SCIx_SCIFA_REGTYPE] = { 197 [SCSMR] = { 0x00, 16 }, 198 [SCBRR] = { 0x04, 8 }, 199 [SCSCR] = { 0x08, 16 }, 200 [SCxTDR] = { 0x20, 8 }, 201 [SCxSR] = { 0x14, 16 }, 202 [SCxRDR] = { 0x24, 8 }, 203 [SCFCR] = { 0x18, 16 }, 204 [SCFDR] = { 0x1c, 16 }, 205 [SCTFDR] = sci_reg_invalid, 206 [SCRFDR] = sci_reg_invalid, 207 [SCSPTR] = sci_reg_invalid, 208 [SCLSR] = sci_reg_invalid, 209 [HSSRR] = sci_reg_invalid, 210 }, 211 212 /* 213 * Common SCIFB definitions. 214 */ 215 [SCIx_SCIFB_REGTYPE] = { 216 [SCSMR] = { 0x00, 16 }, 217 [SCBRR] = { 0x04, 8 }, 218 [SCSCR] = { 0x08, 16 }, 219 [SCxTDR] = { 0x40, 8 }, 220 [SCxSR] = { 0x14, 16 }, 221 [SCxRDR] = { 0x60, 8 }, 222 [SCFCR] = { 0x18, 16 }, 223 [SCFDR] = sci_reg_invalid, 224 [SCTFDR] = { 0x38, 16 }, 225 [SCRFDR] = { 0x3c, 16 }, 226 [SCSPTR] = sci_reg_invalid, 227 [SCLSR] = sci_reg_invalid, 228 [HSSRR] = sci_reg_invalid, 229 }, 230 231 /* 232 * Common SH-2(A) SCIF definitions for ports with FIFO data 233 * count registers. 234 */ 235 [SCIx_SH2_SCIF_FIFODATA_REGTYPE] = { 236 [SCSMR] = { 0x00, 16 }, 237 [SCBRR] = { 0x04, 8 }, 238 [SCSCR] = { 0x08, 16 }, 239 [SCxTDR] = { 0x0c, 8 }, 240 [SCxSR] = { 0x10, 16 }, 241 [SCxRDR] = { 0x14, 8 }, 242 [SCFCR] = { 0x18, 16 }, 243 [SCFDR] = { 0x1c, 16 }, 244 [SCTFDR] = sci_reg_invalid, 245 [SCRFDR] = sci_reg_invalid, 246 [SCSPTR] = { 0x20, 16 }, 247 [SCLSR] = { 0x24, 16 }, 248 [HSSRR] = sci_reg_invalid, 249 }, 250 251 /* 252 * Common SH-3 SCIF definitions. 253 */ 254 [SCIx_SH3_SCIF_REGTYPE] = { 255 [SCSMR] = { 0x00, 8 }, 256 [SCBRR] = { 0x02, 8 }, 257 [SCSCR] = { 0x04, 8 }, 258 [SCxTDR] = { 0x06, 8 }, 259 [SCxSR] = { 0x08, 16 }, 260 [SCxRDR] = { 0x0a, 8 }, 261 [SCFCR] = { 0x0c, 8 }, 262 [SCFDR] = { 0x0e, 16 }, 263 [SCTFDR] = sci_reg_invalid, 264 [SCRFDR] = sci_reg_invalid, 265 [SCSPTR] = sci_reg_invalid, 266 [SCLSR] = sci_reg_invalid, 267 [HSSRR] = sci_reg_invalid, 268 }, 269 270 /* 271 * Common SH-4(A) SCIF(B) definitions. 272 */ 273 [SCIx_SH4_SCIF_REGTYPE] = { 274 [SCSMR] = { 0x00, 16 }, 275 [SCBRR] = { 0x04, 8 }, 276 [SCSCR] = { 0x08, 16 }, 277 [SCxTDR] = { 0x0c, 8 }, 278 [SCxSR] = { 0x10, 16 }, 279 [SCxRDR] = { 0x14, 8 }, 280 [SCFCR] = { 0x18, 16 }, 281 [SCFDR] = { 0x1c, 16 }, 282 [SCTFDR] = sci_reg_invalid, 283 [SCRFDR] = sci_reg_invalid, 284 [SCSPTR] = { 0x20, 16 }, 285 [SCLSR] = { 0x24, 16 }, 286 [HSSRR] = sci_reg_invalid, 287 }, 288 289 /* 290 * Common HSCIF definitions. 291 */ 292 [SCIx_HSCIF_REGTYPE] = { 293 [SCSMR] = { 0x00, 16 }, 294 [SCBRR] = { 0x04, 8 }, 295 [SCSCR] = { 0x08, 16 }, 296 [SCxTDR] = { 0x0c, 8 }, 297 [SCxSR] = { 0x10, 16 }, 298 [SCxRDR] = { 0x14, 8 }, 299 [SCFCR] = { 0x18, 16 }, 300 [SCFDR] = { 0x1c, 16 }, 301 [SCTFDR] = sci_reg_invalid, 302 [SCRFDR] = sci_reg_invalid, 303 [SCSPTR] = { 0x20, 16 }, 304 [SCLSR] = { 0x24, 16 }, 305 [HSSRR] = { 0x40, 16 }, 306 }, 307 308 /* 309 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR 310 * register. 311 */ 312 [SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = { 313 [SCSMR] = { 0x00, 16 }, 314 [SCBRR] = { 0x04, 8 }, 315 [SCSCR] = { 0x08, 16 }, 316 [SCxTDR] = { 0x0c, 8 }, 317 [SCxSR] = { 0x10, 16 }, 318 [SCxRDR] = { 0x14, 8 }, 319 [SCFCR] = { 0x18, 16 }, 320 [SCFDR] = { 0x1c, 16 }, 321 [SCTFDR] = sci_reg_invalid, 322 [SCRFDR] = sci_reg_invalid, 323 [SCSPTR] = sci_reg_invalid, 324 [SCLSR] = { 0x24, 16 }, 325 [HSSRR] = sci_reg_invalid, 326 }, 327 328 /* 329 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data 330 * count registers. 331 */ 332 [SCIx_SH4_SCIF_FIFODATA_REGTYPE] = { 333 [SCSMR] = { 0x00, 16 }, 334 [SCBRR] = { 0x04, 8 }, 335 [SCSCR] = { 0x08, 16 }, 336 [SCxTDR] = { 0x0c, 8 }, 337 [SCxSR] = { 0x10, 16 }, 338 [SCxRDR] = { 0x14, 8 }, 339 [SCFCR] = { 0x18, 16 }, 340 [SCFDR] = { 0x1c, 16 }, 341 [SCTFDR] = { 0x1c, 16 }, /* aliased to SCFDR */ 342 [SCRFDR] = { 0x20, 16 }, 343 [SCSPTR] = { 0x24, 16 }, 344 [SCLSR] = { 0x28, 16 }, 345 [HSSRR] = sci_reg_invalid, 346 }, 347 348 /* 349 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR 350 * registers. 351 */ 352 [SCIx_SH7705_SCIF_REGTYPE] = { 353 [SCSMR] = { 0x00, 16 }, 354 [SCBRR] = { 0x04, 8 }, 355 [SCSCR] = { 0x08, 16 }, 356 [SCxTDR] = { 0x20, 8 }, 357 [SCxSR] = { 0x14, 16 }, 358 [SCxRDR] = { 0x24, 8 }, 359 [SCFCR] = { 0x18, 16 }, 360 [SCFDR] = { 0x1c, 16 }, 361 [SCTFDR] = sci_reg_invalid, 362 [SCRFDR] = sci_reg_invalid, 363 [SCSPTR] = sci_reg_invalid, 364 [SCLSR] = sci_reg_invalid, 365 [HSSRR] = sci_reg_invalid, 366 }, 367 }; 368 369 #define sci_getreg(up, offset) (sci_regmap[to_sci_port(up)->cfg->regtype] + offset) 370 371 /* 372 * The "offset" here is rather misleading, in that it refers to an enum 373 * value relative to the port mapping rather than the fixed offset 374 * itself, which needs to be manually retrieved from the platform's 375 * register map for the given port. 376 */ 377 static unsigned int sci_serial_in(struct uart_port *p, int offset) 378 { 379 struct plat_sci_reg *reg = sci_getreg(p, offset); 380 381 if (reg->size == 8) 382 return ioread8(p->membase + (reg->offset << p->regshift)); 383 else if (reg->size == 16) 384 return ioread16(p->membase + (reg->offset << p->regshift)); 385 else 386 WARN(1, "Invalid register access\n"); 387 388 return 0; 389 } 390 391 static void sci_serial_out(struct uart_port *p, int offset, int value) 392 { 393 struct plat_sci_reg *reg = sci_getreg(p, offset); 394 395 if (reg->size == 8) 396 iowrite8(value, p->membase + (reg->offset << p->regshift)); 397 else if (reg->size == 16) 398 iowrite16(value, p->membase + (reg->offset << p->regshift)); 399 else 400 WARN(1, "Invalid register access\n"); 401 } 402 403 static int sci_probe_regmap(struct plat_sci_port *cfg) 404 { 405 switch (cfg->type) { 406 case PORT_SCI: 407 cfg->regtype = SCIx_SCI_REGTYPE; 408 break; 409 case PORT_IRDA: 410 cfg->regtype = SCIx_IRDA_REGTYPE; 411 break; 412 case PORT_SCIFA: 413 cfg->regtype = SCIx_SCIFA_REGTYPE; 414 break; 415 case PORT_SCIFB: 416 cfg->regtype = SCIx_SCIFB_REGTYPE; 417 break; 418 case PORT_SCIF: 419 /* 420 * The SH-4 is a bit of a misnomer here, although that's 421 * where this particular port layout originated. This 422 * configuration (or some slight variation thereof) 423 * remains the dominant model for all SCIFs. 424 */ 425 cfg->regtype = SCIx_SH4_SCIF_REGTYPE; 426 break; 427 case PORT_HSCIF: 428 cfg->regtype = SCIx_HSCIF_REGTYPE; 429 break; 430 default: 431 pr_err("Can't probe register map for given port\n"); 432 return -EINVAL; 433 } 434 435 return 0; 436 } 437 438 static void sci_port_enable(struct sci_port *sci_port) 439 { 440 if (!sci_port->port.dev) 441 return; 442 443 pm_runtime_get_sync(sci_port->port.dev); 444 445 clk_prepare_enable(sci_port->iclk); 446 sci_port->port.uartclk = clk_get_rate(sci_port->iclk); 447 clk_prepare_enable(sci_port->fclk); 448 } 449 450 static void sci_port_disable(struct sci_port *sci_port) 451 { 452 if (!sci_port->port.dev) 453 return; 454 455 /* Cancel the break timer to ensure that the timer handler will not try 456 * to access the hardware with clocks and power disabled. Reset the 457 * break flag to make the break debouncing state machine ready for the 458 * next break. 459 */ 460 del_timer_sync(&sci_port->break_timer); 461 sci_port->break_flag = 0; 462 463 clk_disable_unprepare(sci_port->fclk); 464 clk_disable_unprepare(sci_port->iclk); 465 466 pm_runtime_put_sync(sci_port->port.dev); 467 } 468 469 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) 470 471 #ifdef CONFIG_CONSOLE_POLL 472 static int sci_poll_get_char(struct uart_port *port) 473 { 474 unsigned short status; 475 int c; 476 477 do { 478 status = serial_port_in(port, SCxSR); 479 if (status & SCxSR_ERRORS(port)) { 480 serial_port_out(port, SCxSR, SCxSR_ERROR_CLEAR(port)); 481 continue; 482 } 483 break; 484 } while (1); 485 486 if (!(status & SCxSR_RDxF(port))) 487 return NO_POLL_CHAR; 488 489 c = serial_port_in(port, SCxRDR); 490 491 /* Dummy read */ 492 serial_port_in(port, SCxSR); 493 serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port)); 494 495 return c; 496 } 497 #endif 498 499 static void sci_poll_put_char(struct uart_port *port, unsigned char c) 500 { 501 unsigned short status; 502 503 do { 504 status = serial_port_in(port, SCxSR); 505 } while (!(status & SCxSR_TDxE(port))); 506 507 serial_port_out(port, SCxTDR, c); 508 serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port)); 509 } 510 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE */ 511 512 static void sci_init_pins(struct uart_port *port, unsigned int cflag) 513 { 514 struct sci_port *s = to_sci_port(port); 515 struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR; 516 517 /* 518 * Use port-specific handler if provided. 519 */ 520 if (s->cfg->ops && s->cfg->ops->init_pins) { 521 s->cfg->ops->init_pins(port, cflag); 522 return; 523 } 524 525 /* 526 * For the generic path SCSPTR is necessary. Bail out if that's 527 * unavailable, too. 528 */ 529 if (!reg->size) 530 return; 531 532 if ((s->cfg->capabilities & SCIx_HAVE_RTSCTS) && 533 ((!(cflag & CRTSCTS)))) { 534 unsigned short status; 535 536 status = serial_port_in(port, SCSPTR); 537 status &= ~SCSPTR_CTSIO; 538 status |= SCSPTR_RTSIO; 539 serial_port_out(port, SCSPTR, status); /* Set RTS = 1 */ 540 } 541 } 542 543 static int sci_txfill(struct uart_port *port) 544 { 545 struct plat_sci_reg *reg; 546 547 reg = sci_getreg(port, SCTFDR); 548 if (reg->size) 549 return serial_port_in(port, SCTFDR) & ((port->fifosize << 1) - 1); 550 551 reg = sci_getreg(port, SCFDR); 552 if (reg->size) 553 return serial_port_in(port, SCFDR) >> 8; 554 555 return !(serial_port_in(port, SCxSR) & SCI_TDRE); 556 } 557 558 static int sci_txroom(struct uart_port *port) 559 { 560 return port->fifosize - sci_txfill(port); 561 } 562 563 static int sci_rxfill(struct uart_port *port) 564 { 565 struct plat_sci_reg *reg; 566 567 reg = sci_getreg(port, SCRFDR); 568 if (reg->size) 569 return serial_port_in(port, SCRFDR) & ((port->fifosize << 1) - 1); 570 571 reg = sci_getreg(port, SCFDR); 572 if (reg->size) 573 return serial_port_in(port, SCFDR) & ((port->fifosize << 1) - 1); 574 575 return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0; 576 } 577 578 /* 579 * SCI helper for checking the state of the muxed port/RXD pins. 580 */ 581 static inline int sci_rxd_in(struct uart_port *port) 582 { 583 struct sci_port *s = to_sci_port(port); 584 585 if (s->cfg->port_reg <= 0) 586 return 1; 587 588 /* Cast for ARM damage */ 589 return !!__raw_readb((void __iomem *)(uintptr_t)s->cfg->port_reg); 590 } 591 592 /* ********************************************************************** * 593 * the interrupt related routines * 594 * ********************************************************************** */ 595 596 static void sci_transmit_chars(struct uart_port *port) 597 { 598 struct circ_buf *xmit = &port->state->xmit; 599 unsigned int stopped = uart_tx_stopped(port); 600 unsigned short status; 601 unsigned short ctrl; 602 int count; 603 604 status = serial_port_in(port, SCxSR); 605 if (!(status & SCxSR_TDxE(port))) { 606 ctrl = serial_port_in(port, SCSCR); 607 if (uart_circ_empty(xmit)) 608 ctrl &= ~SCSCR_TIE; 609 else 610 ctrl |= SCSCR_TIE; 611 serial_port_out(port, SCSCR, ctrl); 612 return; 613 } 614 615 count = sci_txroom(port); 616 617 do { 618 unsigned char c; 619 620 if (port->x_char) { 621 c = port->x_char; 622 port->x_char = 0; 623 } else if (!uart_circ_empty(xmit) && !stopped) { 624 c = xmit->buf[xmit->tail]; 625 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); 626 } else { 627 break; 628 } 629 630 serial_port_out(port, SCxTDR, c); 631 632 port->icount.tx++; 633 } while (--count > 0); 634 635 serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port)); 636 637 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 638 uart_write_wakeup(port); 639 if (uart_circ_empty(xmit)) { 640 sci_stop_tx(port); 641 } else { 642 ctrl = serial_port_in(port, SCSCR); 643 644 if (port->type != PORT_SCI) { 645 serial_port_in(port, SCxSR); /* Dummy read */ 646 serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port)); 647 } 648 649 ctrl |= SCSCR_TIE; 650 serial_port_out(port, SCSCR, ctrl); 651 } 652 } 653 654 /* On SH3, SCIF may read end-of-break as a space->mark char */ 655 #define STEPFN(c) ({int __c = (c); (((__c-1)|(__c)) == -1); }) 656 657 static void sci_receive_chars(struct uart_port *port) 658 { 659 struct sci_port *sci_port = to_sci_port(port); 660 struct tty_port *tport = &port->state->port; 661 int i, count, copied = 0; 662 unsigned short status; 663 unsigned char flag; 664 665 status = serial_port_in(port, SCxSR); 666 if (!(status & SCxSR_RDxF(port))) 667 return; 668 669 while (1) { 670 /* Don't copy more bytes than there is room for in the buffer */ 671 count = tty_buffer_request_room(tport, sci_rxfill(port)); 672 673 /* If for any reason we can't copy more data, we're done! */ 674 if (count == 0) 675 break; 676 677 if (port->type == PORT_SCI) { 678 char c = serial_port_in(port, SCxRDR); 679 if (uart_handle_sysrq_char(port, c) || 680 sci_port->break_flag) 681 count = 0; 682 else 683 tty_insert_flip_char(tport, c, TTY_NORMAL); 684 } else { 685 for (i = 0; i < count; i++) { 686 char c = serial_port_in(port, SCxRDR); 687 688 status = serial_port_in(port, SCxSR); 689 #if defined(CONFIG_CPU_SH3) 690 /* Skip "chars" during break */ 691 if (sci_port->break_flag) { 692 if ((c == 0) && 693 (status & SCxSR_FER(port))) { 694 count--; i--; 695 continue; 696 } 697 698 /* Nonzero => end-of-break */ 699 dev_dbg(port->dev, "debounce<%02x>\n", c); 700 sci_port->break_flag = 0; 701 702 if (STEPFN(c)) { 703 count--; i--; 704 continue; 705 } 706 } 707 #endif /* CONFIG_CPU_SH3 */ 708 if (uart_handle_sysrq_char(port, c)) { 709 count--; i--; 710 continue; 711 } 712 713 /* Store data and status */ 714 if (status & SCxSR_FER(port)) { 715 flag = TTY_FRAME; 716 port->icount.frame++; 717 dev_notice(port->dev, "frame error\n"); 718 } else if (status & SCxSR_PER(port)) { 719 flag = TTY_PARITY; 720 port->icount.parity++; 721 dev_notice(port->dev, "parity error\n"); 722 } else 723 flag = TTY_NORMAL; 724 725 tty_insert_flip_char(tport, c, flag); 726 } 727 } 728 729 serial_port_in(port, SCxSR); /* dummy read */ 730 serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port)); 731 732 copied += count; 733 port->icount.rx += count; 734 } 735 736 if (copied) { 737 /* Tell the rest of the system the news. New characters! */ 738 tty_flip_buffer_push(tport); 739 } else { 740 serial_port_in(port, SCxSR); /* dummy read */ 741 serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port)); 742 } 743 } 744 745 #define SCI_BREAK_JIFFIES (HZ/20) 746 747 /* 748 * The sci generates interrupts during the break, 749 * 1 per millisecond or so during the break period, for 9600 baud. 750 * So dont bother disabling interrupts. 751 * But dont want more than 1 break event. 752 * Use a kernel timer to periodically poll the rx line until 753 * the break is finished. 754 */ 755 static inline void sci_schedule_break_timer(struct sci_port *port) 756 { 757 mod_timer(&port->break_timer, jiffies + SCI_BREAK_JIFFIES); 758 } 759 760 /* Ensure that two consecutive samples find the break over. */ 761 static void sci_break_timer(unsigned long data) 762 { 763 struct sci_port *port = (struct sci_port *)data; 764 765 if (sci_rxd_in(&port->port) == 0) { 766 port->break_flag = 1; 767 sci_schedule_break_timer(port); 768 } else if (port->break_flag == 1) { 769 /* break is over. */ 770 port->break_flag = 2; 771 sci_schedule_break_timer(port); 772 } else 773 port->break_flag = 0; 774 } 775 776 static int sci_handle_errors(struct uart_port *port) 777 { 778 int copied = 0; 779 unsigned short status = serial_port_in(port, SCxSR); 780 struct tty_port *tport = &port->state->port; 781 struct sci_port *s = to_sci_port(port); 782 783 /* Handle overruns */ 784 if (status & (1 << s->overrun_bit)) { 785 port->icount.overrun++; 786 787 /* overrun error */ 788 if (tty_insert_flip_char(tport, 0, TTY_OVERRUN)) 789 copied++; 790 791 dev_notice(port->dev, "overrun error\n"); 792 } 793 794 if (status & SCxSR_FER(port)) { 795 if (sci_rxd_in(port) == 0) { 796 /* Notify of BREAK */ 797 struct sci_port *sci_port = to_sci_port(port); 798 799 if (!sci_port->break_flag) { 800 port->icount.brk++; 801 802 sci_port->break_flag = 1; 803 sci_schedule_break_timer(sci_port); 804 805 /* Do sysrq handling. */ 806 if (uart_handle_break(port)) 807 return 0; 808 809 dev_dbg(port->dev, "BREAK detected\n"); 810 811 if (tty_insert_flip_char(tport, 0, TTY_BREAK)) 812 copied++; 813 } 814 815 } else { 816 /* frame error */ 817 port->icount.frame++; 818 819 if (tty_insert_flip_char(tport, 0, TTY_FRAME)) 820 copied++; 821 822 dev_notice(port->dev, "frame error\n"); 823 } 824 } 825 826 if (status & SCxSR_PER(port)) { 827 /* parity error */ 828 port->icount.parity++; 829 830 if (tty_insert_flip_char(tport, 0, TTY_PARITY)) 831 copied++; 832 833 dev_notice(port->dev, "parity error\n"); 834 } 835 836 if (copied) 837 tty_flip_buffer_push(tport); 838 839 return copied; 840 } 841 842 static int sci_handle_fifo_overrun(struct uart_port *port) 843 { 844 struct tty_port *tport = &port->state->port; 845 struct sci_port *s = to_sci_port(port); 846 struct plat_sci_reg *reg; 847 int copied = 0, offset; 848 u16 status, bit; 849 850 switch (port->type) { 851 case PORT_SCIF: 852 case PORT_HSCIF: 853 offset = SCLSR; 854 break; 855 case PORT_SCIFA: 856 case PORT_SCIFB: 857 offset = SCxSR; 858 break; 859 default: 860 return 0; 861 } 862 863 reg = sci_getreg(port, offset); 864 if (!reg->size) 865 return 0; 866 867 status = serial_port_in(port, offset); 868 bit = 1 << s->overrun_bit; 869 870 if (status & bit) { 871 status &= ~bit; 872 serial_port_out(port, offset, status); 873 874 port->icount.overrun++; 875 876 tty_insert_flip_char(tport, 0, TTY_OVERRUN); 877 tty_flip_buffer_push(tport); 878 879 dev_dbg(port->dev, "overrun error\n"); 880 copied++; 881 } 882 883 return copied; 884 } 885 886 static int sci_handle_breaks(struct uart_port *port) 887 { 888 int copied = 0; 889 unsigned short status = serial_port_in(port, SCxSR); 890 struct tty_port *tport = &port->state->port; 891 struct sci_port *s = to_sci_port(port); 892 893 if (uart_handle_break(port)) 894 return 0; 895 896 if (!s->break_flag && status & SCxSR_BRK(port)) { 897 #if defined(CONFIG_CPU_SH3) 898 /* Debounce break */ 899 s->break_flag = 1; 900 #endif 901 902 port->icount.brk++; 903 904 /* Notify of BREAK */ 905 if (tty_insert_flip_char(tport, 0, TTY_BREAK)) 906 copied++; 907 908 dev_dbg(port->dev, "BREAK detected\n"); 909 } 910 911 if (copied) 912 tty_flip_buffer_push(tport); 913 914 copied += sci_handle_fifo_overrun(port); 915 916 return copied; 917 } 918 919 static irqreturn_t sci_rx_interrupt(int irq, void *ptr) 920 { 921 #ifdef CONFIG_SERIAL_SH_SCI_DMA 922 struct uart_port *port = ptr; 923 struct sci_port *s = to_sci_port(port); 924 925 if (s->chan_rx) { 926 u16 scr = serial_port_in(port, SCSCR); 927 u16 ssr = serial_port_in(port, SCxSR); 928 929 /* Disable future Rx interrupts */ 930 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 931 disable_irq_nosync(irq); 932 scr |= SCSCR_RDRQE; 933 } else { 934 scr &= ~SCSCR_RIE; 935 } 936 serial_port_out(port, SCSCR, scr); 937 /* Clear current interrupt */ 938 serial_port_out(port, SCxSR, ssr & ~(1 | SCxSR_RDxF(port))); 939 dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n", 940 jiffies, s->rx_timeout); 941 mod_timer(&s->rx_timer, jiffies + s->rx_timeout); 942 943 return IRQ_HANDLED; 944 } 945 #endif 946 947 /* I think sci_receive_chars has to be called irrespective 948 * of whether the I_IXOFF is set, otherwise, how is the interrupt 949 * to be disabled? 950 */ 951 sci_receive_chars(ptr); 952 953 return IRQ_HANDLED; 954 } 955 956 static irqreturn_t sci_tx_interrupt(int irq, void *ptr) 957 { 958 struct uart_port *port = ptr; 959 unsigned long flags; 960 961 spin_lock_irqsave(&port->lock, flags); 962 sci_transmit_chars(port); 963 spin_unlock_irqrestore(&port->lock, flags); 964 965 return IRQ_HANDLED; 966 } 967 968 static irqreturn_t sci_er_interrupt(int irq, void *ptr) 969 { 970 struct uart_port *port = ptr; 971 972 /* Handle errors */ 973 if (port->type == PORT_SCI) { 974 if (sci_handle_errors(port)) { 975 /* discard character in rx buffer */ 976 serial_port_in(port, SCxSR); 977 serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port)); 978 } 979 } else { 980 sci_handle_fifo_overrun(port); 981 sci_rx_interrupt(irq, ptr); 982 } 983 984 serial_port_out(port, SCxSR, SCxSR_ERROR_CLEAR(port)); 985 986 /* Kick the transmission */ 987 sci_tx_interrupt(irq, ptr); 988 989 return IRQ_HANDLED; 990 } 991 992 static irqreturn_t sci_br_interrupt(int irq, void *ptr) 993 { 994 struct uart_port *port = ptr; 995 996 /* Handle BREAKs */ 997 sci_handle_breaks(port); 998 serial_port_out(port, SCxSR, SCxSR_BREAK_CLEAR(port)); 999 1000 return IRQ_HANDLED; 1001 } 1002 1003 static inline unsigned long port_rx_irq_mask(struct uart_port *port) 1004 { 1005 /* 1006 * Not all ports (such as SCIFA) will support REIE. Rather than 1007 * special-casing the port type, we check the port initialization 1008 * IRQ enable mask to see whether the IRQ is desired at all. If 1009 * it's unset, it's logically inferred that there's no point in 1010 * testing for it. 1011 */ 1012 return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE); 1013 } 1014 1015 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr) 1016 { 1017 unsigned short ssr_status, scr_status, err_enabled, orer_status = 0; 1018 struct uart_port *port = ptr; 1019 struct sci_port *s = to_sci_port(port); 1020 irqreturn_t ret = IRQ_NONE; 1021 1022 ssr_status = serial_port_in(port, SCxSR); 1023 scr_status = serial_port_in(port, SCSCR); 1024 switch (port->type) { 1025 case PORT_SCIF: 1026 case PORT_HSCIF: 1027 orer_status = serial_port_in(port, SCLSR); 1028 break; 1029 case PORT_SCIFA: 1030 case PORT_SCIFB: 1031 orer_status = ssr_status; 1032 break; 1033 } 1034 1035 err_enabled = scr_status & port_rx_irq_mask(port); 1036 1037 /* Tx Interrupt */ 1038 if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) && 1039 !s->chan_tx) 1040 ret = sci_tx_interrupt(irq, ptr); 1041 1042 /* 1043 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF / 1044 * DR flags 1045 */ 1046 if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) && 1047 (scr_status & SCSCR_RIE)) { 1048 if (port->type == PORT_SCIF || port->type == PORT_HSCIF) 1049 sci_handle_fifo_overrun(port); 1050 ret = sci_rx_interrupt(irq, ptr); 1051 } 1052 1053 /* Error Interrupt */ 1054 if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled) 1055 ret = sci_er_interrupt(irq, ptr); 1056 1057 /* Break Interrupt */ 1058 if ((ssr_status & SCxSR_BRK(port)) && err_enabled) 1059 ret = sci_br_interrupt(irq, ptr); 1060 1061 /* Overrun Interrupt */ 1062 if (orer_status & (1 << s->overrun_bit)) 1063 sci_handle_fifo_overrun(port); 1064 1065 return ret; 1066 } 1067 1068 /* 1069 * Here we define a transition notifier so that we can update all of our 1070 * ports' baud rate when the peripheral clock changes. 1071 */ 1072 static int sci_notifier(struct notifier_block *self, 1073 unsigned long phase, void *p) 1074 { 1075 struct sci_port *sci_port; 1076 unsigned long flags; 1077 1078 sci_port = container_of(self, struct sci_port, freq_transition); 1079 1080 if (phase == CPUFREQ_POSTCHANGE) { 1081 struct uart_port *port = &sci_port->port; 1082 1083 spin_lock_irqsave(&port->lock, flags); 1084 port->uartclk = clk_get_rate(sci_port->iclk); 1085 spin_unlock_irqrestore(&port->lock, flags); 1086 } 1087 1088 return NOTIFY_OK; 1089 } 1090 1091 static struct sci_irq_desc { 1092 const char *desc; 1093 irq_handler_t handler; 1094 } sci_irq_desc[] = { 1095 /* 1096 * Split out handlers, the default case. 1097 */ 1098 [SCIx_ERI_IRQ] = { 1099 .desc = "rx err", 1100 .handler = sci_er_interrupt, 1101 }, 1102 1103 [SCIx_RXI_IRQ] = { 1104 .desc = "rx full", 1105 .handler = sci_rx_interrupt, 1106 }, 1107 1108 [SCIx_TXI_IRQ] = { 1109 .desc = "tx empty", 1110 .handler = sci_tx_interrupt, 1111 }, 1112 1113 [SCIx_BRI_IRQ] = { 1114 .desc = "break", 1115 .handler = sci_br_interrupt, 1116 }, 1117 1118 /* 1119 * Special muxed handler. 1120 */ 1121 [SCIx_MUX_IRQ] = { 1122 .desc = "mux", 1123 .handler = sci_mpxed_interrupt, 1124 }, 1125 }; 1126 1127 static int sci_request_irq(struct sci_port *port) 1128 { 1129 struct uart_port *up = &port->port; 1130 int i, j, ret = 0; 1131 1132 for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) { 1133 struct sci_irq_desc *desc; 1134 int irq; 1135 1136 if (SCIx_IRQ_IS_MUXED(port)) { 1137 i = SCIx_MUX_IRQ; 1138 irq = up->irq; 1139 } else { 1140 irq = port->irqs[i]; 1141 1142 /* 1143 * Certain port types won't support all of the 1144 * available interrupt sources. 1145 */ 1146 if (unlikely(irq < 0)) 1147 continue; 1148 } 1149 1150 desc = sci_irq_desc + i; 1151 port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s", 1152 dev_name(up->dev), desc->desc); 1153 if (!port->irqstr[j]) { 1154 dev_err(up->dev, "Failed to allocate %s IRQ string\n", 1155 desc->desc); 1156 goto out_nomem; 1157 } 1158 1159 ret = request_irq(irq, desc->handler, up->irqflags, 1160 port->irqstr[j], port); 1161 if (unlikely(ret)) { 1162 dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc); 1163 goto out_noirq; 1164 } 1165 } 1166 1167 return 0; 1168 1169 out_noirq: 1170 while (--i >= 0) 1171 free_irq(port->irqs[i], port); 1172 1173 out_nomem: 1174 while (--j >= 0) 1175 kfree(port->irqstr[j]); 1176 1177 return ret; 1178 } 1179 1180 static void sci_free_irq(struct sci_port *port) 1181 { 1182 int i; 1183 1184 /* 1185 * Intentionally in reverse order so we iterate over the muxed 1186 * IRQ first. 1187 */ 1188 for (i = 0; i < SCIx_NR_IRQS; i++) { 1189 int irq = port->irqs[i]; 1190 1191 /* 1192 * Certain port types won't support all of the available 1193 * interrupt sources. 1194 */ 1195 if (unlikely(irq < 0)) 1196 continue; 1197 1198 free_irq(port->irqs[i], port); 1199 kfree(port->irqstr[i]); 1200 1201 if (SCIx_IRQ_IS_MUXED(port)) { 1202 /* If there's only one IRQ, we're done. */ 1203 return; 1204 } 1205 } 1206 } 1207 1208 static unsigned int sci_tx_empty(struct uart_port *port) 1209 { 1210 unsigned short status = serial_port_in(port, SCxSR); 1211 unsigned short in_tx_fifo = sci_txfill(port); 1212 1213 return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0; 1214 } 1215 1216 /* 1217 * Modem control is a bit of a mixed bag for SCI(F) ports. Generally 1218 * CTS/RTS is supported in hardware by at least one port and controlled 1219 * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently 1220 * handled via the ->init_pins() op, which is a bit of a one-way street, 1221 * lacking any ability to defer pin control -- this will later be 1222 * converted over to the GPIO framework). 1223 * 1224 * Other modes (such as loopback) are supported generically on certain 1225 * port types, but not others. For these it's sufficient to test for the 1226 * existence of the support register and simply ignore the port type. 1227 */ 1228 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl) 1229 { 1230 if (mctrl & TIOCM_LOOP) { 1231 struct plat_sci_reg *reg; 1232 1233 /* 1234 * Standard loopback mode for SCFCR ports. 1235 */ 1236 reg = sci_getreg(port, SCFCR); 1237 if (reg->size) 1238 serial_port_out(port, SCFCR, 1239 serial_port_in(port, SCFCR) | 1240 SCFCR_LOOP); 1241 } 1242 } 1243 1244 static unsigned int sci_get_mctrl(struct uart_port *port) 1245 { 1246 /* 1247 * CTS/RTS is handled in hardware when supported, while nothing 1248 * else is wired up. Keep it simple and simply assert DSR/CAR. 1249 */ 1250 return TIOCM_DSR | TIOCM_CAR; 1251 } 1252 1253 #ifdef CONFIG_SERIAL_SH_SCI_DMA 1254 static void sci_dma_tx_complete(void *arg) 1255 { 1256 struct sci_port *s = arg; 1257 struct uart_port *port = &s->port; 1258 struct circ_buf *xmit = &port->state->xmit; 1259 unsigned long flags; 1260 1261 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line); 1262 1263 spin_lock_irqsave(&port->lock, flags); 1264 1265 xmit->tail += sg_dma_len(&s->sg_tx); 1266 xmit->tail &= UART_XMIT_SIZE - 1; 1267 1268 port->icount.tx += sg_dma_len(&s->sg_tx); 1269 1270 async_tx_ack(s->desc_tx); 1271 s->desc_tx = NULL; 1272 1273 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 1274 uart_write_wakeup(port); 1275 1276 if (!uart_circ_empty(xmit)) { 1277 s->cookie_tx = 0; 1278 schedule_work(&s->work_tx); 1279 } else { 1280 s->cookie_tx = -EINVAL; 1281 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 1282 u16 ctrl = serial_port_in(port, SCSCR); 1283 serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE); 1284 } 1285 } 1286 1287 spin_unlock_irqrestore(&port->lock, flags); 1288 } 1289 1290 /* Locking: called with port lock held */ 1291 static int sci_dma_rx_push(struct sci_port *s, size_t count) 1292 { 1293 struct uart_port *port = &s->port; 1294 struct tty_port *tport = &port->state->port; 1295 int i, active, room; 1296 1297 room = tty_buffer_request_room(tport, count); 1298 1299 if (s->active_rx == s->cookie_rx[0]) { 1300 active = 0; 1301 } else if (s->active_rx == s->cookie_rx[1]) { 1302 active = 1; 1303 } else { 1304 dev_err(port->dev, "cookie %d not found!\n", s->active_rx); 1305 return 0; 1306 } 1307 1308 if (room < count) 1309 dev_warn(port->dev, "Rx overrun: dropping %zu bytes\n", 1310 count - room); 1311 if (!room) 1312 return room; 1313 1314 for (i = 0; i < room; i++) 1315 tty_insert_flip_char(tport, ((u8 *)sg_virt(&s->sg_rx[active]))[i], 1316 TTY_NORMAL); 1317 1318 port->icount.rx += room; 1319 1320 return room; 1321 } 1322 1323 static void sci_dma_rx_complete(void *arg) 1324 { 1325 struct sci_port *s = arg; 1326 struct uart_port *port = &s->port; 1327 unsigned long flags; 1328 int count; 1329 1330 dev_dbg(port->dev, "%s(%d) active #%d\n", 1331 __func__, port->line, s->active_rx); 1332 1333 spin_lock_irqsave(&port->lock, flags); 1334 1335 count = sci_dma_rx_push(s, s->buf_len_rx); 1336 1337 mod_timer(&s->rx_timer, jiffies + s->rx_timeout); 1338 1339 spin_unlock_irqrestore(&port->lock, flags); 1340 1341 if (count) 1342 tty_flip_buffer_push(&port->state->port); 1343 1344 schedule_work(&s->work_rx); 1345 } 1346 1347 static void sci_rx_dma_release(struct sci_port *s, bool enable_pio) 1348 { 1349 struct dma_chan *chan = s->chan_rx; 1350 struct uart_port *port = &s->port; 1351 1352 s->chan_rx = NULL; 1353 s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL; 1354 dma_release_channel(chan); 1355 if (sg_dma_address(&s->sg_rx[0])) 1356 dma_free_coherent(port->dev, s->buf_len_rx * 2, 1357 sg_virt(&s->sg_rx[0]), sg_dma_address(&s->sg_rx[0])); 1358 if (enable_pio) 1359 sci_start_rx(port); 1360 } 1361 1362 static void sci_tx_dma_release(struct sci_port *s, bool enable_pio) 1363 { 1364 struct dma_chan *chan = s->chan_tx; 1365 struct uart_port *port = &s->port; 1366 1367 s->chan_tx = NULL; 1368 s->cookie_tx = -EINVAL; 1369 dma_release_channel(chan); 1370 if (enable_pio) 1371 sci_start_tx(port); 1372 } 1373 1374 static void sci_submit_rx(struct sci_port *s) 1375 { 1376 struct dma_chan *chan = s->chan_rx; 1377 int i; 1378 1379 for (i = 0; i < 2; i++) { 1380 struct scatterlist *sg = &s->sg_rx[i]; 1381 struct dma_async_tx_descriptor *desc; 1382 1383 desc = dmaengine_prep_slave_sg(chan, 1384 sg, 1, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT); 1385 1386 if (desc) { 1387 s->desc_rx[i] = desc; 1388 desc->callback = sci_dma_rx_complete; 1389 desc->callback_param = s; 1390 s->cookie_rx[i] = desc->tx_submit(desc); 1391 } 1392 1393 if (!desc || s->cookie_rx[i] < 0) { 1394 if (i) { 1395 async_tx_ack(s->desc_rx[0]); 1396 s->cookie_rx[0] = -EINVAL; 1397 } 1398 if (desc) { 1399 async_tx_ack(desc); 1400 s->cookie_rx[i] = -EINVAL; 1401 } 1402 dev_warn(s->port.dev, 1403 "failed to re-start DMA, using PIO\n"); 1404 sci_rx_dma_release(s, true); 1405 return; 1406 } 1407 dev_dbg(s->port.dev, "%s(): cookie %d to #%d\n", 1408 __func__, s->cookie_rx[i], i); 1409 } 1410 1411 s->active_rx = s->cookie_rx[0]; 1412 1413 dma_async_issue_pending(chan); 1414 } 1415 1416 static void work_fn_rx(struct work_struct *work) 1417 { 1418 struct sci_port *s = container_of(work, struct sci_port, work_rx); 1419 struct uart_port *port = &s->port; 1420 struct dma_async_tx_descriptor *desc; 1421 int new; 1422 1423 if (s->active_rx == s->cookie_rx[0]) { 1424 new = 0; 1425 } else if (s->active_rx == s->cookie_rx[1]) { 1426 new = 1; 1427 } else { 1428 dev_err(port->dev, "cookie %d not found!\n", s->active_rx); 1429 return; 1430 } 1431 desc = s->desc_rx[new]; 1432 1433 if (dma_async_is_tx_complete(s->chan_rx, s->active_rx, NULL, NULL) != 1434 DMA_COMPLETE) { 1435 /* Handle incomplete DMA receive */ 1436 struct dma_chan *chan = s->chan_rx; 1437 struct shdma_desc *sh_desc = container_of(desc, 1438 struct shdma_desc, async_tx); 1439 unsigned long flags; 1440 int count; 1441 1442 dmaengine_terminate_all(chan); 1443 dev_dbg(port->dev, "Read %zu bytes with cookie %d\n", 1444 sh_desc->partial, sh_desc->cookie); 1445 1446 spin_lock_irqsave(&port->lock, flags); 1447 count = sci_dma_rx_push(s, sh_desc->partial); 1448 spin_unlock_irqrestore(&port->lock, flags); 1449 1450 if (count) 1451 tty_flip_buffer_push(&port->state->port); 1452 1453 sci_submit_rx(s); 1454 1455 return; 1456 } 1457 1458 s->cookie_rx[new] = desc->tx_submit(desc); 1459 if (s->cookie_rx[new] < 0) { 1460 dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n"); 1461 sci_rx_dma_release(s, true); 1462 return; 1463 } 1464 1465 s->active_rx = s->cookie_rx[!new]; 1466 1467 dev_dbg(port->dev, "%s: cookie %d #%d, new active #%d\n", 1468 __func__, s->cookie_rx[new], new, s->active_rx); 1469 } 1470 1471 static void work_fn_tx(struct work_struct *work) 1472 { 1473 struct sci_port *s = container_of(work, struct sci_port, work_tx); 1474 struct dma_async_tx_descriptor *desc; 1475 struct dma_chan *chan = s->chan_tx; 1476 struct uart_port *port = &s->port; 1477 struct circ_buf *xmit = &port->state->xmit; 1478 struct scatterlist *sg = &s->sg_tx; 1479 1480 /* 1481 * DMA is idle now. 1482 * Port xmit buffer is already mapped, and it is one page... Just adjust 1483 * offsets and lengths. Since it is a circular buffer, we have to 1484 * transmit till the end, and then the rest. Take the port lock to get a 1485 * consistent xmit buffer state. 1486 */ 1487 spin_lock_irq(&port->lock); 1488 sg->offset = xmit->tail & (UART_XMIT_SIZE - 1); 1489 sg_dma_address(sg) = (sg_dma_address(sg) & ~(UART_XMIT_SIZE - 1)) + 1490 sg->offset; 1491 sg_dma_len(sg) = min((int)CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE), 1492 CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE)); 1493 spin_unlock_irq(&port->lock); 1494 1495 BUG_ON(!sg_dma_len(sg)); 1496 1497 desc = dmaengine_prep_slave_sg(chan, 1498 sg, s->sg_len_tx, DMA_MEM_TO_DEV, 1499 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1500 if (!desc) { 1501 /* switch to PIO */ 1502 sci_tx_dma_release(s, true); 1503 return; 1504 } 1505 1506 dma_sync_sg_for_device(port->dev, sg, 1, DMA_TO_DEVICE); 1507 1508 spin_lock_irq(&port->lock); 1509 s->desc_tx = desc; 1510 desc->callback = sci_dma_tx_complete; 1511 desc->callback_param = s; 1512 spin_unlock_irq(&port->lock); 1513 s->cookie_tx = desc->tx_submit(desc); 1514 if (s->cookie_tx < 0) { 1515 dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n"); 1516 /* switch to PIO */ 1517 sci_tx_dma_release(s, true); 1518 return; 1519 } 1520 1521 dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n", 1522 __func__, xmit->buf, xmit->tail, xmit->head, s->cookie_tx); 1523 1524 dma_async_issue_pending(chan); 1525 } 1526 #endif 1527 1528 static void sci_start_tx(struct uart_port *port) 1529 { 1530 struct sci_port *s = to_sci_port(port); 1531 unsigned short ctrl; 1532 1533 #ifdef CONFIG_SERIAL_SH_SCI_DMA 1534 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 1535 u16 new, scr = serial_port_in(port, SCSCR); 1536 if (s->chan_tx) 1537 new = scr | SCSCR_TDRQE; 1538 else 1539 new = scr & ~SCSCR_TDRQE; 1540 if (new != scr) 1541 serial_port_out(port, SCSCR, new); 1542 } 1543 1544 if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) && 1545 s->cookie_tx < 0) { 1546 s->cookie_tx = 0; 1547 schedule_work(&s->work_tx); 1548 } 1549 #endif 1550 1551 if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 1552 /* Set TIE (Transmit Interrupt Enable) bit in SCSCR */ 1553 ctrl = serial_port_in(port, SCSCR); 1554 serial_port_out(port, SCSCR, ctrl | SCSCR_TIE); 1555 } 1556 } 1557 1558 static void sci_stop_tx(struct uart_port *port) 1559 { 1560 unsigned short ctrl; 1561 1562 /* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */ 1563 ctrl = serial_port_in(port, SCSCR); 1564 1565 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) 1566 ctrl &= ~SCSCR_TDRQE; 1567 1568 ctrl &= ~SCSCR_TIE; 1569 1570 serial_port_out(port, SCSCR, ctrl); 1571 } 1572 1573 static void sci_start_rx(struct uart_port *port) 1574 { 1575 unsigned short ctrl; 1576 1577 ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port); 1578 1579 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) 1580 ctrl &= ~SCSCR_RDRQE; 1581 1582 serial_port_out(port, SCSCR, ctrl); 1583 } 1584 1585 static void sci_stop_rx(struct uart_port *port) 1586 { 1587 unsigned short ctrl; 1588 1589 ctrl = serial_port_in(port, SCSCR); 1590 1591 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) 1592 ctrl &= ~SCSCR_RDRQE; 1593 1594 ctrl &= ~port_rx_irq_mask(port); 1595 1596 serial_port_out(port, SCSCR, ctrl); 1597 } 1598 1599 static void sci_break_ctl(struct uart_port *port, int break_state) 1600 { 1601 struct sci_port *s = to_sci_port(port); 1602 struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR; 1603 unsigned short scscr, scsptr; 1604 1605 /* check wheter the port has SCSPTR */ 1606 if (!reg->size) { 1607 /* 1608 * Not supported by hardware. Most parts couple break and rx 1609 * interrupts together, with break detection always enabled. 1610 */ 1611 return; 1612 } 1613 1614 scsptr = serial_port_in(port, SCSPTR); 1615 scscr = serial_port_in(port, SCSCR); 1616 1617 if (break_state == -1) { 1618 scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT; 1619 scscr &= ~SCSCR_TE; 1620 } else { 1621 scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO; 1622 scscr |= SCSCR_TE; 1623 } 1624 1625 serial_port_out(port, SCSPTR, scsptr); 1626 serial_port_out(port, SCSCR, scscr); 1627 } 1628 1629 #ifdef CONFIG_SERIAL_SH_SCI_DMA 1630 static bool filter(struct dma_chan *chan, void *slave) 1631 { 1632 struct sh_dmae_slave *param = slave; 1633 1634 dev_dbg(chan->device->dev, "%s: slave ID %d\n", 1635 __func__, param->shdma_slave.slave_id); 1636 1637 chan->private = ¶m->shdma_slave; 1638 return true; 1639 } 1640 1641 static void rx_timer_fn(unsigned long arg) 1642 { 1643 struct sci_port *s = (struct sci_port *)arg; 1644 struct uart_port *port = &s->port; 1645 u16 scr = serial_port_in(port, SCSCR); 1646 1647 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 1648 scr &= ~SCSCR_RDRQE; 1649 enable_irq(s->irqs[SCIx_RXI_IRQ]); 1650 } 1651 serial_port_out(port, SCSCR, scr | SCSCR_RIE); 1652 dev_dbg(port->dev, "DMA Rx timed out\n"); 1653 schedule_work(&s->work_rx); 1654 } 1655 1656 static void sci_request_dma(struct uart_port *port) 1657 { 1658 struct sci_port *s = to_sci_port(port); 1659 struct sh_dmae_slave *param; 1660 struct dma_chan *chan; 1661 dma_cap_mask_t mask; 1662 int nent; 1663 1664 dev_dbg(port->dev, "%s: port %d\n", __func__, port->line); 1665 1666 if (s->cfg->dma_slave_tx <= 0 || s->cfg->dma_slave_rx <= 0) 1667 return; 1668 1669 dma_cap_zero(mask); 1670 dma_cap_set(DMA_SLAVE, mask); 1671 1672 param = &s->param_tx; 1673 1674 /* Slave ID, e.g., SHDMA_SLAVE_SCIF0_TX */ 1675 param->shdma_slave.slave_id = s->cfg->dma_slave_tx; 1676 1677 s->cookie_tx = -EINVAL; 1678 chan = dma_request_channel(mask, filter, param); 1679 dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan); 1680 if (chan) { 1681 s->chan_tx = chan; 1682 sg_init_table(&s->sg_tx, 1); 1683 /* UART circular tx buffer is an aligned page. */ 1684 BUG_ON((uintptr_t)port->state->xmit.buf & ~PAGE_MASK); 1685 sg_set_page(&s->sg_tx, virt_to_page(port->state->xmit.buf), 1686 UART_XMIT_SIZE, 1687 (uintptr_t)port->state->xmit.buf & ~PAGE_MASK); 1688 nent = dma_map_sg(port->dev, &s->sg_tx, 1, DMA_TO_DEVICE); 1689 if (!nent) 1690 sci_tx_dma_release(s, false); 1691 else 1692 dev_dbg(port->dev, "%s: mapped %d@%p to %pad\n", 1693 __func__, 1694 sg_dma_len(&s->sg_tx), port->state->xmit.buf, 1695 &sg_dma_address(&s->sg_tx)); 1696 1697 s->sg_len_tx = nent; 1698 1699 INIT_WORK(&s->work_tx, work_fn_tx); 1700 } 1701 1702 param = &s->param_rx; 1703 1704 /* Slave ID, e.g., SHDMA_SLAVE_SCIF0_RX */ 1705 param->shdma_slave.slave_id = s->cfg->dma_slave_rx; 1706 1707 chan = dma_request_channel(mask, filter, param); 1708 dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan); 1709 if (chan) { 1710 dma_addr_t dma[2]; 1711 void *buf[2]; 1712 int i; 1713 1714 s->chan_rx = chan; 1715 1716 s->buf_len_rx = 2 * max(16, (int)port->fifosize); 1717 buf[0] = dma_alloc_coherent(port->dev, s->buf_len_rx * 2, 1718 &dma[0], GFP_KERNEL); 1719 1720 if (!buf[0]) { 1721 dev_warn(port->dev, 1722 "failed to allocate dma buffer, using PIO\n"); 1723 sci_rx_dma_release(s, true); 1724 return; 1725 } 1726 1727 buf[1] = buf[0] + s->buf_len_rx; 1728 dma[1] = dma[0] + s->buf_len_rx; 1729 1730 for (i = 0; i < 2; i++) { 1731 struct scatterlist *sg = &s->sg_rx[i]; 1732 1733 sg_init_table(sg, 1); 1734 sg_set_page(sg, virt_to_page(buf[i]), s->buf_len_rx, 1735 (uintptr_t)buf[i] & ~PAGE_MASK); 1736 sg_dma_address(sg) = dma[i]; 1737 } 1738 1739 INIT_WORK(&s->work_rx, work_fn_rx); 1740 setup_timer(&s->rx_timer, rx_timer_fn, (unsigned long)s); 1741 1742 sci_submit_rx(s); 1743 } 1744 } 1745 1746 static void sci_free_dma(struct uart_port *port) 1747 { 1748 struct sci_port *s = to_sci_port(port); 1749 1750 if (s->chan_tx) 1751 sci_tx_dma_release(s, false); 1752 if (s->chan_rx) 1753 sci_rx_dma_release(s, false); 1754 } 1755 #else 1756 static inline void sci_request_dma(struct uart_port *port) 1757 { 1758 } 1759 1760 static inline void sci_free_dma(struct uart_port *port) 1761 { 1762 } 1763 #endif 1764 1765 static int sci_startup(struct uart_port *port) 1766 { 1767 struct sci_port *s = to_sci_port(port); 1768 unsigned long flags; 1769 int ret; 1770 1771 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line); 1772 1773 ret = sci_request_irq(s); 1774 if (unlikely(ret < 0)) 1775 return ret; 1776 1777 sci_request_dma(port); 1778 1779 spin_lock_irqsave(&port->lock, flags); 1780 sci_start_tx(port); 1781 sci_start_rx(port); 1782 spin_unlock_irqrestore(&port->lock, flags); 1783 1784 return 0; 1785 } 1786 1787 static void sci_shutdown(struct uart_port *port) 1788 { 1789 struct sci_port *s = to_sci_port(port); 1790 unsigned long flags; 1791 1792 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line); 1793 1794 spin_lock_irqsave(&port->lock, flags); 1795 sci_stop_rx(port); 1796 sci_stop_tx(port); 1797 spin_unlock_irqrestore(&port->lock, flags); 1798 1799 sci_free_dma(port); 1800 sci_free_irq(s); 1801 } 1802 1803 static unsigned int sci_scbrr_calc(struct sci_port *s, unsigned int bps, 1804 unsigned long freq) 1805 { 1806 if (s->sampling_rate) 1807 return DIV_ROUND_CLOSEST(freq, s->sampling_rate * bps) - 1; 1808 1809 /* Warn, but use a safe default */ 1810 WARN_ON(1); 1811 1812 return ((freq + 16 * bps) / (32 * bps) - 1); 1813 } 1814 1815 /* calculate frame length from SMR */ 1816 static int sci_baud_calc_frame_len(unsigned int smr_val) 1817 { 1818 int len = 10; 1819 1820 if (smr_val & SCSMR_CHR) 1821 len--; 1822 if (smr_val & SCSMR_PE) 1823 len++; 1824 if (smr_val & SCSMR_STOP) 1825 len++; 1826 1827 return len; 1828 } 1829 1830 1831 /* calculate sample rate, BRR, and clock select for HSCIF */ 1832 static void sci_baud_calc_hscif(unsigned int bps, unsigned long freq, 1833 int *brr, unsigned int *srr, 1834 unsigned int *cks, int frame_len) 1835 { 1836 int sr, c, br, err, recv_margin; 1837 int min_err = 1000; /* 100% */ 1838 int recv_max_margin = 0; 1839 1840 /* Find the combination of sample rate and clock select with the 1841 smallest deviation from the desired baud rate. */ 1842 for (sr = 8; sr <= 32; sr++) { 1843 for (c = 0; c <= 3; c++) { 1844 /* integerized formulas from HSCIF documentation */ 1845 br = DIV_ROUND_CLOSEST(freq, (sr * 1846 (1 << (2 * c + 1)) * bps)) - 1; 1847 br = clamp(br, 0, 255); 1848 err = DIV_ROUND_CLOSEST(freq, ((br + 1) * bps * sr * 1849 (1 << (2 * c + 1)) / 1000)) - 1850 1000; 1851 /* Calc recv margin 1852 * M: Receive margin (%) 1853 * N: Ratio of bit rate to clock (N = sampling rate) 1854 * D: Clock duty (D = 0 to 1.0) 1855 * L: Frame length (L = 9 to 12) 1856 * F: Absolute value of clock frequency deviation 1857 * 1858 * M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) - 1859 * (|D - 0.5| / N * (1 + F))| 1860 * NOTE: Usually, treat D for 0.5, F is 0 by this 1861 * calculation. 1862 */ 1863 recv_margin = abs((500 - 1864 DIV_ROUND_CLOSEST(1000, sr << 1)) / 10); 1865 if (abs(min_err) > abs(err)) { 1866 min_err = err; 1867 recv_max_margin = recv_margin; 1868 } else if ((min_err == err) && 1869 (recv_margin > recv_max_margin)) 1870 recv_max_margin = recv_margin; 1871 else 1872 continue; 1873 1874 *brr = br; 1875 *srr = sr - 1; 1876 *cks = c; 1877 } 1878 } 1879 1880 if (min_err == 1000) { 1881 WARN_ON(1); 1882 /* use defaults */ 1883 *brr = 255; 1884 *srr = 15; 1885 *cks = 0; 1886 } 1887 } 1888 1889 static void sci_reset(struct uart_port *port) 1890 { 1891 struct plat_sci_reg *reg; 1892 unsigned int status; 1893 1894 do { 1895 status = serial_port_in(port, SCxSR); 1896 } while (!(status & SCxSR_TEND(port))); 1897 1898 serial_port_out(port, SCSCR, 0x00); /* TE=0, RE=0, CKE1=0 */ 1899 1900 reg = sci_getreg(port, SCFCR); 1901 if (reg->size) 1902 serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST); 1903 } 1904 1905 static void sci_set_termios(struct uart_port *port, struct ktermios *termios, 1906 struct ktermios *old) 1907 { 1908 struct sci_port *s = to_sci_port(port); 1909 struct plat_sci_reg *reg; 1910 unsigned int baud, smr_val = 0, max_baud, cks = 0; 1911 int t = -1; 1912 unsigned int srr = 15; 1913 1914 if ((termios->c_cflag & CSIZE) == CS7) 1915 smr_val |= SCSMR_CHR; 1916 if (termios->c_cflag & PARENB) 1917 smr_val |= SCSMR_PE; 1918 if (termios->c_cflag & PARODD) 1919 smr_val |= SCSMR_PE | SCSMR_ODD; 1920 if (termios->c_cflag & CSTOPB) 1921 smr_val |= SCSMR_STOP; 1922 1923 /* 1924 * earlyprintk comes here early on with port->uartclk set to zero. 1925 * the clock framework is not up and running at this point so here 1926 * we assume that 115200 is the maximum baud rate. please note that 1927 * the baud rate is not programmed during earlyprintk - it is assumed 1928 * that the previous boot loader has enabled required clocks and 1929 * setup the baud rate generator hardware for us already. 1930 */ 1931 max_baud = port->uartclk ? port->uartclk / 16 : 115200; 1932 1933 baud = uart_get_baud_rate(port, termios, old, 0, max_baud); 1934 if (likely(baud && port->uartclk)) { 1935 if (s->cfg->type == PORT_HSCIF) { 1936 int frame_len = sci_baud_calc_frame_len(smr_val); 1937 sci_baud_calc_hscif(baud, port->uartclk, &t, &srr, 1938 &cks, frame_len); 1939 } else { 1940 t = sci_scbrr_calc(s, baud, port->uartclk); 1941 for (cks = 0; t >= 256 && cks <= 3; cks++) 1942 t >>= 2; 1943 } 1944 } 1945 1946 sci_port_enable(s); 1947 1948 sci_reset(port); 1949 1950 smr_val |= serial_port_in(port, SCSMR) & 3; 1951 1952 uart_update_timeout(port, termios->c_cflag, baud); 1953 1954 dev_dbg(port->dev, "%s: SMR %x, cks %x, t %x, SCSCR %x\n", 1955 __func__, smr_val, cks, t, s->cfg->scscr); 1956 1957 if (t >= 0) { 1958 serial_port_out(port, SCSMR, (smr_val & ~SCSMR_CKS) | cks); 1959 serial_port_out(port, SCBRR, t); 1960 reg = sci_getreg(port, HSSRR); 1961 if (reg->size) 1962 serial_port_out(port, HSSRR, srr | HSCIF_SRE); 1963 udelay((1000000+(baud-1)) / baud); /* Wait one bit interval */ 1964 } else 1965 serial_port_out(port, SCSMR, smr_val); 1966 1967 sci_init_pins(port, termios->c_cflag); 1968 1969 reg = sci_getreg(port, SCFCR); 1970 if (reg->size) { 1971 unsigned short ctrl = serial_port_in(port, SCFCR); 1972 1973 if (s->cfg->capabilities & SCIx_HAVE_RTSCTS) { 1974 if (termios->c_cflag & CRTSCTS) 1975 ctrl |= SCFCR_MCE; 1976 else 1977 ctrl &= ~SCFCR_MCE; 1978 } 1979 1980 /* 1981 * As we've done a sci_reset() above, ensure we don't 1982 * interfere with the FIFOs while toggling MCE. As the 1983 * reset values could still be set, simply mask them out. 1984 */ 1985 ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST); 1986 1987 serial_port_out(port, SCFCR, ctrl); 1988 } 1989 1990 serial_port_out(port, SCSCR, s->cfg->scscr); 1991 1992 #ifdef CONFIG_SERIAL_SH_SCI_DMA 1993 /* 1994 * Calculate delay for 2 DMA buffers (4 FIFO). 1995 * See drivers/serial/serial_core.c::uart_update_timeout(). With 10 1996 * bits (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above function 1997 * calculates 1 jiffie for the data plus 5 jiffies for the "slop(e)." 1998 * Then below we calculate 5 jiffies (20ms) for 2 DMA buffers (4 FIFO 1999 * sizes), but when performing a faster transfer, value obtained by 2000 * this formula is may not enough. Therefore, if value is smaller than 2001 * 20msec, this sets 20msec as timeout of DMA. 2002 */ 2003 if (s->chan_rx) { 2004 unsigned int bits; 2005 2006 /* byte size and parity */ 2007 switch (termios->c_cflag & CSIZE) { 2008 case CS5: 2009 bits = 7; 2010 break; 2011 case CS6: 2012 bits = 8; 2013 break; 2014 case CS7: 2015 bits = 9; 2016 break; 2017 default: 2018 bits = 10; 2019 break; 2020 } 2021 2022 if (termios->c_cflag & CSTOPB) 2023 bits++; 2024 if (termios->c_cflag & PARENB) 2025 bits++; 2026 s->rx_timeout = DIV_ROUND_UP((s->buf_len_rx * 2 * bits * HZ) / 2027 (baud / 10), 10); 2028 dev_dbg(port->dev, "DMA Rx t-out %ums, tty t-out %u jiffies\n", 2029 s->rx_timeout * 1000 / HZ, port->timeout); 2030 if (s->rx_timeout < msecs_to_jiffies(20)) 2031 s->rx_timeout = msecs_to_jiffies(20); 2032 } 2033 #endif 2034 2035 if ((termios->c_cflag & CREAD) != 0) 2036 sci_start_rx(port); 2037 2038 sci_port_disable(s); 2039 } 2040 2041 static void sci_pm(struct uart_port *port, unsigned int state, 2042 unsigned int oldstate) 2043 { 2044 struct sci_port *sci_port = to_sci_port(port); 2045 2046 switch (state) { 2047 case UART_PM_STATE_OFF: 2048 sci_port_disable(sci_port); 2049 break; 2050 default: 2051 sci_port_enable(sci_port); 2052 break; 2053 } 2054 } 2055 2056 static const char *sci_type(struct uart_port *port) 2057 { 2058 switch (port->type) { 2059 case PORT_IRDA: 2060 return "irda"; 2061 case PORT_SCI: 2062 return "sci"; 2063 case PORT_SCIF: 2064 return "scif"; 2065 case PORT_SCIFA: 2066 return "scifa"; 2067 case PORT_SCIFB: 2068 return "scifb"; 2069 case PORT_HSCIF: 2070 return "hscif"; 2071 } 2072 2073 return NULL; 2074 } 2075 2076 static inline unsigned long sci_port_size(struct uart_port *port) 2077 { 2078 /* 2079 * Pick an arbitrary size that encapsulates all of the base 2080 * registers by default. This can be optimized later, or derived 2081 * from platform resource data at such a time that ports begin to 2082 * behave more erratically. 2083 */ 2084 if (port->type == PORT_HSCIF) 2085 return 96; 2086 else 2087 return 64; 2088 } 2089 2090 static int sci_remap_port(struct uart_port *port) 2091 { 2092 unsigned long size = sci_port_size(port); 2093 2094 /* 2095 * Nothing to do if there's already an established membase. 2096 */ 2097 if (port->membase) 2098 return 0; 2099 2100 if (port->flags & UPF_IOREMAP) { 2101 port->membase = ioremap_nocache(port->mapbase, size); 2102 if (unlikely(!port->membase)) { 2103 dev_err(port->dev, "can't remap port#%d\n", port->line); 2104 return -ENXIO; 2105 } 2106 } else { 2107 /* 2108 * For the simple (and majority of) cases where we don't 2109 * need to do any remapping, just cast the cookie 2110 * directly. 2111 */ 2112 port->membase = (void __iomem *)(uintptr_t)port->mapbase; 2113 } 2114 2115 return 0; 2116 } 2117 2118 static void sci_release_port(struct uart_port *port) 2119 { 2120 if (port->flags & UPF_IOREMAP) { 2121 iounmap(port->membase); 2122 port->membase = NULL; 2123 } 2124 2125 release_mem_region(port->mapbase, sci_port_size(port)); 2126 } 2127 2128 static int sci_request_port(struct uart_port *port) 2129 { 2130 unsigned long size = sci_port_size(port); 2131 struct resource *res; 2132 int ret; 2133 2134 res = request_mem_region(port->mapbase, size, dev_name(port->dev)); 2135 if (unlikely(res == NULL)) 2136 return -EBUSY; 2137 2138 ret = sci_remap_port(port); 2139 if (unlikely(ret != 0)) { 2140 release_resource(res); 2141 return ret; 2142 } 2143 2144 return 0; 2145 } 2146 2147 static void sci_config_port(struct uart_port *port, int flags) 2148 { 2149 if (flags & UART_CONFIG_TYPE) { 2150 struct sci_port *sport = to_sci_port(port); 2151 2152 port->type = sport->cfg->type; 2153 sci_request_port(port); 2154 } 2155 } 2156 2157 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser) 2158 { 2159 if (ser->baud_base < 2400) 2160 /* No paper tape reader for Mitch.. */ 2161 return -EINVAL; 2162 2163 return 0; 2164 } 2165 2166 static struct uart_ops sci_uart_ops = { 2167 .tx_empty = sci_tx_empty, 2168 .set_mctrl = sci_set_mctrl, 2169 .get_mctrl = sci_get_mctrl, 2170 .start_tx = sci_start_tx, 2171 .stop_tx = sci_stop_tx, 2172 .stop_rx = sci_stop_rx, 2173 .break_ctl = sci_break_ctl, 2174 .startup = sci_startup, 2175 .shutdown = sci_shutdown, 2176 .set_termios = sci_set_termios, 2177 .pm = sci_pm, 2178 .type = sci_type, 2179 .release_port = sci_release_port, 2180 .request_port = sci_request_port, 2181 .config_port = sci_config_port, 2182 .verify_port = sci_verify_port, 2183 #ifdef CONFIG_CONSOLE_POLL 2184 .poll_get_char = sci_poll_get_char, 2185 .poll_put_char = sci_poll_put_char, 2186 #endif 2187 }; 2188 2189 static int sci_init_single(struct platform_device *dev, 2190 struct sci_port *sci_port, unsigned int index, 2191 struct plat_sci_port *p, bool early) 2192 { 2193 struct uart_port *port = &sci_port->port; 2194 const struct resource *res; 2195 unsigned int sampling_rate; 2196 unsigned int i; 2197 int ret; 2198 2199 sci_port->cfg = p; 2200 2201 port->ops = &sci_uart_ops; 2202 port->iotype = UPIO_MEM; 2203 port->line = index; 2204 2205 res = platform_get_resource(dev, IORESOURCE_MEM, 0); 2206 if (res == NULL) 2207 return -ENOMEM; 2208 2209 port->mapbase = res->start; 2210 2211 for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i) 2212 sci_port->irqs[i] = platform_get_irq(dev, i); 2213 2214 /* The SCI generates several interrupts. They can be muxed together or 2215 * connected to different interrupt lines. In the muxed case only one 2216 * interrupt resource is specified. In the non-muxed case three or four 2217 * interrupt resources are specified, as the BRI interrupt is optional. 2218 */ 2219 if (sci_port->irqs[0] < 0) 2220 return -ENXIO; 2221 2222 if (sci_port->irqs[1] < 0) { 2223 sci_port->irqs[1] = sci_port->irqs[0]; 2224 sci_port->irqs[2] = sci_port->irqs[0]; 2225 sci_port->irqs[3] = sci_port->irqs[0]; 2226 } 2227 2228 if (p->regtype == SCIx_PROBE_REGTYPE) { 2229 ret = sci_probe_regmap(p); 2230 if (unlikely(ret)) 2231 return ret; 2232 } 2233 2234 switch (p->type) { 2235 case PORT_SCIFB: 2236 port->fifosize = 256; 2237 sci_port->overrun_bit = 9; 2238 sampling_rate = 16; 2239 break; 2240 case PORT_HSCIF: 2241 port->fifosize = 128; 2242 sampling_rate = 0; 2243 sci_port->overrun_bit = 0; 2244 break; 2245 case PORT_SCIFA: 2246 port->fifosize = 64; 2247 sci_port->overrun_bit = 9; 2248 sampling_rate = 16; 2249 break; 2250 case PORT_SCIF: 2251 port->fifosize = 16; 2252 if (p->regtype == SCIx_SH7705_SCIF_REGTYPE) { 2253 sci_port->overrun_bit = 9; 2254 sampling_rate = 16; 2255 } else { 2256 sci_port->overrun_bit = 0; 2257 sampling_rate = 32; 2258 } 2259 break; 2260 default: 2261 port->fifosize = 1; 2262 sci_port->overrun_bit = 5; 2263 sampling_rate = 32; 2264 break; 2265 } 2266 2267 /* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't 2268 * match the SoC datasheet, this should be investigated. Let platform 2269 * data override the sampling rate for now. 2270 */ 2271 sci_port->sampling_rate = p->sampling_rate ? p->sampling_rate 2272 : sampling_rate; 2273 2274 if (!early) { 2275 sci_port->iclk = clk_get(&dev->dev, "sci_ick"); 2276 if (IS_ERR(sci_port->iclk)) { 2277 sci_port->iclk = clk_get(&dev->dev, "peripheral_clk"); 2278 if (IS_ERR(sci_port->iclk)) { 2279 dev_err(&dev->dev, "can't get iclk\n"); 2280 return PTR_ERR(sci_port->iclk); 2281 } 2282 } 2283 2284 /* 2285 * The function clock is optional, ignore it if we can't 2286 * find it. 2287 */ 2288 sci_port->fclk = clk_get(&dev->dev, "sci_fck"); 2289 if (IS_ERR(sci_port->fclk)) 2290 sci_port->fclk = NULL; 2291 2292 port->dev = &dev->dev; 2293 2294 pm_runtime_enable(&dev->dev); 2295 } 2296 2297 sci_port->break_timer.data = (unsigned long)sci_port; 2298 sci_port->break_timer.function = sci_break_timer; 2299 init_timer(&sci_port->break_timer); 2300 2301 /* 2302 * Establish some sensible defaults for the error detection. 2303 */ 2304 sci_port->error_mask = (p->type == PORT_SCI) ? 2305 SCI_DEFAULT_ERROR_MASK : SCIF_DEFAULT_ERROR_MASK; 2306 2307 /* 2308 * Establish sensible defaults for the overrun detection, unless 2309 * the part has explicitly disabled support for it. 2310 */ 2311 2312 /* 2313 * Make the error mask inclusive of overrun detection, if 2314 * supported. 2315 */ 2316 sci_port->error_mask |= 1 << sci_port->overrun_bit; 2317 2318 port->type = p->type; 2319 port->flags = UPF_FIXED_PORT | p->flags; 2320 port->regshift = p->regshift; 2321 2322 /* 2323 * The UART port needs an IRQ value, so we peg this to the RX IRQ 2324 * for the multi-IRQ ports, which is where we are primarily 2325 * concerned with the shutdown path synchronization. 2326 * 2327 * For the muxed case there's nothing more to do. 2328 */ 2329 port->irq = sci_port->irqs[SCIx_RXI_IRQ]; 2330 port->irqflags = 0; 2331 2332 port->serial_in = sci_serial_in; 2333 port->serial_out = sci_serial_out; 2334 2335 if (p->dma_slave_tx > 0 && p->dma_slave_rx > 0) 2336 dev_dbg(port->dev, "DMA tx %d, rx %d\n", 2337 p->dma_slave_tx, p->dma_slave_rx); 2338 2339 return 0; 2340 } 2341 2342 static void sci_cleanup_single(struct sci_port *port) 2343 { 2344 clk_put(port->iclk); 2345 clk_put(port->fclk); 2346 2347 pm_runtime_disable(port->port.dev); 2348 } 2349 2350 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE 2351 static void serial_console_putchar(struct uart_port *port, int ch) 2352 { 2353 sci_poll_put_char(port, ch); 2354 } 2355 2356 /* 2357 * Print a string to the serial port trying not to disturb 2358 * any possible real use of the port... 2359 */ 2360 static void serial_console_write(struct console *co, const char *s, 2361 unsigned count) 2362 { 2363 struct sci_port *sci_port = &sci_ports[co->index]; 2364 struct uart_port *port = &sci_port->port; 2365 unsigned short bits, ctrl; 2366 unsigned long flags; 2367 int locked = 1; 2368 2369 local_irq_save(flags); 2370 if (port->sysrq) 2371 locked = 0; 2372 else if (oops_in_progress) 2373 locked = spin_trylock(&port->lock); 2374 else 2375 spin_lock(&port->lock); 2376 2377 /* first save the SCSCR then disable the interrupts */ 2378 ctrl = serial_port_in(port, SCSCR); 2379 serial_port_out(port, SCSCR, sci_port->cfg->scscr); 2380 2381 uart_console_write(port, s, count, serial_console_putchar); 2382 2383 /* wait until fifo is empty and last bit has been transmitted */ 2384 bits = SCxSR_TDxE(port) | SCxSR_TEND(port); 2385 while ((serial_port_in(port, SCxSR) & bits) != bits) 2386 cpu_relax(); 2387 2388 /* restore the SCSCR */ 2389 serial_port_out(port, SCSCR, ctrl); 2390 2391 if (locked) 2392 spin_unlock(&port->lock); 2393 local_irq_restore(flags); 2394 } 2395 2396 static int serial_console_setup(struct console *co, char *options) 2397 { 2398 struct sci_port *sci_port; 2399 struct uart_port *port; 2400 int baud = 115200; 2401 int bits = 8; 2402 int parity = 'n'; 2403 int flow = 'n'; 2404 int ret; 2405 2406 /* 2407 * Refuse to handle any bogus ports. 2408 */ 2409 if (co->index < 0 || co->index >= SCI_NPORTS) 2410 return -ENODEV; 2411 2412 sci_port = &sci_ports[co->index]; 2413 port = &sci_port->port; 2414 2415 /* 2416 * Refuse to handle uninitialized ports. 2417 */ 2418 if (!port->ops) 2419 return -ENODEV; 2420 2421 ret = sci_remap_port(port); 2422 if (unlikely(ret != 0)) 2423 return ret; 2424 2425 if (options) 2426 uart_parse_options(options, &baud, &parity, &bits, &flow); 2427 2428 return uart_set_options(port, co, baud, parity, bits, flow); 2429 } 2430 2431 static struct console serial_console = { 2432 .name = "ttySC", 2433 .device = uart_console_device, 2434 .write = serial_console_write, 2435 .setup = serial_console_setup, 2436 .flags = CON_PRINTBUFFER, 2437 .index = -1, 2438 .data = &sci_uart_driver, 2439 }; 2440 2441 static struct console early_serial_console = { 2442 .name = "early_ttySC", 2443 .write = serial_console_write, 2444 .flags = CON_PRINTBUFFER, 2445 .index = -1, 2446 }; 2447 2448 static char early_serial_buf[32]; 2449 2450 static int sci_probe_earlyprintk(struct platform_device *pdev) 2451 { 2452 struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev); 2453 2454 if (early_serial_console.data) 2455 return -EEXIST; 2456 2457 early_serial_console.index = pdev->id; 2458 2459 sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true); 2460 2461 serial_console_setup(&early_serial_console, early_serial_buf); 2462 2463 if (!strstr(early_serial_buf, "keep")) 2464 early_serial_console.flags |= CON_BOOT; 2465 2466 register_console(&early_serial_console); 2467 return 0; 2468 } 2469 2470 #define SCI_CONSOLE (&serial_console) 2471 2472 #else 2473 static inline int sci_probe_earlyprintk(struct platform_device *pdev) 2474 { 2475 return -EINVAL; 2476 } 2477 2478 #define SCI_CONSOLE NULL 2479 2480 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE */ 2481 2482 static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized"; 2483 2484 static struct uart_driver sci_uart_driver = { 2485 .owner = THIS_MODULE, 2486 .driver_name = "sci", 2487 .dev_name = "ttySC", 2488 .major = SCI_MAJOR, 2489 .minor = SCI_MINOR_START, 2490 .nr = SCI_NPORTS, 2491 .cons = SCI_CONSOLE, 2492 }; 2493 2494 static int sci_remove(struct platform_device *dev) 2495 { 2496 struct sci_port *port = platform_get_drvdata(dev); 2497 2498 cpufreq_unregister_notifier(&port->freq_transition, 2499 CPUFREQ_TRANSITION_NOTIFIER); 2500 2501 uart_remove_one_port(&sci_uart_driver, &port->port); 2502 2503 sci_cleanup_single(port); 2504 2505 return 0; 2506 } 2507 2508 struct sci_port_info { 2509 unsigned int type; 2510 unsigned int regtype; 2511 }; 2512 2513 static const struct of_device_id of_sci_match[] = { 2514 { 2515 .compatible = "renesas,scif", 2516 .data = &(const struct sci_port_info) { 2517 .type = PORT_SCIF, 2518 .regtype = SCIx_SH4_SCIF_REGTYPE, 2519 }, 2520 }, { 2521 .compatible = "renesas,scifa", 2522 .data = &(const struct sci_port_info) { 2523 .type = PORT_SCIFA, 2524 .regtype = SCIx_SCIFA_REGTYPE, 2525 }, 2526 }, { 2527 .compatible = "renesas,scifb", 2528 .data = &(const struct sci_port_info) { 2529 .type = PORT_SCIFB, 2530 .regtype = SCIx_SCIFB_REGTYPE, 2531 }, 2532 }, { 2533 .compatible = "renesas,hscif", 2534 .data = &(const struct sci_port_info) { 2535 .type = PORT_HSCIF, 2536 .regtype = SCIx_HSCIF_REGTYPE, 2537 }, 2538 }, { 2539 /* Terminator */ 2540 }, 2541 }; 2542 MODULE_DEVICE_TABLE(of, of_sci_match); 2543 2544 static struct plat_sci_port * 2545 sci_parse_dt(struct platform_device *pdev, unsigned int *dev_id) 2546 { 2547 struct device_node *np = pdev->dev.of_node; 2548 const struct of_device_id *match; 2549 const struct sci_port_info *info; 2550 struct plat_sci_port *p; 2551 int id; 2552 2553 if (!IS_ENABLED(CONFIG_OF) || !np) 2554 return NULL; 2555 2556 match = of_match_node(of_sci_match, pdev->dev.of_node); 2557 if (!match) 2558 return NULL; 2559 2560 info = match->data; 2561 2562 p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL); 2563 if (!p) { 2564 dev_err(&pdev->dev, "failed to allocate DT config data\n"); 2565 return NULL; 2566 } 2567 2568 /* Get the line number for the aliases node. */ 2569 id = of_alias_get_id(np, "serial"); 2570 if (id < 0) { 2571 dev_err(&pdev->dev, "failed to get alias id (%d)\n", id); 2572 return NULL; 2573 } 2574 2575 *dev_id = id; 2576 2577 p->flags = UPF_IOREMAP | UPF_BOOT_AUTOCONF; 2578 p->type = info->type; 2579 p->regtype = info->regtype; 2580 p->scscr = SCSCR_RE | SCSCR_TE; 2581 2582 return p; 2583 } 2584 2585 static int sci_probe_single(struct platform_device *dev, 2586 unsigned int index, 2587 struct plat_sci_port *p, 2588 struct sci_port *sciport) 2589 { 2590 int ret; 2591 2592 /* Sanity check */ 2593 if (unlikely(index >= SCI_NPORTS)) { 2594 dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n", 2595 index+1, SCI_NPORTS); 2596 dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n"); 2597 return -EINVAL; 2598 } 2599 2600 ret = sci_init_single(dev, sciport, index, p, false); 2601 if (ret) 2602 return ret; 2603 2604 ret = uart_add_one_port(&sci_uart_driver, &sciport->port); 2605 if (ret) { 2606 sci_cleanup_single(sciport); 2607 return ret; 2608 } 2609 2610 return 0; 2611 } 2612 2613 static int sci_probe(struct platform_device *dev) 2614 { 2615 struct plat_sci_port *p; 2616 struct sci_port *sp; 2617 unsigned int dev_id; 2618 int ret; 2619 2620 /* 2621 * If we've come here via earlyprintk initialization, head off to 2622 * the special early probe. We don't have sufficient device state 2623 * to make it beyond this yet. 2624 */ 2625 if (is_early_platform_device(dev)) 2626 return sci_probe_earlyprintk(dev); 2627 2628 if (dev->dev.of_node) { 2629 p = sci_parse_dt(dev, &dev_id); 2630 if (p == NULL) 2631 return -EINVAL; 2632 } else { 2633 p = dev->dev.platform_data; 2634 if (p == NULL) { 2635 dev_err(&dev->dev, "no platform data supplied\n"); 2636 return -EINVAL; 2637 } 2638 2639 dev_id = dev->id; 2640 } 2641 2642 sp = &sci_ports[dev_id]; 2643 platform_set_drvdata(dev, sp); 2644 2645 ret = sci_probe_single(dev, dev_id, p, sp); 2646 if (ret) 2647 return ret; 2648 2649 sp->freq_transition.notifier_call = sci_notifier; 2650 2651 ret = cpufreq_register_notifier(&sp->freq_transition, 2652 CPUFREQ_TRANSITION_NOTIFIER); 2653 if (unlikely(ret < 0)) { 2654 uart_remove_one_port(&sci_uart_driver, &sp->port); 2655 sci_cleanup_single(sp); 2656 return ret; 2657 } 2658 2659 #ifdef CONFIG_SH_STANDARD_BIOS 2660 sh_bios_gdb_detach(); 2661 #endif 2662 2663 return 0; 2664 } 2665 2666 static __maybe_unused int sci_suspend(struct device *dev) 2667 { 2668 struct sci_port *sport = dev_get_drvdata(dev); 2669 2670 if (sport) 2671 uart_suspend_port(&sci_uart_driver, &sport->port); 2672 2673 return 0; 2674 } 2675 2676 static __maybe_unused int sci_resume(struct device *dev) 2677 { 2678 struct sci_port *sport = dev_get_drvdata(dev); 2679 2680 if (sport) 2681 uart_resume_port(&sci_uart_driver, &sport->port); 2682 2683 return 0; 2684 } 2685 2686 static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume); 2687 2688 static struct platform_driver sci_driver = { 2689 .probe = sci_probe, 2690 .remove = sci_remove, 2691 .driver = { 2692 .name = "sh-sci", 2693 .pm = &sci_dev_pm_ops, 2694 .of_match_table = of_match_ptr(of_sci_match), 2695 }, 2696 }; 2697 2698 static int __init sci_init(void) 2699 { 2700 int ret; 2701 2702 pr_info("%s\n", banner); 2703 2704 ret = uart_register_driver(&sci_uart_driver); 2705 if (likely(ret == 0)) { 2706 ret = platform_driver_register(&sci_driver); 2707 if (unlikely(ret)) 2708 uart_unregister_driver(&sci_uart_driver); 2709 } 2710 2711 return ret; 2712 } 2713 2714 static void __exit sci_exit(void) 2715 { 2716 platform_driver_unregister(&sci_driver); 2717 uart_unregister_driver(&sci_uart_driver); 2718 } 2719 2720 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE 2721 early_platform_init_buffer("earlyprintk", &sci_driver, 2722 early_serial_buf, ARRAY_SIZE(early_serial_buf)); 2723 #endif 2724 module_init(sci_init); 2725 module_exit(sci_exit); 2726 2727 MODULE_LICENSE("GPL"); 2728 MODULE_ALIAS("platform:sh-sci"); 2729 MODULE_AUTHOR("Paul Mundt"); 2730 MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver"); 2731