1 /* 2 * SuperH on-chip serial module support. (SCI with no FIFO / with FIFO) 3 * 4 * Copyright (C) 2002 - 2011 Paul Mundt 5 * Copyright (C) 2015 Glider bvba 6 * Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007). 7 * 8 * based off of the old drivers/char/sh-sci.c by: 9 * 10 * Copyright (C) 1999, 2000 Niibe Yutaka 11 * Copyright (C) 2000 Sugioka Toshinobu 12 * Modified to support multiple serial ports. Stuart Menefy (May 2000). 13 * Modified to support SecureEdge. David McCullough (2002) 14 * Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003). 15 * Removed SH7300 support (Jul 2007). 16 * 17 * This file is subject to the terms and conditions of the GNU General Public 18 * License. See the file "COPYING" in the main directory of this archive 19 * for more details. 20 */ 21 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) 22 #define SUPPORT_SYSRQ 23 #endif 24 25 #undef DEBUG 26 27 #include <linux/clk.h> 28 #include <linux/console.h> 29 #include <linux/ctype.h> 30 #include <linux/cpufreq.h> 31 #include <linux/delay.h> 32 #include <linux/dmaengine.h> 33 #include <linux/dma-mapping.h> 34 #include <linux/err.h> 35 #include <linux/errno.h> 36 #include <linux/init.h> 37 #include <linux/interrupt.h> 38 #include <linux/ioport.h> 39 #include <linux/major.h> 40 #include <linux/module.h> 41 #include <linux/mm.h> 42 #include <linux/of.h> 43 #include <linux/platform_device.h> 44 #include <linux/pm_runtime.h> 45 #include <linux/scatterlist.h> 46 #include <linux/serial.h> 47 #include <linux/serial_sci.h> 48 #include <linux/sh_dma.h> 49 #include <linux/slab.h> 50 #include <linux/string.h> 51 #include <linux/sysrq.h> 52 #include <linux/timer.h> 53 #include <linux/tty.h> 54 #include <linux/tty_flip.h> 55 56 #ifdef CONFIG_SUPERH 57 #include <asm/sh_bios.h> 58 #endif 59 60 #include "serial_mctrl_gpio.h" 61 #include "sh-sci.h" 62 63 /* Offsets into the sci_port->irqs array */ 64 enum { 65 SCIx_ERI_IRQ, 66 SCIx_RXI_IRQ, 67 SCIx_TXI_IRQ, 68 SCIx_BRI_IRQ, 69 SCIx_NR_IRQS, 70 71 SCIx_MUX_IRQ = SCIx_NR_IRQS, /* special case */ 72 }; 73 74 #define SCIx_IRQ_IS_MUXED(port) \ 75 ((port)->irqs[SCIx_ERI_IRQ] == \ 76 (port)->irqs[SCIx_RXI_IRQ]) || \ 77 ((port)->irqs[SCIx_ERI_IRQ] && \ 78 ((port)->irqs[SCIx_RXI_IRQ] < 0)) 79 80 enum SCI_CLKS { 81 SCI_FCK, /* Functional Clock */ 82 SCI_SCK, /* Optional External Clock */ 83 SCI_BRG_INT, /* Optional BRG Internal Clock Source */ 84 SCI_SCIF_CLK, /* Optional BRG External Clock Source */ 85 SCI_NUM_CLKS 86 }; 87 88 /* Bit x set means sampling rate x + 1 is supported */ 89 #define SCI_SR(x) BIT((x) - 1) 90 #define SCI_SR_RANGE(x, y) GENMASK((y) - 1, (x) - 1) 91 92 #define SCI_SR_SCIFAB SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \ 93 SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \ 94 SCI_SR(19) | SCI_SR(27) 95 96 #define min_sr(_port) ffs((_port)->sampling_rate_mask) 97 #define max_sr(_port) fls((_port)->sampling_rate_mask) 98 99 /* Iterate over all supported sampling rates, from high to low */ 100 #define for_each_sr(_sr, _port) \ 101 for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--) \ 102 if ((_port)->sampling_rate_mask & SCI_SR((_sr))) 103 104 struct sci_port { 105 struct uart_port port; 106 107 /* Platform configuration */ 108 struct plat_sci_port *cfg; 109 unsigned int overrun_reg; 110 unsigned int overrun_mask; 111 unsigned int error_mask; 112 unsigned int error_clear; 113 unsigned int sampling_rate_mask; 114 resource_size_t reg_size; 115 struct mctrl_gpios *gpios; 116 117 /* Break timer */ 118 struct timer_list break_timer; 119 int break_flag; 120 121 /* Clocks */ 122 struct clk *clks[SCI_NUM_CLKS]; 123 unsigned long clk_rates[SCI_NUM_CLKS]; 124 125 int irqs[SCIx_NR_IRQS]; 126 char *irqstr[SCIx_NR_IRQS]; 127 128 struct dma_chan *chan_tx; 129 struct dma_chan *chan_rx; 130 131 #ifdef CONFIG_SERIAL_SH_SCI_DMA 132 dma_cookie_t cookie_tx; 133 dma_cookie_t cookie_rx[2]; 134 dma_cookie_t active_rx; 135 dma_addr_t tx_dma_addr; 136 unsigned int tx_dma_len; 137 struct scatterlist sg_rx[2]; 138 void *rx_buf[2]; 139 size_t buf_len_rx; 140 struct work_struct work_tx; 141 struct timer_list rx_timer; 142 unsigned int rx_timeout; 143 #endif 144 145 bool autorts; 146 }; 147 148 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS 149 150 static struct sci_port sci_ports[SCI_NPORTS]; 151 static struct uart_driver sci_uart_driver; 152 153 static inline struct sci_port * 154 to_sci_port(struct uart_port *uart) 155 { 156 return container_of(uart, struct sci_port, port); 157 } 158 159 struct plat_sci_reg { 160 u8 offset, size; 161 }; 162 163 /* Helper for invalidating specific entries of an inherited map. */ 164 #define sci_reg_invalid { .offset = 0, .size = 0 } 165 166 static const struct plat_sci_reg sci_regmap[SCIx_NR_REGTYPES][SCIx_NR_REGS] = { 167 [SCIx_PROBE_REGTYPE] = { 168 [0 ... SCIx_NR_REGS - 1] = sci_reg_invalid, 169 }, 170 171 /* 172 * Common SCI definitions, dependent on the port's regshift 173 * value. 174 */ 175 [SCIx_SCI_REGTYPE] = { 176 [SCSMR] = { 0x00, 8 }, 177 [SCBRR] = { 0x01, 8 }, 178 [SCSCR] = { 0x02, 8 }, 179 [SCxTDR] = { 0x03, 8 }, 180 [SCxSR] = { 0x04, 8 }, 181 [SCxRDR] = { 0x05, 8 }, 182 [SCFCR] = sci_reg_invalid, 183 [SCFDR] = sci_reg_invalid, 184 [SCTFDR] = sci_reg_invalid, 185 [SCRFDR] = sci_reg_invalid, 186 [SCSPTR] = sci_reg_invalid, 187 [SCLSR] = sci_reg_invalid, 188 [HSSRR] = sci_reg_invalid, 189 [SCPCR] = sci_reg_invalid, 190 [SCPDR] = sci_reg_invalid, 191 [SCDL] = sci_reg_invalid, 192 [SCCKS] = sci_reg_invalid, 193 }, 194 195 /* 196 * Common definitions for legacy IrDA ports, dependent on 197 * regshift value. 198 */ 199 [SCIx_IRDA_REGTYPE] = { 200 [SCSMR] = { 0x00, 8 }, 201 [SCBRR] = { 0x01, 8 }, 202 [SCSCR] = { 0x02, 8 }, 203 [SCxTDR] = { 0x03, 8 }, 204 [SCxSR] = { 0x04, 8 }, 205 [SCxRDR] = { 0x05, 8 }, 206 [SCFCR] = { 0x06, 8 }, 207 [SCFDR] = { 0x07, 16 }, 208 [SCTFDR] = sci_reg_invalid, 209 [SCRFDR] = sci_reg_invalid, 210 [SCSPTR] = sci_reg_invalid, 211 [SCLSR] = sci_reg_invalid, 212 [HSSRR] = sci_reg_invalid, 213 [SCPCR] = sci_reg_invalid, 214 [SCPDR] = sci_reg_invalid, 215 [SCDL] = sci_reg_invalid, 216 [SCCKS] = sci_reg_invalid, 217 }, 218 219 /* 220 * Common SCIFA definitions. 221 */ 222 [SCIx_SCIFA_REGTYPE] = { 223 [SCSMR] = { 0x00, 16 }, 224 [SCBRR] = { 0x04, 8 }, 225 [SCSCR] = { 0x08, 16 }, 226 [SCxTDR] = { 0x20, 8 }, 227 [SCxSR] = { 0x14, 16 }, 228 [SCxRDR] = { 0x24, 8 }, 229 [SCFCR] = { 0x18, 16 }, 230 [SCFDR] = { 0x1c, 16 }, 231 [SCTFDR] = sci_reg_invalid, 232 [SCRFDR] = sci_reg_invalid, 233 [SCSPTR] = sci_reg_invalid, 234 [SCLSR] = sci_reg_invalid, 235 [HSSRR] = sci_reg_invalid, 236 [SCPCR] = { 0x30, 16 }, 237 [SCPDR] = { 0x34, 16 }, 238 [SCDL] = sci_reg_invalid, 239 [SCCKS] = sci_reg_invalid, 240 }, 241 242 /* 243 * Common SCIFB definitions. 244 */ 245 [SCIx_SCIFB_REGTYPE] = { 246 [SCSMR] = { 0x00, 16 }, 247 [SCBRR] = { 0x04, 8 }, 248 [SCSCR] = { 0x08, 16 }, 249 [SCxTDR] = { 0x40, 8 }, 250 [SCxSR] = { 0x14, 16 }, 251 [SCxRDR] = { 0x60, 8 }, 252 [SCFCR] = { 0x18, 16 }, 253 [SCFDR] = sci_reg_invalid, 254 [SCTFDR] = { 0x38, 16 }, 255 [SCRFDR] = { 0x3c, 16 }, 256 [SCSPTR] = sci_reg_invalid, 257 [SCLSR] = sci_reg_invalid, 258 [HSSRR] = sci_reg_invalid, 259 [SCPCR] = { 0x30, 16 }, 260 [SCPDR] = { 0x34, 16 }, 261 [SCDL] = sci_reg_invalid, 262 [SCCKS] = sci_reg_invalid, 263 }, 264 265 /* 266 * Common SH-2(A) SCIF definitions for ports with FIFO data 267 * count registers. 268 */ 269 [SCIx_SH2_SCIF_FIFODATA_REGTYPE] = { 270 [SCSMR] = { 0x00, 16 }, 271 [SCBRR] = { 0x04, 8 }, 272 [SCSCR] = { 0x08, 16 }, 273 [SCxTDR] = { 0x0c, 8 }, 274 [SCxSR] = { 0x10, 16 }, 275 [SCxRDR] = { 0x14, 8 }, 276 [SCFCR] = { 0x18, 16 }, 277 [SCFDR] = { 0x1c, 16 }, 278 [SCTFDR] = sci_reg_invalid, 279 [SCRFDR] = sci_reg_invalid, 280 [SCSPTR] = { 0x20, 16 }, 281 [SCLSR] = { 0x24, 16 }, 282 [HSSRR] = sci_reg_invalid, 283 [SCPCR] = sci_reg_invalid, 284 [SCPDR] = sci_reg_invalid, 285 [SCDL] = sci_reg_invalid, 286 [SCCKS] = sci_reg_invalid, 287 }, 288 289 /* 290 * Common SH-3 SCIF definitions. 291 */ 292 [SCIx_SH3_SCIF_REGTYPE] = { 293 [SCSMR] = { 0x00, 8 }, 294 [SCBRR] = { 0x02, 8 }, 295 [SCSCR] = { 0x04, 8 }, 296 [SCxTDR] = { 0x06, 8 }, 297 [SCxSR] = { 0x08, 16 }, 298 [SCxRDR] = { 0x0a, 8 }, 299 [SCFCR] = { 0x0c, 8 }, 300 [SCFDR] = { 0x0e, 16 }, 301 [SCTFDR] = sci_reg_invalid, 302 [SCRFDR] = sci_reg_invalid, 303 [SCSPTR] = sci_reg_invalid, 304 [SCLSR] = sci_reg_invalid, 305 [HSSRR] = sci_reg_invalid, 306 [SCPCR] = sci_reg_invalid, 307 [SCPDR] = sci_reg_invalid, 308 [SCDL] = sci_reg_invalid, 309 [SCCKS] = sci_reg_invalid, 310 }, 311 312 /* 313 * Common SH-4(A) SCIF(B) definitions. 314 */ 315 [SCIx_SH4_SCIF_REGTYPE] = { 316 [SCSMR] = { 0x00, 16 }, 317 [SCBRR] = { 0x04, 8 }, 318 [SCSCR] = { 0x08, 16 }, 319 [SCxTDR] = { 0x0c, 8 }, 320 [SCxSR] = { 0x10, 16 }, 321 [SCxRDR] = { 0x14, 8 }, 322 [SCFCR] = { 0x18, 16 }, 323 [SCFDR] = { 0x1c, 16 }, 324 [SCTFDR] = sci_reg_invalid, 325 [SCRFDR] = sci_reg_invalid, 326 [SCSPTR] = { 0x20, 16 }, 327 [SCLSR] = { 0x24, 16 }, 328 [HSSRR] = sci_reg_invalid, 329 [SCPCR] = sci_reg_invalid, 330 [SCPDR] = sci_reg_invalid, 331 [SCDL] = sci_reg_invalid, 332 [SCCKS] = sci_reg_invalid, 333 }, 334 335 /* 336 * Common SCIF definitions for ports with a Baud Rate Generator for 337 * External Clock (BRG). 338 */ 339 [SCIx_SH4_SCIF_BRG_REGTYPE] = { 340 [SCSMR] = { 0x00, 16 }, 341 [SCBRR] = { 0x04, 8 }, 342 [SCSCR] = { 0x08, 16 }, 343 [SCxTDR] = { 0x0c, 8 }, 344 [SCxSR] = { 0x10, 16 }, 345 [SCxRDR] = { 0x14, 8 }, 346 [SCFCR] = { 0x18, 16 }, 347 [SCFDR] = { 0x1c, 16 }, 348 [SCTFDR] = sci_reg_invalid, 349 [SCRFDR] = sci_reg_invalid, 350 [SCSPTR] = { 0x20, 16 }, 351 [SCLSR] = { 0x24, 16 }, 352 [HSSRR] = sci_reg_invalid, 353 [SCPCR] = sci_reg_invalid, 354 [SCPDR] = sci_reg_invalid, 355 [SCDL] = { 0x30, 16 }, 356 [SCCKS] = { 0x34, 16 }, 357 }, 358 359 /* 360 * Common HSCIF definitions. 361 */ 362 [SCIx_HSCIF_REGTYPE] = { 363 [SCSMR] = { 0x00, 16 }, 364 [SCBRR] = { 0x04, 8 }, 365 [SCSCR] = { 0x08, 16 }, 366 [SCxTDR] = { 0x0c, 8 }, 367 [SCxSR] = { 0x10, 16 }, 368 [SCxRDR] = { 0x14, 8 }, 369 [SCFCR] = { 0x18, 16 }, 370 [SCFDR] = { 0x1c, 16 }, 371 [SCTFDR] = sci_reg_invalid, 372 [SCRFDR] = sci_reg_invalid, 373 [SCSPTR] = { 0x20, 16 }, 374 [SCLSR] = { 0x24, 16 }, 375 [HSSRR] = { 0x40, 16 }, 376 [SCPCR] = sci_reg_invalid, 377 [SCPDR] = sci_reg_invalid, 378 [SCDL] = { 0x30, 16 }, 379 [SCCKS] = { 0x34, 16 }, 380 }, 381 382 /* 383 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR 384 * register. 385 */ 386 [SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = { 387 [SCSMR] = { 0x00, 16 }, 388 [SCBRR] = { 0x04, 8 }, 389 [SCSCR] = { 0x08, 16 }, 390 [SCxTDR] = { 0x0c, 8 }, 391 [SCxSR] = { 0x10, 16 }, 392 [SCxRDR] = { 0x14, 8 }, 393 [SCFCR] = { 0x18, 16 }, 394 [SCFDR] = { 0x1c, 16 }, 395 [SCTFDR] = sci_reg_invalid, 396 [SCRFDR] = sci_reg_invalid, 397 [SCSPTR] = sci_reg_invalid, 398 [SCLSR] = { 0x24, 16 }, 399 [HSSRR] = sci_reg_invalid, 400 [SCPCR] = sci_reg_invalid, 401 [SCPDR] = sci_reg_invalid, 402 [SCDL] = sci_reg_invalid, 403 [SCCKS] = sci_reg_invalid, 404 }, 405 406 /* 407 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data 408 * count registers. 409 */ 410 [SCIx_SH4_SCIF_FIFODATA_REGTYPE] = { 411 [SCSMR] = { 0x00, 16 }, 412 [SCBRR] = { 0x04, 8 }, 413 [SCSCR] = { 0x08, 16 }, 414 [SCxTDR] = { 0x0c, 8 }, 415 [SCxSR] = { 0x10, 16 }, 416 [SCxRDR] = { 0x14, 8 }, 417 [SCFCR] = { 0x18, 16 }, 418 [SCFDR] = { 0x1c, 16 }, 419 [SCTFDR] = { 0x1c, 16 }, /* aliased to SCFDR */ 420 [SCRFDR] = { 0x20, 16 }, 421 [SCSPTR] = { 0x24, 16 }, 422 [SCLSR] = { 0x28, 16 }, 423 [HSSRR] = sci_reg_invalid, 424 [SCPCR] = sci_reg_invalid, 425 [SCPDR] = sci_reg_invalid, 426 [SCDL] = sci_reg_invalid, 427 [SCCKS] = sci_reg_invalid, 428 }, 429 430 /* 431 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR 432 * registers. 433 */ 434 [SCIx_SH7705_SCIF_REGTYPE] = { 435 [SCSMR] = { 0x00, 16 }, 436 [SCBRR] = { 0x04, 8 }, 437 [SCSCR] = { 0x08, 16 }, 438 [SCxTDR] = { 0x20, 8 }, 439 [SCxSR] = { 0x14, 16 }, 440 [SCxRDR] = { 0x24, 8 }, 441 [SCFCR] = { 0x18, 16 }, 442 [SCFDR] = { 0x1c, 16 }, 443 [SCTFDR] = sci_reg_invalid, 444 [SCRFDR] = sci_reg_invalid, 445 [SCSPTR] = sci_reg_invalid, 446 [SCLSR] = sci_reg_invalid, 447 [HSSRR] = sci_reg_invalid, 448 [SCPCR] = sci_reg_invalid, 449 [SCPDR] = sci_reg_invalid, 450 [SCDL] = sci_reg_invalid, 451 [SCCKS] = sci_reg_invalid, 452 }, 453 }; 454 455 #define sci_getreg(up, offset) (sci_regmap[to_sci_port(up)->cfg->regtype] + offset) 456 457 /* 458 * The "offset" here is rather misleading, in that it refers to an enum 459 * value relative to the port mapping rather than the fixed offset 460 * itself, which needs to be manually retrieved from the platform's 461 * register map for the given port. 462 */ 463 static unsigned int sci_serial_in(struct uart_port *p, int offset) 464 { 465 const struct plat_sci_reg *reg = sci_getreg(p, offset); 466 467 if (reg->size == 8) 468 return ioread8(p->membase + (reg->offset << p->regshift)); 469 else if (reg->size == 16) 470 return ioread16(p->membase + (reg->offset << p->regshift)); 471 else 472 WARN(1, "Invalid register access\n"); 473 474 return 0; 475 } 476 477 static void sci_serial_out(struct uart_port *p, int offset, int value) 478 { 479 const struct plat_sci_reg *reg = sci_getreg(p, offset); 480 481 if (reg->size == 8) 482 iowrite8(value, p->membase + (reg->offset << p->regshift)); 483 else if (reg->size == 16) 484 iowrite16(value, p->membase + (reg->offset << p->regshift)); 485 else 486 WARN(1, "Invalid register access\n"); 487 } 488 489 static int sci_probe_regmap(struct plat_sci_port *cfg) 490 { 491 switch (cfg->type) { 492 case PORT_SCI: 493 cfg->regtype = SCIx_SCI_REGTYPE; 494 break; 495 case PORT_IRDA: 496 cfg->regtype = SCIx_IRDA_REGTYPE; 497 break; 498 case PORT_SCIFA: 499 cfg->regtype = SCIx_SCIFA_REGTYPE; 500 break; 501 case PORT_SCIFB: 502 cfg->regtype = SCIx_SCIFB_REGTYPE; 503 break; 504 case PORT_SCIF: 505 /* 506 * The SH-4 is a bit of a misnomer here, although that's 507 * where this particular port layout originated. This 508 * configuration (or some slight variation thereof) 509 * remains the dominant model for all SCIFs. 510 */ 511 cfg->regtype = SCIx_SH4_SCIF_REGTYPE; 512 break; 513 case PORT_HSCIF: 514 cfg->regtype = SCIx_HSCIF_REGTYPE; 515 break; 516 default: 517 pr_err("Can't probe register map for given port\n"); 518 return -EINVAL; 519 } 520 521 return 0; 522 } 523 524 static void sci_port_enable(struct sci_port *sci_port) 525 { 526 unsigned int i; 527 528 if (!sci_port->port.dev) 529 return; 530 531 pm_runtime_get_sync(sci_port->port.dev); 532 533 for (i = 0; i < SCI_NUM_CLKS; i++) { 534 clk_prepare_enable(sci_port->clks[i]); 535 sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]); 536 } 537 sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK]; 538 } 539 540 static void sci_port_disable(struct sci_port *sci_port) 541 { 542 unsigned int i; 543 544 if (!sci_port->port.dev) 545 return; 546 547 /* Cancel the break timer to ensure that the timer handler will not try 548 * to access the hardware with clocks and power disabled. Reset the 549 * break flag to make the break debouncing state machine ready for the 550 * next break. 551 */ 552 del_timer_sync(&sci_port->break_timer); 553 sci_port->break_flag = 0; 554 555 for (i = SCI_NUM_CLKS; i-- > 0; ) 556 clk_disable_unprepare(sci_port->clks[i]); 557 558 pm_runtime_put_sync(sci_port->port.dev); 559 } 560 561 static inline unsigned long port_rx_irq_mask(struct uart_port *port) 562 { 563 /* 564 * Not all ports (such as SCIFA) will support REIE. Rather than 565 * special-casing the port type, we check the port initialization 566 * IRQ enable mask to see whether the IRQ is desired at all. If 567 * it's unset, it's logically inferred that there's no point in 568 * testing for it. 569 */ 570 return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE); 571 } 572 573 static void sci_start_tx(struct uart_port *port) 574 { 575 struct sci_port *s = to_sci_port(port); 576 unsigned short ctrl; 577 578 #ifdef CONFIG_SERIAL_SH_SCI_DMA 579 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 580 u16 new, scr = serial_port_in(port, SCSCR); 581 if (s->chan_tx) 582 new = scr | SCSCR_TDRQE; 583 else 584 new = scr & ~SCSCR_TDRQE; 585 if (new != scr) 586 serial_port_out(port, SCSCR, new); 587 } 588 589 if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) && 590 dma_submit_error(s->cookie_tx)) { 591 s->cookie_tx = 0; 592 schedule_work(&s->work_tx); 593 } 594 #endif 595 596 if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 597 /* Set TIE (Transmit Interrupt Enable) bit in SCSCR */ 598 ctrl = serial_port_in(port, SCSCR); 599 serial_port_out(port, SCSCR, ctrl | SCSCR_TIE); 600 } 601 } 602 603 static void sci_stop_tx(struct uart_port *port) 604 { 605 unsigned short ctrl; 606 607 /* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */ 608 ctrl = serial_port_in(port, SCSCR); 609 610 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) 611 ctrl &= ~SCSCR_TDRQE; 612 613 ctrl &= ~SCSCR_TIE; 614 615 serial_port_out(port, SCSCR, ctrl); 616 } 617 618 static void sci_start_rx(struct uart_port *port) 619 { 620 unsigned short ctrl; 621 622 ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port); 623 624 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) 625 ctrl &= ~SCSCR_RDRQE; 626 627 serial_port_out(port, SCSCR, ctrl); 628 } 629 630 static void sci_stop_rx(struct uart_port *port) 631 { 632 unsigned short ctrl; 633 634 ctrl = serial_port_in(port, SCSCR); 635 636 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) 637 ctrl &= ~SCSCR_RDRQE; 638 639 ctrl &= ~port_rx_irq_mask(port); 640 641 serial_port_out(port, SCSCR, ctrl); 642 } 643 644 static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask) 645 { 646 if (port->type == PORT_SCI) { 647 /* Just store the mask */ 648 serial_port_out(port, SCxSR, mask); 649 } else if (to_sci_port(port)->overrun_mask == SCIFA_ORER) { 650 /* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */ 651 /* Only clear the status bits we want to clear */ 652 serial_port_out(port, SCxSR, 653 serial_port_in(port, SCxSR) & mask); 654 } else { 655 /* Store the mask, clear parity/framing errors */ 656 serial_port_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC)); 657 } 658 } 659 660 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \ 661 defined(CONFIG_SERIAL_SH_SCI_EARLYCON) 662 663 #ifdef CONFIG_CONSOLE_POLL 664 static int sci_poll_get_char(struct uart_port *port) 665 { 666 unsigned short status; 667 int c; 668 669 do { 670 status = serial_port_in(port, SCxSR); 671 if (status & SCxSR_ERRORS(port)) { 672 sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port)); 673 continue; 674 } 675 break; 676 } while (1); 677 678 if (!(status & SCxSR_RDxF(port))) 679 return NO_POLL_CHAR; 680 681 c = serial_port_in(port, SCxRDR); 682 683 /* Dummy read */ 684 serial_port_in(port, SCxSR); 685 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port)); 686 687 return c; 688 } 689 #endif 690 691 static void sci_poll_put_char(struct uart_port *port, unsigned char c) 692 { 693 unsigned short status; 694 695 do { 696 status = serial_port_in(port, SCxSR); 697 } while (!(status & SCxSR_TDxE(port))); 698 699 serial_port_out(port, SCxTDR, c); 700 sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port)); 701 } 702 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE || 703 CONFIG_SERIAL_SH_SCI_EARLYCON */ 704 705 static void sci_init_pins(struct uart_port *port, unsigned int cflag) 706 { 707 struct sci_port *s = to_sci_port(port); 708 709 /* 710 * Use port-specific handler if provided. 711 */ 712 if (s->cfg->ops && s->cfg->ops->init_pins) { 713 s->cfg->ops->init_pins(port, cflag); 714 return; 715 } 716 717 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 718 u16 ctrl = serial_port_in(port, SCPCR); 719 720 /* Enable RXD and TXD pin functions */ 721 ctrl &= ~(SCPCR_RXDC | SCPCR_TXDC); 722 if (to_sci_port(port)->cfg->capabilities & SCIx_HAVE_RTSCTS) { 723 /* RTS# is output, driven 1 */ 724 ctrl |= SCPCR_RTSC; 725 serial_port_out(port, SCPDR, 726 serial_port_in(port, SCPDR) | SCPDR_RTSD); 727 /* Enable CTS# pin function */ 728 ctrl &= ~SCPCR_CTSC; 729 } 730 serial_port_out(port, SCPCR, ctrl); 731 } else if (sci_getreg(port, SCSPTR)->size) { 732 u16 status = serial_port_in(port, SCSPTR); 733 734 /* RTS# is output, driven 1 */ 735 status |= SCSPTR_RTSIO | SCSPTR_RTSDT; 736 /* CTS# and SCK are inputs */ 737 status &= ~(SCSPTR_CTSIO | SCSPTR_SCKIO); 738 serial_port_out(port, SCSPTR, status); 739 } 740 } 741 742 static int sci_txfill(struct uart_port *port) 743 { 744 const struct plat_sci_reg *reg; 745 746 reg = sci_getreg(port, SCTFDR); 747 if (reg->size) 748 return serial_port_in(port, SCTFDR) & ((port->fifosize << 1) - 1); 749 750 reg = sci_getreg(port, SCFDR); 751 if (reg->size) 752 return serial_port_in(port, SCFDR) >> 8; 753 754 return !(serial_port_in(port, SCxSR) & SCI_TDRE); 755 } 756 757 static int sci_txroom(struct uart_port *port) 758 { 759 return port->fifosize - sci_txfill(port); 760 } 761 762 static int sci_rxfill(struct uart_port *port) 763 { 764 const struct plat_sci_reg *reg; 765 766 reg = sci_getreg(port, SCRFDR); 767 if (reg->size) 768 return serial_port_in(port, SCRFDR) & ((port->fifosize << 1) - 1); 769 770 reg = sci_getreg(port, SCFDR); 771 if (reg->size) 772 return serial_port_in(port, SCFDR) & ((port->fifosize << 1) - 1); 773 774 return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0; 775 } 776 777 /* 778 * SCI helper for checking the state of the muxed port/RXD pins. 779 */ 780 static inline int sci_rxd_in(struct uart_port *port) 781 { 782 struct sci_port *s = to_sci_port(port); 783 784 if (s->cfg->port_reg <= 0) 785 return 1; 786 787 /* Cast for ARM damage */ 788 return !!__raw_readb((void __iomem *)(uintptr_t)s->cfg->port_reg); 789 } 790 791 /* ********************************************************************** * 792 * the interrupt related routines * 793 * ********************************************************************** */ 794 795 static void sci_transmit_chars(struct uart_port *port) 796 { 797 struct circ_buf *xmit = &port->state->xmit; 798 unsigned int stopped = uart_tx_stopped(port); 799 unsigned short status; 800 unsigned short ctrl; 801 int count; 802 803 status = serial_port_in(port, SCxSR); 804 if (!(status & SCxSR_TDxE(port))) { 805 ctrl = serial_port_in(port, SCSCR); 806 if (uart_circ_empty(xmit)) 807 ctrl &= ~SCSCR_TIE; 808 else 809 ctrl |= SCSCR_TIE; 810 serial_port_out(port, SCSCR, ctrl); 811 return; 812 } 813 814 count = sci_txroom(port); 815 816 do { 817 unsigned char c; 818 819 if (port->x_char) { 820 c = port->x_char; 821 port->x_char = 0; 822 } else if (!uart_circ_empty(xmit) && !stopped) { 823 c = xmit->buf[xmit->tail]; 824 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); 825 } else { 826 break; 827 } 828 829 serial_port_out(port, SCxTDR, c); 830 831 port->icount.tx++; 832 } while (--count > 0); 833 834 sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port)); 835 836 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 837 uart_write_wakeup(port); 838 if (uart_circ_empty(xmit)) { 839 sci_stop_tx(port); 840 } else { 841 ctrl = serial_port_in(port, SCSCR); 842 843 if (port->type != PORT_SCI) { 844 serial_port_in(port, SCxSR); /* Dummy read */ 845 sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port)); 846 } 847 848 ctrl |= SCSCR_TIE; 849 serial_port_out(port, SCSCR, ctrl); 850 } 851 } 852 853 /* On SH3, SCIF may read end-of-break as a space->mark char */ 854 #define STEPFN(c) ({int __c = (c); (((__c-1)|(__c)) == -1); }) 855 856 static void sci_receive_chars(struct uart_port *port) 857 { 858 struct sci_port *sci_port = to_sci_port(port); 859 struct tty_port *tport = &port->state->port; 860 int i, count, copied = 0; 861 unsigned short status; 862 unsigned char flag; 863 864 status = serial_port_in(port, SCxSR); 865 if (!(status & SCxSR_RDxF(port))) 866 return; 867 868 while (1) { 869 /* Don't copy more bytes than there is room for in the buffer */ 870 count = tty_buffer_request_room(tport, sci_rxfill(port)); 871 872 /* If for any reason we can't copy more data, we're done! */ 873 if (count == 0) 874 break; 875 876 if (port->type == PORT_SCI) { 877 char c = serial_port_in(port, SCxRDR); 878 if (uart_handle_sysrq_char(port, c) || 879 sci_port->break_flag) 880 count = 0; 881 else 882 tty_insert_flip_char(tport, c, TTY_NORMAL); 883 } else { 884 for (i = 0; i < count; i++) { 885 char c = serial_port_in(port, SCxRDR); 886 887 status = serial_port_in(port, SCxSR); 888 #if defined(CONFIG_CPU_SH3) 889 /* Skip "chars" during break */ 890 if (sci_port->break_flag) { 891 if ((c == 0) && 892 (status & SCxSR_FER(port))) { 893 count--; i--; 894 continue; 895 } 896 897 /* Nonzero => end-of-break */ 898 dev_dbg(port->dev, "debounce<%02x>\n", c); 899 sci_port->break_flag = 0; 900 901 if (STEPFN(c)) { 902 count--; i--; 903 continue; 904 } 905 } 906 #endif /* CONFIG_CPU_SH3 */ 907 if (uart_handle_sysrq_char(port, c)) { 908 count--; i--; 909 continue; 910 } 911 912 /* Store data and status */ 913 if (status & SCxSR_FER(port)) { 914 flag = TTY_FRAME; 915 port->icount.frame++; 916 dev_notice(port->dev, "frame error\n"); 917 } else if (status & SCxSR_PER(port)) { 918 flag = TTY_PARITY; 919 port->icount.parity++; 920 dev_notice(port->dev, "parity error\n"); 921 } else 922 flag = TTY_NORMAL; 923 924 tty_insert_flip_char(tport, c, flag); 925 } 926 } 927 928 serial_port_in(port, SCxSR); /* dummy read */ 929 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port)); 930 931 copied += count; 932 port->icount.rx += count; 933 } 934 935 if (copied) { 936 /* Tell the rest of the system the news. New characters! */ 937 tty_flip_buffer_push(tport); 938 } else { 939 serial_port_in(port, SCxSR); /* dummy read */ 940 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port)); 941 } 942 } 943 944 #define SCI_BREAK_JIFFIES (HZ/20) 945 946 /* 947 * The sci generates interrupts during the break, 948 * 1 per millisecond or so during the break period, for 9600 baud. 949 * So dont bother disabling interrupts. 950 * But dont want more than 1 break event. 951 * Use a kernel timer to periodically poll the rx line until 952 * the break is finished. 953 */ 954 static inline void sci_schedule_break_timer(struct sci_port *port) 955 { 956 mod_timer(&port->break_timer, jiffies + SCI_BREAK_JIFFIES); 957 } 958 959 /* Ensure that two consecutive samples find the break over. */ 960 static void sci_break_timer(unsigned long data) 961 { 962 struct sci_port *port = (struct sci_port *)data; 963 964 if (sci_rxd_in(&port->port) == 0) { 965 port->break_flag = 1; 966 sci_schedule_break_timer(port); 967 } else if (port->break_flag == 1) { 968 /* break is over. */ 969 port->break_flag = 2; 970 sci_schedule_break_timer(port); 971 } else 972 port->break_flag = 0; 973 } 974 975 static int sci_handle_errors(struct uart_port *port) 976 { 977 int copied = 0; 978 unsigned short status = serial_port_in(port, SCxSR); 979 struct tty_port *tport = &port->state->port; 980 struct sci_port *s = to_sci_port(port); 981 982 /* Handle overruns */ 983 if (status & s->overrun_mask) { 984 port->icount.overrun++; 985 986 /* overrun error */ 987 if (tty_insert_flip_char(tport, 0, TTY_OVERRUN)) 988 copied++; 989 990 dev_notice(port->dev, "overrun error\n"); 991 } 992 993 if (status & SCxSR_FER(port)) { 994 if (sci_rxd_in(port) == 0) { 995 /* Notify of BREAK */ 996 struct sci_port *sci_port = to_sci_port(port); 997 998 if (!sci_port->break_flag) { 999 port->icount.brk++; 1000 1001 sci_port->break_flag = 1; 1002 sci_schedule_break_timer(sci_port); 1003 1004 /* Do sysrq handling. */ 1005 if (uart_handle_break(port)) 1006 return 0; 1007 1008 dev_dbg(port->dev, "BREAK detected\n"); 1009 1010 if (tty_insert_flip_char(tport, 0, TTY_BREAK)) 1011 copied++; 1012 } 1013 1014 } else { 1015 /* frame error */ 1016 port->icount.frame++; 1017 1018 if (tty_insert_flip_char(tport, 0, TTY_FRAME)) 1019 copied++; 1020 1021 dev_notice(port->dev, "frame error\n"); 1022 } 1023 } 1024 1025 if (status & SCxSR_PER(port)) { 1026 /* parity error */ 1027 port->icount.parity++; 1028 1029 if (tty_insert_flip_char(tport, 0, TTY_PARITY)) 1030 copied++; 1031 1032 dev_notice(port->dev, "parity error\n"); 1033 } 1034 1035 if (copied) 1036 tty_flip_buffer_push(tport); 1037 1038 return copied; 1039 } 1040 1041 static int sci_handle_fifo_overrun(struct uart_port *port) 1042 { 1043 struct tty_port *tport = &port->state->port; 1044 struct sci_port *s = to_sci_port(port); 1045 const struct plat_sci_reg *reg; 1046 int copied = 0; 1047 u16 status; 1048 1049 reg = sci_getreg(port, s->overrun_reg); 1050 if (!reg->size) 1051 return 0; 1052 1053 status = serial_port_in(port, s->overrun_reg); 1054 if (status & s->overrun_mask) { 1055 status &= ~s->overrun_mask; 1056 serial_port_out(port, s->overrun_reg, status); 1057 1058 port->icount.overrun++; 1059 1060 tty_insert_flip_char(tport, 0, TTY_OVERRUN); 1061 tty_flip_buffer_push(tport); 1062 1063 dev_dbg(port->dev, "overrun error\n"); 1064 copied++; 1065 } 1066 1067 return copied; 1068 } 1069 1070 static int sci_handle_breaks(struct uart_port *port) 1071 { 1072 int copied = 0; 1073 unsigned short status = serial_port_in(port, SCxSR); 1074 struct tty_port *tport = &port->state->port; 1075 struct sci_port *s = to_sci_port(port); 1076 1077 if (uart_handle_break(port)) 1078 return 0; 1079 1080 if (!s->break_flag && status & SCxSR_BRK(port)) { 1081 #if defined(CONFIG_CPU_SH3) 1082 /* Debounce break */ 1083 s->break_flag = 1; 1084 #endif 1085 1086 port->icount.brk++; 1087 1088 /* Notify of BREAK */ 1089 if (tty_insert_flip_char(tport, 0, TTY_BREAK)) 1090 copied++; 1091 1092 dev_dbg(port->dev, "BREAK detected\n"); 1093 } 1094 1095 if (copied) 1096 tty_flip_buffer_push(tport); 1097 1098 copied += sci_handle_fifo_overrun(port); 1099 1100 return copied; 1101 } 1102 1103 #ifdef CONFIG_SERIAL_SH_SCI_DMA 1104 static void sci_dma_tx_complete(void *arg) 1105 { 1106 struct sci_port *s = arg; 1107 struct uart_port *port = &s->port; 1108 struct circ_buf *xmit = &port->state->xmit; 1109 unsigned long flags; 1110 1111 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line); 1112 1113 spin_lock_irqsave(&port->lock, flags); 1114 1115 xmit->tail += s->tx_dma_len; 1116 xmit->tail &= UART_XMIT_SIZE - 1; 1117 1118 port->icount.tx += s->tx_dma_len; 1119 1120 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 1121 uart_write_wakeup(port); 1122 1123 if (!uart_circ_empty(xmit)) { 1124 s->cookie_tx = 0; 1125 schedule_work(&s->work_tx); 1126 } else { 1127 s->cookie_tx = -EINVAL; 1128 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 1129 u16 ctrl = serial_port_in(port, SCSCR); 1130 serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE); 1131 } 1132 } 1133 1134 spin_unlock_irqrestore(&port->lock, flags); 1135 } 1136 1137 /* Locking: called with port lock held */ 1138 static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count) 1139 { 1140 struct uart_port *port = &s->port; 1141 struct tty_port *tport = &port->state->port; 1142 int copied; 1143 1144 copied = tty_insert_flip_string(tport, buf, count); 1145 if (copied < count) { 1146 dev_warn(port->dev, "Rx overrun: dropping %zu bytes\n", 1147 count - copied); 1148 port->icount.buf_overrun++; 1149 } 1150 1151 port->icount.rx += copied; 1152 1153 return copied; 1154 } 1155 1156 static int sci_dma_rx_find_active(struct sci_port *s) 1157 { 1158 unsigned int i; 1159 1160 for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++) 1161 if (s->active_rx == s->cookie_rx[i]) 1162 return i; 1163 1164 dev_err(s->port.dev, "%s: Rx cookie %d not found!\n", __func__, 1165 s->active_rx); 1166 return -1; 1167 } 1168 1169 static void sci_rx_dma_release(struct sci_port *s, bool enable_pio) 1170 { 1171 struct dma_chan *chan = s->chan_rx; 1172 struct uart_port *port = &s->port; 1173 unsigned long flags; 1174 1175 spin_lock_irqsave(&port->lock, flags); 1176 s->chan_rx = NULL; 1177 s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL; 1178 spin_unlock_irqrestore(&port->lock, flags); 1179 dmaengine_terminate_all(chan); 1180 dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0], 1181 sg_dma_address(&s->sg_rx[0])); 1182 dma_release_channel(chan); 1183 if (enable_pio) 1184 sci_start_rx(port); 1185 } 1186 1187 static void sci_dma_rx_complete(void *arg) 1188 { 1189 struct sci_port *s = arg; 1190 struct dma_chan *chan = s->chan_rx; 1191 struct uart_port *port = &s->port; 1192 struct dma_async_tx_descriptor *desc; 1193 unsigned long flags; 1194 int active, count = 0; 1195 1196 dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line, 1197 s->active_rx); 1198 1199 spin_lock_irqsave(&port->lock, flags); 1200 1201 active = sci_dma_rx_find_active(s); 1202 if (active >= 0) 1203 count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx); 1204 1205 mod_timer(&s->rx_timer, jiffies + s->rx_timeout); 1206 1207 if (count) 1208 tty_flip_buffer_push(&port->state->port); 1209 1210 desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1, 1211 DMA_DEV_TO_MEM, 1212 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1213 if (!desc) 1214 goto fail; 1215 1216 desc->callback = sci_dma_rx_complete; 1217 desc->callback_param = s; 1218 s->cookie_rx[active] = dmaengine_submit(desc); 1219 if (dma_submit_error(s->cookie_rx[active])) 1220 goto fail; 1221 1222 s->active_rx = s->cookie_rx[!active]; 1223 1224 dma_async_issue_pending(chan); 1225 1226 dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n", 1227 __func__, s->cookie_rx[active], active, s->active_rx); 1228 spin_unlock_irqrestore(&port->lock, flags); 1229 return; 1230 1231 fail: 1232 spin_unlock_irqrestore(&port->lock, flags); 1233 dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n"); 1234 sci_rx_dma_release(s, true); 1235 } 1236 1237 static void sci_tx_dma_release(struct sci_port *s, bool enable_pio) 1238 { 1239 struct dma_chan *chan = s->chan_tx; 1240 struct uart_port *port = &s->port; 1241 unsigned long flags; 1242 1243 spin_lock_irqsave(&port->lock, flags); 1244 s->chan_tx = NULL; 1245 s->cookie_tx = -EINVAL; 1246 spin_unlock_irqrestore(&port->lock, flags); 1247 dmaengine_terminate_all(chan); 1248 dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE, 1249 DMA_TO_DEVICE); 1250 dma_release_channel(chan); 1251 if (enable_pio) 1252 sci_start_tx(port); 1253 } 1254 1255 static void sci_submit_rx(struct sci_port *s) 1256 { 1257 struct dma_chan *chan = s->chan_rx; 1258 int i; 1259 1260 for (i = 0; i < 2; i++) { 1261 struct scatterlist *sg = &s->sg_rx[i]; 1262 struct dma_async_tx_descriptor *desc; 1263 1264 desc = dmaengine_prep_slave_sg(chan, 1265 sg, 1, DMA_DEV_TO_MEM, 1266 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1267 if (!desc) 1268 goto fail; 1269 1270 desc->callback = sci_dma_rx_complete; 1271 desc->callback_param = s; 1272 s->cookie_rx[i] = dmaengine_submit(desc); 1273 if (dma_submit_error(s->cookie_rx[i])) 1274 goto fail; 1275 1276 dev_dbg(s->port.dev, "%s(): cookie %d to #%d\n", __func__, 1277 s->cookie_rx[i], i); 1278 } 1279 1280 s->active_rx = s->cookie_rx[0]; 1281 1282 dma_async_issue_pending(chan); 1283 return; 1284 1285 fail: 1286 if (i) 1287 dmaengine_terminate_all(chan); 1288 for (i = 0; i < 2; i++) 1289 s->cookie_rx[i] = -EINVAL; 1290 s->active_rx = -EINVAL; 1291 dev_warn(s->port.dev, "Failed to re-start Rx DMA, using PIO\n"); 1292 sci_rx_dma_release(s, true); 1293 } 1294 1295 static void work_fn_tx(struct work_struct *work) 1296 { 1297 struct sci_port *s = container_of(work, struct sci_port, work_tx); 1298 struct dma_async_tx_descriptor *desc; 1299 struct dma_chan *chan = s->chan_tx; 1300 struct uart_port *port = &s->port; 1301 struct circ_buf *xmit = &port->state->xmit; 1302 dma_addr_t buf; 1303 1304 /* 1305 * DMA is idle now. 1306 * Port xmit buffer is already mapped, and it is one page... Just adjust 1307 * offsets and lengths. Since it is a circular buffer, we have to 1308 * transmit till the end, and then the rest. Take the port lock to get a 1309 * consistent xmit buffer state. 1310 */ 1311 spin_lock_irq(&port->lock); 1312 buf = s->tx_dma_addr + (xmit->tail & (UART_XMIT_SIZE - 1)); 1313 s->tx_dma_len = min_t(unsigned int, 1314 CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE), 1315 CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE)); 1316 spin_unlock_irq(&port->lock); 1317 1318 desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len, 1319 DMA_MEM_TO_DEV, 1320 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1321 if (!desc) { 1322 dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n"); 1323 /* switch to PIO */ 1324 sci_tx_dma_release(s, true); 1325 return; 1326 } 1327 1328 dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len, 1329 DMA_TO_DEVICE); 1330 1331 spin_lock_irq(&port->lock); 1332 desc->callback = sci_dma_tx_complete; 1333 desc->callback_param = s; 1334 spin_unlock_irq(&port->lock); 1335 s->cookie_tx = dmaengine_submit(desc); 1336 if (dma_submit_error(s->cookie_tx)) { 1337 dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n"); 1338 /* switch to PIO */ 1339 sci_tx_dma_release(s, true); 1340 return; 1341 } 1342 1343 dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n", 1344 __func__, xmit->buf, xmit->tail, xmit->head, s->cookie_tx); 1345 1346 dma_async_issue_pending(chan); 1347 } 1348 1349 static void rx_timer_fn(unsigned long arg) 1350 { 1351 struct sci_port *s = (struct sci_port *)arg; 1352 struct dma_chan *chan = s->chan_rx; 1353 struct uart_port *port = &s->port; 1354 struct dma_tx_state state; 1355 enum dma_status status; 1356 unsigned long flags; 1357 unsigned int read; 1358 int active, count; 1359 u16 scr; 1360 1361 spin_lock_irqsave(&port->lock, flags); 1362 1363 dev_dbg(port->dev, "DMA Rx timed out\n"); 1364 1365 active = sci_dma_rx_find_active(s); 1366 if (active < 0) { 1367 spin_unlock_irqrestore(&port->lock, flags); 1368 return; 1369 } 1370 1371 status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state); 1372 if (status == DMA_COMPLETE) { 1373 dev_dbg(port->dev, "Cookie %d #%d has already completed\n", 1374 s->active_rx, active); 1375 spin_unlock_irqrestore(&port->lock, flags); 1376 1377 /* Let packet complete handler take care of the packet */ 1378 return; 1379 } 1380 1381 dmaengine_pause(chan); 1382 1383 /* 1384 * sometimes DMA transfer doesn't stop even if it is stopped and 1385 * data keeps on coming until transaction is complete so check 1386 * for DMA_COMPLETE again 1387 * Let packet complete handler take care of the packet 1388 */ 1389 status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state); 1390 if (status == DMA_COMPLETE) { 1391 spin_unlock_irqrestore(&port->lock, flags); 1392 dev_dbg(port->dev, "Transaction complete after DMA engine was stopped"); 1393 return; 1394 } 1395 1396 /* Handle incomplete DMA receive */ 1397 dmaengine_terminate_all(s->chan_rx); 1398 read = sg_dma_len(&s->sg_rx[active]) - state.residue; 1399 dev_dbg(port->dev, "Read %u bytes with cookie %d\n", read, 1400 s->active_rx); 1401 1402 if (read) { 1403 count = sci_dma_rx_push(s, s->rx_buf[active], read); 1404 if (count) 1405 tty_flip_buffer_push(&port->state->port); 1406 } 1407 1408 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) 1409 sci_submit_rx(s); 1410 1411 /* Direct new serial port interrupts back to CPU */ 1412 scr = serial_port_in(port, SCSCR); 1413 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 1414 scr &= ~SCSCR_RDRQE; 1415 enable_irq(s->irqs[SCIx_RXI_IRQ]); 1416 } 1417 serial_port_out(port, SCSCR, scr | SCSCR_RIE); 1418 1419 spin_unlock_irqrestore(&port->lock, flags); 1420 } 1421 1422 static struct dma_chan *sci_request_dma_chan(struct uart_port *port, 1423 enum dma_transfer_direction dir, 1424 unsigned int id) 1425 { 1426 dma_cap_mask_t mask; 1427 struct dma_chan *chan; 1428 struct dma_slave_config cfg; 1429 int ret; 1430 1431 dma_cap_zero(mask); 1432 dma_cap_set(DMA_SLAVE, mask); 1433 1434 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter, 1435 (void *)(unsigned long)id, port->dev, 1436 dir == DMA_MEM_TO_DEV ? "tx" : "rx"); 1437 if (!chan) { 1438 dev_warn(port->dev, 1439 "dma_request_slave_channel_compat failed\n"); 1440 return NULL; 1441 } 1442 1443 memset(&cfg, 0, sizeof(cfg)); 1444 cfg.direction = dir; 1445 if (dir == DMA_MEM_TO_DEV) { 1446 cfg.dst_addr = port->mapbase + 1447 (sci_getreg(port, SCxTDR)->offset << port->regshift); 1448 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1449 } else { 1450 cfg.src_addr = port->mapbase + 1451 (sci_getreg(port, SCxRDR)->offset << port->regshift); 1452 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1453 } 1454 1455 ret = dmaengine_slave_config(chan, &cfg); 1456 if (ret) { 1457 dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret); 1458 dma_release_channel(chan); 1459 return NULL; 1460 } 1461 1462 return chan; 1463 } 1464 1465 static void sci_request_dma(struct uart_port *port) 1466 { 1467 struct sci_port *s = to_sci_port(port); 1468 struct dma_chan *chan; 1469 1470 dev_dbg(port->dev, "%s: port %d\n", __func__, port->line); 1471 1472 if (!port->dev->of_node && 1473 (s->cfg->dma_slave_tx <= 0 || s->cfg->dma_slave_rx <= 0)) 1474 return; 1475 1476 s->cookie_tx = -EINVAL; 1477 chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV, s->cfg->dma_slave_tx); 1478 dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan); 1479 if (chan) { 1480 s->chan_tx = chan; 1481 /* UART circular tx buffer is an aligned page. */ 1482 s->tx_dma_addr = dma_map_single(chan->device->dev, 1483 port->state->xmit.buf, 1484 UART_XMIT_SIZE, 1485 DMA_TO_DEVICE); 1486 if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) { 1487 dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n"); 1488 dma_release_channel(chan); 1489 s->chan_tx = NULL; 1490 } else { 1491 dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n", 1492 __func__, UART_XMIT_SIZE, 1493 port->state->xmit.buf, &s->tx_dma_addr); 1494 } 1495 1496 INIT_WORK(&s->work_tx, work_fn_tx); 1497 } 1498 1499 chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM, s->cfg->dma_slave_rx); 1500 dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan); 1501 if (chan) { 1502 unsigned int i; 1503 dma_addr_t dma; 1504 void *buf; 1505 1506 s->chan_rx = chan; 1507 1508 s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize); 1509 buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2, 1510 &dma, GFP_KERNEL); 1511 if (!buf) { 1512 dev_warn(port->dev, 1513 "Failed to allocate Rx dma buffer, using PIO\n"); 1514 dma_release_channel(chan); 1515 s->chan_rx = NULL; 1516 return; 1517 } 1518 1519 for (i = 0; i < 2; i++) { 1520 struct scatterlist *sg = &s->sg_rx[i]; 1521 1522 sg_init_table(sg, 1); 1523 s->rx_buf[i] = buf; 1524 sg_dma_address(sg) = dma; 1525 sg_dma_len(sg) = s->buf_len_rx; 1526 1527 buf += s->buf_len_rx; 1528 dma += s->buf_len_rx; 1529 } 1530 1531 setup_timer(&s->rx_timer, rx_timer_fn, (unsigned long)s); 1532 1533 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) 1534 sci_submit_rx(s); 1535 } 1536 } 1537 1538 static void sci_free_dma(struct uart_port *port) 1539 { 1540 struct sci_port *s = to_sci_port(port); 1541 1542 if (s->chan_tx) 1543 sci_tx_dma_release(s, false); 1544 if (s->chan_rx) 1545 sci_rx_dma_release(s, false); 1546 } 1547 #else 1548 static inline void sci_request_dma(struct uart_port *port) 1549 { 1550 } 1551 1552 static inline void sci_free_dma(struct uart_port *port) 1553 { 1554 } 1555 #endif 1556 1557 static irqreturn_t sci_rx_interrupt(int irq, void *ptr) 1558 { 1559 #ifdef CONFIG_SERIAL_SH_SCI_DMA 1560 struct uart_port *port = ptr; 1561 struct sci_port *s = to_sci_port(port); 1562 1563 if (s->chan_rx) { 1564 u16 scr = serial_port_in(port, SCSCR); 1565 u16 ssr = serial_port_in(port, SCxSR); 1566 1567 /* Disable future Rx interrupts */ 1568 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 1569 disable_irq_nosync(irq); 1570 scr |= SCSCR_RDRQE; 1571 } else { 1572 scr &= ~SCSCR_RIE; 1573 sci_submit_rx(s); 1574 } 1575 serial_port_out(port, SCSCR, scr); 1576 /* Clear current interrupt */ 1577 serial_port_out(port, SCxSR, 1578 ssr & ~(SCIF_DR | SCxSR_RDxF(port))); 1579 dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n", 1580 jiffies, s->rx_timeout); 1581 mod_timer(&s->rx_timer, jiffies + s->rx_timeout); 1582 1583 return IRQ_HANDLED; 1584 } 1585 #endif 1586 1587 /* I think sci_receive_chars has to be called irrespective 1588 * of whether the I_IXOFF is set, otherwise, how is the interrupt 1589 * to be disabled? 1590 */ 1591 sci_receive_chars(ptr); 1592 1593 return IRQ_HANDLED; 1594 } 1595 1596 static irqreturn_t sci_tx_interrupt(int irq, void *ptr) 1597 { 1598 struct uart_port *port = ptr; 1599 unsigned long flags; 1600 1601 spin_lock_irqsave(&port->lock, flags); 1602 sci_transmit_chars(port); 1603 spin_unlock_irqrestore(&port->lock, flags); 1604 1605 return IRQ_HANDLED; 1606 } 1607 1608 static irqreturn_t sci_er_interrupt(int irq, void *ptr) 1609 { 1610 struct uart_port *port = ptr; 1611 struct sci_port *s = to_sci_port(port); 1612 1613 /* Handle errors */ 1614 if (port->type == PORT_SCI) { 1615 if (sci_handle_errors(port)) { 1616 /* discard character in rx buffer */ 1617 serial_port_in(port, SCxSR); 1618 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port)); 1619 } 1620 } else { 1621 sci_handle_fifo_overrun(port); 1622 if (!s->chan_rx) 1623 sci_receive_chars(ptr); 1624 } 1625 1626 sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port)); 1627 1628 /* Kick the transmission */ 1629 if (!s->chan_tx) 1630 sci_tx_interrupt(irq, ptr); 1631 1632 return IRQ_HANDLED; 1633 } 1634 1635 static irqreturn_t sci_br_interrupt(int irq, void *ptr) 1636 { 1637 struct uart_port *port = ptr; 1638 1639 /* Handle BREAKs */ 1640 sci_handle_breaks(port); 1641 sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port)); 1642 1643 return IRQ_HANDLED; 1644 } 1645 1646 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr) 1647 { 1648 unsigned short ssr_status, scr_status, err_enabled, orer_status = 0; 1649 struct uart_port *port = ptr; 1650 struct sci_port *s = to_sci_port(port); 1651 irqreturn_t ret = IRQ_NONE; 1652 1653 ssr_status = serial_port_in(port, SCxSR); 1654 scr_status = serial_port_in(port, SCSCR); 1655 if (s->overrun_reg == SCxSR) 1656 orer_status = ssr_status; 1657 else { 1658 if (sci_getreg(port, s->overrun_reg)->size) 1659 orer_status = serial_port_in(port, s->overrun_reg); 1660 } 1661 1662 err_enabled = scr_status & port_rx_irq_mask(port); 1663 1664 /* Tx Interrupt */ 1665 if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) && 1666 !s->chan_tx) 1667 ret = sci_tx_interrupt(irq, ptr); 1668 1669 /* 1670 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF / 1671 * DR flags 1672 */ 1673 if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) && 1674 (scr_status & SCSCR_RIE)) 1675 ret = sci_rx_interrupt(irq, ptr); 1676 1677 /* Error Interrupt */ 1678 if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled) 1679 ret = sci_er_interrupt(irq, ptr); 1680 1681 /* Break Interrupt */ 1682 if ((ssr_status & SCxSR_BRK(port)) && err_enabled) 1683 ret = sci_br_interrupt(irq, ptr); 1684 1685 /* Overrun Interrupt */ 1686 if (orer_status & s->overrun_mask) { 1687 sci_handle_fifo_overrun(port); 1688 ret = IRQ_HANDLED; 1689 } 1690 1691 return ret; 1692 } 1693 1694 static const struct sci_irq_desc { 1695 const char *desc; 1696 irq_handler_t handler; 1697 } sci_irq_desc[] = { 1698 /* 1699 * Split out handlers, the default case. 1700 */ 1701 [SCIx_ERI_IRQ] = { 1702 .desc = "rx err", 1703 .handler = sci_er_interrupt, 1704 }, 1705 1706 [SCIx_RXI_IRQ] = { 1707 .desc = "rx full", 1708 .handler = sci_rx_interrupt, 1709 }, 1710 1711 [SCIx_TXI_IRQ] = { 1712 .desc = "tx empty", 1713 .handler = sci_tx_interrupt, 1714 }, 1715 1716 [SCIx_BRI_IRQ] = { 1717 .desc = "break", 1718 .handler = sci_br_interrupt, 1719 }, 1720 1721 /* 1722 * Special muxed handler. 1723 */ 1724 [SCIx_MUX_IRQ] = { 1725 .desc = "mux", 1726 .handler = sci_mpxed_interrupt, 1727 }, 1728 }; 1729 1730 static int sci_request_irq(struct sci_port *port) 1731 { 1732 struct uart_port *up = &port->port; 1733 int i, j, ret = 0; 1734 1735 for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) { 1736 const struct sci_irq_desc *desc; 1737 int irq; 1738 1739 if (SCIx_IRQ_IS_MUXED(port)) { 1740 i = SCIx_MUX_IRQ; 1741 irq = up->irq; 1742 } else { 1743 irq = port->irqs[i]; 1744 1745 /* 1746 * Certain port types won't support all of the 1747 * available interrupt sources. 1748 */ 1749 if (unlikely(irq < 0)) 1750 continue; 1751 } 1752 1753 desc = sci_irq_desc + i; 1754 port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s", 1755 dev_name(up->dev), desc->desc); 1756 if (!port->irqstr[j]) 1757 goto out_nomem; 1758 1759 ret = request_irq(irq, desc->handler, up->irqflags, 1760 port->irqstr[j], port); 1761 if (unlikely(ret)) { 1762 dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc); 1763 goto out_noirq; 1764 } 1765 } 1766 1767 return 0; 1768 1769 out_noirq: 1770 while (--i >= 0) 1771 free_irq(port->irqs[i], port); 1772 1773 out_nomem: 1774 while (--j >= 0) 1775 kfree(port->irqstr[j]); 1776 1777 return ret; 1778 } 1779 1780 static void sci_free_irq(struct sci_port *port) 1781 { 1782 int i; 1783 1784 /* 1785 * Intentionally in reverse order so we iterate over the muxed 1786 * IRQ first. 1787 */ 1788 for (i = 0; i < SCIx_NR_IRQS; i++) { 1789 int irq = port->irqs[i]; 1790 1791 /* 1792 * Certain port types won't support all of the available 1793 * interrupt sources. 1794 */ 1795 if (unlikely(irq < 0)) 1796 continue; 1797 1798 free_irq(port->irqs[i], port); 1799 kfree(port->irqstr[i]); 1800 1801 if (SCIx_IRQ_IS_MUXED(port)) { 1802 /* If there's only one IRQ, we're done. */ 1803 return; 1804 } 1805 } 1806 } 1807 1808 static unsigned int sci_tx_empty(struct uart_port *port) 1809 { 1810 unsigned short status = serial_port_in(port, SCxSR); 1811 unsigned short in_tx_fifo = sci_txfill(port); 1812 1813 return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0; 1814 } 1815 1816 static void sci_set_rts(struct uart_port *port, bool state) 1817 { 1818 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 1819 u16 data = serial_port_in(port, SCPDR); 1820 1821 /* Active low */ 1822 if (state) 1823 data &= ~SCPDR_RTSD; 1824 else 1825 data |= SCPDR_RTSD; 1826 serial_port_out(port, SCPDR, data); 1827 1828 /* RTS# is output */ 1829 serial_port_out(port, SCPCR, 1830 serial_port_in(port, SCPCR) | SCPCR_RTSC); 1831 } else if (sci_getreg(port, SCSPTR)->size) { 1832 u16 ctrl = serial_port_in(port, SCSPTR); 1833 1834 /* Active low */ 1835 if (state) 1836 ctrl &= ~SCSPTR_RTSDT; 1837 else 1838 ctrl |= SCSPTR_RTSDT; 1839 serial_port_out(port, SCSPTR, ctrl); 1840 } 1841 } 1842 1843 static bool sci_get_cts(struct uart_port *port) 1844 { 1845 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 1846 /* Active low */ 1847 return !(serial_port_in(port, SCPDR) & SCPDR_CTSD); 1848 } else if (sci_getreg(port, SCSPTR)->size) { 1849 /* Active low */ 1850 return !(serial_port_in(port, SCSPTR) & SCSPTR_CTSDT); 1851 } 1852 1853 return true; 1854 } 1855 1856 /* 1857 * Modem control is a bit of a mixed bag for SCI(F) ports. Generally 1858 * CTS/RTS is supported in hardware by at least one port and controlled 1859 * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently 1860 * handled via the ->init_pins() op, which is a bit of a one-way street, 1861 * lacking any ability to defer pin control -- this will later be 1862 * converted over to the GPIO framework). 1863 * 1864 * Other modes (such as loopback) are supported generically on certain 1865 * port types, but not others. For these it's sufficient to test for the 1866 * existence of the support register and simply ignore the port type. 1867 */ 1868 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl) 1869 { 1870 struct sci_port *s = to_sci_port(port); 1871 1872 if (mctrl & TIOCM_LOOP) { 1873 const struct plat_sci_reg *reg; 1874 1875 /* 1876 * Standard loopback mode for SCFCR ports. 1877 */ 1878 reg = sci_getreg(port, SCFCR); 1879 if (reg->size) 1880 serial_port_out(port, SCFCR, 1881 serial_port_in(port, SCFCR) | 1882 SCFCR_LOOP); 1883 } 1884 1885 mctrl_gpio_set(s->gpios, mctrl); 1886 1887 if (!(s->cfg->capabilities & SCIx_HAVE_RTSCTS)) 1888 return; 1889 1890 if (!(mctrl & TIOCM_RTS)) { 1891 /* Disable Auto RTS */ 1892 serial_port_out(port, SCFCR, 1893 serial_port_in(port, SCFCR) & ~SCFCR_MCE); 1894 1895 /* Clear RTS */ 1896 sci_set_rts(port, 0); 1897 } else if (s->autorts) { 1898 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 1899 /* Enable RTS# pin function */ 1900 serial_port_out(port, SCPCR, 1901 serial_port_in(port, SCPCR) & ~SCPCR_RTSC); 1902 } 1903 1904 /* Enable Auto RTS */ 1905 serial_port_out(port, SCFCR, 1906 serial_port_in(port, SCFCR) | SCFCR_MCE); 1907 } else { 1908 /* Set RTS */ 1909 sci_set_rts(port, 1); 1910 } 1911 } 1912 1913 static unsigned int sci_get_mctrl(struct uart_port *port) 1914 { 1915 struct sci_port *s = to_sci_port(port); 1916 struct mctrl_gpios *gpios = s->gpios; 1917 unsigned int mctrl = 0; 1918 1919 mctrl_gpio_get(gpios, &mctrl); 1920 1921 /* 1922 * CTS/RTS is handled in hardware when supported, while nothing 1923 * else is wired up. 1924 */ 1925 if (s->autorts) { 1926 if (sci_get_cts(port)) 1927 mctrl |= TIOCM_CTS; 1928 } else if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_CTS))) { 1929 mctrl |= TIOCM_CTS; 1930 } 1931 if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_DSR))) 1932 mctrl |= TIOCM_DSR; 1933 if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_DCD))) 1934 mctrl |= TIOCM_CAR; 1935 1936 return mctrl; 1937 } 1938 1939 static void sci_enable_ms(struct uart_port *port) 1940 { 1941 mctrl_gpio_enable_ms(to_sci_port(port)->gpios); 1942 } 1943 1944 static void sci_break_ctl(struct uart_port *port, int break_state) 1945 { 1946 unsigned short scscr, scsptr; 1947 1948 /* check wheter the port has SCSPTR */ 1949 if (!sci_getreg(port, SCSPTR)->size) { 1950 /* 1951 * Not supported by hardware. Most parts couple break and rx 1952 * interrupts together, with break detection always enabled. 1953 */ 1954 return; 1955 } 1956 1957 scsptr = serial_port_in(port, SCSPTR); 1958 scscr = serial_port_in(port, SCSCR); 1959 1960 if (break_state == -1) { 1961 scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT; 1962 scscr &= ~SCSCR_TE; 1963 } else { 1964 scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO; 1965 scscr |= SCSCR_TE; 1966 } 1967 1968 serial_port_out(port, SCSPTR, scsptr); 1969 serial_port_out(port, SCSCR, scscr); 1970 } 1971 1972 static int sci_startup(struct uart_port *port) 1973 { 1974 struct sci_port *s = to_sci_port(port); 1975 int ret; 1976 1977 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line); 1978 1979 ret = sci_request_irq(s); 1980 if (unlikely(ret < 0)) 1981 return ret; 1982 1983 sci_request_dma(port); 1984 1985 return 0; 1986 } 1987 1988 static void sci_shutdown(struct uart_port *port) 1989 { 1990 struct sci_port *s = to_sci_port(port); 1991 unsigned long flags; 1992 u16 scr; 1993 1994 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line); 1995 1996 s->autorts = false; 1997 mctrl_gpio_disable_ms(to_sci_port(port)->gpios); 1998 1999 spin_lock_irqsave(&port->lock, flags); 2000 sci_stop_rx(port); 2001 sci_stop_tx(port); 2002 /* Stop RX and TX, disable related interrupts, keep clock source */ 2003 scr = serial_port_in(port, SCSCR); 2004 serial_port_out(port, SCSCR, scr & (SCSCR_CKE1 | SCSCR_CKE0)); 2005 spin_unlock_irqrestore(&port->lock, flags); 2006 2007 #ifdef CONFIG_SERIAL_SH_SCI_DMA 2008 if (s->chan_rx) { 2009 dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__, 2010 port->line); 2011 del_timer_sync(&s->rx_timer); 2012 } 2013 #endif 2014 2015 sci_free_dma(port); 2016 sci_free_irq(s); 2017 } 2018 2019 static int sci_sck_calc(struct sci_port *s, unsigned int bps, 2020 unsigned int *srr) 2021 { 2022 unsigned long freq = s->clk_rates[SCI_SCK]; 2023 int err, min_err = INT_MAX; 2024 unsigned int sr; 2025 2026 if (s->port.type != PORT_HSCIF) 2027 freq *= 2; 2028 2029 for_each_sr(sr, s) { 2030 err = DIV_ROUND_CLOSEST(freq, sr) - bps; 2031 if (abs(err) >= abs(min_err)) 2032 continue; 2033 2034 min_err = err; 2035 *srr = sr - 1; 2036 2037 if (!err) 2038 break; 2039 } 2040 2041 dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err, 2042 *srr + 1); 2043 return min_err; 2044 } 2045 2046 static int sci_brg_calc(struct sci_port *s, unsigned int bps, 2047 unsigned long freq, unsigned int *dlr, 2048 unsigned int *srr) 2049 { 2050 int err, min_err = INT_MAX; 2051 unsigned int sr, dl; 2052 2053 if (s->port.type != PORT_HSCIF) 2054 freq *= 2; 2055 2056 for_each_sr(sr, s) { 2057 dl = DIV_ROUND_CLOSEST(freq, sr * bps); 2058 dl = clamp(dl, 1U, 65535U); 2059 2060 err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps; 2061 if (abs(err) >= abs(min_err)) 2062 continue; 2063 2064 min_err = err; 2065 *dlr = dl; 2066 *srr = sr - 1; 2067 2068 if (!err) 2069 break; 2070 } 2071 2072 dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps, 2073 min_err, *dlr, *srr + 1); 2074 return min_err; 2075 } 2076 2077 /* calculate sample rate, BRR, and clock select */ 2078 static int sci_scbrr_calc(struct sci_port *s, unsigned int bps, 2079 unsigned int *brr, unsigned int *srr, 2080 unsigned int *cks) 2081 { 2082 unsigned long freq = s->clk_rates[SCI_FCK]; 2083 unsigned int sr, br, prediv, scrate, c; 2084 int err, min_err = INT_MAX; 2085 2086 if (s->port.type != PORT_HSCIF) 2087 freq *= 2; 2088 2089 /* 2090 * Find the combination of sample rate and clock select with the 2091 * smallest deviation from the desired baud rate. 2092 * Prefer high sample rates to maximise the receive margin. 2093 * 2094 * M: Receive margin (%) 2095 * N: Ratio of bit rate to clock (N = sampling rate) 2096 * D: Clock duty (D = 0 to 1.0) 2097 * L: Frame length (L = 9 to 12) 2098 * F: Absolute value of clock frequency deviation 2099 * 2100 * M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) - 2101 * (|D - 0.5| / N * (1 + F))| 2102 * NOTE: Usually, treat D for 0.5, F is 0 by this calculation. 2103 */ 2104 for_each_sr(sr, s) { 2105 for (c = 0; c <= 3; c++) { 2106 /* integerized formulas from HSCIF documentation */ 2107 prediv = sr * (1 << (2 * c + 1)); 2108 2109 /* 2110 * We need to calculate: 2111 * 2112 * br = freq / (prediv * bps) clamped to [1..256] 2113 * err = freq / (br * prediv) - bps 2114 * 2115 * Watch out for overflow when calculating the desired 2116 * sampling clock rate! 2117 */ 2118 if (bps > UINT_MAX / prediv) 2119 break; 2120 2121 scrate = prediv * bps; 2122 br = DIV_ROUND_CLOSEST(freq, scrate); 2123 br = clamp(br, 1U, 256U); 2124 2125 err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps; 2126 if (abs(err) >= abs(min_err)) 2127 continue; 2128 2129 min_err = err; 2130 *brr = br - 1; 2131 *srr = sr - 1; 2132 *cks = c; 2133 2134 if (!err) 2135 goto found; 2136 } 2137 } 2138 2139 found: 2140 dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps, 2141 min_err, *brr, *srr + 1, *cks); 2142 return min_err; 2143 } 2144 2145 static void sci_reset(struct uart_port *port) 2146 { 2147 const struct plat_sci_reg *reg; 2148 unsigned int status; 2149 2150 do { 2151 status = serial_port_in(port, SCxSR); 2152 } while (!(status & SCxSR_TEND(port))); 2153 2154 serial_port_out(port, SCSCR, 0x00); /* TE=0, RE=0, CKE1=0 */ 2155 2156 reg = sci_getreg(port, SCFCR); 2157 if (reg->size) 2158 serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST); 2159 2160 sci_clear_SCxSR(port, 2161 SCxSR_RDxF_CLEAR(port) & SCxSR_ERROR_CLEAR(port) & 2162 SCxSR_BREAK_CLEAR(port)); 2163 if (sci_getreg(port, SCLSR)->size) { 2164 status = serial_port_in(port, SCLSR); 2165 status &= ~(SCLSR_TO | SCLSR_ORER); 2166 serial_port_out(port, SCLSR, status); 2167 } 2168 } 2169 2170 static void sci_set_termios(struct uart_port *port, struct ktermios *termios, 2171 struct ktermios *old) 2172 { 2173 unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i; 2174 unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0; 2175 unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0; 2176 struct sci_port *s = to_sci_port(port); 2177 const struct plat_sci_reg *reg; 2178 int min_err = INT_MAX, err; 2179 unsigned long max_freq = 0; 2180 int best_clk = -1; 2181 2182 if ((termios->c_cflag & CSIZE) == CS7) 2183 smr_val |= SCSMR_CHR; 2184 if (termios->c_cflag & PARENB) 2185 smr_val |= SCSMR_PE; 2186 if (termios->c_cflag & PARODD) 2187 smr_val |= SCSMR_PE | SCSMR_ODD; 2188 if (termios->c_cflag & CSTOPB) 2189 smr_val |= SCSMR_STOP; 2190 2191 /* 2192 * earlyprintk comes here early on with port->uartclk set to zero. 2193 * the clock framework is not up and running at this point so here 2194 * we assume that 115200 is the maximum baud rate. please note that 2195 * the baud rate is not programmed during earlyprintk - it is assumed 2196 * that the previous boot loader has enabled required clocks and 2197 * setup the baud rate generator hardware for us already. 2198 */ 2199 if (!port->uartclk) { 2200 baud = uart_get_baud_rate(port, termios, old, 0, 115200); 2201 goto done; 2202 } 2203 2204 for (i = 0; i < SCI_NUM_CLKS; i++) 2205 max_freq = max(max_freq, s->clk_rates[i]); 2206 2207 baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s)); 2208 if (!baud) 2209 goto done; 2210 2211 /* 2212 * There can be multiple sources for the sampling clock. Find the one 2213 * that gives us the smallest deviation from the desired baud rate. 2214 */ 2215 2216 /* Optional Undivided External Clock */ 2217 if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA && 2218 port->type != PORT_SCIFB) { 2219 err = sci_sck_calc(s, baud, &srr1); 2220 if (abs(err) < abs(min_err)) { 2221 best_clk = SCI_SCK; 2222 scr_val = SCSCR_CKE1; 2223 sccks = SCCKS_CKS; 2224 min_err = err; 2225 srr = srr1; 2226 if (!err) 2227 goto done; 2228 } 2229 } 2230 2231 /* Optional BRG Frequency Divided External Clock */ 2232 if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) { 2233 err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1, 2234 &srr1); 2235 if (abs(err) < abs(min_err)) { 2236 best_clk = SCI_SCIF_CLK; 2237 scr_val = SCSCR_CKE1; 2238 sccks = 0; 2239 min_err = err; 2240 dl = dl1; 2241 srr = srr1; 2242 if (!err) 2243 goto done; 2244 } 2245 } 2246 2247 /* Optional BRG Frequency Divided Internal Clock */ 2248 if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) { 2249 err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1, 2250 &srr1); 2251 if (abs(err) < abs(min_err)) { 2252 best_clk = SCI_BRG_INT; 2253 scr_val = SCSCR_CKE1; 2254 sccks = SCCKS_XIN; 2255 min_err = err; 2256 dl = dl1; 2257 srr = srr1; 2258 if (!min_err) 2259 goto done; 2260 } 2261 } 2262 2263 /* Divided Functional Clock using standard Bit Rate Register */ 2264 err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1); 2265 if (abs(err) < abs(min_err)) { 2266 best_clk = SCI_FCK; 2267 scr_val = 0; 2268 min_err = err; 2269 brr = brr1; 2270 srr = srr1; 2271 cks = cks1; 2272 } 2273 2274 done: 2275 if (best_clk >= 0) 2276 dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n", 2277 s->clks[best_clk], baud, min_err); 2278 2279 sci_port_enable(s); 2280 2281 /* 2282 * Program the optional External Baud Rate Generator (BRG) first. 2283 * It controls the mux to select (H)SCK or frequency divided clock. 2284 */ 2285 if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) { 2286 serial_port_out(port, SCDL, dl); 2287 serial_port_out(port, SCCKS, sccks); 2288 } 2289 2290 sci_reset(port); 2291 2292 uart_update_timeout(port, termios->c_cflag, baud); 2293 2294 if (best_clk >= 0) { 2295 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) 2296 switch (srr + 1) { 2297 case 5: smr_val |= SCSMR_SRC_5; break; 2298 case 7: smr_val |= SCSMR_SRC_7; break; 2299 case 11: smr_val |= SCSMR_SRC_11; break; 2300 case 13: smr_val |= SCSMR_SRC_13; break; 2301 case 16: smr_val |= SCSMR_SRC_16; break; 2302 case 17: smr_val |= SCSMR_SRC_17; break; 2303 case 19: smr_val |= SCSMR_SRC_19; break; 2304 case 27: smr_val |= SCSMR_SRC_27; break; 2305 } 2306 smr_val |= cks; 2307 dev_dbg(port->dev, 2308 "SCR 0x%x SMR 0x%x BRR %u CKS 0x%x DL %u SRR %u\n", 2309 scr_val, smr_val, brr, sccks, dl, srr); 2310 serial_port_out(port, SCSCR, scr_val); 2311 serial_port_out(port, SCSMR, smr_val); 2312 serial_port_out(port, SCBRR, brr); 2313 if (sci_getreg(port, HSSRR)->size) 2314 serial_port_out(port, HSSRR, srr | HSCIF_SRE); 2315 2316 /* Wait one bit interval */ 2317 udelay((1000000 + (baud - 1)) / baud); 2318 } else { 2319 /* Don't touch the bit rate configuration */ 2320 scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0); 2321 smr_val |= serial_port_in(port, SCSMR) & 2322 (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS); 2323 dev_dbg(port->dev, "SCR 0x%x SMR 0x%x\n", scr_val, smr_val); 2324 serial_port_out(port, SCSCR, scr_val); 2325 serial_port_out(port, SCSMR, smr_val); 2326 } 2327 2328 sci_init_pins(port, termios->c_cflag); 2329 2330 port->status &= ~UPSTAT_AUTOCTS; 2331 s->autorts = false; 2332 reg = sci_getreg(port, SCFCR); 2333 if (reg->size) { 2334 unsigned short ctrl = serial_port_in(port, SCFCR); 2335 2336 if ((port->flags & UPF_HARD_FLOW) && 2337 (termios->c_cflag & CRTSCTS)) { 2338 /* There is no CTS interrupt to restart the hardware */ 2339 port->status |= UPSTAT_AUTOCTS; 2340 /* MCE is enabled when RTS is raised */ 2341 s->autorts = true; 2342 } 2343 2344 /* 2345 * As we've done a sci_reset() above, ensure we don't 2346 * interfere with the FIFOs while toggling MCE. As the 2347 * reset values could still be set, simply mask them out. 2348 */ 2349 ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST); 2350 2351 serial_port_out(port, SCFCR, ctrl); 2352 } 2353 2354 scr_val |= s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0); 2355 dev_dbg(port->dev, "SCSCR 0x%x\n", scr_val); 2356 serial_port_out(port, SCSCR, scr_val); 2357 if ((srr + 1 == 5) && 2358 (port->type == PORT_SCIFA || port->type == PORT_SCIFB)) { 2359 /* 2360 * In asynchronous mode, when the sampling rate is 1/5, first 2361 * received data may become invalid on some SCIFA and SCIFB. 2362 * To avoid this problem wait more than 1 serial data time (1 2363 * bit time x serial data number) after setting SCSCR.RE = 1. 2364 */ 2365 udelay(DIV_ROUND_UP(10 * 1000000, baud)); 2366 } 2367 2368 #ifdef CONFIG_SERIAL_SH_SCI_DMA 2369 /* 2370 * Calculate delay for 2 DMA buffers (4 FIFO). 2371 * See serial_core.c::uart_update_timeout(). 2372 * With 10 bits (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above 2373 * function calculates 1 jiffie for the data plus 5 jiffies for the 2374 * "slop(e)." Then below we calculate 5 jiffies (20ms) for 2 DMA 2375 * buffers (4 FIFO sizes), but when performing a faster transfer, the 2376 * value obtained by this formula is too small. Therefore, if the value 2377 * is smaller than 20ms, use 20ms as the timeout value for DMA. 2378 */ 2379 if (s->chan_rx) { 2380 unsigned int bits; 2381 2382 /* byte size and parity */ 2383 switch (termios->c_cflag & CSIZE) { 2384 case CS5: 2385 bits = 7; 2386 break; 2387 case CS6: 2388 bits = 8; 2389 break; 2390 case CS7: 2391 bits = 9; 2392 break; 2393 default: 2394 bits = 10; 2395 break; 2396 } 2397 2398 if (termios->c_cflag & CSTOPB) 2399 bits++; 2400 if (termios->c_cflag & PARENB) 2401 bits++; 2402 s->rx_timeout = DIV_ROUND_UP((s->buf_len_rx * 2 * bits * HZ) / 2403 (baud / 10), 10); 2404 dev_dbg(port->dev, "DMA Rx t-out %ums, tty t-out %u jiffies\n", 2405 s->rx_timeout * 1000 / HZ, port->timeout); 2406 if (s->rx_timeout < msecs_to_jiffies(20)) 2407 s->rx_timeout = msecs_to_jiffies(20); 2408 } 2409 #endif 2410 2411 if ((termios->c_cflag & CREAD) != 0) 2412 sci_start_rx(port); 2413 2414 sci_port_disable(s); 2415 2416 if (UART_ENABLE_MS(port, termios->c_cflag)) 2417 sci_enable_ms(port); 2418 } 2419 2420 static void sci_pm(struct uart_port *port, unsigned int state, 2421 unsigned int oldstate) 2422 { 2423 struct sci_port *sci_port = to_sci_port(port); 2424 2425 switch (state) { 2426 case UART_PM_STATE_OFF: 2427 sci_port_disable(sci_port); 2428 break; 2429 default: 2430 sci_port_enable(sci_port); 2431 break; 2432 } 2433 } 2434 2435 static const char *sci_type(struct uart_port *port) 2436 { 2437 switch (port->type) { 2438 case PORT_IRDA: 2439 return "irda"; 2440 case PORT_SCI: 2441 return "sci"; 2442 case PORT_SCIF: 2443 return "scif"; 2444 case PORT_SCIFA: 2445 return "scifa"; 2446 case PORT_SCIFB: 2447 return "scifb"; 2448 case PORT_HSCIF: 2449 return "hscif"; 2450 } 2451 2452 return NULL; 2453 } 2454 2455 static int sci_remap_port(struct uart_port *port) 2456 { 2457 struct sci_port *sport = to_sci_port(port); 2458 2459 /* 2460 * Nothing to do if there's already an established membase. 2461 */ 2462 if (port->membase) 2463 return 0; 2464 2465 if (port->flags & UPF_IOREMAP) { 2466 port->membase = ioremap_nocache(port->mapbase, sport->reg_size); 2467 if (unlikely(!port->membase)) { 2468 dev_err(port->dev, "can't remap port#%d\n", port->line); 2469 return -ENXIO; 2470 } 2471 } else { 2472 /* 2473 * For the simple (and majority of) cases where we don't 2474 * need to do any remapping, just cast the cookie 2475 * directly. 2476 */ 2477 port->membase = (void __iomem *)(uintptr_t)port->mapbase; 2478 } 2479 2480 return 0; 2481 } 2482 2483 static void sci_release_port(struct uart_port *port) 2484 { 2485 struct sci_port *sport = to_sci_port(port); 2486 2487 if (port->flags & UPF_IOREMAP) { 2488 iounmap(port->membase); 2489 port->membase = NULL; 2490 } 2491 2492 release_mem_region(port->mapbase, sport->reg_size); 2493 } 2494 2495 static int sci_request_port(struct uart_port *port) 2496 { 2497 struct resource *res; 2498 struct sci_port *sport = to_sci_port(port); 2499 int ret; 2500 2501 res = request_mem_region(port->mapbase, sport->reg_size, 2502 dev_name(port->dev)); 2503 if (unlikely(res == NULL)) { 2504 dev_err(port->dev, "request_mem_region failed."); 2505 return -EBUSY; 2506 } 2507 2508 ret = sci_remap_port(port); 2509 if (unlikely(ret != 0)) { 2510 release_resource(res); 2511 return ret; 2512 } 2513 2514 return 0; 2515 } 2516 2517 static void sci_config_port(struct uart_port *port, int flags) 2518 { 2519 if (flags & UART_CONFIG_TYPE) { 2520 struct sci_port *sport = to_sci_port(port); 2521 2522 port->type = sport->cfg->type; 2523 sci_request_port(port); 2524 } 2525 } 2526 2527 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser) 2528 { 2529 if (ser->baud_base < 2400) 2530 /* No paper tape reader for Mitch.. */ 2531 return -EINVAL; 2532 2533 return 0; 2534 } 2535 2536 static struct uart_ops sci_uart_ops = { 2537 .tx_empty = sci_tx_empty, 2538 .set_mctrl = sci_set_mctrl, 2539 .get_mctrl = sci_get_mctrl, 2540 .start_tx = sci_start_tx, 2541 .stop_tx = sci_stop_tx, 2542 .stop_rx = sci_stop_rx, 2543 .enable_ms = sci_enable_ms, 2544 .break_ctl = sci_break_ctl, 2545 .startup = sci_startup, 2546 .shutdown = sci_shutdown, 2547 .set_termios = sci_set_termios, 2548 .pm = sci_pm, 2549 .type = sci_type, 2550 .release_port = sci_release_port, 2551 .request_port = sci_request_port, 2552 .config_port = sci_config_port, 2553 .verify_port = sci_verify_port, 2554 #ifdef CONFIG_CONSOLE_POLL 2555 .poll_get_char = sci_poll_get_char, 2556 .poll_put_char = sci_poll_put_char, 2557 #endif 2558 }; 2559 2560 static int sci_init_clocks(struct sci_port *sci_port, struct device *dev) 2561 { 2562 const char *clk_names[] = { 2563 [SCI_FCK] = "fck", 2564 [SCI_SCK] = "sck", 2565 [SCI_BRG_INT] = "brg_int", 2566 [SCI_SCIF_CLK] = "scif_clk", 2567 }; 2568 struct clk *clk; 2569 unsigned int i; 2570 2571 if (sci_port->cfg->type == PORT_HSCIF) 2572 clk_names[SCI_SCK] = "hsck"; 2573 2574 for (i = 0; i < SCI_NUM_CLKS; i++) { 2575 clk = devm_clk_get(dev, clk_names[i]); 2576 if (PTR_ERR(clk) == -EPROBE_DEFER) 2577 return -EPROBE_DEFER; 2578 2579 if (IS_ERR(clk) && i == SCI_FCK) { 2580 /* 2581 * "fck" used to be called "sci_ick", and we need to 2582 * maintain DT backward compatibility. 2583 */ 2584 clk = devm_clk_get(dev, "sci_ick"); 2585 if (PTR_ERR(clk) == -EPROBE_DEFER) 2586 return -EPROBE_DEFER; 2587 2588 if (!IS_ERR(clk)) 2589 goto found; 2590 2591 /* 2592 * Not all SH platforms declare a clock lookup entry 2593 * for SCI devices, in which case we need to get the 2594 * global "peripheral_clk" clock. 2595 */ 2596 clk = devm_clk_get(dev, "peripheral_clk"); 2597 if (!IS_ERR(clk)) 2598 goto found; 2599 2600 dev_err(dev, "failed to get %s (%ld)\n", clk_names[i], 2601 PTR_ERR(clk)); 2602 return PTR_ERR(clk); 2603 } 2604 2605 found: 2606 if (IS_ERR(clk)) 2607 dev_dbg(dev, "failed to get %s (%ld)\n", clk_names[i], 2608 PTR_ERR(clk)); 2609 else 2610 dev_dbg(dev, "clk %s is %pC rate %pCr\n", clk_names[i], 2611 clk, clk); 2612 sci_port->clks[i] = IS_ERR(clk) ? NULL : clk; 2613 } 2614 return 0; 2615 } 2616 2617 static int sci_init_single(struct platform_device *dev, 2618 struct sci_port *sci_port, unsigned int index, 2619 struct plat_sci_port *p, bool early) 2620 { 2621 struct uart_port *port = &sci_port->port; 2622 const struct resource *res; 2623 unsigned int i; 2624 int ret; 2625 2626 sci_port->cfg = p; 2627 2628 port->ops = &sci_uart_ops; 2629 port->iotype = UPIO_MEM; 2630 port->line = index; 2631 2632 res = platform_get_resource(dev, IORESOURCE_MEM, 0); 2633 if (res == NULL) 2634 return -ENOMEM; 2635 2636 port->mapbase = res->start; 2637 sci_port->reg_size = resource_size(res); 2638 2639 for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i) 2640 sci_port->irqs[i] = platform_get_irq(dev, i); 2641 2642 /* The SCI generates several interrupts. They can be muxed together or 2643 * connected to different interrupt lines. In the muxed case only one 2644 * interrupt resource is specified. In the non-muxed case three or four 2645 * interrupt resources are specified, as the BRI interrupt is optional. 2646 */ 2647 if (sci_port->irqs[0] < 0) 2648 return -ENXIO; 2649 2650 if (sci_port->irqs[1] < 0) { 2651 sci_port->irqs[1] = sci_port->irqs[0]; 2652 sci_port->irqs[2] = sci_port->irqs[0]; 2653 sci_port->irqs[3] = sci_port->irqs[0]; 2654 } 2655 2656 if (p->regtype == SCIx_PROBE_REGTYPE) { 2657 ret = sci_probe_regmap(p); 2658 if (unlikely(ret)) 2659 return ret; 2660 } 2661 2662 switch (p->type) { 2663 case PORT_SCIFB: 2664 port->fifosize = 256; 2665 sci_port->overrun_reg = SCxSR; 2666 sci_port->overrun_mask = SCIFA_ORER; 2667 sci_port->sampling_rate_mask = SCI_SR_SCIFAB; 2668 break; 2669 case PORT_HSCIF: 2670 port->fifosize = 128; 2671 sci_port->overrun_reg = SCLSR; 2672 sci_port->overrun_mask = SCLSR_ORER; 2673 sci_port->sampling_rate_mask = SCI_SR_RANGE(8, 32); 2674 break; 2675 case PORT_SCIFA: 2676 port->fifosize = 64; 2677 sci_port->overrun_reg = SCxSR; 2678 sci_port->overrun_mask = SCIFA_ORER; 2679 sci_port->sampling_rate_mask = SCI_SR_SCIFAB; 2680 break; 2681 case PORT_SCIF: 2682 port->fifosize = 16; 2683 if (p->regtype == SCIx_SH7705_SCIF_REGTYPE) { 2684 sci_port->overrun_reg = SCxSR; 2685 sci_port->overrun_mask = SCIFA_ORER; 2686 sci_port->sampling_rate_mask = SCI_SR(16); 2687 } else { 2688 sci_port->overrun_reg = SCLSR; 2689 sci_port->overrun_mask = SCLSR_ORER; 2690 sci_port->sampling_rate_mask = SCI_SR(32); 2691 } 2692 break; 2693 default: 2694 port->fifosize = 1; 2695 sci_port->overrun_reg = SCxSR; 2696 sci_port->overrun_mask = SCI_ORER; 2697 sci_port->sampling_rate_mask = SCI_SR(32); 2698 break; 2699 } 2700 2701 /* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't 2702 * match the SoC datasheet, this should be investigated. Let platform 2703 * data override the sampling rate for now. 2704 */ 2705 if (p->sampling_rate) 2706 sci_port->sampling_rate_mask = SCI_SR(p->sampling_rate); 2707 2708 if (!early) { 2709 ret = sci_init_clocks(sci_port, &dev->dev); 2710 if (ret < 0) 2711 return ret; 2712 2713 port->dev = &dev->dev; 2714 2715 pm_runtime_enable(&dev->dev); 2716 } 2717 2718 sci_port->break_timer.data = (unsigned long)sci_port; 2719 sci_port->break_timer.function = sci_break_timer; 2720 init_timer(&sci_port->break_timer); 2721 2722 /* 2723 * Establish some sensible defaults for the error detection. 2724 */ 2725 if (p->type == PORT_SCI) { 2726 sci_port->error_mask = SCI_DEFAULT_ERROR_MASK; 2727 sci_port->error_clear = SCI_ERROR_CLEAR; 2728 } else { 2729 sci_port->error_mask = SCIF_DEFAULT_ERROR_MASK; 2730 sci_port->error_clear = SCIF_ERROR_CLEAR; 2731 } 2732 2733 /* 2734 * Make the error mask inclusive of overrun detection, if 2735 * supported. 2736 */ 2737 if (sci_port->overrun_reg == SCxSR) { 2738 sci_port->error_mask |= sci_port->overrun_mask; 2739 sci_port->error_clear &= ~sci_port->overrun_mask; 2740 } 2741 2742 port->type = p->type; 2743 port->flags = UPF_FIXED_PORT | p->flags; 2744 port->regshift = p->regshift; 2745 2746 /* 2747 * The UART port needs an IRQ value, so we peg this to the RX IRQ 2748 * for the multi-IRQ ports, which is where we are primarily 2749 * concerned with the shutdown path synchronization. 2750 * 2751 * For the muxed case there's nothing more to do. 2752 */ 2753 port->irq = sci_port->irqs[SCIx_RXI_IRQ]; 2754 port->irqflags = 0; 2755 2756 port->serial_in = sci_serial_in; 2757 port->serial_out = sci_serial_out; 2758 2759 if (p->dma_slave_tx > 0 && p->dma_slave_rx > 0) 2760 dev_dbg(port->dev, "DMA tx %d, rx %d\n", 2761 p->dma_slave_tx, p->dma_slave_rx); 2762 2763 return 0; 2764 } 2765 2766 static void sci_cleanup_single(struct sci_port *port) 2767 { 2768 pm_runtime_disable(port->port.dev); 2769 } 2770 2771 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \ 2772 defined(CONFIG_SERIAL_SH_SCI_EARLYCON) 2773 static void serial_console_putchar(struct uart_port *port, int ch) 2774 { 2775 sci_poll_put_char(port, ch); 2776 } 2777 2778 /* 2779 * Print a string to the serial port trying not to disturb 2780 * any possible real use of the port... 2781 */ 2782 static void serial_console_write(struct console *co, const char *s, 2783 unsigned count) 2784 { 2785 struct sci_port *sci_port = &sci_ports[co->index]; 2786 struct uart_port *port = &sci_port->port; 2787 unsigned short bits, ctrl, ctrl_temp; 2788 unsigned long flags; 2789 int locked = 1; 2790 2791 local_irq_save(flags); 2792 #if defined(SUPPORT_SYSRQ) 2793 if (port->sysrq) 2794 locked = 0; 2795 else 2796 #endif 2797 if (oops_in_progress) 2798 locked = spin_trylock(&port->lock); 2799 else 2800 spin_lock(&port->lock); 2801 2802 /* first save SCSCR then disable interrupts, keep clock source */ 2803 ctrl = serial_port_in(port, SCSCR); 2804 ctrl_temp = (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) | 2805 (ctrl & (SCSCR_CKE1 | SCSCR_CKE0)); 2806 serial_port_out(port, SCSCR, ctrl_temp); 2807 2808 uart_console_write(port, s, count, serial_console_putchar); 2809 2810 /* wait until fifo is empty and last bit has been transmitted */ 2811 bits = SCxSR_TDxE(port) | SCxSR_TEND(port); 2812 while ((serial_port_in(port, SCxSR) & bits) != bits) 2813 cpu_relax(); 2814 2815 /* restore the SCSCR */ 2816 serial_port_out(port, SCSCR, ctrl); 2817 2818 if (locked) 2819 spin_unlock(&port->lock); 2820 local_irq_restore(flags); 2821 } 2822 2823 static int serial_console_setup(struct console *co, char *options) 2824 { 2825 struct sci_port *sci_port; 2826 struct uart_port *port; 2827 int baud = 115200; 2828 int bits = 8; 2829 int parity = 'n'; 2830 int flow = 'n'; 2831 int ret; 2832 2833 /* 2834 * Refuse to handle any bogus ports. 2835 */ 2836 if (co->index < 0 || co->index >= SCI_NPORTS) 2837 return -ENODEV; 2838 2839 sci_port = &sci_ports[co->index]; 2840 port = &sci_port->port; 2841 2842 /* 2843 * Refuse to handle uninitialized ports. 2844 */ 2845 if (!port->ops) 2846 return -ENODEV; 2847 2848 ret = sci_remap_port(port); 2849 if (unlikely(ret != 0)) 2850 return ret; 2851 2852 if (options) 2853 uart_parse_options(options, &baud, &parity, &bits, &flow); 2854 2855 return uart_set_options(port, co, baud, parity, bits, flow); 2856 } 2857 2858 static struct console serial_console = { 2859 .name = "ttySC", 2860 .device = uart_console_device, 2861 .write = serial_console_write, 2862 .setup = serial_console_setup, 2863 .flags = CON_PRINTBUFFER, 2864 .index = -1, 2865 .data = &sci_uart_driver, 2866 }; 2867 2868 static struct console early_serial_console = { 2869 .name = "early_ttySC", 2870 .write = serial_console_write, 2871 .flags = CON_PRINTBUFFER, 2872 .index = -1, 2873 }; 2874 2875 static char early_serial_buf[32]; 2876 2877 static int sci_probe_earlyprintk(struct platform_device *pdev) 2878 { 2879 struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev); 2880 2881 if (early_serial_console.data) 2882 return -EEXIST; 2883 2884 early_serial_console.index = pdev->id; 2885 2886 sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true); 2887 2888 serial_console_setup(&early_serial_console, early_serial_buf); 2889 2890 if (!strstr(early_serial_buf, "keep")) 2891 early_serial_console.flags |= CON_BOOT; 2892 2893 register_console(&early_serial_console); 2894 return 0; 2895 } 2896 2897 #define SCI_CONSOLE (&serial_console) 2898 2899 #else 2900 static inline int sci_probe_earlyprintk(struct platform_device *pdev) 2901 { 2902 return -EINVAL; 2903 } 2904 2905 #define SCI_CONSOLE NULL 2906 2907 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */ 2908 2909 static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized"; 2910 2911 static struct uart_driver sci_uart_driver = { 2912 .owner = THIS_MODULE, 2913 .driver_name = "sci", 2914 .dev_name = "ttySC", 2915 .major = SCI_MAJOR, 2916 .minor = SCI_MINOR_START, 2917 .nr = SCI_NPORTS, 2918 .cons = SCI_CONSOLE, 2919 }; 2920 2921 static int sci_remove(struct platform_device *dev) 2922 { 2923 struct sci_port *port = platform_get_drvdata(dev); 2924 2925 uart_remove_one_port(&sci_uart_driver, &port->port); 2926 2927 sci_cleanup_single(port); 2928 2929 return 0; 2930 } 2931 2932 2933 #define SCI_OF_DATA(type, regtype) (void *)((type) << 16 | (regtype)) 2934 #define SCI_OF_TYPE(data) ((unsigned long)(data) >> 16) 2935 #define SCI_OF_REGTYPE(data) ((unsigned long)(data) & 0xffff) 2936 2937 static const struct of_device_id of_sci_match[] = { 2938 /* SoC-specific types */ 2939 { 2940 .compatible = "renesas,scif-r7s72100", 2941 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE), 2942 }, 2943 /* Family-specific types */ 2944 { 2945 .compatible = "renesas,rcar-gen1-scif", 2946 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE), 2947 }, { 2948 .compatible = "renesas,rcar-gen2-scif", 2949 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE), 2950 }, { 2951 .compatible = "renesas,rcar-gen3-scif", 2952 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE), 2953 }, 2954 /* Generic types */ 2955 { 2956 .compatible = "renesas,scif", 2957 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE), 2958 }, { 2959 .compatible = "renesas,scifa", 2960 .data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE), 2961 }, { 2962 .compatible = "renesas,scifb", 2963 .data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE), 2964 }, { 2965 .compatible = "renesas,hscif", 2966 .data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE), 2967 }, { 2968 .compatible = "renesas,sci", 2969 .data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE), 2970 }, { 2971 /* Terminator */ 2972 }, 2973 }; 2974 MODULE_DEVICE_TABLE(of, of_sci_match); 2975 2976 static struct plat_sci_port * 2977 sci_parse_dt(struct platform_device *pdev, unsigned int *dev_id) 2978 { 2979 struct device_node *np = pdev->dev.of_node; 2980 const struct of_device_id *match; 2981 struct plat_sci_port *p; 2982 int id; 2983 2984 if (!IS_ENABLED(CONFIG_OF) || !np) 2985 return NULL; 2986 2987 match = of_match_node(of_sci_match, np); 2988 if (!match) 2989 return NULL; 2990 2991 p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL); 2992 if (!p) 2993 return NULL; 2994 2995 /* Get the line number from the aliases node. */ 2996 id = of_alias_get_id(np, "serial"); 2997 if (id < 0) { 2998 dev_err(&pdev->dev, "failed to get alias id (%d)\n", id); 2999 return NULL; 3000 } 3001 3002 *dev_id = id; 3003 3004 p->flags = UPF_IOREMAP | UPF_BOOT_AUTOCONF; 3005 p->type = SCI_OF_TYPE(match->data); 3006 p->regtype = SCI_OF_REGTYPE(match->data); 3007 p->scscr = SCSCR_RE | SCSCR_TE; 3008 3009 if (of_find_property(np, "uart-has-rtscts", NULL)) 3010 p->capabilities |= SCIx_HAVE_RTSCTS; 3011 3012 return p; 3013 } 3014 3015 static int sci_probe_single(struct platform_device *dev, 3016 unsigned int index, 3017 struct plat_sci_port *p, 3018 struct sci_port *sciport) 3019 { 3020 int ret; 3021 3022 /* Sanity check */ 3023 if (unlikely(index >= SCI_NPORTS)) { 3024 dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n", 3025 index+1, SCI_NPORTS); 3026 dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n"); 3027 return -EINVAL; 3028 } 3029 3030 ret = sci_init_single(dev, sciport, index, p, false); 3031 if (ret) 3032 return ret; 3033 3034 sciport->gpios = mctrl_gpio_init(&sciport->port, 0); 3035 if (IS_ERR(sciport->gpios) && PTR_ERR(sciport->gpios) != -ENOSYS) 3036 return PTR_ERR(sciport->gpios); 3037 3038 if (p->capabilities & SCIx_HAVE_RTSCTS) { 3039 if (!IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(sciport->gpios, 3040 UART_GPIO_CTS)) || 3041 !IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(sciport->gpios, 3042 UART_GPIO_RTS))) { 3043 dev_err(&dev->dev, "Conflicting RTS/CTS config\n"); 3044 return -EINVAL; 3045 } 3046 sciport->port.flags |= UPF_HARD_FLOW; 3047 } 3048 3049 ret = uart_add_one_port(&sci_uart_driver, &sciport->port); 3050 if (ret) { 3051 sci_cleanup_single(sciport); 3052 return ret; 3053 } 3054 3055 return 0; 3056 } 3057 3058 static int sci_probe(struct platform_device *dev) 3059 { 3060 struct plat_sci_port *p; 3061 struct sci_port *sp; 3062 unsigned int dev_id; 3063 int ret; 3064 3065 /* 3066 * If we've come here via earlyprintk initialization, head off to 3067 * the special early probe. We don't have sufficient device state 3068 * to make it beyond this yet. 3069 */ 3070 if (is_early_platform_device(dev)) 3071 return sci_probe_earlyprintk(dev); 3072 3073 if (dev->dev.of_node) { 3074 p = sci_parse_dt(dev, &dev_id); 3075 if (p == NULL) 3076 return -EINVAL; 3077 } else { 3078 p = dev->dev.platform_data; 3079 if (p == NULL) { 3080 dev_err(&dev->dev, "no platform data supplied\n"); 3081 return -EINVAL; 3082 } 3083 3084 dev_id = dev->id; 3085 } 3086 3087 sp = &sci_ports[dev_id]; 3088 platform_set_drvdata(dev, sp); 3089 3090 ret = sci_probe_single(dev, dev_id, p, sp); 3091 if (ret) 3092 return ret; 3093 3094 #ifdef CONFIG_SH_STANDARD_BIOS 3095 sh_bios_gdb_detach(); 3096 #endif 3097 3098 return 0; 3099 } 3100 3101 static __maybe_unused int sci_suspend(struct device *dev) 3102 { 3103 struct sci_port *sport = dev_get_drvdata(dev); 3104 3105 if (sport) 3106 uart_suspend_port(&sci_uart_driver, &sport->port); 3107 3108 return 0; 3109 } 3110 3111 static __maybe_unused int sci_resume(struct device *dev) 3112 { 3113 struct sci_port *sport = dev_get_drvdata(dev); 3114 3115 if (sport) 3116 uart_resume_port(&sci_uart_driver, &sport->port); 3117 3118 return 0; 3119 } 3120 3121 static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume); 3122 3123 static struct platform_driver sci_driver = { 3124 .probe = sci_probe, 3125 .remove = sci_remove, 3126 .driver = { 3127 .name = "sh-sci", 3128 .pm = &sci_dev_pm_ops, 3129 .of_match_table = of_match_ptr(of_sci_match), 3130 }, 3131 }; 3132 3133 static int __init sci_init(void) 3134 { 3135 int ret; 3136 3137 pr_info("%s\n", banner); 3138 3139 ret = uart_register_driver(&sci_uart_driver); 3140 if (likely(ret == 0)) { 3141 ret = platform_driver_register(&sci_driver); 3142 if (unlikely(ret)) 3143 uart_unregister_driver(&sci_uart_driver); 3144 } 3145 3146 return ret; 3147 } 3148 3149 static void __exit sci_exit(void) 3150 { 3151 platform_driver_unregister(&sci_driver); 3152 uart_unregister_driver(&sci_uart_driver); 3153 } 3154 3155 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE 3156 early_platform_init_buffer("earlyprintk", &sci_driver, 3157 early_serial_buf, ARRAY_SIZE(early_serial_buf)); 3158 #endif 3159 #ifdef CONFIG_SERIAL_SH_SCI_EARLYCON 3160 static struct __init plat_sci_port port_cfg; 3161 3162 static int __init early_console_setup(struct earlycon_device *device, 3163 int type) 3164 { 3165 if (!device->port.membase) 3166 return -ENODEV; 3167 3168 device->port.serial_in = sci_serial_in; 3169 device->port.serial_out = sci_serial_out; 3170 device->port.type = type; 3171 memcpy(&sci_ports[0].port, &device->port, sizeof(struct uart_port)); 3172 sci_ports[0].cfg = &port_cfg; 3173 sci_ports[0].cfg->type = type; 3174 sci_probe_regmap(sci_ports[0].cfg); 3175 port_cfg.scscr = sci_serial_in(&sci_ports[0].port, SCSCR) | 3176 SCSCR_RE | SCSCR_TE; 3177 sci_serial_out(&sci_ports[0].port, SCSCR, port_cfg.scscr); 3178 3179 device->con->write = serial_console_write; 3180 return 0; 3181 } 3182 static int __init sci_early_console_setup(struct earlycon_device *device, 3183 const char *opt) 3184 { 3185 return early_console_setup(device, PORT_SCI); 3186 } 3187 static int __init scif_early_console_setup(struct earlycon_device *device, 3188 const char *opt) 3189 { 3190 return early_console_setup(device, PORT_SCIF); 3191 } 3192 static int __init scifa_early_console_setup(struct earlycon_device *device, 3193 const char *opt) 3194 { 3195 return early_console_setup(device, PORT_SCIFA); 3196 } 3197 static int __init scifb_early_console_setup(struct earlycon_device *device, 3198 const char *opt) 3199 { 3200 return early_console_setup(device, PORT_SCIFB); 3201 } 3202 static int __init hscif_early_console_setup(struct earlycon_device *device, 3203 const char *opt) 3204 { 3205 return early_console_setup(device, PORT_HSCIF); 3206 } 3207 3208 OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup); 3209 OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup); 3210 OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup); 3211 OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup); 3212 OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup); 3213 #endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */ 3214 3215 module_init(sci_init); 3216 module_exit(sci_exit); 3217 3218 MODULE_LICENSE("GPL"); 3219 MODULE_ALIAS("platform:sh-sci"); 3220 MODULE_AUTHOR("Paul Mundt"); 3221 MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver"); 3222