xref: /openbmc/linux/drivers/tty/serial/sh-sci.c (revision 93032e31)
1 /*
2  * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
3  *
4  *  Copyright (C) 2002 - 2011  Paul Mundt
5  *  Copyright (C) 2015 Glider bvba
6  *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
7  *
8  * based off of the old drivers/char/sh-sci.c by:
9  *
10  *   Copyright (C) 1999, 2000  Niibe Yutaka
11  *   Copyright (C) 2000  Sugioka Toshinobu
12  *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
13  *   Modified to support SecureEdge. David McCullough (2002)
14  *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
15  *   Removed SH7300 support (Jul 2007).
16  *
17  * This file is subject to the terms and conditions of the GNU General Public
18  * License.  See the file "COPYING" in the main directory of this archive
19  * for more details.
20  */
21 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
22 #define SUPPORT_SYSRQ
23 #endif
24 
25 #undef DEBUG
26 
27 #include <linux/clk.h>
28 #include <linux/console.h>
29 #include <linux/ctype.h>
30 #include <linux/cpufreq.h>
31 #include <linux/delay.h>
32 #include <linux/dmaengine.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/err.h>
35 #include <linux/errno.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/ioport.h>
39 #include <linux/major.h>
40 #include <linux/module.h>
41 #include <linux/mm.h>
42 #include <linux/of.h>
43 #include <linux/platform_device.h>
44 #include <linux/pm_runtime.h>
45 #include <linux/scatterlist.h>
46 #include <linux/serial.h>
47 #include <linux/serial_sci.h>
48 #include <linux/sh_dma.h>
49 #include <linux/slab.h>
50 #include <linux/string.h>
51 #include <linux/sysrq.h>
52 #include <linux/timer.h>
53 #include <linux/tty.h>
54 #include <linux/tty_flip.h>
55 
56 #ifdef CONFIG_SUPERH
57 #include <asm/sh_bios.h>
58 #endif
59 
60 #include "serial_mctrl_gpio.h"
61 #include "sh-sci.h"
62 
63 /* Offsets into the sci_port->irqs array */
64 enum {
65 	SCIx_ERI_IRQ,
66 	SCIx_RXI_IRQ,
67 	SCIx_TXI_IRQ,
68 	SCIx_BRI_IRQ,
69 	SCIx_NR_IRQS,
70 
71 	SCIx_MUX_IRQ = SCIx_NR_IRQS,	/* special case */
72 };
73 
74 #define SCIx_IRQ_IS_MUXED(port)			\
75 	((port)->irqs[SCIx_ERI_IRQ] ==	\
76 	 (port)->irqs[SCIx_RXI_IRQ]) ||	\
77 	((port)->irqs[SCIx_ERI_IRQ] &&	\
78 	 ((port)->irqs[SCIx_RXI_IRQ] < 0))
79 
80 enum SCI_CLKS {
81 	SCI_FCK,		/* Functional Clock */
82 	SCI_SCK,		/* Optional External Clock */
83 	SCI_BRG_INT,		/* Optional BRG Internal Clock Source */
84 	SCI_SCIF_CLK,		/* Optional BRG External Clock Source */
85 	SCI_NUM_CLKS
86 };
87 
88 /* Bit x set means sampling rate x + 1 is supported */
89 #define SCI_SR(x)		BIT((x) - 1)
90 #define SCI_SR_RANGE(x, y)	GENMASK((y) - 1, (x) - 1)
91 
92 #define SCI_SR_SCIFAB		SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \
93 				SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \
94 				SCI_SR(19) | SCI_SR(27)
95 
96 #define min_sr(_port)		ffs((_port)->sampling_rate_mask)
97 #define max_sr(_port)		fls((_port)->sampling_rate_mask)
98 
99 /* Iterate over all supported sampling rates, from high to low */
100 #define for_each_sr(_sr, _port)						\
101 	for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--)	\
102 		if ((_port)->sampling_rate_mask & SCI_SR((_sr)))
103 
104 struct sci_port {
105 	struct uart_port	port;
106 
107 	/* Platform configuration */
108 	struct plat_sci_port	*cfg;
109 	unsigned int		overrun_reg;
110 	unsigned int		overrun_mask;
111 	unsigned int		error_mask;
112 	unsigned int		error_clear;
113 	unsigned int		sampling_rate_mask;
114 	resource_size_t		reg_size;
115 	struct mctrl_gpios	*gpios;
116 
117 	/* Break timer */
118 	struct timer_list	break_timer;
119 	int			break_flag;
120 
121 	/* Clocks */
122 	struct clk		*clks[SCI_NUM_CLKS];
123 	unsigned long		clk_rates[SCI_NUM_CLKS];
124 
125 	int			irqs[SCIx_NR_IRQS];
126 	char			*irqstr[SCIx_NR_IRQS];
127 
128 	struct dma_chan			*chan_tx;
129 	struct dma_chan			*chan_rx;
130 
131 #ifdef CONFIG_SERIAL_SH_SCI_DMA
132 	dma_cookie_t			cookie_tx;
133 	dma_cookie_t			cookie_rx[2];
134 	dma_cookie_t			active_rx;
135 	dma_addr_t			tx_dma_addr;
136 	unsigned int			tx_dma_len;
137 	struct scatterlist		sg_rx[2];
138 	void				*rx_buf[2];
139 	size_t				buf_len_rx;
140 	struct work_struct		work_tx;
141 	struct timer_list		rx_timer;
142 	unsigned int			rx_timeout;
143 #endif
144 
145 	bool autorts;
146 };
147 
148 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
149 
150 static struct sci_port sci_ports[SCI_NPORTS];
151 static struct uart_driver sci_uart_driver;
152 
153 static inline struct sci_port *
154 to_sci_port(struct uart_port *uart)
155 {
156 	return container_of(uart, struct sci_port, port);
157 }
158 
159 struct plat_sci_reg {
160 	u8 offset, size;
161 };
162 
163 /* Helper for invalidating specific entries of an inherited map. */
164 #define sci_reg_invalid	{ .offset = 0, .size = 0 }
165 
166 static const struct plat_sci_reg sci_regmap[SCIx_NR_REGTYPES][SCIx_NR_REGS] = {
167 	[SCIx_PROBE_REGTYPE] = {
168 		[0 ... SCIx_NR_REGS - 1] = sci_reg_invalid,
169 	},
170 
171 	/*
172 	 * Common SCI definitions, dependent on the port's regshift
173 	 * value.
174 	 */
175 	[SCIx_SCI_REGTYPE] = {
176 		[SCSMR]		= { 0x00,  8 },
177 		[SCBRR]		= { 0x01,  8 },
178 		[SCSCR]		= { 0x02,  8 },
179 		[SCxTDR]	= { 0x03,  8 },
180 		[SCxSR]		= { 0x04,  8 },
181 		[SCxRDR]	= { 0x05,  8 },
182 		[SCFCR]		= sci_reg_invalid,
183 		[SCFDR]		= sci_reg_invalid,
184 		[SCTFDR]	= sci_reg_invalid,
185 		[SCRFDR]	= sci_reg_invalid,
186 		[SCSPTR]	= sci_reg_invalid,
187 		[SCLSR]		= sci_reg_invalid,
188 		[HSSRR]		= sci_reg_invalid,
189 		[SCPCR]		= sci_reg_invalid,
190 		[SCPDR]		= sci_reg_invalid,
191 		[SCDL]		= sci_reg_invalid,
192 		[SCCKS]		= sci_reg_invalid,
193 	},
194 
195 	/*
196 	 * Common definitions for legacy IrDA ports, dependent on
197 	 * regshift value.
198 	 */
199 	[SCIx_IRDA_REGTYPE] = {
200 		[SCSMR]		= { 0x00,  8 },
201 		[SCBRR]		= { 0x01,  8 },
202 		[SCSCR]		= { 0x02,  8 },
203 		[SCxTDR]	= { 0x03,  8 },
204 		[SCxSR]		= { 0x04,  8 },
205 		[SCxRDR]	= { 0x05,  8 },
206 		[SCFCR]		= { 0x06,  8 },
207 		[SCFDR]		= { 0x07, 16 },
208 		[SCTFDR]	= sci_reg_invalid,
209 		[SCRFDR]	= sci_reg_invalid,
210 		[SCSPTR]	= sci_reg_invalid,
211 		[SCLSR]		= sci_reg_invalid,
212 		[HSSRR]		= sci_reg_invalid,
213 		[SCPCR]		= sci_reg_invalid,
214 		[SCPDR]		= sci_reg_invalid,
215 		[SCDL]		= sci_reg_invalid,
216 		[SCCKS]		= sci_reg_invalid,
217 	},
218 
219 	/*
220 	 * Common SCIFA definitions.
221 	 */
222 	[SCIx_SCIFA_REGTYPE] = {
223 		[SCSMR]		= { 0x00, 16 },
224 		[SCBRR]		= { 0x04,  8 },
225 		[SCSCR]		= { 0x08, 16 },
226 		[SCxTDR]	= { 0x20,  8 },
227 		[SCxSR]		= { 0x14, 16 },
228 		[SCxRDR]	= { 0x24,  8 },
229 		[SCFCR]		= { 0x18, 16 },
230 		[SCFDR]		= { 0x1c, 16 },
231 		[SCTFDR]	= sci_reg_invalid,
232 		[SCRFDR]	= sci_reg_invalid,
233 		[SCSPTR]	= sci_reg_invalid,
234 		[SCLSR]		= sci_reg_invalid,
235 		[HSSRR]		= sci_reg_invalid,
236 		[SCPCR]		= { 0x30, 16 },
237 		[SCPDR]		= { 0x34, 16 },
238 		[SCDL]		= sci_reg_invalid,
239 		[SCCKS]		= sci_reg_invalid,
240 	},
241 
242 	/*
243 	 * Common SCIFB definitions.
244 	 */
245 	[SCIx_SCIFB_REGTYPE] = {
246 		[SCSMR]		= { 0x00, 16 },
247 		[SCBRR]		= { 0x04,  8 },
248 		[SCSCR]		= { 0x08, 16 },
249 		[SCxTDR]	= { 0x40,  8 },
250 		[SCxSR]		= { 0x14, 16 },
251 		[SCxRDR]	= { 0x60,  8 },
252 		[SCFCR]		= { 0x18, 16 },
253 		[SCFDR]		= sci_reg_invalid,
254 		[SCTFDR]	= { 0x38, 16 },
255 		[SCRFDR]	= { 0x3c, 16 },
256 		[SCSPTR]	= sci_reg_invalid,
257 		[SCLSR]		= sci_reg_invalid,
258 		[HSSRR]		= sci_reg_invalid,
259 		[SCPCR]		= { 0x30, 16 },
260 		[SCPDR]		= { 0x34, 16 },
261 		[SCDL]		= sci_reg_invalid,
262 		[SCCKS]		= sci_reg_invalid,
263 	},
264 
265 	/*
266 	 * Common SH-2(A) SCIF definitions for ports with FIFO data
267 	 * count registers.
268 	 */
269 	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
270 		[SCSMR]		= { 0x00, 16 },
271 		[SCBRR]		= { 0x04,  8 },
272 		[SCSCR]		= { 0x08, 16 },
273 		[SCxTDR]	= { 0x0c,  8 },
274 		[SCxSR]		= { 0x10, 16 },
275 		[SCxRDR]	= { 0x14,  8 },
276 		[SCFCR]		= { 0x18, 16 },
277 		[SCFDR]		= { 0x1c, 16 },
278 		[SCTFDR]	= sci_reg_invalid,
279 		[SCRFDR]	= sci_reg_invalid,
280 		[SCSPTR]	= { 0x20, 16 },
281 		[SCLSR]		= { 0x24, 16 },
282 		[HSSRR]		= sci_reg_invalid,
283 		[SCPCR]		= sci_reg_invalid,
284 		[SCPDR]		= sci_reg_invalid,
285 		[SCDL]		= sci_reg_invalid,
286 		[SCCKS]		= sci_reg_invalid,
287 	},
288 
289 	/*
290 	 * Common SH-3 SCIF definitions.
291 	 */
292 	[SCIx_SH3_SCIF_REGTYPE] = {
293 		[SCSMR]		= { 0x00,  8 },
294 		[SCBRR]		= { 0x02,  8 },
295 		[SCSCR]		= { 0x04,  8 },
296 		[SCxTDR]	= { 0x06,  8 },
297 		[SCxSR]		= { 0x08, 16 },
298 		[SCxRDR]	= { 0x0a,  8 },
299 		[SCFCR]		= { 0x0c,  8 },
300 		[SCFDR]		= { 0x0e, 16 },
301 		[SCTFDR]	= sci_reg_invalid,
302 		[SCRFDR]	= sci_reg_invalid,
303 		[SCSPTR]	= sci_reg_invalid,
304 		[SCLSR]		= sci_reg_invalid,
305 		[HSSRR]		= sci_reg_invalid,
306 		[SCPCR]		= sci_reg_invalid,
307 		[SCPDR]		= sci_reg_invalid,
308 		[SCDL]		= sci_reg_invalid,
309 		[SCCKS]		= sci_reg_invalid,
310 	},
311 
312 	/*
313 	 * Common SH-4(A) SCIF(B) definitions.
314 	 */
315 	[SCIx_SH4_SCIF_REGTYPE] = {
316 		[SCSMR]		= { 0x00, 16 },
317 		[SCBRR]		= { 0x04,  8 },
318 		[SCSCR]		= { 0x08, 16 },
319 		[SCxTDR]	= { 0x0c,  8 },
320 		[SCxSR]		= { 0x10, 16 },
321 		[SCxRDR]	= { 0x14,  8 },
322 		[SCFCR]		= { 0x18, 16 },
323 		[SCFDR]		= { 0x1c, 16 },
324 		[SCTFDR]	= sci_reg_invalid,
325 		[SCRFDR]	= sci_reg_invalid,
326 		[SCSPTR]	= { 0x20, 16 },
327 		[SCLSR]		= { 0x24, 16 },
328 		[HSSRR]		= sci_reg_invalid,
329 		[SCPCR]		= sci_reg_invalid,
330 		[SCPDR]		= sci_reg_invalid,
331 		[SCDL]		= sci_reg_invalid,
332 		[SCCKS]		= sci_reg_invalid,
333 	},
334 
335 	/*
336 	 * Common SCIF definitions for ports with a Baud Rate Generator for
337 	 * External Clock (BRG).
338 	 */
339 	[SCIx_SH4_SCIF_BRG_REGTYPE] = {
340 		[SCSMR]		= { 0x00, 16 },
341 		[SCBRR]		= { 0x04,  8 },
342 		[SCSCR]		= { 0x08, 16 },
343 		[SCxTDR]	= { 0x0c,  8 },
344 		[SCxSR]		= { 0x10, 16 },
345 		[SCxRDR]	= { 0x14,  8 },
346 		[SCFCR]		= { 0x18, 16 },
347 		[SCFDR]		= { 0x1c, 16 },
348 		[SCTFDR]	= sci_reg_invalid,
349 		[SCRFDR]	= sci_reg_invalid,
350 		[SCSPTR]	= { 0x20, 16 },
351 		[SCLSR]		= { 0x24, 16 },
352 		[HSSRR]		= sci_reg_invalid,
353 		[SCPCR]		= sci_reg_invalid,
354 		[SCPDR]		= sci_reg_invalid,
355 		[SCDL]		= { 0x30, 16 },
356 		[SCCKS]		= { 0x34, 16 },
357 	},
358 
359 	/*
360 	 * Common HSCIF definitions.
361 	 */
362 	[SCIx_HSCIF_REGTYPE] = {
363 		[SCSMR]		= { 0x00, 16 },
364 		[SCBRR]		= { 0x04,  8 },
365 		[SCSCR]		= { 0x08, 16 },
366 		[SCxTDR]	= { 0x0c,  8 },
367 		[SCxSR]		= { 0x10, 16 },
368 		[SCxRDR]	= { 0x14,  8 },
369 		[SCFCR]		= { 0x18, 16 },
370 		[SCFDR]		= { 0x1c, 16 },
371 		[SCTFDR]	= sci_reg_invalid,
372 		[SCRFDR]	= sci_reg_invalid,
373 		[SCSPTR]	= { 0x20, 16 },
374 		[SCLSR]		= { 0x24, 16 },
375 		[HSSRR]		= { 0x40, 16 },
376 		[SCPCR]		= sci_reg_invalid,
377 		[SCPDR]		= sci_reg_invalid,
378 		[SCDL]		= { 0x30, 16 },
379 		[SCCKS]		= { 0x34, 16 },
380 	},
381 
382 	/*
383 	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
384 	 * register.
385 	 */
386 	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
387 		[SCSMR]		= { 0x00, 16 },
388 		[SCBRR]		= { 0x04,  8 },
389 		[SCSCR]		= { 0x08, 16 },
390 		[SCxTDR]	= { 0x0c,  8 },
391 		[SCxSR]		= { 0x10, 16 },
392 		[SCxRDR]	= { 0x14,  8 },
393 		[SCFCR]		= { 0x18, 16 },
394 		[SCFDR]		= { 0x1c, 16 },
395 		[SCTFDR]	= sci_reg_invalid,
396 		[SCRFDR]	= sci_reg_invalid,
397 		[SCSPTR]	= sci_reg_invalid,
398 		[SCLSR]		= { 0x24, 16 },
399 		[HSSRR]		= sci_reg_invalid,
400 		[SCPCR]		= sci_reg_invalid,
401 		[SCPDR]		= sci_reg_invalid,
402 		[SCDL]		= sci_reg_invalid,
403 		[SCCKS]		= sci_reg_invalid,
404 	},
405 
406 	/*
407 	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
408 	 * count registers.
409 	 */
410 	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
411 		[SCSMR]		= { 0x00, 16 },
412 		[SCBRR]		= { 0x04,  8 },
413 		[SCSCR]		= { 0x08, 16 },
414 		[SCxTDR]	= { 0x0c,  8 },
415 		[SCxSR]		= { 0x10, 16 },
416 		[SCxRDR]	= { 0x14,  8 },
417 		[SCFCR]		= { 0x18, 16 },
418 		[SCFDR]		= { 0x1c, 16 },
419 		[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
420 		[SCRFDR]	= { 0x20, 16 },
421 		[SCSPTR]	= { 0x24, 16 },
422 		[SCLSR]		= { 0x28, 16 },
423 		[HSSRR]		= sci_reg_invalid,
424 		[SCPCR]		= sci_reg_invalid,
425 		[SCPDR]		= sci_reg_invalid,
426 		[SCDL]		= sci_reg_invalid,
427 		[SCCKS]		= sci_reg_invalid,
428 	},
429 
430 	/*
431 	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
432 	 * registers.
433 	 */
434 	[SCIx_SH7705_SCIF_REGTYPE] = {
435 		[SCSMR]		= { 0x00, 16 },
436 		[SCBRR]		= { 0x04,  8 },
437 		[SCSCR]		= { 0x08, 16 },
438 		[SCxTDR]	= { 0x20,  8 },
439 		[SCxSR]		= { 0x14, 16 },
440 		[SCxRDR]	= { 0x24,  8 },
441 		[SCFCR]		= { 0x18, 16 },
442 		[SCFDR]		= { 0x1c, 16 },
443 		[SCTFDR]	= sci_reg_invalid,
444 		[SCRFDR]	= sci_reg_invalid,
445 		[SCSPTR]	= sci_reg_invalid,
446 		[SCLSR]		= sci_reg_invalid,
447 		[HSSRR]		= sci_reg_invalid,
448 		[SCPCR]		= sci_reg_invalid,
449 		[SCPDR]		= sci_reg_invalid,
450 		[SCDL]		= sci_reg_invalid,
451 		[SCCKS]		= sci_reg_invalid,
452 	},
453 };
454 
455 #define sci_getreg(up, offset)		(sci_regmap[to_sci_port(up)->cfg->regtype] + offset)
456 
457 /*
458  * The "offset" here is rather misleading, in that it refers to an enum
459  * value relative to the port mapping rather than the fixed offset
460  * itself, which needs to be manually retrieved from the platform's
461  * register map for the given port.
462  */
463 static unsigned int sci_serial_in(struct uart_port *p, int offset)
464 {
465 	const struct plat_sci_reg *reg = sci_getreg(p, offset);
466 
467 	if (reg->size == 8)
468 		return ioread8(p->membase + (reg->offset << p->regshift));
469 	else if (reg->size == 16)
470 		return ioread16(p->membase + (reg->offset << p->regshift));
471 	else
472 		WARN(1, "Invalid register access\n");
473 
474 	return 0;
475 }
476 
477 static void sci_serial_out(struct uart_port *p, int offset, int value)
478 {
479 	const struct plat_sci_reg *reg = sci_getreg(p, offset);
480 
481 	if (reg->size == 8)
482 		iowrite8(value, p->membase + (reg->offset << p->regshift));
483 	else if (reg->size == 16)
484 		iowrite16(value, p->membase + (reg->offset << p->regshift));
485 	else
486 		WARN(1, "Invalid register access\n");
487 }
488 
489 static int sci_probe_regmap(struct plat_sci_port *cfg)
490 {
491 	switch (cfg->type) {
492 	case PORT_SCI:
493 		cfg->regtype = SCIx_SCI_REGTYPE;
494 		break;
495 	case PORT_IRDA:
496 		cfg->regtype = SCIx_IRDA_REGTYPE;
497 		break;
498 	case PORT_SCIFA:
499 		cfg->regtype = SCIx_SCIFA_REGTYPE;
500 		break;
501 	case PORT_SCIFB:
502 		cfg->regtype = SCIx_SCIFB_REGTYPE;
503 		break;
504 	case PORT_SCIF:
505 		/*
506 		 * The SH-4 is a bit of a misnomer here, although that's
507 		 * where this particular port layout originated. This
508 		 * configuration (or some slight variation thereof)
509 		 * remains the dominant model for all SCIFs.
510 		 */
511 		cfg->regtype = SCIx_SH4_SCIF_REGTYPE;
512 		break;
513 	case PORT_HSCIF:
514 		cfg->regtype = SCIx_HSCIF_REGTYPE;
515 		break;
516 	default:
517 		pr_err("Can't probe register map for given port\n");
518 		return -EINVAL;
519 	}
520 
521 	return 0;
522 }
523 
524 static void sci_port_enable(struct sci_port *sci_port)
525 {
526 	unsigned int i;
527 
528 	if (!sci_port->port.dev)
529 		return;
530 
531 	pm_runtime_get_sync(sci_port->port.dev);
532 
533 	for (i = 0; i < SCI_NUM_CLKS; i++) {
534 		clk_prepare_enable(sci_port->clks[i]);
535 		sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]);
536 	}
537 	sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
538 }
539 
540 static void sci_port_disable(struct sci_port *sci_port)
541 {
542 	unsigned int i;
543 
544 	if (!sci_port->port.dev)
545 		return;
546 
547 	/* Cancel the break timer to ensure that the timer handler will not try
548 	 * to access the hardware with clocks and power disabled. Reset the
549 	 * break flag to make the break debouncing state machine ready for the
550 	 * next break.
551 	 */
552 	del_timer_sync(&sci_port->break_timer);
553 	sci_port->break_flag = 0;
554 
555 	for (i = SCI_NUM_CLKS; i-- > 0; )
556 		clk_disable_unprepare(sci_port->clks[i]);
557 
558 	pm_runtime_put_sync(sci_port->port.dev);
559 }
560 
561 static inline unsigned long port_rx_irq_mask(struct uart_port *port)
562 {
563 	/*
564 	 * Not all ports (such as SCIFA) will support REIE. Rather than
565 	 * special-casing the port type, we check the port initialization
566 	 * IRQ enable mask to see whether the IRQ is desired at all. If
567 	 * it's unset, it's logically inferred that there's no point in
568 	 * testing for it.
569 	 */
570 	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
571 }
572 
573 static void sci_start_tx(struct uart_port *port)
574 {
575 	struct sci_port *s = to_sci_port(port);
576 	unsigned short ctrl;
577 
578 #ifdef CONFIG_SERIAL_SH_SCI_DMA
579 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
580 		u16 new, scr = serial_port_in(port, SCSCR);
581 		if (s->chan_tx)
582 			new = scr | SCSCR_TDRQE;
583 		else
584 			new = scr & ~SCSCR_TDRQE;
585 		if (new != scr)
586 			serial_port_out(port, SCSCR, new);
587 	}
588 
589 	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
590 	    dma_submit_error(s->cookie_tx)) {
591 		s->cookie_tx = 0;
592 		schedule_work(&s->work_tx);
593 	}
594 #endif
595 
596 	if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
597 		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
598 		ctrl = serial_port_in(port, SCSCR);
599 		serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
600 	}
601 }
602 
603 static void sci_stop_tx(struct uart_port *port)
604 {
605 	unsigned short ctrl;
606 
607 	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
608 	ctrl = serial_port_in(port, SCSCR);
609 
610 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
611 		ctrl &= ~SCSCR_TDRQE;
612 
613 	ctrl &= ~SCSCR_TIE;
614 
615 	serial_port_out(port, SCSCR, ctrl);
616 }
617 
618 static void sci_start_rx(struct uart_port *port)
619 {
620 	unsigned short ctrl;
621 
622 	ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
623 
624 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
625 		ctrl &= ~SCSCR_RDRQE;
626 
627 	serial_port_out(port, SCSCR, ctrl);
628 }
629 
630 static void sci_stop_rx(struct uart_port *port)
631 {
632 	unsigned short ctrl;
633 
634 	ctrl = serial_port_in(port, SCSCR);
635 
636 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
637 		ctrl &= ~SCSCR_RDRQE;
638 
639 	ctrl &= ~port_rx_irq_mask(port);
640 
641 	serial_port_out(port, SCSCR, ctrl);
642 }
643 
644 static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
645 {
646 	if (port->type == PORT_SCI) {
647 		/* Just store the mask */
648 		serial_port_out(port, SCxSR, mask);
649 	} else if (to_sci_port(port)->overrun_mask == SCIFA_ORER) {
650 		/* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
651 		/* Only clear the status bits we want to clear */
652 		serial_port_out(port, SCxSR,
653 				serial_port_in(port, SCxSR) & mask);
654 	} else {
655 		/* Store the mask, clear parity/framing errors */
656 		serial_port_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
657 	}
658 }
659 
660 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
661     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
662 
663 #ifdef CONFIG_CONSOLE_POLL
664 static int sci_poll_get_char(struct uart_port *port)
665 {
666 	unsigned short status;
667 	int c;
668 
669 	do {
670 		status = serial_port_in(port, SCxSR);
671 		if (status & SCxSR_ERRORS(port)) {
672 			sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
673 			continue;
674 		}
675 		break;
676 	} while (1);
677 
678 	if (!(status & SCxSR_RDxF(port)))
679 		return NO_POLL_CHAR;
680 
681 	c = serial_port_in(port, SCxRDR);
682 
683 	/* Dummy read */
684 	serial_port_in(port, SCxSR);
685 	sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
686 
687 	return c;
688 }
689 #endif
690 
691 static void sci_poll_put_char(struct uart_port *port, unsigned char c)
692 {
693 	unsigned short status;
694 
695 	do {
696 		status = serial_port_in(port, SCxSR);
697 	} while (!(status & SCxSR_TDxE(port)));
698 
699 	serial_port_out(port, SCxTDR, c);
700 	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
701 }
702 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE ||
703 	  CONFIG_SERIAL_SH_SCI_EARLYCON */
704 
705 static void sci_init_pins(struct uart_port *port, unsigned int cflag)
706 {
707 	struct sci_port *s = to_sci_port(port);
708 
709 	/*
710 	 * Use port-specific handler if provided.
711 	 */
712 	if (s->cfg->ops && s->cfg->ops->init_pins) {
713 		s->cfg->ops->init_pins(port, cflag);
714 		return;
715 	}
716 
717 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
718 		u16 ctrl = serial_port_in(port, SCPCR);
719 
720 		/* Enable RXD and TXD pin functions */
721 		ctrl &= ~(SCPCR_RXDC | SCPCR_TXDC);
722 		if (to_sci_port(port)->cfg->capabilities & SCIx_HAVE_RTSCTS) {
723 			/* RTS# is output, driven 1 */
724 			ctrl |= SCPCR_RTSC;
725 			serial_port_out(port, SCPDR,
726 				serial_port_in(port, SCPDR) | SCPDR_RTSD);
727 			/* Enable CTS# pin function */
728 			ctrl &= ~SCPCR_CTSC;
729 		}
730 		serial_port_out(port, SCPCR, ctrl);
731 	} else if (sci_getreg(port, SCSPTR)->size) {
732 		u16 status = serial_port_in(port, SCSPTR);
733 
734 		/* RTS# is output, driven 1 */
735 		status |= SCSPTR_RTSIO | SCSPTR_RTSDT;
736 		/* CTS# and SCK are inputs */
737 		status &= ~(SCSPTR_CTSIO | SCSPTR_SCKIO);
738 		serial_port_out(port, SCSPTR, status);
739 	}
740 }
741 
742 static int sci_txfill(struct uart_port *port)
743 {
744 	const struct plat_sci_reg *reg;
745 
746 	reg = sci_getreg(port, SCTFDR);
747 	if (reg->size)
748 		return serial_port_in(port, SCTFDR) & ((port->fifosize << 1) - 1);
749 
750 	reg = sci_getreg(port, SCFDR);
751 	if (reg->size)
752 		return serial_port_in(port, SCFDR) >> 8;
753 
754 	return !(serial_port_in(port, SCxSR) & SCI_TDRE);
755 }
756 
757 static int sci_txroom(struct uart_port *port)
758 {
759 	return port->fifosize - sci_txfill(port);
760 }
761 
762 static int sci_rxfill(struct uart_port *port)
763 {
764 	const struct plat_sci_reg *reg;
765 
766 	reg = sci_getreg(port, SCRFDR);
767 	if (reg->size)
768 		return serial_port_in(port, SCRFDR) & ((port->fifosize << 1) - 1);
769 
770 	reg = sci_getreg(port, SCFDR);
771 	if (reg->size)
772 		return serial_port_in(port, SCFDR) & ((port->fifosize << 1) - 1);
773 
774 	return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
775 }
776 
777 /*
778  * SCI helper for checking the state of the muxed port/RXD pins.
779  */
780 static inline int sci_rxd_in(struct uart_port *port)
781 {
782 	struct sci_port *s = to_sci_port(port);
783 
784 	if (s->cfg->port_reg <= 0)
785 		return 1;
786 
787 	/* Cast for ARM damage */
788 	return !!__raw_readb((void __iomem *)(uintptr_t)s->cfg->port_reg);
789 }
790 
791 /* ********************************************************************** *
792  *                   the interrupt related routines                       *
793  * ********************************************************************** */
794 
795 static void sci_transmit_chars(struct uart_port *port)
796 {
797 	struct circ_buf *xmit = &port->state->xmit;
798 	unsigned int stopped = uart_tx_stopped(port);
799 	unsigned short status;
800 	unsigned short ctrl;
801 	int count;
802 
803 	status = serial_port_in(port, SCxSR);
804 	if (!(status & SCxSR_TDxE(port))) {
805 		ctrl = serial_port_in(port, SCSCR);
806 		if (uart_circ_empty(xmit))
807 			ctrl &= ~SCSCR_TIE;
808 		else
809 			ctrl |= SCSCR_TIE;
810 		serial_port_out(port, SCSCR, ctrl);
811 		return;
812 	}
813 
814 	count = sci_txroom(port);
815 
816 	do {
817 		unsigned char c;
818 
819 		if (port->x_char) {
820 			c = port->x_char;
821 			port->x_char = 0;
822 		} else if (!uart_circ_empty(xmit) && !stopped) {
823 			c = xmit->buf[xmit->tail];
824 			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
825 		} else {
826 			break;
827 		}
828 
829 		serial_port_out(port, SCxTDR, c);
830 
831 		port->icount.tx++;
832 	} while (--count > 0);
833 
834 	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
835 
836 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
837 		uart_write_wakeup(port);
838 	if (uart_circ_empty(xmit)) {
839 		sci_stop_tx(port);
840 	} else {
841 		ctrl = serial_port_in(port, SCSCR);
842 
843 		if (port->type != PORT_SCI) {
844 			serial_port_in(port, SCxSR); /* Dummy read */
845 			sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
846 		}
847 
848 		ctrl |= SCSCR_TIE;
849 		serial_port_out(port, SCSCR, ctrl);
850 	}
851 }
852 
853 /* On SH3, SCIF may read end-of-break as a space->mark char */
854 #define STEPFN(c)  ({int __c = (c); (((__c-1)|(__c)) == -1); })
855 
856 static void sci_receive_chars(struct uart_port *port)
857 {
858 	struct sci_port *sci_port = to_sci_port(port);
859 	struct tty_port *tport = &port->state->port;
860 	int i, count, copied = 0;
861 	unsigned short status;
862 	unsigned char flag;
863 
864 	status = serial_port_in(port, SCxSR);
865 	if (!(status & SCxSR_RDxF(port)))
866 		return;
867 
868 	while (1) {
869 		/* Don't copy more bytes than there is room for in the buffer */
870 		count = tty_buffer_request_room(tport, sci_rxfill(port));
871 
872 		/* If for any reason we can't copy more data, we're done! */
873 		if (count == 0)
874 			break;
875 
876 		if (port->type == PORT_SCI) {
877 			char c = serial_port_in(port, SCxRDR);
878 			if (uart_handle_sysrq_char(port, c) ||
879 			    sci_port->break_flag)
880 				count = 0;
881 			else
882 				tty_insert_flip_char(tport, c, TTY_NORMAL);
883 		} else {
884 			for (i = 0; i < count; i++) {
885 				char c = serial_port_in(port, SCxRDR);
886 
887 				status = serial_port_in(port, SCxSR);
888 #if defined(CONFIG_CPU_SH3)
889 				/* Skip "chars" during break */
890 				if (sci_port->break_flag) {
891 					if ((c == 0) &&
892 					    (status & SCxSR_FER(port))) {
893 						count--; i--;
894 						continue;
895 					}
896 
897 					/* Nonzero => end-of-break */
898 					dev_dbg(port->dev, "debounce<%02x>\n", c);
899 					sci_port->break_flag = 0;
900 
901 					if (STEPFN(c)) {
902 						count--; i--;
903 						continue;
904 					}
905 				}
906 #endif /* CONFIG_CPU_SH3 */
907 				if (uart_handle_sysrq_char(port, c)) {
908 					count--; i--;
909 					continue;
910 				}
911 
912 				/* Store data and status */
913 				if (status & SCxSR_FER(port)) {
914 					flag = TTY_FRAME;
915 					port->icount.frame++;
916 					dev_notice(port->dev, "frame error\n");
917 				} else if (status & SCxSR_PER(port)) {
918 					flag = TTY_PARITY;
919 					port->icount.parity++;
920 					dev_notice(port->dev, "parity error\n");
921 				} else
922 					flag = TTY_NORMAL;
923 
924 				tty_insert_flip_char(tport, c, flag);
925 			}
926 		}
927 
928 		serial_port_in(port, SCxSR); /* dummy read */
929 		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
930 
931 		copied += count;
932 		port->icount.rx += count;
933 	}
934 
935 	if (copied) {
936 		/* Tell the rest of the system the news. New characters! */
937 		tty_flip_buffer_push(tport);
938 	} else {
939 		serial_port_in(port, SCxSR); /* dummy read */
940 		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
941 	}
942 }
943 
944 #define SCI_BREAK_JIFFIES (HZ/20)
945 
946 /*
947  * The sci generates interrupts during the break,
948  * 1 per millisecond or so during the break period, for 9600 baud.
949  * So dont bother disabling interrupts.
950  * But dont want more than 1 break event.
951  * Use a kernel timer to periodically poll the rx line until
952  * the break is finished.
953  */
954 static inline void sci_schedule_break_timer(struct sci_port *port)
955 {
956 	mod_timer(&port->break_timer, jiffies + SCI_BREAK_JIFFIES);
957 }
958 
959 /* Ensure that two consecutive samples find the break over. */
960 static void sci_break_timer(unsigned long data)
961 {
962 	struct sci_port *port = (struct sci_port *)data;
963 
964 	if (sci_rxd_in(&port->port) == 0) {
965 		port->break_flag = 1;
966 		sci_schedule_break_timer(port);
967 	} else if (port->break_flag == 1) {
968 		/* break is over. */
969 		port->break_flag = 2;
970 		sci_schedule_break_timer(port);
971 	} else
972 		port->break_flag = 0;
973 }
974 
975 static int sci_handle_errors(struct uart_port *port)
976 {
977 	int copied = 0;
978 	unsigned short status = serial_port_in(port, SCxSR);
979 	struct tty_port *tport = &port->state->port;
980 	struct sci_port *s = to_sci_port(port);
981 
982 	/* Handle overruns */
983 	if (status & s->overrun_mask) {
984 		port->icount.overrun++;
985 
986 		/* overrun error */
987 		if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
988 			copied++;
989 
990 		dev_notice(port->dev, "overrun error\n");
991 	}
992 
993 	if (status & SCxSR_FER(port)) {
994 		if (sci_rxd_in(port) == 0) {
995 			/* Notify of BREAK */
996 			struct sci_port *sci_port = to_sci_port(port);
997 
998 			if (!sci_port->break_flag) {
999 				port->icount.brk++;
1000 
1001 				sci_port->break_flag = 1;
1002 				sci_schedule_break_timer(sci_port);
1003 
1004 				/* Do sysrq handling. */
1005 				if (uart_handle_break(port))
1006 					return 0;
1007 
1008 				dev_dbg(port->dev, "BREAK detected\n");
1009 
1010 				if (tty_insert_flip_char(tport, 0, TTY_BREAK))
1011 					copied++;
1012 			}
1013 
1014 		} else {
1015 			/* frame error */
1016 			port->icount.frame++;
1017 
1018 			if (tty_insert_flip_char(tport, 0, TTY_FRAME))
1019 				copied++;
1020 
1021 			dev_notice(port->dev, "frame error\n");
1022 		}
1023 	}
1024 
1025 	if (status & SCxSR_PER(port)) {
1026 		/* parity error */
1027 		port->icount.parity++;
1028 
1029 		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
1030 			copied++;
1031 
1032 		dev_notice(port->dev, "parity error\n");
1033 	}
1034 
1035 	if (copied)
1036 		tty_flip_buffer_push(tport);
1037 
1038 	return copied;
1039 }
1040 
1041 static int sci_handle_fifo_overrun(struct uart_port *port)
1042 {
1043 	struct tty_port *tport = &port->state->port;
1044 	struct sci_port *s = to_sci_port(port);
1045 	const struct plat_sci_reg *reg;
1046 	int copied = 0;
1047 	u16 status;
1048 
1049 	reg = sci_getreg(port, s->overrun_reg);
1050 	if (!reg->size)
1051 		return 0;
1052 
1053 	status = serial_port_in(port, s->overrun_reg);
1054 	if (status & s->overrun_mask) {
1055 		status &= ~s->overrun_mask;
1056 		serial_port_out(port, s->overrun_reg, status);
1057 
1058 		port->icount.overrun++;
1059 
1060 		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
1061 		tty_flip_buffer_push(tport);
1062 
1063 		dev_dbg(port->dev, "overrun error\n");
1064 		copied++;
1065 	}
1066 
1067 	return copied;
1068 }
1069 
1070 static int sci_handle_breaks(struct uart_port *port)
1071 {
1072 	int copied = 0;
1073 	unsigned short status = serial_port_in(port, SCxSR);
1074 	struct tty_port *tport = &port->state->port;
1075 	struct sci_port *s = to_sci_port(port);
1076 
1077 	if (uart_handle_break(port))
1078 		return 0;
1079 
1080 	if (!s->break_flag && status & SCxSR_BRK(port)) {
1081 #if defined(CONFIG_CPU_SH3)
1082 		/* Debounce break */
1083 		s->break_flag = 1;
1084 #endif
1085 
1086 		port->icount.brk++;
1087 
1088 		/* Notify of BREAK */
1089 		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
1090 			copied++;
1091 
1092 		dev_dbg(port->dev, "BREAK detected\n");
1093 	}
1094 
1095 	if (copied)
1096 		tty_flip_buffer_push(tport);
1097 
1098 	copied += sci_handle_fifo_overrun(port);
1099 
1100 	return copied;
1101 }
1102 
1103 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1104 static void sci_dma_tx_complete(void *arg)
1105 {
1106 	struct sci_port *s = arg;
1107 	struct uart_port *port = &s->port;
1108 	struct circ_buf *xmit = &port->state->xmit;
1109 	unsigned long flags;
1110 
1111 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1112 
1113 	spin_lock_irqsave(&port->lock, flags);
1114 
1115 	xmit->tail += s->tx_dma_len;
1116 	xmit->tail &= UART_XMIT_SIZE - 1;
1117 
1118 	port->icount.tx += s->tx_dma_len;
1119 
1120 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1121 		uart_write_wakeup(port);
1122 
1123 	if (!uart_circ_empty(xmit)) {
1124 		s->cookie_tx = 0;
1125 		schedule_work(&s->work_tx);
1126 	} else {
1127 		s->cookie_tx = -EINVAL;
1128 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1129 			u16 ctrl = serial_port_in(port, SCSCR);
1130 			serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1131 		}
1132 	}
1133 
1134 	spin_unlock_irqrestore(&port->lock, flags);
1135 }
1136 
1137 /* Locking: called with port lock held */
1138 static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1139 {
1140 	struct uart_port *port = &s->port;
1141 	struct tty_port *tport = &port->state->port;
1142 	int copied;
1143 
1144 	copied = tty_insert_flip_string(tport, buf, count);
1145 	if (copied < count) {
1146 		dev_warn(port->dev, "Rx overrun: dropping %zu bytes\n",
1147 			 count - copied);
1148 		port->icount.buf_overrun++;
1149 	}
1150 
1151 	port->icount.rx += copied;
1152 
1153 	return copied;
1154 }
1155 
1156 static int sci_dma_rx_find_active(struct sci_port *s)
1157 {
1158 	unsigned int i;
1159 
1160 	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1161 		if (s->active_rx == s->cookie_rx[i])
1162 			return i;
1163 
1164 	dev_err(s->port.dev, "%s: Rx cookie %d not found!\n", __func__,
1165 		s->active_rx);
1166 	return -1;
1167 }
1168 
1169 static void sci_rx_dma_release(struct sci_port *s, bool enable_pio)
1170 {
1171 	struct dma_chan *chan = s->chan_rx;
1172 	struct uart_port *port = &s->port;
1173 	unsigned long flags;
1174 
1175 	spin_lock_irqsave(&port->lock, flags);
1176 	s->chan_rx = NULL;
1177 	s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL;
1178 	spin_unlock_irqrestore(&port->lock, flags);
1179 	dmaengine_terminate_all(chan);
1180 	dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1181 			  sg_dma_address(&s->sg_rx[0]));
1182 	dma_release_channel(chan);
1183 	if (enable_pio)
1184 		sci_start_rx(port);
1185 }
1186 
1187 static void sci_dma_rx_complete(void *arg)
1188 {
1189 	struct sci_port *s = arg;
1190 	struct dma_chan *chan = s->chan_rx;
1191 	struct uart_port *port = &s->port;
1192 	struct dma_async_tx_descriptor *desc;
1193 	unsigned long flags;
1194 	int active, count = 0;
1195 
1196 	dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1197 		s->active_rx);
1198 
1199 	spin_lock_irqsave(&port->lock, flags);
1200 
1201 	active = sci_dma_rx_find_active(s);
1202 	if (active >= 0)
1203 		count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1204 
1205 	mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1206 
1207 	if (count)
1208 		tty_flip_buffer_push(&port->state->port);
1209 
1210 	desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1211 				       DMA_DEV_TO_MEM,
1212 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1213 	if (!desc)
1214 		goto fail;
1215 
1216 	desc->callback = sci_dma_rx_complete;
1217 	desc->callback_param = s;
1218 	s->cookie_rx[active] = dmaengine_submit(desc);
1219 	if (dma_submit_error(s->cookie_rx[active]))
1220 		goto fail;
1221 
1222 	s->active_rx = s->cookie_rx[!active];
1223 
1224 	dma_async_issue_pending(chan);
1225 
1226 	dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1227 		__func__, s->cookie_rx[active], active, s->active_rx);
1228 	spin_unlock_irqrestore(&port->lock, flags);
1229 	return;
1230 
1231 fail:
1232 	spin_unlock_irqrestore(&port->lock, flags);
1233 	dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1234 	sci_rx_dma_release(s, true);
1235 }
1236 
1237 static void sci_tx_dma_release(struct sci_port *s, bool enable_pio)
1238 {
1239 	struct dma_chan *chan = s->chan_tx;
1240 	struct uart_port *port = &s->port;
1241 	unsigned long flags;
1242 
1243 	spin_lock_irqsave(&port->lock, flags);
1244 	s->chan_tx = NULL;
1245 	s->cookie_tx = -EINVAL;
1246 	spin_unlock_irqrestore(&port->lock, flags);
1247 	dmaengine_terminate_all(chan);
1248 	dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1249 			 DMA_TO_DEVICE);
1250 	dma_release_channel(chan);
1251 	if (enable_pio)
1252 		sci_start_tx(port);
1253 }
1254 
1255 static void sci_submit_rx(struct sci_port *s)
1256 {
1257 	struct dma_chan *chan = s->chan_rx;
1258 	int i;
1259 
1260 	for (i = 0; i < 2; i++) {
1261 		struct scatterlist *sg = &s->sg_rx[i];
1262 		struct dma_async_tx_descriptor *desc;
1263 
1264 		desc = dmaengine_prep_slave_sg(chan,
1265 			sg, 1, DMA_DEV_TO_MEM,
1266 			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1267 		if (!desc)
1268 			goto fail;
1269 
1270 		desc->callback = sci_dma_rx_complete;
1271 		desc->callback_param = s;
1272 		s->cookie_rx[i] = dmaengine_submit(desc);
1273 		if (dma_submit_error(s->cookie_rx[i]))
1274 			goto fail;
1275 
1276 		dev_dbg(s->port.dev, "%s(): cookie %d to #%d\n", __func__,
1277 			s->cookie_rx[i], i);
1278 	}
1279 
1280 	s->active_rx = s->cookie_rx[0];
1281 
1282 	dma_async_issue_pending(chan);
1283 	return;
1284 
1285 fail:
1286 	if (i)
1287 		dmaengine_terminate_all(chan);
1288 	for (i = 0; i < 2; i++)
1289 		s->cookie_rx[i] = -EINVAL;
1290 	s->active_rx = -EINVAL;
1291 	dev_warn(s->port.dev, "Failed to re-start Rx DMA, using PIO\n");
1292 	sci_rx_dma_release(s, true);
1293 }
1294 
1295 static void work_fn_tx(struct work_struct *work)
1296 {
1297 	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1298 	struct dma_async_tx_descriptor *desc;
1299 	struct dma_chan *chan = s->chan_tx;
1300 	struct uart_port *port = &s->port;
1301 	struct circ_buf *xmit = &port->state->xmit;
1302 	dma_addr_t buf;
1303 
1304 	/*
1305 	 * DMA is idle now.
1306 	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1307 	 * offsets and lengths. Since it is a circular buffer, we have to
1308 	 * transmit till the end, and then the rest. Take the port lock to get a
1309 	 * consistent xmit buffer state.
1310 	 */
1311 	spin_lock_irq(&port->lock);
1312 	buf = s->tx_dma_addr + (xmit->tail & (UART_XMIT_SIZE - 1));
1313 	s->tx_dma_len = min_t(unsigned int,
1314 		CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
1315 		CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
1316 	spin_unlock_irq(&port->lock);
1317 
1318 	desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1319 					   DMA_MEM_TO_DEV,
1320 					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1321 	if (!desc) {
1322 		dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1323 		/* switch to PIO */
1324 		sci_tx_dma_release(s, true);
1325 		return;
1326 	}
1327 
1328 	dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1329 				   DMA_TO_DEVICE);
1330 
1331 	spin_lock_irq(&port->lock);
1332 	desc->callback = sci_dma_tx_complete;
1333 	desc->callback_param = s;
1334 	spin_unlock_irq(&port->lock);
1335 	s->cookie_tx = dmaengine_submit(desc);
1336 	if (dma_submit_error(s->cookie_tx)) {
1337 		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1338 		/* switch to PIO */
1339 		sci_tx_dma_release(s, true);
1340 		return;
1341 	}
1342 
1343 	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
1344 		__func__, xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
1345 
1346 	dma_async_issue_pending(chan);
1347 }
1348 
1349 static void rx_timer_fn(unsigned long arg)
1350 {
1351 	struct sci_port *s = (struct sci_port *)arg;
1352 	struct dma_chan *chan = s->chan_rx;
1353 	struct uart_port *port = &s->port;
1354 	struct dma_tx_state state;
1355 	enum dma_status status;
1356 	unsigned long flags;
1357 	unsigned int read;
1358 	int active, count;
1359 	u16 scr;
1360 
1361 	spin_lock_irqsave(&port->lock, flags);
1362 
1363 	dev_dbg(port->dev, "DMA Rx timed out\n");
1364 
1365 	active = sci_dma_rx_find_active(s);
1366 	if (active < 0) {
1367 		spin_unlock_irqrestore(&port->lock, flags);
1368 		return;
1369 	}
1370 
1371 	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1372 	if (status == DMA_COMPLETE) {
1373 		dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1374 			s->active_rx, active);
1375 		spin_unlock_irqrestore(&port->lock, flags);
1376 
1377 		/* Let packet complete handler take care of the packet */
1378 		return;
1379 	}
1380 
1381 	dmaengine_pause(chan);
1382 
1383 	/*
1384 	 * sometimes DMA transfer doesn't stop even if it is stopped and
1385 	 * data keeps on coming until transaction is complete so check
1386 	 * for DMA_COMPLETE again
1387 	 * Let packet complete handler take care of the packet
1388 	 */
1389 	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1390 	if (status == DMA_COMPLETE) {
1391 		spin_unlock_irqrestore(&port->lock, flags);
1392 		dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1393 		return;
1394 	}
1395 
1396 	/* Handle incomplete DMA receive */
1397 	dmaengine_terminate_all(s->chan_rx);
1398 	read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1399 	dev_dbg(port->dev, "Read %u bytes with cookie %d\n", read,
1400 		s->active_rx);
1401 
1402 	if (read) {
1403 		count = sci_dma_rx_push(s, s->rx_buf[active], read);
1404 		if (count)
1405 			tty_flip_buffer_push(&port->state->port);
1406 	}
1407 
1408 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1409 		sci_submit_rx(s);
1410 
1411 	/* Direct new serial port interrupts back to CPU */
1412 	scr = serial_port_in(port, SCSCR);
1413 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1414 		scr &= ~SCSCR_RDRQE;
1415 		enable_irq(s->irqs[SCIx_RXI_IRQ]);
1416 	}
1417 	serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1418 
1419 	spin_unlock_irqrestore(&port->lock, flags);
1420 }
1421 
1422 static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1423 					     enum dma_transfer_direction dir,
1424 					     unsigned int id)
1425 {
1426 	dma_cap_mask_t mask;
1427 	struct dma_chan *chan;
1428 	struct dma_slave_config cfg;
1429 	int ret;
1430 
1431 	dma_cap_zero(mask);
1432 	dma_cap_set(DMA_SLAVE, mask);
1433 
1434 	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1435 					(void *)(unsigned long)id, port->dev,
1436 					dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1437 	if (!chan) {
1438 		dev_warn(port->dev,
1439 			 "dma_request_slave_channel_compat failed\n");
1440 		return NULL;
1441 	}
1442 
1443 	memset(&cfg, 0, sizeof(cfg));
1444 	cfg.direction = dir;
1445 	if (dir == DMA_MEM_TO_DEV) {
1446 		cfg.dst_addr = port->mapbase +
1447 			(sci_getreg(port, SCxTDR)->offset << port->regshift);
1448 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1449 	} else {
1450 		cfg.src_addr = port->mapbase +
1451 			(sci_getreg(port, SCxRDR)->offset << port->regshift);
1452 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1453 	}
1454 
1455 	ret = dmaengine_slave_config(chan, &cfg);
1456 	if (ret) {
1457 		dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1458 		dma_release_channel(chan);
1459 		return NULL;
1460 	}
1461 
1462 	return chan;
1463 }
1464 
1465 static void sci_request_dma(struct uart_port *port)
1466 {
1467 	struct sci_port *s = to_sci_port(port);
1468 	struct dma_chan *chan;
1469 
1470 	dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1471 
1472 	if (!port->dev->of_node &&
1473 	    (s->cfg->dma_slave_tx <= 0 || s->cfg->dma_slave_rx <= 0))
1474 		return;
1475 
1476 	s->cookie_tx = -EINVAL;
1477 	chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV, s->cfg->dma_slave_tx);
1478 	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1479 	if (chan) {
1480 		s->chan_tx = chan;
1481 		/* UART circular tx buffer is an aligned page. */
1482 		s->tx_dma_addr = dma_map_single(chan->device->dev,
1483 						port->state->xmit.buf,
1484 						UART_XMIT_SIZE,
1485 						DMA_TO_DEVICE);
1486 		if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1487 			dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1488 			dma_release_channel(chan);
1489 			s->chan_tx = NULL;
1490 		} else {
1491 			dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1492 				__func__, UART_XMIT_SIZE,
1493 				port->state->xmit.buf, &s->tx_dma_addr);
1494 		}
1495 
1496 		INIT_WORK(&s->work_tx, work_fn_tx);
1497 	}
1498 
1499 	chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM, s->cfg->dma_slave_rx);
1500 	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1501 	if (chan) {
1502 		unsigned int i;
1503 		dma_addr_t dma;
1504 		void *buf;
1505 
1506 		s->chan_rx = chan;
1507 
1508 		s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1509 		buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1510 					 &dma, GFP_KERNEL);
1511 		if (!buf) {
1512 			dev_warn(port->dev,
1513 				 "Failed to allocate Rx dma buffer, using PIO\n");
1514 			dma_release_channel(chan);
1515 			s->chan_rx = NULL;
1516 			return;
1517 		}
1518 
1519 		for (i = 0; i < 2; i++) {
1520 			struct scatterlist *sg = &s->sg_rx[i];
1521 
1522 			sg_init_table(sg, 1);
1523 			s->rx_buf[i] = buf;
1524 			sg_dma_address(sg) = dma;
1525 			sg_dma_len(sg) = s->buf_len_rx;
1526 
1527 			buf += s->buf_len_rx;
1528 			dma += s->buf_len_rx;
1529 		}
1530 
1531 		setup_timer(&s->rx_timer, rx_timer_fn, (unsigned long)s);
1532 
1533 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1534 			sci_submit_rx(s);
1535 	}
1536 }
1537 
1538 static void sci_free_dma(struct uart_port *port)
1539 {
1540 	struct sci_port *s = to_sci_port(port);
1541 
1542 	if (s->chan_tx)
1543 		sci_tx_dma_release(s, false);
1544 	if (s->chan_rx)
1545 		sci_rx_dma_release(s, false);
1546 }
1547 #else
1548 static inline void sci_request_dma(struct uart_port *port)
1549 {
1550 }
1551 
1552 static inline void sci_free_dma(struct uart_port *port)
1553 {
1554 }
1555 #endif
1556 
1557 static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1558 {
1559 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1560 	struct uart_port *port = ptr;
1561 	struct sci_port *s = to_sci_port(port);
1562 
1563 	if (s->chan_rx) {
1564 		u16 scr = serial_port_in(port, SCSCR);
1565 		u16 ssr = serial_port_in(port, SCxSR);
1566 
1567 		/* Disable future Rx interrupts */
1568 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1569 			disable_irq_nosync(irq);
1570 			scr |= SCSCR_RDRQE;
1571 		} else {
1572 			scr &= ~SCSCR_RIE;
1573 			sci_submit_rx(s);
1574 		}
1575 		serial_port_out(port, SCSCR, scr);
1576 		/* Clear current interrupt */
1577 		serial_port_out(port, SCxSR,
1578 				ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1579 		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n",
1580 			jiffies, s->rx_timeout);
1581 		mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1582 
1583 		return IRQ_HANDLED;
1584 	}
1585 #endif
1586 
1587 	/* I think sci_receive_chars has to be called irrespective
1588 	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
1589 	 * to be disabled?
1590 	 */
1591 	sci_receive_chars(ptr);
1592 
1593 	return IRQ_HANDLED;
1594 }
1595 
1596 static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1597 {
1598 	struct uart_port *port = ptr;
1599 	unsigned long flags;
1600 
1601 	spin_lock_irqsave(&port->lock, flags);
1602 	sci_transmit_chars(port);
1603 	spin_unlock_irqrestore(&port->lock, flags);
1604 
1605 	return IRQ_HANDLED;
1606 }
1607 
1608 static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1609 {
1610 	struct uart_port *port = ptr;
1611 	struct sci_port *s = to_sci_port(port);
1612 
1613 	/* Handle errors */
1614 	if (port->type == PORT_SCI) {
1615 		if (sci_handle_errors(port)) {
1616 			/* discard character in rx buffer */
1617 			serial_port_in(port, SCxSR);
1618 			sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1619 		}
1620 	} else {
1621 		sci_handle_fifo_overrun(port);
1622 		if (!s->chan_rx)
1623 			sci_receive_chars(ptr);
1624 	}
1625 
1626 	sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1627 
1628 	/* Kick the transmission */
1629 	if (!s->chan_tx)
1630 		sci_tx_interrupt(irq, ptr);
1631 
1632 	return IRQ_HANDLED;
1633 }
1634 
1635 static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1636 {
1637 	struct uart_port *port = ptr;
1638 
1639 	/* Handle BREAKs */
1640 	sci_handle_breaks(port);
1641 	sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1642 
1643 	return IRQ_HANDLED;
1644 }
1645 
1646 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1647 {
1648 	unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1649 	struct uart_port *port = ptr;
1650 	struct sci_port *s = to_sci_port(port);
1651 	irqreturn_t ret = IRQ_NONE;
1652 
1653 	ssr_status = serial_port_in(port, SCxSR);
1654 	scr_status = serial_port_in(port, SCSCR);
1655 	if (s->overrun_reg == SCxSR)
1656 		orer_status = ssr_status;
1657 	else {
1658 		if (sci_getreg(port, s->overrun_reg)->size)
1659 			orer_status = serial_port_in(port, s->overrun_reg);
1660 	}
1661 
1662 	err_enabled = scr_status & port_rx_irq_mask(port);
1663 
1664 	/* Tx Interrupt */
1665 	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1666 	    !s->chan_tx)
1667 		ret = sci_tx_interrupt(irq, ptr);
1668 
1669 	/*
1670 	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1671 	 * DR flags
1672 	 */
1673 	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1674 	    (scr_status & SCSCR_RIE))
1675 		ret = sci_rx_interrupt(irq, ptr);
1676 
1677 	/* Error Interrupt */
1678 	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1679 		ret = sci_er_interrupt(irq, ptr);
1680 
1681 	/* Break Interrupt */
1682 	if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
1683 		ret = sci_br_interrupt(irq, ptr);
1684 
1685 	/* Overrun Interrupt */
1686 	if (orer_status & s->overrun_mask) {
1687 		sci_handle_fifo_overrun(port);
1688 		ret = IRQ_HANDLED;
1689 	}
1690 
1691 	return ret;
1692 }
1693 
1694 static const struct sci_irq_desc {
1695 	const char	*desc;
1696 	irq_handler_t	handler;
1697 } sci_irq_desc[] = {
1698 	/*
1699 	 * Split out handlers, the default case.
1700 	 */
1701 	[SCIx_ERI_IRQ] = {
1702 		.desc = "rx err",
1703 		.handler = sci_er_interrupt,
1704 	},
1705 
1706 	[SCIx_RXI_IRQ] = {
1707 		.desc = "rx full",
1708 		.handler = sci_rx_interrupt,
1709 	},
1710 
1711 	[SCIx_TXI_IRQ] = {
1712 		.desc = "tx empty",
1713 		.handler = sci_tx_interrupt,
1714 	},
1715 
1716 	[SCIx_BRI_IRQ] = {
1717 		.desc = "break",
1718 		.handler = sci_br_interrupt,
1719 	},
1720 
1721 	/*
1722 	 * Special muxed handler.
1723 	 */
1724 	[SCIx_MUX_IRQ] = {
1725 		.desc = "mux",
1726 		.handler = sci_mpxed_interrupt,
1727 	},
1728 };
1729 
1730 static int sci_request_irq(struct sci_port *port)
1731 {
1732 	struct uart_port *up = &port->port;
1733 	int i, j, ret = 0;
1734 
1735 	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1736 		const struct sci_irq_desc *desc;
1737 		int irq;
1738 
1739 		if (SCIx_IRQ_IS_MUXED(port)) {
1740 			i = SCIx_MUX_IRQ;
1741 			irq = up->irq;
1742 		} else {
1743 			irq = port->irqs[i];
1744 
1745 			/*
1746 			 * Certain port types won't support all of the
1747 			 * available interrupt sources.
1748 			 */
1749 			if (unlikely(irq < 0))
1750 				continue;
1751 		}
1752 
1753 		desc = sci_irq_desc + i;
1754 		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1755 					    dev_name(up->dev), desc->desc);
1756 		if (!port->irqstr[j])
1757 			goto out_nomem;
1758 
1759 		ret = request_irq(irq, desc->handler, up->irqflags,
1760 				  port->irqstr[j], port);
1761 		if (unlikely(ret)) {
1762 			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1763 			goto out_noirq;
1764 		}
1765 	}
1766 
1767 	return 0;
1768 
1769 out_noirq:
1770 	while (--i >= 0)
1771 		free_irq(port->irqs[i], port);
1772 
1773 out_nomem:
1774 	while (--j >= 0)
1775 		kfree(port->irqstr[j]);
1776 
1777 	return ret;
1778 }
1779 
1780 static void sci_free_irq(struct sci_port *port)
1781 {
1782 	int i;
1783 
1784 	/*
1785 	 * Intentionally in reverse order so we iterate over the muxed
1786 	 * IRQ first.
1787 	 */
1788 	for (i = 0; i < SCIx_NR_IRQS; i++) {
1789 		int irq = port->irqs[i];
1790 
1791 		/*
1792 		 * Certain port types won't support all of the available
1793 		 * interrupt sources.
1794 		 */
1795 		if (unlikely(irq < 0))
1796 			continue;
1797 
1798 		free_irq(port->irqs[i], port);
1799 		kfree(port->irqstr[i]);
1800 
1801 		if (SCIx_IRQ_IS_MUXED(port)) {
1802 			/* If there's only one IRQ, we're done. */
1803 			return;
1804 		}
1805 	}
1806 }
1807 
1808 static unsigned int sci_tx_empty(struct uart_port *port)
1809 {
1810 	unsigned short status = serial_port_in(port, SCxSR);
1811 	unsigned short in_tx_fifo = sci_txfill(port);
1812 
1813 	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1814 }
1815 
1816 static void sci_set_rts(struct uart_port *port, bool state)
1817 {
1818 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1819 		u16 data = serial_port_in(port, SCPDR);
1820 
1821 		/* Active low */
1822 		if (state)
1823 			data &= ~SCPDR_RTSD;
1824 		else
1825 			data |= SCPDR_RTSD;
1826 		serial_port_out(port, SCPDR, data);
1827 
1828 		/* RTS# is output */
1829 		serial_port_out(port, SCPCR,
1830 				serial_port_in(port, SCPCR) | SCPCR_RTSC);
1831 	} else if (sci_getreg(port, SCSPTR)->size) {
1832 		u16 ctrl = serial_port_in(port, SCSPTR);
1833 
1834 		/* Active low */
1835 		if (state)
1836 			ctrl &= ~SCSPTR_RTSDT;
1837 		else
1838 			ctrl |= SCSPTR_RTSDT;
1839 		serial_port_out(port, SCSPTR, ctrl);
1840 	}
1841 }
1842 
1843 static bool sci_get_cts(struct uart_port *port)
1844 {
1845 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1846 		/* Active low */
1847 		return !(serial_port_in(port, SCPDR) & SCPDR_CTSD);
1848 	} else if (sci_getreg(port, SCSPTR)->size) {
1849 		/* Active low */
1850 		return !(serial_port_in(port, SCSPTR) & SCSPTR_CTSDT);
1851 	}
1852 
1853 	return true;
1854 }
1855 
1856 /*
1857  * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
1858  * CTS/RTS is supported in hardware by at least one port and controlled
1859  * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
1860  * handled via the ->init_pins() op, which is a bit of a one-way street,
1861  * lacking any ability to defer pin control -- this will later be
1862  * converted over to the GPIO framework).
1863  *
1864  * Other modes (such as loopback) are supported generically on certain
1865  * port types, but not others. For these it's sufficient to test for the
1866  * existence of the support register and simply ignore the port type.
1867  */
1868 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
1869 {
1870 	struct sci_port *s = to_sci_port(port);
1871 
1872 	if (mctrl & TIOCM_LOOP) {
1873 		const struct plat_sci_reg *reg;
1874 
1875 		/*
1876 		 * Standard loopback mode for SCFCR ports.
1877 		 */
1878 		reg = sci_getreg(port, SCFCR);
1879 		if (reg->size)
1880 			serial_port_out(port, SCFCR,
1881 					serial_port_in(port, SCFCR) |
1882 					SCFCR_LOOP);
1883 	}
1884 
1885 	mctrl_gpio_set(s->gpios, mctrl);
1886 
1887 	if (!(s->cfg->capabilities & SCIx_HAVE_RTSCTS))
1888 		return;
1889 
1890 	if (!(mctrl & TIOCM_RTS)) {
1891 		/* Disable Auto RTS */
1892 		serial_port_out(port, SCFCR,
1893 				serial_port_in(port, SCFCR) & ~SCFCR_MCE);
1894 
1895 		/* Clear RTS */
1896 		sci_set_rts(port, 0);
1897 	} else if (s->autorts) {
1898 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1899 			/* Enable RTS# pin function */
1900 			serial_port_out(port, SCPCR,
1901 				serial_port_in(port, SCPCR) & ~SCPCR_RTSC);
1902 		}
1903 
1904 		/* Enable Auto RTS */
1905 		serial_port_out(port, SCFCR,
1906 				serial_port_in(port, SCFCR) | SCFCR_MCE);
1907 	} else {
1908 		/* Set RTS */
1909 		sci_set_rts(port, 1);
1910 	}
1911 }
1912 
1913 static unsigned int sci_get_mctrl(struct uart_port *port)
1914 {
1915 	struct sci_port *s = to_sci_port(port);
1916 	struct mctrl_gpios *gpios = s->gpios;
1917 	unsigned int mctrl = 0;
1918 
1919 	mctrl_gpio_get(gpios, &mctrl);
1920 
1921 	/*
1922 	 * CTS/RTS is handled in hardware when supported, while nothing
1923 	 * else is wired up.
1924 	 */
1925 	if (s->autorts) {
1926 		if (sci_get_cts(port))
1927 			mctrl |= TIOCM_CTS;
1928 	} else if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_CTS))) {
1929 		mctrl |= TIOCM_CTS;
1930 	}
1931 	if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_DSR)))
1932 		mctrl |= TIOCM_DSR;
1933 	if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_DCD)))
1934 		mctrl |= TIOCM_CAR;
1935 
1936 	return mctrl;
1937 }
1938 
1939 static void sci_enable_ms(struct uart_port *port)
1940 {
1941 	mctrl_gpio_enable_ms(to_sci_port(port)->gpios);
1942 }
1943 
1944 static void sci_break_ctl(struct uart_port *port, int break_state)
1945 {
1946 	unsigned short scscr, scsptr;
1947 
1948 	/* check wheter the port has SCSPTR */
1949 	if (!sci_getreg(port, SCSPTR)->size) {
1950 		/*
1951 		 * Not supported by hardware. Most parts couple break and rx
1952 		 * interrupts together, with break detection always enabled.
1953 		 */
1954 		return;
1955 	}
1956 
1957 	scsptr = serial_port_in(port, SCSPTR);
1958 	scscr = serial_port_in(port, SCSCR);
1959 
1960 	if (break_state == -1) {
1961 		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
1962 		scscr &= ~SCSCR_TE;
1963 	} else {
1964 		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
1965 		scscr |= SCSCR_TE;
1966 	}
1967 
1968 	serial_port_out(port, SCSPTR, scsptr);
1969 	serial_port_out(port, SCSCR, scscr);
1970 }
1971 
1972 static int sci_startup(struct uart_port *port)
1973 {
1974 	struct sci_port *s = to_sci_port(port);
1975 	int ret;
1976 
1977 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1978 
1979 	ret = sci_request_irq(s);
1980 	if (unlikely(ret < 0))
1981 		return ret;
1982 
1983 	sci_request_dma(port);
1984 
1985 	return 0;
1986 }
1987 
1988 static void sci_shutdown(struct uart_port *port)
1989 {
1990 	struct sci_port *s = to_sci_port(port);
1991 	unsigned long flags;
1992 	u16 scr;
1993 
1994 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1995 
1996 	s->autorts = false;
1997 	mctrl_gpio_disable_ms(to_sci_port(port)->gpios);
1998 
1999 	spin_lock_irqsave(&port->lock, flags);
2000 	sci_stop_rx(port);
2001 	sci_stop_tx(port);
2002 	/* Stop RX and TX, disable related interrupts, keep clock source */
2003 	scr = serial_port_in(port, SCSCR);
2004 	serial_port_out(port, SCSCR, scr & (SCSCR_CKE1 | SCSCR_CKE0));
2005 	spin_unlock_irqrestore(&port->lock, flags);
2006 
2007 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2008 	if (s->chan_rx) {
2009 		dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
2010 			port->line);
2011 		del_timer_sync(&s->rx_timer);
2012 	}
2013 #endif
2014 
2015 	sci_free_dma(port);
2016 	sci_free_irq(s);
2017 }
2018 
2019 static int sci_sck_calc(struct sci_port *s, unsigned int bps,
2020 			unsigned int *srr)
2021 {
2022 	unsigned long freq = s->clk_rates[SCI_SCK];
2023 	int err, min_err = INT_MAX;
2024 	unsigned int sr;
2025 
2026 	if (s->port.type != PORT_HSCIF)
2027 		freq *= 2;
2028 
2029 	for_each_sr(sr, s) {
2030 		err = DIV_ROUND_CLOSEST(freq, sr) - bps;
2031 		if (abs(err) >= abs(min_err))
2032 			continue;
2033 
2034 		min_err = err;
2035 		*srr = sr - 1;
2036 
2037 		if (!err)
2038 			break;
2039 	}
2040 
2041 	dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
2042 		*srr + 1);
2043 	return min_err;
2044 }
2045 
2046 static int sci_brg_calc(struct sci_port *s, unsigned int bps,
2047 			unsigned long freq, unsigned int *dlr,
2048 			unsigned int *srr)
2049 {
2050 	int err, min_err = INT_MAX;
2051 	unsigned int sr, dl;
2052 
2053 	if (s->port.type != PORT_HSCIF)
2054 		freq *= 2;
2055 
2056 	for_each_sr(sr, s) {
2057 		dl = DIV_ROUND_CLOSEST(freq, sr * bps);
2058 		dl = clamp(dl, 1U, 65535U);
2059 
2060 		err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
2061 		if (abs(err) >= abs(min_err))
2062 			continue;
2063 
2064 		min_err = err;
2065 		*dlr = dl;
2066 		*srr = sr - 1;
2067 
2068 		if (!err)
2069 			break;
2070 	}
2071 
2072 	dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
2073 		min_err, *dlr, *srr + 1);
2074 	return min_err;
2075 }
2076 
2077 /* calculate sample rate, BRR, and clock select */
2078 static int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
2079 			  unsigned int *brr, unsigned int *srr,
2080 			  unsigned int *cks)
2081 {
2082 	unsigned long freq = s->clk_rates[SCI_FCK];
2083 	unsigned int sr, br, prediv, scrate, c;
2084 	int err, min_err = INT_MAX;
2085 
2086 	if (s->port.type != PORT_HSCIF)
2087 		freq *= 2;
2088 
2089 	/*
2090 	 * Find the combination of sample rate and clock select with the
2091 	 * smallest deviation from the desired baud rate.
2092 	 * Prefer high sample rates to maximise the receive margin.
2093 	 *
2094 	 * M: Receive margin (%)
2095 	 * N: Ratio of bit rate to clock (N = sampling rate)
2096 	 * D: Clock duty (D = 0 to 1.0)
2097 	 * L: Frame length (L = 9 to 12)
2098 	 * F: Absolute value of clock frequency deviation
2099 	 *
2100 	 *  M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
2101 	 *      (|D - 0.5| / N * (1 + F))|
2102 	 *  NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
2103 	 */
2104 	for_each_sr(sr, s) {
2105 		for (c = 0; c <= 3; c++) {
2106 			/* integerized formulas from HSCIF documentation */
2107 			prediv = sr * (1 << (2 * c + 1));
2108 
2109 			/*
2110 			 * We need to calculate:
2111 			 *
2112 			 *     br = freq / (prediv * bps) clamped to [1..256]
2113 			 *     err = freq / (br * prediv) - bps
2114 			 *
2115 			 * Watch out for overflow when calculating the desired
2116 			 * sampling clock rate!
2117 			 */
2118 			if (bps > UINT_MAX / prediv)
2119 				break;
2120 
2121 			scrate = prediv * bps;
2122 			br = DIV_ROUND_CLOSEST(freq, scrate);
2123 			br = clamp(br, 1U, 256U);
2124 
2125 			err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
2126 			if (abs(err) >= abs(min_err))
2127 				continue;
2128 
2129 			min_err = err;
2130 			*brr = br - 1;
2131 			*srr = sr - 1;
2132 			*cks = c;
2133 
2134 			if (!err)
2135 				goto found;
2136 		}
2137 	}
2138 
2139 found:
2140 	dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
2141 		min_err, *brr, *srr + 1, *cks);
2142 	return min_err;
2143 }
2144 
2145 static void sci_reset(struct uart_port *port)
2146 {
2147 	const struct plat_sci_reg *reg;
2148 	unsigned int status;
2149 
2150 	do {
2151 		status = serial_port_in(port, SCxSR);
2152 	} while (!(status & SCxSR_TEND(port)));
2153 
2154 	serial_port_out(port, SCSCR, 0x00);	/* TE=0, RE=0, CKE1=0 */
2155 
2156 	reg = sci_getreg(port, SCFCR);
2157 	if (reg->size)
2158 		serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
2159 
2160 	sci_clear_SCxSR(port,
2161 			SCxSR_RDxF_CLEAR(port) & SCxSR_ERROR_CLEAR(port) &
2162 			SCxSR_BREAK_CLEAR(port));
2163 	if (sci_getreg(port, SCLSR)->size) {
2164 		status = serial_port_in(port, SCLSR);
2165 		status &= ~(SCLSR_TO | SCLSR_ORER);
2166 		serial_port_out(port, SCLSR, status);
2167 	}
2168 }
2169 
2170 static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
2171 			    struct ktermios *old)
2172 {
2173 	unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i;
2174 	unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
2175 	unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
2176 	struct sci_port *s = to_sci_port(port);
2177 	const struct plat_sci_reg *reg;
2178 	int min_err = INT_MAX, err;
2179 	unsigned long max_freq = 0;
2180 	int best_clk = -1;
2181 
2182 	if ((termios->c_cflag & CSIZE) == CS7)
2183 		smr_val |= SCSMR_CHR;
2184 	if (termios->c_cflag & PARENB)
2185 		smr_val |= SCSMR_PE;
2186 	if (termios->c_cflag & PARODD)
2187 		smr_val |= SCSMR_PE | SCSMR_ODD;
2188 	if (termios->c_cflag & CSTOPB)
2189 		smr_val |= SCSMR_STOP;
2190 
2191 	/*
2192 	 * earlyprintk comes here early on with port->uartclk set to zero.
2193 	 * the clock framework is not up and running at this point so here
2194 	 * we assume that 115200 is the maximum baud rate. please note that
2195 	 * the baud rate is not programmed during earlyprintk - it is assumed
2196 	 * that the previous boot loader has enabled required clocks and
2197 	 * setup the baud rate generator hardware for us already.
2198 	 */
2199 	if (!port->uartclk) {
2200 		baud = uart_get_baud_rate(port, termios, old, 0, 115200);
2201 		goto done;
2202 	}
2203 
2204 	for (i = 0; i < SCI_NUM_CLKS; i++)
2205 		max_freq = max(max_freq, s->clk_rates[i]);
2206 
2207 	baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s));
2208 	if (!baud)
2209 		goto done;
2210 
2211 	/*
2212 	 * There can be multiple sources for the sampling clock.  Find the one
2213 	 * that gives us the smallest deviation from the desired baud rate.
2214 	 */
2215 
2216 	/* Optional Undivided External Clock */
2217 	if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA &&
2218 	    port->type != PORT_SCIFB) {
2219 		err = sci_sck_calc(s, baud, &srr1);
2220 		if (abs(err) < abs(min_err)) {
2221 			best_clk = SCI_SCK;
2222 			scr_val = SCSCR_CKE1;
2223 			sccks = SCCKS_CKS;
2224 			min_err = err;
2225 			srr = srr1;
2226 			if (!err)
2227 				goto done;
2228 		}
2229 	}
2230 
2231 	/* Optional BRG Frequency Divided External Clock */
2232 	if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
2233 		err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1,
2234 				   &srr1);
2235 		if (abs(err) < abs(min_err)) {
2236 			best_clk = SCI_SCIF_CLK;
2237 			scr_val = SCSCR_CKE1;
2238 			sccks = 0;
2239 			min_err = err;
2240 			dl = dl1;
2241 			srr = srr1;
2242 			if (!err)
2243 				goto done;
2244 		}
2245 	}
2246 
2247 	/* Optional BRG Frequency Divided Internal Clock */
2248 	if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
2249 		err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1,
2250 				   &srr1);
2251 		if (abs(err) < abs(min_err)) {
2252 			best_clk = SCI_BRG_INT;
2253 			scr_val = SCSCR_CKE1;
2254 			sccks = SCCKS_XIN;
2255 			min_err = err;
2256 			dl = dl1;
2257 			srr = srr1;
2258 			if (!min_err)
2259 				goto done;
2260 		}
2261 	}
2262 
2263 	/* Divided Functional Clock using standard Bit Rate Register */
2264 	err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1);
2265 	if (abs(err) < abs(min_err)) {
2266 		best_clk = SCI_FCK;
2267 		scr_val = 0;
2268 		min_err = err;
2269 		brr = brr1;
2270 		srr = srr1;
2271 		cks = cks1;
2272 	}
2273 
2274 done:
2275 	if (best_clk >= 0)
2276 		dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
2277 			s->clks[best_clk], baud, min_err);
2278 
2279 	sci_port_enable(s);
2280 
2281 	/*
2282 	 * Program the optional External Baud Rate Generator (BRG) first.
2283 	 * It controls the mux to select (H)SCK or frequency divided clock.
2284 	 */
2285 	if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
2286 		serial_port_out(port, SCDL, dl);
2287 		serial_port_out(port, SCCKS, sccks);
2288 	}
2289 
2290 	sci_reset(port);
2291 
2292 	uart_update_timeout(port, termios->c_cflag, baud);
2293 
2294 	if (best_clk >= 0) {
2295 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
2296 			switch (srr + 1) {
2297 			case 5:  smr_val |= SCSMR_SRC_5;  break;
2298 			case 7:  smr_val |= SCSMR_SRC_7;  break;
2299 			case 11: smr_val |= SCSMR_SRC_11; break;
2300 			case 13: smr_val |= SCSMR_SRC_13; break;
2301 			case 16: smr_val |= SCSMR_SRC_16; break;
2302 			case 17: smr_val |= SCSMR_SRC_17; break;
2303 			case 19: smr_val |= SCSMR_SRC_19; break;
2304 			case 27: smr_val |= SCSMR_SRC_27; break;
2305 			}
2306 		smr_val |= cks;
2307 		dev_dbg(port->dev,
2308 			 "SCR 0x%x SMR 0x%x BRR %u CKS 0x%x DL %u SRR %u\n",
2309 			 scr_val, smr_val, brr, sccks, dl, srr);
2310 		serial_port_out(port, SCSCR, scr_val);
2311 		serial_port_out(port, SCSMR, smr_val);
2312 		serial_port_out(port, SCBRR, brr);
2313 		if (sci_getreg(port, HSSRR)->size)
2314 			serial_port_out(port, HSSRR, srr | HSCIF_SRE);
2315 
2316 		/* Wait one bit interval */
2317 		udelay((1000000 + (baud - 1)) / baud);
2318 	} else {
2319 		/* Don't touch the bit rate configuration */
2320 		scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
2321 		smr_val |= serial_port_in(port, SCSMR) &
2322 			   (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS);
2323 		dev_dbg(port->dev, "SCR 0x%x SMR 0x%x\n", scr_val, smr_val);
2324 		serial_port_out(port, SCSCR, scr_val);
2325 		serial_port_out(port, SCSMR, smr_val);
2326 	}
2327 
2328 	sci_init_pins(port, termios->c_cflag);
2329 
2330 	port->status &= ~UPSTAT_AUTOCTS;
2331 	s->autorts = false;
2332 	reg = sci_getreg(port, SCFCR);
2333 	if (reg->size) {
2334 		unsigned short ctrl = serial_port_in(port, SCFCR);
2335 
2336 		if ((port->flags & UPF_HARD_FLOW) &&
2337 		    (termios->c_cflag & CRTSCTS)) {
2338 			/* There is no CTS interrupt to restart the hardware */
2339 			port->status |= UPSTAT_AUTOCTS;
2340 			/* MCE is enabled when RTS is raised */
2341 			s->autorts = true;
2342 		}
2343 
2344 		/*
2345 		 * As we've done a sci_reset() above, ensure we don't
2346 		 * interfere with the FIFOs while toggling MCE. As the
2347 		 * reset values could still be set, simply mask them out.
2348 		 */
2349 		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2350 
2351 		serial_port_out(port, SCFCR, ctrl);
2352 	}
2353 
2354 	scr_val |= s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0);
2355 	dev_dbg(port->dev, "SCSCR 0x%x\n", scr_val);
2356 	serial_port_out(port, SCSCR, scr_val);
2357 	if ((srr + 1 == 5) &&
2358 	    (port->type == PORT_SCIFA || port->type == PORT_SCIFB)) {
2359 		/*
2360 		 * In asynchronous mode, when the sampling rate is 1/5, first
2361 		 * received data may become invalid on some SCIFA and SCIFB.
2362 		 * To avoid this problem wait more than 1 serial data time (1
2363 		 * bit time x serial data number) after setting SCSCR.RE = 1.
2364 		 */
2365 		udelay(DIV_ROUND_UP(10 * 1000000, baud));
2366 	}
2367 
2368 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2369 	/*
2370 	 * Calculate delay for 2 DMA buffers (4 FIFO).
2371 	 * See serial_core.c::uart_update_timeout().
2372 	 * With 10 bits (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above
2373 	 * function calculates 1 jiffie for the data plus 5 jiffies for the
2374 	 * "slop(e)." Then below we calculate 5 jiffies (20ms) for 2 DMA
2375 	 * buffers (4 FIFO sizes), but when performing a faster transfer, the
2376 	 * value obtained by this formula is too small. Therefore, if the value
2377 	 * is smaller than 20ms, use 20ms as the timeout value for DMA.
2378 	 */
2379 	if (s->chan_rx) {
2380 		unsigned int bits;
2381 
2382 		/* byte size and parity */
2383 		switch (termios->c_cflag & CSIZE) {
2384 		case CS5:
2385 			bits = 7;
2386 			break;
2387 		case CS6:
2388 			bits = 8;
2389 			break;
2390 		case CS7:
2391 			bits = 9;
2392 			break;
2393 		default:
2394 			bits = 10;
2395 			break;
2396 		}
2397 
2398 		if (termios->c_cflag & CSTOPB)
2399 			bits++;
2400 		if (termios->c_cflag & PARENB)
2401 			bits++;
2402 		s->rx_timeout = DIV_ROUND_UP((s->buf_len_rx * 2 * bits * HZ) /
2403 					     (baud / 10), 10);
2404 		dev_dbg(port->dev, "DMA Rx t-out %ums, tty t-out %u jiffies\n",
2405 			s->rx_timeout * 1000 / HZ, port->timeout);
2406 		if (s->rx_timeout < msecs_to_jiffies(20))
2407 			s->rx_timeout = msecs_to_jiffies(20);
2408 	}
2409 #endif
2410 
2411 	if ((termios->c_cflag & CREAD) != 0)
2412 		sci_start_rx(port);
2413 
2414 	sci_port_disable(s);
2415 
2416 	if (UART_ENABLE_MS(port, termios->c_cflag))
2417 		sci_enable_ms(port);
2418 }
2419 
2420 static void sci_pm(struct uart_port *port, unsigned int state,
2421 		   unsigned int oldstate)
2422 {
2423 	struct sci_port *sci_port = to_sci_port(port);
2424 
2425 	switch (state) {
2426 	case UART_PM_STATE_OFF:
2427 		sci_port_disable(sci_port);
2428 		break;
2429 	default:
2430 		sci_port_enable(sci_port);
2431 		break;
2432 	}
2433 }
2434 
2435 static const char *sci_type(struct uart_port *port)
2436 {
2437 	switch (port->type) {
2438 	case PORT_IRDA:
2439 		return "irda";
2440 	case PORT_SCI:
2441 		return "sci";
2442 	case PORT_SCIF:
2443 		return "scif";
2444 	case PORT_SCIFA:
2445 		return "scifa";
2446 	case PORT_SCIFB:
2447 		return "scifb";
2448 	case PORT_HSCIF:
2449 		return "hscif";
2450 	}
2451 
2452 	return NULL;
2453 }
2454 
2455 static int sci_remap_port(struct uart_port *port)
2456 {
2457 	struct sci_port *sport = to_sci_port(port);
2458 
2459 	/*
2460 	 * Nothing to do if there's already an established membase.
2461 	 */
2462 	if (port->membase)
2463 		return 0;
2464 
2465 	if (port->flags & UPF_IOREMAP) {
2466 		port->membase = ioremap_nocache(port->mapbase, sport->reg_size);
2467 		if (unlikely(!port->membase)) {
2468 			dev_err(port->dev, "can't remap port#%d\n", port->line);
2469 			return -ENXIO;
2470 		}
2471 	} else {
2472 		/*
2473 		 * For the simple (and majority of) cases where we don't
2474 		 * need to do any remapping, just cast the cookie
2475 		 * directly.
2476 		 */
2477 		port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2478 	}
2479 
2480 	return 0;
2481 }
2482 
2483 static void sci_release_port(struct uart_port *port)
2484 {
2485 	struct sci_port *sport = to_sci_port(port);
2486 
2487 	if (port->flags & UPF_IOREMAP) {
2488 		iounmap(port->membase);
2489 		port->membase = NULL;
2490 	}
2491 
2492 	release_mem_region(port->mapbase, sport->reg_size);
2493 }
2494 
2495 static int sci_request_port(struct uart_port *port)
2496 {
2497 	struct resource *res;
2498 	struct sci_port *sport = to_sci_port(port);
2499 	int ret;
2500 
2501 	res = request_mem_region(port->mapbase, sport->reg_size,
2502 				 dev_name(port->dev));
2503 	if (unlikely(res == NULL)) {
2504 		dev_err(port->dev, "request_mem_region failed.");
2505 		return -EBUSY;
2506 	}
2507 
2508 	ret = sci_remap_port(port);
2509 	if (unlikely(ret != 0)) {
2510 		release_resource(res);
2511 		return ret;
2512 	}
2513 
2514 	return 0;
2515 }
2516 
2517 static void sci_config_port(struct uart_port *port, int flags)
2518 {
2519 	if (flags & UART_CONFIG_TYPE) {
2520 		struct sci_port *sport = to_sci_port(port);
2521 
2522 		port->type = sport->cfg->type;
2523 		sci_request_port(port);
2524 	}
2525 }
2526 
2527 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2528 {
2529 	if (ser->baud_base < 2400)
2530 		/* No paper tape reader for Mitch.. */
2531 		return -EINVAL;
2532 
2533 	return 0;
2534 }
2535 
2536 static const struct uart_ops sci_uart_ops = {
2537 	.tx_empty	= sci_tx_empty,
2538 	.set_mctrl	= sci_set_mctrl,
2539 	.get_mctrl	= sci_get_mctrl,
2540 	.start_tx	= sci_start_tx,
2541 	.stop_tx	= sci_stop_tx,
2542 	.stop_rx	= sci_stop_rx,
2543 	.enable_ms	= sci_enable_ms,
2544 	.break_ctl	= sci_break_ctl,
2545 	.startup	= sci_startup,
2546 	.shutdown	= sci_shutdown,
2547 	.set_termios	= sci_set_termios,
2548 	.pm		= sci_pm,
2549 	.type		= sci_type,
2550 	.release_port	= sci_release_port,
2551 	.request_port	= sci_request_port,
2552 	.config_port	= sci_config_port,
2553 	.verify_port	= sci_verify_port,
2554 #ifdef CONFIG_CONSOLE_POLL
2555 	.poll_get_char	= sci_poll_get_char,
2556 	.poll_put_char	= sci_poll_put_char,
2557 #endif
2558 };
2559 
2560 static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
2561 {
2562 	const char *clk_names[] = {
2563 		[SCI_FCK] = "fck",
2564 		[SCI_SCK] = "sck",
2565 		[SCI_BRG_INT] = "brg_int",
2566 		[SCI_SCIF_CLK] = "scif_clk",
2567 	};
2568 	struct clk *clk;
2569 	unsigned int i;
2570 
2571 	if (sci_port->cfg->type == PORT_HSCIF)
2572 		clk_names[SCI_SCK] = "hsck";
2573 
2574 	for (i = 0; i < SCI_NUM_CLKS; i++) {
2575 		clk = devm_clk_get(dev, clk_names[i]);
2576 		if (PTR_ERR(clk) == -EPROBE_DEFER)
2577 			return -EPROBE_DEFER;
2578 
2579 		if (IS_ERR(clk) && i == SCI_FCK) {
2580 			/*
2581 			 * "fck" used to be called "sci_ick", and we need to
2582 			 * maintain DT backward compatibility.
2583 			 */
2584 			clk = devm_clk_get(dev, "sci_ick");
2585 			if (PTR_ERR(clk) == -EPROBE_DEFER)
2586 				return -EPROBE_DEFER;
2587 
2588 			if (!IS_ERR(clk))
2589 				goto found;
2590 
2591 			/*
2592 			 * Not all SH platforms declare a clock lookup entry
2593 			 * for SCI devices, in which case we need to get the
2594 			 * global "peripheral_clk" clock.
2595 			 */
2596 			clk = devm_clk_get(dev, "peripheral_clk");
2597 			if (!IS_ERR(clk))
2598 				goto found;
2599 
2600 			dev_err(dev, "failed to get %s (%ld)\n", clk_names[i],
2601 				PTR_ERR(clk));
2602 			return PTR_ERR(clk);
2603 		}
2604 
2605 found:
2606 		if (IS_ERR(clk))
2607 			dev_dbg(dev, "failed to get %s (%ld)\n", clk_names[i],
2608 				PTR_ERR(clk));
2609 		else
2610 			dev_dbg(dev, "clk %s is %pC rate %pCr\n", clk_names[i],
2611 				clk, clk);
2612 		sci_port->clks[i] = IS_ERR(clk) ? NULL : clk;
2613 	}
2614 	return 0;
2615 }
2616 
2617 static int sci_init_single(struct platform_device *dev,
2618 			   struct sci_port *sci_port, unsigned int index,
2619 			   struct plat_sci_port *p, bool early)
2620 {
2621 	struct uart_port *port = &sci_port->port;
2622 	const struct resource *res;
2623 	unsigned int i;
2624 	int ret;
2625 
2626 	sci_port->cfg	= p;
2627 
2628 	port->ops	= &sci_uart_ops;
2629 	port->iotype	= UPIO_MEM;
2630 	port->line	= index;
2631 
2632 	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2633 	if (res == NULL)
2634 		return -ENOMEM;
2635 
2636 	port->mapbase = res->start;
2637 	sci_port->reg_size = resource_size(res);
2638 
2639 	for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i)
2640 		sci_port->irqs[i] = platform_get_irq(dev, i);
2641 
2642 	/* The SCI generates several interrupts. They can be muxed together or
2643 	 * connected to different interrupt lines. In the muxed case only one
2644 	 * interrupt resource is specified. In the non-muxed case three or four
2645 	 * interrupt resources are specified, as the BRI interrupt is optional.
2646 	 */
2647 	if (sci_port->irqs[0] < 0)
2648 		return -ENXIO;
2649 
2650 	if (sci_port->irqs[1] < 0) {
2651 		sci_port->irqs[1] = sci_port->irqs[0];
2652 		sci_port->irqs[2] = sci_port->irqs[0];
2653 		sci_port->irqs[3] = sci_port->irqs[0];
2654 	}
2655 
2656 	if (p->regtype == SCIx_PROBE_REGTYPE) {
2657 		ret = sci_probe_regmap(p);
2658 		if (unlikely(ret))
2659 			return ret;
2660 	}
2661 
2662 	switch (p->type) {
2663 	case PORT_SCIFB:
2664 		port->fifosize = 256;
2665 		sci_port->overrun_reg = SCxSR;
2666 		sci_port->overrun_mask = SCIFA_ORER;
2667 		sci_port->sampling_rate_mask = SCI_SR_SCIFAB;
2668 		break;
2669 	case PORT_HSCIF:
2670 		port->fifosize = 128;
2671 		sci_port->overrun_reg = SCLSR;
2672 		sci_port->overrun_mask = SCLSR_ORER;
2673 		sci_port->sampling_rate_mask = SCI_SR_RANGE(8, 32);
2674 		break;
2675 	case PORT_SCIFA:
2676 		port->fifosize = 64;
2677 		sci_port->overrun_reg = SCxSR;
2678 		sci_port->overrun_mask = SCIFA_ORER;
2679 		sci_port->sampling_rate_mask = SCI_SR_SCIFAB;
2680 		break;
2681 	case PORT_SCIF:
2682 		port->fifosize = 16;
2683 		if (p->regtype == SCIx_SH7705_SCIF_REGTYPE) {
2684 			sci_port->overrun_reg = SCxSR;
2685 			sci_port->overrun_mask = SCIFA_ORER;
2686 			sci_port->sampling_rate_mask = SCI_SR(16);
2687 		} else {
2688 			sci_port->overrun_reg = SCLSR;
2689 			sci_port->overrun_mask = SCLSR_ORER;
2690 			sci_port->sampling_rate_mask = SCI_SR(32);
2691 		}
2692 		break;
2693 	default:
2694 		port->fifosize = 1;
2695 		sci_port->overrun_reg = SCxSR;
2696 		sci_port->overrun_mask = SCI_ORER;
2697 		sci_port->sampling_rate_mask = SCI_SR(32);
2698 		break;
2699 	}
2700 
2701 	/* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2702 	 * match the SoC datasheet, this should be investigated. Let platform
2703 	 * data override the sampling rate for now.
2704 	 */
2705 	if (p->sampling_rate)
2706 		sci_port->sampling_rate_mask = SCI_SR(p->sampling_rate);
2707 
2708 	if (!early) {
2709 		ret = sci_init_clocks(sci_port, &dev->dev);
2710 		if (ret < 0)
2711 			return ret;
2712 
2713 		port->dev = &dev->dev;
2714 
2715 		pm_runtime_enable(&dev->dev);
2716 	}
2717 
2718 	sci_port->break_timer.data = (unsigned long)sci_port;
2719 	sci_port->break_timer.function = sci_break_timer;
2720 	init_timer(&sci_port->break_timer);
2721 
2722 	/*
2723 	 * Establish some sensible defaults for the error detection.
2724 	 */
2725 	if (p->type == PORT_SCI) {
2726 		sci_port->error_mask = SCI_DEFAULT_ERROR_MASK;
2727 		sci_port->error_clear = SCI_ERROR_CLEAR;
2728 	} else {
2729 		sci_port->error_mask = SCIF_DEFAULT_ERROR_MASK;
2730 		sci_port->error_clear = SCIF_ERROR_CLEAR;
2731 	}
2732 
2733 	/*
2734 	 * Make the error mask inclusive of overrun detection, if
2735 	 * supported.
2736 	 */
2737 	if (sci_port->overrun_reg == SCxSR) {
2738 		sci_port->error_mask |= sci_port->overrun_mask;
2739 		sci_port->error_clear &= ~sci_port->overrun_mask;
2740 	}
2741 
2742 	port->type		= p->type;
2743 	port->flags		= UPF_FIXED_PORT | p->flags;
2744 	port->regshift		= p->regshift;
2745 
2746 	/*
2747 	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
2748 	 * for the multi-IRQ ports, which is where we are primarily
2749 	 * concerned with the shutdown path synchronization.
2750 	 *
2751 	 * For the muxed case there's nothing more to do.
2752 	 */
2753 	port->irq		= sci_port->irqs[SCIx_RXI_IRQ];
2754 	port->irqflags		= 0;
2755 
2756 	port->serial_in		= sci_serial_in;
2757 	port->serial_out	= sci_serial_out;
2758 
2759 	if (p->dma_slave_tx > 0 && p->dma_slave_rx > 0)
2760 		dev_dbg(port->dev, "DMA tx %d, rx %d\n",
2761 			p->dma_slave_tx, p->dma_slave_rx);
2762 
2763 	return 0;
2764 }
2765 
2766 static void sci_cleanup_single(struct sci_port *port)
2767 {
2768 	pm_runtime_disable(port->port.dev);
2769 }
2770 
2771 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
2772     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
2773 static void serial_console_putchar(struct uart_port *port, int ch)
2774 {
2775 	sci_poll_put_char(port, ch);
2776 }
2777 
2778 /*
2779  *	Print a string to the serial port trying not to disturb
2780  *	any possible real use of the port...
2781  */
2782 static void serial_console_write(struct console *co, const char *s,
2783 				 unsigned count)
2784 {
2785 	struct sci_port *sci_port = &sci_ports[co->index];
2786 	struct uart_port *port = &sci_port->port;
2787 	unsigned short bits, ctrl, ctrl_temp;
2788 	unsigned long flags;
2789 	int locked = 1;
2790 
2791 	local_irq_save(flags);
2792 #if defined(SUPPORT_SYSRQ)
2793 	if (port->sysrq)
2794 		locked = 0;
2795 	else
2796 #endif
2797 	if (oops_in_progress)
2798 		locked = spin_trylock(&port->lock);
2799 	else
2800 		spin_lock(&port->lock);
2801 
2802 	/* first save SCSCR then disable interrupts, keep clock source */
2803 	ctrl = serial_port_in(port, SCSCR);
2804 	ctrl_temp = (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
2805 		    (ctrl & (SCSCR_CKE1 | SCSCR_CKE0));
2806 	serial_port_out(port, SCSCR, ctrl_temp);
2807 
2808 	uart_console_write(port, s, count, serial_console_putchar);
2809 
2810 	/* wait until fifo is empty and last bit has been transmitted */
2811 	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
2812 	while ((serial_port_in(port, SCxSR) & bits) != bits)
2813 		cpu_relax();
2814 
2815 	/* restore the SCSCR */
2816 	serial_port_out(port, SCSCR, ctrl);
2817 
2818 	if (locked)
2819 		spin_unlock(&port->lock);
2820 	local_irq_restore(flags);
2821 }
2822 
2823 static int serial_console_setup(struct console *co, char *options)
2824 {
2825 	struct sci_port *sci_port;
2826 	struct uart_port *port;
2827 	int baud = 115200;
2828 	int bits = 8;
2829 	int parity = 'n';
2830 	int flow = 'n';
2831 	int ret;
2832 
2833 	/*
2834 	 * Refuse to handle any bogus ports.
2835 	 */
2836 	if (co->index < 0 || co->index >= SCI_NPORTS)
2837 		return -ENODEV;
2838 
2839 	sci_port = &sci_ports[co->index];
2840 	port = &sci_port->port;
2841 
2842 	/*
2843 	 * Refuse to handle uninitialized ports.
2844 	 */
2845 	if (!port->ops)
2846 		return -ENODEV;
2847 
2848 	ret = sci_remap_port(port);
2849 	if (unlikely(ret != 0))
2850 		return ret;
2851 
2852 	if (options)
2853 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2854 
2855 	return uart_set_options(port, co, baud, parity, bits, flow);
2856 }
2857 
2858 static struct console serial_console = {
2859 	.name		= "ttySC",
2860 	.device		= uart_console_device,
2861 	.write		= serial_console_write,
2862 	.setup		= serial_console_setup,
2863 	.flags		= CON_PRINTBUFFER,
2864 	.index		= -1,
2865 	.data		= &sci_uart_driver,
2866 };
2867 
2868 static struct console early_serial_console = {
2869 	.name           = "early_ttySC",
2870 	.write          = serial_console_write,
2871 	.flags          = CON_PRINTBUFFER,
2872 	.index		= -1,
2873 };
2874 
2875 static char early_serial_buf[32];
2876 
2877 static int sci_probe_earlyprintk(struct platform_device *pdev)
2878 {
2879 	struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
2880 
2881 	if (early_serial_console.data)
2882 		return -EEXIST;
2883 
2884 	early_serial_console.index = pdev->id;
2885 
2886 	sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
2887 
2888 	serial_console_setup(&early_serial_console, early_serial_buf);
2889 
2890 	if (!strstr(early_serial_buf, "keep"))
2891 		early_serial_console.flags |= CON_BOOT;
2892 
2893 	register_console(&early_serial_console);
2894 	return 0;
2895 }
2896 
2897 #define SCI_CONSOLE	(&serial_console)
2898 
2899 #else
2900 static inline int sci_probe_earlyprintk(struct platform_device *pdev)
2901 {
2902 	return -EINVAL;
2903 }
2904 
2905 #define SCI_CONSOLE	NULL
2906 
2907 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */
2908 
2909 static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
2910 
2911 static struct uart_driver sci_uart_driver = {
2912 	.owner		= THIS_MODULE,
2913 	.driver_name	= "sci",
2914 	.dev_name	= "ttySC",
2915 	.major		= SCI_MAJOR,
2916 	.minor		= SCI_MINOR_START,
2917 	.nr		= SCI_NPORTS,
2918 	.cons		= SCI_CONSOLE,
2919 };
2920 
2921 static int sci_remove(struct platform_device *dev)
2922 {
2923 	struct sci_port *port = platform_get_drvdata(dev);
2924 
2925 	uart_remove_one_port(&sci_uart_driver, &port->port);
2926 
2927 	sci_cleanup_single(port);
2928 
2929 	return 0;
2930 }
2931 
2932 
2933 #define SCI_OF_DATA(type, regtype)	(void *)((type) << 16 | (regtype))
2934 #define SCI_OF_TYPE(data)		((unsigned long)(data) >> 16)
2935 #define SCI_OF_REGTYPE(data)		((unsigned long)(data) & 0xffff)
2936 
2937 static const struct of_device_id of_sci_match[] = {
2938 	/* SoC-specific types */
2939 	{
2940 		.compatible = "renesas,scif-r7s72100",
2941 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE),
2942 	},
2943 	/* Family-specific types */
2944 	{
2945 		.compatible = "renesas,rcar-gen1-scif",
2946 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
2947 	}, {
2948 		.compatible = "renesas,rcar-gen2-scif",
2949 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
2950 	}, {
2951 		.compatible = "renesas,rcar-gen3-scif",
2952 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
2953 	},
2954 	/* Generic types */
2955 	{
2956 		.compatible = "renesas,scif",
2957 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE),
2958 	}, {
2959 		.compatible = "renesas,scifa",
2960 		.data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE),
2961 	}, {
2962 		.compatible = "renesas,scifb",
2963 		.data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE),
2964 	}, {
2965 		.compatible = "renesas,hscif",
2966 		.data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE),
2967 	}, {
2968 		.compatible = "renesas,sci",
2969 		.data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE),
2970 	}, {
2971 		/* Terminator */
2972 	},
2973 };
2974 MODULE_DEVICE_TABLE(of, of_sci_match);
2975 
2976 static struct plat_sci_port *
2977 sci_parse_dt(struct platform_device *pdev, unsigned int *dev_id)
2978 {
2979 	struct device_node *np = pdev->dev.of_node;
2980 	const struct of_device_id *match;
2981 	struct plat_sci_port *p;
2982 	int id;
2983 
2984 	if (!IS_ENABLED(CONFIG_OF) || !np)
2985 		return NULL;
2986 
2987 	match = of_match_node(of_sci_match, np);
2988 	if (!match)
2989 		return NULL;
2990 
2991 	p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
2992 	if (!p)
2993 		return NULL;
2994 
2995 	/* Get the line number from the aliases node. */
2996 	id = of_alias_get_id(np, "serial");
2997 	if (id < 0) {
2998 		dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
2999 		return NULL;
3000 	}
3001 
3002 	*dev_id = id;
3003 
3004 	p->flags = UPF_IOREMAP | UPF_BOOT_AUTOCONF;
3005 	p->type = SCI_OF_TYPE(match->data);
3006 	p->regtype = SCI_OF_REGTYPE(match->data);
3007 	p->scscr = SCSCR_RE | SCSCR_TE;
3008 
3009 	if (of_find_property(np, "uart-has-rtscts", NULL))
3010 		p->capabilities |= SCIx_HAVE_RTSCTS;
3011 
3012 	return p;
3013 }
3014 
3015 static int sci_probe_single(struct platform_device *dev,
3016 				      unsigned int index,
3017 				      struct plat_sci_port *p,
3018 				      struct sci_port *sciport)
3019 {
3020 	int ret;
3021 
3022 	/* Sanity check */
3023 	if (unlikely(index >= SCI_NPORTS)) {
3024 		dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
3025 			   index+1, SCI_NPORTS);
3026 		dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
3027 		return -EINVAL;
3028 	}
3029 
3030 	ret = sci_init_single(dev, sciport, index, p, false);
3031 	if (ret)
3032 		return ret;
3033 
3034 	sciport->gpios = mctrl_gpio_init(&sciport->port, 0);
3035 	if (IS_ERR(sciport->gpios) && PTR_ERR(sciport->gpios) != -ENOSYS)
3036 		return PTR_ERR(sciport->gpios);
3037 
3038 	if (p->capabilities & SCIx_HAVE_RTSCTS) {
3039 		if (!IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(sciport->gpios,
3040 							UART_GPIO_CTS)) ||
3041 		    !IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(sciport->gpios,
3042 							UART_GPIO_RTS))) {
3043 			dev_err(&dev->dev, "Conflicting RTS/CTS config\n");
3044 			return -EINVAL;
3045 		}
3046 		sciport->port.flags |= UPF_HARD_FLOW;
3047 	}
3048 
3049 	ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
3050 	if (ret) {
3051 		sci_cleanup_single(sciport);
3052 		return ret;
3053 	}
3054 
3055 	return 0;
3056 }
3057 
3058 static int sci_probe(struct platform_device *dev)
3059 {
3060 	struct plat_sci_port *p;
3061 	struct sci_port *sp;
3062 	unsigned int dev_id;
3063 	int ret;
3064 
3065 	/*
3066 	 * If we've come here via earlyprintk initialization, head off to
3067 	 * the special early probe. We don't have sufficient device state
3068 	 * to make it beyond this yet.
3069 	 */
3070 	if (is_early_platform_device(dev))
3071 		return sci_probe_earlyprintk(dev);
3072 
3073 	if (dev->dev.of_node) {
3074 		p = sci_parse_dt(dev, &dev_id);
3075 		if (p == NULL)
3076 			return -EINVAL;
3077 	} else {
3078 		p = dev->dev.platform_data;
3079 		if (p == NULL) {
3080 			dev_err(&dev->dev, "no platform data supplied\n");
3081 			return -EINVAL;
3082 		}
3083 
3084 		dev_id = dev->id;
3085 	}
3086 
3087 	sp = &sci_ports[dev_id];
3088 	platform_set_drvdata(dev, sp);
3089 
3090 	ret = sci_probe_single(dev, dev_id, p, sp);
3091 	if (ret)
3092 		return ret;
3093 
3094 #ifdef CONFIG_SH_STANDARD_BIOS
3095 	sh_bios_gdb_detach();
3096 #endif
3097 
3098 	return 0;
3099 }
3100 
3101 static __maybe_unused int sci_suspend(struct device *dev)
3102 {
3103 	struct sci_port *sport = dev_get_drvdata(dev);
3104 
3105 	if (sport)
3106 		uart_suspend_port(&sci_uart_driver, &sport->port);
3107 
3108 	return 0;
3109 }
3110 
3111 static __maybe_unused int sci_resume(struct device *dev)
3112 {
3113 	struct sci_port *sport = dev_get_drvdata(dev);
3114 
3115 	if (sport)
3116 		uart_resume_port(&sci_uart_driver, &sport->port);
3117 
3118 	return 0;
3119 }
3120 
3121 static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
3122 
3123 static struct platform_driver sci_driver = {
3124 	.probe		= sci_probe,
3125 	.remove		= sci_remove,
3126 	.driver		= {
3127 		.name	= "sh-sci",
3128 		.pm	= &sci_dev_pm_ops,
3129 		.of_match_table = of_match_ptr(of_sci_match),
3130 	},
3131 };
3132 
3133 static int __init sci_init(void)
3134 {
3135 	int ret;
3136 
3137 	pr_info("%s\n", banner);
3138 
3139 	ret = uart_register_driver(&sci_uart_driver);
3140 	if (likely(ret == 0)) {
3141 		ret = platform_driver_register(&sci_driver);
3142 		if (unlikely(ret))
3143 			uart_unregister_driver(&sci_uart_driver);
3144 	}
3145 
3146 	return ret;
3147 }
3148 
3149 static void __exit sci_exit(void)
3150 {
3151 	platform_driver_unregister(&sci_driver);
3152 	uart_unregister_driver(&sci_uart_driver);
3153 }
3154 
3155 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
3156 early_platform_init_buffer("earlyprintk", &sci_driver,
3157 			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
3158 #endif
3159 #ifdef CONFIG_SERIAL_SH_SCI_EARLYCON
3160 static struct __init plat_sci_port port_cfg;
3161 
3162 static int __init early_console_setup(struct earlycon_device *device,
3163 				      int type)
3164 {
3165 	if (!device->port.membase)
3166 		return -ENODEV;
3167 
3168 	device->port.serial_in = sci_serial_in;
3169 	device->port.serial_out	= sci_serial_out;
3170 	device->port.type = type;
3171 	memcpy(&sci_ports[0].port, &device->port, sizeof(struct uart_port));
3172 	sci_ports[0].cfg = &port_cfg;
3173 	sci_ports[0].cfg->type = type;
3174 	sci_probe_regmap(sci_ports[0].cfg);
3175 	port_cfg.scscr = sci_serial_in(&sci_ports[0].port, SCSCR) |
3176 			 SCSCR_RE | SCSCR_TE;
3177 	sci_serial_out(&sci_ports[0].port, SCSCR, port_cfg.scscr);
3178 
3179 	device->con->write = serial_console_write;
3180 	return 0;
3181 }
3182 static int __init sci_early_console_setup(struct earlycon_device *device,
3183 					  const char *opt)
3184 {
3185 	return early_console_setup(device, PORT_SCI);
3186 }
3187 static int __init scif_early_console_setup(struct earlycon_device *device,
3188 					  const char *opt)
3189 {
3190 	return early_console_setup(device, PORT_SCIF);
3191 }
3192 static int __init scifa_early_console_setup(struct earlycon_device *device,
3193 					  const char *opt)
3194 {
3195 	return early_console_setup(device, PORT_SCIFA);
3196 }
3197 static int __init scifb_early_console_setup(struct earlycon_device *device,
3198 					  const char *opt)
3199 {
3200 	return early_console_setup(device, PORT_SCIFB);
3201 }
3202 static int __init hscif_early_console_setup(struct earlycon_device *device,
3203 					  const char *opt)
3204 {
3205 	return early_console_setup(device, PORT_HSCIF);
3206 }
3207 
3208 OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup);
3209 OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup);
3210 OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup);
3211 OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup);
3212 OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup);
3213 #endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */
3214 
3215 module_init(sci_init);
3216 module_exit(sci_exit);
3217 
3218 MODULE_LICENSE("GPL");
3219 MODULE_ALIAS("platform:sh-sci");
3220 MODULE_AUTHOR("Paul Mundt");
3221 MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");
3222