xref: /openbmc/linux/drivers/tty/serial/sh-sci.c (revision 89b5c1ab)
1 /*
2  * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
3  *
4  *  Copyright (C) 2002 - 2011  Paul Mundt
5  *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
6  *
7  * based off of the old drivers/char/sh-sci.c by:
8  *
9  *   Copyright (C) 1999, 2000  Niibe Yutaka
10  *   Copyright (C) 2000  Sugioka Toshinobu
11  *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
12  *   Modified to support SecureEdge. David McCullough (2002)
13  *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
14  *   Removed SH7300 support (Jul 2007).
15  *
16  * This file is subject to the terms and conditions of the GNU General Public
17  * License.  See the file "COPYING" in the main directory of this archive
18  * for more details.
19  */
20 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
21 #define SUPPORT_SYSRQ
22 #endif
23 
24 #undef DEBUG
25 
26 #include <linux/clk.h>
27 #include <linux/console.h>
28 #include <linux/ctype.h>
29 #include <linux/cpufreq.h>
30 #include <linux/delay.h>
31 #include <linux/dmaengine.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/err.h>
34 #include <linux/errno.h>
35 #include <linux/init.h>
36 #include <linux/interrupt.h>
37 #include <linux/ioport.h>
38 #include <linux/major.h>
39 #include <linux/module.h>
40 #include <linux/mm.h>
41 #include <linux/notifier.h>
42 #include <linux/platform_device.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/scatterlist.h>
45 #include <linux/serial.h>
46 #include <linux/serial_sci.h>
47 #include <linux/sh_dma.h>
48 #include <linux/slab.h>
49 #include <linux/string.h>
50 #include <linux/sysrq.h>
51 #include <linux/timer.h>
52 #include <linux/tty.h>
53 #include <linux/tty_flip.h>
54 
55 #ifdef CONFIG_SUPERH
56 #include <asm/sh_bios.h>
57 #endif
58 
59 #include "sh-sci.h"
60 
61 /* Offsets into the sci_port->irqs array */
62 enum {
63 	SCIx_ERI_IRQ,
64 	SCIx_RXI_IRQ,
65 	SCIx_TXI_IRQ,
66 	SCIx_BRI_IRQ,
67 	SCIx_NR_IRQS,
68 
69 	SCIx_MUX_IRQ = SCIx_NR_IRQS,	/* special case */
70 };
71 
72 #define SCIx_IRQ_IS_MUXED(port)			\
73 	((port)->irqs[SCIx_ERI_IRQ] ==	\
74 	 (port)->irqs[SCIx_RXI_IRQ]) ||	\
75 	((port)->irqs[SCIx_ERI_IRQ] &&	\
76 	 ((port)->irqs[SCIx_RXI_IRQ] < 0))
77 
78 struct sci_port {
79 	struct uart_port	port;
80 
81 	/* Platform configuration */
82 	struct plat_sci_port	*cfg;
83 	int			overrun_bit;
84 	unsigned int		error_mask;
85 	unsigned int		sampling_rate;
86 
87 
88 	/* Break timer */
89 	struct timer_list	break_timer;
90 	int			break_flag;
91 
92 	/* Interface clock */
93 	struct clk		*iclk;
94 	/* Function clock */
95 	struct clk		*fclk;
96 
97 	int			irqs[SCIx_NR_IRQS];
98 	char			*irqstr[SCIx_NR_IRQS];
99 
100 	struct dma_chan			*chan_tx;
101 	struct dma_chan			*chan_rx;
102 
103 #ifdef CONFIG_SERIAL_SH_SCI_DMA
104 	struct dma_async_tx_descriptor	*desc_tx;
105 	struct dma_async_tx_descriptor	*desc_rx[2];
106 	dma_cookie_t			cookie_tx;
107 	dma_cookie_t			cookie_rx[2];
108 	dma_cookie_t			active_rx;
109 	struct scatterlist		sg_tx;
110 	unsigned int			sg_len_tx;
111 	struct scatterlist		sg_rx[2];
112 	size_t				buf_len_rx;
113 	struct sh_dmae_slave		param_tx;
114 	struct sh_dmae_slave		param_rx;
115 	struct work_struct		work_tx;
116 	struct work_struct		work_rx;
117 	struct timer_list		rx_timer;
118 	unsigned int			rx_timeout;
119 #endif
120 
121 	struct notifier_block		freq_transition;
122 };
123 
124 /* Function prototypes */
125 static void sci_start_tx(struct uart_port *port);
126 static void sci_stop_tx(struct uart_port *port);
127 static void sci_start_rx(struct uart_port *port);
128 
129 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
130 
131 static struct sci_port sci_ports[SCI_NPORTS];
132 static struct uart_driver sci_uart_driver;
133 
134 static inline struct sci_port *
135 to_sci_port(struct uart_port *uart)
136 {
137 	return container_of(uart, struct sci_port, port);
138 }
139 
140 struct plat_sci_reg {
141 	u8 offset, size;
142 };
143 
144 /* Helper for invalidating specific entries of an inherited map. */
145 #define sci_reg_invalid	{ .offset = 0, .size = 0 }
146 
147 static struct plat_sci_reg sci_regmap[SCIx_NR_REGTYPES][SCIx_NR_REGS] = {
148 	[SCIx_PROBE_REGTYPE] = {
149 		[0 ... SCIx_NR_REGS - 1] = sci_reg_invalid,
150 	},
151 
152 	/*
153 	 * Common SCI definitions, dependent on the port's regshift
154 	 * value.
155 	 */
156 	[SCIx_SCI_REGTYPE] = {
157 		[SCSMR]		= { 0x00,  8 },
158 		[SCBRR]		= { 0x01,  8 },
159 		[SCSCR]		= { 0x02,  8 },
160 		[SCxTDR]	= { 0x03,  8 },
161 		[SCxSR]		= { 0x04,  8 },
162 		[SCxRDR]	= { 0x05,  8 },
163 		[SCFCR]		= sci_reg_invalid,
164 		[SCFDR]		= sci_reg_invalid,
165 		[SCTFDR]	= sci_reg_invalid,
166 		[SCRFDR]	= sci_reg_invalid,
167 		[SCSPTR]	= sci_reg_invalid,
168 		[SCLSR]		= sci_reg_invalid,
169 		[HSSRR]		= sci_reg_invalid,
170 	},
171 
172 	/*
173 	 * Common definitions for legacy IrDA ports, dependent on
174 	 * regshift value.
175 	 */
176 	[SCIx_IRDA_REGTYPE] = {
177 		[SCSMR]		= { 0x00,  8 },
178 		[SCBRR]		= { 0x01,  8 },
179 		[SCSCR]		= { 0x02,  8 },
180 		[SCxTDR]	= { 0x03,  8 },
181 		[SCxSR]		= { 0x04,  8 },
182 		[SCxRDR]	= { 0x05,  8 },
183 		[SCFCR]		= { 0x06,  8 },
184 		[SCFDR]		= { 0x07, 16 },
185 		[SCTFDR]	= sci_reg_invalid,
186 		[SCRFDR]	= sci_reg_invalid,
187 		[SCSPTR]	= sci_reg_invalid,
188 		[SCLSR]		= sci_reg_invalid,
189 		[HSSRR]		= sci_reg_invalid,
190 	},
191 
192 	/*
193 	 * Common SCIFA definitions.
194 	 */
195 	[SCIx_SCIFA_REGTYPE] = {
196 		[SCSMR]		= { 0x00, 16 },
197 		[SCBRR]		= { 0x04,  8 },
198 		[SCSCR]		= { 0x08, 16 },
199 		[SCxTDR]	= { 0x20,  8 },
200 		[SCxSR]		= { 0x14, 16 },
201 		[SCxRDR]	= { 0x24,  8 },
202 		[SCFCR]		= { 0x18, 16 },
203 		[SCFDR]		= { 0x1c, 16 },
204 		[SCTFDR]	= sci_reg_invalid,
205 		[SCRFDR]	= sci_reg_invalid,
206 		[SCSPTR]	= sci_reg_invalid,
207 		[SCLSR]		= sci_reg_invalid,
208 		[HSSRR]		= sci_reg_invalid,
209 	},
210 
211 	/*
212 	 * Common SCIFB definitions.
213 	 */
214 	[SCIx_SCIFB_REGTYPE] = {
215 		[SCSMR]		= { 0x00, 16 },
216 		[SCBRR]		= { 0x04,  8 },
217 		[SCSCR]		= { 0x08, 16 },
218 		[SCxTDR]	= { 0x40,  8 },
219 		[SCxSR]		= { 0x14, 16 },
220 		[SCxRDR]	= { 0x60,  8 },
221 		[SCFCR]		= { 0x18, 16 },
222 		[SCFDR]		= sci_reg_invalid,
223 		[SCTFDR]	= { 0x38, 16 },
224 		[SCRFDR]	= { 0x3c, 16 },
225 		[SCSPTR]	= sci_reg_invalid,
226 		[SCLSR]		= sci_reg_invalid,
227 		[HSSRR]		= sci_reg_invalid,
228 	},
229 
230 	/*
231 	 * Common SH-2(A) SCIF definitions for ports with FIFO data
232 	 * count registers.
233 	 */
234 	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
235 		[SCSMR]		= { 0x00, 16 },
236 		[SCBRR]		= { 0x04,  8 },
237 		[SCSCR]		= { 0x08, 16 },
238 		[SCxTDR]	= { 0x0c,  8 },
239 		[SCxSR]		= { 0x10, 16 },
240 		[SCxRDR]	= { 0x14,  8 },
241 		[SCFCR]		= { 0x18, 16 },
242 		[SCFDR]		= { 0x1c, 16 },
243 		[SCTFDR]	= sci_reg_invalid,
244 		[SCRFDR]	= sci_reg_invalid,
245 		[SCSPTR]	= { 0x20, 16 },
246 		[SCLSR]		= { 0x24, 16 },
247 		[HSSRR]		= sci_reg_invalid,
248 	},
249 
250 	/*
251 	 * Common SH-3 SCIF definitions.
252 	 */
253 	[SCIx_SH3_SCIF_REGTYPE] = {
254 		[SCSMR]		= { 0x00,  8 },
255 		[SCBRR]		= { 0x02,  8 },
256 		[SCSCR]		= { 0x04,  8 },
257 		[SCxTDR]	= { 0x06,  8 },
258 		[SCxSR]		= { 0x08, 16 },
259 		[SCxRDR]	= { 0x0a,  8 },
260 		[SCFCR]		= { 0x0c,  8 },
261 		[SCFDR]		= { 0x0e, 16 },
262 		[SCTFDR]	= sci_reg_invalid,
263 		[SCRFDR]	= sci_reg_invalid,
264 		[SCSPTR]	= sci_reg_invalid,
265 		[SCLSR]		= sci_reg_invalid,
266 		[HSSRR]		= sci_reg_invalid,
267 	},
268 
269 	/*
270 	 * Common SH-4(A) SCIF(B) definitions.
271 	 */
272 	[SCIx_SH4_SCIF_REGTYPE] = {
273 		[SCSMR]		= { 0x00, 16 },
274 		[SCBRR]		= { 0x04,  8 },
275 		[SCSCR]		= { 0x08, 16 },
276 		[SCxTDR]	= { 0x0c,  8 },
277 		[SCxSR]		= { 0x10, 16 },
278 		[SCxRDR]	= { 0x14,  8 },
279 		[SCFCR]		= { 0x18, 16 },
280 		[SCFDR]		= { 0x1c, 16 },
281 		[SCTFDR]	= sci_reg_invalid,
282 		[SCRFDR]	= sci_reg_invalid,
283 		[SCSPTR]	= { 0x20, 16 },
284 		[SCLSR]		= { 0x24, 16 },
285 		[HSSRR]		= sci_reg_invalid,
286 	},
287 
288 	/*
289 	 * Common HSCIF definitions.
290 	 */
291 	[SCIx_HSCIF_REGTYPE] = {
292 		[SCSMR]		= { 0x00, 16 },
293 		[SCBRR]		= { 0x04,  8 },
294 		[SCSCR]		= { 0x08, 16 },
295 		[SCxTDR]	= { 0x0c,  8 },
296 		[SCxSR]		= { 0x10, 16 },
297 		[SCxRDR]	= { 0x14,  8 },
298 		[SCFCR]		= { 0x18, 16 },
299 		[SCFDR]		= { 0x1c, 16 },
300 		[SCTFDR]	= sci_reg_invalid,
301 		[SCRFDR]	= sci_reg_invalid,
302 		[SCSPTR]	= { 0x20, 16 },
303 		[SCLSR]		= { 0x24, 16 },
304 		[HSSRR]		= { 0x40, 16 },
305 	},
306 
307 	/*
308 	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
309 	 * register.
310 	 */
311 	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
312 		[SCSMR]		= { 0x00, 16 },
313 		[SCBRR]		= { 0x04,  8 },
314 		[SCSCR]		= { 0x08, 16 },
315 		[SCxTDR]	= { 0x0c,  8 },
316 		[SCxSR]		= { 0x10, 16 },
317 		[SCxRDR]	= { 0x14,  8 },
318 		[SCFCR]		= { 0x18, 16 },
319 		[SCFDR]		= { 0x1c, 16 },
320 		[SCTFDR]	= sci_reg_invalid,
321 		[SCRFDR]	= sci_reg_invalid,
322 		[SCSPTR]	= sci_reg_invalid,
323 		[SCLSR]		= { 0x24, 16 },
324 		[HSSRR]		= sci_reg_invalid,
325 	},
326 
327 	/*
328 	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
329 	 * count registers.
330 	 */
331 	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
332 		[SCSMR]		= { 0x00, 16 },
333 		[SCBRR]		= { 0x04,  8 },
334 		[SCSCR]		= { 0x08, 16 },
335 		[SCxTDR]	= { 0x0c,  8 },
336 		[SCxSR]		= { 0x10, 16 },
337 		[SCxRDR]	= { 0x14,  8 },
338 		[SCFCR]		= { 0x18, 16 },
339 		[SCFDR]		= { 0x1c, 16 },
340 		[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
341 		[SCRFDR]	= { 0x20, 16 },
342 		[SCSPTR]	= { 0x24, 16 },
343 		[SCLSR]		= { 0x28, 16 },
344 		[HSSRR]		= sci_reg_invalid,
345 	},
346 
347 	/*
348 	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
349 	 * registers.
350 	 */
351 	[SCIx_SH7705_SCIF_REGTYPE] = {
352 		[SCSMR]		= { 0x00, 16 },
353 		[SCBRR]		= { 0x04,  8 },
354 		[SCSCR]		= { 0x08, 16 },
355 		[SCxTDR]	= { 0x20,  8 },
356 		[SCxSR]		= { 0x14, 16 },
357 		[SCxRDR]	= { 0x24,  8 },
358 		[SCFCR]		= { 0x18, 16 },
359 		[SCFDR]		= { 0x1c, 16 },
360 		[SCTFDR]	= sci_reg_invalid,
361 		[SCRFDR]	= sci_reg_invalid,
362 		[SCSPTR]	= sci_reg_invalid,
363 		[SCLSR]		= sci_reg_invalid,
364 		[HSSRR]		= sci_reg_invalid,
365 	},
366 };
367 
368 #define sci_getreg(up, offset)		(sci_regmap[to_sci_port(up)->cfg->regtype] + offset)
369 
370 /*
371  * The "offset" here is rather misleading, in that it refers to an enum
372  * value relative to the port mapping rather than the fixed offset
373  * itself, which needs to be manually retrieved from the platform's
374  * register map for the given port.
375  */
376 static unsigned int sci_serial_in(struct uart_port *p, int offset)
377 {
378 	struct plat_sci_reg *reg = sci_getreg(p, offset);
379 
380 	if (reg->size == 8)
381 		return ioread8(p->membase + (reg->offset << p->regshift));
382 	else if (reg->size == 16)
383 		return ioread16(p->membase + (reg->offset << p->regshift));
384 	else
385 		WARN(1, "Invalid register access\n");
386 
387 	return 0;
388 }
389 
390 static void sci_serial_out(struct uart_port *p, int offset, int value)
391 {
392 	struct plat_sci_reg *reg = sci_getreg(p, offset);
393 
394 	if (reg->size == 8)
395 		iowrite8(value, p->membase + (reg->offset << p->regshift));
396 	else if (reg->size == 16)
397 		iowrite16(value, p->membase + (reg->offset << p->regshift));
398 	else
399 		WARN(1, "Invalid register access\n");
400 }
401 
402 static int sci_probe_regmap(struct plat_sci_port *cfg)
403 {
404 	switch (cfg->type) {
405 	case PORT_SCI:
406 		cfg->regtype = SCIx_SCI_REGTYPE;
407 		break;
408 	case PORT_IRDA:
409 		cfg->regtype = SCIx_IRDA_REGTYPE;
410 		break;
411 	case PORT_SCIFA:
412 		cfg->regtype = SCIx_SCIFA_REGTYPE;
413 		break;
414 	case PORT_SCIFB:
415 		cfg->regtype = SCIx_SCIFB_REGTYPE;
416 		break;
417 	case PORT_SCIF:
418 		/*
419 		 * The SH-4 is a bit of a misnomer here, although that's
420 		 * where this particular port layout originated. This
421 		 * configuration (or some slight variation thereof)
422 		 * remains the dominant model for all SCIFs.
423 		 */
424 		cfg->regtype = SCIx_SH4_SCIF_REGTYPE;
425 		break;
426 	case PORT_HSCIF:
427 		cfg->regtype = SCIx_HSCIF_REGTYPE;
428 		break;
429 	default:
430 		printk(KERN_ERR "Can't probe register map for given port\n");
431 		return -EINVAL;
432 	}
433 
434 	return 0;
435 }
436 
437 static void sci_port_enable(struct sci_port *sci_port)
438 {
439 	if (!sci_port->port.dev)
440 		return;
441 
442 	pm_runtime_get_sync(sci_port->port.dev);
443 
444 	clk_prepare_enable(sci_port->iclk);
445 	sci_port->port.uartclk = clk_get_rate(sci_port->iclk);
446 	clk_prepare_enable(sci_port->fclk);
447 }
448 
449 static void sci_port_disable(struct sci_port *sci_port)
450 {
451 	if (!sci_port->port.dev)
452 		return;
453 
454 	/* Cancel the break timer to ensure that the timer handler will not try
455 	 * to access the hardware with clocks and power disabled. Reset the
456 	 * break flag to make the break debouncing state machine ready for the
457 	 * next break.
458 	 */
459 	del_timer_sync(&sci_port->break_timer);
460 	sci_port->break_flag = 0;
461 
462 	clk_disable_unprepare(sci_port->fclk);
463 	clk_disable_unprepare(sci_port->iclk);
464 
465 	pm_runtime_put_sync(sci_port->port.dev);
466 }
467 
468 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
469 
470 #ifdef CONFIG_CONSOLE_POLL
471 static int sci_poll_get_char(struct uart_port *port)
472 {
473 	unsigned short status;
474 	int c;
475 
476 	do {
477 		status = serial_port_in(port, SCxSR);
478 		if (status & SCxSR_ERRORS(port)) {
479 			serial_port_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
480 			continue;
481 		}
482 		break;
483 	} while (1);
484 
485 	if (!(status & SCxSR_RDxF(port)))
486 		return NO_POLL_CHAR;
487 
488 	c = serial_port_in(port, SCxRDR);
489 
490 	/* Dummy read */
491 	serial_port_in(port, SCxSR);
492 	serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
493 
494 	return c;
495 }
496 #endif
497 
498 static void sci_poll_put_char(struct uart_port *port, unsigned char c)
499 {
500 	unsigned short status;
501 
502 	do {
503 		status = serial_port_in(port, SCxSR);
504 	} while (!(status & SCxSR_TDxE(port)));
505 
506 	serial_port_out(port, SCxTDR, c);
507 	serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
508 }
509 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE */
510 
511 static void sci_init_pins(struct uart_port *port, unsigned int cflag)
512 {
513 	struct sci_port *s = to_sci_port(port);
514 	struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
515 
516 	/*
517 	 * Use port-specific handler if provided.
518 	 */
519 	if (s->cfg->ops && s->cfg->ops->init_pins) {
520 		s->cfg->ops->init_pins(port, cflag);
521 		return;
522 	}
523 
524 	/*
525 	 * For the generic path SCSPTR is necessary. Bail out if that's
526 	 * unavailable, too.
527 	 */
528 	if (!reg->size)
529 		return;
530 
531 	if ((s->cfg->capabilities & SCIx_HAVE_RTSCTS) &&
532 	    ((!(cflag & CRTSCTS)))) {
533 		unsigned short status;
534 
535 		status = serial_port_in(port, SCSPTR);
536 		status &= ~SCSPTR_CTSIO;
537 		status |= SCSPTR_RTSIO;
538 		serial_port_out(port, SCSPTR, status); /* Set RTS = 1 */
539 	}
540 }
541 
542 static int sci_txfill(struct uart_port *port)
543 {
544 	struct plat_sci_reg *reg;
545 
546 	reg = sci_getreg(port, SCTFDR);
547 	if (reg->size)
548 		return serial_port_in(port, SCTFDR) & ((port->fifosize << 1) - 1);
549 
550 	reg = sci_getreg(port, SCFDR);
551 	if (reg->size)
552 		return serial_port_in(port, SCFDR) >> 8;
553 
554 	return !(serial_port_in(port, SCxSR) & SCI_TDRE);
555 }
556 
557 static int sci_txroom(struct uart_port *port)
558 {
559 	return port->fifosize - sci_txfill(port);
560 }
561 
562 static int sci_rxfill(struct uart_port *port)
563 {
564 	struct plat_sci_reg *reg;
565 
566 	reg = sci_getreg(port, SCRFDR);
567 	if (reg->size)
568 		return serial_port_in(port, SCRFDR) & ((port->fifosize << 1) - 1);
569 
570 	reg = sci_getreg(port, SCFDR);
571 	if (reg->size)
572 		return serial_port_in(port, SCFDR) & ((port->fifosize << 1) - 1);
573 
574 	return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
575 }
576 
577 /*
578  * SCI helper for checking the state of the muxed port/RXD pins.
579  */
580 static inline int sci_rxd_in(struct uart_port *port)
581 {
582 	struct sci_port *s = to_sci_port(port);
583 
584 	if (s->cfg->port_reg <= 0)
585 		return 1;
586 
587 	/* Cast for ARM damage */
588 	return !!__raw_readb((void __iomem *)(uintptr_t)s->cfg->port_reg);
589 }
590 
591 /* ********************************************************************** *
592  *                   the interrupt related routines                       *
593  * ********************************************************************** */
594 
595 static void sci_transmit_chars(struct uart_port *port)
596 {
597 	struct circ_buf *xmit = &port->state->xmit;
598 	unsigned int stopped = uart_tx_stopped(port);
599 	unsigned short status;
600 	unsigned short ctrl;
601 	int count;
602 
603 	status = serial_port_in(port, SCxSR);
604 	if (!(status & SCxSR_TDxE(port))) {
605 		ctrl = serial_port_in(port, SCSCR);
606 		if (uart_circ_empty(xmit))
607 			ctrl &= ~SCSCR_TIE;
608 		else
609 			ctrl |= SCSCR_TIE;
610 		serial_port_out(port, SCSCR, ctrl);
611 		return;
612 	}
613 
614 	count = sci_txroom(port);
615 
616 	do {
617 		unsigned char c;
618 
619 		if (port->x_char) {
620 			c = port->x_char;
621 			port->x_char = 0;
622 		} else if (!uart_circ_empty(xmit) && !stopped) {
623 			c = xmit->buf[xmit->tail];
624 			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
625 		} else {
626 			break;
627 		}
628 
629 		serial_port_out(port, SCxTDR, c);
630 
631 		port->icount.tx++;
632 	} while (--count > 0);
633 
634 	serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
635 
636 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
637 		uart_write_wakeup(port);
638 	if (uart_circ_empty(xmit)) {
639 		sci_stop_tx(port);
640 	} else {
641 		ctrl = serial_port_in(port, SCSCR);
642 
643 		if (port->type != PORT_SCI) {
644 			serial_port_in(port, SCxSR); /* Dummy read */
645 			serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
646 		}
647 
648 		ctrl |= SCSCR_TIE;
649 		serial_port_out(port, SCSCR, ctrl);
650 	}
651 }
652 
653 /* On SH3, SCIF may read end-of-break as a space->mark char */
654 #define STEPFN(c)  ({int __c = (c); (((__c-1)|(__c)) == -1); })
655 
656 static void sci_receive_chars(struct uart_port *port)
657 {
658 	struct sci_port *sci_port = to_sci_port(port);
659 	struct tty_port *tport = &port->state->port;
660 	int i, count, copied = 0;
661 	unsigned short status;
662 	unsigned char flag;
663 
664 	status = serial_port_in(port, SCxSR);
665 	if (!(status & SCxSR_RDxF(port)))
666 		return;
667 
668 	while (1) {
669 		/* Don't copy more bytes than there is room for in the buffer */
670 		count = tty_buffer_request_room(tport, sci_rxfill(port));
671 
672 		/* If for any reason we can't copy more data, we're done! */
673 		if (count == 0)
674 			break;
675 
676 		if (port->type == PORT_SCI) {
677 			char c = serial_port_in(port, SCxRDR);
678 			if (uart_handle_sysrq_char(port, c) ||
679 			    sci_port->break_flag)
680 				count = 0;
681 			else
682 				tty_insert_flip_char(tport, c, TTY_NORMAL);
683 		} else {
684 			for (i = 0; i < count; i++) {
685 				char c = serial_port_in(port, SCxRDR);
686 
687 				status = serial_port_in(port, SCxSR);
688 #if defined(CONFIG_CPU_SH3)
689 				/* Skip "chars" during break */
690 				if (sci_port->break_flag) {
691 					if ((c == 0) &&
692 					    (status & SCxSR_FER(port))) {
693 						count--; i--;
694 						continue;
695 					}
696 
697 					/* Nonzero => end-of-break */
698 					dev_dbg(port->dev, "debounce<%02x>\n", c);
699 					sci_port->break_flag = 0;
700 
701 					if (STEPFN(c)) {
702 						count--; i--;
703 						continue;
704 					}
705 				}
706 #endif /* CONFIG_CPU_SH3 */
707 				if (uart_handle_sysrq_char(port, c)) {
708 					count--; i--;
709 					continue;
710 				}
711 
712 				/* Store data and status */
713 				if (status & SCxSR_FER(port)) {
714 					flag = TTY_FRAME;
715 					port->icount.frame++;
716 					dev_notice(port->dev, "frame error\n");
717 				} else if (status & SCxSR_PER(port)) {
718 					flag = TTY_PARITY;
719 					port->icount.parity++;
720 					dev_notice(port->dev, "parity error\n");
721 				} else
722 					flag = TTY_NORMAL;
723 
724 				tty_insert_flip_char(tport, c, flag);
725 			}
726 		}
727 
728 		serial_port_in(port, SCxSR); /* dummy read */
729 		serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
730 
731 		copied += count;
732 		port->icount.rx += count;
733 	}
734 
735 	if (copied) {
736 		/* Tell the rest of the system the news. New characters! */
737 		tty_flip_buffer_push(tport);
738 	} else {
739 		serial_port_in(port, SCxSR); /* dummy read */
740 		serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
741 	}
742 }
743 
744 #define SCI_BREAK_JIFFIES (HZ/20)
745 
746 /*
747  * The sci generates interrupts during the break,
748  * 1 per millisecond or so during the break period, for 9600 baud.
749  * So dont bother disabling interrupts.
750  * But dont want more than 1 break event.
751  * Use a kernel timer to periodically poll the rx line until
752  * the break is finished.
753  */
754 static inline void sci_schedule_break_timer(struct sci_port *port)
755 {
756 	mod_timer(&port->break_timer, jiffies + SCI_BREAK_JIFFIES);
757 }
758 
759 /* Ensure that two consecutive samples find the break over. */
760 static void sci_break_timer(unsigned long data)
761 {
762 	struct sci_port *port = (struct sci_port *)data;
763 
764 	if (sci_rxd_in(&port->port) == 0) {
765 		port->break_flag = 1;
766 		sci_schedule_break_timer(port);
767 	} else if (port->break_flag == 1) {
768 		/* break is over. */
769 		port->break_flag = 2;
770 		sci_schedule_break_timer(port);
771 	} else
772 		port->break_flag = 0;
773 }
774 
775 static int sci_handle_errors(struct uart_port *port)
776 {
777 	int copied = 0;
778 	unsigned short status = serial_port_in(port, SCxSR);
779 	struct tty_port *tport = &port->state->port;
780 	struct sci_port *s = to_sci_port(port);
781 
782 	/* Handle overruns */
783 	if (status & (1 << s->overrun_bit)) {
784 		port->icount.overrun++;
785 
786 		/* overrun error */
787 		if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
788 			copied++;
789 
790 		dev_notice(port->dev, "overrun error");
791 	}
792 
793 	if (status & SCxSR_FER(port)) {
794 		if (sci_rxd_in(port) == 0) {
795 			/* Notify of BREAK */
796 			struct sci_port *sci_port = to_sci_port(port);
797 
798 			if (!sci_port->break_flag) {
799 				port->icount.brk++;
800 
801 				sci_port->break_flag = 1;
802 				sci_schedule_break_timer(sci_port);
803 
804 				/* Do sysrq handling. */
805 				if (uart_handle_break(port))
806 					return 0;
807 
808 				dev_dbg(port->dev, "BREAK detected\n");
809 
810 				if (tty_insert_flip_char(tport, 0, TTY_BREAK))
811 					copied++;
812 			}
813 
814 		} else {
815 			/* frame error */
816 			port->icount.frame++;
817 
818 			if (tty_insert_flip_char(tport, 0, TTY_FRAME))
819 				copied++;
820 
821 			dev_notice(port->dev, "frame error\n");
822 		}
823 	}
824 
825 	if (status & SCxSR_PER(port)) {
826 		/* parity error */
827 		port->icount.parity++;
828 
829 		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
830 			copied++;
831 
832 		dev_notice(port->dev, "parity error");
833 	}
834 
835 	if (copied)
836 		tty_flip_buffer_push(tport);
837 
838 	return copied;
839 }
840 
841 static int sci_handle_fifo_overrun(struct uart_port *port)
842 {
843 	struct tty_port *tport = &port->state->port;
844 	struct sci_port *s = to_sci_port(port);
845 	struct plat_sci_reg *reg;
846 	int copied = 0;
847 
848 	reg = sci_getreg(port, SCLSR);
849 	if (!reg->size)
850 		return 0;
851 
852 	if ((serial_port_in(port, SCLSR) & (1 << s->overrun_bit))) {
853 		serial_port_out(port, SCLSR, 0);
854 
855 		port->icount.overrun++;
856 
857 		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
858 		tty_flip_buffer_push(tport);
859 
860 		dev_notice(port->dev, "overrun error\n");
861 		copied++;
862 	}
863 
864 	return copied;
865 }
866 
867 static int sci_handle_breaks(struct uart_port *port)
868 {
869 	int copied = 0;
870 	unsigned short status = serial_port_in(port, SCxSR);
871 	struct tty_port *tport = &port->state->port;
872 	struct sci_port *s = to_sci_port(port);
873 
874 	if (uart_handle_break(port))
875 		return 0;
876 
877 	if (!s->break_flag && status & SCxSR_BRK(port)) {
878 #if defined(CONFIG_CPU_SH3)
879 		/* Debounce break */
880 		s->break_flag = 1;
881 #endif
882 
883 		port->icount.brk++;
884 
885 		/* Notify of BREAK */
886 		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
887 			copied++;
888 
889 		dev_dbg(port->dev, "BREAK detected\n");
890 	}
891 
892 	if (copied)
893 		tty_flip_buffer_push(tport);
894 
895 	copied += sci_handle_fifo_overrun(port);
896 
897 	return copied;
898 }
899 
900 static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
901 {
902 #ifdef CONFIG_SERIAL_SH_SCI_DMA
903 	struct uart_port *port = ptr;
904 	struct sci_port *s = to_sci_port(port);
905 
906 	if (s->chan_rx) {
907 		u16 scr = serial_port_in(port, SCSCR);
908 		u16 ssr = serial_port_in(port, SCxSR);
909 
910 		/* Disable future Rx interrupts */
911 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
912 			disable_irq_nosync(irq);
913 			scr |= 0x4000;
914 		} else {
915 			scr &= ~SCSCR_RIE;
916 		}
917 		serial_port_out(port, SCSCR, scr);
918 		/* Clear current interrupt */
919 		serial_port_out(port, SCxSR, ssr & ~(1 | SCxSR_RDxF(port)));
920 		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n",
921 			jiffies, s->rx_timeout);
922 		mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
923 
924 		return IRQ_HANDLED;
925 	}
926 #endif
927 
928 	/* I think sci_receive_chars has to be called irrespective
929 	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
930 	 * to be disabled?
931 	 */
932 	sci_receive_chars(ptr);
933 
934 	return IRQ_HANDLED;
935 }
936 
937 static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
938 {
939 	struct uart_port *port = ptr;
940 	unsigned long flags;
941 
942 	spin_lock_irqsave(&port->lock, flags);
943 	sci_transmit_chars(port);
944 	spin_unlock_irqrestore(&port->lock, flags);
945 
946 	return IRQ_HANDLED;
947 }
948 
949 static irqreturn_t sci_er_interrupt(int irq, void *ptr)
950 {
951 	struct uart_port *port = ptr;
952 
953 	/* Handle errors */
954 	if (port->type == PORT_SCI) {
955 		if (sci_handle_errors(port)) {
956 			/* discard character in rx buffer */
957 			serial_port_in(port, SCxSR);
958 			serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
959 		}
960 	} else {
961 		sci_handle_fifo_overrun(port);
962 		sci_rx_interrupt(irq, ptr);
963 	}
964 
965 	serial_port_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
966 
967 	/* Kick the transmission */
968 	sci_tx_interrupt(irq, ptr);
969 
970 	return IRQ_HANDLED;
971 }
972 
973 static irqreturn_t sci_br_interrupt(int irq, void *ptr)
974 {
975 	struct uart_port *port = ptr;
976 
977 	/* Handle BREAKs */
978 	sci_handle_breaks(port);
979 	serial_port_out(port, SCxSR, SCxSR_BREAK_CLEAR(port));
980 
981 	return IRQ_HANDLED;
982 }
983 
984 static inline unsigned long port_rx_irq_mask(struct uart_port *port)
985 {
986 	/*
987 	 * Not all ports (such as SCIFA) will support REIE. Rather than
988 	 * special-casing the port type, we check the port initialization
989 	 * IRQ enable mask to see whether the IRQ is desired at all. If
990 	 * it's unset, it's logically inferred that there's no point in
991 	 * testing for it.
992 	 */
993 	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
994 }
995 
996 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
997 {
998 	unsigned short ssr_status, scr_status, err_enabled;
999 	struct uart_port *port = ptr;
1000 	struct sci_port *s = to_sci_port(port);
1001 	irqreturn_t ret = IRQ_NONE;
1002 
1003 	ssr_status = serial_port_in(port, SCxSR);
1004 	scr_status = serial_port_in(port, SCSCR);
1005 	err_enabled = scr_status & port_rx_irq_mask(port);
1006 
1007 	/* Tx Interrupt */
1008 	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1009 	    !s->chan_tx)
1010 		ret = sci_tx_interrupt(irq, ptr);
1011 
1012 	/*
1013 	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1014 	 * DR flags
1015 	 */
1016 	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1017 	    (scr_status & SCSCR_RIE))
1018 		ret = sci_rx_interrupt(irq, ptr);
1019 
1020 	/* Error Interrupt */
1021 	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1022 		ret = sci_er_interrupt(irq, ptr);
1023 
1024 	/* Break Interrupt */
1025 	if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
1026 		ret = sci_br_interrupt(irq, ptr);
1027 
1028 	return ret;
1029 }
1030 
1031 /*
1032  * Here we define a transition notifier so that we can update all of our
1033  * ports' baud rate when the peripheral clock changes.
1034  */
1035 static int sci_notifier(struct notifier_block *self,
1036 			unsigned long phase, void *p)
1037 {
1038 	struct sci_port *sci_port;
1039 	unsigned long flags;
1040 
1041 	sci_port = container_of(self, struct sci_port, freq_transition);
1042 
1043 	if ((phase == CPUFREQ_POSTCHANGE) ||
1044 	    (phase == CPUFREQ_RESUMECHANGE)) {
1045 		struct uart_port *port = &sci_port->port;
1046 
1047 		spin_lock_irqsave(&port->lock, flags);
1048 		port->uartclk = clk_get_rate(sci_port->iclk);
1049 		spin_unlock_irqrestore(&port->lock, flags);
1050 	}
1051 
1052 	return NOTIFY_OK;
1053 }
1054 
1055 static struct sci_irq_desc {
1056 	const char	*desc;
1057 	irq_handler_t	handler;
1058 } sci_irq_desc[] = {
1059 	/*
1060 	 * Split out handlers, the default case.
1061 	 */
1062 	[SCIx_ERI_IRQ] = {
1063 		.desc = "rx err",
1064 		.handler = sci_er_interrupt,
1065 	},
1066 
1067 	[SCIx_RXI_IRQ] = {
1068 		.desc = "rx full",
1069 		.handler = sci_rx_interrupt,
1070 	},
1071 
1072 	[SCIx_TXI_IRQ] = {
1073 		.desc = "tx empty",
1074 		.handler = sci_tx_interrupt,
1075 	},
1076 
1077 	[SCIx_BRI_IRQ] = {
1078 		.desc = "break",
1079 		.handler = sci_br_interrupt,
1080 	},
1081 
1082 	/*
1083 	 * Special muxed handler.
1084 	 */
1085 	[SCIx_MUX_IRQ] = {
1086 		.desc = "mux",
1087 		.handler = sci_mpxed_interrupt,
1088 	},
1089 };
1090 
1091 static int sci_request_irq(struct sci_port *port)
1092 {
1093 	struct uart_port *up = &port->port;
1094 	int i, j, ret = 0;
1095 
1096 	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1097 		struct sci_irq_desc *desc;
1098 		int irq;
1099 
1100 		if (SCIx_IRQ_IS_MUXED(port)) {
1101 			i = SCIx_MUX_IRQ;
1102 			irq = up->irq;
1103 		} else {
1104 			irq = port->irqs[i];
1105 
1106 			/*
1107 			 * Certain port types won't support all of the
1108 			 * available interrupt sources.
1109 			 */
1110 			if (unlikely(irq < 0))
1111 				continue;
1112 		}
1113 
1114 		desc = sci_irq_desc + i;
1115 		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1116 					    dev_name(up->dev), desc->desc);
1117 		if (!port->irqstr[j]) {
1118 			dev_err(up->dev, "Failed to allocate %s IRQ string\n",
1119 				desc->desc);
1120 			goto out_nomem;
1121 		}
1122 
1123 		ret = request_irq(irq, desc->handler, up->irqflags,
1124 				  port->irqstr[j], port);
1125 		if (unlikely(ret)) {
1126 			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1127 			goto out_noirq;
1128 		}
1129 	}
1130 
1131 	return 0;
1132 
1133 out_noirq:
1134 	while (--i >= 0)
1135 		free_irq(port->irqs[i], port);
1136 
1137 out_nomem:
1138 	while (--j >= 0)
1139 		kfree(port->irqstr[j]);
1140 
1141 	return ret;
1142 }
1143 
1144 static void sci_free_irq(struct sci_port *port)
1145 {
1146 	int i;
1147 
1148 	/*
1149 	 * Intentionally in reverse order so we iterate over the muxed
1150 	 * IRQ first.
1151 	 */
1152 	for (i = 0; i < SCIx_NR_IRQS; i++) {
1153 		int irq = port->irqs[i];
1154 
1155 		/*
1156 		 * Certain port types won't support all of the available
1157 		 * interrupt sources.
1158 		 */
1159 		if (unlikely(irq < 0))
1160 			continue;
1161 
1162 		free_irq(port->irqs[i], port);
1163 		kfree(port->irqstr[i]);
1164 
1165 		if (SCIx_IRQ_IS_MUXED(port)) {
1166 			/* If there's only one IRQ, we're done. */
1167 			return;
1168 		}
1169 	}
1170 }
1171 
1172 static unsigned int sci_tx_empty(struct uart_port *port)
1173 {
1174 	unsigned short status = serial_port_in(port, SCxSR);
1175 	unsigned short in_tx_fifo = sci_txfill(port);
1176 
1177 	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1178 }
1179 
1180 /*
1181  * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
1182  * CTS/RTS is supported in hardware by at least one port and controlled
1183  * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
1184  * handled via the ->init_pins() op, which is a bit of a one-way street,
1185  * lacking any ability to defer pin control -- this will later be
1186  * converted over to the GPIO framework).
1187  *
1188  * Other modes (such as loopback) are supported generically on certain
1189  * port types, but not others. For these it's sufficient to test for the
1190  * existence of the support register and simply ignore the port type.
1191  */
1192 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
1193 {
1194 	if (mctrl & TIOCM_LOOP) {
1195 		struct plat_sci_reg *reg;
1196 
1197 		/*
1198 		 * Standard loopback mode for SCFCR ports.
1199 		 */
1200 		reg = sci_getreg(port, SCFCR);
1201 		if (reg->size)
1202 			serial_port_out(port, SCFCR, serial_port_in(port, SCFCR) | 1);
1203 	}
1204 }
1205 
1206 static unsigned int sci_get_mctrl(struct uart_port *port)
1207 {
1208 	/*
1209 	 * CTS/RTS is handled in hardware when supported, while nothing
1210 	 * else is wired up. Keep it simple and simply assert DSR/CAR.
1211 	 */
1212 	return TIOCM_DSR | TIOCM_CAR;
1213 }
1214 
1215 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1216 static void sci_dma_tx_complete(void *arg)
1217 {
1218 	struct sci_port *s = arg;
1219 	struct uart_port *port = &s->port;
1220 	struct circ_buf *xmit = &port->state->xmit;
1221 	unsigned long flags;
1222 
1223 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1224 
1225 	spin_lock_irqsave(&port->lock, flags);
1226 
1227 	xmit->tail += sg_dma_len(&s->sg_tx);
1228 	xmit->tail &= UART_XMIT_SIZE - 1;
1229 
1230 	port->icount.tx += sg_dma_len(&s->sg_tx);
1231 
1232 	async_tx_ack(s->desc_tx);
1233 	s->desc_tx = NULL;
1234 
1235 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1236 		uart_write_wakeup(port);
1237 
1238 	if (!uart_circ_empty(xmit)) {
1239 		s->cookie_tx = 0;
1240 		schedule_work(&s->work_tx);
1241 	} else {
1242 		s->cookie_tx = -EINVAL;
1243 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1244 			u16 ctrl = serial_port_in(port, SCSCR);
1245 			serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1246 		}
1247 	}
1248 
1249 	spin_unlock_irqrestore(&port->lock, flags);
1250 }
1251 
1252 /* Locking: called with port lock held */
1253 static int sci_dma_rx_push(struct sci_port *s, size_t count)
1254 {
1255 	struct uart_port *port = &s->port;
1256 	struct tty_port *tport = &port->state->port;
1257 	int i, active, room;
1258 
1259 	room = tty_buffer_request_room(tport, count);
1260 
1261 	if (s->active_rx == s->cookie_rx[0]) {
1262 		active = 0;
1263 	} else if (s->active_rx == s->cookie_rx[1]) {
1264 		active = 1;
1265 	} else {
1266 		dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
1267 		return 0;
1268 	}
1269 
1270 	if (room < count)
1271 		dev_warn(port->dev, "Rx overrun: dropping %zu bytes\n",
1272 			 count - room);
1273 	if (!room)
1274 		return room;
1275 
1276 	for (i = 0; i < room; i++)
1277 		tty_insert_flip_char(tport, ((u8 *)sg_virt(&s->sg_rx[active]))[i],
1278 				     TTY_NORMAL);
1279 
1280 	port->icount.rx += room;
1281 
1282 	return room;
1283 }
1284 
1285 static void sci_dma_rx_complete(void *arg)
1286 {
1287 	struct sci_port *s = arg;
1288 	struct uart_port *port = &s->port;
1289 	unsigned long flags;
1290 	int count;
1291 
1292 	dev_dbg(port->dev, "%s(%d) active #%d\n", __func__, port->line, s->active_rx);
1293 
1294 	spin_lock_irqsave(&port->lock, flags);
1295 
1296 	count = sci_dma_rx_push(s, s->buf_len_rx);
1297 
1298 	mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1299 
1300 	spin_unlock_irqrestore(&port->lock, flags);
1301 
1302 	if (count)
1303 		tty_flip_buffer_push(&port->state->port);
1304 
1305 	schedule_work(&s->work_rx);
1306 }
1307 
1308 static void sci_rx_dma_release(struct sci_port *s, bool enable_pio)
1309 {
1310 	struct dma_chan *chan = s->chan_rx;
1311 	struct uart_port *port = &s->port;
1312 
1313 	s->chan_rx = NULL;
1314 	s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL;
1315 	dma_release_channel(chan);
1316 	if (sg_dma_address(&s->sg_rx[0]))
1317 		dma_free_coherent(port->dev, s->buf_len_rx * 2,
1318 				  sg_virt(&s->sg_rx[0]), sg_dma_address(&s->sg_rx[0]));
1319 	if (enable_pio)
1320 		sci_start_rx(port);
1321 }
1322 
1323 static void sci_tx_dma_release(struct sci_port *s, bool enable_pio)
1324 {
1325 	struct dma_chan *chan = s->chan_tx;
1326 	struct uart_port *port = &s->port;
1327 
1328 	s->chan_tx = NULL;
1329 	s->cookie_tx = -EINVAL;
1330 	dma_release_channel(chan);
1331 	if (enable_pio)
1332 		sci_start_tx(port);
1333 }
1334 
1335 static void sci_submit_rx(struct sci_port *s)
1336 {
1337 	struct dma_chan *chan = s->chan_rx;
1338 	int i;
1339 
1340 	for (i = 0; i < 2; i++) {
1341 		struct scatterlist *sg = &s->sg_rx[i];
1342 		struct dma_async_tx_descriptor *desc;
1343 
1344 		desc = dmaengine_prep_slave_sg(chan,
1345 			sg, 1, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
1346 
1347 		if (desc) {
1348 			s->desc_rx[i] = desc;
1349 			desc->callback = sci_dma_rx_complete;
1350 			desc->callback_param = s;
1351 			s->cookie_rx[i] = desc->tx_submit(desc);
1352 		}
1353 
1354 		if (!desc || s->cookie_rx[i] < 0) {
1355 			if (i) {
1356 				async_tx_ack(s->desc_rx[0]);
1357 				s->cookie_rx[0] = -EINVAL;
1358 			}
1359 			if (desc) {
1360 				async_tx_ack(desc);
1361 				s->cookie_rx[i] = -EINVAL;
1362 			}
1363 			dev_warn(s->port.dev,
1364 				 "failed to re-start DMA, using PIO\n");
1365 			sci_rx_dma_release(s, true);
1366 			return;
1367 		}
1368 		dev_dbg(s->port.dev, "%s(): cookie %d to #%d\n", __func__,
1369 			s->cookie_rx[i], i);
1370 	}
1371 
1372 	s->active_rx = s->cookie_rx[0];
1373 
1374 	dma_async_issue_pending(chan);
1375 }
1376 
1377 static void work_fn_rx(struct work_struct *work)
1378 {
1379 	struct sci_port *s = container_of(work, struct sci_port, work_rx);
1380 	struct uart_port *port = &s->port;
1381 	struct dma_async_tx_descriptor *desc;
1382 	int new;
1383 
1384 	if (s->active_rx == s->cookie_rx[0]) {
1385 		new = 0;
1386 	} else if (s->active_rx == s->cookie_rx[1]) {
1387 		new = 1;
1388 	} else {
1389 		dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
1390 		return;
1391 	}
1392 	desc = s->desc_rx[new];
1393 
1394 	if (dma_async_is_tx_complete(s->chan_rx, s->active_rx, NULL, NULL) !=
1395 	    DMA_COMPLETE) {
1396 		/* Handle incomplete DMA receive */
1397 		struct dma_chan *chan = s->chan_rx;
1398 		struct shdma_desc *sh_desc = container_of(desc,
1399 					struct shdma_desc, async_tx);
1400 		unsigned long flags;
1401 		int count;
1402 
1403 		chan->device->device_control(chan, DMA_TERMINATE_ALL, 0);
1404 		dev_dbg(port->dev, "Read %zu bytes with cookie %d\n",
1405 			sh_desc->partial, sh_desc->cookie);
1406 
1407 		spin_lock_irqsave(&port->lock, flags);
1408 		count = sci_dma_rx_push(s, sh_desc->partial);
1409 		spin_unlock_irqrestore(&port->lock, flags);
1410 
1411 		if (count)
1412 			tty_flip_buffer_push(&port->state->port);
1413 
1414 		sci_submit_rx(s);
1415 
1416 		return;
1417 	}
1418 
1419 	s->cookie_rx[new] = desc->tx_submit(desc);
1420 	if (s->cookie_rx[new] < 0) {
1421 		dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1422 		sci_rx_dma_release(s, true);
1423 		return;
1424 	}
1425 
1426 	s->active_rx = s->cookie_rx[!new];
1427 
1428 	dev_dbg(port->dev, "%s: cookie %d #%d, new active #%d\n", __func__,
1429 		s->cookie_rx[new], new, s->active_rx);
1430 }
1431 
1432 static void work_fn_tx(struct work_struct *work)
1433 {
1434 	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1435 	struct dma_async_tx_descriptor *desc;
1436 	struct dma_chan *chan = s->chan_tx;
1437 	struct uart_port *port = &s->port;
1438 	struct circ_buf *xmit = &port->state->xmit;
1439 	struct scatterlist *sg = &s->sg_tx;
1440 
1441 	/*
1442 	 * DMA is idle now.
1443 	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1444 	 * offsets and lengths. Since it is a circular buffer, we have to
1445 	 * transmit till the end, and then the rest. Take the port lock to get a
1446 	 * consistent xmit buffer state.
1447 	 */
1448 	spin_lock_irq(&port->lock);
1449 	sg->offset = xmit->tail & (UART_XMIT_SIZE - 1);
1450 	sg_dma_address(sg) = (sg_dma_address(sg) & ~(UART_XMIT_SIZE - 1)) +
1451 		sg->offset;
1452 	sg_dma_len(sg) = min((int)CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
1453 		CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
1454 	spin_unlock_irq(&port->lock);
1455 
1456 	BUG_ON(!sg_dma_len(sg));
1457 
1458 	desc = dmaengine_prep_slave_sg(chan,
1459 			sg, s->sg_len_tx, DMA_MEM_TO_DEV,
1460 			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1461 	if (!desc) {
1462 		/* switch to PIO */
1463 		sci_tx_dma_release(s, true);
1464 		return;
1465 	}
1466 
1467 	dma_sync_sg_for_device(port->dev, sg, 1, DMA_TO_DEVICE);
1468 
1469 	spin_lock_irq(&port->lock);
1470 	s->desc_tx = desc;
1471 	desc->callback = sci_dma_tx_complete;
1472 	desc->callback_param = s;
1473 	spin_unlock_irq(&port->lock);
1474 	s->cookie_tx = desc->tx_submit(desc);
1475 	if (s->cookie_tx < 0) {
1476 		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1477 		/* switch to PIO */
1478 		sci_tx_dma_release(s, true);
1479 		return;
1480 	}
1481 
1482 	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n", __func__,
1483 		xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
1484 
1485 	dma_async_issue_pending(chan);
1486 }
1487 #endif
1488 
1489 static void sci_start_tx(struct uart_port *port)
1490 {
1491 	struct sci_port *s = to_sci_port(port);
1492 	unsigned short ctrl;
1493 
1494 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1495 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1496 		u16 new, scr = serial_port_in(port, SCSCR);
1497 		if (s->chan_tx)
1498 			new = scr | 0x8000;
1499 		else
1500 			new = scr & ~0x8000;
1501 		if (new != scr)
1502 			serial_port_out(port, SCSCR, new);
1503 	}
1504 
1505 	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
1506 	    s->cookie_tx < 0) {
1507 		s->cookie_tx = 0;
1508 		schedule_work(&s->work_tx);
1509 	}
1510 #endif
1511 
1512 	if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1513 		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
1514 		ctrl = serial_port_in(port, SCSCR);
1515 		serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
1516 	}
1517 }
1518 
1519 static void sci_stop_tx(struct uart_port *port)
1520 {
1521 	unsigned short ctrl;
1522 
1523 	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
1524 	ctrl = serial_port_in(port, SCSCR);
1525 
1526 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1527 		ctrl &= ~0x8000;
1528 
1529 	ctrl &= ~SCSCR_TIE;
1530 
1531 	serial_port_out(port, SCSCR, ctrl);
1532 }
1533 
1534 static void sci_start_rx(struct uart_port *port)
1535 {
1536 	unsigned short ctrl;
1537 
1538 	ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
1539 
1540 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1541 		ctrl &= ~0x4000;
1542 
1543 	serial_port_out(port, SCSCR, ctrl);
1544 }
1545 
1546 static void sci_stop_rx(struct uart_port *port)
1547 {
1548 	unsigned short ctrl;
1549 
1550 	ctrl = serial_port_in(port, SCSCR);
1551 
1552 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1553 		ctrl &= ~0x4000;
1554 
1555 	ctrl &= ~port_rx_irq_mask(port);
1556 
1557 	serial_port_out(port, SCSCR, ctrl);
1558 }
1559 
1560 static void sci_enable_ms(struct uart_port *port)
1561 {
1562 	/*
1563 	 * Not supported by hardware, always a nop.
1564 	 */
1565 }
1566 
1567 static void sci_break_ctl(struct uart_port *port, int break_state)
1568 {
1569 	struct sci_port *s = to_sci_port(port);
1570 	struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
1571 	unsigned short scscr, scsptr;
1572 
1573 	/* check wheter the port has SCSPTR */
1574 	if (!reg->size) {
1575 		/*
1576 		 * Not supported by hardware. Most parts couple break and rx
1577 		 * interrupts together, with break detection always enabled.
1578 		 */
1579 		return;
1580 	}
1581 
1582 	scsptr = serial_port_in(port, SCSPTR);
1583 	scscr = serial_port_in(port, SCSCR);
1584 
1585 	if (break_state == -1) {
1586 		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
1587 		scscr &= ~SCSCR_TE;
1588 	} else {
1589 		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
1590 		scscr |= SCSCR_TE;
1591 	}
1592 
1593 	serial_port_out(port, SCSPTR, scsptr);
1594 	serial_port_out(port, SCSCR, scscr);
1595 }
1596 
1597 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1598 static bool filter(struct dma_chan *chan, void *slave)
1599 {
1600 	struct sh_dmae_slave *param = slave;
1601 
1602 	dev_dbg(chan->device->dev, "%s: slave ID %d\n", __func__,
1603 		param->shdma_slave.slave_id);
1604 
1605 	chan->private = &param->shdma_slave;
1606 	return true;
1607 }
1608 
1609 static void rx_timer_fn(unsigned long arg)
1610 {
1611 	struct sci_port *s = (struct sci_port *)arg;
1612 	struct uart_port *port = &s->port;
1613 	u16 scr = serial_port_in(port, SCSCR);
1614 
1615 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1616 		scr &= ~0x4000;
1617 		enable_irq(s->irqs[SCIx_RXI_IRQ]);
1618 	}
1619 	serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1620 	dev_dbg(port->dev, "DMA Rx timed out\n");
1621 	schedule_work(&s->work_rx);
1622 }
1623 
1624 static void sci_request_dma(struct uart_port *port)
1625 {
1626 	struct sci_port *s = to_sci_port(port);
1627 	struct sh_dmae_slave *param;
1628 	struct dma_chan *chan;
1629 	dma_cap_mask_t mask;
1630 	int nent;
1631 
1632 	dev_dbg(port->dev, "%s: port %d\n", __func__,
1633 		port->line);
1634 
1635 	if (s->cfg->dma_slave_tx <= 0 || s->cfg->dma_slave_rx <= 0)
1636 		return;
1637 
1638 	dma_cap_zero(mask);
1639 	dma_cap_set(DMA_SLAVE, mask);
1640 
1641 	param = &s->param_tx;
1642 
1643 	/* Slave ID, e.g., SHDMA_SLAVE_SCIF0_TX */
1644 	param->shdma_slave.slave_id = s->cfg->dma_slave_tx;
1645 
1646 	s->cookie_tx = -EINVAL;
1647 	chan = dma_request_channel(mask, filter, param);
1648 	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1649 	if (chan) {
1650 		s->chan_tx = chan;
1651 		sg_init_table(&s->sg_tx, 1);
1652 		/* UART circular tx buffer is an aligned page. */
1653 		BUG_ON((uintptr_t)port->state->xmit.buf & ~PAGE_MASK);
1654 		sg_set_page(&s->sg_tx, virt_to_page(port->state->xmit.buf),
1655 			    UART_XMIT_SIZE,
1656 			    (uintptr_t)port->state->xmit.buf & ~PAGE_MASK);
1657 		nent = dma_map_sg(port->dev, &s->sg_tx, 1, DMA_TO_DEVICE);
1658 		if (!nent)
1659 			sci_tx_dma_release(s, false);
1660 		else
1661 			dev_dbg(port->dev, "%s: mapped %d@%p to %pad\n", __func__,
1662 				sg_dma_len(&s->sg_tx), port->state->xmit.buf,
1663 				&sg_dma_address(&s->sg_tx));
1664 
1665 		s->sg_len_tx = nent;
1666 
1667 		INIT_WORK(&s->work_tx, work_fn_tx);
1668 	}
1669 
1670 	param = &s->param_rx;
1671 
1672 	/* Slave ID, e.g., SHDMA_SLAVE_SCIF0_RX */
1673 	param->shdma_slave.slave_id = s->cfg->dma_slave_rx;
1674 
1675 	chan = dma_request_channel(mask, filter, param);
1676 	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1677 	if (chan) {
1678 		dma_addr_t dma[2];
1679 		void *buf[2];
1680 		int i;
1681 
1682 		s->chan_rx = chan;
1683 
1684 		s->buf_len_rx = 2 * max(16, (int)port->fifosize);
1685 		buf[0] = dma_alloc_coherent(port->dev, s->buf_len_rx * 2,
1686 					    &dma[0], GFP_KERNEL);
1687 
1688 		if (!buf[0]) {
1689 			dev_warn(port->dev,
1690 				 "failed to allocate dma buffer, using PIO\n");
1691 			sci_rx_dma_release(s, true);
1692 			return;
1693 		}
1694 
1695 		buf[1] = buf[0] + s->buf_len_rx;
1696 		dma[1] = dma[0] + s->buf_len_rx;
1697 
1698 		for (i = 0; i < 2; i++) {
1699 			struct scatterlist *sg = &s->sg_rx[i];
1700 
1701 			sg_init_table(sg, 1);
1702 			sg_set_page(sg, virt_to_page(buf[i]), s->buf_len_rx,
1703 				    (uintptr_t)buf[i] & ~PAGE_MASK);
1704 			sg_dma_address(sg) = dma[i];
1705 		}
1706 
1707 		INIT_WORK(&s->work_rx, work_fn_rx);
1708 		setup_timer(&s->rx_timer, rx_timer_fn, (unsigned long)s);
1709 
1710 		sci_submit_rx(s);
1711 	}
1712 }
1713 
1714 static void sci_free_dma(struct uart_port *port)
1715 {
1716 	struct sci_port *s = to_sci_port(port);
1717 
1718 	if (s->chan_tx)
1719 		sci_tx_dma_release(s, false);
1720 	if (s->chan_rx)
1721 		sci_rx_dma_release(s, false);
1722 }
1723 #else
1724 static inline void sci_request_dma(struct uart_port *port)
1725 {
1726 }
1727 
1728 static inline void sci_free_dma(struct uart_port *port)
1729 {
1730 }
1731 #endif
1732 
1733 static int sci_startup(struct uart_port *port)
1734 {
1735 	struct sci_port *s = to_sci_port(port);
1736 	unsigned long flags;
1737 	int ret;
1738 
1739 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1740 
1741 	ret = sci_request_irq(s);
1742 	if (unlikely(ret < 0))
1743 		return ret;
1744 
1745 	sci_request_dma(port);
1746 
1747 	spin_lock_irqsave(&port->lock, flags);
1748 	sci_start_tx(port);
1749 	sci_start_rx(port);
1750 	spin_unlock_irqrestore(&port->lock, flags);
1751 
1752 	return 0;
1753 }
1754 
1755 static void sci_shutdown(struct uart_port *port)
1756 {
1757 	struct sci_port *s = to_sci_port(port);
1758 	unsigned long flags;
1759 
1760 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1761 
1762 	spin_lock_irqsave(&port->lock, flags);
1763 	sci_stop_rx(port);
1764 	sci_stop_tx(port);
1765 	spin_unlock_irqrestore(&port->lock, flags);
1766 
1767 	sci_free_dma(port);
1768 	sci_free_irq(s);
1769 }
1770 
1771 static unsigned int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
1772 				   unsigned long freq)
1773 {
1774 	if (s->sampling_rate)
1775 		return DIV_ROUND_CLOSEST(freq, s->sampling_rate * bps) - 1;
1776 
1777 	/* Warn, but use a safe default */
1778 	WARN_ON(1);
1779 
1780 	return ((freq + 16 * bps) / (32 * bps) - 1);
1781 }
1782 
1783 /* calculate sample rate, BRR, and clock select for HSCIF */
1784 static void sci_baud_calc_hscif(unsigned int bps, unsigned long freq,
1785 				int *brr, unsigned int *srr,
1786 				unsigned int *cks)
1787 {
1788 	int sr, c, br, err;
1789 	int min_err = 1000; /* 100% */
1790 
1791 	/* Find the combination of sample rate and clock select with the
1792 	   smallest deviation from the desired baud rate. */
1793 	for (sr = 8; sr <= 32; sr++) {
1794 		for (c = 0; c <= 3; c++) {
1795 			/* integerized formulas from HSCIF documentation */
1796 			br = freq / (sr * (1 << (2 * c + 1)) * bps) - 1;
1797 			if (br < 0 || br > 255)
1798 				continue;
1799 			err = freq / ((br + 1) * bps * sr *
1800 			      (1 << (2 * c + 1)) / 1000) - 1000;
1801 			if (min_err > err) {
1802 				min_err = err;
1803 				*brr = br;
1804 				*srr = sr - 1;
1805 				*cks = c;
1806 			}
1807 		}
1808 	}
1809 
1810 	if (min_err == 1000) {
1811 		WARN_ON(1);
1812 		/* use defaults */
1813 		*brr = 255;
1814 		*srr = 15;
1815 		*cks = 0;
1816 	}
1817 }
1818 
1819 static void sci_reset(struct uart_port *port)
1820 {
1821 	struct plat_sci_reg *reg;
1822 	unsigned int status;
1823 
1824 	do {
1825 		status = serial_port_in(port, SCxSR);
1826 	} while (!(status & SCxSR_TEND(port)));
1827 
1828 	serial_port_out(port, SCSCR, 0x00);	/* TE=0, RE=0, CKE1=0 */
1829 
1830 	reg = sci_getreg(port, SCFCR);
1831 	if (reg->size)
1832 		serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
1833 }
1834 
1835 static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
1836 			    struct ktermios *old)
1837 {
1838 	struct sci_port *s = to_sci_port(port);
1839 	struct plat_sci_reg *reg;
1840 	unsigned int baud, smr_val, max_baud, cks = 0;
1841 	int t = -1;
1842 	unsigned int srr = 15;
1843 
1844 	/*
1845 	 * earlyprintk comes here early on with port->uartclk set to zero.
1846 	 * the clock framework is not up and running at this point so here
1847 	 * we assume that 115200 is the maximum baud rate. please note that
1848 	 * the baud rate is not programmed during earlyprintk - it is assumed
1849 	 * that the previous boot loader has enabled required clocks and
1850 	 * setup the baud rate generator hardware for us already.
1851 	 */
1852 	max_baud = port->uartclk ? port->uartclk / 16 : 115200;
1853 
1854 	baud = uart_get_baud_rate(port, termios, old, 0, max_baud);
1855 	if (likely(baud && port->uartclk)) {
1856 		if (s->cfg->type == PORT_HSCIF) {
1857 			sci_baud_calc_hscif(baud, port->uartclk, &t, &srr,
1858 					    &cks);
1859 		} else {
1860 			t = sci_scbrr_calc(s, baud, port->uartclk);
1861 			for (cks = 0; t >= 256 && cks <= 3; cks++)
1862 				t >>= 2;
1863 		}
1864 	}
1865 
1866 	sci_port_enable(s);
1867 
1868 	sci_reset(port);
1869 
1870 	smr_val = serial_port_in(port, SCSMR) & 3;
1871 
1872 	if ((termios->c_cflag & CSIZE) == CS7)
1873 		smr_val |= 0x40;
1874 	if (termios->c_cflag & PARENB)
1875 		smr_val |= 0x20;
1876 	if (termios->c_cflag & PARODD)
1877 		smr_val |= 0x30;
1878 	if (termios->c_cflag & CSTOPB)
1879 		smr_val |= 0x08;
1880 
1881 	uart_update_timeout(port, termios->c_cflag, baud);
1882 
1883 	dev_dbg(port->dev, "%s: SMR %x, cks %x, t %x, SCSCR %x\n",
1884 		__func__, smr_val, cks, t, s->cfg->scscr);
1885 
1886 	if (t >= 0) {
1887 		serial_port_out(port, SCSMR, (smr_val & ~3) | cks);
1888 		serial_port_out(port, SCBRR, t);
1889 		reg = sci_getreg(port, HSSRR);
1890 		if (reg->size)
1891 			serial_port_out(port, HSSRR, srr | HSCIF_SRE);
1892 		udelay((1000000+(baud-1)) / baud); /* Wait one bit interval */
1893 	} else
1894 		serial_port_out(port, SCSMR, smr_val);
1895 
1896 	sci_init_pins(port, termios->c_cflag);
1897 
1898 	reg = sci_getreg(port, SCFCR);
1899 	if (reg->size) {
1900 		unsigned short ctrl = serial_port_in(port, SCFCR);
1901 
1902 		if (s->cfg->capabilities & SCIx_HAVE_RTSCTS) {
1903 			if (termios->c_cflag & CRTSCTS)
1904 				ctrl |= SCFCR_MCE;
1905 			else
1906 				ctrl &= ~SCFCR_MCE;
1907 		}
1908 
1909 		/*
1910 		 * As we've done a sci_reset() above, ensure we don't
1911 		 * interfere with the FIFOs while toggling MCE. As the
1912 		 * reset values could still be set, simply mask them out.
1913 		 */
1914 		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
1915 
1916 		serial_port_out(port, SCFCR, ctrl);
1917 	}
1918 
1919 	serial_port_out(port, SCSCR, s->cfg->scscr);
1920 
1921 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1922 	/*
1923 	 * Calculate delay for 1.5 DMA buffers: see
1924 	 * drivers/serial/serial_core.c::uart_update_timeout(). With 10 bits
1925 	 * (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above function
1926 	 * calculates 1 jiffie for the data plus 5 jiffies for the "slop(e)."
1927 	 * Then below we calculate 3 jiffies (12ms) for 1.5 DMA buffers (3 FIFO
1928 	 * sizes), but it has been found out experimentally, that this is not
1929 	 * enough: the driver too often needlessly runs on a DMA timeout. 20ms
1930 	 * as a minimum seem to work perfectly.
1931 	 */
1932 	if (s->chan_rx) {
1933 		s->rx_timeout = (port->timeout - HZ / 50) * s->buf_len_rx * 3 /
1934 			port->fifosize / 2;
1935 		dev_dbg(port->dev,
1936 			"DMA Rx t-out %ums, tty t-out %u jiffies\n",
1937 			s->rx_timeout * 1000 / HZ, port->timeout);
1938 		if (s->rx_timeout < msecs_to_jiffies(20))
1939 			s->rx_timeout = msecs_to_jiffies(20);
1940 	}
1941 #endif
1942 
1943 	if ((termios->c_cflag & CREAD) != 0)
1944 		sci_start_rx(port);
1945 
1946 	sci_port_disable(s);
1947 }
1948 
1949 static void sci_pm(struct uart_port *port, unsigned int state,
1950 		   unsigned int oldstate)
1951 {
1952 	struct sci_port *sci_port = to_sci_port(port);
1953 
1954 	switch (state) {
1955 	case 3:
1956 		sci_port_disable(sci_port);
1957 		break;
1958 	default:
1959 		sci_port_enable(sci_port);
1960 		break;
1961 	}
1962 }
1963 
1964 static const char *sci_type(struct uart_port *port)
1965 {
1966 	switch (port->type) {
1967 	case PORT_IRDA:
1968 		return "irda";
1969 	case PORT_SCI:
1970 		return "sci";
1971 	case PORT_SCIF:
1972 		return "scif";
1973 	case PORT_SCIFA:
1974 		return "scifa";
1975 	case PORT_SCIFB:
1976 		return "scifb";
1977 	case PORT_HSCIF:
1978 		return "hscif";
1979 	}
1980 
1981 	return NULL;
1982 }
1983 
1984 static inline unsigned long sci_port_size(struct uart_port *port)
1985 {
1986 	/*
1987 	 * Pick an arbitrary size that encapsulates all of the base
1988 	 * registers by default. This can be optimized later, or derived
1989 	 * from platform resource data at such a time that ports begin to
1990 	 * behave more erratically.
1991 	 */
1992 	if (port->type == PORT_HSCIF)
1993 		return 96;
1994 	else
1995 		return 64;
1996 }
1997 
1998 static int sci_remap_port(struct uart_port *port)
1999 {
2000 	unsigned long size = sci_port_size(port);
2001 
2002 	/*
2003 	 * Nothing to do if there's already an established membase.
2004 	 */
2005 	if (port->membase)
2006 		return 0;
2007 
2008 	if (port->flags & UPF_IOREMAP) {
2009 		port->membase = ioremap_nocache(port->mapbase, size);
2010 		if (unlikely(!port->membase)) {
2011 			dev_err(port->dev, "can't remap port#%d\n", port->line);
2012 			return -ENXIO;
2013 		}
2014 	} else {
2015 		/*
2016 		 * For the simple (and majority of) cases where we don't
2017 		 * need to do any remapping, just cast the cookie
2018 		 * directly.
2019 		 */
2020 		port->membase = (void __iomem *)port->mapbase;
2021 	}
2022 
2023 	return 0;
2024 }
2025 
2026 static void sci_release_port(struct uart_port *port)
2027 {
2028 	if (port->flags & UPF_IOREMAP) {
2029 		iounmap(port->membase);
2030 		port->membase = NULL;
2031 	}
2032 
2033 	release_mem_region(port->mapbase, sci_port_size(port));
2034 }
2035 
2036 static int sci_request_port(struct uart_port *port)
2037 {
2038 	unsigned long size = sci_port_size(port);
2039 	struct resource *res;
2040 	int ret;
2041 
2042 	res = request_mem_region(port->mapbase, size, dev_name(port->dev));
2043 	if (unlikely(res == NULL))
2044 		return -EBUSY;
2045 
2046 	ret = sci_remap_port(port);
2047 	if (unlikely(ret != 0)) {
2048 		release_resource(res);
2049 		return ret;
2050 	}
2051 
2052 	return 0;
2053 }
2054 
2055 static void sci_config_port(struct uart_port *port, int flags)
2056 {
2057 	if (flags & UART_CONFIG_TYPE) {
2058 		struct sci_port *sport = to_sci_port(port);
2059 
2060 		port->type = sport->cfg->type;
2061 		sci_request_port(port);
2062 	}
2063 }
2064 
2065 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2066 {
2067 	if (ser->baud_base < 2400)
2068 		/* No paper tape reader for Mitch.. */
2069 		return -EINVAL;
2070 
2071 	return 0;
2072 }
2073 
2074 static struct uart_ops sci_uart_ops = {
2075 	.tx_empty	= sci_tx_empty,
2076 	.set_mctrl	= sci_set_mctrl,
2077 	.get_mctrl	= sci_get_mctrl,
2078 	.start_tx	= sci_start_tx,
2079 	.stop_tx	= sci_stop_tx,
2080 	.stop_rx	= sci_stop_rx,
2081 	.enable_ms	= sci_enable_ms,
2082 	.break_ctl	= sci_break_ctl,
2083 	.startup	= sci_startup,
2084 	.shutdown	= sci_shutdown,
2085 	.set_termios	= sci_set_termios,
2086 	.pm		= sci_pm,
2087 	.type		= sci_type,
2088 	.release_port	= sci_release_port,
2089 	.request_port	= sci_request_port,
2090 	.config_port	= sci_config_port,
2091 	.verify_port	= sci_verify_port,
2092 #ifdef CONFIG_CONSOLE_POLL
2093 	.poll_get_char	= sci_poll_get_char,
2094 	.poll_put_char	= sci_poll_put_char,
2095 #endif
2096 };
2097 
2098 static int sci_init_single(struct platform_device *dev,
2099 			   struct sci_port *sci_port, unsigned int index,
2100 			   struct plat_sci_port *p, bool early)
2101 {
2102 	struct uart_port *port = &sci_port->port;
2103 	const struct resource *res;
2104 	unsigned int sampling_rate;
2105 	unsigned int i;
2106 	int ret;
2107 
2108 	sci_port->cfg	= p;
2109 
2110 	port->ops	= &sci_uart_ops;
2111 	port->iotype	= UPIO_MEM;
2112 	port->line	= index;
2113 
2114 	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2115 	if (res == NULL)
2116 		return -ENOMEM;
2117 
2118 	port->mapbase = res->start;
2119 
2120 	for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i)
2121 		sci_port->irqs[i] = platform_get_irq(dev, i);
2122 
2123 	/* The SCI generates several interrupts. They can be muxed together or
2124 	 * connected to different interrupt lines. In the muxed case only one
2125 	 * interrupt resource is specified. In the non-muxed case three or four
2126 	 * interrupt resources are specified, as the BRI interrupt is optional.
2127 	 */
2128 	if (sci_port->irqs[0] < 0)
2129 		return -ENXIO;
2130 
2131 	if (sci_port->irqs[1] < 0) {
2132 		sci_port->irqs[1] = sci_port->irqs[0];
2133 		sci_port->irqs[2] = sci_port->irqs[0];
2134 		sci_port->irqs[3] = sci_port->irqs[0];
2135 	}
2136 
2137 	if (p->regtype == SCIx_PROBE_REGTYPE) {
2138 		ret = sci_probe_regmap(p);
2139 		if (unlikely(ret))
2140 			return ret;
2141 	}
2142 
2143 	switch (p->type) {
2144 	case PORT_SCIFB:
2145 		port->fifosize = 256;
2146 		sci_port->overrun_bit = 9;
2147 		sampling_rate = 16;
2148 		break;
2149 	case PORT_HSCIF:
2150 		port->fifosize = 128;
2151 		sampling_rate = 0;
2152 		sci_port->overrun_bit = 0;
2153 		break;
2154 	case PORT_SCIFA:
2155 		port->fifosize = 64;
2156 		sci_port->overrun_bit = 9;
2157 		sampling_rate = 16;
2158 		break;
2159 	case PORT_SCIF:
2160 		port->fifosize = 16;
2161 		if (p->regtype == SCIx_SH7705_SCIF_REGTYPE) {
2162 			sci_port->overrun_bit = 9;
2163 			sampling_rate = 16;
2164 		} else {
2165 			sci_port->overrun_bit = 0;
2166 			sampling_rate = 32;
2167 		}
2168 		break;
2169 	default:
2170 		port->fifosize = 1;
2171 		sci_port->overrun_bit = 5;
2172 		sampling_rate = 32;
2173 		break;
2174 	}
2175 
2176 	/* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2177 	 * match the SoC datasheet, this should be investigated. Let platform
2178 	 * data override the sampling rate for now.
2179 	 */
2180 	sci_port->sampling_rate = p->sampling_rate ? p->sampling_rate
2181 				: sampling_rate;
2182 
2183 	if (!early) {
2184 		sci_port->iclk = clk_get(&dev->dev, "sci_ick");
2185 		if (IS_ERR(sci_port->iclk)) {
2186 			sci_port->iclk = clk_get(&dev->dev, "peripheral_clk");
2187 			if (IS_ERR(sci_port->iclk)) {
2188 				dev_err(&dev->dev, "can't get iclk\n");
2189 				return PTR_ERR(sci_port->iclk);
2190 			}
2191 		}
2192 
2193 		/*
2194 		 * The function clock is optional, ignore it if we can't
2195 		 * find it.
2196 		 */
2197 		sci_port->fclk = clk_get(&dev->dev, "sci_fck");
2198 		if (IS_ERR(sci_port->fclk))
2199 			sci_port->fclk = NULL;
2200 
2201 		port->dev = &dev->dev;
2202 
2203 		pm_runtime_enable(&dev->dev);
2204 	}
2205 
2206 	sci_port->break_timer.data = (unsigned long)sci_port;
2207 	sci_port->break_timer.function = sci_break_timer;
2208 	init_timer(&sci_port->break_timer);
2209 
2210 	/*
2211 	 * Establish some sensible defaults for the error detection.
2212 	 */
2213 	sci_port->error_mask = (p->type == PORT_SCI) ?
2214 			SCI_DEFAULT_ERROR_MASK : SCIF_DEFAULT_ERROR_MASK;
2215 
2216 	/*
2217 	 * Establish sensible defaults for the overrun detection, unless
2218 	 * the part has explicitly disabled support for it.
2219 	 */
2220 
2221 	/*
2222 	 * Make the error mask inclusive of overrun detection, if
2223 	 * supported.
2224 	 */
2225 	sci_port->error_mask |= 1 << sci_port->overrun_bit;
2226 
2227 	port->type		= p->type;
2228 	port->flags		= UPF_FIXED_PORT | p->flags;
2229 	port->regshift		= p->regshift;
2230 
2231 	/*
2232 	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
2233 	 * for the multi-IRQ ports, which is where we are primarily
2234 	 * concerned with the shutdown path synchronization.
2235 	 *
2236 	 * For the muxed case there's nothing more to do.
2237 	 */
2238 	port->irq		= sci_port->irqs[SCIx_RXI_IRQ];
2239 	port->irqflags		= 0;
2240 
2241 	port->serial_in		= sci_serial_in;
2242 	port->serial_out	= sci_serial_out;
2243 
2244 	if (p->dma_slave_tx > 0 && p->dma_slave_rx > 0)
2245 		dev_dbg(port->dev, "DMA tx %d, rx %d\n",
2246 			p->dma_slave_tx, p->dma_slave_rx);
2247 
2248 	return 0;
2249 }
2250 
2251 static void sci_cleanup_single(struct sci_port *port)
2252 {
2253 	clk_put(port->iclk);
2254 	clk_put(port->fclk);
2255 
2256 	pm_runtime_disable(port->port.dev);
2257 }
2258 
2259 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
2260 static void serial_console_putchar(struct uart_port *port, int ch)
2261 {
2262 	sci_poll_put_char(port, ch);
2263 }
2264 
2265 /*
2266  *	Print a string to the serial port trying not to disturb
2267  *	any possible real use of the port...
2268  */
2269 static void serial_console_write(struct console *co, const char *s,
2270 				 unsigned count)
2271 {
2272 	struct sci_port *sci_port = &sci_ports[co->index];
2273 	struct uart_port *port = &sci_port->port;
2274 	unsigned short bits, ctrl;
2275 	unsigned long flags;
2276 	int locked = 1;
2277 
2278 	local_irq_save(flags);
2279 	if (port->sysrq)
2280 		locked = 0;
2281 	else if (oops_in_progress)
2282 		locked = spin_trylock(&port->lock);
2283 	else
2284 		spin_lock(&port->lock);
2285 
2286 	/* first save the SCSCR then disable the interrupts */
2287 	ctrl = serial_port_in(port, SCSCR);
2288 	serial_port_out(port, SCSCR, sci_port->cfg->scscr);
2289 
2290 	uart_console_write(port, s, count, serial_console_putchar);
2291 
2292 	/* wait until fifo is empty and last bit has been transmitted */
2293 	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
2294 	while ((serial_port_in(port, SCxSR) & bits) != bits)
2295 		cpu_relax();
2296 
2297 	/* restore the SCSCR */
2298 	serial_port_out(port, SCSCR, ctrl);
2299 
2300 	if (locked)
2301 		spin_unlock(&port->lock);
2302 	local_irq_restore(flags);
2303 }
2304 
2305 static int serial_console_setup(struct console *co, char *options)
2306 {
2307 	struct sci_port *sci_port;
2308 	struct uart_port *port;
2309 	int baud = 115200;
2310 	int bits = 8;
2311 	int parity = 'n';
2312 	int flow = 'n';
2313 	int ret;
2314 
2315 	/*
2316 	 * Refuse to handle any bogus ports.
2317 	 */
2318 	if (co->index < 0 || co->index >= SCI_NPORTS)
2319 		return -ENODEV;
2320 
2321 	sci_port = &sci_ports[co->index];
2322 	port = &sci_port->port;
2323 
2324 	/*
2325 	 * Refuse to handle uninitialized ports.
2326 	 */
2327 	if (!port->ops)
2328 		return -ENODEV;
2329 
2330 	ret = sci_remap_port(port);
2331 	if (unlikely(ret != 0))
2332 		return ret;
2333 
2334 	if (options)
2335 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2336 
2337 	return uart_set_options(port, co, baud, parity, bits, flow);
2338 }
2339 
2340 static struct console serial_console = {
2341 	.name		= "ttySC",
2342 	.device		= uart_console_device,
2343 	.write		= serial_console_write,
2344 	.setup		= serial_console_setup,
2345 	.flags		= CON_PRINTBUFFER,
2346 	.index		= -1,
2347 	.data		= &sci_uart_driver,
2348 };
2349 
2350 static struct console early_serial_console = {
2351 	.name           = "early_ttySC",
2352 	.write          = serial_console_write,
2353 	.flags          = CON_PRINTBUFFER,
2354 	.index		= -1,
2355 };
2356 
2357 static char early_serial_buf[32];
2358 
2359 static int sci_probe_earlyprintk(struct platform_device *pdev)
2360 {
2361 	struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
2362 
2363 	if (early_serial_console.data)
2364 		return -EEXIST;
2365 
2366 	early_serial_console.index = pdev->id;
2367 
2368 	sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
2369 
2370 	serial_console_setup(&early_serial_console, early_serial_buf);
2371 
2372 	if (!strstr(early_serial_buf, "keep"))
2373 		early_serial_console.flags |= CON_BOOT;
2374 
2375 	register_console(&early_serial_console);
2376 	return 0;
2377 }
2378 
2379 #define SCI_CONSOLE	(&serial_console)
2380 
2381 #else
2382 static inline int sci_probe_earlyprintk(struct platform_device *pdev)
2383 {
2384 	return -EINVAL;
2385 }
2386 
2387 #define SCI_CONSOLE	NULL
2388 
2389 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE */
2390 
2391 static char banner[] __initdata =
2392 	KERN_INFO "SuperH (H)SCI(F) driver initialized\n";
2393 
2394 static struct uart_driver sci_uart_driver = {
2395 	.owner		= THIS_MODULE,
2396 	.driver_name	= "sci",
2397 	.dev_name	= "ttySC",
2398 	.major		= SCI_MAJOR,
2399 	.minor		= SCI_MINOR_START,
2400 	.nr		= SCI_NPORTS,
2401 	.cons		= SCI_CONSOLE,
2402 };
2403 
2404 static int sci_remove(struct platform_device *dev)
2405 {
2406 	struct sci_port *port = platform_get_drvdata(dev);
2407 
2408 	cpufreq_unregister_notifier(&port->freq_transition,
2409 				    CPUFREQ_TRANSITION_NOTIFIER);
2410 
2411 	uart_remove_one_port(&sci_uart_driver, &port->port);
2412 
2413 	sci_cleanup_single(port);
2414 
2415 	return 0;
2416 }
2417 
2418 static int sci_probe_single(struct platform_device *dev,
2419 				      unsigned int index,
2420 				      struct plat_sci_port *p,
2421 				      struct sci_port *sciport)
2422 {
2423 	int ret;
2424 
2425 	/* Sanity check */
2426 	if (unlikely(index >= SCI_NPORTS)) {
2427 		dev_notice(&dev->dev, "Attempting to register port "
2428 			   "%d when only %d are available.\n",
2429 			   index+1, SCI_NPORTS);
2430 		dev_notice(&dev->dev, "Consider bumping "
2431 			   "CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
2432 		return -EINVAL;
2433 	}
2434 
2435 	ret = sci_init_single(dev, sciport, index, p, false);
2436 	if (ret)
2437 		return ret;
2438 
2439 	ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
2440 	if (ret) {
2441 		sci_cleanup_single(sciport);
2442 		return ret;
2443 	}
2444 
2445 	return 0;
2446 }
2447 
2448 static int sci_probe(struct platform_device *dev)
2449 {
2450 	struct plat_sci_port *p = dev_get_platdata(&dev->dev);
2451 	struct sci_port *sp = &sci_ports[dev->id];
2452 	int ret;
2453 
2454 	/*
2455 	 * If we've come here via earlyprintk initialization, head off to
2456 	 * the special early probe. We don't have sufficient device state
2457 	 * to make it beyond this yet.
2458 	 */
2459 	if (is_early_platform_device(dev))
2460 		return sci_probe_earlyprintk(dev);
2461 
2462 	platform_set_drvdata(dev, sp);
2463 
2464 	ret = sci_probe_single(dev, dev->id, p, sp);
2465 	if (ret)
2466 		return ret;
2467 
2468 	sp->freq_transition.notifier_call = sci_notifier;
2469 
2470 	ret = cpufreq_register_notifier(&sp->freq_transition,
2471 					CPUFREQ_TRANSITION_NOTIFIER);
2472 	if (unlikely(ret < 0)) {
2473 		sci_cleanup_single(sp);
2474 		return ret;
2475 	}
2476 
2477 #ifdef CONFIG_SH_STANDARD_BIOS
2478 	sh_bios_gdb_detach();
2479 #endif
2480 
2481 	return 0;
2482 }
2483 
2484 static int sci_suspend(struct device *dev)
2485 {
2486 	struct sci_port *sport = dev_get_drvdata(dev);
2487 
2488 	if (sport)
2489 		uart_suspend_port(&sci_uart_driver, &sport->port);
2490 
2491 	return 0;
2492 }
2493 
2494 static int sci_resume(struct device *dev)
2495 {
2496 	struct sci_port *sport = dev_get_drvdata(dev);
2497 
2498 	if (sport)
2499 		uart_resume_port(&sci_uart_driver, &sport->port);
2500 
2501 	return 0;
2502 }
2503 
2504 static const struct dev_pm_ops sci_dev_pm_ops = {
2505 	.suspend	= sci_suspend,
2506 	.resume		= sci_resume,
2507 };
2508 
2509 static struct platform_driver sci_driver = {
2510 	.probe		= sci_probe,
2511 	.remove		= sci_remove,
2512 	.driver		= {
2513 		.name	= "sh-sci",
2514 		.owner	= THIS_MODULE,
2515 		.pm	= &sci_dev_pm_ops,
2516 	},
2517 };
2518 
2519 static int __init sci_init(void)
2520 {
2521 	int ret;
2522 
2523 	printk(banner);
2524 
2525 	ret = uart_register_driver(&sci_uart_driver);
2526 	if (likely(ret == 0)) {
2527 		ret = platform_driver_register(&sci_driver);
2528 		if (unlikely(ret))
2529 			uart_unregister_driver(&sci_uart_driver);
2530 	}
2531 
2532 	return ret;
2533 }
2534 
2535 static void __exit sci_exit(void)
2536 {
2537 	platform_driver_unregister(&sci_driver);
2538 	uart_unregister_driver(&sci_uart_driver);
2539 }
2540 
2541 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
2542 early_platform_init_buffer("earlyprintk", &sci_driver,
2543 			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
2544 #endif
2545 module_init(sci_init);
2546 module_exit(sci_exit);
2547 
2548 MODULE_LICENSE("GPL");
2549 MODULE_ALIAS("platform:sh-sci");
2550 MODULE_AUTHOR("Paul Mundt");
2551 MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");
2552