xref: /openbmc/linux/drivers/tty/serial/sh-sci.c (revision 79a93295)
1 /*
2  * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
3  *
4  *  Copyright (C) 2002 - 2011  Paul Mundt
5  *  Copyright (C) 2015 Glider bvba
6  *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
7  *
8  * based off of the old drivers/char/sh-sci.c by:
9  *
10  *   Copyright (C) 1999, 2000  Niibe Yutaka
11  *   Copyright (C) 2000  Sugioka Toshinobu
12  *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
13  *   Modified to support SecureEdge. David McCullough (2002)
14  *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
15  *   Removed SH7300 support (Jul 2007).
16  *
17  * This file is subject to the terms and conditions of the GNU General Public
18  * License.  See the file "COPYING" in the main directory of this archive
19  * for more details.
20  */
21 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
22 #define SUPPORT_SYSRQ
23 #endif
24 
25 #undef DEBUG
26 
27 #include <linux/clk.h>
28 #include <linux/console.h>
29 #include <linux/ctype.h>
30 #include <linux/cpufreq.h>
31 #include <linux/delay.h>
32 #include <linux/dmaengine.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/err.h>
35 #include <linux/errno.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/ioport.h>
39 #include <linux/major.h>
40 #include <linux/module.h>
41 #include <linux/mm.h>
42 #include <linux/of.h>
43 #include <linux/platform_device.h>
44 #include <linux/pm_runtime.h>
45 #include <linux/scatterlist.h>
46 #include <linux/serial.h>
47 #include <linux/serial_sci.h>
48 #include <linux/sh_dma.h>
49 #include <linux/slab.h>
50 #include <linux/string.h>
51 #include <linux/sysrq.h>
52 #include <linux/timer.h>
53 #include <linux/tty.h>
54 #include <linux/tty_flip.h>
55 
56 #ifdef CONFIG_SUPERH
57 #include <asm/sh_bios.h>
58 #endif
59 
60 #include "serial_mctrl_gpio.h"
61 #include "sh-sci.h"
62 
63 /* Offsets into the sci_port->irqs array */
64 enum {
65 	SCIx_ERI_IRQ,
66 	SCIx_RXI_IRQ,
67 	SCIx_TXI_IRQ,
68 	SCIx_BRI_IRQ,
69 	SCIx_NR_IRQS,
70 
71 	SCIx_MUX_IRQ = SCIx_NR_IRQS,	/* special case */
72 };
73 
74 #define SCIx_IRQ_IS_MUXED(port)			\
75 	((port)->irqs[SCIx_ERI_IRQ] ==	\
76 	 (port)->irqs[SCIx_RXI_IRQ]) ||	\
77 	((port)->irqs[SCIx_ERI_IRQ] &&	\
78 	 ((port)->irqs[SCIx_RXI_IRQ] < 0))
79 
80 enum SCI_CLKS {
81 	SCI_FCK,		/* Functional Clock */
82 	SCI_SCK,		/* Optional External Clock */
83 	SCI_BRG_INT,		/* Optional BRG Internal Clock Source */
84 	SCI_SCIF_CLK,		/* Optional BRG External Clock Source */
85 	SCI_NUM_CLKS
86 };
87 
88 /* Bit x set means sampling rate x + 1 is supported */
89 #define SCI_SR(x)		BIT((x) - 1)
90 #define SCI_SR_RANGE(x, y)	GENMASK((y) - 1, (x) - 1)
91 
92 #define SCI_SR_SCIFAB		SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \
93 				SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \
94 				SCI_SR(19) | SCI_SR(27)
95 
96 #define min_sr(_port)		ffs((_port)->sampling_rate_mask)
97 #define max_sr(_port)		fls((_port)->sampling_rate_mask)
98 
99 /* Iterate over all supported sampling rates, from high to low */
100 #define for_each_sr(_sr, _port)						\
101 	for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--)	\
102 		if ((_port)->sampling_rate_mask & SCI_SR((_sr)))
103 
104 struct sci_port {
105 	struct uart_port	port;
106 
107 	/* Platform configuration */
108 	struct plat_sci_port	*cfg;
109 	unsigned int		overrun_reg;
110 	unsigned int		overrun_mask;
111 	unsigned int		error_mask;
112 	unsigned int		error_clear;
113 	unsigned int		sampling_rate_mask;
114 	resource_size_t		reg_size;
115 	struct mctrl_gpios	*gpios;
116 
117 	/* Break timer */
118 	struct timer_list	break_timer;
119 	int			break_flag;
120 
121 	/* Clocks */
122 	struct clk		*clks[SCI_NUM_CLKS];
123 	unsigned long		clk_rates[SCI_NUM_CLKS];
124 
125 	int			irqs[SCIx_NR_IRQS];
126 	char			*irqstr[SCIx_NR_IRQS];
127 
128 	struct dma_chan			*chan_tx;
129 	struct dma_chan			*chan_rx;
130 
131 #ifdef CONFIG_SERIAL_SH_SCI_DMA
132 	dma_cookie_t			cookie_tx;
133 	dma_cookie_t			cookie_rx[2];
134 	dma_cookie_t			active_rx;
135 	dma_addr_t			tx_dma_addr;
136 	unsigned int			tx_dma_len;
137 	struct scatterlist		sg_rx[2];
138 	void				*rx_buf[2];
139 	size_t				buf_len_rx;
140 	struct work_struct		work_tx;
141 	struct timer_list		rx_timer;
142 	unsigned int			rx_timeout;
143 #endif
144 
145 	bool autorts;
146 };
147 
148 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
149 
150 static struct sci_port sci_ports[SCI_NPORTS];
151 static struct uart_driver sci_uart_driver;
152 
153 static inline struct sci_port *
154 to_sci_port(struct uart_port *uart)
155 {
156 	return container_of(uart, struct sci_port, port);
157 }
158 
159 struct plat_sci_reg {
160 	u8 offset, size;
161 };
162 
163 /* Helper for invalidating specific entries of an inherited map. */
164 #define sci_reg_invalid	{ .offset = 0, .size = 0 }
165 
166 static const struct plat_sci_reg sci_regmap[SCIx_NR_REGTYPES][SCIx_NR_REGS] = {
167 	[SCIx_PROBE_REGTYPE] = {
168 		[0 ... SCIx_NR_REGS - 1] = sci_reg_invalid,
169 	},
170 
171 	/*
172 	 * Common SCI definitions, dependent on the port's regshift
173 	 * value.
174 	 */
175 	[SCIx_SCI_REGTYPE] = {
176 		[SCSMR]		= { 0x00,  8 },
177 		[SCBRR]		= { 0x01,  8 },
178 		[SCSCR]		= { 0x02,  8 },
179 		[SCxTDR]	= { 0x03,  8 },
180 		[SCxSR]		= { 0x04,  8 },
181 		[SCxRDR]	= { 0x05,  8 },
182 		[SCFCR]		= sci_reg_invalid,
183 		[SCFDR]		= sci_reg_invalid,
184 		[SCTFDR]	= sci_reg_invalid,
185 		[SCRFDR]	= sci_reg_invalid,
186 		[SCSPTR]	= sci_reg_invalid,
187 		[SCLSR]		= sci_reg_invalid,
188 		[HSSRR]		= sci_reg_invalid,
189 		[SCPCR]		= sci_reg_invalid,
190 		[SCPDR]		= sci_reg_invalid,
191 		[SCDL]		= sci_reg_invalid,
192 		[SCCKS]		= sci_reg_invalid,
193 	},
194 
195 	/*
196 	 * Common definitions for legacy IrDA ports, dependent on
197 	 * regshift value.
198 	 */
199 	[SCIx_IRDA_REGTYPE] = {
200 		[SCSMR]		= { 0x00,  8 },
201 		[SCBRR]		= { 0x01,  8 },
202 		[SCSCR]		= { 0x02,  8 },
203 		[SCxTDR]	= { 0x03,  8 },
204 		[SCxSR]		= { 0x04,  8 },
205 		[SCxRDR]	= { 0x05,  8 },
206 		[SCFCR]		= { 0x06,  8 },
207 		[SCFDR]		= { 0x07, 16 },
208 		[SCTFDR]	= sci_reg_invalid,
209 		[SCRFDR]	= sci_reg_invalid,
210 		[SCSPTR]	= sci_reg_invalid,
211 		[SCLSR]		= sci_reg_invalid,
212 		[HSSRR]		= sci_reg_invalid,
213 		[SCPCR]		= sci_reg_invalid,
214 		[SCPDR]		= sci_reg_invalid,
215 		[SCDL]		= sci_reg_invalid,
216 		[SCCKS]		= sci_reg_invalid,
217 	},
218 
219 	/*
220 	 * Common SCIFA definitions.
221 	 */
222 	[SCIx_SCIFA_REGTYPE] = {
223 		[SCSMR]		= { 0x00, 16 },
224 		[SCBRR]		= { 0x04,  8 },
225 		[SCSCR]		= { 0x08, 16 },
226 		[SCxTDR]	= { 0x20,  8 },
227 		[SCxSR]		= { 0x14, 16 },
228 		[SCxRDR]	= { 0x24,  8 },
229 		[SCFCR]		= { 0x18, 16 },
230 		[SCFDR]		= { 0x1c, 16 },
231 		[SCTFDR]	= sci_reg_invalid,
232 		[SCRFDR]	= sci_reg_invalid,
233 		[SCSPTR]	= sci_reg_invalid,
234 		[SCLSR]		= sci_reg_invalid,
235 		[HSSRR]		= sci_reg_invalid,
236 		[SCPCR]		= { 0x30, 16 },
237 		[SCPDR]		= { 0x34, 16 },
238 		[SCDL]		= sci_reg_invalid,
239 		[SCCKS]		= sci_reg_invalid,
240 	},
241 
242 	/*
243 	 * Common SCIFB definitions.
244 	 */
245 	[SCIx_SCIFB_REGTYPE] = {
246 		[SCSMR]		= { 0x00, 16 },
247 		[SCBRR]		= { 0x04,  8 },
248 		[SCSCR]		= { 0x08, 16 },
249 		[SCxTDR]	= { 0x40,  8 },
250 		[SCxSR]		= { 0x14, 16 },
251 		[SCxRDR]	= { 0x60,  8 },
252 		[SCFCR]		= { 0x18, 16 },
253 		[SCFDR]		= sci_reg_invalid,
254 		[SCTFDR]	= { 0x38, 16 },
255 		[SCRFDR]	= { 0x3c, 16 },
256 		[SCSPTR]	= sci_reg_invalid,
257 		[SCLSR]		= sci_reg_invalid,
258 		[HSSRR]		= sci_reg_invalid,
259 		[SCPCR]		= { 0x30, 16 },
260 		[SCPDR]		= { 0x34, 16 },
261 		[SCDL]		= sci_reg_invalid,
262 		[SCCKS]		= sci_reg_invalid,
263 	},
264 
265 	/*
266 	 * Common SH-2(A) SCIF definitions for ports with FIFO data
267 	 * count registers.
268 	 */
269 	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
270 		[SCSMR]		= { 0x00, 16 },
271 		[SCBRR]		= { 0x04,  8 },
272 		[SCSCR]		= { 0x08, 16 },
273 		[SCxTDR]	= { 0x0c,  8 },
274 		[SCxSR]		= { 0x10, 16 },
275 		[SCxRDR]	= { 0x14,  8 },
276 		[SCFCR]		= { 0x18, 16 },
277 		[SCFDR]		= { 0x1c, 16 },
278 		[SCTFDR]	= sci_reg_invalid,
279 		[SCRFDR]	= sci_reg_invalid,
280 		[SCSPTR]	= { 0x20, 16 },
281 		[SCLSR]		= { 0x24, 16 },
282 		[HSSRR]		= sci_reg_invalid,
283 		[SCPCR]		= sci_reg_invalid,
284 		[SCPDR]		= sci_reg_invalid,
285 		[SCDL]		= sci_reg_invalid,
286 		[SCCKS]		= sci_reg_invalid,
287 	},
288 
289 	/*
290 	 * Common SH-3 SCIF definitions.
291 	 */
292 	[SCIx_SH3_SCIF_REGTYPE] = {
293 		[SCSMR]		= { 0x00,  8 },
294 		[SCBRR]		= { 0x02,  8 },
295 		[SCSCR]		= { 0x04,  8 },
296 		[SCxTDR]	= { 0x06,  8 },
297 		[SCxSR]		= { 0x08, 16 },
298 		[SCxRDR]	= { 0x0a,  8 },
299 		[SCFCR]		= { 0x0c,  8 },
300 		[SCFDR]		= { 0x0e, 16 },
301 		[SCTFDR]	= sci_reg_invalid,
302 		[SCRFDR]	= sci_reg_invalid,
303 		[SCSPTR]	= sci_reg_invalid,
304 		[SCLSR]		= sci_reg_invalid,
305 		[HSSRR]		= sci_reg_invalid,
306 		[SCPCR]		= sci_reg_invalid,
307 		[SCPDR]		= sci_reg_invalid,
308 		[SCDL]		= sci_reg_invalid,
309 		[SCCKS]		= sci_reg_invalid,
310 	},
311 
312 	/*
313 	 * Common SH-4(A) SCIF(B) definitions.
314 	 */
315 	[SCIx_SH4_SCIF_REGTYPE] = {
316 		[SCSMR]		= { 0x00, 16 },
317 		[SCBRR]		= { 0x04,  8 },
318 		[SCSCR]		= { 0x08, 16 },
319 		[SCxTDR]	= { 0x0c,  8 },
320 		[SCxSR]		= { 0x10, 16 },
321 		[SCxRDR]	= { 0x14,  8 },
322 		[SCFCR]		= { 0x18, 16 },
323 		[SCFDR]		= { 0x1c, 16 },
324 		[SCTFDR]	= sci_reg_invalid,
325 		[SCRFDR]	= sci_reg_invalid,
326 		[SCSPTR]	= { 0x20, 16 },
327 		[SCLSR]		= { 0x24, 16 },
328 		[HSSRR]		= sci_reg_invalid,
329 		[SCPCR]		= sci_reg_invalid,
330 		[SCPDR]		= sci_reg_invalid,
331 		[SCDL]		= sci_reg_invalid,
332 		[SCCKS]		= sci_reg_invalid,
333 	},
334 
335 	/*
336 	 * Common SCIF definitions for ports with a Baud Rate Generator for
337 	 * External Clock (BRG).
338 	 */
339 	[SCIx_SH4_SCIF_BRG_REGTYPE] = {
340 		[SCSMR]		= { 0x00, 16 },
341 		[SCBRR]		= { 0x04,  8 },
342 		[SCSCR]		= { 0x08, 16 },
343 		[SCxTDR]	= { 0x0c,  8 },
344 		[SCxSR]		= { 0x10, 16 },
345 		[SCxRDR]	= { 0x14,  8 },
346 		[SCFCR]		= { 0x18, 16 },
347 		[SCFDR]		= { 0x1c, 16 },
348 		[SCTFDR]	= sci_reg_invalid,
349 		[SCRFDR]	= sci_reg_invalid,
350 		[SCSPTR]	= { 0x20, 16 },
351 		[SCLSR]		= { 0x24, 16 },
352 		[HSSRR]		= sci_reg_invalid,
353 		[SCPCR]		= sci_reg_invalid,
354 		[SCPDR]		= sci_reg_invalid,
355 		[SCDL]		= { 0x30, 16 },
356 		[SCCKS]		= { 0x34, 16 },
357 	},
358 
359 	/*
360 	 * Common HSCIF definitions.
361 	 */
362 	[SCIx_HSCIF_REGTYPE] = {
363 		[SCSMR]		= { 0x00, 16 },
364 		[SCBRR]		= { 0x04,  8 },
365 		[SCSCR]		= { 0x08, 16 },
366 		[SCxTDR]	= { 0x0c,  8 },
367 		[SCxSR]		= { 0x10, 16 },
368 		[SCxRDR]	= { 0x14,  8 },
369 		[SCFCR]		= { 0x18, 16 },
370 		[SCFDR]		= { 0x1c, 16 },
371 		[SCTFDR]	= sci_reg_invalid,
372 		[SCRFDR]	= sci_reg_invalid,
373 		[SCSPTR]	= { 0x20, 16 },
374 		[SCLSR]		= { 0x24, 16 },
375 		[HSSRR]		= { 0x40, 16 },
376 		[SCPCR]		= sci_reg_invalid,
377 		[SCPDR]		= sci_reg_invalid,
378 		[SCDL]		= { 0x30, 16 },
379 		[SCCKS]		= { 0x34, 16 },
380 	},
381 
382 	/*
383 	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
384 	 * register.
385 	 */
386 	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
387 		[SCSMR]		= { 0x00, 16 },
388 		[SCBRR]		= { 0x04,  8 },
389 		[SCSCR]		= { 0x08, 16 },
390 		[SCxTDR]	= { 0x0c,  8 },
391 		[SCxSR]		= { 0x10, 16 },
392 		[SCxRDR]	= { 0x14,  8 },
393 		[SCFCR]		= { 0x18, 16 },
394 		[SCFDR]		= { 0x1c, 16 },
395 		[SCTFDR]	= sci_reg_invalid,
396 		[SCRFDR]	= sci_reg_invalid,
397 		[SCSPTR]	= sci_reg_invalid,
398 		[SCLSR]		= { 0x24, 16 },
399 		[HSSRR]		= sci_reg_invalid,
400 		[SCPCR]		= sci_reg_invalid,
401 		[SCPDR]		= sci_reg_invalid,
402 		[SCDL]		= sci_reg_invalid,
403 		[SCCKS]		= sci_reg_invalid,
404 	},
405 
406 	/*
407 	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
408 	 * count registers.
409 	 */
410 	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
411 		[SCSMR]		= { 0x00, 16 },
412 		[SCBRR]		= { 0x04,  8 },
413 		[SCSCR]		= { 0x08, 16 },
414 		[SCxTDR]	= { 0x0c,  8 },
415 		[SCxSR]		= { 0x10, 16 },
416 		[SCxRDR]	= { 0x14,  8 },
417 		[SCFCR]		= { 0x18, 16 },
418 		[SCFDR]		= { 0x1c, 16 },
419 		[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
420 		[SCRFDR]	= { 0x20, 16 },
421 		[SCSPTR]	= { 0x24, 16 },
422 		[SCLSR]		= { 0x28, 16 },
423 		[HSSRR]		= sci_reg_invalid,
424 		[SCPCR]		= sci_reg_invalid,
425 		[SCPDR]		= sci_reg_invalid,
426 		[SCDL]		= sci_reg_invalid,
427 		[SCCKS]		= sci_reg_invalid,
428 	},
429 
430 	/*
431 	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
432 	 * registers.
433 	 */
434 	[SCIx_SH7705_SCIF_REGTYPE] = {
435 		[SCSMR]		= { 0x00, 16 },
436 		[SCBRR]		= { 0x04,  8 },
437 		[SCSCR]		= { 0x08, 16 },
438 		[SCxTDR]	= { 0x20,  8 },
439 		[SCxSR]		= { 0x14, 16 },
440 		[SCxRDR]	= { 0x24,  8 },
441 		[SCFCR]		= { 0x18, 16 },
442 		[SCFDR]		= { 0x1c, 16 },
443 		[SCTFDR]	= sci_reg_invalid,
444 		[SCRFDR]	= sci_reg_invalid,
445 		[SCSPTR]	= sci_reg_invalid,
446 		[SCLSR]		= sci_reg_invalid,
447 		[HSSRR]		= sci_reg_invalid,
448 		[SCPCR]		= sci_reg_invalid,
449 		[SCPDR]		= sci_reg_invalid,
450 		[SCDL]		= sci_reg_invalid,
451 		[SCCKS]		= sci_reg_invalid,
452 	},
453 };
454 
455 #define sci_getreg(up, offset)		(sci_regmap[to_sci_port(up)->cfg->regtype] + offset)
456 
457 /*
458  * The "offset" here is rather misleading, in that it refers to an enum
459  * value relative to the port mapping rather than the fixed offset
460  * itself, which needs to be manually retrieved from the platform's
461  * register map for the given port.
462  */
463 static unsigned int sci_serial_in(struct uart_port *p, int offset)
464 {
465 	const struct plat_sci_reg *reg = sci_getreg(p, offset);
466 
467 	if (reg->size == 8)
468 		return ioread8(p->membase + (reg->offset << p->regshift));
469 	else if (reg->size == 16)
470 		return ioread16(p->membase + (reg->offset << p->regshift));
471 	else
472 		WARN(1, "Invalid register access\n");
473 
474 	return 0;
475 }
476 
477 static void sci_serial_out(struct uart_port *p, int offset, int value)
478 {
479 	const struct plat_sci_reg *reg = sci_getreg(p, offset);
480 
481 	if (reg->size == 8)
482 		iowrite8(value, p->membase + (reg->offset << p->regshift));
483 	else if (reg->size == 16)
484 		iowrite16(value, p->membase + (reg->offset << p->regshift));
485 	else
486 		WARN(1, "Invalid register access\n");
487 }
488 
489 static int sci_probe_regmap(struct plat_sci_port *cfg)
490 {
491 	switch (cfg->type) {
492 	case PORT_SCI:
493 		cfg->regtype = SCIx_SCI_REGTYPE;
494 		break;
495 	case PORT_IRDA:
496 		cfg->regtype = SCIx_IRDA_REGTYPE;
497 		break;
498 	case PORT_SCIFA:
499 		cfg->regtype = SCIx_SCIFA_REGTYPE;
500 		break;
501 	case PORT_SCIFB:
502 		cfg->regtype = SCIx_SCIFB_REGTYPE;
503 		break;
504 	case PORT_SCIF:
505 		/*
506 		 * The SH-4 is a bit of a misnomer here, although that's
507 		 * where this particular port layout originated. This
508 		 * configuration (or some slight variation thereof)
509 		 * remains the dominant model for all SCIFs.
510 		 */
511 		cfg->regtype = SCIx_SH4_SCIF_REGTYPE;
512 		break;
513 	case PORT_HSCIF:
514 		cfg->regtype = SCIx_HSCIF_REGTYPE;
515 		break;
516 	default:
517 		pr_err("Can't probe register map for given port\n");
518 		return -EINVAL;
519 	}
520 
521 	return 0;
522 }
523 
524 static void sci_port_enable(struct sci_port *sci_port)
525 {
526 	unsigned int i;
527 
528 	if (!sci_port->port.dev)
529 		return;
530 
531 	pm_runtime_get_sync(sci_port->port.dev);
532 
533 	for (i = 0; i < SCI_NUM_CLKS; i++) {
534 		clk_prepare_enable(sci_port->clks[i]);
535 		sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]);
536 	}
537 	sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
538 }
539 
540 static void sci_port_disable(struct sci_port *sci_port)
541 {
542 	unsigned int i;
543 
544 	if (!sci_port->port.dev)
545 		return;
546 
547 	/* Cancel the break timer to ensure that the timer handler will not try
548 	 * to access the hardware with clocks and power disabled. Reset the
549 	 * break flag to make the break debouncing state machine ready for the
550 	 * next break.
551 	 */
552 	del_timer_sync(&sci_port->break_timer);
553 	sci_port->break_flag = 0;
554 
555 	for (i = SCI_NUM_CLKS; i-- > 0; )
556 		clk_disable_unprepare(sci_port->clks[i]);
557 
558 	pm_runtime_put_sync(sci_port->port.dev);
559 }
560 
561 static inline unsigned long port_rx_irq_mask(struct uart_port *port)
562 {
563 	/*
564 	 * Not all ports (such as SCIFA) will support REIE. Rather than
565 	 * special-casing the port type, we check the port initialization
566 	 * IRQ enable mask to see whether the IRQ is desired at all. If
567 	 * it's unset, it's logically inferred that there's no point in
568 	 * testing for it.
569 	 */
570 	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
571 }
572 
573 static void sci_start_tx(struct uart_port *port)
574 {
575 	struct sci_port *s = to_sci_port(port);
576 	unsigned short ctrl;
577 
578 #ifdef CONFIG_SERIAL_SH_SCI_DMA
579 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
580 		u16 new, scr = serial_port_in(port, SCSCR);
581 		if (s->chan_tx)
582 			new = scr | SCSCR_TDRQE;
583 		else
584 			new = scr & ~SCSCR_TDRQE;
585 		if (new != scr)
586 			serial_port_out(port, SCSCR, new);
587 	}
588 
589 	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
590 	    dma_submit_error(s->cookie_tx)) {
591 		s->cookie_tx = 0;
592 		schedule_work(&s->work_tx);
593 	}
594 #endif
595 
596 	if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
597 		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
598 		ctrl = serial_port_in(port, SCSCR);
599 		serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
600 	}
601 }
602 
603 static void sci_stop_tx(struct uart_port *port)
604 {
605 	unsigned short ctrl;
606 
607 	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
608 	ctrl = serial_port_in(port, SCSCR);
609 
610 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
611 		ctrl &= ~SCSCR_TDRQE;
612 
613 	ctrl &= ~SCSCR_TIE;
614 
615 	serial_port_out(port, SCSCR, ctrl);
616 }
617 
618 static void sci_start_rx(struct uart_port *port)
619 {
620 	unsigned short ctrl;
621 
622 	ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
623 
624 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
625 		ctrl &= ~SCSCR_RDRQE;
626 
627 	serial_port_out(port, SCSCR, ctrl);
628 }
629 
630 static void sci_stop_rx(struct uart_port *port)
631 {
632 	unsigned short ctrl;
633 
634 	ctrl = serial_port_in(port, SCSCR);
635 
636 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
637 		ctrl &= ~SCSCR_RDRQE;
638 
639 	ctrl &= ~port_rx_irq_mask(port);
640 
641 	serial_port_out(port, SCSCR, ctrl);
642 }
643 
644 static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
645 {
646 	if (port->type == PORT_SCI) {
647 		/* Just store the mask */
648 		serial_port_out(port, SCxSR, mask);
649 	} else if (to_sci_port(port)->overrun_mask == SCIFA_ORER) {
650 		/* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
651 		/* Only clear the status bits we want to clear */
652 		serial_port_out(port, SCxSR,
653 				serial_port_in(port, SCxSR) & mask);
654 	} else {
655 		/* Store the mask, clear parity/framing errors */
656 		serial_port_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
657 	}
658 }
659 
660 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
661     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
662 
663 #ifdef CONFIG_CONSOLE_POLL
664 static int sci_poll_get_char(struct uart_port *port)
665 {
666 	unsigned short status;
667 	int c;
668 
669 	do {
670 		status = serial_port_in(port, SCxSR);
671 		if (status & SCxSR_ERRORS(port)) {
672 			sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
673 			continue;
674 		}
675 		break;
676 	} while (1);
677 
678 	if (!(status & SCxSR_RDxF(port)))
679 		return NO_POLL_CHAR;
680 
681 	c = serial_port_in(port, SCxRDR);
682 
683 	/* Dummy read */
684 	serial_port_in(port, SCxSR);
685 	sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
686 
687 	return c;
688 }
689 #endif
690 
691 static void sci_poll_put_char(struct uart_port *port, unsigned char c)
692 {
693 	unsigned short status;
694 
695 	do {
696 		status = serial_port_in(port, SCxSR);
697 	} while (!(status & SCxSR_TDxE(port)));
698 
699 	serial_port_out(port, SCxTDR, c);
700 	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
701 }
702 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE ||
703 	  CONFIG_SERIAL_SH_SCI_EARLYCON */
704 
705 static void sci_init_pins(struct uart_port *port, unsigned int cflag)
706 {
707 	struct sci_port *s = to_sci_port(port);
708 
709 	/*
710 	 * Use port-specific handler if provided.
711 	 */
712 	if (s->cfg->ops && s->cfg->ops->init_pins) {
713 		s->cfg->ops->init_pins(port, cflag);
714 		return;
715 	}
716 
717 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
718 		u16 ctrl = serial_port_in(port, SCPCR);
719 
720 		/* Enable RXD and TXD pin functions */
721 		ctrl &= ~(SCPCR_RXDC | SCPCR_TXDC);
722 		if (to_sci_port(port)->cfg->capabilities & SCIx_HAVE_RTSCTS) {
723 			/* RTS# is output, driven 1 */
724 			ctrl |= SCPCR_RTSC;
725 			serial_port_out(port, SCPDR,
726 				serial_port_in(port, SCPDR) | SCPDR_RTSD);
727 			/* Enable CTS# pin function */
728 			ctrl &= ~SCPCR_CTSC;
729 		}
730 		serial_port_out(port, SCPCR, ctrl);
731 	} else if (sci_getreg(port, SCSPTR)->size) {
732 		u16 status = serial_port_in(port, SCSPTR);
733 
734 		/* RTS# is output, driven 1 */
735 		status |= SCSPTR_RTSIO | SCSPTR_RTSDT;
736 		/* CTS# and SCK are inputs */
737 		status &= ~(SCSPTR_CTSIO | SCSPTR_SCKIO);
738 		serial_port_out(port, SCSPTR, status);
739 	}
740 }
741 
742 static int sci_txfill(struct uart_port *port)
743 {
744 	const struct plat_sci_reg *reg;
745 
746 	reg = sci_getreg(port, SCTFDR);
747 	if (reg->size)
748 		return serial_port_in(port, SCTFDR) & ((port->fifosize << 1) - 1);
749 
750 	reg = sci_getreg(port, SCFDR);
751 	if (reg->size)
752 		return serial_port_in(port, SCFDR) >> 8;
753 
754 	return !(serial_port_in(port, SCxSR) & SCI_TDRE);
755 }
756 
757 static int sci_txroom(struct uart_port *port)
758 {
759 	return port->fifosize - sci_txfill(port);
760 }
761 
762 static int sci_rxfill(struct uart_port *port)
763 {
764 	const struct plat_sci_reg *reg;
765 
766 	reg = sci_getreg(port, SCRFDR);
767 	if (reg->size)
768 		return serial_port_in(port, SCRFDR) & ((port->fifosize << 1) - 1);
769 
770 	reg = sci_getreg(port, SCFDR);
771 	if (reg->size)
772 		return serial_port_in(port, SCFDR) & ((port->fifosize << 1) - 1);
773 
774 	return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
775 }
776 
777 /*
778  * SCI helper for checking the state of the muxed port/RXD pins.
779  */
780 static inline int sci_rxd_in(struct uart_port *port)
781 {
782 	struct sci_port *s = to_sci_port(port);
783 
784 	if (s->cfg->port_reg <= 0)
785 		return 1;
786 
787 	/* Cast for ARM damage */
788 	return !!__raw_readb((void __iomem *)(uintptr_t)s->cfg->port_reg);
789 }
790 
791 /* ********************************************************************** *
792  *                   the interrupt related routines                       *
793  * ********************************************************************** */
794 
795 static void sci_transmit_chars(struct uart_port *port)
796 {
797 	struct circ_buf *xmit = &port->state->xmit;
798 	unsigned int stopped = uart_tx_stopped(port);
799 	unsigned short status;
800 	unsigned short ctrl;
801 	int count;
802 
803 	status = serial_port_in(port, SCxSR);
804 	if (!(status & SCxSR_TDxE(port))) {
805 		ctrl = serial_port_in(port, SCSCR);
806 		if (uart_circ_empty(xmit))
807 			ctrl &= ~SCSCR_TIE;
808 		else
809 			ctrl |= SCSCR_TIE;
810 		serial_port_out(port, SCSCR, ctrl);
811 		return;
812 	}
813 
814 	count = sci_txroom(port);
815 
816 	do {
817 		unsigned char c;
818 
819 		if (port->x_char) {
820 			c = port->x_char;
821 			port->x_char = 0;
822 		} else if (!uart_circ_empty(xmit) && !stopped) {
823 			c = xmit->buf[xmit->tail];
824 			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
825 		} else {
826 			break;
827 		}
828 
829 		serial_port_out(port, SCxTDR, c);
830 
831 		port->icount.tx++;
832 	} while (--count > 0);
833 
834 	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
835 
836 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
837 		uart_write_wakeup(port);
838 	if (uart_circ_empty(xmit)) {
839 		sci_stop_tx(port);
840 	} else {
841 		ctrl = serial_port_in(port, SCSCR);
842 
843 		if (port->type != PORT_SCI) {
844 			serial_port_in(port, SCxSR); /* Dummy read */
845 			sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
846 		}
847 
848 		ctrl |= SCSCR_TIE;
849 		serial_port_out(port, SCSCR, ctrl);
850 	}
851 }
852 
853 /* On SH3, SCIF may read end-of-break as a space->mark char */
854 #define STEPFN(c)  ({int __c = (c); (((__c-1)|(__c)) == -1); })
855 
856 static void sci_receive_chars(struct uart_port *port)
857 {
858 	struct sci_port *sci_port = to_sci_port(port);
859 	struct tty_port *tport = &port->state->port;
860 	int i, count, copied = 0;
861 	unsigned short status;
862 	unsigned char flag;
863 
864 	status = serial_port_in(port, SCxSR);
865 	if (!(status & SCxSR_RDxF(port)))
866 		return;
867 
868 	while (1) {
869 		/* Don't copy more bytes than there is room for in the buffer */
870 		count = tty_buffer_request_room(tport, sci_rxfill(port));
871 
872 		/* If for any reason we can't copy more data, we're done! */
873 		if (count == 0)
874 			break;
875 
876 		if (port->type == PORT_SCI) {
877 			char c = serial_port_in(port, SCxRDR);
878 			if (uart_handle_sysrq_char(port, c) ||
879 			    sci_port->break_flag)
880 				count = 0;
881 			else
882 				tty_insert_flip_char(tport, c, TTY_NORMAL);
883 		} else {
884 			for (i = 0; i < count; i++) {
885 				char c = serial_port_in(port, SCxRDR);
886 
887 				status = serial_port_in(port, SCxSR);
888 #if defined(CONFIG_CPU_SH3)
889 				/* Skip "chars" during break */
890 				if (sci_port->break_flag) {
891 					if ((c == 0) &&
892 					    (status & SCxSR_FER(port))) {
893 						count--; i--;
894 						continue;
895 					}
896 
897 					/* Nonzero => end-of-break */
898 					dev_dbg(port->dev, "debounce<%02x>\n", c);
899 					sci_port->break_flag = 0;
900 
901 					if (STEPFN(c)) {
902 						count--; i--;
903 						continue;
904 					}
905 				}
906 #endif /* CONFIG_CPU_SH3 */
907 				if (uart_handle_sysrq_char(port, c)) {
908 					count--; i--;
909 					continue;
910 				}
911 
912 				/* Store data and status */
913 				if (status & SCxSR_FER(port)) {
914 					flag = TTY_FRAME;
915 					port->icount.frame++;
916 					dev_notice(port->dev, "frame error\n");
917 				} else if (status & SCxSR_PER(port)) {
918 					flag = TTY_PARITY;
919 					port->icount.parity++;
920 					dev_notice(port->dev, "parity error\n");
921 				} else
922 					flag = TTY_NORMAL;
923 
924 				tty_insert_flip_char(tport, c, flag);
925 			}
926 		}
927 
928 		serial_port_in(port, SCxSR); /* dummy read */
929 		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
930 
931 		copied += count;
932 		port->icount.rx += count;
933 	}
934 
935 	if (copied) {
936 		/* Tell the rest of the system the news. New characters! */
937 		tty_flip_buffer_push(tport);
938 	} else {
939 		serial_port_in(port, SCxSR); /* dummy read */
940 		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
941 	}
942 }
943 
944 #define SCI_BREAK_JIFFIES (HZ/20)
945 
946 /*
947  * The sci generates interrupts during the break,
948  * 1 per millisecond or so during the break period, for 9600 baud.
949  * So dont bother disabling interrupts.
950  * But dont want more than 1 break event.
951  * Use a kernel timer to periodically poll the rx line until
952  * the break is finished.
953  */
954 static inline void sci_schedule_break_timer(struct sci_port *port)
955 {
956 	mod_timer(&port->break_timer, jiffies + SCI_BREAK_JIFFIES);
957 }
958 
959 /* Ensure that two consecutive samples find the break over. */
960 static void sci_break_timer(unsigned long data)
961 {
962 	struct sci_port *port = (struct sci_port *)data;
963 
964 	if (sci_rxd_in(&port->port) == 0) {
965 		port->break_flag = 1;
966 		sci_schedule_break_timer(port);
967 	} else if (port->break_flag == 1) {
968 		/* break is over. */
969 		port->break_flag = 2;
970 		sci_schedule_break_timer(port);
971 	} else
972 		port->break_flag = 0;
973 }
974 
975 static int sci_handle_errors(struct uart_port *port)
976 {
977 	int copied = 0;
978 	unsigned short status = serial_port_in(port, SCxSR);
979 	struct tty_port *tport = &port->state->port;
980 	struct sci_port *s = to_sci_port(port);
981 
982 	/* Handle overruns */
983 	if (status & s->overrun_mask) {
984 		port->icount.overrun++;
985 
986 		/* overrun error */
987 		if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
988 			copied++;
989 
990 		dev_notice(port->dev, "overrun error\n");
991 	}
992 
993 	if (status & SCxSR_FER(port)) {
994 		if (sci_rxd_in(port) == 0) {
995 			/* Notify of BREAK */
996 			struct sci_port *sci_port = to_sci_port(port);
997 
998 			if (!sci_port->break_flag) {
999 				port->icount.brk++;
1000 
1001 				sci_port->break_flag = 1;
1002 				sci_schedule_break_timer(sci_port);
1003 
1004 				/* Do sysrq handling. */
1005 				if (uart_handle_break(port))
1006 					return 0;
1007 
1008 				dev_dbg(port->dev, "BREAK detected\n");
1009 
1010 				if (tty_insert_flip_char(tport, 0, TTY_BREAK))
1011 					copied++;
1012 			}
1013 
1014 		} else {
1015 			/* frame error */
1016 			port->icount.frame++;
1017 
1018 			if (tty_insert_flip_char(tport, 0, TTY_FRAME))
1019 				copied++;
1020 
1021 			dev_notice(port->dev, "frame error\n");
1022 		}
1023 	}
1024 
1025 	if (status & SCxSR_PER(port)) {
1026 		/* parity error */
1027 		port->icount.parity++;
1028 
1029 		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
1030 			copied++;
1031 
1032 		dev_notice(port->dev, "parity error\n");
1033 	}
1034 
1035 	if (copied)
1036 		tty_flip_buffer_push(tport);
1037 
1038 	return copied;
1039 }
1040 
1041 static int sci_handle_fifo_overrun(struct uart_port *port)
1042 {
1043 	struct tty_port *tport = &port->state->port;
1044 	struct sci_port *s = to_sci_port(port);
1045 	const struct plat_sci_reg *reg;
1046 	int copied = 0;
1047 	u16 status;
1048 
1049 	reg = sci_getreg(port, s->overrun_reg);
1050 	if (!reg->size)
1051 		return 0;
1052 
1053 	status = serial_port_in(port, s->overrun_reg);
1054 	if (status & s->overrun_mask) {
1055 		status &= ~s->overrun_mask;
1056 		serial_port_out(port, s->overrun_reg, status);
1057 
1058 		port->icount.overrun++;
1059 
1060 		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
1061 		tty_flip_buffer_push(tport);
1062 
1063 		dev_dbg(port->dev, "overrun error\n");
1064 		copied++;
1065 	}
1066 
1067 	return copied;
1068 }
1069 
1070 static int sci_handle_breaks(struct uart_port *port)
1071 {
1072 	int copied = 0;
1073 	unsigned short status = serial_port_in(port, SCxSR);
1074 	struct tty_port *tport = &port->state->port;
1075 	struct sci_port *s = to_sci_port(port);
1076 
1077 	if (uart_handle_break(port))
1078 		return 0;
1079 
1080 	if (!s->break_flag && status & SCxSR_BRK(port)) {
1081 #if defined(CONFIG_CPU_SH3)
1082 		/* Debounce break */
1083 		s->break_flag = 1;
1084 #endif
1085 
1086 		port->icount.brk++;
1087 
1088 		/* Notify of BREAK */
1089 		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
1090 			copied++;
1091 
1092 		dev_dbg(port->dev, "BREAK detected\n");
1093 	}
1094 
1095 	if (copied)
1096 		tty_flip_buffer_push(tport);
1097 
1098 	copied += sci_handle_fifo_overrun(port);
1099 
1100 	return copied;
1101 }
1102 
1103 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1104 static void sci_dma_tx_complete(void *arg)
1105 {
1106 	struct sci_port *s = arg;
1107 	struct uart_port *port = &s->port;
1108 	struct circ_buf *xmit = &port->state->xmit;
1109 	unsigned long flags;
1110 
1111 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1112 
1113 	spin_lock_irqsave(&port->lock, flags);
1114 
1115 	xmit->tail += s->tx_dma_len;
1116 	xmit->tail &= UART_XMIT_SIZE - 1;
1117 
1118 	port->icount.tx += s->tx_dma_len;
1119 
1120 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1121 		uart_write_wakeup(port);
1122 
1123 	if (!uart_circ_empty(xmit)) {
1124 		s->cookie_tx = 0;
1125 		schedule_work(&s->work_tx);
1126 	} else {
1127 		s->cookie_tx = -EINVAL;
1128 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1129 			u16 ctrl = serial_port_in(port, SCSCR);
1130 			serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1131 		}
1132 	}
1133 
1134 	spin_unlock_irqrestore(&port->lock, flags);
1135 }
1136 
1137 /* Locking: called with port lock held */
1138 static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1139 {
1140 	struct uart_port *port = &s->port;
1141 	struct tty_port *tport = &port->state->port;
1142 	int copied;
1143 
1144 	copied = tty_insert_flip_string(tport, buf, count);
1145 	if (copied < count)
1146 		port->icount.buf_overrun++;
1147 
1148 	port->icount.rx += copied;
1149 
1150 	return copied;
1151 }
1152 
1153 static int sci_dma_rx_find_active(struct sci_port *s)
1154 {
1155 	unsigned int i;
1156 
1157 	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1158 		if (s->active_rx == s->cookie_rx[i])
1159 			return i;
1160 
1161 	return -1;
1162 }
1163 
1164 static void sci_rx_dma_release(struct sci_port *s, bool enable_pio)
1165 {
1166 	struct dma_chan *chan = s->chan_rx;
1167 	struct uart_port *port = &s->port;
1168 	unsigned long flags;
1169 
1170 	spin_lock_irqsave(&port->lock, flags);
1171 	s->chan_rx = NULL;
1172 	s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL;
1173 	spin_unlock_irqrestore(&port->lock, flags);
1174 	dmaengine_terminate_all(chan);
1175 	dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1176 			  sg_dma_address(&s->sg_rx[0]));
1177 	dma_release_channel(chan);
1178 	if (enable_pio)
1179 		sci_start_rx(port);
1180 }
1181 
1182 static void sci_dma_rx_complete(void *arg)
1183 {
1184 	struct sci_port *s = arg;
1185 	struct dma_chan *chan = s->chan_rx;
1186 	struct uart_port *port = &s->port;
1187 	struct dma_async_tx_descriptor *desc;
1188 	unsigned long flags;
1189 	int active, count = 0;
1190 
1191 	dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1192 		s->active_rx);
1193 
1194 	spin_lock_irqsave(&port->lock, flags);
1195 
1196 	active = sci_dma_rx_find_active(s);
1197 	if (active >= 0)
1198 		count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1199 
1200 	mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1201 
1202 	if (count)
1203 		tty_flip_buffer_push(&port->state->port);
1204 
1205 	desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1206 				       DMA_DEV_TO_MEM,
1207 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1208 	if (!desc)
1209 		goto fail;
1210 
1211 	desc->callback = sci_dma_rx_complete;
1212 	desc->callback_param = s;
1213 	s->cookie_rx[active] = dmaengine_submit(desc);
1214 	if (dma_submit_error(s->cookie_rx[active]))
1215 		goto fail;
1216 
1217 	s->active_rx = s->cookie_rx[!active];
1218 
1219 	dma_async_issue_pending(chan);
1220 
1221 	spin_unlock_irqrestore(&port->lock, flags);
1222 	dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1223 		__func__, s->cookie_rx[active], active, s->active_rx);
1224 	return;
1225 
1226 fail:
1227 	spin_unlock_irqrestore(&port->lock, flags);
1228 	dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1229 	sci_rx_dma_release(s, true);
1230 }
1231 
1232 static void sci_tx_dma_release(struct sci_port *s, bool enable_pio)
1233 {
1234 	struct dma_chan *chan = s->chan_tx;
1235 	struct uart_port *port = &s->port;
1236 	unsigned long flags;
1237 
1238 	spin_lock_irqsave(&port->lock, flags);
1239 	s->chan_tx = NULL;
1240 	s->cookie_tx = -EINVAL;
1241 	spin_unlock_irqrestore(&port->lock, flags);
1242 	dmaengine_terminate_all(chan);
1243 	dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1244 			 DMA_TO_DEVICE);
1245 	dma_release_channel(chan);
1246 	if (enable_pio)
1247 		sci_start_tx(port);
1248 }
1249 
1250 static void sci_submit_rx(struct sci_port *s)
1251 {
1252 	struct dma_chan *chan = s->chan_rx;
1253 	int i;
1254 
1255 	for (i = 0; i < 2; i++) {
1256 		struct scatterlist *sg = &s->sg_rx[i];
1257 		struct dma_async_tx_descriptor *desc;
1258 
1259 		desc = dmaengine_prep_slave_sg(chan,
1260 			sg, 1, DMA_DEV_TO_MEM,
1261 			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1262 		if (!desc)
1263 			goto fail;
1264 
1265 		desc->callback = sci_dma_rx_complete;
1266 		desc->callback_param = s;
1267 		s->cookie_rx[i] = dmaengine_submit(desc);
1268 		if (dma_submit_error(s->cookie_rx[i]))
1269 			goto fail;
1270 
1271 	}
1272 
1273 	s->active_rx = s->cookie_rx[0];
1274 
1275 	dma_async_issue_pending(chan);
1276 	return;
1277 
1278 fail:
1279 	if (i)
1280 		dmaengine_terminate_all(chan);
1281 	for (i = 0; i < 2; i++)
1282 		s->cookie_rx[i] = -EINVAL;
1283 	s->active_rx = -EINVAL;
1284 	sci_rx_dma_release(s, true);
1285 }
1286 
1287 static void work_fn_tx(struct work_struct *work)
1288 {
1289 	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1290 	struct dma_async_tx_descriptor *desc;
1291 	struct dma_chan *chan = s->chan_tx;
1292 	struct uart_port *port = &s->port;
1293 	struct circ_buf *xmit = &port->state->xmit;
1294 	dma_addr_t buf;
1295 
1296 	/*
1297 	 * DMA is idle now.
1298 	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1299 	 * offsets and lengths. Since it is a circular buffer, we have to
1300 	 * transmit till the end, and then the rest. Take the port lock to get a
1301 	 * consistent xmit buffer state.
1302 	 */
1303 	spin_lock_irq(&port->lock);
1304 	buf = s->tx_dma_addr + (xmit->tail & (UART_XMIT_SIZE - 1));
1305 	s->tx_dma_len = min_t(unsigned int,
1306 		CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
1307 		CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
1308 	spin_unlock_irq(&port->lock);
1309 
1310 	desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1311 					   DMA_MEM_TO_DEV,
1312 					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1313 	if (!desc) {
1314 		dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1315 		/* switch to PIO */
1316 		sci_tx_dma_release(s, true);
1317 		return;
1318 	}
1319 
1320 	dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1321 				   DMA_TO_DEVICE);
1322 
1323 	spin_lock_irq(&port->lock);
1324 	desc->callback = sci_dma_tx_complete;
1325 	desc->callback_param = s;
1326 	spin_unlock_irq(&port->lock);
1327 	s->cookie_tx = dmaengine_submit(desc);
1328 	if (dma_submit_error(s->cookie_tx)) {
1329 		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1330 		/* switch to PIO */
1331 		sci_tx_dma_release(s, true);
1332 		return;
1333 	}
1334 
1335 	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
1336 		__func__, xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
1337 
1338 	dma_async_issue_pending(chan);
1339 }
1340 
1341 static void rx_timer_fn(unsigned long arg)
1342 {
1343 	struct sci_port *s = (struct sci_port *)arg;
1344 	struct dma_chan *chan = s->chan_rx;
1345 	struct uart_port *port = &s->port;
1346 	struct dma_tx_state state;
1347 	enum dma_status status;
1348 	unsigned long flags;
1349 	unsigned int read;
1350 	int active, count;
1351 	u16 scr;
1352 
1353 	dev_dbg(port->dev, "DMA Rx timed out\n");
1354 
1355 	spin_lock_irqsave(&port->lock, flags);
1356 
1357 	active = sci_dma_rx_find_active(s);
1358 	if (active < 0) {
1359 		spin_unlock_irqrestore(&port->lock, flags);
1360 		return;
1361 	}
1362 
1363 	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1364 	if (status == DMA_COMPLETE) {
1365 		spin_unlock_irqrestore(&port->lock, flags);
1366 		dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1367 			s->active_rx, active);
1368 
1369 		/* Let packet complete handler take care of the packet */
1370 		return;
1371 	}
1372 
1373 	dmaengine_pause(chan);
1374 
1375 	/*
1376 	 * sometimes DMA transfer doesn't stop even if it is stopped and
1377 	 * data keeps on coming until transaction is complete so check
1378 	 * for DMA_COMPLETE again
1379 	 * Let packet complete handler take care of the packet
1380 	 */
1381 	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1382 	if (status == DMA_COMPLETE) {
1383 		spin_unlock_irqrestore(&port->lock, flags);
1384 		dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1385 		return;
1386 	}
1387 
1388 	/* Handle incomplete DMA receive */
1389 	dmaengine_terminate_all(s->chan_rx);
1390 	read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1391 
1392 	if (read) {
1393 		count = sci_dma_rx_push(s, s->rx_buf[active], read);
1394 		if (count)
1395 			tty_flip_buffer_push(&port->state->port);
1396 	}
1397 
1398 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1399 		sci_submit_rx(s);
1400 
1401 	/* Direct new serial port interrupts back to CPU */
1402 	scr = serial_port_in(port, SCSCR);
1403 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1404 		scr &= ~SCSCR_RDRQE;
1405 		enable_irq(s->irqs[SCIx_RXI_IRQ]);
1406 	}
1407 	serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1408 
1409 	spin_unlock_irqrestore(&port->lock, flags);
1410 }
1411 
1412 static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1413 					     enum dma_transfer_direction dir,
1414 					     unsigned int id)
1415 {
1416 	dma_cap_mask_t mask;
1417 	struct dma_chan *chan;
1418 	struct dma_slave_config cfg;
1419 	int ret;
1420 
1421 	dma_cap_zero(mask);
1422 	dma_cap_set(DMA_SLAVE, mask);
1423 
1424 	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1425 					(void *)(unsigned long)id, port->dev,
1426 					dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1427 	if (!chan) {
1428 		dev_warn(port->dev,
1429 			 "dma_request_slave_channel_compat failed\n");
1430 		return NULL;
1431 	}
1432 
1433 	memset(&cfg, 0, sizeof(cfg));
1434 	cfg.direction = dir;
1435 	if (dir == DMA_MEM_TO_DEV) {
1436 		cfg.dst_addr = port->mapbase +
1437 			(sci_getreg(port, SCxTDR)->offset << port->regshift);
1438 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1439 	} else {
1440 		cfg.src_addr = port->mapbase +
1441 			(sci_getreg(port, SCxRDR)->offset << port->regshift);
1442 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1443 	}
1444 
1445 	ret = dmaengine_slave_config(chan, &cfg);
1446 	if (ret) {
1447 		dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1448 		dma_release_channel(chan);
1449 		return NULL;
1450 	}
1451 
1452 	return chan;
1453 }
1454 
1455 static void sci_request_dma(struct uart_port *port)
1456 {
1457 	struct sci_port *s = to_sci_port(port);
1458 	struct dma_chan *chan;
1459 
1460 	dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1461 
1462 	if (!port->dev->of_node &&
1463 	    (s->cfg->dma_slave_tx <= 0 || s->cfg->dma_slave_rx <= 0))
1464 		return;
1465 
1466 	s->cookie_tx = -EINVAL;
1467 	chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV, s->cfg->dma_slave_tx);
1468 	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1469 	if (chan) {
1470 		s->chan_tx = chan;
1471 		/* UART circular tx buffer is an aligned page. */
1472 		s->tx_dma_addr = dma_map_single(chan->device->dev,
1473 						port->state->xmit.buf,
1474 						UART_XMIT_SIZE,
1475 						DMA_TO_DEVICE);
1476 		if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1477 			dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1478 			dma_release_channel(chan);
1479 			s->chan_tx = NULL;
1480 		} else {
1481 			dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1482 				__func__, UART_XMIT_SIZE,
1483 				port->state->xmit.buf, &s->tx_dma_addr);
1484 		}
1485 
1486 		INIT_WORK(&s->work_tx, work_fn_tx);
1487 	}
1488 
1489 	chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM, s->cfg->dma_slave_rx);
1490 	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1491 	if (chan) {
1492 		unsigned int i;
1493 		dma_addr_t dma;
1494 		void *buf;
1495 
1496 		s->chan_rx = chan;
1497 
1498 		s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1499 		buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1500 					 &dma, GFP_KERNEL);
1501 		if (!buf) {
1502 			dev_warn(port->dev,
1503 				 "Failed to allocate Rx dma buffer, using PIO\n");
1504 			dma_release_channel(chan);
1505 			s->chan_rx = NULL;
1506 			return;
1507 		}
1508 
1509 		for (i = 0; i < 2; i++) {
1510 			struct scatterlist *sg = &s->sg_rx[i];
1511 
1512 			sg_init_table(sg, 1);
1513 			s->rx_buf[i] = buf;
1514 			sg_dma_address(sg) = dma;
1515 			sg_dma_len(sg) = s->buf_len_rx;
1516 
1517 			buf += s->buf_len_rx;
1518 			dma += s->buf_len_rx;
1519 		}
1520 
1521 		setup_timer(&s->rx_timer, rx_timer_fn, (unsigned long)s);
1522 
1523 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1524 			sci_submit_rx(s);
1525 	}
1526 }
1527 
1528 static void sci_free_dma(struct uart_port *port)
1529 {
1530 	struct sci_port *s = to_sci_port(port);
1531 
1532 	if (s->chan_tx)
1533 		sci_tx_dma_release(s, false);
1534 	if (s->chan_rx)
1535 		sci_rx_dma_release(s, false);
1536 }
1537 #else
1538 static inline void sci_request_dma(struct uart_port *port)
1539 {
1540 }
1541 
1542 static inline void sci_free_dma(struct uart_port *port)
1543 {
1544 }
1545 #endif
1546 
1547 static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1548 {
1549 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1550 	struct uart_port *port = ptr;
1551 	struct sci_port *s = to_sci_port(port);
1552 
1553 	if (s->chan_rx) {
1554 		u16 scr = serial_port_in(port, SCSCR);
1555 		u16 ssr = serial_port_in(port, SCxSR);
1556 
1557 		/* Disable future Rx interrupts */
1558 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1559 			disable_irq_nosync(irq);
1560 			scr |= SCSCR_RDRQE;
1561 		} else {
1562 			scr &= ~SCSCR_RIE;
1563 			sci_submit_rx(s);
1564 		}
1565 		serial_port_out(port, SCSCR, scr);
1566 		/* Clear current interrupt */
1567 		serial_port_out(port, SCxSR,
1568 				ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1569 		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n",
1570 			jiffies, s->rx_timeout);
1571 		mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1572 
1573 		return IRQ_HANDLED;
1574 	}
1575 #endif
1576 
1577 	/* I think sci_receive_chars has to be called irrespective
1578 	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
1579 	 * to be disabled?
1580 	 */
1581 	sci_receive_chars(ptr);
1582 
1583 	return IRQ_HANDLED;
1584 }
1585 
1586 static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1587 {
1588 	struct uart_port *port = ptr;
1589 	unsigned long flags;
1590 
1591 	spin_lock_irqsave(&port->lock, flags);
1592 	sci_transmit_chars(port);
1593 	spin_unlock_irqrestore(&port->lock, flags);
1594 
1595 	return IRQ_HANDLED;
1596 }
1597 
1598 static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1599 {
1600 	struct uart_port *port = ptr;
1601 	struct sci_port *s = to_sci_port(port);
1602 
1603 	/* Handle errors */
1604 	if (port->type == PORT_SCI) {
1605 		if (sci_handle_errors(port)) {
1606 			/* discard character in rx buffer */
1607 			serial_port_in(port, SCxSR);
1608 			sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1609 		}
1610 	} else {
1611 		sci_handle_fifo_overrun(port);
1612 		if (!s->chan_rx)
1613 			sci_receive_chars(ptr);
1614 	}
1615 
1616 	sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1617 
1618 	/* Kick the transmission */
1619 	if (!s->chan_tx)
1620 		sci_tx_interrupt(irq, ptr);
1621 
1622 	return IRQ_HANDLED;
1623 }
1624 
1625 static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1626 {
1627 	struct uart_port *port = ptr;
1628 
1629 	/* Handle BREAKs */
1630 	sci_handle_breaks(port);
1631 	sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1632 
1633 	return IRQ_HANDLED;
1634 }
1635 
1636 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1637 {
1638 	unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1639 	struct uart_port *port = ptr;
1640 	struct sci_port *s = to_sci_port(port);
1641 	irqreturn_t ret = IRQ_NONE;
1642 
1643 	ssr_status = serial_port_in(port, SCxSR);
1644 	scr_status = serial_port_in(port, SCSCR);
1645 	if (s->overrun_reg == SCxSR)
1646 		orer_status = ssr_status;
1647 	else {
1648 		if (sci_getreg(port, s->overrun_reg)->size)
1649 			orer_status = serial_port_in(port, s->overrun_reg);
1650 	}
1651 
1652 	err_enabled = scr_status & port_rx_irq_mask(port);
1653 
1654 	/* Tx Interrupt */
1655 	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1656 	    !s->chan_tx)
1657 		ret = sci_tx_interrupt(irq, ptr);
1658 
1659 	/*
1660 	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1661 	 * DR flags
1662 	 */
1663 	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1664 	    (scr_status & SCSCR_RIE))
1665 		ret = sci_rx_interrupt(irq, ptr);
1666 
1667 	/* Error Interrupt */
1668 	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1669 		ret = sci_er_interrupt(irq, ptr);
1670 
1671 	/* Break Interrupt */
1672 	if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
1673 		ret = sci_br_interrupt(irq, ptr);
1674 
1675 	/* Overrun Interrupt */
1676 	if (orer_status & s->overrun_mask) {
1677 		sci_handle_fifo_overrun(port);
1678 		ret = IRQ_HANDLED;
1679 	}
1680 
1681 	return ret;
1682 }
1683 
1684 static const struct sci_irq_desc {
1685 	const char	*desc;
1686 	irq_handler_t	handler;
1687 } sci_irq_desc[] = {
1688 	/*
1689 	 * Split out handlers, the default case.
1690 	 */
1691 	[SCIx_ERI_IRQ] = {
1692 		.desc = "rx err",
1693 		.handler = sci_er_interrupt,
1694 	},
1695 
1696 	[SCIx_RXI_IRQ] = {
1697 		.desc = "rx full",
1698 		.handler = sci_rx_interrupt,
1699 	},
1700 
1701 	[SCIx_TXI_IRQ] = {
1702 		.desc = "tx empty",
1703 		.handler = sci_tx_interrupt,
1704 	},
1705 
1706 	[SCIx_BRI_IRQ] = {
1707 		.desc = "break",
1708 		.handler = sci_br_interrupt,
1709 	},
1710 
1711 	/*
1712 	 * Special muxed handler.
1713 	 */
1714 	[SCIx_MUX_IRQ] = {
1715 		.desc = "mux",
1716 		.handler = sci_mpxed_interrupt,
1717 	},
1718 };
1719 
1720 static int sci_request_irq(struct sci_port *port)
1721 {
1722 	struct uart_port *up = &port->port;
1723 	int i, j, ret = 0;
1724 
1725 	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1726 		const struct sci_irq_desc *desc;
1727 		int irq;
1728 
1729 		if (SCIx_IRQ_IS_MUXED(port)) {
1730 			i = SCIx_MUX_IRQ;
1731 			irq = up->irq;
1732 		} else {
1733 			irq = port->irqs[i];
1734 
1735 			/*
1736 			 * Certain port types won't support all of the
1737 			 * available interrupt sources.
1738 			 */
1739 			if (unlikely(irq < 0))
1740 				continue;
1741 		}
1742 
1743 		desc = sci_irq_desc + i;
1744 		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1745 					    dev_name(up->dev), desc->desc);
1746 		if (!port->irqstr[j])
1747 			goto out_nomem;
1748 
1749 		ret = request_irq(irq, desc->handler, up->irqflags,
1750 				  port->irqstr[j], port);
1751 		if (unlikely(ret)) {
1752 			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1753 			goto out_noirq;
1754 		}
1755 	}
1756 
1757 	return 0;
1758 
1759 out_noirq:
1760 	while (--i >= 0)
1761 		free_irq(port->irqs[i], port);
1762 
1763 out_nomem:
1764 	while (--j >= 0)
1765 		kfree(port->irqstr[j]);
1766 
1767 	return ret;
1768 }
1769 
1770 static void sci_free_irq(struct sci_port *port)
1771 {
1772 	int i;
1773 
1774 	/*
1775 	 * Intentionally in reverse order so we iterate over the muxed
1776 	 * IRQ first.
1777 	 */
1778 	for (i = 0; i < SCIx_NR_IRQS; i++) {
1779 		int irq = port->irqs[i];
1780 
1781 		/*
1782 		 * Certain port types won't support all of the available
1783 		 * interrupt sources.
1784 		 */
1785 		if (unlikely(irq < 0))
1786 			continue;
1787 
1788 		free_irq(port->irqs[i], port);
1789 		kfree(port->irqstr[i]);
1790 
1791 		if (SCIx_IRQ_IS_MUXED(port)) {
1792 			/* If there's only one IRQ, we're done. */
1793 			return;
1794 		}
1795 	}
1796 }
1797 
1798 static unsigned int sci_tx_empty(struct uart_port *port)
1799 {
1800 	unsigned short status = serial_port_in(port, SCxSR);
1801 	unsigned short in_tx_fifo = sci_txfill(port);
1802 
1803 	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1804 }
1805 
1806 static void sci_set_rts(struct uart_port *port, bool state)
1807 {
1808 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1809 		u16 data = serial_port_in(port, SCPDR);
1810 
1811 		/* Active low */
1812 		if (state)
1813 			data &= ~SCPDR_RTSD;
1814 		else
1815 			data |= SCPDR_RTSD;
1816 		serial_port_out(port, SCPDR, data);
1817 
1818 		/* RTS# is output */
1819 		serial_port_out(port, SCPCR,
1820 				serial_port_in(port, SCPCR) | SCPCR_RTSC);
1821 	} else if (sci_getreg(port, SCSPTR)->size) {
1822 		u16 ctrl = serial_port_in(port, SCSPTR);
1823 
1824 		/* Active low */
1825 		if (state)
1826 			ctrl &= ~SCSPTR_RTSDT;
1827 		else
1828 			ctrl |= SCSPTR_RTSDT;
1829 		serial_port_out(port, SCSPTR, ctrl);
1830 	}
1831 }
1832 
1833 static bool sci_get_cts(struct uart_port *port)
1834 {
1835 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1836 		/* Active low */
1837 		return !(serial_port_in(port, SCPDR) & SCPDR_CTSD);
1838 	} else if (sci_getreg(port, SCSPTR)->size) {
1839 		/* Active low */
1840 		return !(serial_port_in(port, SCSPTR) & SCSPTR_CTSDT);
1841 	}
1842 
1843 	return true;
1844 }
1845 
1846 /*
1847  * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
1848  * CTS/RTS is supported in hardware by at least one port and controlled
1849  * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
1850  * handled via the ->init_pins() op, which is a bit of a one-way street,
1851  * lacking any ability to defer pin control -- this will later be
1852  * converted over to the GPIO framework).
1853  *
1854  * Other modes (such as loopback) are supported generically on certain
1855  * port types, but not others. For these it's sufficient to test for the
1856  * existence of the support register and simply ignore the port type.
1857  */
1858 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
1859 {
1860 	struct sci_port *s = to_sci_port(port);
1861 
1862 	if (mctrl & TIOCM_LOOP) {
1863 		const struct plat_sci_reg *reg;
1864 
1865 		/*
1866 		 * Standard loopback mode for SCFCR ports.
1867 		 */
1868 		reg = sci_getreg(port, SCFCR);
1869 		if (reg->size)
1870 			serial_port_out(port, SCFCR,
1871 					serial_port_in(port, SCFCR) |
1872 					SCFCR_LOOP);
1873 	}
1874 
1875 	mctrl_gpio_set(s->gpios, mctrl);
1876 
1877 	if (!(s->cfg->capabilities & SCIx_HAVE_RTSCTS))
1878 		return;
1879 
1880 	if (!(mctrl & TIOCM_RTS)) {
1881 		/* Disable Auto RTS */
1882 		serial_port_out(port, SCFCR,
1883 				serial_port_in(port, SCFCR) & ~SCFCR_MCE);
1884 
1885 		/* Clear RTS */
1886 		sci_set_rts(port, 0);
1887 	} else if (s->autorts) {
1888 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1889 			/* Enable RTS# pin function */
1890 			serial_port_out(port, SCPCR,
1891 				serial_port_in(port, SCPCR) & ~SCPCR_RTSC);
1892 		}
1893 
1894 		/* Enable Auto RTS */
1895 		serial_port_out(port, SCFCR,
1896 				serial_port_in(port, SCFCR) | SCFCR_MCE);
1897 	} else {
1898 		/* Set RTS */
1899 		sci_set_rts(port, 1);
1900 	}
1901 }
1902 
1903 static unsigned int sci_get_mctrl(struct uart_port *port)
1904 {
1905 	struct sci_port *s = to_sci_port(port);
1906 	struct mctrl_gpios *gpios = s->gpios;
1907 	unsigned int mctrl = 0;
1908 
1909 	mctrl_gpio_get(gpios, &mctrl);
1910 
1911 	/*
1912 	 * CTS/RTS is handled in hardware when supported, while nothing
1913 	 * else is wired up.
1914 	 */
1915 	if (s->autorts) {
1916 		if (sci_get_cts(port))
1917 			mctrl |= TIOCM_CTS;
1918 	} else if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_CTS))) {
1919 		mctrl |= TIOCM_CTS;
1920 	}
1921 	if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_DSR)))
1922 		mctrl |= TIOCM_DSR;
1923 	if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_DCD)))
1924 		mctrl |= TIOCM_CAR;
1925 
1926 	return mctrl;
1927 }
1928 
1929 static void sci_enable_ms(struct uart_port *port)
1930 {
1931 	mctrl_gpio_enable_ms(to_sci_port(port)->gpios);
1932 }
1933 
1934 static void sci_break_ctl(struct uart_port *port, int break_state)
1935 {
1936 	unsigned short scscr, scsptr;
1937 
1938 	/* check wheter the port has SCSPTR */
1939 	if (!sci_getreg(port, SCSPTR)->size) {
1940 		/*
1941 		 * Not supported by hardware. Most parts couple break and rx
1942 		 * interrupts together, with break detection always enabled.
1943 		 */
1944 		return;
1945 	}
1946 
1947 	scsptr = serial_port_in(port, SCSPTR);
1948 	scscr = serial_port_in(port, SCSCR);
1949 
1950 	if (break_state == -1) {
1951 		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
1952 		scscr &= ~SCSCR_TE;
1953 	} else {
1954 		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
1955 		scscr |= SCSCR_TE;
1956 	}
1957 
1958 	serial_port_out(port, SCSPTR, scsptr);
1959 	serial_port_out(port, SCSCR, scscr);
1960 }
1961 
1962 static int sci_startup(struct uart_port *port)
1963 {
1964 	struct sci_port *s = to_sci_port(port);
1965 	int ret;
1966 
1967 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1968 
1969 	ret = sci_request_irq(s);
1970 	if (unlikely(ret < 0))
1971 		return ret;
1972 
1973 	sci_request_dma(port);
1974 
1975 	return 0;
1976 }
1977 
1978 static void sci_shutdown(struct uart_port *port)
1979 {
1980 	struct sci_port *s = to_sci_port(port);
1981 	unsigned long flags;
1982 	u16 scr;
1983 
1984 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1985 
1986 	s->autorts = false;
1987 	mctrl_gpio_disable_ms(to_sci_port(port)->gpios);
1988 
1989 	spin_lock_irqsave(&port->lock, flags);
1990 	sci_stop_rx(port);
1991 	sci_stop_tx(port);
1992 	/* Stop RX and TX, disable related interrupts, keep clock source */
1993 	scr = serial_port_in(port, SCSCR);
1994 	serial_port_out(port, SCSCR, scr & (SCSCR_CKE1 | SCSCR_CKE0));
1995 	spin_unlock_irqrestore(&port->lock, flags);
1996 
1997 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1998 	if (s->chan_rx) {
1999 		dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
2000 			port->line);
2001 		del_timer_sync(&s->rx_timer);
2002 	}
2003 #endif
2004 
2005 	sci_free_dma(port);
2006 	sci_free_irq(s);
2007 }
2008 
2009 static int sci_sck_calc(struct sci_port *s, unsigned int bps,
2010 			unsigned int *srr)
2011 {
2012 	unsigned long freq = s->clk_rates[SCI_SCK];
2013 	int err, min_err = INT_MAX;
2014 	unsigned int sr;
2015 
2016 	if (s->port.type != PORT_HSCIF)
2017 		freq *= 2;
2018 
2019 	for_each_sr(sr, s) {
2020 		err = DIV_ROUND_CLOSEST(freq, sr) - bps;
2021 		if (abs(err) >= abs(min_err))
2022 			continue;
2023 
2024 		min_err = err;
2025 		*srr = sr - 1;
2026 
2027 		if (!err)
2028 			break;
2029 	}
2030 
2031 	dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
2032 		*srr + 1);
2033 	return min_err;
2034 }
2035 
2036 static int sci_brg_calc(struct sci_port *s, unsigned int bps,
2037 			unsigned long freq, unsigned int *dlr,
2038 			unsigned int *srr)
2039 {
2040 	int err, min_err = INT_MAX;
2041 	unsigned int sr, dl;
2042 
2043 	if (s->port.type != PORT_HSCIF)
2044 		freq *= 2;
2045 
2046 	for_each_sr(sr, s) {
2047 		dl = DIV_ROUND_CLOSEST(freq, sr * bps);
2048 		dl = clamp(dl, 1U, 65535U);
2049 
2050 		err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
2051 		if (abs(err) >= abs(min_err))
2052 			continue;
2053 
2054 		min_err = err;
2055 		*dlr = dl;
2056 		*srr = sr - 1;
2057 
2058 		if (!err)
2059 			break;
2060 	}
2061 
2062 	dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
2063 		min_err, *dlr, *srr + 1);
2064 	return min_err;
2065 }
2066 
2067 /* calculate sample rate, BRR, and clock select */
2068 static int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
2069 			  unsigned int *brr, unsigned int *srr,
2070 			  unsigned int *cks)
2071 {
2072 	unsigned long freq = s->clk_rates[SCI_FCK];
2073 	unsigned int sr, br, prediv, scrate, c;
2074 	int err, min_err = INT_MAX;
2075 
2076 	if (s->port.type != PORT_HSCIF)
2077 		freq *= 2;
2078 
2079 	/*
2080 	 * Find the combination of sample rate and clock select with the
2081 	 * smallest deviation from the desired baud rate.
2082 	 * Prefer high sample rates to maximise the receive margin.
2083 	 *
2084 	 * M: Receive margin (%)
2085 	 * N: Ratio of bit rate to clock (N = sampling rate)
2086 	 * D: Clock duty (D = 0 to 1.0)
2087 	 * L: Frame length (L = 9 to 12)
2088 	 * F: Absolute value of clock frequency deviation
2089 	 *
2090 	 *  M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
2091 	 *      (|D - 0.5| / N * (1 + F))|
2092 	 *  NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
2093 	 */
2094 	for_each_sr(sr, s) {
2095 		for (c = 0; c <= 3; c++) {
2096 			/* integerized formulas from HSCIF documentation */
2097 			prediv = sr * (1 << (2 * c + 1));
2098 
2099 			/*
2100 			 * We need to calculate:
2101 			 *
2102 			 *     br = freq / (prediv * bps) clamped to [1..256]
2103 			 *     err = freq / (br * prediv) - bps
2104 			 *
2105 			 * Watch out for overflow when calculating the desired
2106 			 * sampling clock rate!
2107 			 */
2108 			if (bps > UINT_MAX / prediv)
2109 				break;
2110 
2111 			scrate = prediv * bps;
2112 			br = DIV_ROUND_CLOSEST(freq, scrate);
2113 			br = clamp(br, 1U, 256U);
2114 
2115 			err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
2116 			if (abs(err) >= abs(min_err))
2117 				continue;
2118 
2119 			min_err = err;
2120 			*brr = br - 1;
2121 			*srr = sr - 1;
2122 			*cks = c;
2123 
2124 			if (!err)
2125 				goto found;
2126 		}
2127 	}
2128 
2129 found:
2130 	dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
2131 		min_err, *brr, *srr + 1, *cks);
2132 	return min_err;
2133 }
2134 
2135 static void sci_reset(struct uart_port *port)
2136 {
2137 	const struct plat_sci_reg *reg;
2138 	unsigned int status;
2139 
2140 	do {
2141 		status = serial_port_in(port, SCxSR);
2142 	} while (!(status & SCxSR_TEND(port)));
2143 
2144 	serial_port_out(port, SCSCR, 0x00);	/* TE=0, RE=0, CKE1=0 */
2145 
2146 	reg = sci_getreg(port, SCFCR);
2147 	if (reg->size)
2148 		serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
2149 
2150 	sci_clear_SCxSR(port,
2151 			SCxSR_RDxF_CLEAR(port) & SCxSR_ERROR_CLEAR(port) &
2152 			SCxSR_BREAK_CLEAR(port));
2153 	if (sci_getreg(port, SCLSR)->size) {
2154 		status = serial_port_in(port, SCLSR);
2155 		status &= ~(SCLSR_TO | SCLSR_ORER);
2156 		serial_port_out(port, SCLSR, status);
2157 	}
2158 }
2159 
2160 static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
2161 			    struct ktermios *old)
2162 {
2163 	unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i;
2164 	unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
2165 	unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
2166 	struct sci_port *s = to_sci_port(port);
2167 	const struct plat_sci_reg *reg;
2168 	int min_err = INT_MAX, err;
2169 	unsigned long max_freq = 0;
2170 	int best_clk = -1;
2171 
2172 	if ((termios->c_cflag & CSIZE) == CS7)
2173 		smr_val |= SCSMR_CHR;
2174 	if (termios->c_cflag & PARENB)
2175 		smr_val |= SCSMR_PE;
2176 	if (termios->c_cflag & PARODD)
2177 		smr_val |= SCSMR_PE | SCSMR_ODD;
2178 	if (termios->c_cflag & CSTOPB)
2179 		smr_val |= SCSMR_STOP;
2180 
2181 	/*
2182 	 * earlyprintk comes here early on with port->uartclk set to zero.
2183 	 * the clock framework is not up and running at this point so here
2184 	 * we assume that 115200 is the maximum baud rate. please note that
2185 	 * the baud rate is not programmed during earlyprintk - it is assumed
2186 	 * that the previous boot loader has enabled required clocks and
2187 	 * setup the baud rate generator hardware for us already.
2188 	 */
2189 	if (!port->uartclk) {
2190 		baud = uart_get_baud_rate(port, termios, old, 0, 115200);
2191 		goto done;
2192 	}
2193 
2194 	for (i = 0; i < SCI_NUM_CLKS; i++)
2195 		max_freq = max(max_freq, s->clk_rates[i]);
2196 
2197 	baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s));
2198 	if (!baud)
2199 		goto done;
2200 
2201 	/*
2202 	 * There can be multiple sources for the sampling clock.  Find the one
2203 	 * that gives us the smallest deviation from the desired baud rate.
2204 	 */
2205 
2206 	/* Optional Undivided External Clock */
2207 	if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA &&
2208 	    port->type != PORT_SCIFB) {
2209 		err = sci_sck_calc(s, baud, &srr1);
2210 		if (abs(err) < abs(min_err)) {
2211 			best_clk = SCI_SCK;
2212 			scr_val = SCSCR_CKE1;
2213 			sccks = SCCKS_CKS;
2214 			min_err = err;
2215 			srr = srr1;
2216 			if (!err)
2217 				goto done;
2218 		}
2219 	}
2220 
2221 	/* Optional BRG Frequency Divided External Clock */
2222 	if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
2223 		err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1,
2224 				   &srr1);
2225 		if (abs(err) < abs(min_err)) {
2226 			best_clk = SCI_SCIF_CLK;
2227 			scr_val = SCSCR_CKE1;
2228 			sccks = 0;
2229 			min_err = err;
2230 			dl = dl1;
2231 			srr = srr1;
2232 			if (!err)
2233 				goto done;
2234 		}
2235 	}
2236 
2237 	/* Optional BRG Frequency Divided Internal Clock */
2238 	if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
2239 		err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1,
2240 				   &srr1);
2241 		if (abs(err) < abs(min_err)) {
2242 			best_clk = SCI_BRG_INT;
2243 			scr_val = SCSCR_CKE1;
2244 			sccks = SCCKS_XIN;
2245 			min_err = err;
2246 			dl = dl1;
2247 			srr = srr1;
2248 			if (!min_err)
2249 				goto done;
2250 		}
2251 	}
2252 
2253 	/* Divided Functional Clock using standard Bit Rate Register */
2254 	err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1);
2255 	if (abs(err) < abs(min_err)) {
2256 		best_clk = SCI_FCK;
2257 		scr_val = 0;
2258 		min_err = err;
2259 		brr = brr1;
2260 		srr = srr1;
2261 		cks = cks1;
2262 	}
2263 
2264 done:
2265 	if (best_clk >= 0)
2266 		dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
2267 			s->clks[best_clk], baud, min_err);
2268 
2269 	sci_port_enable(s);
2270 
2271 	/*
2272 	 * Program the optional External Baud Rate Generator (BRG) first.
2273 	 * It controls the mux to select (H)SCK or frequency divided clock.
2274 	 */
2275 	if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
2276 		serial_port_out(port, SCDL, dl);
2277 		serial_port_out(port, SCCKS, sccks);
2278 	}
2279 
2280 	sci_reset(port);
2281 
2282 	uart_update_timeout(port, termios->c_cflag, baud);
2283 
2284 	if (best_clk >= 0) {
2285 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
2286 			switch (srr + 1) {
2287 			case 5:  smr_val |= SCSMR_SRC_5;  break;
2288 			case 7:  smr_val |= SCSMR_SRC_7;  break;
2289 			case 11: smr_val |= SCSMR_SRC_11; break;
2290 			case 13: smr_val |= SCSMR_SRC_13; break;
2291 			case 16: smr_val |= SCSMR_SRC_16; break;
2292 			case 17: smr_val |= SCSMR_SRC_17; break;
2293 			case 19: smr_val |= SCSMR_SRC_19; break;
2294 			case 27: smr_val |= SCSMR_SRC_27; break;
2295 			}
2296 		smr_val |= cks;
2297 		dev_dbg(port->dev,
2298 			 "SCR 0x%x SMR 0x%x BRR %u CKS 0x%x DL %u SRR %u\n",
2299 			 scr_val, smr_val, brr, sccks, dl, srr);
2300 		serial_port_out(port, SCSCR, scr_val);
2301 		serial_port_out(port, SCSMR, smr_val);
2302 		serial_port_out(port, SCBRR, brr);
2303 		if (sci_getreg(port, HSSRR)->size)
2304 			serial_port_out(port, HSSRR, srr | HSCIF_SRE);
2305 
2306 		/* Wait one bit interval */
2307 		udelay((1000000 + (baud - 1)) / baud);
2308 	} else {
2309 		/* Don't touch the bit rate configuration */
2310 		scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
2311 		smr_val |= serial_port_in(port, SCSMR) &
2312 			   (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS);
2313 		dev_dbg(port->dev, "SCR 0x%x SMR 0x%x\n", scr_val, smr_val);
2314 		serial_port_out(port, SCSCR, scr_val);
2315 		serial_port_out(port, SCSMR, smr_val);
2316 	}
2317 
2318 	sci_init_pins(port, termios->c_cflag);
2319 
2320 	port->status &= ~UPSTAT_AUTOCTS;
2321 	s->autorts = false;
2322 	reg = sci_getreg(port, SCFCR);
2323 	if (reg->size) {
2324 		unsigned short ctrl = serial_port_in(port, SCFCR);
2325 
2326 		if ((port->flags & UPF_HARD_FLOW) &&
2327 		    (termios->c_cflag & CRTSCTS)) {
2328 			/* There is no CTS interrupt to restart the hardware */
2329 			port->status |= UPSTAT_AUTOCTS;
2330 			/* MCE is enabled when RTS is raised */
2331 			s->autorts = true;
2332 		}
2333 
2334 		/*
2335 		 * As we've done a sci_reset() above, ensure we don't
2336 		 * interfere with the FIFOs while toggling MCE. As the
2337 		 * reset values could still be set, simply mask them out.
2338 		 */
2339 		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2340 
2341 		serial_port_out(port, SCFCR, ctrl);
2342 	}
2343 
2344 	scr_val |= s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0);
2345 	dev_dbg(port->dev, "SCSCR 0x%x\n", scr_val);
2346 	serial_port_out(port, SCSCR, scr_val);
2347 	if ((srr + 1 == 5) &&
2348 	    (port->type == PORT_SCIFA || port->type == PORT_SCIFB)) {
2349 		/*
2350 		 * In asynchronous mode, when the sampling rate is 1/5, first
2351 		 * received data may become invalid on some SCIFA and SCIFB.
2352 		 * To avoid this problem wait more than 1 serial data time (1
2353 		 * bit time x serial data number) after setting SCSCR.RE = 1.
2354 		 */
2355 		udelay(DIV_ROUND_UP(10 * 1000000, baud));
2356 	}
2357 
2358 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2359 	/*
2360 	 * Calculate delay for 2 DMA buffers (4 FIFO).
2361 	 * See serial_core.c::uart_update_timeout().
2362 	 * With 10 bits (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above
2363 	 * function calculates 1 jiffie for the data plus 5 jiffies for the
2364 	 * "slop(e)." Then below we calculate 5 jiffies (20ms) for 2 DMA
2365 	 * buffers (4 FIFO sizes), but when performing a faster transfer, the
2366 	 * value obtained by this formula is too small. Therefore, if the value
2367 	 * is smaller than 20ms, use 20ms as the timeout value for DMA.
2368 	 */
2369 	if (s->chan_rx) {
2370 		unsigned int bits;
2371 
2372 		/* byte size and parity */
2373 		switch (termios->c_cflag & CSIZE) {
2374 		case CS5:
2375 			bits = 7;
2376 			break;
2377 		case CS6:
2378 			bits = 8;
2379 			break;
2380 		case CS7:
2381 			bits = 9;
2382 			break;
2383 		default:
2384 			bits = 10;
2385 			break;
2386 		}
2387 
2388 		if (termios->c_cflag & CSTOPB)
2389 			bits++;
2390 		if (termios->c_cflag & PARENB)
2391 			bits++;
2392 		s->rx_timeout = DIV_ROUND_UP((s->buf_len_rx * 2 * bits * HZ) /
2393 					     (baud / 10), 10);
2394 		dev_dbg(port->dev, "DMA Rx t-out %ums, tty t-out %u jiffies\n",
2395 			s->rx_timeout * 1000 / HZ, port->timeout);
2396 		if (s->rx_timeout < msecs_to_jiffies(20))
2397 			s->rx_timeout = msecs_to_jiffies(20);
2398 	}
2399 #endif
2400 
2401 	if ((termios->c_cflag & CREAD) != 0)
2402 		sci_start_rx(port);
2403 
2404 	sci_port_disable(s);
2405 
2406 	if (UART_ENABLE_MS(port, termios->c_cflag))
2407 		sci_enable_ms(port);
2408 }
2409 
2410 static void sci_pm(struct uart_port *port, unsigned int state,
2411 		   unsigned int oldstate)
2412 {
2413 	struct sci_port *sci_port = to_sci_port(port);
2414 
2415 	switch (state) {
2416 	case UART_PM_STATE_OFF:
2417 		sci_port_disable(sci_port);
2418 		break;
2419 	default:
2420 		sci_port_enable(sci_port);
2421 		break;
2422 	}
2423 }
2424 
2425 static const char *sci_type(struct uart_port *port)
2426 {
2427 	switch (port->type) {
2428 	case PORT_IRDA:
2429 		return "irda";
2430 	case PORT_SCI:
2431 		return "sci";
2432 	case PORT_SCIF:
2433 		return "scif";
2434 	case PORT_SCIFA:
2435 		return "scifa";
2436 	case PORT_SCIFB:
2437 		return "scifb";
2438 	case PORT_HSCIF:
2439 		return "hscif";
2440 	}
2441 
2442 	return NULL;
2443 }
2444 
2445 static int sci_remap_port(struct uart_port *port)
2446 {
2447 	struct sci_port *sport = to_sci_port(port);
2448 
2449 	/*
2450 	 * Nothing to do if there's already an established membase.
2451 	 */
2452 	if (port->membase)
2453 		return 0;
2454 
2455 	if (port->flags & UPF_IOREMAP) {
2456 		port->membase = ioremap_nocache(port->mapbase, sport->reg_size);
2457 		if (unlikely(!port->membase)) {
2458 			dev_err(port->dev, "can't remap port#%d\n", port->line);
2459 			return -ENXIO;
2460 		}
2461 	} else {
2462 		/*
2463 		 * For the simple (and majority of) cases where we don't
2464 		 * need to do any remapping, just cast the cookie
2465 		 * directly.
2466 		 */
2467 		port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2468 	}
2469 
2470 	return 0;
2471 }
2472 
2473 static void sci_release_port(struct uart_port *port)
2474 {
2475 	struct sci_port *sport = to_sci_port(port);
2476 
2477 	if (port->flags & UPF_IOREMAP) {
2478 		iounmap(port->membase);
2479 		port->membase = NULL;
2480 	}
2481 
2482 	release_mem_region(port->mapbase, sport->reg_size);
2483 }
2484 
2485 static int sci_request_port(struct uart_port *port)
2486 {
2487 	struct resource *res;
2488 	struct sci_port *sport = to_sci_port(port);
2489 	int ret;
2490 
2491 	res = request_mem_region(port->mapbase, sport->reg_size,
2492 				 dev_name(port->dev));
2493 	if (unlikely(res == NULL)) {
2494 		dev_err(port->dev, "request_mem_region failed.");
2495 		return -EBUSY;
2496 	}
2497 
2498 	ret = sci_remap_port(port);
2499 	if (unlikely(ret != 0)) {
2500 		release_resource(res);
2501 		return ret;
2502 	}
2503 
2504 	return 0;
2505 }
2506 
2507 static void sci_config_port(struct uart_port *port, int flags)
2508 {
2509 	if (flags & UART_CONFIG_TYPE) {
2510 		struct sci_port *sport = to_sci_port(port);
2511 
2512 		port->type = sport->cfg->type;
2513 		sci_request_port(port);
2514 	}
2515 }
2516 
2517 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2518 {
2519 	if (ser->baud_base < 2400)
2520 		/* No paper tape reader for Mitch.. */
2521 		return -EINVAL;
2522 
2523 	return 0;
2524 }
2525 
2526 static const struct uart_ops sci_uart_ops = {
2527 	.tx_empty	= sci_tx_empty,
2528 	.set_mctrl	= sci_set_mctrl,
2529 	.get_mctrl	= sci_get_mctrl,
2530 	.start_tx	= sci_start_tx,
2531 	.stop_tx	= sci_stop_tx,
2532 	.stop_rx	= sci_stop_rx,
2533 	.enable_ms	= sci_enable_ms,
2534 	.break_ctl	= sci_break_ctl,
2535 	.startup	= sci_startup,
2536 	.shutdown	= sci_shutdown,
2537 	.set_termios	= sci_set_termios,
2538 	.pm		= sci_pm,
2539 	.type		= sci_type,
2540 	.release_port	= sci_release_port,
2541 	.request_port	= sci_request_port,
2542 	.config_port	= sci_config_port,
2543 	.verify_port	= sci_verify_port,
2544 #ifdef CONFIG_CONSOLE_POLL
2545 	.poll_get_char	= sci_poll_get_char,
2546 	.poll_put_char	= sci_poll_put_char,
2547 #endif
2548 };
2549 
2550 static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
2551 {
2552 	const char *clk_names[] = {
2553 		[SCI_FCK] = "fck",
2554 		[SCI_SCK] = "sck",
2555 		[SCI_BRG_INT] = "brg_int",
2556 		[SCI_SCIF_CLK] = "scif_clk",
2557 	};
2558 	struct clk *clk;
2559 	unsigned int i;
2560 
2561 	if (sci_port->cfg->type == PORT_HSCIF)
2562 		clk_names[SCI_SCK] = "hsck";
2563 
2564 	for (i = 0; i < SCI_NUM_CLKS; i++) {
2565 		clk = devm_clk_get(dev, clk_names[i]);
2566 		if (PTR_ERR(clk) == -EPROBE_DEFER)
2567 			return -EPROBE_DEFER;
2568 
2569 		if (IS_ERR(clk) && i == SCI_FCK) {
2570 			/*
2571 			 * "fck" used to be called "sci_ick", and we need to
2572 			 * maintain DT backward compatibility.
2573 			 */
2574 			clk = devm_clk_get(dev, "sci_ick");
2575 			if (PTR_ERR(clk) == -EPROBE_DEFER)
2576 				return -EPROBE_DEFER;
2577 
2578 			if (!IS_ERR(clk))
2579 				goto found;
2580 
2581 			/*
2582 			 * Not all SH platforms declare a clock lookup entry
2583 			 * for SCI devices, in which case we need to get the
2584 			 * global "peripheral_clk" clock.
2585 			 */
2586 			clk = devm_clk_get(dev, "peripheral_clk");
2587 			if (!IS_ERR(clk))
2588 				goto found;
2589 
2590 			dev_err(dev, "failed to get %s (%ld)\n", clk_names[i],
2591 				PTR_ERR(clk));
2592 			return PTR_ERR(clk);
2593 		}
2594 
2595 found:
2596 		if (IS_ERR(clk))
2597 			dev_dbg(dev, "failed to get %s (%ld)\n", clk_names[i],
2598 				PTR_ERR(clk));
2599 		else
2600 			dev_dbg(dev, "clk %s is %pC rate %pCr\n", clk_names[i],
2601 				clk, clk);
2602 		sci_port->clks[i] = IS_ERR(clk) ? NULL : clk;
2603 	}
2604 	return 0;
2605 }
2606 
2607 static int sci_init_single(struct platform_device *dev,
2608 			   struct sci_port *sci_port, unsigned int index,
2609 			   struct plat_sci_port *p, bool early)
2610 {
2611 	struct uart_port *port = &sci_port->port;
2612 	const struct resource *res;
2613 	unsigned int i;
2614 	int ret;
2615 
2616 	sci_port->cfg	= p;
2617 
2618 	port->ops	= &sci_uart_ops;
2619 	port->iotype	= UPIO_MEM;
2620 	port->line	= index;
2621 
2622 	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2623 	if (res == NULL)
2624 		return -ENOMEM;
2625 
2626 	port->mapbase = res->start;
2627 	sci_port->reg_size = resource_size(res);
2628 
2629 	for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i)
2630 		sci_port->irqs[i] = platform_get_irq(dev, i);
2631 
2632 	/* The SCI generates several interrupts. They can be muxed together or
2633 	 * connected to different interrupt lines. In the muxed case only one
2634 	 * interrupt resource is specified. In the non-muxed case three or four
2635 	 * interrupt resources are specified, as the BRI interrupt is optional.
2636 	 */
2637 	if (sci_port->irqs[0] < 0)
2638 		return -ENXIO;
2639 
2640 	if (sci_port->irqs[1] < 0) {
2641 		sci_port->irqs[1] = sci_port->irqs[0];
2642 		sci_port->irqs[2] = sci_port->irqs[0];
2643 		sci_port->irqs[3] = sci_port->irqs[0];
2644 	}
2645 
2646 	if (p->regtype == SCIx_PROBE_REGTYPE) {
2647 		ret = sci_probe_regmap(p);
2648 		if (unlikely(ret))
2649 			return ret;
2650 	}
2651 
2652 	switch (p->type) {
2653 	case PORT_SCIFB:
2654 		port->fifosize = 256;
2655 		sci_port->overrun_reg = SCxSR;
2656 		sci_port->overrun_mask = SCIFA_ORER;
2657 		sci_port->sampling_rate_mask = SCI_SR_SCIFAB;
2658 		break;
2659 	case PORT_HSCIF:
2660 		port->fifosize = 128;
2661 		sci_port->overrun_reg = SCLSR;
2662 		sci_port->overrun_mask = SCLSR_ORER;
2663 		sci_port->sampling_rate_mask = SCI_SR_RANGE(8, 32);
2664 		break;
2665 	case PORT_SCIFA:
2666 		port->fifosize = 64;
2667 		sci_port->overrun_reg = SCxSR;
2668 		sci_port->overrun_mask = SCIFA_ORER;
2669 		sci_port->sampling_rate_mask = SCI_SR_SCIFAB;
2670 		break;
2671 	case PORT_SCIF:
2672 		port->fifosize = 16;
2673 		if (p->regtype == SCIx_SH7705_SCIF_REGTYPE) {
2674 			sci_port->overrun_reg = SCxSR;
2675 			sci_port->overrun_mask = SCIFA_ORER;
2676 			sci_port->sampling_rate_mask = SCI_SR(16);
2677 		} else {
2678 			sci_port->overrun_reg = SCLSR;
2679 			sci_port->overrun_mask = SCLSR_ORER;
2680 			sci_port->sampling_rate_mask = SCI_SR(32);
2681 		}
2682 		break;
2683 	default:
2684 		port->fifosize = 1;
2685 		sci_port->overrun_reg = SCxSR;
2686 		sci_port->overrun_mask = SCI_ORER;
2687 		sci_port->sampling_rate_mask = SCI_SR(32);
2688 		break;
2689 	}
2690 
2691 	/* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2692 	 * match the SoC datasheet, this should be investigated. Let platform
2693 	 * data override the sampling rate for now.
2694 	 */
2695 	if (p->sampling_rate)
2696 		sci_port->sampling_rate_mask = SCI_SR(p->sampling_rate);
2697 
2698 	if (!early) {
2699 		ret = sci_init_clocks(sci_port, &dev->dev);
2700 		if (ret < 0)
2701 			return ret;
2702 
2703 		port->dev = &dev->dev;
2704 
2705 		pm_runtime_enable(&dev->dev);
2706 	}
2707 
2708 	sci_port->break_timer.data = (unsigned long)sci_port;
2709 	sci_port->break_timer.function = sci_break_timer;
2710 	init_timer(&sci_port->break_timer);
2711 
2712 	/*
2713 	 * Establish some sensible defaults for the error detection.
2714 	 */
2715 	if (p->type == PORT_SCI) {
2716 		sci_port->error_mask = SCI_DEFAULT_ERROR_MASK;
2717 		sci_port->error_clear = SCI_ERROR_CLEAR;
2718 	} else {
2719 		sci_port->error_mask = SCIF_DEFAULT_ERROR_MASK;
2720 		sci_port->error_clear = SCIF_ERROR_CLEAR;
2721 	}
2722 
2723 	/*
2724 	 * Make the error mask inclusive of overrun detection, if
2725 	 * supported.
2726 	 */
2727 	if (sci_port->overrun_reg == SCxSR) {
2728 		sci_port->error_mask |= sci_port->overrun_mask;
2729 		sci_port->error_clear &= ~sci_port->overrun_mask;
2730 	}
2731 
2732 	port->type		= p->type;
2733 	port->flags		= UPF_FIXED_PORT | p->flags;
2734 	port->regshift		= p->regshift;
2735 
2736 	/*
2737 	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
2738 	 * for the multi-IRQ ports, which is where we are primarily
2739 	 * concerned with the shutdown path synchronization.
2740 	 *
2741 	 * For the muxed case there's nothing more to do.
2742 	 */
2743 	port->irq		= sci_port->irqs[SCIx_RXI_IRQ];
2744 	port->irqflags		= 0;
2745 
2746 	port->serial_in		= sci_serial_in;
2747 	port->serial_out	= sci_serial_out;
2748 
2749 	if (p->dma_slave_tx > 0 && p->dma_slave_rx > 0)
2750 		dev_dbg(port->dev, "DMA tx %d, rx %d\n",
2751 			p->dma_slave_tx, p->dma_slave_rx);
2752 
2753 	return 0;
2754 }
2755 
2756 static void sci_cleanup_single(struct sci_port *port)
2757 {
2758 	pm_runtime_disable(port->port.dev);
2759 }
2760 
2761 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
2762     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
2763 static void serial_console_putchar(struct uart_port *port, int ch)
2764 {
2765 	sci_poll_put_char(port, ch);
2766 }
2767 
2768 /*
2769  *	Print a string to the serial port trying not to disturb
2770  *	any possible real use of the port...
2771  */
2772 static void serial_console_write(struct console *co, const char *s,
2773 				 unsigned count)
2774 {
2775 	struct sci_port *sci_port = &sci_ports[co->index];
2776 	struct uart_port *port = &sci_port->port;
2777 	unsigned short bits, ctrl, ctrl_temp;
2778 	unsigned long flags;
2779 	int locked = 1;
2780 
2781 	local_irq_save(flags);
2782 #if defined(SUPPORT_SYSRQ)
2783 	if (port->sysrq)
2784 		locked = 0;
2785 	else
2786 #endif
2787 	if (oops_in_progress)
2788 		locked = spin_trylock(&port->lock);
2789 	else
2790 		spin_lock(&port->lock);
2791 
2792 	/* first save SCSCR then disable interrupts, keep clock source */
2793 	ctrl = serial_port_in(port, SCSCR);
2794 	ctrl_temp = (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
2795 		    (ctrl & (SCSCR_CKE1 | SCSCR_CKE0));
2796 	serial_port_out(port, SCSCR, ctrl_temp);
2797 
2798 	uart_console_write(port, s, count, serial_console_putchar);
2799 
2800 	/* wait until fifo is empty and last bit has been transmitted */
2801 	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
2802 	while ((serial_port_in(port, SCxSR) & bits) != bits)
2803 		cpu_relax();
2804 
2805 	/* restore the SCSCR */
2806 	serial_port_out(port, SCSCR, ctrl);
2807 
2808 	if (locked)
2809 		spin_unlock(&port->lock);
2810 	local_irq_restore(flags);
2811 }
2812 
2813 static int serial_console_setup(struct console *co, char *options)
2814 {
2815 	struct sci_port *sci_port;
2816 	struct uart_port *port;
2817 	int baud = 115200;
2818 	int bits = 8;
2819 	int parity = 'n';
2820 	int flow = 'n';
2821 	int ret;
2822 
2823 	/*
2824 	 * Refuse to handle any bogus ports.
2825 	 */
2826 	if (co->index < 0 || co->index >= SCI_NPORTS)
2827 		return -ENODEV;
2828 
2829 	sci_port = &sci_ports[co->index];
2830 	port = &sci_port->port;
2831 
2832 	/*
2833 	 * Refuse to handle uninitialized ports.
2834 	 */
2835 	if (!port->ops)
2836 		return -ENODEV;
2837 
2838 	ret = sci_remap_port(port);
2839 	if (unlikely(ret != 0))
2840 		return ret;
2841 
2842 	if (options)
2843 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2844 
2845 	return uart_set_options(port, co, baud, parity, bits, flow);
2846 }
2847 
2848 static struct console serial_console = {
2849 	.name		= "ttySC",
2850 	.device		= uart_console_device,
2851 	.write		= serial_console_write,
2852 	.setup		= serial_console_setup,
2853 	.flags		= CON_PRINTBUFFER,
2854 	.index		= -1,
2855 	.data		= &sci_uart_driver,
2856 };
2857 
2858 static struct console early_serial_console = {
2859 	.name           = "early_ttySC",
2860 	.write          = serial_console_write,
2861 	.flags          = CON_PRINTBUFFER,
2862 	.index		= -1,
2863 };
2864 
2865 static char early_serial_buf[32];
2866 
2867 static int sci_probe_earlyprintk(struct platform_device *pdev)
2868 {
2869 	struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
2870 
2871 	if (early_serial_console.data)
2872 		return -EEXIST;
2873 
2874 	early_serial_console.index = pdev->id;
2875 
2876 	sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
2877 
2878 	serial_console_setup(&early_serial_console, early_serial_buf);
2879 
2880 	if (!strstr(early_serial_buf, "keep"))
2881 		early_serial_console.flags |= CON_BOOT;
2882 
2883 	register_console(&early_serial_console);
2884 	return 0;
2885 }
2886 
2887 #define SCI_CONSOLE	(&serial_console)
2888 
2889 #else
2890 static inline int sci_probe_earlyprintk(struct platform_device *pdev)
2891 {
2892 	return -EINVAL;
2893 }
2894 
2895 #define SCI_CONSOLE	NULL
2896 
2897 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */
2898 
2899 static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
2900 
2901 static struct uart_driver sci_uart_driver = {
2902 	.owner		= THIS_MODULE,
2903 	.driver_name	= "sci",
2904 	.dev_name	= "ttySC",
2905 	.major		= SCI_MAJOR,
2906 	.minor		= SCI_MINOR_START,
2907 	.nr		= SCI_NPORTS,
2908 	.cons		= SCI_CONSOLE,
2909 };
2910 
2911 static int sci_remove(struct platform_device *dev)
2912 {
2913 	struct sci_port *port = platform_get_drvdata(dev);
2914 
2915 	uart_remove_one_port(&sci_uart_driver, &port->port);
2916 
2917 	sci_cleanup_single(port);
2918 
2919 	return 0;
2920 }
2921 
2922 
2923 #define SCI_OF_DATA(type, regtype)	(void *)((type) << 16 | (regtype))
2924 #define SCI_OF_TYPE(data)		((unsigned long)(data) >> 16)
2925 #define SCI_OF_REGTYPE(data)		((unsigned long)(data) & 0xffff)
2926 
2927 static const struct of_device_id of_sci_match[] = {
2928 	/* SoC-specific types */
2929 	{
2930 		.compatible = "renesas,scif-r7s72100",
2931 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE),
2932 	},
2933 	/* Family-specific types */
2934 	{
2935 		.compatible = "renesas,rcar-gen1-scif",
2936 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
2937 	}, {
2938 		.compatible = "renesas,rcar-gen2-scif",
2939 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
2940 	}, {
2941 		.compatible = "renesas,rcar-gen3-scif",
2942 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
2943 	},
2944 	/* Generic types */
2945 	{
2946 		.compatible = "renesas,scif",
2947 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE),
2948 	}, {
2949 		.compatible = "renesas,scifa",
2950 		.data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE),
2951 	}, {
2952 		.compatible = "renesas,scifb",
2953 		.data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE),
2954 	}, {
2955 		.compatible = "renesas,hscif",
2956 		.data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE),
2957 	}, {
2958 		.compatible = "renesas,sci",
2959 		.data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE),
2960 	}, {
2961 		/* Terminator */
2962 	},
2963 };
2964 MODULE_DEVICE_TABLE(of, of_sci_match);
2965 
2966 static struct plat_sci_port *
2967 sci_parse_dt(struct platform_device *pdev, unsigned int *dev_id)
2968 {
2969 	struct device_node *np = pdev->dev.of_node;
2970 	const struct of_device_id *match;
2971 	struct plat_sci_port *p;
2972 	int id;
2973 
2974 	if (!IS_ENABLED(CONFIG_OF) || !np)
2975 		return NULL;
2976 
2977 	match = of_match_node(of_sci_match, np);
2978 	if (!match)
2979 		return NULL;
2980 
2981 	p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
2982 	if (!p)
2983 		return NULL;
2984 
2985 	/* Get the line number from the aliases node. */
2986 	id = of_alias_get_id(np, "serial");
2987 	if (id < 0) {
2988 		dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
2989 		return NULL;
2990 	}
2991 
2992 	*dev_id = id;
2993 
2994 	p->flags = UPF_IOREMAP | UPF_BOOT_AUTOCONF;
2995 	p->type = SCI_OF_TYPE(match->data);
2996 	p->regtype = SCI_OF_REGTYPE(match->data);
2997 	p->scscr = SCSCR_RE | SCSCR_TE;
2998 
2999 	if (of_find_property(np, "uart-has-rtscts", NULL))
3000 		p->capabilities |= SCIx_HAVE_RTSCTS;
3001 
3002 	return p;
3003 }
3004 
3005 static int sci_probe_single(struct platform_device *dev,
3006 				      unsigned int index,
3007 				      struct plat_sci_port *p,
3008 				      struct sci_port *sciport)
3009 {
3010 	int ret;
3011 
3012 	/* Sanity check */
3013 	if (unlikely(index >= SCI_NPORTS)) {
3014 		dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
3015 			   index+1, SCI_NPORTS);
3016 		dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
3017 		return -EINVAL;
3018 	}
3019 
3020 	ret = sci_init_single(dev, sciport, index, p, false);
3021 	if (ret)
3022 		return ret;
3023 
3024 	sciport->gpios = mctrl_gpio_init(&sciport->port, 0);
3025 	if (IS_ERR(sciport->gpios) && PTR_ERR(sciport->gpios) != -ENOSYS)
3026 		return PTR_ERR(sciport->gpios);
3027 
3028 	if (p->capabilities & SCIx_HAVE_RTSCTS) {
3029 		if (!IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(sciport->gpios,
3030 							UART_GPIO_CTS)) ||
3031 		    !IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(sciport->gpios,
3032 							UART_GPIO_RTS))) {
3033 			dev_err(&dev->dev, "Conflicting RTS/CTS config\n");
3034 			return -EINVAL;
3035 		}
3036 		sciport->port.flags |= UPF_HARD_FLOW;
3037 	}
3038 
3039 	ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
3040 	if (ret) {
3041 		sci_cleanup_single(sciport);
3042 		return ret;
3043 	}
3044 
3045 	return 0;
3046 }
3047 
3048 static int sci_probe(struct platform_device *dev)
3049 {
3050 	struct plat_sci_port *p;
3051 	struct sci_port *sp;
3052 	unsigned int dev_id;
3053 	int ret;
3054 
3055 	/*
3056 	 * If we've come here via earlyprintk initialization, head off to
3057 	 * the special early probe. We don't have sufficient device state
3058 	 * to make it beyond this yet.
3059 	 */
3060 	if (is_early_platform_device(dev))
3061 		return sci_probe_earlyprintk(dev);
3062 
3063 	if (dev->dev.of_node) {
3064 		p = sci_parse_dt(dev, &dev_id);
3065 		if (p == NULL)
3066 			return -EINVAL;
3067 	} else {
3068 		p = dev->dev.platform_data;
3069 		if (p == NULL) {
3070 			dev_err(&dev->dev, "no platform data supplied\n");
3071 			return -EINVAL;
3072 		}
3073 
3074 		dev_id = dev->id;
3075 	}
3076 
3077 	sp = &sci_ports[dev_id];
3078 	platform_set_drvdata(dev, sp);
3079 
3080 	ret = sci_probe_single(dev, dev_id, p, sp);
3081 	if (ret)
3082 		return ret;
3083 
3084 #ifdef CONFIG_SH_STANDARD_BIOS
3085 	sh_bios_gdb_detach();
3086 #endif
3087 
3088 	return 0;
3089 }
3090 
3091 static __maybe_unused int sci_suspend(struct device *dev)
3092 {
3093 	struct sci_port *sport = dev_get_drvdata(dev);
3094 
3095 	if (sport)
3096 		uart_suspend_port(&sci_uart_driver, &sport->port);
3097 
3098 	return 0;
3099 }
3100 
3101 static __maybe_unused int sci_resume(struct device *dev)
3102 {
3103 	struct sci_port *sport = dev_get_drvdata(dev);
3104 
3105 	if (sport)
3106 		uart_resume_port(&sci_uart_driver, &sport->port);
3107 
3108 	return 0;
3109 }
3110 
3111 static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
3112 
3113 static struct platform_driver sci_driver = {
3114 	.probe		= sci_probe,
3115 	.remove		= sci_remove,
3116 	.driver		= {
3117 		.name	= "sh-sci",
3118 		.pm	= &sci_dev_pm_ops,
3119 		.of_match_table = of_match_ptr(of_sci_match),
3120 	},
3121 };
3122 
3123 static int __init sci_init(void)
3124 {
3125 	int ret;
3126 
3127 	pr_info("%s\n", banner);
3128 
3129 	ret = uart_register_driver(&sci_uart_driver);
3130 	if (likely(ret == 0)) {
3131 		ret = platform_driver_register(&sci_driver);
3132 		if (unlikely(ret))
3133 			uart_unregister_driver(&sci_uart_driver);
3134 	}
3135 
3136 	return ret;
3137 }
3138 
3139 static void __exit sci_exit(void)
3140 {
3141 	platform_driver_unregister(&sci_driver);
3142 	uart_unregister_driver(&sci_uart_driver);
3143 }
3144 
3145 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
3146 early_platform_init_buffer("earlyprintk", &sci_driver,
3147 			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
3148 #endif
3149 #ifdef CONFIG_SERIAL_SH_SCI_EARLYCON
3150 static struct __init plat_sci_port port_cfg;
3151 
3152 static int __init early_console_setup(struct earlycon_device *device,
3153 				      int type)
3154 {
3155 	if (!device->port.membase)
3156 		return -ENODEV;
3157 
3158 	device->port.serial_in = sci_serial_in;
3159 	device->port.serial_out	= sci_serial_out;
3160 	device->port.type = type;
3161 	memcpy(&sci_ports[0].port, &device->port, sizeof(struct uart_port));
3162 	sci_ports[0].cfg = &port_cfg;
3163 	sci_ports[0].cfg->type = type;
3164 	sci_probe_regmap(sci_ports[0].cfg);
3165 	port_cfg.scscr = sci_serial_in(&sci_ports[0].port, SCSCR) |
3166 			 SCSCR_RE | SCSCR_TE;
3167 	sci_serial_out(&sci_ports[0].port, SCSCR, port_cfg.scscr);
3168 
3169 	device->con->write = serial_console_write;
3170 	return 0;
3171 }
3172 static int __init sci_early_console_setup(struct earlycon_device *device,
3173 					  const char *opt)
3174 {
3175 	return early_console_setup(device, PORT_SCI);
3176 }
3177 static int __init scif_early_console_setup(struct earlycon_device *device,
3178 					  const char *opt)
3179 {
3180 	return early_console_setup(device, PORT_SCIF);
3181 }
3182 static int __init scifa_early_console_setup(struct earlycon_device *device,
3183 					  const char *opt)
3184 {
3185 	return early_console_setup(device, PORT_SCIFA);
3186 }
3187 static int __init scifb_early_console_setup(struct earlycon_device *device,
3188 					  const char *opt)
3189 {
3190 	return early_console_setup(device, PORT_SCIFB);
3191 }
3192 static int __init hscif_early_console_setup(struct earlycon_device *device,
3193 					  const char *opt)
3194 {
3195 	return early_console_setup(device, PORT_HSCIF);
3196 }
3197 
3198 OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup);
3199 OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup);
3200 OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup);
3201 OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup);
3202 OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup);
3203 #endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */
3204 
3205 module_init(sci_init);
3206 module_exit(sci_exit);
3207 
3208 MODULE_LICENSE("GPL");
3209 MODULE_ALIAS("platform:sh-sci");
3210 MODULE_AUTHOR("Paul Mundt");
3211 MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");
3212