1 /* 2 * SuperH on-chip serial module support. (SCI with no FIFO / with FIFO) 3 * 4 * Copyright (C) 2002 - 2011 Paul Mundt 5 * Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007). 6 * 7 * based off of the old drivers/char/sh-sci.c by: 8 * 9 * Copyright (C) 1999, 2000 Niibe Yutaka 10 * Copyright (C) 2000 Sugioka Toshinobu 11 * Modified to support multiple serial ports. Stuart Menefy (May 2000). 12 * Modified to support SecureEdge. David McCullough (2002) 13 * Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003). 14 * Removed SH7300 support (Jul 2007). 15 * 16 * This file is subject to the terms and conditions of the GNU General Public 17 * License. See the file "COPYING" in the main directory of this archive 18 * for more details. 19 */ 20 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) 21 #define SUPPORT_SYSRQ 22 #endif 23 24 #undef DEBUG 25 26 #include <linux/module.h> 27 #include <linux/errno.h> 28 #include <linux/sh_dma.h> 29 #include <linux/timer.h> 30 #include <linux/interrupt.h> 31 #include <linux/tty.h> 32 #include <linux/tty_flip.h> 33 #include <linux/serial.h> 34 #include <linux/major.h> 35 #include <linux/string.h> 36 #include <linux/sysrq.h> 37 #include <linux/ioport.h> 38 #include <linux/mm.h> 39 #include <linux/init.h> 40 #include <linux/delay.h> 41 #include <linux/console.h> 42 #include <linux/platform_device.h> 43 #include <linux/serial_sci.h> 44 #include <linux/notifier.h> 45 #include <linux/pm_runtime.h> 46 #include <linux/cpufreq.h> 47 #include <linux/clk.h> 48 #include <linux/ctype.h> 49 #include <linux/err.h> 50 #include <linux/dmaengine.h> 51 #include <linux/dma-mapping.h> 52 #include <linux/scatterlist.h> 53 #include <linux/slab.h> 54 #include <linux/gpio.h> 55 56 #ifdef CONFIG_SUPERH 57 #include <asm/sh_bios.h> 58 #endif 59 60 #include "sh-sci.h" 61 62 struct sci_port { 63 struct uart_port port; 64 65 /* Platform configuration */ 66 struct plat_sci_port *cfg; 67 68 /* Break timer */ 69 struct timer_list break_timer; 70 int break_flag; 71 72 /* Interface clock */ 73 struct clk *iclk; 74 /* Function clock */ 75 struct clk *fclk; 76 77 char *irqstr[SCIx_NR_IRQS]; 78 char *gpiostr[SCIx_NR_FNS]; 79 80 struct dma_chan *chan_tx; 81 struct dma_chan *chan_rx; 82 83 #ifdef CONFIG_SERIAL_SH_SCI_DMA 84 struct dma_async_tx_descriptor *desc_tx; 85 struct dma_async_tx_descriptor *desc_rx[2]; 86 dma_cookie_t cookie_tx; 87 dma_cookie_t cookie_rx[2]; 88 dma_cookie_t active_rx; 89 struct scatterlist sg_tx; 90 unsigned int sg_len_tx; 91 struct scatterlist sg_rx[2]; 92 size_t buf_len_rx; 93 struct sh_dmae_slave param_tx; 94 struct sh_dmae_slave param_rx; 95 struct work_struct work_tx; 96 struct work_struct work_rx; 97 struct timer_list rx_timer; 98 unsigned int rx_timeout; 99 #endif 100 101 struct notifier_block freq_transition; 102 103 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE 104 unsigned short saved_smr; 105 unsigned short saved_fcr; 106 unsigned char saved_brr; 107 #endif 108 }; 109 110 /* Function prototypes */ 111 static void sci_start_tx(struct uart_port *port); 112 static void sci_stop_tx(struct uart_port *port); 113 static void sci_start_rx(struct uart_port *port); 114 115 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS 116 117 static struct sci_port sci_ports[SCI_NPORTS]; 118 static struct uart_driver sci_uart_driver; 119 120 static inline struct sci_port * 121 to_sci_port(struct uart_port *uart) 122 { 123 return container_of(uart, struct sci_port, port); 124 } 125 126 struct plat_sci_reg { 127 u8 offset, size; 128 }; 129 130 /* Helper for invalidating specific entries of an inherited map. */ 131 #define sci_reg_invalid { .offset = 0, .size = 0 } 132 133 static struct plat_sci_reg sci_regmap[SCIx_NR_REGTYPES][SCIx_NR_REGS] = { 134 [SCIx_PROBE_REGTYPE] = { 135 [0 ... SCIx_NR_REGS - 1] = sci_reg_invalid, 136 }, 137 138 /* 139 * Common SCI definitions, dependent on the port's regshift 140 * value. 141 */ 142 [SCIx_SCI_REGTYPE] = { 143 [SCSMR] = { 0x00, 8 }, 144 [SCBRR] = { 0x01, 8 }, 145 [SCSCR] = { 0x02, 8 }, 146 [SCxTDR] = { 0x03, 8 }, 147 [SCxSR] = { 0x04, 8 }, 148 [SCxRDR] = { 0x05, 8 }, 149 [SCFCR] = sci_reg_invalid, 150 [SCFDR] = sci_reg_invalid, 151 [SCTFDR] = sci_reg_invalid, 152 [SCRFDR] = sci_reg_invalid, 153 [SCSPTR] = sci_reg_invalid, 154 [SCLSR] = sci_reg_invalid, 155 }, 156 157 /* 158 * Common definitions for legacy IrDA ports, dependent on 159 * regshift value. 160 */ 161 [SCIx_IRDA_REGTYPE] = { 162 [SCSMR] = { 0x00, 8 }, 163 [SCBRR] = { 0x01, 8 }, 164 [SCSCR] = { 0x02, 8 }, 165 [SCxTDR] = { 0x03, 8 }, 166 [SCxSR] = { 0x04, 8 }, 167 [SCxRDR] = { 0x05, 8 }, 168 [SCFCR] = { 0x06, 8 }, 169 [SCFDR] = { 0x07, 16 }, 170 [SCTFDR] = sci_reg_invalid, 171 [SCRFDR] = sci_reg_invalid, 172 [SCSPTR] = sci_reg_invalid, 173 [SCLSR] = sci_reg_invalid, 174 }, 175 176 /* 177 * Common SCIFA definitions. 178 */ 179 [SCIx_SCIFA_REGTYPE] = { 180 [SCSMR] = { 0x00, 16 }, 181 [SCBRR] = { 0x04, 8 }, 182 [SCSCR] = { 0x08, 16 }, 183 [SCxTDR] = { 0x20, 8 }, 184 [SCxSR] = { 0x14, 16 }, 185 [SCxRDR] = { 0x24, 8 }, 186 [SCFCR] = { 0x18, 16 }, 187 [SCFDR] = { 0x1c, 16 }, 188 [SCTFDR] = sci_reg_invalid, 189 [SCRFDR] = sci_reg_invalid, 190 [SCSPTR] = sci_reg_invalid, 191 [SCLSR] = sci_reg_invalid, 192 }, 193 194 /* 195 * Common SCIFB definitions. 196 */ 197 [SCIx_SCIFB_REGTYPE] = { 198 [SCSMR] = { 0x00, 16 }, 199 [SCBRR] = { 0x04, 8 }, 200 [SCSCR] = { 0x08, 16 }, 201 [SCxTDR] = { 0x40, 8 }, 202 [SCxSR] = { 0x14, 16 }, 203 [SCxRDR] = { 0x60, 8 }, 204 [SCFCR] = { 0x18, 16 }, 205 [SCFDR] = { 0x1c, 16 }, 206 [SCTFDR] = sci_reg_invalid, 207 [SCRFDR] = sci_reg_invalid, 208 [SCSPTR] = sci_reg_invalid, 209 [SCLSR] = sci_reg_invalid, 210 }, 211 212 /* 213 * Common SH-2(A) SCIF definitions for ports with FIFO data 214 * count registers. 215 */ 216 [SCIx_SH2_SCIF_FIFODATA_REGTYPE] = { 217 [SCSMR] = { 0x00, 16 }, 218 [SCBRR] = { 0x04, 8 }, 219 [SCSCR] = { 0x08, 16 }, 220 [SCxTDR] = { 0x0c, 8 }, 221 [SCxSR] = { 0x10, 16 }, 222 [SCxRDR] = { 0x14, 8 }, 223 [SCFCR] = { 0x18, 16 }, 224 [SCFDR] = { 0x1c, 16 }, 225 [SCTFDR] = sci_reg_invalid, 226 [SCRFDR] = sci_reg_invalid, 227 [SCSPTR] = { 0x20, 16 }, 228 [SCLSR] = { 0x24, 16 }, 229 }, 230 231 /* 232 * Common SH-3 SCIF definitions. 233 */ 234 [SCIx_SH3_SCIF_REGTYPE] = { 235 [SCSMR] = { 0x00, 8 }, 236 [SCBRR] = { 0x02, 8 }, 237 [SCSCR] = { 0x04, 8 }, 238 [SCxTDR] = { 0x06, 8 }, 239 [SCxSR] = { 0x08, 16 }, 240 [SCxRDR] = { 0x0a, 8 }, 241 [SCFCR] = { 0x0c, 8 }, 242 [SCFDR] = { 0x0e, 16 }, 243 [SCTFDR] = sci_reg_invalid, 244 [SCRFDR] = sci_reg_invalid, 245 [SCSPTR] = sci_reg_invalid, 246 [SCLSR] = sci_reg_invalid, 247 }, 248 249 /* 250 * Common SH-4(A) SCIF(B) definitions. 251 */ 252 [SCIx_SH4_SCIF_REGTYPE] = { 253 [SCSMR] = { 0x00, 16 }, 254 [SCBRR] = { 0x04, 8 }, 255 [SCSCR] = { 0x08, 16 }, 256 [SCxTDR] = { 0x0c, 8 }, 257 [SCxSR] = { 0x10, 16 }, 258 [SCxRDR] = { 0x14, 8 }, 259 [SCFCR] = { 0x18, 16 }, 260 [SCFDR] = { 0x1c, 16 }, 261 [SCTFDR] = sci_reg_invalid, 262 [SCRFDR] = sci_reg_invalid, 263 [SCSPTR] = { 0x20, 16 }, 264 [SCLSR] = { 0x24, 16 }, 265 }, 266 267 /* 268 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR 269 * register. 270 */ 271 [SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = { 272 [SCSMR] = { 0x00, 16 }, 273 [SCBRR] = { 0x04, 8 }, 274 [SCSCR] = { 0x08, 16 }, 275 [SCxTDR] = { 0x0c, 8 }, 276 [SCxSR] = { 0x10, 16 }, 277 [SCxRDR] = { 0x14, 8 }, 278 [SCFCR] = { 0x18, 16 }, 279 [SCFDR] = { 0x1c, 16 }, 280 [SCTFDR] = sci_reg_invalid, 281 [SCRFDR] = sci_reg_invalid, 282 [SCSPTR] = sci_reg_invalid, 283 [SCLSR] = { 0x24, 16 }, 284 }, 285 286 /* 287 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data 288 * count registers. 289 */ 290 [SCIx_SH4_SCIF_FIFODATA_REGTYPE] = { 291 [SCSMR] = { 0x00, 16 }, 292 [SCBRR] = { 0x04, 8 }, 293 [SCSCR] = { 0x08, 16 }, 294 [SCxTDR] = { 0x0c, 8 }, 295 [SCxSR] = { 0x10, 16 }, 296 [SCxRDR] = { 0x14, 8 }, 297 [SCFCR] = { 0x18, 16 }, 298 [SCFDR] = { 0x1c, 16 }, 299 [SCTFDR] = { 0x1c, 16 }, /* aliased to SCFDR */ 300 [SCRFDR] = { 0x20, 16 }, 301 [SCSPTR] = { 0x24, 16 }, 302 [SCLSR] = { 0x28, 16 }, 303 }, 304 305 /* 306 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR 307 * registers. 308 */ 309 [SCIx_SH7705_SCIF_REGTYPE] = { 310 [SCSMR] = { 0x00, 16 }, 311 [SCBRR] = { 0x04, 8 }, 312 [SCSCR] = { 0x08, 16 }, 313 [SCxTDR] = { 0x20, 8 }, 314 [SCxSR] = { 0x14, 16 }, 315 [SCxRDR] = { 0x24, 8 }, 316 [SCFCR] = { 0x18, 16 }, 317 [SCFDR] = { 0x1c, 16 }, 318 [SCTFDR] = sci_reg_invalid, 319 [SCRFDR] = sci_reg_invalid, 320 [SCSPTR] = sci_reg_invalid, 321 [SCLSR] = sci_reg_invalid, 322 }, 323 }; 324 325 #define sci_getreg(up, offset) (sci_regmap[to_sci_port(up)->cfg->regtype] + offset) 326 327 /* 328 * The "offset" here is rather misleading, in that it refers to an enum 329 * value relative to the port mapping rather than the fixed offset 330 * itself, which needs to be manually retrieved from the platform's 331 * register map for the given port. 332 */ 333 static unsigned int sci_serial_in(struct uart_port *p, int offset) 334 { 335 struct plat_sci_reg *reg = sci_getreg(p, offset); 336 337 if (reg->size == 8) 338 return ioread8(p->membase + (reg->offset << p->regshift)); 339 else if (reg->size == 16) 340 return ioread16(p->membase + (reg->offset << p->regshift)); 341 else 342 WARN(1, "Invalid register access\n"); 343 344 return 0; 345 } 346 347 static void sci_serial_out(struct uart_port *p, int offset, int value) 348 { 349 struct plat_sci_reg *reg = sci_getreg(p, offset); 350 351 if (reg->size == 8) 352 iowrite8(value, p->membase + (reg->offset << p->regshift)); 353 else if (reg->size == 16) 354 iowrite16(value, p->membase + (reg->offset << p->regshift)); 355 else 356 WARN(1, "Invalid register access\n"); 357 } 358 359 static int sci_probe_regmap(struct plat_sci_port *cfg) 360 { 361 switch (cfg->type) { 362 case PORT_SCI: 363 cfg->regtype = SCIx_SCI_REGTYPE; 364 break; 365 case PORT_IRDA: 366 cfg->regtype = SCIx_IRDA_REGTYPE; 367 break; 368 case PORT_SCIFA: 369 cfg->regtype = SCIx_SCIFA_REGTYPE; 370 break; 371 case PORT_SCIFB: 372 cfg->regtype = SCIx_SCIFB_REGTYPE; 373 break; 374 case PORT_SCIF: 375 /* 376 * The SH-4 is a bit of a misnomer here, although that's 377 * where this particular port layout originated. This 378 * configuration (or some slight variation thereof) 379 * remains the dominant model for all SCIFs. 380 */ 381 cfg->regtype = SCIx_SH4_SCIF_REGTYPE; 382 break; 383 default: 384 printk(KERN_ERR "Can't probe register map for given port\n"); 385 return -EINVAL; 386 } 387 388 return 0; 389 } 390 391 static void sci_port_enable(struct sci_port *sci_port) 392 { 393 if (!sci_port->port.dev) 394 return; 395 396 pm_runtime_get_sync(sci_port->port.dev); 397 398 clk_enable(sci_port->iclk); 399 sci_port->port.uartclk = clk_get_rate(sci_port->iclk); 400 clk_enable(sci_port->fclk); 401 } 402 403 static void sci_port_disable(struct sci_port *sci_port) 404 { 405 if (!sci_port->port.dev) 406 return; 407 408 clk_disable(sci_port->fclk); 409 clk_disable(sci_port->iclk); 410 411 pm_runtime_put_sync(sci_port->port.dev); 412 } 413 414 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) 415 416 #ifdef CONFIG_CONSOLE_POLL 417 static int sci_poll_get_char(struct uart_port *port) 418 { 419 unsigned short status; 420 int c; 421 422 do { 423 status = serial_port_in(port, SCxSR); 424 if (status & SCxSR_ERRORS(port)) { 425 serial_port_out(port, SCxSR, SCxSR_ERROR_CLEAR(port)); 426 continue; 427 } 428 break; 429 } while (1); 430 431 if (!(status & SCxSR_RDxF(port))) 432 return NO_POLL_CHAR; 433 434 c = serial_port_in(port, SCxRDR); 435 436 /* Dummy read */ 437 serial_port_in(port, SCxSR); 438 serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port)); 439 440 return c; 441 } 442 #endif 443 444 static void sci_poll_put_char(struct uart_port *port, unsigned char c) 445 { 446 unsigned short status; 447 448 do { 449 status = serial_port_in(port, SCxSR); 450 } while (!(status & SCxSR_TDxE(port))); 451 452 serial_port_out(port, SCxTDR, c); 453 serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port)); 454 } 455 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE */ 456 457 static void sci_init_pins(struct uart_port *port, unsigned int cflag) 458 { 459 struct sci_port *s = to_sci_port(port); 460 struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR; 461 462 /* 463 * Use port-specific handler if provided. 464 */ 465 if (s->cfg->ops && s->cfg->ops->init_pins) { 466 s->cfg->ops->init_pins(port, cflag); 467 return; 468 } 469 470 /* 471 * For the generic path SCSPTR is necessary. Bail out if that's 472 * unavailable, too. 473 */ 474 if (!reg->size) 475 return; 476 477 if ((s->cfg->capabilities & SCIx_HAVE_RTSCTS) && 478 ((!(cflag & CRTSCTS)))) { 479 unsigned short status; 480 481 status = serial_port_in(port, SCSPTR); 482 status &= ~SCSPTR_CTSIO; 483 status |= SCSPTR_RTSIO; 484 serial_port_out(port, SCSPTR, status); /* Set RTS = 1 */ 485 } 486 } 487 488 static int sci_txfill(struct uart_port *port) 489 { 490 struct plat_sci_reg *reg; 491 492 reg = sci_getreg(port, SCTFDR); 493 if (reg->size) 494 return serial_port_in(port, SCTFDR) & 0xff; 495 496 reg = sci_getreg(port, SCFDR); 497 if (reg->size) 498 return serial_port_in(port, SCFDR) >> 8; 499 500 return !(serial_port_in(port, SCxSR) & SCI_TDRE); 501 } 502 503 static int sci_txroom(struct uart_port *port) 504 { 505 return port->fifosize - sci_txfill(port); 506 } 507 508 static int sci_rxfill(struct uart_port *port) 509 { 510 struct plat_sci_reg *reg; 511 512 reg = sci_getreg(port, SCRFDR); 513 if (reg->size) 514 return serial_port_in(port, SCRFDR) & 0xff; 515 516 reg = sci_getreg(port, SCFDR); 517 if (reg->size) 518 return serial_port_in(port, SCFDR) & ((port->fifosize << 1) - 1); 519 520 return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0; 521 } 522 523 /* 524 * SCI helper for checking the state of the muxed port/RXD pins. 525 */ 526 static inline int sci_rxd_in(struct uart_port *port) 527 { 528 struct sci_port *s = to_sci_port(port); 529 530 if (s->cfg->port_reg <= 0) 531 return 1; 532 533 return !!__raw_readb(s->cfg->port_reg); 534 } 535 536 /* ********************************************************************** * 537 * the interrupt related routines * 538 * ********************************************************************** */ 539 540 static void sci_transmit_chars(struct uart_port *port) 541 { 542 struct circ_buf *xmit = &port->state->xmit; 543 unsigned int stopped = uart_tx_stopped(port); 544 unsigned short status; 545 unsigned short ctrl; 546 int count; 547 548 status = serial_port_in(port, SCxSR); 549 if (!(status & SCxSR_TDxE(port))) { 550 ctrl = serial_port_in(port, SCSCR); 551 if (uart_circ_empty(xmit)) 552 ctrl &= ~SCSCR_TIE; 553 else 554 ctrl |= SCSCR_TIE; 555 serial_port_out(port, SCSCR, ctrl); 556 return; 557 } 558 559 count = sci_txroom(port); 560 561 do { 562 unsigned char c; 563 564 if (port->x_char) { 565 c = port->x_char; 566 port->x_char = 0; 567 } else if (!uart_circ_empty(xmit) && !stopped) { 568 c = xmit->buf[xmit->tail]; 569 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); 570 } else { 571 break; 572 } 573 574 serial_port_out(port, SCxTDR, c); 575 576 port->icount.tx++; 577 } while (--count > 0); 578 579 serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port)); 580 581 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 582 uart_write_wakeup(port); 583 if (uart_circ_empty(xmit)) { 584 sci_stop_tx(port); 585 } else { 586 ctrl = serial_port_in(port, SCSCR); 587 588 if (port->type != PORT_SCI) { 589 serial_port_in(port, SCxSR); /* Dummy read */ 590 serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port)); 591 } 592 593 ctrl |= SCSCR_TIE; 594 serial_port_out(port, SCSCR, ctrl); 595 } 596 } 597 598 /* On SH3, SCIF may read end-of-break as a space->mark char */ 599 #define STEPFN(c) ({int __c = (c); (((__c-1)|(__c)) == -1); }) 600 601 static void sci_receive_chars(struct uart_port *port) 602 { 603 struct sci_port *sci_port = to_sci_port(port); 604 struct tty_struct *tty = port->state->port.tty; 605 int i, count, copied = 0; 606 unsigned short status; 607 unsigned char flag; 608 609 status = serial_port_in(port, SCxSR); 610 if (!(status & SCxSR_RDxF(port))) 611 return; 612 613 while (1) { 614 /* Don't copy more bytes than there is room for in the buffer */ 615 count = tty_buffer_request_room(tty, sci_rxfill(port)); 616 617 /* If for any reason we can't copy more data, we're done! */ 618 if (count == 0) 619 break; 620 621 if (port->type == PORT_SCI) { 622 char c = serial_port_in(port, SCxRDR); 623 if (uart_handle_sysrq_char(port, c) || 624 sci_port->break_flag) 625 count = 0; 626 else 627 tty_insert_flip_char(tty, c, TTY_NORMAL); 628 } else { 629 for (i = 0; i < count; i++) { 630 char c = serial_port_in(port, SCxRDR); 631 632 status = serial_port_in(port, SCxSR); 633 #if defined(CONFIG_CPU_SH3) 634 /* Skip "chars" during break */ 635 if (sci_port->break_flag) { 636 if ((c == 0) && 637 (status & SCxSR_FER(port))) { 638 count--; i--; 639 continue; 640 } 641 642 /* Nonzero => end-of-break */ 643 dev_dbg(port->dev, "debounce<%02x>\n", c); 644 sci_port->break_flag = 0; 645 646 if (STEPFN(c)) { 647 count--; i--; 648 continue; 649 } 650 } 651 #endif /* CONFIG_CPU_SH3 */ 652 if (uart_handle_sysrq_char(port, c)) { 653 count--; i--; 654 continue; 655 } 656 657 /* Store data and status */ 658 if (status & SCxSR_FER(port)) { 659 flag = TTY_FRAME; 660 port->icount.frame++; 661 dev_notice(port->dev, "frame error\n"); 662 } else if (status & SCxSR_PER(port)) { 663 flag = TTY_PARITY; 664 port->icount.parity++; 665 dev_notice(port->dev, "parity error\n"); 666 } else 667 flag = TTY_NORMAL; 668 669 tty_insert_flip_char(tty, c, flag); 670 } 671 } 672 673 serial_port_in(port, SCxSR); /* dummy read */ 674 serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port)); 675 676 copied += count; 677 port->icount.rx += count; 678 } 679 680 if (copied) { 681 /* Tell the rest of the system the news. New characters! */ 682 tty_flip_buffer_push(tty); 683 } else { 684 serial_port_in(port, SCxSR); /* dummy read */ 685 serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port)); 686 } 687 } 688 689 #define SCI_BREAK_JIFFIES (HZ/20) 690 691 /* 692 * The sci generates interrupts during the break, 693 * 1 per millisecond or so during the break period, for 9600 baud. 694 * So dont bother disabling interrupts. 695 * But dont want more than 1 break event. 696 * Use a kernel timer to periodically poll the rx line until 697 * the break is finished. 698 */ 699 static inline void sci_schedule_break_timer(struct sci_port *port) 700 { 701 mod_timer(&port->break_timer, jiffies + SCI_BREAK_JIFFIES); 702 } 703 704 /* Ensure that two consecutive samples find the break over. */ 705 static void sci_break_timer(unsigned long data) 706 { 707 struct sci_port *port = (struct sci_port *)data; 708 709 sci_port_enable(port); 710 711 if (sci_rxd_in(&port->port) == 0) { 712 port->break_flag = 1; 713 sci_schedule_break_timer(port); 714 } else if (port->break_flag == 1) { 715 /* break is over. */ 716 port->break_flag = 2; 717 sci_schedule_break_timer(port); 718 } else 719 port->break_flag = 0; 720 721 sci_port_disable(port); 722 } 723 724 static int sci_handle_errors(struct uart_port *port) 725 { 726 int copied = 0; 727 unsigned short status = serial_port_in(port, SCxSR); 728 struct tty_struct *tty = port->state->port.tty; 729 struct sci_port *s = to_sci_port(port); 730 731 /* 732 * Handle overruns, if supported. 733 */ 734 if (s->cfg->overrun_bit != SCIx_NOT_SUPPORTED) { 735 if (status & (1 << s->cfg->overrun_bit)) { 736 port->icount.overrun++; 737 738 /* overrun error */ 739 if (tty_insert_flip_char(tty, 0, TTY_OVERRUN)) 740 copied++; 741 742 dev_notice(port->dev, "overrun error"); 743 } 744 } 745 746 if (status & SCxSR_FER(port)) { 747 if (sci_rxd_in(port) == 0) { 748 /* Notify of BREAK */ 749 struct sci_port *sci_port = to_sci_port(port); 750 751 if (!sci_port->break_flag) { 752 port->icount.brk++; 753 754 sci_port->break_flag = 1; 755 sci_schedule_break_timer(sci_port); 756 757 /* Do sysrq handling. */ 758 if (uart_handle_break(port)) 759 return 0; 760 761 dev_dbg(port->dev, "BREAK detected\n"); 762 763 if (tty_insert_flip_char(tty, 0, TTY_BREAK)) 764 copied++; 765 } 766 767 } else { 768 /* frame error */ 769 port->icount.frame++; 770 771 if (tty_insert_flip_char(tty, 0, TTY_FRAME)) 772 copied++; 773 774 dev_notice(port->dev, "frame error\n"); 775 } 776 } 777 778 if (status & SCxSR_PER(port)) { 779 /* parity error */ 780 port->icount.parity++; 781 782 if (tty_insert_flip_char(tty, 0, TTY_PARITY)) 783 copied++; 784 785 dev_notice(port->dev, "parity error"); 786 } 787 788 if (copied) 789 tty_flip_buffer_push(tty); 790 791 return copied; 792 } 793 794 static int sci_handle_fifo_overrun(struct uart_port *port) 795 { 796 struct tty_struct *tty = port->state->port.tty; 797 struct sci_port *s = to_sci_port(port); 798 struct plat_sci_reg *reg; 799 int copied = 0; 800 801 reg = sci_getreg(port, SCLSR); 802 if (!reg->size) 803 return 0; 804 805 if ((serial_port_in(port, SCLSR) & (1 << s->cfg->overrun_bit))) { 806 serial_port_out(port, SCLSR, 0); 807 808 port->icount.overrun++; 809 810 tty_insert_flip_char(tty, 0, TTY_OVERRUN); 811 tty_flip_buffer_push(tty); 812 813 dev_notice(port->dev, "overrun error\n"); 814 copied++; 815 } 816 817 return copied; 818 } 819 820 static int sci_handle_breaks(struct uart_port *port) 821 { 822 int copied = 0; 823 unsigned short status = serial_port_in(port, SCxSR); 824 struct tty_struct *tty = port->state->port.tty; 825 struct sci_port *s = to_sci_port(port); 826 827 if (uart_handle_break(port)) 828 return 0; 829 830 if (!s->break_flag && status & SCxSR_BRK(port)) { 831 #if defined(CONFIG_CPU_SH3) 832 /* Debounce break */ 833 s->break_flag = 1; 834 #endif 835 836 port->icount.brk++; 837 838 /* Notify of BREAK */ 839 if (tty_insert_flip_char(tty, 0, TTY_BREAK)) 840 copied++; 841 842 dev_dbg(port->dev, "BREAK detected\n"); 843 } 844 845 if (copied) 846 tty_flip_buffer_push(tty); 847 848 copied += sci_handle_fifo_overrun(port); 849 850 return copied; 851 } 852 853 static irqreturn_t sci_rx_interrupt(int irq, void *ptr) 854 { 855 #ifdef CONFIG_SERIAL_SH_SCI_DMA 856 struct uart_port *port = ptr; 857 struct sci_port *s = to_sci_port(port); 858 859 if (s->chan_rx) { 860 u16 scr = serial_port_in(port, SCSCR); 861 u16 ssr = serial_port_in(port, SCxSR); 862 863 /* Disable future Rx interrupts */ 864 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 865 disable_irq_nosync(irq); 866 scr |= 0x4000; 867 } else { 868 scr &= ~SCSCR_RIE; 869 } 870 serial_port_out(port, SCSCR, scr); 871 /* Clear current interrupt */ 872 serial_port_out(port, SCxSR, ssr & ~(1 | SCxSR_RDxF(port))); 873 dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n", 874 jiffies, s->rx_timeout); 875 mod_timer(&s->rx_timer, jiffies + s->rx_timeout); 876 877 return IRQ_HANDLED; 878 } 879 #endif 880 881 /* I think sci_receive_chars has to be called irrespective 882 * of whether the I_IXOFF is set, otherwise, how is the interrupt 883 * to be disabled? 884 */ 885 sci_receive_chars(ptr); 886 887 return IRQ_HANDLED; 888 } 889 890 static irqreturn_t sci_tx_interrupt(int irq, void *ptr) 891 { 892 struct uart_port *port = ptr; 893 unsigned long flags; 894 895 spin_lock_irqsave(&port->lock, flags); 896 sci_transmit_chars(port); 897 spin_unlock_irqrestore(&port->lock, flags); 898 899 return IRQ_HANDLED; 900 } 901 902 static irqreturn_t sci_er_interrupt(int irq, void *ptr) 903 { 904 struct uart_port *port = ptr; 905 906 /* Handle errors */ 907 if (port->type == PORT_SCI) { 908 if (sci_handle_errors(port)) { 909 /* discard character in rx buffer */ 910 serial_port_in(port, SCxSR); 911 serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port)); 912 } 913 } else { 914 sci_handle_fifo_overrun(port); 915 sci_rx_interrupt(irq, ptr); 916 } 917 918 serial_port_out(port, SCxSR, SCxSR_ERROR_CLEAR(port)); 919 920 /* Kick the transmission */ 921 sci_tx_interrupt(irq, ptr); 922 923 return IRQ_HANDLED; 924 } 925 926 static irqreturn_t sci_br_interrupt(int irq, void *ptr) 927 { 928 struct uart_port *port = ptr; 929 930 /* Handle BREAKs */ 931 sci_handle_breaks(port); 932 serial_port_out(port, SCxSR, SCxSR_BREAK_CLEAR(port)); 933 934 return IRQ_HANDLED; 935 } 936 937 static inline unsigned long port_rx_irq_mask(struct uart_port *port) 938 { 939 /* 940 * Not all ports (such as SCIFA) will support REIE. Rather than 941 * special-casing the port type, we check the port initialization 942 * IRQ enable mask to see whether the IRQ is desired at all. If 943 * it's unset, it's logically inferred that there's no point in 944 * testing for it. 945 */ 946 return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE); 947 } 948 949 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr) 950 { 951 unsigned short ssr_status, scr_status, err_enabled; 952 struct uart_port *port = ptr; 953 struct sci_port *s = to_sci_port(port); 954 irqreturn_t ret = IRQ_NONE; 955 956 ssr_status = serial_port_in(port, SCxSR); 957 scr_status = serial_port_in(port, SCSCR); 958 err_enabled = scr_status & port_rx_irq_mask(port); 959 960 /* Tx Interrupt */ 961 if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) && 962 !s->chan_tx) 963 ret = sci_tx_interrupt(irq, ptr); 964 965 /* 966 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF / 967 * DR flags 968 */ 969 if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) && 970 (scr_status & SCSCR_RIE)) 971 ret = sci_rx_interrupt(irq, ptr); 972 973 /* Error Interrupt */ 974 if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled) 975 ret = sci_er_interrupt(irq, ptr); 976 977 /* Break Interrupt */ 978 if ((ssr_status & SCxSR_BRK(port)) && err_enabled) 979 ret = sci_br_interrupt(irq, ptr); 980 981 return ret; 982 } 983 984 /* 985 * Here we define a transition notifier so that we can update all of our 986 * ports' baud rate when the peripheral clock changes. 987 */ 988 static int sci_notifier(struct notifier_block *self, 989 unsigned long phase, void *p) 990 { 991 struct sci_port *sci_port; 992 unsigned long flags; 993 994 sci_port = container_of(self, struct sci_port, freq_transition); 995 996 if ((phase == CPUFREQ_POSTCHANGE) || 997 (phase == CPUFREQ_RESUMECHANGE)) { 998 struct uart_port *port = &sci_port->port; 999 1000 spin_lock_irqsave(&port->lock, flags); 1001 port->uartclk = clk_get_rate(sci_port->iclk); 1002 spin_unlock_irqrestore(&port->lock, flags); 1003 } 1004 1005 return NOTIFY_OK; 1006 } 1007 1008 static struct sci_irq_desc { 1009 const char *desc; 1010 irq_handler_t handler; 1011 } sci_irq_desc[] = { 1012 /* 1013 * Split out handlers, the default case. 1014 */ 1015 [SCIx_ERI_IRQ] = { 1016 .desc = "rx err", 1017 .handler = sci_er_interrupt, 1018 }, 1019 1020 [SCIx_RXI_IRQ] = { 1021 .desc = "rx full", 1022 .handler = sci_rx_interrupt, 1023 }, 1024 1025 [SCIx_TXI_IRQ] = { 1026 .desc = "tx empty", 1027 .handler = sci_tx_interrupt, 1028 }, 1029 1030 [SCIx_BRI_IRQ] = { 1031 .desc = "break", 1032 .handler = sci_br_interrupt, 1033 }, 1034 1035 /* 1036 * Special muxed handler. 1037 */ 1038 [SCIx_MUX_IRQ] = { 1039 .desc = "mux", 1040 .handler = sci_mpxed_interrupt, 1041 }, 1042 }; 1043 1044 static int sci_request_irq(struct sci_port *port) 1045 { 1046 struct uart_port *up = &port->port; 1047 int i, j, ret = 0; 1048 1049 for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) { 1050 struct sci_irq_desc *desc; 1051 unsigned int irq; 1052 1053 if (SCIx_IRQ_IS_MUXED(port)) { 1054 i = SCIx_MUX_IRQ; 1055 irq = up->irq; 1056 } else { 1057 irq = port->cfg->irqs[i]; 1058 1059 /* 1060 * Certain port types won't support all of the 1061 * available interrupt sources. 1062 */ 1063 if (unlikely(!irq)) 1064 continue; 1065 } 1066 1067 desc = sci_irq_desc + i; 1068 port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s", 1069 dev_name(up->dev), desc->desc); 1070 if (!port->irqstr[j]) { 1071 dev_err(up->dev, "Failed to allocate %s IRQ string\n", 1072 desc->desc); 1073 goto out_nomem; 1074 } 1075 1076 ret = request_irq(irq, desc->handler, up->irqflags, 1077 port->irqstr[j], port); 1078 if (unlikely(ret)) { 1079 dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc); 1080 goto out_noirq; 1081 } 1082 } 1083 1084 return 0; 1085 1086 out_noirq: 1087 while (--i >= 0) 1088 free_irq(port->cfg->irqs[i], port); 1089 1090 out_nomem: 1091 while (--j >= 0) 1092 kfree(port->irqstr[j]); 1093 1094 return ret; 1095 } 1096 1097 static void sci_free_irq(struct sci_port *port) 1098 { 1099 int i; 1100 1101 /* 1102 * Intentionally in reverse order so we iterate over the muxed 1103 * IRQ first. 1104 */ 1105 for (i = 0; i < SCIx_NR_IRQS; i++) { 1106 unsigned int irq = port->cfg->irqs[i]; 1107 1108 /* 1109 * Certain port types won't support all of the available 1110 * interrupt sources. 1111 */ 1112 if (unlikely(!irq)) 1113 continue; 1114 1115 free_irq(port->cfg->irqs[i], port); 1116 kfree(port->irqstr[i]); 1117 1118 if (SCIx_IRQ_IS_MUXED(port)) { 1119 /* If there's only one IRQ, we're done. */ 1120 return; 1121 } 1122 } 1123 } 1124 1125 static const char *sci_gpio_names[SCIx_NR_FNS] = { 1126 "sck", "rxd", "txd", "cts", "rts", 1127 }; 1128 1129 static const char *sci_gpio_str(unsigned int index) 1130 { 1131 return sci_gpio_names[index]; 1132 } 1133 1134 static void __devinit sci_init_gpios(struct sci_port *port) 1135 { 1136 struct uart_port *up = &port->port; 1137 int i; 1138 1139 if (!port->cfg) 1140 return; 1141 1142 for (i = 0; i < SCIx_NR_FNS; i++) { 1143 const char *desc; 1144 int ret; 1145 1146 if (!port->cfg->gpios[i]) 1147 continue; 1148 1149 desc = sci_gpio_str(i); 1150 1151 port->gpiostr[i] = kasprintf(GFP_KERNEL, "%s:%s", 1152 dev_name(up->dev), desc); 1153 1154 /* 1155 * If we've failed the allocation, we can still continue 1156 * on with a NULL string. 1157 */ 1158 if (!port->gpiostr[i]) 1159 dev_notice(up->dev, "%s string allocation failure\n", 1160 desc); 1161 1162 ret = gpio_request(port->cfg->gpios[i], port->gpiostr[i]); 1163 if (unlikely(ret != 0)) { 1164 dev_notice(up->dev, "failed %s gpio request\n", desc); 1165 1166 /* 1167 * If we can't get the GPIO for whatever reason, 1168 * no point in keeping the verbose string around. 1169 */ 1170 kfree(port->gpiostr[i]); 1171 } 1172 } 1173 } 1174 1175 static void sci_free_gpios(struct sci_port *port) 1176 { 1177 int i; 1178 1179 for (i = 0; i < SCIx_NR_FNS; i++) 1180 if (port->cfg->gpios[i]) { 1181 gpio_free(port->cfg->gpios[i]); 1182 kfree(port->gpiostr[i]); 1183 } 1184 } 1185 1186 static unsigned int sci_tx_empty(struct uart_port *port) 1187 { 1188 unsigned short status = serial_port_in(port, SCxSR); 1189 unsigned short in_tx_fifo = sci_txfill(port); 1190 1191 return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0; 1192 } 1193 1194 /* 1195 * Modem control is a bit of a mixed bag for SCI(F) ports. Generally 1196 * CTS/RTS is supported in hardware by at least one port and controlled 1197 * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently 1198 * handled via the ->init_pins() op, which is a bit of a one-way street, 1199 * lacking any ability to defer pin control -- this will later be 1200 * converted over to the GPIO framework). 1201 * 1202 * Other modes (such as loopback) are supported generically on certain 1203 * port types, but not others. For these it's sufficient to test for the 1204 * existence of the support register and simply ignore the port type. 1205 */ 1206 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl) 1207 { 1208 if (mctrl & TIOCM_LOOP) { 1209 struct plat_sci_reg *reg; 1210 1211 /* 1212 * Standard loopback mode for SCFCR ports. 1213 */ 1214 reg = sci_getreg(port, SCFCR); 1215 if (reg->size) 1216 serial_port_out(port, SCFCR, serial_port_in(port, SCFCR) | 1); 1217 } 1218 } 1219 1220 static unsigned int sci_get_mctrl(struct uart_port *port) 1221 { 1222 /* 1223 * CTS/RTS is handled in hardware when supported, while nothing 1224 * else is wired up. Keep it simple and simply assert DSR/CAR. 1225 */ 1226 return TIOCM_DSR | TIOCM_CAR; 1227 } 1228 1229 #ifdef CONFIG_SERIAL_SH_SCI_DMA 1230 static void sci_dma_tx_complete(void *arg) 1231 { 1232 struct sci_port *s = arg; 1233 struct uart_port *port = &s->port; 1234 struct circ_buf *xmit = &port->state->xmit; 1235 unsigned long flags; 1236 1237 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line); 1238 1239 spin_lock_irqsave(&port->lock, flags); 1240 1241 xmit->tail += sg_dma_len(&s->sg_tx); 1242 xmit->tail &= UART_XMIT_SIZE - 1; 1243 1244 port->icount.tx += sg_dma_len(&s->sg_tx); 1245 1246 async_tx_ack(s->desc_tx); 1247 s->desc_tx = NULL; 1248 1249 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 1250 uart_write_wakeup(port); 1251 1252 if (!uart_circ_empty(xmit)) { 1253 s->cookie_tx = 0; 1254 schedule_work(&s->work_tx); 1255 } else { 1256 s->cookie_tx = -EINVAL; 1257 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 1258 u16 ctrl = serial_port_in(port, SCSCR); 1259 serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE); 1260 } 1261 } 1262 1263 spin_unlock_irqrestore(&port->lock, flags); 1264 } 1265 1266 /* Locking: called with port lock held */ 1267 static int sci_dma_rx_push(struct sci_port *s, struct tty_struct *tty, 1268 size_t count) 1269 { 1270 struct uart_port *port = &s->port; 1271 int i, active, room; 1272 1273 room = tty_buffer_request_room(tty, count); 1274 1275 if (s->active_rx == s->cookie_rx[0]) { 1276 active = 0; 1277 } else if (s->active_rx == s->cookie_rx[1]) { 1278 active = 1; 1279 } else { 1280 dev_err(port->dev, "cookie %d not found!\n", s->active_rx); 1281 return 0; 1282 } 1283 1284 if (room < count) 1285 dev_warn(port->dev, "Rx overrun: dropping %u bytes\n", 1286 count - room); 1287 if (!room) 1288 return room; 1289 1290 for (i = 0; i < room; i++) 1291 tty_insert_flip_char(tty, ((u8 *)sg_virt(&s->sg_rx[active]))[i], 1292 TTY_NORMAL); 1293 1294 port->icount.rx += room; 1295 1296 return room; 1297 } 1298 1299 static void sci_dma_rx_complete(void *arg) 1300 { 1301 struct sci_port *s = arg; 1302 struct uart_port *port = &s->port; 1303 struct tty_struct *tty = port->state->port.tty; 1304 unsigned long flags; 1305 int count; 1306 1307 dev_dbg(port->dev, "%s(%d) active #%d\n", __func__, port->line, s->active_rx); 1308 1309 spin_lock_irqsave(&port->lock, flags); 1310 1311 count = sci_dma_rx_push(s, tty, s->buf_len_rx); 1312 1313 mod_timer(&s->rx_timer, jiffies + s->rx_timeout); 1314 1315 spin_unlock_irqrestore(&port->lock, flags); 1316 1317 if (count) 1318 tty_flip_buffer_push(tty); 1319 1320 schedule_work(&s->work_rx); 1321 } 1322 1323 static void sci_rx_dma_release(struct sci_port *s, bool enable_pio) 1324 { 1325 struct dma_chan *chan = s->chan_rx; 1326 struct uart_port *port = &s->port; 1327 1328 s->chan_rx = NULL; 1329 s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL; 1330 dma_release_channel(chan); 1331 if (sg_dma_address(&s->sg_rx[0])) 1332 dma_free_coherent(port->dev, s->buf_len_rx * 2, 1333 sg_virt(&s->sg_rx[0]), sg_dma_address(&s->sg_rx[0])); 1334 if (enable_pio) 1335 sci_start_rx(port); 1336 } 1337 1338 static void sci_tx_dma_release(struct sci_port *s, bool enable_pio) 1339 { 1340 struct dma_chan *chan = s->chan_tx; 1341 struct uart_port *port = &s->port; 1342 1343 s->chan_tx = NULL; 1344 s->cookie_tx = -EINVAL; 1345 dma_release_channel(chan); 1346 if (enable_pio) 1347 sci_start_tx(port); 1348 } 1349 1350 static void sci_submit_rx(struct sci_port *s) 1351 { 1352 struct dma_chan *chan = s->chan_rx; 1353 int i; 1354 1355 for (i = 0; i < 2; i++) { 1356 struct scatterlist *sg = &s->sg_rx[i]; 1357 struct dma_async_tx_descriptor *desc; 1358 1359 desc = dmaengine_prep_slave_sg(chan, 1360 sg, 1, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT); 1361 1362 if (desc) { 1363 s->desc_rx[i] = desc; 1364 desc->callback = sci_dma_rx_complete; 1365 desc->callback_param = s; 1366 s->cookie_rx[i] = desc->tx_submit(desc); 1367 } 1368 1369 if (!desc || s->cookie_rx[i] < 0) { 1370 if (i) { 1371 async_tx_ack(s->desc_rx[0]); 1372 s->cookie_rx[0] = -EINVAL; 1373 } 1374 if (desc) { 1375 async_tx_ack(desc); 1376 s->cookie_rx[i] = -EINVAL; 1377 } 1378 dev_warn(s->port.dev, 1379 "failed to re-start DMA, using PIO\n"); 1380 sci_rx_dma_release(s, true); 1381 return; 1382 } 1383 dev_dbg(s->port.dev, "%s(): cookie %d to #%d\n", __func__, 1384 s->cookie_rx[i], i); 1385 } 1386 1387 s->active_rx = s->cookie_rx[0]; 1388 1389 dma_async_issue_pending(chan); 1390 } 1391 1392 static void work_fn_rx(struct work_struct *work) 1393 { 1394 struct sci_port *s = container_of(work, struct sci_port, work_rx); 1395 struct uart_port *port = &s->port; 1396 struct dma_async_tx_descriptor *desc; 1397 int new; 1398 1399 if (s->active_rx == s->cookie_rx[0]) { 1400 new = 0; 1401 } else if (s->active_rx == s->cookie_rx[1]) { 1402 new = 1; 1403 } else { 1404 dev_err(port->dev, "cookie %d not found!\n", s->active_rx); 1405 return; 1406 } 1407 desc = s->desc_rx[new]; 1408 1409 if (dma_async_is_tx_complete(s->chan_rx, s->active_rx, NULL, NULL) != 1410 DMA_SUCCESS) { 1411 /* Handle incomplete DMA receive */ 1412 struct tty_struct *tty = port->state->port.tty; 1413 struct dma_chan *chan = s->chan_rx; 1414 struct shdma_desc *sh_desc = container_of(desc, 1415 struct shdma_desc, async_tx); 1416 unsigned long flags; 1417 int count; 1418 1419 chan->device->device_control(chan, DMA_TERMINATE_ALL, 0); 1420 dev_dbg(port->dev, "Read %u bytes with cookie %d\n", 1421 sh_desc->partial, sh_desc->cookie); 1422 1423 spin_lock_irqsave(&port->lock, flags); 1424 count = sci_dma_rx_push(s, tty, sh_desc->partial); 1425 spin_unlock_irqrestore(&port->lock, flags); 1426 1427 if (count) 1428 tty_flip_buffer_push(tty); 1429 1430 sci_submit_rx(s); 1431 1432 return; 1433 } 1434 1435 s->cookie_rx[new] = desc->tx_submit(desc); 1436 if (s->cookie_rx[new] < 0) { 1437 dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n"); 1438 sci_rx_dma_release(s, true); 1439 return; 1440 } 1441 1442 s->active_rx = s->cookie_rx[!new]; 1443 1444 dev_dbg(port->dev, "%s: cookie %d #%d, new active #%d\n", __func__, 1445 s->cookie_rx[new], new, s->active_rx); 1446 } 1447 1448 static void work_fn_tx(struct work_struct *work) 1449 { 1450 struct sci_port *s = container_of(work, struct sci_port, work_tx); 1451 struct dma_async_tx_descriptor *desc; 1452 struct dma_chan *chan = s->chan_tx; 1453 struct uart_port *port = &s->port; 1454 struct circ_buf *xmit = &port->state->xmit; 1455 struct scatterlist *sg = &s->sg_tx; 1456 1457 /* 1458 * DMA is idle now. 1459 * Port xmit buffer is already mapped, and it is one page... Just adjust 1460 * offsets and lengths. Since it is a circular buffer, we have to 1461 * transmit till the end, and then the rest. Take the port lock to get a 1462 * consistent xmit buffer state. 1463 */ 1464 spin_lock_irq(&port->lock); 1465 sg->offset = xmit->tail & (UART_XMIT_SIZE - 1); 1466 sg_dma_address(sg) = (sg_dma_address(sg) & ~(UART_XMIT_SIZE - 1)) + 1467 sg->offset; 1468 sg_dma_len(sg) = min((int)CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE), 1469 CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE)); 1470 spin_unlock_irq(&port->lock); 1471 1472 BUG_ON(!sg_dma_len(sg)); 1473 1474 desc = dmaengine_prep_slave_sg(chan, 1475 sg, s->sg_len_tx, DMA_MEM_TO_DEV, 1476 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1477 if (!desc) { 1478 /* switch to PIO */ 1479 sci_tx_dma_release(s, true); 1480 return; 1481 } 1482 1483 dma_sync_sg_for_device(port->dev, sg, 1, DMA_TO_DEVICE); 1484 1485 spin_lock_irq(&port->lock); 1486 s->desc_tx = desc; 1487 desc->callback = sci_dma_tx_complete; 1488 desc->callback_param = s; 1489 spin_unlock_irq(&port->lock); 1490 s->cookie_tx = desc->tx_submit(desc); 1491 if (s->cookie_tx < 0) { 1492 dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n"); 1493 /* switch to PIO */ 1494 sci_tx_dma_release(s, true); 1495 return; 1496 } 1497 1498 dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n", __func__, 1499 xmit->buf, xmit->tail, xmit->head, s->cookie_tx); 1500 1501 dma_async_issue_pending(chan); 1502 } 1503 #endif 1504 1505 static void sci_start_tx(struct uart_port *port) 1506 { 1507 struct sci_port *s = to_sci_port(port); 1508 unsigned short ctrl; 1509 1510 #ifdef CONFIG_SERIAL_SH_SCI_DMA 1511 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 1512 u16 new, scr = serial_port_in(port, SCSCR); 1513 if (s->chan_tx) 1514 new = scr | 0x8000; 1515 else 1516 new = scr & ~0x8000; 1517 if (new != scr) 1518 serial_port_out(port, SCSCR, new); 1519 } 1520 1521 if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) && 1522 s->cookie_tx < 0) { 1523 s->cookie_tx = 0; 1524 schedule_work(&s->work_tx); 1525 } 1526 #endif 1527 1528 if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 1529 /* Set TIE (Transmit Interrupt Enable) bit in SCSCR */ 1530 ctrl = serial_port_in(port, SCSCR); 1531 serial_port_out(port, SCSCR, ctrl | SCSCR_TIE); 1532 } 1533 } 1534 1535 static void sci_stop_tx(struct uart_port *port) 1536 { 1537 unsigned short ctrl; 1538 1539 /* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */ 1540 ctrl = serial_port_in(port, SCSCR); 1541 1542 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) 1543 ctrl &= ~0x8000; 1544 1545 ctrl &= ~SCSCR_TIE; 1546 1547 serial_port_out(port, SCSCR, ctrl); 1548 } 1549 1550 static void sci_start_rx(struct uart_port *port) 1551 { 1552 unsigned short ctrl; 1553 1554 ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port); 1555 1556 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) 1557 ctrl &= ~0x4000; 1558 1559 serial_port_out(port, SCSCR, ctrl); 1560 } 1561 1562 static void sci_stop_rx(struct uart_port *port) 1563 { 1564 unsigned short ctrl; 1565 1566 ctrl = serial_port_in(port, SCSCR); 1567 1568 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) 1569 ctrl &= ~0x4000; 1570 1571 ctrl &= ~port_rx_irq_mask(port); 1572 1573 serial_port_out(port, SCSCR, ctrl); 1574 } 1575 1576 static void sci_enable_ms(struct uart_port *port) 1577 { 1578 /* 1579 * Not supported by hardware, always a nop. 1580 */ 1581 } 1582 1583 static void sci_break_ctl(struct uart_port *port, int break_state) 1584 { 1585 struct sci_port *s = to_sci_port(port); 1586 struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR; 1587 unsigned short scscr, scsptr; 1588 1589 /* check wheter the port has SCSPTR */ 1590 if (!reg->size) { 1591 /* 1592 * Not supported by hardware. Most parts couple break and rx 1593 * interrupts together, with break detection always enabled. 1594 */ 1595 return; 1596 } 1597 1598 scsptr = serial_port_in(port, SCSPTR); 1599 scscr = serial_port_in(port, SCSCR); 1600 1601 if (break_state == -1) { 1602 scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT; 1603 scscr &= ~SCSCR_TE; 1604 } else { 1605 scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO; 1606 scscr |= SCSCR_TE; 1607 } 1608 1609 serial_port_out(port, SCSPTR, scsptr); 1610 serial_port_out(port, SCSCR, scscr); 1611 } 1612 1613 #ifdef CONFIG_SERIAL_SH_SCI_DMA 1614 static bool filter(struct dma_chan *chan, void *slave) 1615 { 1616 struct sh_dmae_slave *param = slave; 1617 1618 dev_dbg(chan->device->dev, "%s: slave ID %d\n", __func__, 1619 param->shdma_slave.slave_id); 1620 1621 chan->private = ¶m->shdma_slave; 1622 return true; 1623 } 1624 1625 static void rx_timer_fn(unsigned long arg) 1626 { 1627 struct sci_port *s = (struct sci_port *)arg; 1628 struct uart_port *port = &s->port; 1629 u16 scr = serial_port_in(port, SCSCR); 1630 1631 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 1632 scr &= ~0x4000; 1633 enable_irq(s->cfg->irqs[1]); 1634 } 1635 serial_port_out(port, SCSCR, scr | SCSCR_RIE); 1636 dev_dbg(port->dev, "DMA Rx timed out\n"); 1637 schedule_work(&s->work_rx); 1638 } 1639 1640 static void sci_request_dma(struct uart_port *port) 1641 { 1642 struct sci_port *s = to_sci_port(port); 1643 struct sh_dmae_slave *param; 1644 struct dma_chan *chan; 1645 dma_cap_mask_t mask; 1646 int nent; 1647 1648 dev_dbg(port->dev, "%s: port %d\n", __func__, 1649 port->line); 1650 1651 if (s->cfg->dma_slave_tx <= 0 || s->cfg->dma_slave_rx <= 0) 1652 return; 1653 1654 dma_cap_zero(mask); 1655 dma_cap_set(DMA_SLAVE, mask); 1656 1657 param = &s->param_tx; 1658 1659 /* Slave ID, e.g., SHDMA_SLAVE_SCIF0_TX */ 1660 param->shdma_slave.slave_id = s->cfg->dma_slave_tx; 1661 1662 s->cookie_tx = -EINVAL; 1663 chan = dma_request_channel(mask, filter, param); 1664 dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan); 1665 if (chan) { 1666 s->chan_tx = chan; 1667 sg_init_table(&s->sg_tx, 1); 1668 /* UART circular tx buffer is an aligned page. */ 1669 BUG_ON((int)port->state->xmit.buf & ~PAGE_MASK); 1670 sg_set_page(&s->sg_tx, virt_to_page(port->state->xmit.buf), 1671 UART_XMIT_SIZE, (int)port->state->xmit.buf & ~PAGE_MASK); 1672 nent = dma_map_sg(port->dev, &s->sg_tx, 1, DMA_TO_DEVICE); 1673 if (!nent) 1674 sci_tx_dma_release(s, false); 1675 else 1676 dev_dbg(port->dev, "%s: mapped %d@%p to %x\n", __func__, 1677 sg_dma_len(&s->sg_tx), 1678 port->state->xmit.buf, sg_dma_address(&s->sg_tx)); 1679 1680 s->sg_len_tx = nent; 1681 1682 INIT_WORK(&s->work_tx, work_fn_tx); 1683 } 1684 1685 param = &s->param_rx; 1686 1687 /* Slave ID, e.g., SHDMA_SLAVE_SCIF0_RX */ 1688 param->shdma_slave.slave_id = s->cfg->dma_slave_rx; 1689 1690 chan = dma_request_channel(mask, filter, param); 1691 dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan); 1692 if (chan) { 1693 dma_addr_t dma[2]; 1694 void *buf[2]; 1695 int i; 1696 1697 s->chan_rx = chan; 1698 1699 s->buf_len_rx = 2 * max(16, (int)port->fifosize); 1700 buf[0] = dma_alloc_coherent(port->dev, s->buf_len_rx * 2, 1701 &dma[0], GFP_KERNEL); 1702 1703 if (!buf[0]) { 1704 dev_warn(port->dev, 1705 "failed to allocate dma buffer, using PIO\n"); 1706 sci_rx_dma_release(s, true); 1707 return; 1708 } 1709 1710 buf[1] = buf[0] + s->buf_len_rx; 1711 dma[1] = dma[0] + s->buf_len_rx; 1712 1713 for (i = 0; i < 2; i++) { 1714 struct scatterlist *sg = &s->sg_rx[i]; 1715 1716 sg_init_table(sg, 1); 1717 sg_set_page(sg, virt_to_page(buf[i]), s->buf_len_rx, 1718 (int)buf[i] & ~PAGE_MASK); 1719 sg_dma_address(sg) = dma[i]; 1720 } 1721 1722 INIT_WORK(&s->work_rx, work_fn_rx); 1723 setup_timer(&s->rx_timer, rx_timer_fn, (unsigned long)s); 1724 1725 sci_submit_rx(s); 1726 } 1727 } 1728 1729 static void sci_free_dma(struct uart_port *port) 1730 { 1731 struct sci_port *s = to_sci_port(port); 1732 1733 if (s->chan_tx) 1734 sci_tx_dma_release(s, false); 1735 if (s->chan_rx) 1736 sci_rx_dma_release(s, false); 1737 } 1738 #else 1739 static inline void sci_request_dma(struct uart_port *port) 1740 { 1741 } 1742 1743 static inline void sci_free_dma(struct uart_port *port) 1744 { 1745 } 1746 #endif 1747 1748 static int sci_startup(struct uart_port *port) 1749 { 1750 struct sci_port *s = to_sci_port(port); 1751 int ret; 1752 1753 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line); 1754 1755 pm_runtime_put_noidle(port->dev); 1756 1757 sci_port_enable(s); 1758 1759 ret = sci_request_irq(s); 1760 if (unlikely(ret < 0)) 1761 return ret; 1762 1763 sci_request_dma(port); 1764 1765 sci_start_tx(port); 1766 sci_start_rx(port); 1767 1768 return 0; 1769 } 1770 1771 static void sci_shutdown(struct uart_port *port) 1772 { 1773 struct sci_port *s = to_sci_port(port); 1774 1775 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line); 1776 1777 sci_stop_rx(port); 1778 sci_stop_tx(port); 1779 1780 sci_free_dma(port); 1781 sci_free_irq(s); 1782 1783 sci_port_disable(s); 1784 1785 pm_runtime_get_noresume(port->dev); 1786 } 1787 1788 static unsigned int sci_scbrr_calc(unsigned int algo_id, unsigned int bps, 1789 unsigned long freq) 1790 { 1791 switch (algo_id) { 1792 case SCBRR_ALGO_1: 1793 return ((freq + 16 * bps) / (16 * bps) - 1); 1794 case SCBRR_ALGO_2: 1795 return ((freq + 16 * bps) / (32 * bps) - 1); 1796 case SCBRR_ALGO_3: 1797 return (((freq * 2) + 16 * bps) / (16 * bps) - 1); 1798 case SCBRR_ALGO_4: 1799 return (((freq * 2) + 16 * bps) / (32 * bps) - 1); 1800 case SCBRR_ALGO_5: 1801 return (((freq * 1000 / 32) / bps) - 1); 1802 } 1803 1804 /* Warn, but use a safe default */ 1805 WARN_ON(1); 1806 1807 return ((freq + 16 * bps) / (32 * bps) - 1); 1808 } 1809 1810 static void sci_reset(struct uart_port *port) 1811 { 1812 struct plat_sci_reg *reg; 1813 unsigned int status; 1814 1815 do { 1816 status = serial_port_in(port, SCxSR); 1817 } while (!(status & SCxSR_TEND(port))); 1818 1819 serial_port_out(port, SCSCR, 0x00); /* TE=0, RE=0, CKE1=0 */ 1820 1821 reg = sci_getreg(port, SCFCR); 1822 if (reg->size) 1823 serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST); 1824 } 1825 1826 static void sci_set_termios(struct uart_port *port, struct ktermios *termios, 1827 struct ktermios *old) 1828 { 1829 struct sci_port *s = to_sci_port(port); 1830 struct plat_sci_reg *reg; 1831 unsigned int baud, smr_val, max_baud; 1832 int t = -1; 1833 1834 /* 1835 * earlyprintk comes here early on with port->uartclk set to zero. 1836 * the clock framework is not up and running at this point so here 1837 * we assume that 115200 is the maximum baud rate. please note that 1838 * the baud rate is not programmed during earlyprintk - it is assumed 1839 * that the previous boot loader has enabled required clocks and 1840 * setup the baud rate generator hardware for us already. 1841 */ 1842 max_baud = port->uartclk ? port->uartclk / 16 : 115200; 1843 1844 baud = uart_get_baud_rate(port, termios, old, 0, max_baud); 1845 if (likely(baud && port->uartclk)) 1846 t = sci_scbrr_calc(s->cfg->scbrr_algo_id, baud, port->uartclk); 1847 1848 sci_port_enable(s); 1849 1850 sci_reset(port); 1851 1852 smr_val = serial_port_in(port, SCSMR) & 3; 1853 1854 if ((termios->c_cflag & CSIZE) == CS7) 1855 smr_val |= 0x40; 1856 if (termios->c_cflag & PARENB) 1857 smr_val |= 0x20; 1858 if (termios->c_cflag & PARODD) 1859 smr_val |= 0x30; 1860 if (termios->c_cflag & CSTOPB) 1861 smr_val |= 0x08; 1862 1863 uart_update_timeout(port, termios->c_cflag, baud); 1864 1865 serial_port_out(port, SCSMR, smr_val); 1866 1867 dev_dbg(port->dev, "%s: SMR %x, t %x, SCSCR %x\n", __func__, smr_val, t, 1868 s->cfg->scscr); 1869 1870 if (t > 0) { 1871 if (t >= 256) { 1872 serial_port_out(port, SCSMR, (serial_port_in(port, SCSMR) & ~3) | 1); 1873 t >>= 2; 1874 } else 1875 serial_port_out(port, SCSMR, serial_port_in(port, SCSMR) & ~3); 1876 1877 serial_port_out(port, SCBRR, t); 1878 udelay((1000000+(baud-1)) / baud); /* Wait one bit interval */ 1879 } 1880 1881 sci_init_pins(port, termios->c_cflag); 1882 1883 reg = sci_getreg(port, SCFCR); 1884 if (reg->size) { 1885 unsigned short ctrl = serial_port_in(port, SCFCR); 1886 1887 if (s->cfg->capabilities & SCIx_HAVE_RTSCTS) { 1888 if (termios->c_cflag & CRTSCTS) 1889 ctrl |= SCFCR_MCE; 1890 else 1891 ctrl &= ~SCFCR_MCE; 1892 } 1893 1894 /* 1895 * As we've done a sci_reset() above, ensure we don't 1896 * interfere with the FIFOs while toggling MCE. As the 1897 * reset values could still be set, simply mask them out. 1898 */ 1899 ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST); 1900 1901 serial_port_out(port, SCFCR, ctrl); 1902 } 1903 1904 serial_port_out(port, SCSCR, s->cfg->scscr); 1905 1906 #ifdef CONFIG_SERIAL_SH_SCI_DMA 1907 /* 1908 * Calculate delay for 1.5 DMA buffers: see 1909 * drivers/serial/serial_core.c::uart_update_timeout(). With 10 bits 1910 * (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above function 1911 * calculates 1 jiffie for the data plus 5 jiffies for the "slop(e)." 1912 * Then below we calculate 3 jiffies (12ms) for 1.5 DMA buffers (3 FIFO 1913 * sizes), but it has been found out experimentally, that this is not 1914 * enough: the driver too often needlessly runs on a DMA timeout. 20ms 1915 * as a minimum seem to work perfectly. 1916 */ 1917 if (s->chan_rx) { 1918 s->rx_timeout = (port->timeout - HZ / 50) * s->buf_len_rx * 3 / 1919 port->fifosize / 2; 1920 dev_dbg(port->dev, 1921 "DMA Rx t-out %ums, tty t-out %u jiffies\n", 1922 s->rx_timeout * 1000 / HZ, port->timeout); 1923 if (s->rx_timeout < msecs_to_jiffies(20)) 1924 s->rx_timeout = msecs_to_jiffies(20); 1925 } 1926 #endif 1927 1928 if ((termios->c_cflag & CREAD) != 0) 1929 sci_start_rx(port); 1930 1931 sci_port_disable(s); 1932 } 1933 1934 static const char *sci_type(struct uart_port *port) 1935 { 1936 switch (port->type) { 1937 case PORT_IRDA: 1938 return "irda"; 1939 case PORT_SCI: 1940 return "sci"; 1941 case PORT_SCIF: 1942 return "scif"; 1943 case PORT_SCIFA: 1944 return "scifa"; 1945 case PORT_SCIFB: 1946 return "scifb"; 1947 } 1948 1949 return NULL; 1950 } 1951 1952 static inline unsigned long sci_port_size(struct uart_port *port) 1953 { 1954 /* 1955 * Pick an arbitrary size that encapsulates all of the base 1956 * registers by default. This can be optimized later, or derived 1957 * from platform resource data at such a time that ports begin to 1958 * behave more erratically. 1959 */ 1960 return 64; 1961 } 1962 1963 static int sci_remap_port(struct uart_port *port) 1964 { 1965 unsigned long size = sci_port_size(port); 1966 1967 /* 1968 * Nothing to do if there's already an established membase. 1969 */ 1970 if (port->membase) 1971 return 0; 1972 1973 if (port->flags & UPF_IOREMAP) { 1974 port->membase = ioremap_nocache(port->mapbase, size); 1975 if (unlikely(!port->membase)) { 1976 dev_err(port->dev, "can't remap port#%d\n", port->line); 1977 return -ENXIO; 1978 } 1979 } else { 1980 /* 1981 * For the simple (and majority of) cases where we don't 1982 * need to do any remapping, just cast the cookie 1983 * directly. 1984 */ 1985 port->membase = (void __iomem *)port->mapbase; 1986 } 1987 1988 return 0; 1989 } 1990 1991 static void sci_release_port(struct uart_port *port) 1992 { 1993 if (port->flags & UPF_IOREMAP) { 1994 iounmap(port->membase); 1995 port->membase = NULL; 1996 } 1997 1998 release_mem_region(port->mapbase, sci_port_size(port)); 1999 } 2000 2001 static int sci_request_port(struct uart_port *port) 2002 { 2003 unsigned long size = sci_port_size(port); 2004 struct resource *res; 2005 int ret; 2006 2007 res = request_mem_region(port->mapbase, size, dev_name(port->dev)); 2008 if (unlikely(res == NULL)) 2009 return -EBUSY; 2010 2011 ret = sci_remap_port(port); 2012 if (unlikely(ret != 0)) { 2013 release_resource(res); 2014 return ret; 2015 } 2016 2017 return 0; 2018 } 2019 2020 static void sci_config_port(struct uart_port *port, int flags) 2021 { 2022 if (flags & UART_CONFIG_TYPE) { 2023 struct sci_port *sport = to_sci_port(port); 2024 2025 port->type = sport->cfg->type; 2026 sci_request_port(port); 2027 } 2028 } 2029 2030 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser) 2031 { 2032 struct sci_port *s = to_sci_port(port); 2033 2034 if (ser->irq != s->cfg->irqs[SCIx_TXI_IRQ] || ser->irq > nr_irqs) 2035 return -EINVAL; 2036 if (ser->baud_base < 2400) 2037 /* No paper tape reader for Mitch.. */ 2038 return -EINVAL; 2039 2040 return 0; 2041 } 2042 2043 static struct uart_ops sci_uart_ops = { 2044 .tx_empty = sci_tx_empty, 2045 .set_mctrl = sci_set_mctrl, 2046 .get_mctrl = sci_get_mctrl, 2047 .start_tx = sci_start_tx, 2048 .stop_tx = sci_stop_tx, 2049 .stop_rx = sci_stop_rx, 2050 .enable_ms = sci_enable_ms, 2051 .break_ctl = sci_break_ctl, 2052 .startup = sci_startup, 2053 .shutdown = sci_shutdown, 2054 .set_termios = sci_set_termios, 2055 .type = sci_type, 2056 .release_port = sci_release_port, 2057 .request_port = sci_request_port, 2058 .config_port = sci_config_port, 2059 .verify_port = sci_verify_port, 2060 #ifdef CONFIG_CONSOLE_POLL 2061 .poll_get_char = sci_poll_get_char, 2062 .poll_put_char = sci_poll_put_char, 2063 #endif 2064 }; 2065 2066 static int __devinit sci_init_single(struct platform_device *dev, 2067 struct sci_port *sci_port, 2068 unsigned int index, 2069 struct plat_sci_port *p) 2070 { 2071 struct uart_port *port = &sci_port->port; 2072 int ret; 2073 2074 sci_port->cfg = p; 2075 2076 port->ops = &sci_uart_ops; 2077 port->iotype = UPIO_MEM; 2078 port->line = index; 2079 2080 switch (p->type) { 2081 case PORT_SCIFB: 2082 port->fifosize = 256; 2083 break; 2084 case PORT_SCIFA: 2085 port->fifosize = 64; 2086 break; 2087 case PORT_SCIF: 2088 port->fifosize = 16; 2089 break; 2090 default: 2091 port->fifosize = 1; 2092 break; 2093 } 2094 2095 if (p->regtype == SCIx_PROBE_REGTYPE) { 2096 ret = sci_probe_regmap(p); 2097 if (unlikely(ret)) 2098 return ret; 2099 } 2100 2101 if (dev) { 2102 sci_port->iclk = clk_get(&dev->dev, "sci_ick"); 2103 if (IS_ERR(sci_port->iclk)) { 2104 sci_port->iclk = clk_get(&dev->dev, "peripheral_clk"); 2105 if (IS_ERR(sci_port->iclk)) { 2106 dev_err(&dev->dev, "can't get iclk\n"); 2107 return PTR_ERR(sci_port->iclk); 2108 } 2109 } 2110 2111 /* 2112 * The function clock is optional, ignore it if we can't 2113 * find it. 2114 */ 2115 sci_port->fclk = clk_get(&dev->dev, "sci_fck"); 2116 if (IS_ERR(sci_port->fclk)) 2117 sci_port->fclk = NULL; 2118 2119 port->dev = &dev->dev; 2120 2121 sci_init_gpios(sci_port); 2122 2123 pm_runtime_irq_safe(&dev->dev); 2124 pm_runtime_get_noresume(&dev->dev); 2125 pm_runtime_enable(&dev->dev); 2126 } 2127 2128 sci_port->break_timer.data = (unsigned long)sci_port; 2129 sci_port->break_timer.function = sci_break_timer; 2130 init_timer(&sci_port->break_timer); 2131 2132 /* 2133 * Establish some sensible defaults for the error detection. 2134 */ 2135 if (!p->error_mask) 2136 p->error_mask = (p->type == PORT_SCI) ? 2137 SCI_DEFAULT_ERROR_MASK : SCIF_DEFAULT_ERROR_MASK; 2138 2139 /* 2140 * Establish sensible defaults for the overrun detection, unless 2141 * the part has explicitly disabled support for it. 2142 */ 2143 if (p->overrun_bit != SCIx_NOT_SUPPORTED) { 2144 if (p->type == PORT_SCI) 2145 p->overrun_bit = 5; 2146 else if (p->scbrr_algo_id == SCBRR_ALGO_4) 2147 p->overrun_bit = 9; 2148 else 2149 p->overrun_bit = 0; 2150 2151 /* 2152 * Make the error mask inclusive of overrun detection, if 2153 * supported. 2154 */ 2155 p->error_mask |= (1 << p->overrun_bit); 2156 } 2157 2158 port->mapbase = p->mapbase; 2159 port->type = p->type; 2160 port->flags = p->flags; 2161 port->regshift = p->regshift; 2162 2163 /* 2164 * The UART port needs an IRQ value, so we peg this to the RX IRQ 2165 * for the multi-IRQ ports, which is where we are primarily 2166 * concerned with the shutdown path synchronization. 2167 * 2168 * For the muxed case there's nothing more to do. 2169 */ 2170 port->irq = p->irqs[SCIx_RXI_IRQ]; 2171 port->irqflags = 0; 2172 2173 port->serial_in = sci_serial_in; 2174 port->serial_out = sci_serial_out; 2175 2176 if (p->dma_slave_tx > 0 && p->dma_slave_rx > 0) 2177 dev_dbg(port->dev, "DMA tx %d, rx %d\n", 2178 p->dma_slave_tx, p->dma_slave_rx); 2179 2180 return 0; 2181 } 2182 2183 static void sci_cleanup_single(struct sci_port *port) 2184 { 2185 sci_free_gpios(port); 2186 2187 clk_put(port->iclk); 2188 clk_put(port->fclk); 2189 2190 pm_runtime_disable(port->port.dev); 2191 } 2192 2193 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE 2194 static void serial_console_putchar(struct uart_port *port, int ch) 2195 { 2196 sci_poll_put_char(port, ch); 2197 } 2198 2199 /* 2200 * Print a string to the serial port trying not to disturb 2201 * any possible real use of the port... 2202 */ 2203 static void serial_console_write(struct console *co, const char *s, 2204 unsigned count) 2205 { 2206 struct sci_port *sci_port = &sci_ports[co->index]; 2207 struct uart_port *port = &sci_port->port; 2208 unsigned short bits; 2209 2210 sci_port_enable(sci_port); 2211 2212 uart_console_write(port, s, count, serial_console_putchar); 2213 2214 /* wait until fifo is empty and last bit has been transmitted */ 2215 bits = SCxSR_TDxE(port) | SCxSR_TEND(port); 2216 while ((serial_port_in(port, SCxSR) & bits) != bits) 2217 cpu_relax(); 2218 2219 sci_port_disable(sci_port); 2220 } 2221 2222 static int __devinit serial_console_setup(struct console *co, char *options) 2223 { 2224 struct sci_port *sci_port; 2225 struct uart_port *port; 2226 int baud = 115200; 2227 int bits = 8; 2228 int parity = 'n'; 2229 int flow = 'n'; 2230 int ret; 2231 2232 /* 2233 * Refuse to handle any bogus ports. 2234 */ 2235 if (co->index < 0 || co->index >= SCI_NPORTS) 2236 return -ENODEV; 2237 2238 sci_port = &sci_ports[co->index]; 2239 port = &sci_port->port; 2240 2241 /* 2242 * Refuse to handle uninitialized ports. 2243 */ 2244 if (!port->ops) 2245 return -ENODEV; 2246 2247 ret = sci_remap_port(port); 2248 if (unlikely(ret != 0)) 2249 return ret; 2250 2251 sci_port_enable(sci_port); 2252 2253 if (options) 2254 uart_parse_options(options, &baud, &parity, &bits, &flow); 2255 2256 sci_port_disable(sci_port); 2257 2258 return uart_set_options(port, co, baud, parity, bits, flow); 2259 } 2260 2261 static struct console serial_console = { 2262 .name = "ttySC", 2263 .device = uart_console_device, 2264 .write = serial_console_write, 2265 .setup = serial_console_setup, 2266 .flags = CON_PRINTBUFFER, 2267 .index = -1, 2268 .data = &sci_uart_driver, 2269 }; 2270 2271 static struct console early_serial_console = { 2272 .name = "early_ttySC", 2273 .write = serial_console_write, 2274 .flags = CON_PRINTBUFFER, 2275 .index = -1, 2276 }; 2277 2278 static char early_serial_buf[32]; 2279 2280 static int __devinit sci_probe_earlyprintk(struct platform_device *pdev) 2281 { 2282 struct plat_sci_port *cfg = pdev->dev.platform_data; 2283 2284 if (early_serial_console.data) 2285 return -EEXIST; 2286 2287 early_serial_console.index = pdev->id; 2288 2289 sci_init_single(NULL, &sci_ports[pdev->id], pdev->id, cfg); 2290 2291 serial_console_setup(&early_serial_console, early_serial_buf); 2292 2293 if (!strstr(early_serial_buf, "keep")) 2294 early_serial_console.flags |= CON_BOOT; 2295 2296 register_console(&early_serial_console); 2297 return 0; 2298 } 2299 2300 #define uart_console(port) ((port)->cons->index == (port)->line) 2301 2302 static int sci_runtime_suspend(struct device *dev) 2303 { 2304 struct sci_port *sci_port = dev_get_drvdata(dev); 2305 struct uart_port *port = &sci_port->port; 2306 2307 if (uart_console(port)) { 2308 struct plat_sci_reg *reg; 2309 2310 sci_port->saved_smr = serial_port_in(port, SCSMR); 2311 sci_port->saved_brr = serial_port_in(port, SCBRR); 2312 2313 reg = sci_getreg(port, SCFCR); 2314 if (reg->size) 2315 sci_port->saved_fcr = serial_port_in(port, SCFCR); 2316 else 2317 sci_port->saved_fcr = 0; 2318 } 2319 return 0; 2320 } 2321 2322 static int sci_runtime_resume(struct device *dev) 2323 { 2324 struct sci_port *sci_port = dev_get_drvdata(dev); 2325 struct uart_port *port = &sci_port->port; 2326 2327 if (uart_console(port)) { 2328 sci_reset(port); 2329 serial_port_out(port, SCSMR, sci_port->saved_smr); 2330 serial_port_out(port, SCBRR, sci_port->saved_brr); 2331 2332 if (sci_port->saved_fcr) 2333 serial_port_out(port, SCFCR, sci_port->saved_fcr); 2334 2335 serial_port_out(port, SCSCR, sci_port->cfg->scscr); 2336 } 2337 return 0; 2338 } 2339 2340 #define SCI_CONSOLE (&serial_console) 2341 2342 #else 2343 static inline int __devinit sci_probe_earlyprintk(struct platform_device *pdev) 2344 { 2345 return -EINVAL; 2346 } 2347 2348 #define SCI_CONSOLE NULL 2349 #define sci_runtime_suspend NULL 2350 #define sci_runtime_resume NULL 2351 2352 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE */ 2353 2354 static char banner[] __initdata = 2355 KERN_INFO "SuperH SCI(F) driver initialized\n"; 2356 2357 static struct uart_driver sci_uart_driver = { 2358 .owner = THIS_MODULE, 2359 .driver_name = "sci", 2360 .dev_name = "ttySC", 2361 .major = SCI_MAJOR, 2362 .minor = SCI_MINOR_START, 2363 .nr = SCI_NPORTS, 2364 .cons = SCI_CONSOLE, 2365 }; 2366 2367 static int sci_remove(struct platform_device *dev) 2368 { 2369 struct sci_port *port = platform_get_drvdata(dev); 2370 2371 cpufreq_unregister_notifier(&port->freq_transition, 2372 CPUFREQ_TRANSITION_NOTIFIER); 2373 2374 uart_remove_one_port(&sci_uart_driver, &port->port); 2375 2376 sci_cleanup_single(port); 2377 2378 return 0; 2379 } 2380 2381 static int __devinit sci_probe_single(struct platform_device *dev, 2382 unsigned int index, 2383 struct plat_sci_port *p, 2384 struct sci_port *sciport) 2385 { 2386 int ret; 2387 2388 /* Sanity check */ 2389 if (unlikely(index >= SCI_NPORTS)) { 2390 dev_notice(&dev->dev, "Attempting to register port " 2391 "%d when only %d are available.\n", 2392 index+1, SCI_NPORTS); 2393 dev_notice(&dev->dev, "Consider bumping " 2394 "CONFIG_SERIAL_SH_SCI_NR_UARTS!\n"); 2395 return -EINVAL; 2396 } 2397 2398 ret = sci_init_single(dev, sciport, index, p); 2399 if (ret) 2400 return ret; 2401 2402 ret = uart_add_one_port(&sci_uart_driver, &sciport->port); 2403 if (ret) { 2404 sci_cleanup_single(sciport); 2405 return ret; 2406 } 2407 2408 return 0; 2409 } 2410 2411 static int __devinit sci_probe(struct platform_device *dev) 2412 { 2413 struct plat_sci_port *p = dev->dev.platform_data; 2414 struct sci_port *sp = &sci_ports[dev->id]; 2415 int ret; 2416 2417 /* 2418 * If we've come here via earlyprintk initialization, head off to 2419 * the special early probe. We don't have sufficient device state 2420 * to make it beyond this yet. 2421 */ 2422 if (is_early_platform_device(dev)) 2423 return sci_probe_earlyprintk(dev); 2424 2425 platform_set_drvdata(dev, sp); 2426 2427 ret = sci_probe_single(dev, dev->id, p, sp); 2428 if (ret) 2429 return ret; 2430 2431 sp->freq_transition.notifier_call = sci_notifier; 2432 2433 ret = cpufreq_register_notifier(&sp->freq_transition, 2434 CPUFREQ_TRANSITION_NOTIFIER); 2435 if (unlikely(ret < 0)) { 2436 sci_cleanup_single(sp); 2437 return ret; 2438 } 2439 2440 #ifdef CONFIG_SH_STANDARD_BIOS 2441 sh_bios_gdb_detach(); 2442 #endif 2443 2444 return 0; 2445 } 2446 2447 static int sci_suspend(struct device *dev) 2448 { 2449 struct sci_port *sport = dev_get_drvdata(dev); 2450 2451 if (sport) 2452 uart_suspend_port(&sci_uart_driver, &sport->port); 2453 2454 return 0; 2455 } 2456 2457 static int sci_resume(struct device *dev) 2458 { 2459 struct sci_port *sport = dev_get_drvdata(dev); 2460 2461 if (sport) 2462 uart_resume_port(&sci_uart_driver, &sport->port); 2463 2464 return 0; 2465 } 2466 2467 static const struct dev_pm_ops sci_dev_pm_ops = { 2468 .runtime_suspend = sci_runtime_suspend, 2469 .runtime_resume = sci_runtime_resume, 2470 .suspend = sci_suspend, 2471 .resume = sci_resume, 2472 }; 2473 2474 static struct platform_driver sci_driver = { 2475 .probe = sci_probe, 2476 .remove = sci_remove, 2477 .driver = { 2478 .name = "sh-sci", 2479 .owner = THIS_MODULE, 2480 .pm = &sci_dev_pm_ops, 2481 }, 2482 }; 2483 2484 static int __init sci_init(void) 2485 { 2486 int ret; 2487 2488 printk(banner); 2489 2490 ret = uart_register_driver(&sci_uart_driver); 2491 if (likely(ret == 0)) { 2492 ret = platform_driver_register(&sci_driver); 2493 if (unlikely(ret)) 2494 uart_unregister_driver(&sci_uart_driver); 2495 } 2496 2497 return ret; 2498 } 2499 2500 static void __exit sci_exit(void) 2501 { 2502 platform_driver_unregister(&sci_driver); 2503 uart_unregister_driver(&sci_uart_driver); 2504 } 2505 2506 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE 2507 early_platform_init_buffer("earlyprintk", &sci_driver, 2508 early_serial_buf, ARRAY_SIZE(early_serial_buf)); 2509 #endif 2510 module_init(sci_init); 2511 module_exit(sci_exit); 2512 2513 MODULE_LICENSE("GPL"); 2514 MODULE_ALIAS("platform:sh-sci"); 2515 MODULE_AUTHOR("Paul Mundt"); 2516 MODULE_DESCRIPTION("SuperH SCI(F) serial driver"); 2517