xref: /openbmc/linux/drivers/tty/serial/sh-sci.c (revision 95e9fd10)
1 /*
2  * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
3  *
4  *  Copyright (C) 2002 - 2011  Paul Mundt
5  *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
6  *
7  * based off of the old drivers/char/sh-sci.c by:
8  *
9  *   Copyright (C) 1999, 2000  Niibe Yutaka
10  *   Copyright (C) 2000  Sugioka Toshinobu
11  *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
12  *   Modified to support SecureEdge. David McCullough (2002)
13  *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
14  *   Removed SH7300 support (Jul 2007).
15  *
16  * This file is subject to the terms and conditions of the GNU General Public
17  * License.  See the file "COPYING" in the main directory of this archive
18  * for more details.
19  */
20 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
21 #define SUPPORT_SYSRQ
22 #endif
23 
24 #undef DEBUG
25 
26 #include <linux/module.h>
27 #include <linux/errno.h>
28 #include <linux/sh_dma.h>
29 #include <linux/timer.h>
30 #include <linux/interrupt.h>
31 #include <linux/tty.h>
32 #include <linux/tty_flip.h>
33 #include <linux/serial.h>
34 #include <linux/major.h>
35 #include <linux/string.h>
36 #include <linux/sysrq.h>
37 #include <linux/ioport.h>
38 #include <linux/mm.h>
39 #include <linux/init.h>
40 #include <linux/delay.h>
41 #include <linux/console.h>
42 #include <linux/platform_device.h>
43 #include <linux/serial_sci.h>
44 #include <linux/notifier.h>
45 #include <linux/pm_runtime.h>
46 #include <linux/cpufreq.h>
47 #include <linux/clk.h>
48 #include <linux/ctype.h>
49 #include <linux/err.h>
50 #include <linux/dmaengine.h>
51 #include <linux/dma-mapping.h>
52 #include <linux/scatterlist.h>
53 #include <linux/slab.h>
54 #include <linux/gpio.h>
55 
56 #ifdef CONFIG_SUPERH
57 #include <asm/sh_bios.h>
58 #endif
59 
60 #include "sh-sci.h"
61 
62 struct sci_port {
63 	struct uart_port	port;
64 
65 	/* Platform configuration */
66 	struct plat_sci_port	*cfg;
67 
68 	/* Break timer */
69 	struct timer_list	break_timer;
70 	int			break_flag;
71 
72 	/* Interface clock */
73 	struct clk		*iclk;
74 	/* Function clock */
75 	struct clk		*fclk;
76 
77 	char			*irqstr[SCIx_NR_IRQS];
78 	char			*gpiostr[SCIx_NR_FNS];
79 
80 	struct dma_chan			*chan_tx;
81 	struct dma_chan			*chan_rx;
82 
83 #ifdef CONFIG_SERIAL_SH_SCI_DMA
84 	struct dma_async_tx_descriptor	*desc_tx;
85 	struct dma_async_tx_descriptor	*desc_rx[2];
86 	dma_cookie_t			cookie_tx;
87 	dma_cookie_t			cookie_rx[2];
88 	dma_cookie_t			active_rx;
89 	struct scatterlist		sg_tx;
90 	unsigned int			sg_len_tx;
91 	struct scatterlist		sg_rx[2];
92 	size_t				buf_len_rx;
93 	struct sh_dmae_slave		param_tx;
94 	struct sh_dmae_slave		param_rx;
95 	struct work_struct		work_tx;
96 	struct work_struct		work_rx;
97 	struct timer_list		rx_timer;
98 	unsigned int			rx_timeout;
99 #endif
100 
101 	struct notifier_block		freq_transition;
102 
103 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
104 	unsigned short saved_smr;
105 	unsigned short saved_fcr;
106 	unsigned char saved_brr;
107 #endif
108 };
109 
110 /* Function prototypes */
111 static void sci_start_tx(struct uart_port *port);
112 static void sci_stop_tx(struct uart_port *port);
113 static void sci_start_rx(struct uart_port *port);
114 
115 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
116 
117 static struct sci_port sci_ports[SCI_NPORTS];
118 static struct uart_driver sci_uart_driver;
119 
120 static inline struct sci_port *
121 to_sci_port(struct uart_port *uart)
122 {
123 	return container_of(uart, struct sci_port, port);
124 }
125 
126 struct plat_sci_reg {
127 	u8 offset, size;
128 };
129 
130 /* Helper for invalidating specific entries of an inherited map. */
131 #define sci_reg_invalid	{ .offset = 0, .size = 0 }
132 
133 static struct plat_sci_reg sci_regmap[SCIx_NR_REGTYPES][SCIx_NR_REGS] = {
134 	[SCIx_PROBE_REGTYPE] = {
135 		[0 ... SCIx_NR_REGS - 1] = sci_reg_invalid,
136 	},
137 
138 	/*
139 	 * Common SCI definitions, dependent on the port's regshift
140 	 * value.
141 	 */
142 	[SCIx_SCI_REGTYPE] = {
143 		[SCSMR]		= { 0x00,  8 },
144 		[SCBRR]		= { 0x01,  8 },
145 		[SCSCR]		= { 0x02,  8 },
146 		[SCxTDR]	= { 0x03,  8 },
147 		[SCxSR]		= { 0x04,  8 },
148 		[SCxRDR]	= { 0x05,  8 },
149 		[SCFCR]		= sci_reg_invalid,
150 		[SCFDR]		= sci_reg_invalid,
151 		[SCTFDR]	= sci_reg_invalid,
152 		[SCRFDR]	= sci_reg_invalid,
153 		[SCSPTR]	= sci_reg_invalid,
154 		[SCLSR]		= sci_reg_invalid,
155 	},
156 
157 	/*
158 	 * Common definitions for legacy IrDA ports, dependent on
159 	 * regshift value.
160 	 */
161 	[SCIx_IRDA_REGTYPE] = {
162 		[SCSMR]		= { 0x00,  8 },
163 		[SCBRR]		= { 0x01,  8 },
164 		[SCSCR]		= { 0x02,  8 },
165 		[SCxTDR]	= { 0x03,  8 },
166 		[SCxSR]		= { 0x04,  8 },
167 		[SCxRDR]	= { 0x05,  8 },
168 		[SCFCR]		= { 0x06,  8 },
169 		[SCFDR]		= { 0x07, 16 },
170 		[SCTFDR]	= sci_reg_invalid,
171 		[SCRFDR]	= sci_reg_invalid,
172 		[SCSPTR]	= sci_reg_invalid,
173 		[SCLSR]		= sci_reg_invalid,
174 	},
175 
176 	/*
177 	 * Common SCIFA definitions.
178 	 */
179 	[SCIx_SCIFA_REGTYPE] = {
180 		[SCSMR]		= { 0x00, 16 },
181 		[SCBRR]		= { 0x04,  8 },
182 		[SCSCR]		= { 0x08, 16 },
183 		[SCxTDR]	= { 0x20,  8 },
184 		[SCxSR]		= { 0x14, 16 },
185 		[SCxRDR]	= { 0x24,  8 },
186 		[SCFCR]		= { 0x18, 16 },
187 		[SCFDR]		= { 0x1c, 16 },
188 		[SCTFDR]	= sci_reg_invalid,
189 		[SCRFDR]	= sci_reg_invalid,
190 		[SCSPTR]	= sci_reg_invalid,
191 		[SCLSR]		= sci_reg_invalid,
192 	},
193 
194 	/*
195 	 * Common SCIFB definitions.
196 	 */
197 	[SCIx_SCIFB_REGTYPE] = {
198 		[SCSMR]		= { 0x00, 16 },
199 		[SCBRR]		= { 0x04,  8 },
200 		[SCSCR]		= { 0x08, 16 },
201 		[SCxTDR]	= { 0x40,  8 },
202 		[SCxSR]		= { 0x14, 16 },
203 		[SCxRDR]	= { 0x60,  8 },
204 		[SCFCR]		= { 0x18, 16 },
205 		[SCFDR]		= { 0x1c, 16 },
206 		[SCTFDR]	= sci_reg_invalid,
207 		[SCRFDR]	= sci_reg_invalid,
208 		[SCSPTR]	= sci_reg_invalid,
209 		[SCLSR]		= sci_reg_invalid,
210 	},
211 
212 	/*
213 	 * Common SH-2(A) SCIF definitions for ports with FIFO data
214 	 * count registers.
215 	 */
216 	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
217 		[SCSMR]		= { 0x00, 16 },
218 		[SCBRR]		= { 0x04,  8 },
219 		[SCSCR]		= { 0x08, 16 },
220 		[SCxTDR]	= { 0x0c,  8 },
221 		[SCxSR]		= { 0x10, 16 },
222 		[SCxRDR]	= { 0x14,  8 },
223 		[SCFCR]		= { 0x18, 16 },
224 		[SCFDR]		= { 0x1c, 16 },
225 		[SCTFDR]	= sci_reg_invalid,
226 		[SCRFDR]	= sci_reg_invalid,
227 		[SCSPTR]	= { 0x20, 16 },
228 		[SCLSR]		= { 0x24, 16 },
229 	},
230 
231 	/*
232 	 * Common SH-3 SCIF definitions.
233 	 */
234 	[SCIx_SH3_SCIF_REGTYPE] = {
235 		[SCSMR]		= { 0x00,  8 },
236 		[SCBRR]		= { 0x02,  8 },
237 		[SCSCR]		= { 0x04,  8 },
238 		[SCxTDR]	= { 0x06,  8 },
239 		[SCxSR]		= { 0x08, 16 },
240 		[SCxRDR]	= { 0x0a,  8 },
241 		[SCFCR]		= { 0x0c,  8 },
242 		[SCFDR]		= { 0x0e, 16 },
243 		[SCTFDR]	= sci_reg_invalid,
244 		[SCRFDR]	= sci_reg_invalid,
245 		[SCSPTR]	= sci_reg_invalid,
246 		[SCLSR]		= sci_reg_invalid,
247 	},
248 
249 	/*
250 	 * Common SH-4(A) SCIF(B) definitions.
251 	 */
252 	[SCIx_SH4_SCIF_REGTYPE] = {
253 		[SCSMR]		= { 0x00, 16 },
254 		[SCBRR]		= { 0x04,  8 },
255 		[SCSCR]		= { 0x08, 16 },
256 		[SCxTDR]	= { 0x0c,  8 },
257 		[SCxSR]		= { 0x10, 16 },
258 		[SCxRDR]	= { 0x14,  8 },
259 		[SCFCR]		= { 0x18, 16 },
260 		[SCFDR]		= { 0x1c, 16 },
261 		[SCTFDR]	= sci_reg_invalid,
262 		[SCRFDR]	= sci_reg_invalid,
263 		[SCSPTR]	= { 0x20, 16 },
264 		[SCLSR]		= { 0x24, 16 },
265 	},
266 
267 	/*
268 	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
269 	 * register.
270 	 */
271 	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
272 		[SCSMR]		= { 0x00, 16 },
273 		[SCBRR]		= { 0x04,  8 },
274 		[SCSCR]		= { 0x08, 16 },
275 		[SCxTDR]	= { 0x0c,  8 },
276 		[SCxSR]		= { 0x10, 16 },
277 		[SCxRDR]	= { 0x14,  8 },
278 		[SCFCR]		= { 0x18, 16 },
279 		[SCFDR]		= { 0x1c, 16 },
280 		[SCTFDR]	= sci_reg_invalid,
281 		[SCRFDR]	= sci_reg_invalid,
282 		[SCSPTR]	= sci_reg_invalid,
283 		[SCLSR]		= { 0x24, 16 },
284 	},
285 
286 	/*
287 	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
288 	 * count registers.
289 	 */
290 	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
291 		[SCSMR]		= { 0x00, 16 },
292 		[SCBRR]		= { 0x04,  8 },
293 		[SCSCR]		= { 0x08, 16 },
294 		[SCxTDR]	= { 0x0c,  8 },
295 		[SCxSR]		= { 0x10, 16 },
296 		[SCxRDR]	= { 0x14,  8 },
297 		[SCFCR]		= { 0x18, 16 },
298 		[SCFDR]		= { 0x1c, 16 },
299 		[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
300 		[SCRFDR]	= { 0x20, 16 },
301 		[SCSPTR]	= { 0x24, 16 },
302 		[SCLSR]		= { 0x28, 16 },
303 	},
304 
305 	/*
306 	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
307 	 * registers.
308 	 */
309 	[SCIx_SH7705_SCIF_REGTYPE] = {
310 		[SCSMR]		= { 0x00, 16 },
311 		[SCBRR]		= { 0x04,  8 },
312 		[SCSCR]		= { 0x08, 16 },
313 		[SCxTDR]	= { 0x20,  8 },
314 		[SCxSR]		= { 0x14, 16 },
315 		[SCxRDR]	= { 0x24,  8 },
316 		[SCFCR]		= { 0x18, 16 },
317 		[SCFDR]		= { 0x1c, 16 },
318 		[SCTFDR]	= sci_reg_invalid,
319 		[SCRFDR]	= sci_reg_invalid,
320 		[SCSPTR]	= sci_reg_invalid,
321 		[SCLSR]		= sci_reg_invalid,
322 	},
323 };
324 
325 #define sci_getreg(up, offset)		(sci_regmap[to_sci_port(up)->cfg->regtype] + offset)
326 
327 /*
328  * The "offset" here is rather misleading, in that it refers to an enum
329  * value relative to the port mapping rather than the fixed offset
330  * itself, which needs to be manually retrieved from the platform's
331  * register map for the given port.
332  */
333 static unsigned int sci_serial_in(struct uart_port *p, int offset)
334 {
335 	struct plat_sci_reg *reg = sci_getreg(p, offset);
336 
337 	if (reg->size == 8)
338 		return ioread8(p->membase + (reg->offset << p->regshift));
339 	else if (reg->size == 16)
340 		return ioread16(p->membase + (reg->offset << p->regshift));
341 	else
342 		WARN(1, "Invalid register access\n");
343 
344 	return 0;
345 }
346 
347 static void sci_serial_out(struct uart_port *p, int offset, int value)
348 {
349 	struct plat_sci_reg *reg = sci_getreg(p, offset);
350 
351 	if (reg->size == 8)
352 		iowrite8(value, p->membase + (reg->offset << p->regshift));
353 	else if (reg->size == 16)
354 		iowrite16(value, p->membase + (reg->offset << p->regshift));
355 	else
356 		WARN(1, "Invalid register access\n");
357 }
358 
359 static int sci_probe_regmap(struct plat_sci_port *cfg)
360 {
361 	switch (cfg->type) {
362 	case PORT_SCI:
363 		cfg->regtype = SCIx_SCI_REGTYPE;
364 		break;
365 	case PORT_IRDA:
366 		cfg->regtype = SCIx_IRDA_REGTYPE;
367 		break;
368 	case PORT_SCIFA:
369 		cfg->regtype = SCIx_SCIFA_REGTYPE;
370 		break;
371 	case PORT_SCIFB:
372 		cfg->regtype = SCIx_SCIFB_REGTYPE;
373 		break;
374 	case PORT_SCIF:
375 		/*
376 		 * The SH-4 is a bit of a misnomer here, although that's
377 		 * where this particular port layout originated. This
378 		 * configuration (or some slight variation thereof)
379 		 * remains the dominant model for all SCIFs.
380 		 */
381 		cfg->regtype = SCIx_SH4_SCIF_REGTYPE;
382 		break;
383 	default:
384 		printk(KERN_ERR "Can't probe register map for given port\n");
385 		return -EINVAL;
386 	}
387 
388 	return 0;
389 }
390 
391 static void sci_port_enable(struct sci_port *sci_port)
392 {
393 	if (!sci_port->port.dev)
394 		return;
395 
396 	pm_runtime_get_sync(sci_port->port.dev);
397 
398 	clk_enable(sci_port->iclk);
399 	sci_port->port.uartclk = clk_get_rate(sci_port->iclk);
400 	clk_enable(sci_port->fclk);
401 }
402 
403 static void sci_port_disable(struct sci_port *sci_port)
404 {
405 	if (!sci_port->port.dev)
406 		return;
407 
408 	clk_disable(sci_port->fclk);
409 	clk_disable(sci_port->iclk);
410 
411 	pm_runtime_put_sync(sci_port->port.dev);
412 }
413 
414 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
415 
416 #ifdef CONFIG_CONSOLE_POLL
417 static int sci_poll_get_char(struct uart_port *port)
418 {
419 	unsigned short status;
420 	int c;
421 
422 	do {
423 		status = serial_port_in(port, SCxSR);
424 		if (status & SCxSR_ERRORS(port)) {
425 			serial_port_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
426 			continue;
427 		}
428 		break;
429 	} while (1);
430 
431 	if (!(status & SCxSR_RDxF(port)))
432 		return NO_POLL_CHAR;
433 
434 	c = serial_port_in(port, SCxRDR);
435 
436 	/* Dummy read */
437 	serial_port_in(port, SCxSR);
438 	serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
439 
440 	return c;
441 }
442 #endif
443 
444 static void sci_poll_put_char(struct uart_port *port, unsigned char c)
445 {
446 	unsigned short status;
447 
448 	do {
449 		status = serial_port_in(port, SCxSR);
450 	} while (!(status & SCxSR_TDxE(port)));
451 
452 	serial_port_out(port, SCxTDR, c);
453 	serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
454 }
455 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE */
456 
457 static void sci_init_pins(struct uart_port *port, unsigned int cflag)
458 {
459 	struct sci_port *s = to_sci_port(port);
460 	struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
461 
462 	/*
463 	 * Use port-specific handler if provided.
464 	 */
465 	if (s->cfg->ops && s->cfg->ops->init_pins) {
466 		s->cfg->ops->init_pins(port, cflag);
467 		return;
468 	}
469 
470 	/*
471 	 * For the generic path SCSPTR is necessary. Bail out if that's
472 	 * unavailable, too.
473 	 */
474 	if (!reg->size)
475 		return;
476 
477 	if ((s->cfg->capabilities & SCIx_HAVE_RTSCTS) &&
478 	    ((!(cflag & CRTSCTS)))) {
479 		unsigned short status;
480 
481 		status = serial_port_in(port, SCSPTR);
482 		status &= ~SCSPTR_CTSIO;
483 		status |= SCSPTR_RTSIO;
484 		serial_port_out(port, SCSPTR, status); /* Set RTS = 1 */
485 	}
486 }
487 
488 static int sci_txfill(struct uart_port *port)
489 {
490 	struct plat_sci_reg *reg;
491 
492 	reg = sci_getreg(port, SCTFDR);
493 	if (reg->size)
494 		return serial_port_in(port, SCTFDR) & 0xff;
495 
496 	reg = sci_getreg(port, SCFDR);
497 	if (reg->size)
498 		return serial_port_in(port, SCFDR) >> 8;
499 
500 	return !(serial_port_in(port, SCxSR) & SCI_TDRE);
501 }
502 
503 static int sci_txroom(struct uart_port *port)
504 {
505 	return port->fifosize - sci_txfill(port);
506 }
507 
508 static int sci_rxfill(struct uart_port *port)
509 {
510 	struct plat_sci_reg *reg;
511 
512 	reg = sci_getreg(port, SCRFDR);
513 	if (reg->size)
514 		return serial_port_in(port, SCRFDR) & 0xff;
515 
516 	reg = sci_getreg(port, SCFDR);
517 	if (reg->size)
518 		return serial_port_in(port, SCFDR) & ((port->fifosize << 1) - 1);
519 
520 	return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
521 }
522 
523 /*
524  * SCI helper for checking the state of the muxed port/RXD pins.
525  */
526 static inline int sci_rxd_in(struct uart_port *port)
527 {
528 	struct sci_port *s = to_sci_port(port);
529 
530 	if (s->cfg->port_reg <= 0)
531 		return 1;
532 
533 	return !!__raw_readb(s->cfg->port_reg);
534 }
535 
536 /* ********************************************************************** *
537  *                   the interrupt related routines                       *
538  * ********************************************************************** */
539 
540 static void sci_transmit_chars(struct uart_port *port)
541 {
542 	struct circ_buf *xmit = &port->state->xmit;
543 	unsigned int stopped = uart_tx_stopped(port);
544 	unsigned short status;
545 	unsigned short ctrl;
546 	int count;
547 
548 	status = serial_port_in(port, SCxSR);
549 	if (!(status & SCxSR_TDxE(port))) {
550 		ctrl = serial_port_in(port, SCSCR);
551 		if (uart_circ_empty(xmit))
552 			ctrl &= ~SCSCR_TIE;
553 		else
554 			ctrl |= SCSCR_TIE;
555 		serial_port_out(port, SCSCR, ctrl);
556 		return;
557 	}
558 
559 	count = sci_txroom(port);
560 
561 	do {
562 		unsigned char c;
563 
564 		if (port->x_char) {
565 			c = port->x_char;
566 			port->x_char = 0;
567 		} else if (!uart_circ_empty(xmit) && !stopped) {
568 			c = xmit->buf[xmit->tail];
569 			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
570 		} else {
571 			break;
572 		}
573 
574 		serial_port_out(port, SCxTDR, c);
575 
576 		port->icount.tx++;
577 	} while (--count > 0);
578 
579 	serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
580 
581 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
582 		uart_write_wakeup(port);
583 	if (uart_circ_empty(xmit)) {
584 		sci_stop_tx(port);
585 	} else {
586 		ctrl = serial_port_in(port, SCSCR);
587 
588 		if (port->type != PORT_SCI) {
589 			serial_port_in(port, SCxSR); /* Dummy read */
590 			serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
591 		}
592 
593 		ctrl |= SCSCR_TIE;
594 		serial_port_out(port, SCSCR, ctrl);
595 	}
596 }
597 
598 /* On SH3, SCIF may read end-of-break as a space->mark char */
599 #define STEPFN(c)  ({int __c = (c); (((__c-1)|(__c)) == -1); })
600 
601 static void sci_receive_chars(struct uart_port *port)
602 {
603 	struct sci_port *sci_port = to_sci_port(port);
604 	struct tty_struct *tty = port->state->port.tty;
605 	int i, count, copied = 0;
606 	unsigned short status;
607 	unsigned char flag;
608 
609 	status = serial_port_in(port, SCxSR);
610 	if (!(status & SCxSR_RDxF(port)))
611 		return;
612 
613 	while (1) {
614 		/* Don't copy more bytes than there is room for in the buffer */
615 		count = tty_buffer_request_room(tty, sci_rxfill(port));
616 
617 		/* If for any reason we can't copy more data, we're done! */
618 		if (count == 0)
619 			break;
620 
621 		if (port->type == PORT_SCI) {
622 			char c = serial_port_in(port, SCxRDR);
623 			if (uart_handle_sysrq_char(port, c) ||
624 			    sci_port->break_flag)
625 				count = 0;
626 			else
627 				tty_insert_flip_char(tty, c, TTY_NORMAL);
628 		} else {
629 			for (i = 0; i < count; i++) {
630 				char c = serial_port_in(port, SCxRDR);
631 
632 				status = serial_port_in(port, SCxSR);
633 #if defined(CONFIG_CPU_SH3)
634 				/* Skip "chars" during break */
635 				if (sci_port->break_flag) {
636 					if ((c == 0) &&
637 					    (status & SCxSR_FER(port))) {
638 						count--; i--;
639 						continue;
640 					}
641 
642 					/* Nonzero => end-of-break */
643 					dev_dbg(port->dev, "debounce<%02x>\n", c);
644 					sci_port->break_flag = 0;
645 
646 					if (STEPFN(c)) {
647 						count--; i--;
648 						continue;
649 					}
650 				}
651 #endif /* CONFIG_CPU_SH3 */
652 				if (uart_handle_sysrq_char(port, c)) {
653 					count--; i--;
654 					continue;
655 				}
656 
657 				/* Store data and status */
658 				if (status & SCxSR_FER(port)) {
659 					flag = TTY_FRAME;
660 					port->icount.frame++;
661 					dev_notice(port->dev, "frame error\n");
662 				} else if (status & SCxSR_PER(port)) {
663 					flag = TTY_PARITY;
664 					port->icount.parity++;
665 					dev_notice(port->dev, "parity error\n");
666 				} else
667 					flag = TTY_NORMAL;
668 
669 				tty_insert_flip_char(tty, c, flag);
670 			}
671 		}
672 
673 		serial_port_in(port, SCxSR); /* dummy read */
674 		serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
675 
676 		copied += count;
677 		port->icount.rx += count;
678 	}
679 
680 	if (copied) {
681 		/* Tell the rest of the system the news. New characters! */
682 		tty_flip_buffer_push(tty);
683 	} else {
684 		serial_port_in(port, SCxSR); /* dummy read */
685 		serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
686 	}
687 }
688 
689 #define SCI_BREAK_JIFFIES (HZ/20)
690 
691 /*
692  * The sci generates interrupts during the break,
693  * 1 per millisecond or so during the break period, for 9600 baud.
694  * So dont bother disabling interrupts.
695  * But dont want more than 1 break event.
696  * Use a kernel timer to periodically poll the rx line until
697  * the break is finished.
698  */
699 static inline void sci_schedule_break_timer(struct sci_port *port)
700 {
701 	mod_timer(&port->break_timer, jiffies + SCI_BREAK_JIFFIES);
702 }
703 
704 /* Ensure that two consecutive samples find the break over. */
705 static void sci_break_timer(unsigned long data)
706 {
707 	struct sci_port *port = (struct sci_port *)data;
708 
709 	sci_port_enable(port);
710 
711 	if (sci_rxd_in(&port->port) == 0) {
712 		port->break_flag = 1;
713 		sci_schedule_break_timer(port);
714 	} else if (port->break_flag == 1) {
715 		/* break is over. */
716 		port->break_flag = 2;
717 		sci_schedule_break_timer(port);
718 	} else
719 		port->break_flag = 0;
720 
721 	sci_port_disable(port);
722 }
723 
724 static int sci_handle_errors(struct uart_port *port)
725 {
726 	int copied = 0;
727 	unsigned short status = serial_port_in(port, SCxSR);
728 	struct tty_struct *tty = port->state->port.tty;
729 	struct sci_port *s = to_sci_port(port);
730 
731 	/*
732 	 * Handle overruns, if supported.
733 	 */
734 	if (s->cfg->overrun_bit != SCIx_NOT_SUPPORTED) {
735 		if (status & (1 << s->cfg->overrun_bit)) {
736 			port->icount.overrun++;
737 
738 			/* overrun error */
739 			if (tty_insert_flip_char(tty, 0, TTY_OVERRUN))
740 				copied++;
741 
742 			dev_notice(port->dev, "overrun error");
743 		}
744 	}
745 
746 	if (status & SCxSR_FER(port)) {
747 		if (sci_rxd_in(port) == 0) {
748 			/* Notify of BREAK */
749 			struct sci_port *sci_port = to_sci_port(port);
750 
751 			if (!sci_port->break_flag) {
752 				port->icount.brk++;
753 
754 				sci_port->break_flag = 1;
755 				sci_schedule_break_timer(sci_port);
756 
757 				/* Do sysrq handling. */
758 				if (uart_handle_break(port))
759 					return 0;
760 
761 				dev_dbg(port->dev, "BREAK detected\n");
762 
763 				if (tty_insert_flip_char(tty, 0, TTY_BREAK))
764 					copied++;
765 			}
766 
767 		} else {
768 			/* frame error */
769 			port->icount.frame++;
770 
771 			if (tty_insert_flip_char(tty, 0, TTY_FRAME))
772 				copied++;
773 
774 			dev_notice(port->dev, "frame error\n");
775 		}
776 	}
777 
778 	if (status & SCxSR_PER(port)) {
779 		/* parity error */
780 		port->icount.parity++;
781 
782 		if (tty_insert_flip_char(tty, 0, TTY_PARITY))
783 			copied++;
784 
785 		dev_notice(port->dev, "parity error");
786 	}
787 
788 	if (copied)
789 		tty_flip_buffer_push(tty);
790 
791 	return copied;
792 }
793 
794 static int sci_handle_fifo_overrun(struct uart_port *port)
795 {
796 	struct tty_struct *tty = port->state->port.tty;
797 	struct sci_port *s = to_sci_port(port);
798 	struct plat_sci_reg *reg;
799 	int copied = 0;
800 
801 	reg = sci_getreg(port, SCLSR);
802 	if (!reg->size)
803 		return 0;
804 
805 	if ((serial_port_in(port, SCLSR) & (1 << s->cfg->overrun_bit))) {
806 		serial_port_out(port, SCLSR, 0);
807 
808 		port->icount.overrun++;
809 
810 		tty_insert_flip_char(tty, 0, TTY_OVERRUN);
811 		tty_flip_buffer_push(tty);
812 
813 		dev_notice(port->dev, "overrun error\n");
814 		copied++;
815 	}
816 
817 	return copied;
818 }
819 
820 static int sci_handle_breaks(struct uart_port *port)
821 {
822 	int copied = 0;
823 	unsigned short status = serial_port_in(port, SCxSR);
824 	struct tty_struct *tty = port->state->port.tty;
825 	struct sci_port *s = to_sci_port(port);
826 
827 	if (uart_handle_break(port))
828 		return 0;
829 
830 	if (!s->break_flag && status & SCxSR_BRK(port)) {
831 #if defined(CONFIG_CPU_SH3)
832 		/* Debounce break */
833 		s->break_flag = 1;
834 #endif
835 
836 		port->icount.brk++;
837 
838 		/* Notify of BREAK */
839 		if (tty_insert_flip_char(tty, 0, TTY_BREAK))
840 			copied++;
841 
842 		dev_dbg(port->dev, "BREAK detected\n");
843 	}
844 
845 	if (copied)
846 		tty_flip_buffer_push(tty);
847 
848 	copied += sci_handle_fifo_overrun(port);
849 
850 	return copied;
851 }
852 
853 static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
854 {
855 #ifdef CONFIG_SERIAL_SH_SCI_DMA
856 	struct uart_port *port = ptr;
857 	struct sci_port *s = to_sci_port(port);
858 
859 	if (s->chan_rx) {
860 		u16 scr = serial_port_in(port, SCSCR);
861 		u16 ssr = serial_port_in(port, SCxSR);
862 
863 		/* Disable future Rx interrupts */
864 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
865 			disable_irq_nosync(irq);
866 			scr |= 0x4000;
867 		} else {
868 			scr &= ~SCSCR_RIE;
869 		}
870 		serial_port_out(port, SCSCR, scr);
871 		/* Clear current interrupt */
872 		serial_port_out(port, SCxSR, ssr & ~(1 | SCxSR_RDxF(port)));
873 		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n",
874 			jiffies, s->rx_timeout);
875 		mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
876 
877 		return IRQ_HANDLED;
878 	}
879 #endif
880 
881 	/* I think sci_receive_chars has to be called irrespective
882 	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
883 	 * to be disabled?
884 	 */
885 	sci_receive_chars(ptr);
886 
887 	return IRQ_HANDLED;
888 }
889 
890 static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
891 {
892 	struct uart_port *port = ptr;
893 	unsigned long flags;
894 
895 	spin_lock_irqsave(&port->lock, flags);
896 	sci_transmit_chars(port);
897 	spin_unlock_irqrestore(&port->lock, flags);
898 
899 	return IRQ_HANDLED;
900 }
901 
902 static irqreturn_t sci_er_interrupt(int irq, void *ptr)
903 {
904 	struct uart_port *port = ptr;
905 
906 	/* Handle errors */
907 	if (port->type == PORT_SCI) {
908 		if (sci_handle_errors(port)) {
909 			/* discard character in rx buffer */
910 			serial_port_in(port, SCxSR);
911 			serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
912 		}
913 	} else {
914 		sci_handle_fifo_overrun(port);
915 		sci_rx_interrupt(irq, ptr);
916 	}
917 
918 	serial_port_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
919 
920 	/* Kick the transmission */
921 	sci_tx_interrupt(irq, ptr);
922 
923 	return IRQ_HANDLED;
924 }
925 
926 static irqreturn_t sci_br_interrupt(int irq, void *ptr)
927 {
928 	struct uart_port *port = ptr;
929 
930 	/* Handle BREAKs */
931 	sci_handle_breaks(port);
932 	serial_port_out(port, SCxSR, SCxSR_BREAK_CLEAR(port));
933 
934 	return IRQ_HANDLED;
935 }
936 
937 static inline unsigned long port_rx_irq_mask(struct uart_port *port)
938 {
939 	/*
940 	 * Not all ports (such as SCIFA) will support REIE. Rather than
941 	 * special-casing the port type, we check the port initialization
942 	 * IRQ enable mask to see whether the IRQ is desired at all. If
943 	 * it's unset, it's logically inferred that there's no point in
944 	 * testing for it.
945 	 */
946 	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
947 }
948 
949 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
950 {
951 	unsigned short ssr_status, scr_status, err_enabled;
952 	struct uart_port *port = ptr;
953 	struct sci_port *s = to_sci_port(port);
954 	irqreturn_t ret = IRQ_NONE;
955 
956 	ssr_status = serial_port_in(port, SCxSR);
957 	scr_status = serial_port_in(port, SCSCR);
958 	err_enabled = scr_status & port_rx_irq_mask(port);
959 
960 	/* Tx Interrupt */
961 	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
962 	    !s->chan_tx)
963 		ret = sci_tx_interrupt(irq, ptr);
964 
965 	/*
966 	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
967 	 * DR flags
968 	 */
969 	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
970 	    (scr_status & SCSCR_RIE))
971 		ret = sci_rx_interrupt(irq, ptr);
972 
973 	/* Error Interrupt */
974 	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
975 		ret = sci_er_interrupt(irq, ptr);
976 
977 	/* Break Interrupt */
978 	if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
979 		ret = sci_br_interrupt(irq, ptr);
980 
981 	return ret;
982 }
983 
984 /*
985  * Here we define a transition notifier so that we can update all of our
986  * ports' baud rate when the peripheral clock changes.
987  */
988 static int sci_notifier(struct notifier_block *self,
989 			unsigned long phase, void *p)
990 {
991 	struct sci_port *sci_port;
992 	unsigned long flags;
993 
994 	sci_port = container_of(self, struct sci_port, freq_transition);
995 
996 	if ((phase == CPUFREQ_POSTCHANGE) ||
997 	    (phase == CPUFREQ_RESUMECHANGE)) {
998 		struct uart_port *port = &sci_port->port;
999 
1000 		spin_lock_irqsave(&port->lock, flags);
1001 		port->uartclk = clk_get_rate(sci_port->iclk);
1002 		spin_unlock_irqrestore(&port->lock, flags);
1003 	}
1004 
1005 	return NOTIFY_OK;
1006 }
1007 
1008 static struct sci_irq_desc {
1009 	const char	*desc;
1010 	irq_handler_t	handler;
1011 } sci_irq_desc[] = {
1012 	/*
1013 	 * Split out handlers, the default case.
1014 	 */
1015 	[SCIx_ERI_IRQ] = {
1016 		.desc = "rx err",
1017 		.handler = sci_er_interrupt,
1018 	},
1019 
1020 	[SCIx_RXI_IRQ] = {
1021 		.desc = "rx full",
1022 		.handler = sci_rx_interrupt,
1023 	},
1024 
1025 	[SCIx_TXI_IRQ] = {
1026 		.desc = "tx empty",
1027 		.handler = sci_tx_interrupt,
1028 	},
1029 
1030 	[SCIx_BRI_IRQ] = {
1031 		.desc = "break",
1032 		.handler = sci_br_interrupt,
1033 	},
1034 
1035 	/*
1036 	 * Special muxed handler.
1037 	 */
1038 	[SCIx_MUX_IRQ] = {
1039 		.desc = "mux",
1040 		.handler = sci_mpxed_interrupt,
1041 	},
1042 };
1043 
1044 static int sci_request_irq(struct sci_port *port)
1045 {
1046 	struct uart_port *up = &port->port;
1047 	int i, j, ret = 0;
1048 
1049 	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1050 		struct sci_irq_desc *desc;
1051 		unsigned int irq;
1052 
1053 		if (SCIx_IRQ_IS_MUXED(port)) {
1054 			i = SCIx_MUX_IRQ;
1055 			irq = up->irq;
1056 		} else {
1057 			irq = port->cfg->irqs[i];
1058 
1059 			/*
1060 			 * Certain port types won't support all of the
1061 			 * available interrupt sources.
1062 			 */
1063 			if (unlikely(!irq))
1064 				continue;
1065 		}
1066 
1067 		desc = sci_irq_desc + i;
1068 		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1069 					    dev_name(up->dev), desc->desc);
1070 		if (!port->irqstr[j]) {
1071 			dev_err(up->dev, "Failed to allocate %s IRQ string\n",
1072 				desc->desc);
1073 			goto out_nomem;
1074 		}
1075 
1076 		ret = request_irq(irq, desc->handler, up->irqflags,
1077 				  port->irqstr[j], port);
1078 		if (unlikely(ret)) {
1079 			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1080 			goto out_noirq;
1081 		}
1082 	}
1083 
1084 	return 0;
1085 
1086 out_noirq:
1087 	while (--i >= 0)
1088 		free_irq(port->cfg->irqs[i], port);
1089 
1090 out_nomem:
1091 	while (--j >= 0)
1092 		kfree(port->irqstr[j]);
1093 
1094 	return ret;
1095 }
1096 
1097 static void sci_free_irq(struct sci_port *port)
1098 {
1099 	int i;
1100 
1101 	/*
1102 	 * Intentionally in reverse order so we iterate over the muxed
1103 	 * IRQ first.
1104 	 */
1105 	for (i = 0; i < SCIx_NR_IRQS; i++) {
1106 		unsigned int irq = port->cfg->irqs[i];
1107 
1108 		/*
1109 		 * Certain port types won't support all of the available
1110 		 * interrupt sources.
1111 		 */
1112 		if (unlikely(!irq))
1113 			continue;
1114 
1115 		free_irq(port->cfg->irqs[i], port);
1116 		kfree(port->irqstr[i]);
1117 
1118 		if (SCIx_IRQ_IS_MUXED(port)) {
1119 			/* If there's only one IRQ, we're done. */
1120 			return;
1121 		}
1122 	}
1123 }
1124 
1125 static const char *sci_gpio_names[SCIx_NR_FNS] = {
1126 	"sck", "rxd", "txd", "cts", "rts",
1127 };
1128 
1129 static const char *sci_gpio_str(unsigned int index)
1130 {
1131 	return sci_gpio_names[index];
1132 }
1133 
1134 static void __devinit sci_init_gpios(struct sci_port *port)
1135 {
1136 	struct uart_port *up = &port->port;
1137 	int i;
1138 
1139 	if (!port->cfg)
1140 		return;
1141 
1142 	for (i = 0; i < SCIx_NR_FNS; i++) {
1143 		const char *desc;
1144 		int ret;
1145 
1146 		if (!port->cfg->gpios[i])
1147 			continue;
1148 
1149 		desc = sci_gpio_str(i);
1150 
1151 		port->gpiostr[i] = kasprintf(GFP_KERNEL, "%s:%s",
1152 					     dev_name(up->dev), desc);
1153 
1154 		/*
1155 		 * If we've failed the allocation, we can still continue
1156 		 * on with a NULL string.
1157 		 */
1158 		if (!port->gpiostr[i])
1159 			dev_notice(up->dev, "%s string allocation failure\n",
1160 				   desc);
1161 
1162 		ret = gpio_request(port->cfg->gpios[i], port->gpiostr[i]);
1163 		if (unlikely(ret != 0)) {
1164 			dev_notice(up->dev, "failed %s gpio request\n", desc);
1165 
1166 			/*
1167 			 * If we can't get the GPIO for whatever reason,
1168 			 * no point in keeping the verbose string around.
1169 			 */
1170 			kfree(port->gpiostr[i]);
1171 		}
1172 	}
1173 }
1174 
1175 static void sci_free_gpios(struct sci_port *port)
1176 {
1177 	int i;
1178 
1179 	for (i = 0; i < SCIx_NR_FNS; i++)
1180 		if (port->cfg->gpios[i]) {
1181 			gpio_free(port->cfg->gpios[i]);
1182 			kfree(port->gpiostr[i]);
1183 		}
1184 }
1185 
1186 static unsigned int sci_tx_empty(struct uart_port *port)
1187 {
1188 	unsigned short status = serial_port_in(port, SCxSR);
1189 	unsigned short in_tx_fifo = sci_txfill(port);
1190 
1191 	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1192 }
1193 
1194 /*
1195  * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
1196  * CTS/RTS is supported in hardware by at least one port and controlled
1197  * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
1198  * handled via the ->init_pins() op, which is a bit of a one-way street,
1199  * lacking any ability to defer pin control -- this will later be
1200  * converted over to the GPIO framework).
1201  *
1202  * Other modes (such as loopback) are supported generically on certain
1203  * port types, but not others. For these it's sufficient to test for the
1204  * existence of the support register and simply ignore the port type.
1205  */
1206 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
1207 {
1208 	if (mctrl & TIOCM_LOOP) {
1209 		struct plat_sci_reg *reg;
1210 
1211 		/*
1212 		 * Standard loopback mode for SCFCR ports.
1213 		 */
1214 		reg = sci_getreg(port, SCFCR);
1215 		if (reg->size)
1216 			serial_port_out(port, SCFCR, serial_port_in(port, SCFCR) | 1);
1217 	}
1218 }
1219 
1220 static unsigned int sci_get_mctrl(struct uart_port *port)
1221 {
1222 	/*
1223 	 * CTS/RTS is handled in hardware when supported, while nothing
1224 	 * else is wired up. Keep it simple and simply assert DSR/CAR.
1225 	 */
1226 	return TIOCM_DSR | TIOCM_CAR;
1227 }
1228 
1229 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1230 static void sci_dma_tx_complete(void *arg)
1231 {
1232 	struct sci_port *s = arg;
1233 	struct uart_port *port = &s->port;
1234 	struct circ_buf *xmit = &port->state->xmit;
1235 	unsigned long flags;
1236 
1237 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1238 
1239 	spin_lock_irqsave(&port->lock, flags);
1240 
1241 	xmit->tail += sg_dma_len(&s->sg_tx);
1242 	xmit->tail &= UART_XMIT_SIZE - 1;
1243 
1244 	port->icount.tx += sg_dma_len(&s->sg_tx);
1245 
1246 	async_tx_ack(s->desc_tx);
1247 	s->desc_tx = NULL;
1248 
1249 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1250 		uart_write_wakeup(port);
1251 
1252 	if (!uart_circ_empty(xmit)) {
1253 		s->cookie_tx = 0;
1254 		schedule_work(&s->work_tx);
1255 	} else {
1256 		s->cookie_tx = -EINVAL;
1257 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1258 			u16 ctrl = serial_port_in(port, SCSCR);
1259 			serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1260 		}
1261 	}
1262 
1263 	spin_unlock_irqrestore(&port->lock, flags);
1264 }
1265 
1266 /* Locking: called with port lock held */
1267 static int sci_dma_rx_push(struct sci_port *s, struct tty_struct *tty,
1268 			   size_t count)
1269 {
1270 	struct uart_port *port = &s->port;
1271 	int i, active, room;
1272 
1273 	room = tty_buffer_request_room(tty, count);
1274 
1275 	if (s->active_rx == s->cookie_rx[0]) {
1276 		active = 0;
1277 	} else if (s->active_rx == s->cookie_rx[1]) {
1278 		active = 1;
1279 	} else {
1280 		dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
1281 		return 0;
1282 	}
1283 
1284 	if (room < count)
1285 		dev_warn(port->dev, "Rx overrun: dropping %u bytes\n",
1286 			 count - room);
1287 	if (!room)
1288 		return room;
1289 
1290 	for (i = 0; i < room; i++)
1291 		tty_insert_flip_char(tty, ((u8 *)sg_virt(&s->sg_rx[active]))[i],
1292 				     TTY_NORMAL);
1293 
1294 	port->icount.rx += room;
1295 
1296 	return room;
1297 }
1298 
1299 static void sci_dma_rx_complete(void *arg)
1300 {
1301 	struct sci_port *s = arg;
1302 	struct uart_port *port = &s->port;
1303 	struct tty_struct *tty = port->state->port.tty;
1304 	unsigned long flags;
1305 	int count;
1306 
1307 	dev_dbg(port->dev, "%s(%d) active #%d\n", __func__, port->line, s->active_rx);
1308 
1309 	spin_lock_irqsave(&port->lock, flags);
1310 
1311 	count = sci_dma_rx_push(s, tty, s->buf_len_rx);
1312 
1313 	mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1314 
1315 	spin_unlock_irqrestore(&port->lock, flags);
1316 
1317 	if (count)
1318 		tty_flip_buffer_push(tty);
1319 
1320 	schedule_work(&s->work_rx);
1321 }
1322 
1323 static void sci_rx_dma_release(struct sci_port *s, bool enable_pio)
1324 {
1325 	struct dma_chan *chan = s->chan_rx;
1326 	struct uart_port *port = &s->port;
1327 
1328 	s->chan_rx = NULL;
1329 	s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL;
1330 	dma_release_channel(chan);
1331 	if (sg_dma_address(&s->sg_rx[0]))
1332 		dma_free_coherent(port->dev, s->buf_len_rx * 2,
1333 				  sg_virt(&s->sg_rx[0]), sg_dma_address(&s->sg_rx[0]));
1334 	if (enable_pio)
1335 		sci_start_rx(port);
1336 }
1337 
1338 static void sci_tx_dma_release(struct sci_port *s, bool enable_pio)
1339 {
1340 	struct dma_chan *chan = s->chan_tx;
1341 	struct uart_port *port = &s->port;
1342 
1343 	s->chan_tx = NULL;
1344 	s->cookie_tx = -EINVAL;
1345 	dma_release_channel(chan);
1346 	if (enable_pio)
1347 		sci_start_tx(port);
1348 }
1349 
1350 static void sci_submit_rx(struct sci_port *s)
1351 {
1352 	struct dma_chan *chan = s->chan_rx;
1353 	int i;
1354 
1355 	for (i = 0; i < 2; i++) {
1356 		struct scatterlist *sg = &s->sg_rx[i];
1357 		struct dma_async_tx_descriptor *desc;
1358 
1359 		desc = dmaengine_prep_slave_sg(chan,
1360 			sg, 1, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
1361 
1362 		if (desc) {
1363 			s->desc_rx[i] = desc;
1364 			desc->callback = sci_dma_rx_complete;
1365 			desc->callback_param = s;
1366 			s->cookie_rx[i] = desc->tx_submit(desc);
1367 		}
1368 
1369 		if (!desc || s->cookie_rx[i] < 0) {
1370 			if (i) {
1371 				async_tx_ack(s->desc_rx[0]);
1372 				s->cookie_rx[0] = -EINVAL;
1373 			}
1374 			if (desc) {
1375 				async_tx_ack(desc);
1376 				s->cookie_rx[i] = -EINVAL;
1377 			}
1378 			dev_warn(s->port.dev,
1379 				 "failed to re-start DMA, using PIO\n");
1380 			sci_rx_dma_release(s, true);
1381 			return;
1382 		}
1383 		dev_dbg(s->port.dev, "%s(): cookie %d to #%d\n", __func__,
1384 			s->cookie_rx[i], i);
1385 	}
1386 
1387 	s->active_rx = s->cookie_rx[0];
1388 
1389 	dma_async_issue_pending(chan);
1390 }
1391 
1392 static void work_fn_rx(struct work_struct *work)
1393 {
1394 	struct sci_port *s = container_of(work, struct sci_port, work_rx);
1395 	struct uart_port *port = &s->port;
1396 	struct dma_async_tx_descriptor *desc;
1397 	int new;
1398 
1399 	if (s->active_rx == s->cookie_rx[0]) {
1400 		new = 0;
1401 	} else if (s->active_rx == s->cookie_rx[1]) {
1402 		new = 1;
1403 	} else {
1404 		dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
1405 		return;
1406 	}
1407 	desc = s->desc_rx[new];
1408 
1409 	if (dma_async_is_tx_complete(s->chan_rx, s->active_rx, NULL, NULL) !=
1410 	    DMA_SUCCESS) {
1411 		/* Handle incomplete DMA receive */
1412 		struct tty_struct *tty = port->state->port.tty;
1413 		struct dma_chan *chan = s->chan_rx;
1414 		struct shdma_desc *sh_desc = container_of(desc,
1415 					struct shdma_desc, async_tx);
1416 		unsigned long flags;
1417 		int count;
1418 
1419 		chan->device->device_control(chan, DMA_TERMINATE_ALL, 0);
1420 		dev_dbg(port->dev, "Read %u bytes with cookie %d\n",
1421 			sh_desc->partial, sh_desc->cookie);
1422 
1423 		spin_lock_irqsave(&port->lock, flags);
1424 		count = sci_dma_rx_push(s, tty, sh_desc->partial);
1425 		spin_unlock_irqrestore(&port->lock, flags);
1426 
1427 		if (count)
1428 			tty_flip_buffer_push(tty);
1429 
1430 		sci_submit_rx(s);
1431 
1432 		return;
1433 	}
1434 
1435 	s->cookie_rx[new] = desc->tx_submit(desc);
1436 	if (s->cookie_rx[new] < 0) {
1437 		dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1438 		sci_rx_dma_release(s, true);
1439 		return;
1440 	}
1441 
1442 	s->active_rx = s->cookie_rx[!new];
1443 
1444 	dev_dbg(port->dev, "%s: cookie %d #%d, new active #%d\n", __func__,
1445 		s->cookie_rx[new], new, s->active_rx);
1446 }
1447 
1448 static void work_fn_tx(struct work_struct *work)
1449 {
1450 	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1451 	struct dma_async_tx_descriptor *desc;
1452 	struct dma_chan *chan = s->chan_tx;
1453 	struct uart_port *port = &s->port;
1454 	struct circ_buf *xmit = &port->state->xmit;
1455 	struct scatterlist *sg = &s->sg_tx;
1456 
1457 	/*
1458 	 * DMA is idle now.
1459 	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1460 	 * offsets and lengths. Since it is a circular buffer, we have to
1461 	 * transmit till the end, and then the rest. Take the port lock to get a
1462 	 * consistent xmit buffer state.
1463 	 */
1464 	spin_lock_irq(&port->lock);
1465 	sg->offset = xmit->tail & (UART_XMIT_SIZE - 1);
1466 	sg_dma_address(sg) = (sg_dma_address(sg) & ~(UART_XMIT_SIZE - 1)) +
1467 		sg->offset;
1468 	sg_dma_len(sg) = min((int)CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
1469 		CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
1470 	spin_unlock_irq(&port->lock);
1471 
1472 	BUG_ON(!sg_dma_len(sg));
1473 
1474 	desc = dmaengine_prep_slave_sg(chan,
1475 			sg, s->sg_len_tx, DMA_MEM_TO_DEV,
1476 			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1477 	if (!desc) {
1478 		/* switch to PIO */
1479 		sci_tx_dma_release(s, true);
1480 		return;
1481 	}
1482 
1483 	dma_sync_sg_for_device(port->dev, sg, 1, DMA_TO_DEVICE);
1484 
1485 	spin_lock_irq(&port->lock);
1486 	s->desc_tx = desc;
1487 	desc->callback = sci_dma_tx_complete;
1488 	desc->callback_param = s;
1489 	spin_unlock_irq(&port->lock);
1490 	s->cookie_tx = desc->tx_submit(desc);
1491 	if (s->cookie_tx < 0) {
1492 		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1493 		/* switch to PIO */
1494 		sci_tx_dma_release(s, true);
1495 		return;
1496 	}
1497 
1498 	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n", __func__,
1499 		xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
1500 
1501 	dma_async_issue_pending(chan);
1502 }
1503 #endif
1504 
1505 static void sci_start_tx(struct uart_port *port)
1506 {
1507 	struct sci_port *s = to_sci_port(port);
1508 	unsigned short ctrl;
1509 
1510 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1511 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1512 		u16 new, scr = serial_port_in(port, SCSCR);
1513 		if (s->chan_tx)
1514 			new = scr | 0x8000;
1515 		else
1516 			new = scr & ~0x8000;
1517 		if (new != scr)
1518 			serial_port_out(port, SCSCR, new);
1519 	}
1520 
1521 	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
1522 	    s->cookie_tx < 0) {
1523 		s->cookie_tx = 0;
1524 		schedule_work(&s->work_tx);
1525 	}
1526 #endif
1527 
1528 	if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1529 		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
1530 		ctrl = serial_port_in(port, SCSCR);
1531 		serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
1532 	}
1533 }
1534 
1535 static void sci_stop_tx(struct uart_port *port)
1536 {
1537 	unsigned short ctrl;
1538 
1539 	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
1540 	ctrl = serial_port_in(port, SCSCR);
1541 
1542 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1543 		ctrl &= ~0x8000;
1544 
1545 	ctrl &= ~SCSCR_TIE;
1546 
1547 	serial_port_out(port, SCSCR, ctrl);
1548 }
1549 
1550 static void sci_start_rx(struct uart_port *port)
1551 {
1552 	unsigned short ctrl;
1553 
1554 	ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
1555 
1556 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1557 		ctrl &= ~0x4000;
1558 
1559 	serial_port_out(port, SCSCR, ctrl);
1560 }
1561 
1562 static void sci_stop_rx(struct uart_port *port)
1563 {
1564 	unsigned short ctrl;
1565 
1566 	ctrl = serial_port_in(port, SCSCR);
1567 
1568 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1569 		ctrl &= ~0x4000;
1570 
1571 	ctrl &= ~port_rx_irq_mask(port);
1572 
1573 	serial_port_out(port, SCSCR, ctrl);
1574 }
1575 
1576 static void sci_enable_ms(struct uart_port *port)
1577 {
1578 	/*
1579 	 * Not supported by hardware, always a nop.
1580 	 */
1581 }
1582 
1583 static void sci_break_ctl(struct uart_port *port, int break_state)
1584 {
1585 	struct sci_port *s = to_sci_port(port);
1586 	struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
1587 	unsigned short scscr, scsptr;
1588 
1589 	/* check wheter the port has SCSPTR */
1590 	if (!reg->size) {
1591 		/*
1592 		 * Not supported by hardware. Most parts couple break and rx
1593 		 * interrupts together, with break detection always enabled.
1594 		 */
1595 		return;
1596 	}
1597 
1598 	scsptr = serial_port_in(port, SCSPTR);
1599 	scscr = serial_port_in(port, SCSCR);
1600 
1601 	if (break_state == -1) {
1602 		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
1603 		scscr &= ~SCSCR_TE;
1604 	} else {
1605 		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
1606 		scscr |= SCSCR_TE;
1607 	}
1608 
1609 	serial_port_out(port, SCSPTR, scsptr);
1610 	serial_port_out(port, SCSCR, scscr);
1611 }
1612 
1613 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1614 static bool filter(struct dma_chan *chan, void *slave)
1615 {
1616 	struct sh_dmae_slave *param = slave;
1617 
1618 	dev_dbg(chan->device->dev, "%s: slave ID %d\n", __func__,
1619 		param->shdma_slave.slave_id);
1620 
1621 	chan->private = &param->shdma_slave;
1622 	return true;
1623 }
1624 
1625 static void rx_timer_fn(unsigned long arg)
1626 {
1627 	struct sci_port *s = (struct sci_port *)arg;
1628 	struct uart_port *port = &s->port;
1629 	u16 scr = serial_port_in(port, SCSCR);
1630 
1631 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1632 		scr &= ~0x4000;
1633 		enable_irq(s->cfg->irqs[1]);
1634 	}
1635 	serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1636 	dev_dbg(port->dev, "DMA Rx timed out\n");
1637 	schedule_work(&s->work_rx);
1638 }
1639 
1640 static void sci_request_dma(struct uart_port *port)
1641 {
1642 	struct sci_port *s = to_sci_port(port);
1643 	struct sh_dmae_slave *param;
1644 	struct dma_chan *chan;
1645 	dma_cap_mask_t mask;
1646 	int nent;
1647 
1648 	dev_dbg(port->dev, "%s: port %d\n", __func__,
1649 		port->line);
1650 
1651 	if (s->cfg->dma_slave_tx <= 0 || s->cfg->dma_slave_rx <= 0)
1652 		return;
1653 
1654 	dma_cap_zero(mask);
1655 	dma_cap_set(DMA_SLAVE, mask);
1656 
1657 	param = &s->param_tx;
1658 
1659 	/* Slave ID, e.g., SHDMA_SLAVE_SCIF0_TX */
1660 	param->shdma_slave.slave_id = s->cfg->dma_slave_tx;
1661 
1662 	s->cookie_tx = -EINVAL;
1663 	chan = dma_request_channel(mask, filter, param);
1664 	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1665 	if (chan) {
1666 		s->chan_tx = chan;
1667 		sg_init_table(&s->sg_tx, 1);
1668 		/* UART circular tx buffer is an aligned page. */
1669 		BUG_ON((int)port->state->xmit.buf & ~PAGE_MASK);
1670 		sg_set_page(&s->sg_tx, virt_to_page(port->state->xmit.buf),
1671 			    UART_XMIT_SIZE, (int)port->state->xmit.buf & ~PAGE_MASK);
1672 		nent = dma_map_sg(port->dev, &s->sg_tx, 1, DMA_TO_DEVICE);
1673 		if (!nent)
1674 			sci_tx_dma_release(s, false);
1675 		else
1676 			dev_dbg(port->dev, "%s: mapped %d@%p to %x\n", __func__,
1677 				sg_dma_len(&s->sg_tx),
1678 				port->state->xmit.buf, sg_dma_address(&s->sg_tx));
1679 
1680 		s->sg_len_tx = nent;
1681 
1682 		INIT_WORK(&s->work_tx, work_fn_tx);
1683 	}
1684 
1685 	param = &s->param_rx;
1686 
1687 	/* Slave ID, e.g., SHDMA_SLAVE_SCIF0_RX */
1688 	param->shdma_slave.slave_id = s->cfg->dma_slave_rx;
1689 
1690 	chan = dma_request_channel(mask, filter, param);
1691 	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1692 	if (chan) {
1693 		dma_addr_t dma[2];
1694 		void *buf[2];
1695 		int i;
1696 
1697 		s->chan_rx = chan;
1698 
1699 		s->buf_len_rx = 2 * max(16, (int)port->fifosize);
1700 		buf[0] = dma_alloc_coherent(port->dev, s->buf_len_rx * 2,
1701 					    &dma[0], GFP_KERNEL);
1702 
1703 		if (!buf[0]) {
1704 			dev_warn(port->dev,
1705 				 "failed to allocate dma buffer, using PIO\n");
1706 			sci_rx_dma_release(s, true);
1707 			return;
1708 		}
1709 
1710 		buf[1] = buf[0] + s->buf_len_rx;
1711 		dma[1] = dma[0] + s->buf_len_rx;
1712 
1713 		for (i = 0; i < 2; i++) {
1714 			struct scatterlist *sg = &s->sg_rx[i];
1715 
1716 			sg_init_table(sg, 1);
1717 			sg_set_page(sg, virt_to_page(buf[i]), s->buf_len_rx,
1718 				    (int)buf[i] & ~PAGE_MASK);
1719 			sg_dma_address(sg) = dma[i];
1720 		}
1721 
1722 		INIT_WORK(&s->work_rx, work_fn_rx);
1723 		setup_timer(&s->rx_timer, rx_timer_fn, (unsigned long)s);
1724 
1725 		sci_submit_rx(s);
1726 	}
1727 }
1728 
1729 static void sci_free_dma(struct uart_port *port)
1730 {
1731 	struct sci_port *s = to_sci_port(port);
1732 
1733 	if (s->chan_tx)
1734 		sci_tx_dma_release(s, false);
1735 	if (s->chan_rx)
1736 		sci_rx_dma_release(s, false);
1737 }
1738 #else
1739 static inline void sci_request_dma(struct uart_port *port)
1740 {
1741 }
1742 
1743 static inline void sci_free_dma(struct uart_port *port)
1744 {
1745 }
1746 #endif
1747 
1748 static int sci_startup(struct uart_port *port)
1749 {
1750 	struct sci_port *s = to_sci_port(port);
1751 	int ret;
1752 
1753 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1754 
1755 	pm_runtime_put_noidle(port->dev);
1756 
1757 	sci_port_enable(s);
1758 
1759 	ret = sci_request_irq(s);
1760 	if (unlikely(ret < 0))
1761 		return ret;
1762 
1763 	sci_request_dma(port);
1764 
1765 	sci_start_tx(port);
1766 	sci_start_rx(port);
1767 
1768 	return 0;
1769 }
1770 
1771 static void sci_shutdown(struct uart_port *port)
1772 {
1773 	struct sci_port *s = to_sci_port(port);
1774 
1775 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1776 
1777 	sci_stop_rx(port);
1778 	sci_stop_tx(port);
1779 
1780 	sci_free_dma(port);
1781 	sci_free_irq(s);
1782 
1783 	sci_port_disable(s);
1784 
1785 	pm_runtime_get_noresume(port->dev);
1786 }
1787 
1788 static unsigned int sci_scbrr_calc(unsigned int algo_id, unsigned int bps,
1789 				   unsigned long freq)
1790 {
1791 	switch (algo_id) {
1792 	case SCBRR_ALGO_1:
1793 		return ((freq + 16 * bps) / (16 * bps) - 1);
1794 	case SCBRR_ALGO_2:
1795 		return ((freq + 16 * bps) / (32 * bps) - 1);
1796 	case SCBRR_ALGO_3:
1797 		return (((freq * 2) + 16 * bps) / (16 * bps) - 1);
1798 	case SCBRR_ALGO_4:
1799 		return (((freq * 2) + 16 * bps) / (32 * bps) - 1);
1800 	case SCBRR_ALGO_5:
1801 		return (((freq * 1000 / 32) / bps) - 1);
1802 	}
1803 
1804 	/* Warn, but use a safe default */
1805 	WARN_ON(1);
1806 
1807 	return ((freq + 16 * bps) / (32 * bps) - 1);
1808 }
1809 
1810 static void sci_reset(struct uart_port *port)
1811 {
1812 	struct plat_sci_reg *reg;
1813 	unsigned int status;
1814 
1815 	do {
1816 		status = serial_port_in(port, SCxSR);
1817 	} while (!(status & SCxSR_TEND(port)));
1818 
1819 	serial_port_out(port, SCSCR, 0x00);	/* TE=0, RE=0, CKE1=0 */
1820 
1821 	reg = sci_getreg(port, SCFCR);
1822 	if (reg->size)
1823 		serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
1824 }
1825 
1826 static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
1827 			    struct ktermios *old)
1828 {
1829 	struct sci_port *s = to_sci_port(port);
1830 	struct plat_sci_reg *reg;
1831 	unsigned int baud, smr_val, max_baud;
1832 	int t = -1;
1833 
1834 	/*
1835 	 * earlyprintk comes here early on with port->uartclk set to zero.
1836 	 * the clock framework is not up and running at this point so here
1837 	 * we assume that 115200 is the maximum baud rate. please note that
1838 	 * the baud rate is not programmed during earlyprintk - it is assumed
1839 	 * that the previous boot loader has enabled required clocks and
1840 	 * setup the baud rate generator hardware for us already.
1841 	 */
1842 	max_baud = port->uartclk ? port->uartclk / 16 : 115200;
1843 
1844 	baud = uart_get_baud_rate(port, termios, old, 0, max_baud);
1845 	if (likely(baud && port->uartclk))
1846 		t = sci_scbrr_calc(s->cfg->scbrr_algo_id, baud, port->uartclk);
1847 
1848 	sci_port_enable(s);
1849 
1850 	sci_reset(port);
1851 
1852 	smr_val = serial_port_in(port, SCSMR) & 3;
1853 
1854 	if ((termios->c_cflag & CSIZE) == CS7)
1855 		smr_val |= 0x40;
1856 	if (termios->c_cflag & PARENB)
1857 		smr_val |= 0x20;
1858 	if (termios->c_cflag & PARODD)
1859 		smr_val |= 0x30;
1860 	if (termios->c_cflag & CSTOPB)
1861 		smr_val |= 0x08;
1862 
1863 	uart_update_timeout(port, termios->c_cflag, baud);
1864 
1865 	serial_port_out(port, SCSMR, smr_val);
1866 
1867 	dev_dbg(port->dev, "%s: SMR %x, t %x, SCSCR %x\n", __func__, smr_val, t,
1868 		s->cfg->scscr);
1869 
1870 	if (t > 0) {
1871 		if (t >= 256) {
1872 			serial_port_out(port, SCSMR, (serial_port_in(port, SCSMR) & ~3) | 1);
1873 			t >>= 2;
1874 		} else
1875 			serial_port_out(port, SCSMR, serial_port_in(port, SCSMR) & ~3);
1876 
1877 		serial_port_out(port, SCBRR, t);
1878 		udelay((1000000+(baud-1)) / baud); /* Wait one bit interval */
1879 	}
1880 
1881 	sci_init_pins(port, termios->c_cflag);
1882 
1883 	reg = sci_getreg(port, SCFCR);
1884 	if (reg->size) {
1885 		unsigned short ctrl = serial_port_in(port, SCFCR);
1886 
1887 		if (s->cfg->capabilities & SCIx_HAVE_RTSCTS) {
1888 			if (termios->c_cflag & CRTSCTS)
1889 				ctrl |= SCFCR_MCE;
1890 			else
1891 				ctrl &= ~SCFCR_MCE;
1892 		}
1893 
1894 		/*
1895 		 * As we've done a sci_reset() above, ensure we don't
1896 		 * interfere with the FIFOs while toggling MCE. As the
1897 		 * reset values could still be set, simply mask them out.
1898 		 */
1899 		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
1900 
1901 		serial_port_out(port, SCFCR, ctrl);
1902 	}
1903 
1904 	serial_port_out(port, SCSCR, s->cfg->scscr);
1905 
1906 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1907 	/*
1908 	 * Calculate delay for 1.5 DMA buffers: see
1909 	 * drivers/serial/serial_core.c::uart_update_timeout(). With 10 bits
1910 	 * (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above function
1911 	 * calculates 1 jiffie for the data plus 5 jiffies for the "slop(e)."
1912 	 * Then below we calculate 3 jiffies (12ms) for 1.5 DMA buffers (3 FIFO
1913 	 * sizes), but it has been found out experimentally, that this is not
1914 	 * enough: the driver too often needlessly runs on a DMA timeout. 20ms
1915 	 * as a minimum seem to work perfectly.
1916 	 */
1917 	if (s->chan_rx) {
1918 		s->rx_timeout = (port->timeout - HZ / 50) * s->buf_len_rx * 3 /
1919 			port->fifosize / 2;
1920 		dev_dbg(port->dev,
1921 			"DMA Rx t-out %ums, tty t-out %u jiffies\n",
1922 			s->rx_timeout * 1000 / HZ, port->timeout);
1923 		if (s->rx_timeout < msecs_to_jiffies(20))
1924 			s->rx_timeout = msecs_to_jiffies(20);
1925 	}
1926 #endif
1927 
1928 	if ((termios->c_cflag & CREAD) != 0)
1929 		sci_start_rx(port);
1930 
1931 	sci_port_disable(s);
1932 }
1933 
1934 static const char *sci_type(struct uart_port *port)
1935 {
1936 	switch (port->type) {
1937 	case PORT_IRDA:
1938 		return "irda";
1939 	case PORT_SCI:
1940 		return "sci";
1941 	case PORT_SCIF:
1942 		return "scif";
1943 	case PORT_SCIFA:
1944 		return "scifa";
1945 	case PORT_SCIFB:
1946 		return "scifb";
1947 	}
1948 
1949 	return NULL;
1950 }
1951 
1952 static inline unsigned long sci_port_size(struct uart_port *port)
1953 {
1954 	/*
1955 	 * Pick an arbitrary size that encapsulates all of the base
1956 	 * registers by default. This can be optimized later, or derived
1957 	 * from platform resource data at such a time that ports begin to
1958 	 * behave more erratically.
1959 	 */
1960 	return 64;
1961 }
1962 
1963 static int sci_remap_port(struct uart_port *port)
1964 {
1965 	unsigned long size = sci_port_size(port);
1966 
1967 	/*
1968 	 * Nothing to do if there's already an established membase.
1969 	 */
1970 	if (port->membase)
1971 		return 0;
1972 
1973 	if (port->flags & UPF_IOREMAP) {
1974 		port->membase = ioremap_nocache(port->mapbase, size);
1975 		if (unlikely(!port->membase)) {
1976 			dev_err(port->dev, "can't remap port#%d\n", port->line);
1977 			return -ENXIO;
1978 		}
1979 	} else {
1980 		/*
1981 		 * For the simple (and majority of) cases where we don't
1982 		 * need to do any remapping, just cast the cookie
1983 		 * directly.
1984 		 */
1985 		port->membase = (void __iomem *)port->mapbase;
1986 	}
1987 
1988 	return 0;
1989 }
1990 
1991 static void sci_release_port(struct uart_port *port)
1992 {
1993 	if (port->flags & UPF_IOREMAP) {
1994 		iounmap(port->membase);
1995 		port->membase = NULL;
1996 	}
1997 
1998 	release_mem_region(port->mapbase, sci_port_size(port));
1999 }
2000 
2001 static int sci_request_port(struct uart_port *port)
2002 {
2003 	unsigned long size = sci_port_size(port);
2004 	struct resource *res;
2005 	int ret;
2006 
2007 	res = request_mem_region(port->mapbase, size, dev_name(port->dev));
2008 	if (unlikely(res == NULL))
2009 		return -EBUSY;
2010 
2011 	ret = sci_remap_port(port);
2012 	if (unlikely(ret != 0)) {
2013 		release_resource(res);
2014 		return ret;
2015 	}
2016 
2017 	return 0;
2018 }
2019 
2020 static void sci_config_port(struct uart_port *port, int flags)
2021 {
2022 	if (flags & UART_CONFIG_TYPE) {
2023 		struct sci_port *sport = to_sci_port(port);
2024 
2025 		port->type = sport->cfg->type;
2026 		sci_request_port(port);
2027 	}
2028 }
2029 
2030 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2031 {
2032 	struct sci_port *s = to_sci_port(port);
2033 
2034 	if (ser->irq != s->cfg->irqs[SCIx_TXI_IRQ] || ser->irq > nr_irqs)
2035 		return -EINVAL;
2036 	if (ser->baud_base < 2400)
2037 		/* No paper tape reader for Mitch.. */
2038 		return -EINVAL;
2039 
2040 	return 0;
2041 }
2042 
2043 static struct uart_ops sci_uart_ops = {
2044 	.tx_empty	= sci_tx_empty,
2045 	.set_mctrl	= sci_set_mctrl,
2046 	.get_mctrl	= sci_get_mctrl,
2047 	.start_tx	= sci_start_tx,
2048 	.stop_tx	= sci_stop_tx,
2049 	.stop_rx	= sci_stop_rx,
2050 	.enable_ms	= sci_enable_ms,
2051 	.break_ctl	= sci_break_ctl,
2052 	.startup	= sci_startup,
2053 	.shutdown	= sci_shutdown,
2054 	.set_termios	= sci_set_termios,
2055 	.type		= sci_type,
2056 	.release_port	= sci_release_port,
2057 	.request_port	= sci_request_port,
2058 	.config_port	= sci_config_port,
2059 	.verify_port	= sci_verify_port,
2060 #ifdef CONFIG_CONSOLE_POLL
2061 	.poll_get_char	= sci_poll_get_char,
2062 	.poll_put_char	= sci_poll_put_char,
2063 #endif
2064 };
2065 
2066 static int __devinit sci_init_single(struct platform_device *dev,
2067 				     struct sci_port *sci_port,
2068 				     unsigned int index,
2069 				     struct plat_sci_port *p)
2070 {
2071 	struct uart_port *port = &sci_port->port;
2072 	int ret;
2073 
2074 	sci_port->cfg	= p;
2075 
2076 	port->ops	= &sci_uart_ops;
2077 	port->iotype	= UPIO_MEM;
2078 	port->line	= index;
2079 
2080 	switch (p->type) {
2081 	case PORT_SCIFB:
2082 		port->fifosize = 256;
2083 		break;
2084 	case PORT_SCIFA:
2085 		port->fifosize = 64;
2086 		break;
2087 	case PORT_SCIF:
2088 		port->fifosize = 16;
2089 		break;
2090 	default:
2091 		port->fifosize = 1;
2092 		break;
2093 	}
2094 
2095 	if (p->regtype == SCIx_PROBE_REGTYPE) {
2096 		ret = sci_probe_regmap(p);
2097 		if (unlikely(ret))
2098 			return ret;
2099 	}
2100 
2101 	if (dev) {
2102 		sci_port->iclk = clk_get(&dev->dev, "sci_ick");
2103 		if (IS_ERR(sci_port->iclk)) {
2104 			sci_port->iclk = clk_get(&dev->dev, "peripheral_clk");
2105 			if (IS_ERR(sci_port->iclk)) {
2106 				dev_err(&dev->dev, "can't get iclk\n");
2107 				return PTR_ERR(sci_port->iclk);
2108 			}
2109 		}
2110 
2111 		/*
2112 		 * The function clock is optional, ignore it if we can't
2113 		 * find it.
2114 		 */
2115 		sci_port->fclk = clk_get(&dev->dev, "sci_fck");
2116 		if (IS_ERR(sci_port->fclk))
2117 			sci_port->fclk = NULL;
2118 
2119 		port->dev = &dev->dev;
2120 
2121 		sci_init_gpios(sci_port);
2122 
2123 		pm_runtime_irq_safe(&dev->dev);
2124 		pm_runtime_get_noresume(&dev->dev);
2125 		pm_runtime_enable(&dev->dev);
2126 	}
2127 
2128 	sci_port->break_timer.data = (unsigned long)sci_port;
2129 	sci_port->break_timer.function = sci_break_timer;
2130 	init_timer(&sci_port->break_timer);
2131 
2132 	/*
2133 	 * Establish some sensible defaults for the error detection.
2134 	 */
2135 	if (!p->error_mask)
2136 		p->error_mask = (p->type == PORT_SCI) ?
2137 			SCI_DEFAULT_ERROR_MASK : SCIF_DEFAULT_ERROR_MASK;
2138 
2139 	/*
2140 	 * Establish sensible defaults for the overrun detection, unless
2141 	 * the part has explicitly disabled support for it.
2142 	 */
2143 	if (p->overrun_bit != SCIx_NOT_SUPPORTED) {
2144 		if (p->type == PORT_SCI)
2145 			p->overrun_bit = 5;
2146 		else if (p->scbrr_algo_id == SCBRR_ALGO_4)
2147 			p->overrun_bit = 9;
2148 		else
2149 			p->overrun_bit = 0;
2150 
2151 		/*
2152 		 * Make the error mask inclusive of overrun detection, if
2153 		 * supported.
2154 		 */
2155 		p->error_mask |= (1 << p->overrun_bit);
2156 	}
2157 
2158 	port->mapbase		= p->mapbase;
2159 	port->type		= p->type;
2160 	port->flags		= p->flags;
2161 	port->regshift		= p->regshift;
2162 
2163 	/*
2164 	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
2165 	 * for the multi-IRQ ports, which is where we are primarily
2166 	 * concerned with the shutdown path synchronization.
2167 	 *
2168 	 * For the muxed case there's nothing more to do.
2169 	 */
2170 	port->irq		= p->irqs[SCIx_RXI_IRQ];
2171 	port->irqflags		= 0;
2172 
2173 	port->serial_in		= sci_serial_in;
2174 	port->serial_out	= sci_serial_out;
2175 
2176 	if (p->dma_slave_tx > 0 && p->dma_slave_rx > 0)
2177 		dev_dbg(port->dev, "DMA tx %d, rx %d\n",
2178 			p->dma_slave_tx, p->dma_slave_rx);
2179 
2180 	return 0;
2181 }
2182 
2183 static void sci_cleanup_single(struct sci_port *port)
2184 {
2185 	sci_free_gpios(port);
2186 
2187 	clk_put(port->iclk);
2188 	clk_put(port->fclk);
2189 
2190 	pm_runtime_disable(port->port.dev);
2191 }
2192 
2193 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
2194 static void serial_console_putchar(struct uart_port *port, int ch)
2195 {
2196 	sci_poll_put_char(port, ch);
2197 }
2198 
2199 /*
2200  *	Print a string to the serial port trying not to disturb
2201  *	any possible real use of the port...
2202  */
2203 static void serial_console_write(struct console *co, const char *s,
2204 				 unsigned count)
2205 {
2206 	struct sci_port *sci_port = &sci_ports[co->index];
2207 	struct uart_port *port = &sci_port->port;
2208 	unsigned short bits;
2209 
2210 	sci_port_enable(sci_port);
2211 
2212 	uart_console_write(port, s, count, serial_console_putchar);
2213 
2214 	/* wait until fifo is empty and last bit has been transmitted */
2215 	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
2216 	while ((serial_port_in(port, SCxSR) & bits) != bits)
2217 		cpu_relax();
2218 
2219 	sci_port_disable(sci_port);
2220 }
2221 
2222 static int __devinit serial_console_setup(struct console *co, char *options)
2223 {
2224 	struct sci_port *sci_port;
2225 	struct uart_port *port;
2226 	int baud = 115200;
2227 	int bits = 8;
2228 	int parity = 'n';
2229 	int flow = 'n';
2230 	int ret;
2231 
2232 	/*
2233 	 * Refuse to handle any bogus ports.
2234 	 */
2235 	if (co->index < 0 || co->index >= SCI_NPORTS)
2236 		return -ENODEV;
2237 
2238 	sci_port = &sci_ports[co->index];
2239 	port = &sci_port->port;
2240 
2241 	/*
2242 	 * Refuse to handle uninitialized ports.
2243 	 */
2244 	if (!port->ops)
2245 		return -ENODEV;
2246 
2247 	ret = sci_remap_port(port);
2248 	if (unlikely(ret != 0))
2249 		return ret;
2250 
2251 	sci_port_enable(sci_port);
2252 
2253 	if (options)
2254 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2255 
2256 	sci_port_disable(sci_port);
2257 
2258 	return uart_set_options(port, co, baud, parity, bits, flow);
2259 }
2260 
2261 static struct console serial_console = {
2262 	.name		= "ttySC",
2263 	.device		= uart_console_device,
2264 	.write		= serial_console_write,
2265 	.setup		= serial_console_setup,
2266 	.flags		= CON_PRINTBUFFER,
2267 	.index		= -1,
2268 	.data		= &sci_uart_driver,
2269 };
2270 
2271 static struct console early_serial_console = {
2272 	.name           = "early_ttySC",
2273 	.write          = serial_console_write,
2274 	.flags          = CON_PRINTBUFFER,
2275 	.index		= -1,
2276 };
2277 
2278 static char early_serial_buf[32];
2279 
2280 static int __devinit sci_probe_earlyprintk(struct platform_device *pdev)
2281 {
2282 	struct plat_sci_port *cfg = pdev->dev.platform_data;
2283 
2284 	if (early_serial_console.data)
2285 		return -EEXIST;
2286 
2287 	early_serial_console.index = pdev->id;
2288 
2289 	sci_init_single(NULL, &sci_ports[pdev->id], pdev->id, cfg);
2290 
2291 	serial_console_setup(&early_serial_console, early_serial_buf);
2292 
2293 	if (!strstr(early_serial_buf, "keep"))
2294 		early_serial_console.flags |= CON_BOOT;
2295 
2296 	register_console(&early_serial_console);
2297 	return 0;
2298 }
2299 
2300 #define uart_console(port)	((port)->cons->index == (port)->line)
2301 
2302 static int sci_runtime_suspend(struct device *dev)
2303 {
2304 	struct sci_port *sci_port = dev_get_drvdata(dev);
2305 	struct uart_port *port = &sci_port->port;
2306 
2307 	if (uart_console(port)) {
2308 		struct plat_sci_reg *reg;
2309 
2310 		sci_port->saved_smr = serial_port_in(port, SCSMR);
2311 		sci_port->saved_brr = serial_port_in(port, SCBRR);
2312 
2313 		reg = sci_getreg(port, SCFCR);
2314 		if (reg->size)
2315 			sci_port->saved_fcr = serial_port_in(port, SCFCR);
2316 		else
2317 			sci_port->saved_fcr = 0;
2318 	}
2319 	return 0;
2320 }
2321 
2322 static int sci_runtime_resume(struct device *dev)
2323 {
2324 	struct sci_port *sci_port = dev_get_drvdata(dev);
2325 	struct uart_port *port = &sci_port->port;
2326 
2327 	if (uart_console(port)) {
2328 		sci_reset(port);
2329 		serial_port_out(port, SCSMR, sci_port->saved_smr);
2330 		serial_port_out(port, SCBRR, sci_port->saved_brr);
2331 
2332 		if (sci_port->saved_fcr)
2333 			serial_port_out(port, SCFCR, sci_port->saved_fcr);
2334 
2335 		serial_port_out(port, SCSCR, sci_port->cfg->scscr);
2336 	}
2337 	return 0;
2338 }
2339 
2340 #define SCI_CONSOLE	(&serial_console)
2341 
2342 #else
2343 static inline int __devinit sci_probe_earlyprintk(struct platform_device *pdev)
2344 {
2345 	return -EINVAL;
2346 }
2347 
2348 #define SCI_CONSOLE	NULL
2349 #define sci_runtime_suspend	NULL
2350 #define sci_runtime_resume	NULL
2351 
2352 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE */
2353 
2354 static char banner[] __initdata =
2355 	KERN_INFO "SuperH SCI(F) driver initialized\n";
2356 
2357 static struct uart_driver sci_uart_driver = {
2358 	.owner		= THIS_MODULE,
2359 	.driver_name	= "sci",
2360 	.dev_name	= "ttySC",
2361 	.major		= SCI_MAJOR,
2362 	.minor		= SCI_MINOR_START,
2363 	.nr		= SCI_NPORTS,
2364 	.cons		= SCI_CONSOLE,
2365 };
2366 
2367 static int sci_remove(struct platform_device *dev)
2368 {
2369 	struct sci_port *port = platform_get_drvdata(dev);
2370 
2371 	cpufreq_unregister_notifier(&port->freq_transition,
2372 				    CPUFREQ_TRANSITION_NOTIFIER);
2373 
2374 	uart_remove_one_port(&sci_uart_driver, &port->port);
2375 
2376 	sci_cleanup_single(port);
2377 
2378 	return 0;
2379 }
2380 
2381 static int __devinit sci_probe_single(struct platform_device *dev,
2382 				      unsigned int index,
2383 				      struct plat_sci_port *p,
2384 				      struct sci_port *sciport)
2385 {
2386 	int ret;
2387 
2388 	/* Sanity check */
2389 	if (unlikely(index >= SCI_NPORTS)) {
2390 		dev_notice(&dev->dev, "Attempting to register port "
2391 			   "%d when only %d are available.\n",
2392 			   index+1, SCI_NPORTS);
2393 		dev_notice(&dev->dev, "Consider bumping "
2394 			   "CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
2395 		return -EINVAL;
2396 	}
2397 
2398 	ret = sci_init_single(dev, sciport, index, p);
2399 	if (ret)
2400 		return ret;
2401 
2402 	ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
2403 	if (ret) {
2404 		sci_cleanup_single(sciport);
2405 		return ret;
2406 	}
2407 
2408 	return 0;
2409 }
2410 
2411 static int __devinit sci_probe(struct platform_device *dev)
2412 {
2413 	struct plat_sci_port *p = dev->dev.platform_data;
2414 	struct sci_port *sp = &sci_ports[dev->id];
2415 	int ret;
2416 
2417 	/*
2418 	 * If we've come here via earlyprintk initialization, head off to
2419 	 * the special early probe. We don't have sufficient device state
2420 	 * to make it beyond this yet.
2421 	 */
2422 	if (is_early_platform_device(dev))
2423 		return sci_probe_earlyprintk(dev);
2424 
2425 	platform_set_drvdata(dev, sp);
2426 
2427 	ret = sci_probe_single(dev, dev->id, p, sp);
2428 	if (ret)
2429 		return ret;
2430 
2431 	sp->freq_transition.notifier_call = sci_notifier;
2432 
2433 	ret = cpufreq_register_notifier(&sp->freq_transition,
2434 					CPUFREQ_TRANSITION_NOTIFIER);
2435 	if (unlikely(ret < 0)) {
2436 		sci_cleanup_single(sp);
2437 		return ret;
2438 	}
2439 
2440 #ifdef CONFIG_SH_STANDARD_BIOS
2441 	sh_bios_gdb_detach();
2442 #endif
2443 
2444 	return 0;
2445 }
2446 
2447 static int sci_suspend(struct device *dev)
2448 {
2449 	struct sci_port *sport = dev_get_drvdata(dev);
2450 
2451 	if (sport)
2452 		uart_suspend_port(&sci_uart_driver, &sport->port);
2453 
2454 	return 0;
2455 }
2456 
2457 static int sci_resume(struct device *dev)
2458 {
2459 	struct sci_port *sport = dev_get_drvdata(dev);
2460 
2461 	if (sport)
2462 		uart_resume_port(&sci_uart_driver, &sport->port);
2463 
2464 	return 0;
2465 }
2466 
2467 static const struct dev_pm_ops sci_dev_pm_ops = {
2468 	.runtime_suspend = sci_runtime_suspend,
2469 	.runtime_resume = sci_runtime_resume,
2470 	.suspend	= sci_suspend,
2471 	.resume		= sci_resume,
2472 };
2473 
2474 static struct platform_driver sci_driver = {
2475 	.probe		= sci_probe,
2476 	.remove		= sci_remove,
2477 	.driver		= {
2478 		.name	= "sh-sci",
2479 		.owner	= THIS_MODULE,
2480 		.pm	= &sci_dev_pm_ops,
2481 	},
2482 };
2483 
2484 static int __init sci_init(void)
2485 {
2486 	int ret;
2487 
2488 	printk(banner);
2489 
2490 	ret = uart_register_driver(&sci_uart_driver);
2491 	if (likely(ret == 0)) {
2492 		ret = platform_driver_register(&sci_driver);
2493 		if (unlikely(ret))
2494 			uart_unregister_driver(&sci_uart_driver);
2495 	}
2496 
2497 	return ret;
2498 }
2499 
2500 static void __exit sci_exit(void)
2501 {
2502 	platform_driver_unregister(&sci_driver);
2503 	uart_unregister_driver(&sci_uart_driver);
2504 }
2505 
2506 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
2507 early_platform_init_buffer("earlyprintk", &sci_driver,
2508 			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
2509 #endif
2510 module_init(sci_init);
2511 module_exit(sci_exit);
2512 
2513 MODULE_LICENSE("GPL");
2514 MODULE_ALIAS("platform:sh-sci");
2515 MODULE_AUTHOR("Paul Mundt");
2516 MODULE_DESCRIPTION("SuperH SCI(F) serial driver");
2517