xref: /openbmc/linux/drivers/tty/serial/sh-sci.c (revision 976fa9a3)
1 /*
2  * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
3  *
4  *  Copyright (C) 2002 - 2011  Paul Mundt
5  *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
6  *
7  * based off of the old drivers/char/sh-sci.c by:
8  *
9  *   Copyright (C) 1999, 2000  Niibe Yutaka
10  *   Copyright (C) 2000  Sugioka Toshinobu
11  *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
12  *   Modified to support SecureEdge. David McCullough (2002)
13  *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
14  *   Removed SH7300 support (Jul 2007).
15  *
16  * This file is subject to the terms and conditions of the GNU General Public
17  * License.  See the file "COPYING" in the main directory of this archive
18  * for more details.
19  */
20 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
21 #define SUPPORT_SYSRQ
22 #endif
23 
24 #undef DEBUG
25 
26 #include <linux/clk.h>
27 #include <linux/console.h>
28 #include <linux/ctype.h>
29 #include <linux/cpufreq.h>
30 #include <linux/delay.h>
31 #include <linux/dmaengine.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/err.h>
34 #include <linux/errno.h>
35 #include <linux/init.h>
36 #include <linux/interrupt.h>
37 #include <linux/ioport.h>
38 #include <linux/major.h>
39 #include <linux/module.h>
40 #include <linux/mm.h>
41 #include <linux/notifier.h>
42 #include <linux/of.h>
43 #include <linux/platform_device.h>
44 #include <linux/pm_runtime.h>
45 #include <linux/scatterlist.h>
46 #include <linux/serial.h>
47 #include <linux/serial_sci.h>
48 #include <linux/sh_dma.h>
49 #include <linux/slab.h>
50 #include <linux/string.h>
51 #include <linux/sysrq.h>
52 #include <linux/timer.h>
53 #include <linux/tty.h>
54 #include <linux/tty_flip.h>
55 
56 #ifdef CONFIG_SUPERH
57 #include <asm/sh_bios.h>
58 #endif
59 
60 #include "sh-sci.h"
61 
62 /* Offsets into the sci_port->irqs array */
63 enum {
64 	SCIx_ERI_IRQ,
65 	SCIx_RXI_IRQ,
66 	SCIx_TXI_IRQ,
67 	SCIx_BRI_IRQ,
68 	SCIx_NR_IRQS,
69 
70 	SCIx_MUX_IRQ = SCIx_NR_IRQS,	/* special case */
71 };
72 
73 #define SCIx_IRQ_IS_MUXED(port)			\
74 	((port)->irqs[SCIx_ERI_IRQ] ==	\
75 	 (port)->irqs[SCIx_RXI_IRQ]) ||	\
76 	((port)->irqs[SCIx_ERI_IRQ] &&	\
77 	 ((port)->irqs[SCIx_RXI_IRQ] < 0))
78 
79 struct sci_port {
80 	struct uart_port	port;
81 
82 	/* Platform configuration */
83 	struct plat_sci_port	*cfg;
84 	int			overrun_bit;
85 	unsigned int		error_mask;
86 	unsigned int		sampling_rate;
87 
88 
89 	/* Break timer */
90 	struct timer_list	break_timer;
91 	int			break_flag;
92 
93 	/* Interface clock */
94 	struct clk		*iclk;
95 	/* Function clock */
96 	struct clk		*fclk;
97 
98 	int			irqs[SCIx_NR_IRQS];
99 	char			*irqstr[SCIx_NR_IRQS];
100 
101 	struct dma_chan			*chan_tx;
102 	struct dma_chan			*chan_rx;
103 
104 #ifdef CONFIG_SERIAL_SH_SCI_DMA
105 	struct dma_async_tx_descriptor	*desc_tx;
106 	struct dma_async_tx_descriptor	*desc_rx[2];
107 	dma_cookie_t			cookie_tx;
108 	dma_cookie_t			cookie_rx[2];
109 	dma_cookie_t			active_rx;
110 	struct scatterlist		sg_tx;
111 	unsigned int			sg_len_tx;
112 	struct scatterlist		sg_rx[2];
113 	size_t				buf_len_rx;
114 	struct sh_dmae_slave		param_tx;
115 	struct sh_dmae_slave		param_rx;
116 	struct work_struct		work_tx;
117 	struct work_struct		work_rx;
118 	struct timer_list		rx_timer;
119 	unsigned int			rx_timeout;
120 #endif
121 
122 	struct notifier_block		freq_transition;
123 };
124 
125 /* Function prototypes */
126 static void sci_start_tx(struct uart_port *port);
127 static void sci_stop_tx(struct uart_port *port);
128 static void sci_start_rx(struct uart_port *port);
129 
130 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
131 
132 static struct sci_port sci_ports[SCI_NPORTS];
133 static struct uart_driver sci_uart_driver;
134 
135 static inline struct sci_port *
136 to_sci_port(struct uart_port *uart)
137 {
138 	return container_of(uart, struct sci_port, port);
139 }
140 
141 struct plat_sci_reg {
142 	u8 offset, size;
143 };
144 
145 /* Helper for invalidating specific entries of an inherited map. */
146 #define sci_reg_invalid	{ .offset = 0, .size = 0 }
147 
148 static struct plat_sci_reg sci_regmap[SCIx_NR_REGTYPES][SCIx_NR_REGS] = {
149 	[SCIx_PROBE_REGTYPE] = {
150 		[0 ... SCIx_NR_REGS - 1] = sci_reg_invalid,
151 	},
152 
153 	/*
154 	 * Common SCI definitions, dependent on the port's regshift
155 	 * value.
156 	 */
157 	[SCIx_SCI_REGTYPE] = {
158 		[SCSMR]		= { 0x00,  8 },
159 		[SCBRR]		= { 0x01,  8 },
160 		[SCSCR]		= { 0x02,  8 },
161 		[SCxTDR]	= { 0x03,  8 },
162 		[SCxSR]		= { 0x04,  8 },
163 		[SCxRDR]	= { 0x05,  8 },
164 		[SCFCR]		= sci_reg_invalid,
165 		[SCFDR]		= sci_reg_invalid,
166 		[SCTFDR]	= sci_reg_invalid,
167 		[SCRFDR]	= sci_reg_invalid,
168 		[SCSPTR]	= sci_reg_invalid,
169 		[SCLSR]		= sci_reg_invalid,
170 		[HSSRR]		= sci_reg_invalid,
171 	},
172 
173 	/*
174 	 * Common definitions for legacy IrDA ports, dependent on
175 	 * regshift value.
176 	 */
177 	[SCIx_IRDA_REGTYPE] = {
178 		[SCSMR]		= { 0x00,  8 },
179 		[SCBRR]		= { 0x01,  8 },
180 		[SCSCR]		= { 0x02,  8 },
181 		[SCxTDR]	= { 0x03,  8 },
182 		[SCxSR]		= { 0x04,  8 },
183 		[SCxRDR]	= { 0x05,  8 },
184 		[SCFCR]		= { 0x06,  8 },
185 		[SCFDR]		= { 0x07, 16 },
186 		[SCTFDR]	= sci_reg_invalid,
187 		[SCRFDR]	= sci_reg_invalid,
188 		[SCSPTR]	= sci_reg_invalid,
189 		[SCLSR]		= sci_reg_invalid,
190 		[HSSRR]		= sci_reg_invalid,
191 	},
192 
193 	/*
194 	 * Common SCIFA definitions.
195 	 */
196 	[SCIx_SCIFA_REGTYPE] = {
197 		[SCSMR]		= { 0x00, 16 },
198 		[SCBRR]		= { 0x04,  8 },
199 		[SCSCR]		= { 0x08, 16 },
200 		[SCxTDR]	= { 0x20,  8 },
201 		[SCxSR]		= { 0x14, 16 },
202 		[SCxRDR]	= { 0x24,  8 },
203 		[SCFCR]		= { 0x18, 16 },
204 		[SCFDR]		= { 0x1c, 16 },
205 		[SCTFDR]	= sci_reg_invalid,
206 		[SCRFDR]	= sci_reg_invalid,
207 		[SCSPTR]	= sci_reg_invalid,
208 		[SCLSR]		= sci_reg_invalid,
209 		[HSSRR]		= sci_reg_invalid,
210 	},
211 
212 	/*
213 	 * Common SCIFB definitions.
214 	 */
215 	[SCIx_SCIFB_REGTYPE] = {
216 		[SCSMR]		= { 0x00, 16 },
217 		[SCBRR]		= { 0x04,  8 },
218 		[SCSCR]		= { 0x08, 16 },
219 		[SCxTDR]	= { 0x40,  8 },
220 		[SCxSR]		= { 0x14, 16 },
221 		[SCxRDR]	= { 0x60,  8 },
222 		[SCFCR]		= { 0x18, 16 },
223 		[SCFDR]		= sci_reg_invalid,
224 		[SCTFDR]	= { 0x38, 16 },
225 		[SCRFDR]	= { 0x3c, 16 },
226 		[SCSPTR]	= sci_reg_invalid,
227 		[SCLSR]		= sci_reg_invalid,
228 		[HSSRR]		= sci_reg_invalid,
229 	},
230 
231 	/*
232 	 * Common SH-2(A) SCIF definitions for ports with FIFO data
233 	 * count registers.
234 	 */
235 	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
236 		[SCSMR]		= { 0x00, 16 },
237 		[SCBRR]		= { 0x04,  8 },
238 		[SCSCR]		= { 0x08, 16 },
239 		[SCxTDR]	= { 0x0c,  8 },
240 		[SCxSR]		= { 0x10, 16 },
241 		[SCxRDR]	= { 0x14,  8 },
242 		[SCFCR]		= { 0x18, 16 },
243 		[SCFDR]		= { 0x1c, 16 },
244 		[SCTFDR]	= sci_reg_invalid,
245 		[SCRFDR]	= sci_reg_invalid,
246 		[SCSPTR]	= { 0x20, 16 },
247 		[SCLSR]		= { 0x24, 16 },
248 		[HSSRR]		= sci_reg_invalid,
249 	},
250 
251 	/*
252 	 * Common SH-3 SCIF definitions.
253 	 */
254 	[SCIx_SH3_SCIF_REGTYPE] = {
255 		[SCSMR]		= { 0x00,  8 },
256 		[SCBRR]		= { 0x02,  8 },
257 		[SCSCR]		= { 0x04,  8 },
258 		[SCxTDR]	= { 0x06,  8 },
259 		[SCxSR]		= { 0x08, 16 },
260 		[SCxRDR]	= { 0x0a,  8 },
261 		[SCFCR]		= { 0x0c,  8 },
262 		[SCFDR]		= { 0x0e, 16 },
263 		[SCTFDR]	= sci_reg_invalid,
264 		[SCRFDR]	= sci_reg_invalid,
265 		[SCSPTR]	= sci_reg_invalid,
266 		[SCLSR]		= sci_reg_invalid,
267 		[HSSRR]		= sci_reg_invalid,
268 	},
269 
270 	/*
271 	 * Common SH-4(A) SCIF(B) definitions.
272 	 */
273 	[SCIx_SH4_SCIF_REGTYPE] = {
274 		[SCSMR]		= { 0x00, 16 },
275 		[SCBRR]		= { 0x04,  8 },
276 		[SCSCR]		= { 0x08, 16 },
277 		[SCxTDR]	= { 0x0c,  8 },
278 		[SCxSR]		= { 0x10, 16 },
279 		[SCxRDR]	= { 0x14,  8 },
280 		[SCFCR]		= { 0x18, 16 },
281 		[SCFDR]		= { 0x1c, 16 },
282 		[SCTFDR]	= sci_reg_invalid,
283 		[SCRFDR]	= sci_reg_invalid,
284 		[SCSPTR]	= { 0x20, 16 },
285 		[SCLSR]		= { 0x24, 16 },
286 		[HSSRR]		= sci_reg_invalid,
287 	},
288 
289 	/*
290 	 * Common HSCIF definitions.
291 	 */
292 	[SCIx_HSCIF_REGTYPE] = {
293 		[SCSMR]		= { 0x00, 16 },
294 		[SCBRR]		= { 0x04,  8 },
295 		[SCSCR]		= { 0x08, 16 },
296 		[SCxTDR]	= { 0x0c,  8 },
297 		[SCxSR]		= { 0x10, 16 },
298 		[SCxRDR]	= { 0x14,  8 },
299 		[SCFCR]		= { 0x18, 16 },
300 		[SCFDR]		= { 0x1c, 16 },
301 		[SCTFDR]	= sci_reg_invalid,
302 		[SCRFDR]	= sci_reg_invalid,
303 		[SCSPTR]	= { 0x20, 16 },
304 		[SCLSR]		= { 0x24, 16 },
305 		[HSSRR]		= { 0x40, 16 },
306 	},
307 
308 	/*
309 	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
310 	 * register.
311 	 */
312 	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
313 		[SCSMR]		= { 0x00, 16 },
314 		[SCBRR]		= { 0x04,  8 },
315 		[SCSCR]		= { 0x08, 16 },
316 		[SCxTDR]	= { 0x0c,  8 },
317 		[SCxSR]		= { 0x10, 16 },
318 		[SCxRDR]	= { 0x14,  8 },
319 		[SCFCR]		= { 0x18, 16 },
320 		[SCFDR]		= { 0x1c, 16 },
321 		[SCTFDR]	= sci_reg_invalid,
322 		[SCRFDR]	= sci_reg_invalid,
323 		[SCSPTR]	= sci_reg_invalid,
324 		[SCLSR]		= { 0x24, 16 },
325 		[HSSRR]		= sci_reg_invalid,
326 	},
327 
328 	/*
329 	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
330 	 * count registers.
331 	 */
332 	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
333 		[SCSMR]		= { 0x00, 16 },
334 		[SCBRR]		= { 0x04,  8 },
335 		[SCSCR]		= { 0x08, 16 },
336 		[SCxTDR]	= { 0x0c,  8 },
337 		[SCxSR]		= { 0x10, 16 },
338 		[SCxRDR]	= { 0x14,  8 },
339 		[SCFCR]		= { 0x18, 16 },
340 		[SCFDR]		= { 0x1c, 16 },
341 		[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
342 		[SCRFDR]	= { 0x20, 16 },
343 		[SCSPTR]	= { 0x24, 16 },
344 		[SCLSR]		= { 0x28, 16 },
345 		[HSSRR]		= sci_reg_invalid,
346 	},
347 
348 	/*
349 	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
350 	 * registers.
351 	 */
352 	[SCIx_SH7705_SCIF_REGTYPE] = {
353 		[SCSMR]		= { 0x00, 16 },
354 		[SCBRR]		= { 0x04,  8 },
355 		[SCSCR]		= { 0x08, 16 },
356 		[SCxTDR]	= { 0x20,  8 },
357 		[SCxSR]		= { 0x14, 16 },
358 		[SCxRDR]	= { 0x24,  8 },
359 		[SCFCR]		= { 0x18, 16 },
360 		[SCFDR]		= { 0x1c, 16 },
361 		[SCTFDR]	= sci_reg_invalid,
362 		[SCRFDR]	= sci_reg_invalid,
363 		[SCSPTR]	= sci_reg_invalid,
364 		[SCLSR]		= sci_reg_invalid,
365 		[HSSRR]		= sci_reg_invalid,
366 	},
367 };
368 
369 #define sci_getreg(up, offset)		(sci_regmap[to_sci_port(up)->cfg->regtype] + offset)
370 
371 /*
372  * The "offset" here is rather misleading, in that it refers to an enum
373  * value relative to the port mapping rather than the fixed offset
374  * itself, which needs to be manually retrieved from the platform's
375  * register map for the given port.
376  */
377 static unsigned int sci_serial_in(struct uart_port *p, int offset)
378 {
379 	struct plat_sci_reg *reg = sci_getreg(p, offset);
380 
381 	if (reg->size == 8)
382 		return ioread8(p->membase + (reg->offset << p->regshift));
383 	else if (reg->size == 16)
384 		return ioread16(p->membase + (reg->offset << p->regshift));
385 	else
386 		WARN(1, "Invalid register access\n");
387 
388 	return 0;
389 }
390 
391 static void sci_serial_out(struct uart_port *p, int offset, int value)
392 {
393 	struct plat_sci_reg *reg = sci_getreg(p, offset);
394 
395 	if (reg->size == 8)
396 		iowrite8(value, p->membase + (reg->offset << p->regshift));
397 	else if (reg->size == 16)
398 		iowrite16(value, p->membase + (reg->offset << p->regshift));
399 	else
400 		WARN(1, "Invalid register access\n");
401 }
402 
403 static int sci_probe_regmap(struct plat_sci_port *cfg)
404 {
405 	switch (cfg->type) {
406 	case PORT_SCI:
407 		cfg->regtype = SCIx_SCI_REGTYPE;
408 		break;
409 	case PORT_IRDA:
410 		cfg->regtype = SCIx_IRDA_REGTYPE;
411 		break;
412 	case PORT_SCIFA:
413 		cfg->regtype = SCIx_SCIFA_REGTYPE;
414 		break;
415 	case PORT_SCIFB:
416 		cfg->regtype = SCIx_SCIFB_REGTYPE;
417 		break;
418 	case PORT_SCIF:
419 		/*
420 		 * The SH-4 is a bit of a misnomer here, although that's
421 		 * where this particular port layout originated. This
422 		 * configuration (or some slight variation thereof)
423 		 * remains the dominant model for all SCIFs.
424 		 */
425 		cfg->regtype = SCIx_SH4_SCIF_REGTYPE;
426 		break;
427 	case PORT_HSCIF:
428 		cfg->regtype = SCIx_HSCIF_REGTYPE;
429 		break;
430 	default:
431 		pr_err("Can't probe register map for given port\n");
432 		return -EINVAL;
433 	}
434 
435 	return 0;
436 }
437 
438 static void sci_port_enable(struct sci_port *sci_port)
439 {
440 	if (!sci_port->port.dev)
441 		return;
442 
443 	pm_runtime_get_sync(sci_port->port.dev);
444 
445 	clk_prepare_enable(sci_port->iclk);
446 	sci_port->port.uartclk = clk_get_rate(sci_port->iclk);
447 	clk_prepare_enable(sci_port->fclk);
448 }
449 
450 static void sci_port_disable(struct sci_port *sci_port)
451 {
452 	if (!sci_port->port.dev)
453 		return;
454 
455 	/* Cancel the break timer to ensure that the timer handler will not try
456 	 * to access the hardware with clocks and power disabled. Reset the
457 	 * break flag to make the break debouncing state machine ready for the
458 	 * next break.
459 	 */
460 	del_timer_sync(&sci_port->break_timer);
461 	sci_port->break_flag = 0;
462 
463 	clk_disable_unprepare(sci_port->fclk);
464 	clk_disable_unprepare(sci_port->iclk);
465 
466 	pm_runtime_put_sync(sci_port->port.dev);
467 }
468 
469 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
470 
471 #ifdef CONFIG_CONSOLE_POLL
472 static int sci_poll_get_char(struct uart_port *port)
473 {
474 	unsigned short status;
475 	int c;
476 
477 	do {
478 		status = serial_port_in(port, SCxSR);
479 		if (status & SCxSR_ERRORS(port)) {
480 			serial_port_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
481 			continue;
482 		}
483 		break;
484 	} while (1);
485 
486 	if (!(status & SCxSR_RDxF(port)))
487 		return NO_POLL_CHAR;
488 
489 	c = serial_port_in(port, SCxRDR);
490 
491 	/* Dummy read */
492 	serial_port_in(port, SCxSR);
493 	serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
494 
495 	return c;
496 }
497 #endif
498 
499 static void sci_poll_put_char(struct uart_port *port, unsigned char c)
500 {
501 	unsigned short status;
502 
503 	do {
504 		status = serial_port_in(port, SCxSR);
505 	} while (!(status & SCxSR_TDxE(port)));
506 
507 	serial_port_out(port, SCxTDR, c);
508 	serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
509 }
510 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE */
511 
512 static void sci_init_pins(struct uart_port *port, unsigned int cflag)
513 {
514 	struct sci_port *s = to_sci_port(port);
515 	struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
516 
517 	/*
518 	 * Use port-specific handler if provided.
519 	 */
520 	if (s->cfg->ops && s->cfg->ops->init_pins) {
521 		s->cfg->ops->init_pins(port, cflag);
522 		return;
523 	}
524 
525 	/*
526 	 * For the generic path SCSPTR is necessary. Bail out if that's
527 	 * unavailable, too.
528 	 */
529 	if (!reg->size)
530 		return;
531 
532 	if ((s->cfg->capabilities & SCIx_HAVE_RTSCTS) &&
533 	    ((!(cflag & CRTSCTS)))) {
534 		unsigned short status;
535 
536 		status = serial_port_in(port, SCSPTR);
537 		status &= ~SCSPTR_CTSIO;
538 		status |= SCSPTR_RTSIO;
539 		serial_port_out(port, SCSPTR, status); /* Set RTS = 1 */
540 	}
541 }
542 
543 static int sci_txfill(struct uart_port *port)
544 {
545 	struct plat_sci_reg *reg;
546 
547 	reg = sci_getreg(port, SCTFDR);
548 	if (reg->size)
549 		return serial_port_in(port, SCTFDR) & ((port->fifosize << 1) - 1);
550 
551 	reg = sci_getreg(port, SCFDR);
552 	if (reg->size)
553 		return serial_port_in(port, SCFDR) >> 8;
554 
555 	return !(serial_port_in(port, SCxSR) & SCI_TDRE);
556 }
557 
558 static int sci_txroom(struct uart_port *port)
559 {
560 	return port->fifosize - sci_txfill(port);
561 }
562 
563 static int sci_rxfill(struct uart_port *port)
564 {
565 	struct plat_sci_reg *reg;
566 
567 	reg = sci_getreg(port, SCRFDR);
568 	if (reg->size)
569 		return serial_port_in(port, SCRFDR) & ((port->fifosize << 1) - 1);
570 
571 	reg = sci_getreg(port, SCFDR);
572 	if (reg->size)
573 		return serial_port_in(port, SCFDR) & ((port->fifosize << 1) - 1);
574 
575 	return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
576 }
577 
578 /*
579  * SCI helper for checking the state of the muxed port/RXD pins.
580  */
581 static inline int sci_rxd_in(struct uart_port *port)
582 {
583 	struct sci_port *s = to_sci_port(port);
584 
585 	if (s->cfg->port_reg <= 0)
586 		return 1;
587 
588 	/* Cast for ARM damage */
589 	return !!__raw_readb((void __iomem *)(uintptr_t)s->cfg->port_reg);
590 }
591 
592 /* ********************************************************************** *
593  *                   the interrupt related routines                       *
594  * ********************************************************************** */
595 
596 static void sci_transmit_chars(struct uart_port *port)
597 {
598 	struct circ_buf *xmit = &port->state->xmit;
599 	unsigned int stopped = uart_tx_stopped(port);
600 	unsigned short status;
601 	unsigned short ctrl;
602 	int count;
603 
604 	status = serial_port_in(port, SCxSR);
605 	if (!(status & SCxSR_TDxE(port))) {
606 		ctrl = serial_port_in(port, SCSCR);
607 		if (uart_circ_empty(xmit))
608 			ctrl &= ~SCSCR_TIE;
609 		else
610 			ctrl |= SCSCR_TIE;
611 		serial_port_out(port, SCSCR, ctrl);
612 		return;
613 	}
614 
615 	count = sci_txroom(port);
616 
617 	do {
618 		unsigned char c;
619 
620 		if (port->x_char) {
621 			c = port->x_char;
622 			port->x_char = 0;
623 		} else if (!uart_circ_empty(xmit) && !stopped) {
624 			c = xmit->buf[xmit->tail];
625 			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
626 		} else {
627 			break;
628 		}
629 
630 		serial_port_out(port, SCxTDR, c);
631 
632 		port->icount.tx++;
633 	} while (--count > 0);
634 
635 	serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
636 
637 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
638 		uart_write_wakeup(port);
639 	if (uart_circ_empty(xmit)) {
640 		sci_stop_tx(port);
641 	} else {
642 		ctrl = serial_port_in(port, SCSCR);
643 
644 		if (port->type != PORT_SCI) {
645 			serial_port_in(port, SCxSR); /* Dummy read */
646 			serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
647 		}
648 
649 		ctrl |= SCSCR_TIE;
650 		serial_port_out(port, SCSCR, ctrl);
651 	}
652 }
653 
654 /* On SH3, SCIF may read end-of-break as a space->mark char */
655 #define STEPFN(c)  ({int __c = (c); (((__c-1)|(__c)) == -1); })
656 
657 static void sci_receive_chars(struct uart_port *port)
658 {
659 	struct sci_port *sci_port = to_sci_port(port);
660 	struct tty_port *tport = &port->state->port;
661 	int i, count, copied = 0;
662 	unsigned short status;
663 	unsigned char flag;
664 
665 	status = serial_port_in(port, SCxSR);
666 	if (!(status & SCxSR_RDxF(port)))
667 		return;
668 
669 	while (1) {
670 		/* Don't copy more bytes than there is room for in the buffer */
671 		count = tty_buffer_request_room(tport, sci_rxfill(port));
672 
673 		/* If for any reason we can't copy more data, we're done! */
674 		if (count == 0)
675 			break;
676 
677 		if (port->type == PORT_SCI) {
678 			char c = serial_port_in(port, SCxRDR);
679 			if (uart_handle_sysrq_char(port, c) ||
680 			    sci_port->break_flag)
681 				count = 0;
682 			else
683 				tty_insert_flip_char(tport, c, TTY_NORMAL);
684 		} else {
685 			for (i = 0; i < count; i++) {
686 				char c = serial_port_in(port, SCxRDR);
687 
688 				status = serial_port_in(port, SCxSR);
689 #if defined(CONFIG_CPU_SH3)
690 				/* Skip "chars" during break */
691 				if (sci_port->break_flag) {
692 					if ((c == 0) &&
693 					    (status & SCxSR_FER(port))) {
694 						count--; i--;
695 						continue;
696 					}
697 
698 					/* Nonzero => end-of-break */
699 					dev_dbg(port->dev, "debounce<%02x>\n", c);
700 					sci_port->break_flag = 0;
701 
702 					if (STEPFN(c)) {
703 						count--; i--;
704 						continue;
705 					}
706 				}
707 #endif /* CONFIG_CPU_SH3 */
708 				if (uart_handle_sysrq_char(port, c)) {
709 					count--; i--;
710 					continue;
711 				}
712 
713 				/* Store data and status */
714 				if (status & SCxSR_FER(port)) {
715 					flag = TTY_FRAME;
716 					port->icount.frame++;
717 					dev_notice(port->dev, "frame error\n");
718 				} else if (status & SCxSR_PER(port)) {
719 					flag = TTY_PARITY;
720 					port->icount.parity++;
721 					dev_notice(port->dev, "parity error\n");
722 				} else
723 					flag = TTY_NORMAL;
724 
725 				tty_insert_flip_char(tport, c, flag);
726 			}
727 		}
728 
729 		serial_port_in(port, SCxSR); /* dummy read */
730 		serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
731 
732 		copied += count;
733 		port->icount.rx += count;
734 	}
735 
736 	if (copied) {
737 		/* Tell the rest of the system the news. New characters! */
738 		tty_flip_buffer_push(tport);
739 	} else {
740 		serial_port_in(port, SCxSR); /* dummy read */
741 		serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
742 	}
743 }
744 
745 #define SCI_BREAK_JIFFIES (HZ/20)
746 
747 /*
748  * The sci generates interrupts during the break,
749  * 1 per millisecond or so during the break period, for 9600 baud.
750  * So dont bother disabling interrupts.
751  * But dont want more than 1 break event.
752  * Use a kernel timer to periodically poll the rx line until
753  * the break is finished.
754  */
755 static inline void sci_schedule_break_timer(struct sci_port *port)
756 {
757 	mod_timer(&port->break_timer, jiffies + SCI_BREAK_JIFFIES);
758 }
759 
760 /* Ensure that two consecutive samples find the break over. */
761 static void sci_break_timer(unsigned long data)
762 {
763 	struct sci_port *port = (struct sci_port *)data;
764 
765 	if (sci_rxd_in(&port->port) == 0) {
766 		port->break_flag = 1;
767 		sci_schedule_break_timer(port);
768 	} else if (port->break_flag == 1) {
769 		/* break is over. */
770 		port->break_flag = 2;
771 		sci_schedule_break_timer(port);
772 	} else
773 		port->break_flag = 0;
774 }
775 
776 static int sci_handle_errors(struct uart_port *port)
777 {
778 	int copied = 0;
779 	unsigned short status = serial_port_in(port, SCxSR);
780 	struct tty_port *tport = &port->state->port;
781 	struct sci_port *s = to_sci_port(port);
782 
783 	/* Handle overruns */
784 	if (status & (1 << s->overrun_bit)) {
785 		port->icount.overrun++;
786 
787 		/* overrun error */
788 		if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
789 			copied++;
790 
791 		dev_notice(port->dev, "overrun error\n");
792 	}
793 
794 	if (status & SCxSR_FER(port)) {
795 		if (sci_rxd_in(port) == 0) {
796 			/* Notify of BREAK */
797 			struct sci_port *sci_port = to_sci_port(port);
798 
799 			if (!sci_port->break_flag) {
800 				port->icount.brk++;
801 
802 				sci_port->break_flag = 1;
803 				sci_schedule_break_timer(sci_port);
804 
805 				/* Do sysrq handling. */
806 				if (uart_handle_break(port))
807 					return 0;
808 
809 				dev_dbg(port->dev, "BREAK detected\n");
810 
811 				if (tty_insert_flip_char(tport, 0, TTY_BREAK))
812 					copied++;
813 			}
814 
815 		} else {
816 			/* frame error */
817 			port->icount.frame++;
818 
819 			if (tty_insert_flip_char(tport, 0, TTY_FRAME))
820 				copied++;
821 
822 			dev_notice(port->dev, "frame error\n");
823 		}
824 	}
825 
826 	if (status & SCxSR_PER(port)) {
827 		/* parity error */
828 		port->icount.parity++;
829 
830 		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
831 			copied++;
832 
833 		dev_notice(port->dev, "parity error\n");
834 	}
835 
836 	if (copied)
837 		tty_flip_buffer_push(tport);
838 
839 	return copied;
840 }
841 
842 static int sci_handle_fifo_overrun(struct uart_port *port)
843 {
844 	struct tty_port *tport = &port->state->port;
845 	struct sci_port *s = to_sci_port(port);
846 	struct plat_sci_reg *reg;
847 	int copied = 0, offset;
848 	u16 status, bit;
849 
850 	switch (port->type) {
851 	case PORT_SCIF:
852 	case PORT_HSCIF:
853 		offset = SCLSR;
854 		break;
855 	case PORT_SCIFA:
856 	case PORT_SCIFB:
857 		offset = SCxSR;
858 		break;
859 	default:
860 		return 0;
861 	}
862 
863 	reg = sci_getreg(port, offset);
864 	if (!reg->size)
865 		return 0;
866 
867 	status = serial_port_in(port, offset);
868 	bit = 1 << s->overrun_bit;
869 
870 	if (status & bit) {
871 		status &= ~bit;
872 		serial_port_out(port, offset, status);
873 
874 		port->icount.overrun++;
875 
876 		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
877 		tty_flip_buffer_push(tport);
878 
879 		dev_dbg(port->dev, "overrun error\n");
880 		copied++;
881 	}
882 
883 	return copied;
884 }
885 
886 static int sci_handle_breaks(struct uart_port *port)
887 {
888 	int copied = 0;
889 	unsigned short status = serial_port_in(port, SCxSR);
890 	struct tty_port *tport = &port->state->port;
891 	struct sci_port *s = to_sci_port(port);
892 
893 	if (uart_handle_break(port))
894 		return 0;
895 
896 	if (!s->break_flag && status & SCxSR_BRK(port)) {
897 #if defined(CONFIG_CPU_SH3)
898 		/* Debounce break */
899 		s->break_flag = 1;
900 #endif
901 
902 		port->icount.brk++;
903 
904 		/* Notify of BREAK */
905 		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
906 			copied++;
907 
908 		dev_dbg(port->dev, "BREAK detected\n");
909 	}
910 
911 	if (copied)
912 		tty_flip_buffer_push(tport);
913 
914 	copied += sci_handle_fifo_overrun(port);
915 
916 	return copied;
917 }
918 
919 static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
920 {
921 #ifdef CONFIG_SERIAL_SH_SCI_DMA
922 	struct uart_port *port = ptr;
923 	struct sci_port *s = to_sci_port(port);
924 
925 	if (s->chan_rx) {
926 		u16 scr = serial_port_in(port, SCSCR);
927 		u16 ssr = serial_port_in(port, SCxSR);
928 
929 		/* Disable future Rx interrupts */
930 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
931 			disable_irq_nosync(irq);
932 			scr |= SCSCR_RDRQE;
933 		} else {
934 			scr &= ~SCSCR_RIE;
935 		}
936 		serial_port_out(port, SCSCR, scr);
937 		/* Clear current interrupt */
938 		serial_port_out(port, SCxSR, ssr & ~(1 | SCxSR_RDxF(port)));
939 		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n",
940 			jiffies, s->rx_timeout);
941 		mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
942 
943 		return IRQ_HANDLED;
944 	}
945 #endif
946 
947 	/* I think sci_receive_chars has to be called irrespective
948 	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
949 	 * to be disabled?
950 	 */
951 	sci_receive_chars(ptr);
952 
953 	return IRQ_HANDLED;
954 }
955 
956 static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
957 {
958 	struct uart_port *port = ptr;
959 	unsigned long flags;
960 
961 	spin_lock_irqsave(&port->lock, flags);
962 	sci_transmit_chars(port);
963 	spin_unlock_irqrestore(&port->lock, flags);
964 
965 	return IRQ_HANDLED;
966 }
967 
968 static irqreturn_t sci_er_interrupt(int irq, void *ptr)
969 {
970 	struct uart_port *port = ptr;
971 
972 	/* Handle errors */
973 	if (port->type == PORT_SCI) {
974 		if (sci_handle_errors(port)) {
975 			/* discard character in rx buffer */
976 			serial_port_in(port, SCxSR);
977 			serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
978 		}
979 	} else {
980 		sci_handle_fifo_overrun(port);
981 		sci_rx_interrupt(irq, ptr);
982 	}
983 
984 	serial_port_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
985 
986 	/* Kick the transmission */
987 	sci_tx_interrupt(irq, ptr);
988 
989 	return IRQ_HANDLED;
990 }
991 
992 static irqreturn_t sci_br_interrupt(int irq, void *ptr)
993 {
994 	struct uart_port *port = ptr;
995 
996 	/* Handle BREAKs */
997 	sci_handle_breaks(port);
998 	serial_port_out(port, SCxSR, SCxSR_BREAK_CLEAR(port));
999 
1000 	return IRQ_HANDLED;
1001 }
1002 
1003 static inline unsigned long port_rx_irq_mask(struct uart_port *port)
1004 {
1005 	/*
1006 	 * Not all ports (such as SCIFA) will support REIE. Rather than
1007 	 * special-casing the port type, we check the port initialization
1008 	 * IRQ enable mask to see whether the IRQ is desired at all. If
1009 	 * it's unset, it's logically inferred that there's no point in
1010 	 * testing for it.
1011 	 */
1012 	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
1013 }
1014 
1015 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1016 {
1017 	unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1018 	struct uart_port *port = ptr;
1019 	struct sci_port *s = to_sci_port(port);
1020 	irqreturn_t ret = IRQ_NONE;
1021 
1022 	ssr_status = serial_port_in(port, SCxSR);
1023 	scr_status = serial_port_in(port, SCSCR);
1024 	switch (port->type) {
1025 	case PORT_SCIF:
1026 	case PORT_HSCIF:
1027 		orer_status = serial_port_in(port, SCLSR);
1028 		break;
1029 	case PORT_SCIFA:
1030 	case PORT_SCIFB:
1031 		orer_status = ssr_status;
1032 		break;
1033 	}
1034 
1035 	err_enabled = scr_status & port_rx_irq_mask(port);
1036 
1037 	/* Tx Interrupt */
1038 	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1039 	    !s->chan_tx)
1040 		ret = sci_tx_interrupt(irq, ptr);
1041 
1042 	/*
1043 	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1044 	 * DR flags
1045 	 */
1046 	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1047 	    (scr_status & SCSCR_RIE)) {
1048 		if (port->type == PORT_SCIF || port->type == PORT_HSCIF)
1049 			sci_handle_fifo_overrun(port);
1050 		ret = sci_rx_interrupt(irq, ptr);
1051 	}
1052 
1053 	/* Error Interrupt */
1054 	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1055 		ret = sci_er_interrupt(irq, ptr);
1056 
1057 	/* Break Interrupt */
1058 	if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
1059 		ret = sci_br_interrupt(irq, ptr);
1060 
1061 	/* Overrun Interrupt */
1062 	if (orer_status & (1 << s->overrun_bit))
1063 		sci_handle_fifo_overrun(port);
1064 
1065 	return ret;
1066 }
1067 
1068 /*
1069  * Here we define a transition notifier so that we can update all of our
1070  * ports' baud rate when the peripheral clock changes.
1071  */
1072 static int sci_notifier(struct notifier_block *self,
1073 			unsigned long phase, void *p)
1074 {
1075 	struct sci_port *sci_port;
1076 	unsigned long flags;
1077 
1078 	sci_port = container_of(self, struct sci_port, freq_transition);
1079 
1080 	if (phase == CPUFREQ_POSTCHANGE) {
1081 		struct uart_port *port = &sci_port->port;
1082 
1083 		spin_lock_irqsave(&port->lock, flags);
1084 		port->uartclk = clk_get_rate(sci_port->iclk);
1085 		spin_unlock_irqrestore(&port->lock, flags);
1086 	}
1087 
1088 	return NOTIFY_OK;
1089 }
1090 
1091 static struct sci_irq_desc {
1092 	const char	*desc;
1093 	irq_handler_t	handler;
1094 } sci_irq_desc[] = {
1095 	/*
1096 	 * Split out handlers, the default case.
1097 	 */
1098 	[SCIx_ERI_IRQ] = {
1099 		.desc = "rx err",
1100 		.handler = sci_er_interrupt,
1101 	},
1102 
1103 	[SCIx_RXI_IRQ] = {
1104 		.desc = "rx full",
1105 		.handler = sci_rx_interrupt,
1106 	},
1107 
1108 	[SCIx_TXI_IRQ] = {
1109 		.desc = "tx empty",
1110 		.handler = sci_tx_interrupt,
1111 	},
1112 
1113 	[SCIx_BRI_IRQ] = {
1114 		.desc = "break",
1115 		.handler = sci_br_interrupt,
1116 	},
1117 
1118 	/*
1119 	 * Special muxed handler.
1120 	 */
1121 	[SCIx_MUX_IRQ] = {
1122 		.desc = "mux",
1123 		.handler = sci_mpxed_interrupt,
1124 	},
1125 };
1126 
1127 static int sci_request_irq(struct sci_port *port)
1128 {
1129 	struct uart_port *up = &port->port;
1130 	int i, j, ret = 0;
1131 
1132 	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1133 		struct sci_irq_desc *desc;
1134 		int irq;
1135 
1136 		if (SCIx_IRQ_IS_MUXED(port)) {
1137 			i = SCIx_MUX_IRQ;
1138 			irq = up->irq;
1139 		} else {
1140 			irq = port->irqs[i];
1141 
1142 			/*
1143 			 * Certain port types won't support all of the
1144 			 * available interrupt sources.
1145 			 */
1146 			if (unlikely(irq < 0))
1147 				continue;
1148 		}
1149 
1150 		desc = sci_irq_desc + i;
1151 		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1152 					    dev_name(up->dev), desc->desc);
1153 		if (!port->irqstr[j]) {
1154 			dev_err(up->dev, "Failed to allocate %s IRQ string\n",
1155 				desc->desc);
1156 			goto out_nomem;
1157 		}
1158 
1159 		ret = request_irq(irq, desc->handler, up->irqflags,
1160 				  port->irqstr[j], port);
1161 		if (unlikely(ret)) {
1162 			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1163 			goto out_noirq;
1164 		}
1165 	}
1166 
1167 	return 0;
1168 
1169 out_noirq:
1170 	while (--i >= 0)
1171 		free_irq(port->irqs[i], port);
1172 
1173 out_nomem:
1174 	while (--j >= 0)
1175 		kfree(port->irqstr[j]);
1176 
1177 	return ret;
1178 }
1179 
1180 static void sci_free_irq(struct sci_port *port)
1181 {
1182 	int i;
1183 
1184 	/*
1185 	 * Intentionally in reverse order so we iterate over the muxed
1186 	 * IRQ first.
1187 	 */
1188 	for (i = 0; i < SCIx_NR_IRQS; i++) {
1189 		int irq = port->irqs[i];
1190 
1191 		/*
1192 		 * Certain port types won't support all of the available
1193 		 * interrupt sources.
1194 		 */
1195 		if (unlikely(irq < 0))
1196 			continue;
1197 
1198 		free_irq(port->irqs[i], port);
1199 		kfree(port->irqstr[i]);
1200 
1201 		if (SCIx_IRQ_IS_MUXED(port)) {
1202 			/* If there's only one IRQ, we're done. */
1203 			return;
1204 		}
1205 	}
1206 }
1207 
1208 static unsigned int sci_tx_empty(struct uart_port *port)
1209 {
1210 	unsigned short status = serial_port_in(port, SCxSR);
1211 	unsigned short in_tx_fifo = sci_txfill(port);
1212 
1213 	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1214 }
1215 
1216 /*
1217  * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
1218  * CTS/RTS is supported in hardware by at least one port and controlled
1219  * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
1220  * handled via the ->init_pins() op, which is a bit of a one-way street,
1221  * lacking any ability to defer pin control -- this will later be
1222  * converted over to the GPIO framework).
1223  *
1224  * Other modes (such as loopback) are supported generically on certain
1225  * port types, but not others. For these it's sufficient to test for the
1226  * existence of the support register and simply ignore the port type.
1227  */
1228 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
1229 {
1230 	if (mctrl & TIOCM_LOOP) {
1231 		struct plat_sci_reg *reg;
1232 
1233 		/*
1234 		 * Standard loopback mode for SCFCR ports.
1235 		 */
1236 		reg = sci_getreg(port, SCFCR);
1237 		if (reg->size)
1238 			serial_port_out(port, SCFCR,
1239 					serial_port_in(port, SCFCR) |
1240 					SCFCR_LOOP);
1241 	}
1242 }
1243 
1244 static unsigned int sci_get_mctrl(struct uart_port *port)
1245 {
1246 	/*
1247 	 * CTS/RTS is handled in hardware when supported, while nothing
1248 	 * else is wired up. Keep it simple and simply assert DSR/CAR.
1249 	 */
1250 	return TIOCM_DSR | TIOCM_CAR;
1251 }
1252 
1253 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1254 static void sci_dma_tx_complete(void *arg)
1255 {
1256 	struct sci_port *s = arg;
1257 	struct uart_port *port = &s->port;
1258 	struct circ_buf *xmit = &port->state->xmit;
1259 	unsigned long flags;
1260 
1261 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1262 
1263 	spin_lock_irqsave(&port->lock, flags);
1264 
1265 	xmit->tail += sg_dma_len(&s->sg_tx);
1266 	xmit->tail &= UART_XMIT_SIZE - 1;
1267 
1268 	port->icount.tx += sg_dma_len(&s->sg_tx);
1269 
1270 	async_tx_ack(s->desc_tx);
1271 	s->desc_tx = NULL;
1272 
1273 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1274 		uart_write_wakeup(port);
1275 
1276 	if (!uart_circ_empty(xmit)) {
1277 		s->cookie_tx = 0;
1278 		schedule_work(&s->work_tx);
1279 	} else {
1280 		s->cookie_tx = -EINVAL;
1281 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1282 			u16 ctrl = serial_port_in(port, SCSCR);
1283 			serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1284 		}
1285 	}
1286 
1287 	spin_unlock_irqrestore(&port->lock, flags);
1288 }
1289 
1290 /* Locking: called with port lock held */
1291 static int sci_dma_rx_push(struct sci_port *s, size_t count)
1292 {
1293 	struct uart_port *port = &s->port;
1294 	struct tty_port *tport = &port->state->port;
1295 	int i, active, room;
1296 
1297 	room = tty_buffer_request_room(tport, count);
1298 
1299 	if (s->active_rx == s->cookie_rx[0]) {
1300 		active = 0;
1301 	} else if (s->active_rx == s->cookie_rx[1]) {
1302 		active = 1;
1303 	} else {
1304 		dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
1305 		return 0;
1306 	}
1307 
1308 	if (room < count)
1309 		dev_warn(port->dev, "Rx overrun: dropping %zu bytes\n",
1310 			 count - room);
1311 	if (!room)
1312 		return room;
1313 
1314 	for (i = 0; i < room; i++)
1315 		tty_insert_flip_char(tport, ((u8 *)sg_virt(&s->sg_rx[active]))[i],
1316 				     TTY_NORMAL);
1317 
1318 	port->icount.rx += room;
1319 
1320 	return room;
1321 }
1322 
1323 static void sci_dma_rx_complete(void *arg)
1324 {
1325 	struct sci_port *s = arg;
1326 	struct uart_port *port = &s->port;
1327 	unsigned long flags;
1328 	int count;
1329 
1330 	dev_dbg(port->dev, "%s(%d) active #%d\n",
1331 		__func__, port->line, s->active_rx);
1332 
1333 	spin_lock_irqsave(&port->lock, flags);
1334 
1335 	count = sci_dma_rx_push(s, s->buf_len_rx);
1336 
1337 	mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1338 
1339 	spin_unlock_irqrestore(&port->lock, flags);
1340 
1341 	if (count)
1342 		tty_flip_buffer_push(&port->state->port);
1343 
1344 	schedule_work(&s->work_rx);
1345 }
1346 
1347 static void sci_rx_dma_release(struct sci_port *s, bool enable_pio)
1348 {
1349 	struct dma_chan *chan = s->chan_rx;
1350 	struct uart_port *port = &s->port;
1351 
1352 	s->chan_rx = NULL;
1353 	s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL;
1354 	dma_release_channel(chan);
1355 	if (sg_dma_address(&s->sg_rx[0]))
1356 		dma_free_coherent(port->dev, s->buf_len_rx * 2,
1357 				  sg_virt(&s->sg_rx[0]), sg_dma_address(&s->sg_rx[0]));
1358 	if (enable_pio)
1359 		sci_start_rx(port);
1360 }
1361 
1362 static void sci_tx_dma_release(struct sci_port *s, bool enable_pio)
1363 {
1364 	struct dma_chan *chan = s->chan_tx;
1365 	struct uart_port *port = &s->port;
1366 
1367 	s->chan_tx = NULL;
1368 	s->cookie_tx = -EINVAL;
1369 	dma_release_channel(chan);
1370 	if (enable_pio)
1371 		sci_start_tx(port);
1372 }
1373 
1374 static void sci_submit_rx(struct sci_port *s)
1375 {
1376 	struct dma_chan *chan = s->chan_rx;
1377 	int i;
1378 
1379 	for (i = 0; i < 2; i++) {
1380 		struct scatterlist *sg = &s->sg_rx[i];
1381 		struct dma_async_tx_descriptor *desc;
1382 
1383 		desc = dmaengine_prep_slave_sg(chan,
1384 			sg, 1, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
1385 
1386 		if (desc) {
1387 			s->desc_rx[i] = desc;
1388 			desc->callback = sci_dma_rx_complete;
1389 			desc->callback_param = s;
1390 			s->cookie_rx[i] = desc->tx_submit(desc);
1391 		}
1392 
1393 		if (!desc || s->cookie_rx[i] < 0) {
1394 			if (i) {
1395 				async_tx_ack(s->desc_rx[0]);
1396 				s->cookie_rx[0] = -EINVAL;
1397 			}
1398 			if (desc) {
1399 				async_tx_ack(desc);
1400 				s->cookie_rx[i] = -EINVAL;
1401 			}
1402 			dev_warn(s->port.dev,
1403 				 "failed to re-start DMA, using PIO\n");
1404 			sci_rx_dma_release(s, true);
1405 			return;
1406 		}
1407 		dev_dbg(s->port.dev, "%s(): cookie %d to #%d\n",
1408 			__func__, s->cookie_rx[i], i);
1409 	}
1410 
1411 	s->active_rx = s->cookie_rx[0];
1412 
1413 	dma_async_issue_pending(chan);
1414 }
1415 
1416 static void work_fn_rx(struct work_struct *work)
1417 {
1418 	struct sci_port *s = container_of(work, struct sci_port, work_rx);
1419 	struct uart_port *port = &s->port;
1420 	struct dma_async_tx_descriptor *desc;
1421 	int new;
1422 
1423 	if (s->active_rx == s->cookie_rx[0]) {
1424 		new = 0;
1425 	} else if (s->active_rx == s->cookie_rx[1]) {
1426 		new = 1;
1427 	} else {
1428 		dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
1429 		return;
1430 	}
1431 	desc = s->desc_rx[new];
1432 
1433 	if (dma_async_is_tx_complete(s->chan_rx, s->active_rx, NULL, NULL) !=
1434 	    DMA_COMPLETE) {
1435 		/* Handle incomplete DMA receive */
1436 		struct dma_chan *chan = s->chan_rx;
1437 		struct shdma_desc *sh_desc = container_of(desc,
1438 					struct shdma_desc, async_tx);
1439 		unsigned long flags;
1440 		int count;
1441 
1442 		dmaengine_terminate_all(chan);
1443 		dev_dbg(port->dev, "Read %zu bytes with cookie %d\n",
1444 			sh_desc->partial, sh_desc->cookie);
1445 
1446 		spin_lock_irqsave(&port->lock, flags);
1447 		count = sci_dma_rx_push(s, sh_desc->partial);
1448 		spin_unlock_irqrestore(&port->lock, flags);
1449 
1450 		if (count)
1451 			tty_flip_buffer_push(&port->state->port);
1452 
1453 		sci_submit_rx(s);
1454 
1455 		return;
1456 	}
1457 
1458 	s->cookie_rx[new] = desc->tx_submit(desc);
1459 	if (s->cookie_rx[new] < 0) {
1460 		dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1461 		sci_rx_dma_release(s, true);
1462 		return;
1463 	}
1464 
1465 	s->active_rx = s->cookie_rx[!new];
1466 
1467 	dev_dbg(port->dev, "%s: cookie %d #%d, new active #%d\n",
1468 		__func__, s->cookie_rx[new], new, s->active_rx);
1469 }
1470 
1471 static void work_fn_tx(struct work_struct *work)
1472 {
1473 	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1474 	struct dma_async_tx_descriptor *desc;
1475 	struct dma_chan *chan = s->chan_tx;
1476 	struct uart_port *port = &s->port;
1477 	struct circ_buf *xmit = &port->state->xmit;
1478 	struct scatterlist *sg = &s->sg_tx;
1479 
1480 	/*
1481 	 * DMA is idle now.
1482 	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1483 	 * offsets and lengths. Since it is a circular buffer, we have to
1484 	 * transmit till the end, and then the rest. Take the port lock to get a
1485 	 * consistent xmit buffer state.
1486 	 */
1487 	spin_lock_irq(&port->lock);
1488 	sg->offset = xmit->tail & (UART_XMIT_SIZE - 1);
1489 	sg_dma_address(sg) = (sg_dma_address(sg) & ~(UART_XMIT_SIZE - 1)) +
1490 		sg->offset;
1491 	sg_dma_len(sg) = min((int)CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
1492 		CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
1493 	spin_unlock_irq(&port->lock);
1494 
1495 	BUG_ON(!sg_dma_len(sg));
1496 
1497 	desc = dmaengine_prep_slave_sg(chan,
1498 			sg, s->sg_len_tx, DMA_MEM_TO_DEV,
1499 			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1500 	if (!desc) {
1501 		/* switch to PIO */
1502 		sci_tx_dma_release(s, true);
1503 		return;
1504 	}
1505 
1506 	dma_sync_sg_for_device(port->dev, sg, 1, DMA_TO_DEVICE);
1507 
1508 	spin_lock_irq(&port->lock);
1509 	s->desc_tx = desc;
1510 	desc->callback = sci_dma_tx_complete;
1511 	desc->callback_param = s;
1512 	spin_unlock_irq(&port->lock);
1513 	s->cookie_tx = desc->tx_submit(desc);
1514 	if (s->cookie_tx < 0) {
1515 		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1516 		/* switch to PIO */
1517 		sci_tx_dma_release(s, true);
1518 		return;
1519 	}
1520 
1521 	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
1522 		__func__, xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
1523 
1524 	dma_async_issue_pending(chan);
1525 }
1526 #endif
1527 
1528 static void sci_start_tx(struct uart_port *port)
1529 {
1530 	struct sci_port *s = to_sci_port(port);
1531 	unsigned short ctrl;
1532 
1533 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1534 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1535 		u16 new, scr = serial_port_in(port, SCSCR);
1536 		if (s->chan_tx)
1537 			new = scr | SCSCR_TDRQE;
1538 		else
1539 			new = scr & ~SCSCR_TDRQE;
1540 		if (new != scr)
1541 			serial_port_out(port, SCSCR, new);
1542 	}
1543 
1544 	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
1545 	    s->cookie_tx < 0) {
1546 		s->cookie_tx = 0;
1547 		schedule_work(&s->work_tx);
1548 	}
1549 #endif
1550 
1551 	if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1552 		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
1553 		ctrl = serial_port_in(port, SCSCR);
1554 		serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
1555 	}
1556 }
1557 
1558 static void sci_stop_tx(struct uart_port *port)
1559 {
1560 	unsigned short ctrl;
1561 
1562 	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
1563 	ctrl = serial_port_in(port, SCSCR);
1564 
1565 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1566 		ctrl &= ~SCSCR_TDRQE;
1567 
1568 	ctrl &= ~SCSCR_TIE;
1569 
1570 	serial_port_out(port, SCSCR, ctrl);
1571 }
1572 
1573 static void sci_start_rx(struct uart_port *port)
1574 {
1575 	unsigned short ctrl;
1576 
1577 	ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
1578 
1579 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1580 		ctrl &= ~SCSCR_RDRQE;
1581 
1582 	serial_port_out(port, SCSCR, ctrl);
1583 }
1584 
1585 static void sci_stop_rx(struct uart_port *port)
1586 {
1587 	unsigned short ctrl;
1588 
1589 	ctrl = serial_port_in(port, SCSCR);
1590 
1591 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1592 		ctrl &= ~SCSCR_RDRQE;
1593 
1594 	ctrl &= ~port_rx_irq_mask(port);
1595 
1596 	serial_port_out(port, SCSCR, ctrl);
1597 }
1598 
1599 static void sci_break_ctl(struct uart_port *port, int break_state)
1600 {
1601 	struct sci_port *s = to_sci_port(port);
1602 	struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
1603 	unsigned short scscr, scsptr;
1604 
1605 	/* check wheter the port has SCSPTR */
1606 	if (!reg->size) {
1607 		/*
1608 		 * Not supported by hardware. Most parts couple break and rx
1609 		 * interrupts together, with break detection always enabled.
1610 		 */
1611 		return;
1612 	}
1613 
1614 	scsptr = serial_port_in(port, SCSPTR);
1615 	scscr = serial_port_in(port, SCSCR);
1616 
1617 	if (break_state == -1) {
1618 		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
1619 		scscr &= ~SCSCR_TE;
1620 	} else {
1621 		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
1622 		scscr |= SCSCR_TE;
1623 	}
1624 
1625 	serial_port_out(port, SCSPTR, scsptr);
1626 	serial_port_out(port, SCSCR, scscr);
1627 }
1628 
1629 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1630 static bool filter(struct dma_chan *chan, void *slave)
1631 {
1632 	struct sh_dmae_slave *param = slave;
1633 
1634 	dev_dbg(chan->device->dev, "%s: slave ID %d\n",
1635 		__func__, param->shdma_slave.slave_id);
1636 
1637 	chan->private = &param->shdma_slave;
1638 	return true;
1639 }
1640 
1641 static void rx_timer_fn(unsigned long arg)
1642 {
1643 	struct sci_port *s = (struct sci_port *)arg;
1644 	struct uart_port *port = &s->port;
1645 	u16 scr = serial_port_in(port, SCSCR);
1646 
1647 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1648 		scr &= ~SCSCR_RDRQE;
1649 		enable_irq(s->irqs[SCIx_RXI_IRQ]);
1650 	}
1651 	serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1652 	dev_dbg(port->dev, "DMA Rx timed out\n");
1653 	schedule_work(&s->work_rx);
1654 }
1655 
1656 static void sci_request_dma(struct uart_port *port)
1657 {
1658 	struct sci_port *s = to_sci_port(port);
1659 	struct sh_dmae_slave *param;
1660 	struct dma_chan *chan;
1661 	dma_cap_mask_t mask;
1662 	int nent;
1663 
1664 	dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1665 
1666 	if (s->cfg->dma_slave_tx <= 0 || s->cfg->dma_slave_rx <= 0)
1667 		return;
1668 
1669 	dma_cap_zero(mask);
1670 	dma_cap_set(DMA_SLAVE, mask);
1671 
1672 	param = &s->param_tx;
1673 
1674 	/* Slave ID, e.g., SHDMA_SLAVE_SCIF0_TX */
1675 	param->shdma_slave.slave_id = s->cfg->dma_slave_tx;
1676 
1677 	s->cookie_tx = -EINVAL;
1678 	chan = dma_request_channel(mask, filter, param);
1679 	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1680 	if (chan) {
1681 		s->chan_tx = chan;
1682 		sg_init_table(&s->sg_tx, 1);
1683 		/* UART circular tx buffer is an aligned page. */
1684 		BUG_ON((uintptr_t)port->state->xmit.buf & ~PAGE_MASK);
1685 		sg_set_page(&s->sg_tx, virt_to_page(port->state->xmit.buf),
1686 			    UART_XMIT_SIZE,
1687 			    (uintptr_t)port->state->xmit.buf & ~PAGE_MASK);
1688 		nent = dma_map_sg(port->dev, &s->sg_tx, 1, DMA_TO_DEVICE);
1689 		if (!nent)
1690 			sci_tx_dma_release(s, false);
1691 		else
1692 			dev_dbg(port->dev, "%s: mapped %d@%p to %pad\n",
1693 				__func__,
1694 				sg_dma_len(&s->sg_tx), port->state->xmit.buf,
1695 				&sg_dma_address(&s->sg_tx));
1696 
1697 		s->sg_len_tx = nent;
1698 
1699 		INIT_WORK(&s->work_tx, work_fn_tx);
1700 	}
1701 
1702 	param = &s->param_rx;
1703 
1704 	/* Slave ID, e.g., SHDMA_SLAVE_SCIF0_RX */
1705 	param->shdma_slave.slave_id = s->cfg->dma_slave_rx;
1706 
1707 	chan = dma_request_channel(mask, filter, param);
1708 	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1709 	if (chan) {
1710 		dma_addr_t dma[2];
1711 		void *buf[2];
1712 		int i;
1713 
1714 		s->chan_rx = chan;
1715 
1716 		s->buf_len_rx = 2 * max(16, (int)port->fifosize);
1717 		buf[0] = dma_alloc_coherent(port->dev, s->buf_len_rx * 2,
1718 					    &dma[0], GFP_KERNEL);
1719 
1720 		if (!buf[0]) {
1721 			dev_warn(port->dev,
1722 				 "failed to allocate dma buffer, using PIO\n");
1723 			sci_rx_dma_release(s, true);
1724 			return;
1725 		}
1726 
1727 		buf[1] = buf[0] + s->buf_len_rx;
1728 		dma[1] = dma[0] + s->buf_len_rx;
1729 
1730 		for (i = 0; i < 2; i++) {
1731 			struct scatterlist *sg = &s->sg_rx[i];
1732 
1733 			sg_init_table(sg, 1);
1734 			sg_set_page(sg, virt_to_page(buf[i]), s->buf_len_rx,
1735 				    (uintptr_t)buf[i] & ~PAGE_MASK);
1736 			sg_dma_address(sg) = dma[i];
1737 		}
1738 
1739 		INIT_WORK(&s->work_rx, work_fn_rx);
1740 		setup_timer(&s->rx_timer, rx_timer_fn, (unsigned long)s);
1741 
1742 		sci_submit_rx(s);
1743 	}
1744 }
1745 
1746 static void sci_free_dma(struct uart_port *port)
1747 {
1748 	struct sci_port *s = to_sci_port(port);
1749 
1750 	if (s->chan_tx)
1751 		sci_tx_dma_release(s, false);
1752 	if (s->chan_rx)
1753 		sci_rx_dma_release(s, false);
1754 }
1755 #else
1756 static inline void sci_request_dma(struct uart_port *port)
1757 {
1758 }
1759 
1760 static inline void sci_free_dma(struct uart_port *port)
1761 {
1762 }
1763 #endif
1764 
1765 static int sci_startup(struct uart_port *port)
1766 {
1767 	struct sci_port *s = to_sci_port(port);
1768 	unsigned long flags;
1769 	int ret;
1770 
1771 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1772 
1773 	ret = sci_request_irq(s);
1774 	if (unlikely(ret < 0))
1775 		return ret;
1776 
1777 	sci_request_dma(port);
1778 
1779 	spin_lock_irqsave(&port->lock, flags);
1780 	sci_start_tx(port);
1781 	sci_start_rx(port);
1782 	spin_unlock_irqrestore(&port->lock, flags);
1783 
1784 	return 0;
1785 }
1786 
1787 static void sci_shutdown(struct uart_port *port)
1788 {
1789 	struct sci_port *s = to_sci_port(port);
1790 	unsigned long flags;
1791 
1792 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1793 
1794 	spin_lock_irqsave(&port->lock, flags);
1795 	sci_stop_rx(port);
1796 	sci_stop_tx(port);
1797 	spin_unlock_irqrestore(&port->lock, flags);
1798 
1799 	sci_free_dma(port);
1800 	sci_free_irq(s);
1801 }
1802 
1803 static unsigned int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
1804 				   unsigned long freq)
1805 {
1806 	if (s->sampling_rate)
1807 		return DIV_ROUND_CLOSEST(freq, s->sampling_rate * bps) - 1;
1808 
1809 	/* Warn, but use a safe default */
1810 	WARN_ON(1);
1811 
1812 	return ((freq + 16 * bps) / (32 * bps) - 1);
1813 }
1814 
1815 /* calculate frame length from SMR */
1816 static int sci_baud_calc_frame_len(unsigned int smr_val)
1817 {
1818 	int len = 10;
1819 
1820 	if (smr_val & SCSMR_CHR)
1821 		len--;
1822 	if (smr_val & SCSMR_PE)
1823 		len++;
1824 	if (smr_val & SCSMR_STOP)
1825 		len++;
1826 
1827 	return len;
1828 }
1829 
1830 
1831 /* calculate sample rate, BRR, and clock select for HSCIF */
1832 static void sci_baud_calc_hscif(unsigned int bps, unsigned long freq,
1833 				int *brr, unsigned int *srr,
1834 				unsigned int *cks, int frame_len)
1835 {
1836 	int sr, c, br, err, recv_margin;
1837 	int min_err = 1000; /* 100% */
1838 	int recv_max_margin = 0;
1839 
1840 	/* Find the combination of sample rate and clock select with the
1841 	   smallest deviation from the desired baud rate. */
1842 	for (sr = 8; sr <= 32; sr++) {
1843 		for (c = 0; c <= 3; c++) {
1844 			/* integerized formulas from HSCIF documentation */
1845 			br = DIV_ROUND_CLOSEST(freq, (sr *
1846 					      (1 << (2 * c + 1)) * bps)) - 1;
1847 			br = clamp(br, 0, 255);
1848 			err = DIV_ROUND_CLOSEST(freq, ((br + 1) * bps * sr *
1849 					       (1 << (2 * c + 1)) / 1000)) -
1850 					       1000;
1851 			/* Calc recv margin
1852 			 * M: Receive margin (%)
1853 			 * N: Ratio of bit rate to clock (N = sampling rate)
1854 			 * D: Clock duty (D = 0 to 1.0)
1855 			 * L: Frame length (L = 9 to 12)
1856 			 * F: Absolute value of clock frequency deviation
1857 			 *
1858 			 *  M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
1859 			 *      (|D - 0.5| / N * (1 + F))|
1860 			 *  NOTE: Usually, treat D for 0.5, F is 0 by this
1861 			 *        calculation.
1862 			 */
1863 			recv_margin = abs((500 -
1864 					DIV_ROUND_CLOSEST(1000, sr << 1)) / 10);
1865 			if (abs(min_err) > abs(err)) {
1866 				min_err = err;
1867 				recv_max_margin = recv_margin;
1868 			} else if ((min_err == err) &&
1869 				   (recv_margin > recv_max_margin))
1870 				recv_max_margin = recv_margin;
1871 			else
1872 				continue;
1873 
1874 			*brr = br;
1875 			*srr = sr - 1;
1876 			*cks = c;
1877 		}
1878 	}
1879 
1880 	if (min_err == 1000) {
1881 		WARN_ON(1);
1882 		/* use defaults */
1883 		*brr = 255;
1884 		*srr = 15;
1885 		*cks = 0;
1886 	}
1887 }
1888 
1889 static void sci_reset(struct uart_port *port)
1890 {
1891 	struct plat_sci_reg *reg;
1892 	unsigned int status;
1893 
1894 	do {
1895 		status = serial_port_in(port, SCxSR);
1896 	} while (!(status & SCxSR_TEND(port)));
1897 
1898 	serial_port_out(port, SCSCR, 0x00);	/* TE=0, RE=0, CKE1=0 */
1899 
1900 	reg = sci_getreg(port, SCFCR);
1901 	if (reg->size)
1902 		serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
1903 }
1904 
1905 static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
1906 			    struct ktermios *old)
1907 {
1908 	struct sci_port *s = to_sci_port(port);
1909 	struct plat_sci_reg *reg;
1910 	unsigned int baud, smr_val = 0, max_baud, cks = 0;
1911 	int t = -1;
1912 	unsigned int srr = 15;
1913 
1914 	if ((termios->c_cflag & CSIZE) == CS7)
1915 		smr_val |= SCSMR_CHR;
1916 	if (termios->c_cflag & PARENB)
1917 		smr_val |= SCSMR_PE;
1918 	if (termios->c_cflag & PARODD)
1919 		smr_val |= SCSMR_PE | SCSMR_ODD;
1920 	if (termios->c_cflag & CSTOPB)
1921 		smr_val |= SCSMR_STOP;
1922 
1923 	/*
1924 	 * earlyprintk comes here early on with port->uartclk set to zero.
1925 	 * the clock framework is not up and running at this point so here
1926 	 * we assume that 115200 is the maximum baud rate. please note that
1927 	 * the baud rate is not programmed during earlyprintk - it is assumed
1928 	 * that the previous boot loader has enabled required clocks and
1929 	 * setup the baud rate generator hardware for us already.
1930 	 */
1931 	max_baud = port->uartclk ? port->uartclk / 16 : 115200;
1932 
1933 	baud = uart_get_baud_rate(port, termios, old, 0, max_baud);
1934 	if (likely(baud && port->uartclk)) {
1935 		if (s->cfg->type == PORT_HSCIF) {
1936 			int frame_len = sci_baud_calc_frame_len(smr_val);
1937 			sci_baud_calc_hscif(baud, port->uartclk, &t, &srr,
1938 					    &cks, frame_len);
1939 		} else {
1940 			t = sci_scbrr_calc(s, baud, port->uartclk);
1941 			for (cks = 0; t >= 256 && cks <= 3; cks++)
1942 				t >>= 2;
1943 		}
1944 	}
1945 
1946 	sci_port_enable(s);
1947 
1948 	sci_reset(port);
1949 
1950 	smr_val |= serial_port_in(port, SCSMR) & 3;
1951 
1952 	uart_update_timeout(port, termios->c_cflag, baud);
1953 
1954 	dev_dbg(port->dev, "%s: SMR %x, cks %x, t %x, SCSCR %x\n",
1955 		__func__, smr_val, cks, t, s->cfg->scscr);
1956 
1957 	if (t >= 0) {
1958 		serial_port_out(port, SCSMR, (smr_val & ~SCSMR_CKS) | cks);
1959 		serial_port_out(port, SCBRR, t);
1960 		reg = sci_getreg(port, HSSRR);
1961 		if (reg->size)
1962 			serial_port_out(port, HSSRR, srr | HSCIF_SRE);
1963 		udelay((1000000+(baud-1)) / baud); /* Wait one bit interval */
1964 	} else
1965 		serial_port_out(port, SCSMR, smr_val);
1966 
1967 	sci_init_pins(port, termios->c_cflag);
1968 
1969 	reg = sci_getreg(port, SCFCR);
1970 	if (reg->size) {
1971 		unsigned short ctrl = serial_port_in(port, SCFCR);
1972 
1973 		if (s->cfg->capabilities & SCIx_HAVE_RTSCTS) {
1974 			if (termios->c_cflag & CRTSCTS)
1975 				ctrl |= SCFCR_MCE;
1976 			else
1977 				ctrl &= ~SCFCR_MCE;
1978 		}
1979 
1980 		/*
1981 		 * As we've done a sci_reset() above, ensure we don't
1982 		 * interfere with the FIFOs while toggling MCE. As the
1983 		 * reset values could still be set, simply mask them out.
1984 		 */
1985 		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
1986 
1987 		serial_port_out(port, SCFCR, ctrl);
1988 	}
1989 
1990 	serial_port_out(port, SCSCR, s->cfg->scscr);
1991 
1992 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1993 	/*
1994 	 * Calculate delay for 2 DMA buffers (4 FIFO).
1995 	 * See drivers/serial/serial_core.c::uart_update_timeout(). With 10
1996 	 * bits (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above function
1997 	 * calculates 1 jiffie for the data plus 5 jiffies for the "slop(e)."
1998 	 * Then below we calculate 5 jiffies (20ms) for 2 DMA buffers (4 FIFO
1999 	 * sizes), but when performing a faster transfer, value obtained by
2000 	 * this formula is may not enough. Therefore, if value is smaller than
2001 	 * 20msec, this sets 20msec as timeout of DMA.
2002 	 */
2003 	if (s->chan_rx) {
2004 		unsigned int bits;
2005 
2006 		/* byte size and parity */
2007 		switch (termios->c_cflag & CSIZE) {
2008 		case CS5:
2009 			bits = 7;
2010 			break;
2011 		case CS6:
2012 			bits = 8;
2013 			break;
2014 		case CS7:
2015 			bits = 9;
2016 			break;
2017 		default:
2018 			bits = 10;
2019 			break;
2020 		}
2021 
2022 		if (termios->c_cflag & CSTOPB)
2023 			bits++;
2024 		if (termios->c_cflag & PARENB)
2025 			bits++;
2026 		s->rx_timeout = DIV_ROUND_UP((s->buf_len_rx * 2 * bits * HZ) /
2027 					     (baud / 10), 10);
2028 		dev_dbg(port->dev, "DMA Rx t-out %ums, tty t-out %u jiffies\n",
2029 			s->rx_timeout * 1000 / HZ, port->timeout);
2030 		if (s->rx_timeout < msecs_to_jiffies(20))
2031 			s->rx_timeout = msecs_to_jiffies(20);
2032 	}
2033 #endif
2034 
2035 	if ((termios->c_cflag & CREAD) != 0)
2036 		sci_start_rx(port);
2037 
2038 	sci_port_disable(s);
2039 }
2040 
2041 static void sci_pm(struct uart_port *port, unsigned int state,
2042 		   unsigned int oldstate)
2043 {
2044 	struct sci_port *sci_port = to_sci_port(port);
2045 
2046 	switch (state) {
2047 	case UART_PM_STATE_OFF:
2048 		sci_port_disable(sci_port);
2049 		break;
2050 	default:
2051 		sci_port_enable(sci_port);
2052 		break;
2053 	}
2054 }
2055 
2056 static const char *sci_type(struct uart_port *port)
2057 {
2058 	switch (port->type) {
2059 	case PORT_IRDA:
2060 		return "irda";
2061 	case PORT_SCI:
2062 		return "sci";
2063 	case PORT_SCIF:
2064 		return "scif";
2065 	case PORT_SCIFA:
2066 		return "scifa";
2067 	case PORT_SCIFB:
2068 		return "scifb";
2069 	case PORT_HSCIF:
2070 		return "hscif";
2071 	}
2072 
2073 	return NULL;
2074 }
2075 
2076 static inline unsigned long sci_port_size(struct uart_port *port)
2077 {
2078 	/*
2079 	 * Pick an arbitrary size that encapsulates all of the base
2080 	 * registers by default. This can be optimized later, or derived
2081 	 * from platform resource data at such a time that ports begin to
2082 	 * behave more erratically.
2083 	 */
2084 	if (port->type == PORT_HSCIF)
2085 		return 96;
2086 	else
2087 		return 64;
2088 }
2089 
2090 static int sci_remap_port(struct uart_port *port)
2091 {
2092 	unsigned long size = sci_port_size(port);
2093 
2094 	/*
2095 	 * Nothing to do if there's already an established membase.
2096 	 */
2097 	if (port->membase)
2098 		return 0;
2099 
2100 	if (port->flags & UPF_IOREMAP) {
2101 		port->membase = ioremap_nocache(port->mapbase, size);
2102 		if (unlikely(!port->membase)) {
2103 			dev_err(port->dev, "can't remap port#%d\n", port->line);
2104 			return -ENXIO;
2105 		}
2106 	} else {
2107 		/*
2108 		 * For the simple (and majority of) cases where we don't
2109 		 * need to do any remapping, just cast the cookie
2110 		 * directly.
2111 		 */
2112 		port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2113 	}
2114 
2115 	return 0;
2116 }
2117 
2118 static void sci_release_port(struct uart_port *port)
2119 {
2120 	if (port->flags & UPF_IOREMAP) {
2121 		iounmap(port->membase);
2122 		port->membase = NULL;
2123 	}
2124 
2125 	release_mem_region(port->mapbase, sci_port_size(port));
2126 }
2127 
2128 static int sci_request_port(struct uart_port *port)
2129 {
2130 	unsigned long size = sci_port_size(port);
2131 	struct resource *res;
2132 	int ret;
2133 
2134 	res = request_mem_region(port->mapbase, size, dev_name(port->dev));
2135 	if (unlikely(res == NULL))
2136 		return -EBUSY;
2137 
2138 	ret = sci_remap_port(port);
2139 	if (unlikely(ret != 0)) {
2140 		release_resource(res);
2141 		return ret;
2142 	}
2143 
2144 	return 0;
2145 }
2146 
2147 static void sci_config_port(struct uart_port *port, int flags)
2148 {
2149 	if (flags & UART_CONFIG_TYPE) {
2150 		struct sci_port *sport = to_sci_port(port);
2151 
2152 		port->type = sport->cfg->type;
2153 		sci_request_port(port);
2154 	}
2155 }
2156 
2157 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2158 {
2159 	if (ser->baud_base < 2400)
2160 		/* No paper tape reader for Mitch.. */
2161 		return -EINVAL;
2162 
2163 	return 0;
2164 }
2165 
2166 static struct uart_ops sci_uart_ops = {
2167 	.tx_empty	= sci_tx_empty,
2168 	.set_mctrl	= sci_set_mctrl,
2169 	.get_mctrl	= sci_get_mctrl,
2170 	.start_tx	= sci_start_tx,
2171 	.stop_tx	= sci_stop_tx,
2172 	.stop_rx	= sci_stop_rx,
2173 	.break_ctl	= sci_break_ctl,
2174 	.startup	= sci_startup,
2175 	.shutdown	= sci_shutdown,
2176 	.set_termios	= sci_set_termios,
2177 	.pm		= sci_pm,
2178 	.type		= sci_type,
2179 	.release_port	= sci_release_port,
2180 	.request_port	= sci_request_port,
2181 	.config_port	= sci_config_port,
2182 	.verify_port	= sci_verify_port,
2183 #ifdef CONFIG_CONSOLE_POLL
2184 	.poll_get_char	= sci_poll_get_char,
2185 	.poll_put_char	= sci_poll_put_char,
2186 #endif
2187 };
2188 
2189 static int sci_init_single(struct platform_device *dev,
2190 			   struct sci_port *sci_port, unsigned int index,
2191 			   struct plat_sci_port *p, bool early)
2192 {
2193 	struct uart_port *port = &sci_port->port;
2194 	const struct resource *res;
2195 	unsigned int sampling_rate;
2196 	unsigned int i;
2197 	int ret;
2198 
2199 	sci_port->cfg	= p;
2200 
2201 	port->ops	= &sci_uart_ops;
2202 	port->iotype	= UPIO_MEM;
2203 	port->line	= index;
2204 
2205 	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2206 	if (res == NULL)
2207 		return -ENOMEM;
2208 
2209 	port->mapbase = res->start;
2210 
2211 	for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i)
2212 		sci_port->irqs[i] = platform_get_irq(dev, i);
2213 
2214 	/* The SCI generates several interrupts. They can be muxed together or
2215 	 * connected to different interrupt lines. In the muxed case only one
2216 	 * interrupt resource is specified. In the non-muxed case three or four
2217 	 * interrupt resources are specified, as the BRI interrupt is optional.
2218 	 */
2219 	if (sci_port->irqs[0] < 0)
2220 		return -ENXIO;
2221 
2222 	if (sci_port->irqs[1] < 0) {
2223 		sci_port->irqs[1] = sci_port->irqs[0];
2224 		sci_port->irqs[2] = sci_port->irqs[0];
2225 		sci_port->irqs[3] = sci_port->irqs[0];
2226 	}
2227 
2228 	if (p->regtype == SCIx_PROBE_REGTYPE) {
2229 		ret = sci_probe_regmap(p);
2230 		if (unlikely(ret))
2231 			return ret;
2232 	}
2233 
2234 	switch (p->type) {
2235 	case PORT_SCIFB:
2236 		port->fifosize = 256;
2237 		sci_port->overrun_bit = 9;
2238 		sampling_rate = 16;
2239 		break;
2240 	case PORT_HSCIF:
2241 		port->fifosize = 128;
2242 		sampling_rate = 0;
2243 		sci_port->overrun_bit = 0;
2244 		break;
2245 	case PORT_SCIFA:
2246 		port->fifosize = 64;
2247 		sci_port->overrun_bit = 9;
2248 		sampling_rate = 16;
2249 		break;
2250 	case PORT_SCIF:
2251 		port->fifosize = 16;
2252 		if (p->regtype == SCIx_SH7705_SCIF_REGTYPE) {
2253 			sci_port->overrun_bit = 9;
2254 			sampling_rate = 16;
2255 		} else {
2256 			sci_port->overrun_bit = 0;
2257 			sampling_rate = 32;
2258 		}
2259 		break;
2260 	default:
2261 		port->fifosize = 1;
2262 		sci_port->overrun_bit = 5;
2263 		sampling_rate = 32;
2264 		break;
2265 	}
2266 
2267 	/* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2268 	 * match the SoC datasheet, this should be investigated. Let platform
2269 	 * data override the sampling rate for now.
2270 	 */
2271 	sci_port->sampling_rate = p->sampling_rate ? p->sampling_rate
2272 				: sampling_rate;
2273 
2274 	if (!early) {
2275 		sci_port->iclk = clk_get(&dev->dev, "sci_ick");
2276 		if (IS_ERR(sci_port->iclk)) {
2277 			sci_port->iclk = clk_get(&dev->dev, "peripheral_clk");
2278 			if (IS_ERR(sci_port->iclk)) {
2279 				dev_err(&dev->dev, "can't get iclk\n");
2280 				return PTR_ERR(sci_port->iclk);
2281 			}
2282 		}
2283 
2284 		/*
2285 		 * The function clock is optional, ignore it if we can't
2286 		 * find it.
2287 		 */
2288 		sci_port->fclk = clk_get(&dev->dev, "sci_fck");
2289 		if (IS_ERR(sci_port->fclk))
2290 			sci_port->fclk = NULL;
2291 
2292 		port->dev = &dev->dev;
2293 
2294 		pm_runtime_enable(&dev->dev);
2295 	}
2296 
2297 	sci_port->break_timer.data = (unsigned long)sci_port;
2298 	sci_port->break_timer.function = sci_break_timer;
2299 	init_timer(&sci_port->break_timer);
2300 
2301 	/*
2302 	 * Establish some sensible defaults for the error detection.
2303 	 */
2304 	sci_port->error_mask = (p->type == PORT_SCI) ?
2305 			SCI_DEFAULT_ERROR_MASK : SCIF_DEFAULT_ERROR_MASK;
2306 
2307 	/*
2308 	 * Establish sensible defaults for the overrun detection, unless
2309 	 * the part has explicitly disabled support for it.
2310 	 */
2311 
2312 	/*
2313 	 * Make the error mask inclusive of overrun detection, if
2314 	 * supported.
2315 	 */
2316 	sci_port->error_mask |= 1 << sci_port->overrun_bit;
2317 
2318 	port->type		= p->type;
2319 	port->flags		= UPF_FIXED_PORT | p->flags;
2320 	port->regshift		= p->regshift;
2321 
2322 	/*
2323 	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
2324 	 * for the multi-IRQ ports, which is where we are primarily
2325 	 * concerned with the shutdown path synchronization.
2326 	 *
2327 	 * For the muxed case there's nothing more to do.
2328 	 */
2329 	port->irq		= sci_port->irqs[SCIx_RXI_IRQ];
2330 	port->irqflags		= 0;
2331 
2332 	port->serial_in		= sci_serial_in;
2333 	port->serial_out	= sci_serial_out;
2334 
2335 	if (p->dma_slave_tx > 0 && p->dma_slave_rx > 0)
2336 		dev_dbg(port->dev, "DMA tx %d, rx %d\n",
2337 			p->dma_slave_tx, p->dma_slave_rx);
2338 
2339 	return 0;
2340 }
2341 
2342 static void sci_cleanup_single(struct sci_port *port)
2343 {
2344 	clk_put(port->iclk);
2345 	clk_put(port->fclk);
2346 
2347 	pm_runtime_disable(port->port.dev);
2348 }
2349 
2350 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
2351 static void serial_console_putchar(struct uart_port *port, int ch)
2352 {
2353 	sci_poll_put_char(port, ch);
2354 }
2355 
2356 /*
2357  *	Print a string to the serial port trying not to disturb
2358  *	any possible real use of the port...
2359  */
2360 static void serial_console_write(struct console *co, const char *s,
2361 				 unsigned count)
2362 {
2363 	struct sci_port *sci_port = &sci_ports[co->index];
2364 	struct uart_port *port = &sci_port->port;
2365 	unsigned short bits, ctrl;
2366 	unsigned long flags;
2367 	int locked = 1;
2368 
2369 	local_irq_save(flags);
2370 	if (port->sysrq)
2371 		locked = 0;
2372 	else if (oops_in_progress)
2373 		locked = spin_trylock(&port->lock);
2374 	else
2375 		spin_lock(&port->lock);
2376 
2377 	/* first save the SCSCR then disable the interrupts */
2378 	ctrl = serial_port_in(port, SCSCR);
2379 	serial_port_out(port, SCSCR, sci_port->cfg->scscr);
2380 
2381 	uart_console_write(port, s, count, serial_console_putchar);
2382 
2383 	/* wait until fifo is empty and last bit has been transmitted */
2384 	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
2385 	while ((serial_port_in(port, SCxSR) & bits) != bits)
2386 		cpu_relax();
2387 
2388 	/* restore the SCSCR */
2389 	serial_port_out(port, SCSCR, ctrl);
2390 
2391 	if (locked)
2392 		spin_unlock(&port->lock);
2393 	local_irq_restore(flags);
2394 }
2395 
2396 static int serial_console_setup(struct console *co, char *options)
2397 {
2398 	struct sci_port *sci_port;
2399 	struct uart_port *port;
2400 	int baud = 115200;
2401 	int bits = 8;
2402 	int parity = 'n';
2403 	int flow = 'n';
2404 	int ret;
2405 
2406 	/*
2407 	 * Refuse to handle any bogus ports.
2408 	 */
2409 	if (co->index < 0 || co->index >= SCI_NPORTS)
2410 		return -ENODEV;
2411 
2412 	sci_port = &sci_ports[co->index];
2413 	port = &sci_port->port;
2414 
2415 	/*
2416 	 * Refuse to handle uninitialized ports.
2417 	 */
2418 	if (!port->ops)
2419 		return -ENODEV;
2420 
2421 	ret = sci_remap_port(port);
2422 	if (unlikely(ret != 0))
2423 		return ret;
2424 
2425 	if (options)
2426 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2427 
2428 	return uart_set_options(port, co, baud, parity, bits, flow);
2429 }
2430 
2431 static struct console serial_console = {
2432 	.name		= "ttySC",
2433 	.device		= uart_console_device,
2434 	.write		= serial_console_write,
2435 	.setup		= serial_console_setup,
2436 	.flags		= CON_PRINTBUFFER,
2437 	.index		= -1,
2438 	.data		= &sci_uart_driver,
2439 };
2440 
2441 static struct console early_serial_console = {
2442 	.name           = "early_ttySC",
2443 	.write          = serial_console_write,
2444 	.flags          = CON_PRINTBUFFER,
2445 	.index		= -1,
2446 };
2447 
2448 static char early_serial_buf[32];
2449 
2450 static int sci_probe_earlyprintk(struct platform_device *pdev)
2451 {
2452 	struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
2453 
2454 	if (early_serial_console.data)
2455 		return -EEXIST;
2456 
2457 	early_serial_console.index = pdev->id;
2458 
2459 	sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
2460 
2461 	serial_console_setup(&early_serial_console, early_serial_buf);
2462 
2463 	if (!strstr(early_serial_buf, "keep"))
2464 		early_serial_console.flags |= CON_BOOT;
2465 
2466 	register_console(&early_serial_console);
2467 	return 0;
2468 }
2469 
2470 #define SCI_CONSOLE	(&serial_console)
2471 
2472 #else
2473 static inline int sci_probe_earlyprintk(struct platform_device *pdev)
2474 {
2475 	return -EINVAL;
2476 }
2477 
2478 #define SCI_CONSOLE	NULL
2479 
2480 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE */
2481 
2482 static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
2483 
2484 static struct uart_driver sci_uart_driver = {
2485 	.owner		= THIS_MODULE,
2486 	.driver_name	= "sci",
2487 	.dev_name	= "ttySC",
2488 	.major		= SCI_MAJOR,
2489 	.minor		= SCI_MINOR_START,
2490 	.nr		= SCI_NPORTS,
2491 	.cons		= SCI_CONSOLE,
2492 };
2493 
2494 static int sci_remove(struct platform_device *dev)
2495 {
2496 	struct sci_port *port = platform_get_drvdata(dev);
2497 
2498 	cpufreq_unregister_notifier(&port->freq_transition,
2499 				    CPUFREQ_TRANSITION_NOTIFIER);
2500 
2501 	uart_remove_one_port(&sci_uart_driver, &port->port);
2502 
2503 	sci_cleanup_single(port);
2504 
2505 	return 0;
2506 }
2507 
2508 struct sci_port_info {
2509 	unsigned int type;
2510 	unsigned int regtype;
2511 };
2512 
2513 static const struct of_device_id of_sci_match[] = {
2514 	{
2515 		.compatible = "renesas,scif",
2516 		.data = &(const struct sci_port_info) {
2517 			.type = PORT_SCIF,
2518 			.regtype = SCIx_SH4_SCIF_REGTYPE,
2519 		},
2520 	}, {
2521 		.compatible = "renesas,scifa",
2522 		.data = &(const struct sci_port_info) {
2523 			.type = PORT_SCIFA,
2524 			.regtype = SCIx_SCIFA_REGTYPE,
2525 		},
2526 	}, {
2527 		.compatible = "renesas,scifb",
2528 		.data = &(const struct sci_port_info) {
2529 			.type = PORT_SCIFB,
2530 			.regtype = SCIx_SCIFB_REGTYPE,
2531 		},
2532 	}, {
2533 		.compatible = "renesas,hscif",
2534 		.data = &(const struct sci_port_info) {
2535 			.type = PORT_HSCIF,
2536 			.regtype = SCIx_HSCIF_REGTYPE,
2537 		},
2538 	}, {
2539 		/* Terminator */
2540 	},
2541 };
2542 MODULE_DEVICE_TABLE(of, of_sci_match);
2543 
2544 static struct plat_sci_port *
2545 sci_parse_dt(struct platform_device *pdev, unsigned int *dev_id)
2546 {
2547 	struct device_node *np = pdev->dev.of_node;
2548 	const struct of_device_id *match;
2549 	const struct sci_port_info *info;
2550 	struct plat_sci_port *p;
2551 	int id;
2552 
2553 	if (!IS_ENABLED(CONFIG_OF) || !np)
2554 		return NULL;
2555 
2556 	match = of_match_node(of_sci_match, pdev->dev.of_node);
2557 	if (!match)
2558 		return NULL;
2559 
2560 	info = match->data;
2561 
2562 	p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
2563 	if (!p) {
2564 		dev_err(&pdev->dev, "failed to allocate DT config data\n");
2565 		return NULL;
2566 	}
2567 
2568 	/* Get the line number for the aliases node. */
2569 	id = of_alias_get_id(np, "serial");
2570 	if (id < 0) {
2571 		dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
2572 		return NULL;
2573 	}
2574 
2575 	*dev_id = id;
2576 
2577 	p->flags = UPF_IOREMAP | UPF_BOOT_AUTOCONF;
2578 	p->type = info->type;
2579 	p->regtype = info->regtype;
2580 	p->scscr = SCSCR_RE | SCSCR_TE;
2581 
2582 	return p;
2583 }
2584 
2585 static int sci_probe_single(struct platform_device *dev,
2586 				      unsigned int index,
2587 				      struct plat_sci_port *p,
2588 				      struct sci_port *sciport)
2589 {
2590 	int ret;
2591 
2592 	/* Sanity check */
2593 	if (unlikely(index >= SCI_NPORTS)) {
2594 		dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
2595 			   index+1, SCI_NPORTS);
2596 		dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
2597 		return -EINVAL;
2598 	}
2599 
2600 	ret = sci_init_single(dev, sciport, index, p, false);
2601 	if (ret)
2602 		return ret;
2603 
2604 	ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
2605 	if (ret) {
2606 		sci_cleanup_single(sciport);
2607 		return ret;
2608 	}
2609 
2610 	return 0;
2611 }
2612 
2613 static int sci_probe(struct platform_device *dev)
2614 {
2615 	struct plat_sci_port *p;
2616 	struct sci_port *sp;
2617 	unsigned int dev_id;
2618 	int ret;
2619 
2620 	/*
2621 	 * If we've come here via earlyprintk initialization, head off to
2622 	 * the special early probe. We don't have sufficient device state
2623 	 * to make it beyond this yet.
2624 	 */
2625 	if (is_early_platform_device(dev))
2626 		return sci_probe_earlyprintk(dev);
2627 
2628 	if (dev->dev.of_node) {
2629 		p = sci_parse_dt(dev, &dev_id);
2630 		if (p == NULL)
2631 			return -EINVAL;
2632 	} else {
2633 		p = dev->dev.platform_data;
2634 		if (p == NULL) {
2635 			dev_err(&dev->dev, "no platform data supplied\n");
2636 			return -EINVAL;
2637 		}
2638 
2639 		dev_id = dev->id;
2640 	}
2641 
2642 	sp = &sci_ports[dev_id];
2643 	platform_set_drvdata(dev, sp);
2644 
2645 	ret = sci_probe_single(dev, dev_id, p, sp);
2646 	if (ret)
2647 		return ret;
2648 
2649 	sp->freq_transition.notifier_call = sci_notifier;
2650 
2651 	ret = cpufreq_register_notifier(&sp->freq_transition,
2652 					CPUFREQ_TRANSITION_NOTIFIER);
2653 	if (unlikely(ret < 0)) {
2654 		uart_remove_one_port(&sci_uart_driver, &sp->port);
2655 		sci_cleanup_single(sp);
2656 		return ret;
2657 	}
2658 
2659 #ifdef CONFIG_SH_STANDARD_BIOS
2660 	sh_bios_gdb_detach();
2661 #endif
2662 
2663 	return 0;
2664 }
2665 
2666 static __maybe_unused int sci_suspend(struct device *dev)
2667 {
2668 	struct sci_port *sport = dev_get_drvdata(dev);
2669 
2670 	if (sport)
2671 		uart_suspend_port(&sci_uart_driver, &sport->port);
2672 
2673 	return 0;
2674 }
2675 
2676 static __maybe_unused int sci_resume(struct device *dev)
2677 {
2678 	struct sci_port *sport = dev_get_drvdata(dev);
2679 
2680 	if (sport)
2681 		uart_resume_port(&sci_uart_driver, &sport->port);
2682 
2683 	return 0;
2684 }
2685 
2686 static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
2687 
2688 static struct platform_driver sci_driver = {
2689 	.probe		= sci_probe,
2690 	.remove		= sci_remove,
2691 	.driver		= {
2692 		.name	= "sh-sci",
2693 		.pm	= &sci_dev_pm_ops,
2694 		.of_match_table = of_match_ptr(of_sci_match),
2695 	},
2696 };
2697 
2698 static int __init sci_init(void)
2699 {
2700 	int ret;
2701 
2702 	pr_info("%s\n", banner);
2703 
2704 	ret = uart_register_driver(&sci_uart_driver);
2705 	if (likely(ret == 0)) {
2706 		ret = platform_driver_register(&sci_driver);
2707 		if (unlikely(ret))
2708 			uart_unregister_driver(&sci_uart_driver);
2709 	}
2710 
2711 	return ret;
2712 }
2713 
2714 static void __exit sci_exit(void)
2715 {
2716 	platform_driver_unregister(&sci_driver);
2717 	uart_unregister_driver(&sci_uart_driver);
2718 }
2719 
2720 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
2721 early_platform_init_buffer("earlyprintk", &sci_driver,
2722 			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
2723 #endif
2724 module_init(sci_init);
2725 module_exit(sci_exit);
2726 
2727 MODULE_LICENSE("GPL");
2728 MODULE_ALIAS("platform:sh-sci");
2729 MODULE_AUTHOR("Paul Mundt");
2730 MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");
2731