1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SuperH on-chip serial module support. (SCI with no FIFO / with FIFO) 4 * 5 * Copyright (C) 2002 - 2011 Paul Mundt 6 * Copyright (C) 2015 Glider bvba 7 * Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007). 8 * 9 * based off of the old drivers/char/sh-sci.c by: 10 * 11 * Copyright (C) 1999, 2000 Niibe Yutaka 12 * Copyright (C) 2000 Sugioka Toshinobu 13 * Modified to support multiple serial ports. Stuart Menefy (May 2000). 14 * Modified to support SecureEdge. David McCullough (2002) 15 * Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003). 16 * Removed SH7300 support (Jul 2007). 17 */ 18 #undef DEBUG 19 20 #include <linux/clk.h> 21 #include <linux/console.h> 22 #include <linux/ctype.h> 23 #include <linux/cpufreq.h> 24 #include <linux/delay.h> 25 #include <linux/dmaengine.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/err.h> 28 #include <linux/errno.h> 29 #include <linux/init.h> 30 #include <linux/interrupt.h> 31 #include <linux/ioport.h> 32 #include <linux/ktime.h> 33 #include <linux/major.h> 34 #include <linux/module.h> 35 #include <linux/mm.h> 36 #include <linux/of.h> 37 #include <linux/of_device.h> 38 #include <linux/platform_device.h> 39 #include <linux/pm_runtime.h> 40 #include <linux/reset.h> 41 #include <linux/scatterlist.h> 42 #include <linux/serial.h> 43 #include <linux/serial_sci.h> 44 #include <linux/sh_dma.h> 45 #include <linux/slab.h> 46 #include <linux/string.h> 47 #include <linux/sysrq.h> 48 #include <linux/timer.h> 49 #include <linux/tty.h> 50 #include <linux/tty_flip.h> 51 52 #ifdef CONFIG_SUPERH 53 #include <asm/sh_bios.h> 54 #include <asm/platform_early.h> 55 #endif 56 57 #include "serial_mctrl_gpio.h" 58 #include "sh-sci.h" 59 60 /* Offsets into the sci_port->irqs array */ 61 enum { 62 SCIx_ERI_IRQ, 63 SCIx_RXI_IRQ, 64 SCIx_TXI_IRQ, 65 SCIx_BRI_IRQ, 66 SCIx_DRI_IRQ, 67 SCIx_TEI_IRQ, 68 SCIx_NR_IRQS, 69 70 SCIx_MUX_IRQ = SCIx_NR_IRQS, /* special case */ 71 }; 72 73 #define SCIx_IRQ_IS_MUXED(port) \ 74 ((port)->irqs[SCIx_ERI_IRQ] == \ 75 (port)->irqs[SCIx_RXI_IRQ]) || \ 76 ((port)->irqs[SCIx_ERI_IRQ] && \ 77 ((port)->irqs[SCIx_RXI_IRQ] < 0)) 78 79 enum SCI_CLKS { 80 SCI_FCK, /* Functional Clock */ 81 SCI_SCK, /* Optional External Clock */ 82 SCI_BRG_INT, /* Optional BRG Internal Clock Source */ 83 SCI_SCIF_CLK, /* Optional BRG External Clock Source */ 84 SCI_NUM_CLKS 85 }; 86 87 /* Bit x set means sampling rate x + 1 is supported */ 88 #define SCI_SR(x) BIT((x) - 1) 89 #define SCI_SR_RANGE(x, y) GENMASK((y) - 1, (x) - 1) 90 91 #define SCI_SR_SCIFAB SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \ 92 SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \ 93 SCI_SR(19) | SCI_SR(27) 94 95 #define min_sr(_port) ffs((_port)->sampling_rate_mask) 96 #define max_sr(_port) fls((_port)->sampling_rate_mask) 97 98 /* Iterate over all supported sampling rates, from high to low */ 99 #define for_each_sr(_sr, _port) \ 100 for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--) \ 101 if ((_port)->sampling_rate_mask & SCI_SR((_sr))) 102 103 struct plat_sci_reg { 104 u8 offset, size; 105 }; 106 107 struct sci_port_params { 108 const struct plat_sci_reg regs[SCIx_NR_REGS]; 109 unsigned int fifosize; 110 unsigned int overrun_reg; 111 unsigned int overrun_mask; 112 unsigned int sampling_rate_mask; 113 unsigned int error_mask; 114 unsigned int error_clear; 115 }; 116 117 struct sci_port { 118 struct uart_port port; 119 120 /* Platform configuration */ 121 const struct sci_port_params *params; 122 const struct plat_sci_port *cfg; 123 unsigned int sampling_rate_mask; 124 resource_size_t reg_size; 125 struct mctrl_gpios *gpios; 126 127 /* Clocks */ 128 struct clk *clks[SCI_NUM_CLKS]; 129 unsigned long clk_rates[SCI_NUM_CLKS]; 130 131 int irqs[SCIx_NR_IRQS]; 132 char *irqstr[SCIx_NR_IRQS]; 133 134 struct dma_chan *chan_tx; 135 struct dma_chan *chan_rx; 136 137 #ifdef CONFIG_SERIAL_SH_SCI_DMA 138 struct dma_chan *chan_tx_saved; 139 struct dma_chan *chan_rx_saved; 140 dma_cookie_t cookie_tx; 141 dma_cookie_t cookie_rx[2]; 142 dma_cookie_t active_rx; 143 dma_addr_t tx_dma_addr; 144 unsigned int tx_dma_len; 145 struct scatterlist sg_rx[2]; 146 void *rx_buf[2]; 147 size_t buf_len_rx; 148 struct work_struct work_tx; 149 struct hrtimer rx_timer; 150 unsigned int rx_timeout; /* microseconds */ 151 #endif 152 unsigned int rx_frame; 153 int rx_trigger; 154 struct timer_list rx_fifo_timer; 155 int rx_fifo_timeout; 156 u16 hscif_tot; 157 158 bool has_rtscts; 159 bool autorts; 160 }; 161 162 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS 163 164 static struct sci_port sci_ports[SCI_NPORTS]; 165 static unsigned long sci_ports_in_use; 166 static struct uart_driver sci_uart_driver; 167 168 static inline struct sci_port * 169 to_sci_port(struct uart_port *uart) 170 { 171 return container_of(uart, struct sci_port, port); 172 } 173 174 static const struct sci_port_params sci_port_params[SCIx_NR_REGTYPES] = { 175 /* 176 * Common SCI definitions, dependent on the port's regshift 177 * value. 178 */ 179 [SCIx_SCI_REGTYPE] = { 180 .regs = { 181 [SCSMR] = { 0x00, 8 }, 182 [SCBRR] = { 0x01, 8 }, 183 [SCSCR] = { 0x02, 8 }, 184 [SCxTDR] = { 0x03, 8 }, 185 [SCxSR] = { 0x04, 8 }, 186 [SCxRDR] = { 0x05, 8 }, 187 }, 188 .fifosize = 1, 189 .overrun_reg = SCxSR, 190 .overrun_mask = SCI_ORER, 191 .sampling_rate_mask = SCI_SR(32), 192 .error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER, 193 .error_clear = SCI_ERROR_CLEAR & ~SCI_ORER, 194 }, 195 196 /* 197 * Common definitions for legacy IrDA ports. 198 */ 199 [SCIx_IRDA_REGTYPE] = { 200 .regs = { 201 [SCSMR] = { 0x00, 8 }, 202 [SCBRR] = { 0x02, 8 }, 203 [SCSCR] = { 0x04, 8 }, 204 [SCxTDR] = { 0x06, 8 }, 205 [SCxSR] = { 0x08, 16 }, 206 [SCxRDR] = { 0x0a, 8 }, 207 [SCFCR] = { 0x0c, 8 }, 208 [SCFDR] = { 0x0e, 16 }, 209 }, 210 .fifosize = 1, 211 .overrun_reg = SCxSR, 212 .overrun_mask = SCI_ORER, 213 .sampling_rate_mask = SCI_SR(32), 214 .error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER, 215 .error_clear = SCI_ERROR_CLEAR & ~SCI_ORER, 216 }, 217 218 /* 219 * Common SCIFA definitions. 220 */ 221 [SCIx_SCIFA_REGTYPE] = { 222 .regs = { 223 [SCSMR] = { 0x00, 16 }, 224 [SCBRR] = { 0x04, 8 }, 225 [SCSCR] = { 0x08, 16 }, 226 [SCxTDR] = { 0x20, 8 }, 227 [SCxSR] = { 0x14, 16 }, 228 [SCxRDR] = { 0x24, 8 }, 229 [SCFCR] = { 0x18, 16 }, 230 [SCFDR] = { 0x1c, 16 }, 231 [SCPCR] = { 0x30, 16 }, 232 [SCPDR] = { 0x34, 16 }, 233 }, 234 .fifosize = 64, 235 .overrun_reg = SCxSR, 236 .overrun_mask = SCIFA_ORER, 237 .sampling_rate_mask = SCI_SR_SCIFAB, 238 .error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER, 239 .error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER, 240 }, 241 242 /* 243 * Common SCIFB definitions. 244 */ 245 [SCIx_SCIFB_REGTYPE] = { 246 .regs = { 247 [SCSMR] = { 0x00, 16 }, 248 [SCBRR] = { 0x04, 8 }, 249 [SCSCR] = { 0x08, 16 }, 250 [SCxTDR] = { 0x40, 8 }, 251 [SCxSR] = { 0x14, 16 }, 252 [SCxRDR] = { 0x60, 8 }, 253 [SCFCR] = { 0x18, 16 }, 254 [SCTFDR] = { 0x38, 16 }, 255 [SCRFDR] = { 0x3c, 16 }, 256 [SCPCR] = { 0x30, 16 }, 257 [SCPDR] = { 0x34, 16 }, 258 }, 259 .fifosize = 256, 260 .overrun_reg = SCxSR, 261 .overrun_mask = SCIFA_ORER, 262 .sampling_rate_mask = SCI_SR_SCIFAB, 263 .error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER, 264 .error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER, 265 }, 266 267 /* 268 * Common SH-2(A) SCIF definitions for ports with FIFO data 269 * count registers. 270 */ 271 [SCIx_SH2_SCIF_FIFODATA_REGTYPE] = { 272 .regs = { 273 [SCSMR] = { 0x00, 16 }, 274 [SCBRR] = { 0x04, 8 }, 275 [SCSCR] = { 0x08, 16 }, 276 [SCxTDR] = { 0x0c, 8 }, 277 [SCxSR] = { 0x10, 16 }, 278 [SCxRDR] = { 0x14, 8 }, 279 [SCFCR] = { 0x18, 16 }, 280 [SCFDR] = { 0x1c, 16 }, 281 [SCSPTR] = { 0x20, 16 }, 282 [SCLSR] = { 0x24, 16 }, 283 }, 284 .fifosize = 16, 285 .overrun_reg = SCLSR, 286 .overrun_mask = SCLSR_ORER, 287 .sampling_rate_mask = SCI_SR(32), 288 .error_mask = SCIF_DEFAULT_ERROR_MASK, 289 .error_clear = SCIF_ERROR_CLEAR, 290 }, 291 292 /* 293 * The "SCIFA" that is in RZ/A2, RZ/G2L and RZ/T. 294 * It looks like a normal SCIF with FIFO data, but with a 295 * compressed address space. Also, the break out of interrupts 296 * are different: ERI/BRI, RXI, TXI, TEI, DRI. 297 */ 298 [SCIx_RZ_SCIFA_REGTYPE] = { 299 .regs = { 300 [SCSMR] = { 0x00, 16 }, 301 [SCBRR] = { 0x02, 8 }, 302 [SCSCR] = { 0x04, 16 }, 303 [SCxTDR] = { 0x06, 8 }, 304 [SCxSR] = { 0x08, 16 }, 305 [SCxRDR] = { 0x0A, 8 }, 306 [SCFCR] = { 0x0C, 16 }, 307 [SCFDR] = { 0x0E, 16 }, 308 [SCSPTR] = { 0x10, 16 }, 309 [SCLSR] = { 0x12, 16 }, 310 [SEMR] = { 0x14, 8 }, 311 }, 312 .fifosize = 16, 313 .overrun_reg = SCLSR, 314 .overrun_mask = SCLSR_ORER, 315 .sampling_rate_mask = SCI_SR(32), 316 .error_mask = SCIF_DEFAULT_ERROR_MASK, 317 .error_clear = SCIF_ERROR_CLEAR, 318 }, 319 320 /* 321 * Common SH-3 SCIF definitions. 322 */ 323 [SCIx_SH3_SCIF_REGTYPE] = { 324 .regs = { 325 [SCSMR] = { 0x00, 8 }, 326 [SCBRR] = { 0x02, 8 }, 327 [SCSCR] = { 0x04, 8 }, 328 [SCxTDR] = { 0x06, 8 }, 329 [SCxSR] = { 0x08, 16 }, 330 [SCxRDR] = { 0x0a, 8 }, 331 [SCFCR] = { 0x0c, 8 }, 332 [SCFDR] = { 0x0e, 16 }, 333 }, 334 .fifosize = 16, 335 .overrun_reg = SCLSR, 336 .overrun_mask = SCLSR_ORER, 337 .sampling_rate_mask = SCI_SR(32), 338 .error_mask = SCIF_DEFAULT_ERROR_MASK, 339 .error_clear = SCIF_ERROR_CLEAR, 340 }, 341 342 /* 343 * Common SH-4(A) SCIF(B) definitions. 344 */ 345 [SCIx_SH4_SCIF_REGTYPE] = { 346 .regs = { 347 [SCSMR] = { 0x00, 16 }, 348 [SCBRR] = { 0x04, 8 }, 349 [SCSCR] = { 0x08, 16 }, 350 [SCxTDR] = { 0x0c, 8 }, 351 [SCxSR] = { 0x10, 16 }, 352 [SCxRDR] = { 0x14, 8 }, 353 [SCFCR] = { 0x18, 16 }, 354 [SCFDR] = { 0x1c, 16 }, 355 [SCSPTR] = { 0x20, 16 }, 356 [SCLSR] = { 0x24, 16 }, 357 }, 358 .fifosize = 16, 359 .overrun_reg = SCLSR, 360 .overrun_mask = SCLSR_ORER, 361 .sampling_rate_mask = SCI_SR(32), 362 .error_mask = SCIF_DEFAULT_ERROR_MASK, 363 .error_clear = SCIF_ERROR_CLEAR, 364 }, 365 366 /* 367 * Common SCIF definitions for ports with a Baud Rate Generator for 368 * External Clock (BRG). 369 */ 370 [SCIx_SH4_SCIF_BRG_REGTYPE] = { 371 .regs = { 372 [SCSMR] = { 0x00, 16 }, 373 [SCBRR] = { 0x04, 8 }, 374 [SCSCR] = { 0x08, 16 }, 375 [SCxTDR] = { 0x0c, 8 }, 376 [SCxSR] = { 0x10, 16 }, 377 [SCxRDR] = { 0x14, 8 }, 378 [SCFCR] = { 0x18, 16 }, 379 [SCFDR] = { 0x1c, 16 }, 380 [SCSPTR] = { 0x20, 16 }, 381 [SCLSR] = { 0x24, 16 }, 382 [SCDL] = { 0x30, 16 }, 383 [SCCKS] = { 0x34, 16 }, 384 }, 385 .fifosize = 16, 386 .overrun_reg = SCLSR, 387 .overrun_mask = SCLSR_ORER, 388 .sampling_rate_mask = SCI_SR(32), 389 .error_mask = SCIF_DEFAULT_ERROR_MASK, 390 .error_clear = SCIF_ERROR_CLEAR, 391 }, 392 393 /* 394 * Common HSCIF definitions. 395 */ 396 [SCIx_HSCIF_REGTYPE] = { 397 .regs = { 398 [SCSMR] = { 0x00, 16 }, 399 [SCBRR] = { 0x04, 8 }, 400 [SCSCR] = { 0x08, 16 }, 401 [SCxTDR] = { 0x0c, 8 }, 402 [SCxSR] = { 0x10, 16 }, 403 [SCxRDR] = { 0x14, 8 }, 404 [SCFCR] = { 0x18, 16 }, 405 [SCFDR] = { 0x1c, 16 }, 406 [SCSPTR] = { 0x20, 16 }, 407 [SCLSR] = { 0x24, 16 }, 408 [HSSRR] = { 0x40, 16 }, 409 [SCDL] = { 0x30, 16 }, 410 [SCCKS] = { 0x34, 16 }, 411 [HSRTRGR] = { 0x54, 16 }, 412 [HSTTRGR] = { 0x58, 16 }, 413 }, 414 .fifosize = 128, 415 .overrun_reg = SCLSR, 416 .overrun_mask = SCLSR_ORER, 417 .sampling_rate_mask = SCI_SR_RANGE(8, 32), 418 .error_mask = SCIF_DEFAULT_ERROR_MASK, 419 .error_clear = SCIF_ERROR_CLEAR, 420 }, 421 422 /* 423 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR 424 * register. 425 */ 426 [SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = { 427 .regs = { 428 [SCSMR] = { 0x00, 16 }, 429 [SCBRR] = { 0x04, 8 }, 430 [SCSCR] = { 0x08, 16 }, 431 [SCxTDR] = { 0x0c, 8 }, 432 [SCxSR] = { 0x10, 16 }, 433 [SCxRDR] = { 0x14, 8 }, 434 [SCFCR] = { 0x18, 16 }, 435 [SCFDR] = { 0x1c, 16 }, 436 [SCLSR] = { 0x24, 16 }, 437 }, 438 .fifosize = 16, 439 .overrun_reg = SCLSR, 440 .overrun_mask = SCLSR_ORER, 441 .sampling_rate_mask = SCI_SR(32), 442 .error_mask = SCIF_DEFAULT_ERROR_MASK, 443 .error_clear = SCIF_ERROR_CLEAR, 444 }, 445 446 /* 447 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data 448 * count registers. 449 */ 450 [SCIx_SH4_SCIF_FIFODATA_REGTYPE] = { 451 .regs = { 452 [SCSMR] = { 0x00, 16 }, 453 [SCBRR] = { 0x04, 8 }, 454 [SCSCR] = { 0x08, 16 }, 455 [SCxTDR] = { 0x0c, 8 }, 456 [SCxSR] = { 0x10, 16 }, 457 [SCxRDR] = { 0x14, 8 }, 458 [SCFCR] = { 0x18, 16 }, 459 [SCFDR] = { 0x1c, 16 }, 460 [SCTFDR] = { 0x1c, 16 }, /* aliased to SCFDR */ 461 [SCRFDR] = { 0x20, 16 }, 462 [SCSPTR] = { 0x24, 16 }, 463 [SCLSR] = { 0x28, 16 }, 464 }, 465 .fifosize = 16, 466 .overrun_reg = SCLSR, 467 .overrun_mask = SCLSR_ORER, 468 .sampling_rate_mask = SCI_SR(32), 469 .error_mask = SCIF_DEFAULT_ERROR_MASK, 470 .error_clear = SCIF_ERROR_CLEAR, 471 }, 472 473 /* 474 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR 475 * registers. 476 */ 477 [SCIx_SH7705_SCIF_REGTYPE] = { 478 .regs = { 479 [SCSMR] = { 0x00, 16 }, 480 [SCBRR] = { 0x04, 8 }, 481 [SCSCR] = { 0x08, 16 }, 482 [SCxTDR] = { 0x20, 8 }, 483 [SCxSR] = { 0x14, 16 }, 484 [SCxRDR] = { 0x24, 8 }, 485 [SCFCR] = { 0x18, 16 }, 486 [SCFDR] = { 0x1c, 16 }, 487 }, 488 .fifosize = 64, 489 .overrun_reg = SCxSR, 490 .overrun_mask = SCIFA_ORER, 491 .sampling_rate_mask = SCI_SR(16), 492 .error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER, 493 .error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER, 494 }, 495 }; 496 497 #define sci_getreg(up, offset) (&to_sci_port(up)->params->regs[offset]) 498 499 /* 500 * The "offset" here is rather misleading, in that it refers to an enum 501 * value relative to the port mapping rather than the fixed offset 502 * itself, which needs to be manually retrieved from the platform's 503 * register map for the given port. 504 */ 505 static unsigned int sci_serial_in(struct uart_port *p, int offset) 506 { 507 const struct plat_sci_reg *reg = sci_getreg(p, offset); 508 509 if (reg->size == 8) 510 return ioread8(p->membase + (reg->offset << p->regshift)); 511 else if (reg->size == 16) 512 return ioread16(p->membase + (reg->offset << p->regshift)); 513 else 514 WARN(1, "Invalid register access\n"); 515 516 return 0; 517 } 518 519 static void sci_serial_out(struct uart_port *p, int offset, int value) 520 { 521 const struct plat_sci_reg *reg = sci_getreg(p, offset); 522 523 if (reg->size == 8) 524 iowrite8(value, p->membase + (reg->offset << p->regshift)); 525 else if (reg->size == 16) 526 iowrite16(value, p->membase + (reg->offset << p->regshift)); 527 else 528 WARN(1, "Invalid register access\n"); 529 } 530 531 static void sci_port_enable(struct sci_port *sci_port) 532 { 533 unsigned int i; 534 535 if (!sci_port->port.dev) 536 return; 537 538 pm_runtime_get_sync(sci_port->port.dev); 539 540 for (i = 0; i < SCI_NUM_CLKS; i++) { 541 clk_prepare_enable(sci_port->clks[i]); 542 sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]); 543 } 544 sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK]; 545 } 546 547 static void sci_port_disable(struct sci_port *sci_port) 548 { 549 unsigned int i; 550 551 if (!sci_port->port.dev) 552 return; 553 554 for (i = SCI_NUM_CLKS; i-- > 0; ) 555 clk_disable_unprepare(sci_port->clks[i]); 556 557 pm_runtime_put_sync(sci_port->port.dev); 558 } 559 560 static inline unsigned long port_rx_irq_mask(struct uart_port *port) 561 { 562 /* 563 * Not all ports (such as SCIFA) will support REIE. Rather than 564 * special-casing the port type, we check the port initialization 565 * IRQ enable mask to see whether the IRQ is desired at all. If 566 * it's unset, it's logically inferred that there's no point in 567 * testing for it. 568 */ 569 return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE); 570 } 571 572 static void sci_start_tx(struct uart_port *port) 573 { 574 struct sci_port *s = to_sci_port(port); 575 unsigned short ctrl; 576 577 #ifdef CONFIG_SERIAL_SH_SCI_DMA 578 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 579 u16 new, scr = serial_port_in(port, SCSCR); 580 if (s->chan_tx) 581 new = scr | SCSCR_TDRQE; 582 else 583 new = scr & ~SCSCR_TDRQE; 584 if (new != scr) 585 serial_port_out(port, SCSCR, new); 586 } 587 588 if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) && 589 dma_submit_error(s->cookie_tx)) { 590 s->cookie_tx = 0; 591 schedule_work(&s->work_tx); 592 } 593 #endif 594 595 if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 596 /* Set TIE (Transmit Interrupt Enable) bit in SCSCR */ 597 ctrl = serial_port_in(port, SCSCR); 598 serial_port_out(port, SCSCR, ctrl | SCSCR_TIE); 599 } 600 } 601 602 static void sci_stop_tx(struct uart_port *port) 603 { 604 unsigned short ctrl; 605 606 /* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */ 607 ctrl = serial_port_in(port, SCSCR); 608 609 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) 610 ctrl &= ~SCSCR_TDRQE; 611 612 ctrl &= ~SCSCR_TIE; 613 614 serial_port_out(port, SCSCR, ctrl); 615 616 #ifdef CONFIG_SERIAL_SH_SCI_DMA 617 if (to_sci_port(port)->chan_tx && 618 !dma_submit_error(to_sci_port(port)->cookie_tx)) { 619 dmaengine_terminate_async(to_sci_port(port)->chan_tx); 620 to_sci_port(port)->cookie_tx = -EINVAL; 621 } 622 #endif 623 } 624 625 static void sci_start_rx(struct uart_port *port) 626 { 627 unsigned short ctrl; 628 629 ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port); 630 631 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) 632 ctrl &= ~SCSCR_RDRQE; 633 634 serial_port_out(port, SCSCR, ctrl); 635 } 636 637 static void sci_stop_rx(struct uart_port *port) 638 { 639 unsigned short ctrl; 640 641 ctrl = serial_port_in(port, SCSCR); 642 643 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) 644 ctrl &= ~SCSCR_RDRQE; 645 646 ctrl &= ~port_rx_irq_mask(port); 647 648 serial_port_out(port, SCSCR, ctrl); 649 } 650 651 static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask) 652 { 653 if (port->type == PORT_SCI) { 654 /* Just store the mask */ 655 serial_port_out(port, SCxSR, mask); 656 } else if (to_sci_port(port)->params->overrun_mask == SCIFA_ORER) { 657 /* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */ 658 /* Only clear the status bits we want to clear */ 659 serial_port_out(port, SCxSR, 660 serial_port_in(port, SCxSR) & mask); 661 } else { 662 /* Store the mask, clear parity/framing errors */ 663 serial_port_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC)); 664 } 665 } 666 667 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \ 668 defined(CONFIG_SERIAL_SH_SCI_EARLYCON) 669 670 #ifdef CONFIG_CONSOLE_POLL 671 static int sci_poll_get_char(struct uart_port *port) 672 { 673 unsigned short status; 674 int c; 675 676 do { 677 status = serial_port_in(port, SCxSR); 678 if (status & SCxSR_ERRORS(port)) { 679 sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port)); 680 continue; 681 } 682 break; 683 } while (1); 684 685 if (!(status & SCxSR_RDxF(port))) 686 return NO_POLL_CHAR; 687 688 c = serial_port_in(port, SCxRDR); 689 690 /* Dummy read */ 691 serial_port_in(port, SCxSR); 692 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port)); 693 694 return c; 695 } 696 #endif 697 698 static void sci_poll_put_char(struct uart_port *port, unsigned char c) 699 { 700 unsigned short status; 701 702 do { 703 status = serial_port_in(port, SCxSR); 704 } while (!(status & SCxSR_TDxE(port))); 705 706 serial_port_out(port, SCxTDR, c); 707 sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port)); 708 } 709 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE || 710 CONFIG_SERIAL_SH_SCI_EARLYCON */ 711 712 static void sci_init_pins(struct uart_port *port, unsigned int cflag) 713 { 714 struct sci_port *s = to_sci_port(port); 715 716 /* 717 * Use port-specific handler if provided. 718 */ 719 if (s->cfg->ops && s->cfg->ops->init_pins) { 720 s->cfg->ops->init_pins(port, cflag); 721 return; 722 } 723 724 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 725 u16 data = serial_port_in(port, SCPDR); 726 u16 ctrl = serial_port_in(port, SCPCR); 727 728 /* Enable RXD and TXD pin functions */ 729 ctrl &= ~(SCPCR_RXDC | SCPCR_TXDC); 730 if (to_sci_port(port)->has_rtscts) { 731 /* RTS# is output, active low, unless autorts */ 732 if (!(port->mctrl & TIOCM_RTS)) { 733 ctrl |= SCPCR_RTSC; 734 data |= SCPDR_RTSD; 735 } else if (!s->autorts) { 736 ctrl |= SCPCR_RTSC; 737 data &= ~SCPDR_RTSD; 738 } else { 739 /* Enable RTS# pin function */ 740 ctrl &= ~SCPCR_RTSC; 741 } 742 /* Enable CTS# pin function */ 743 ctrl &= ~SCPCR_CTSC; 744 } 745 serial_port_out(port, SCPDR, data); 746 serial_port_out(port, SCPCR, ctrl); 747 } else if (sci_getreg(port, SCSPTR)->size) { 748 u16 status = serial_port_in(port, SCSPTR); 749 750 /* RTS# is always output; and active low, unless autorts */ 751 status |= SCSPTR_RTSIO; 752 if (!(port->mctrl & TIOCM_RTS)) 753 status |= SCSPTR_RTSDT; 754 else if (!s->autorts) 755 status &= ~SCSPTR_RTSDT; 756 /* CTS# and SCK are inputs */ 757 status &= ~(SCSPTR_CTSIO | SCSPTR_SCKIO); 758 serial_port_out(port, SCSPTR, status); 759 } 760 } 761 762 static int sci_txfill(struct uart_port *port) 763 { 764 struct sci_port *s = to_sci_port(port); 765 unsigned int fifo_mask = (s->params->fifosize << 1) - 1; 766 const struct plat_sci_reg *reg; 767 768 reg = sci_getreg(port, SCTFDR); 769 if (reg->size) 770 return serial_port_in(port, SCTFDR) & fifo_mask; 771 772 reg = sci_getreg(port, SCFDR); 773 if (reg->size) 774 return serial_port_in(port, SCFDR) >> 8; 775 776 return !(serial_port_in(port, SCxSR) & SCI_TDRE); 777 } 778 779 static int sci_txroom(struct uart_port *port) 780 { 781 return port->fifosize - sci_txfill(port); 782 } 783 784 static int sci_rxfill(struct uart_port *port) 785 { 786 struct sci_port *s = to_sci_port(port); 787 unsigned int fifo_mask = (s->params->fifosize << 1) - 1; 788 const struct plat_sci_reg *reg; 789 790 reg = sci_getreg(port, SCRFDR); 791 if (reg->size) 792 return serial_port_in(port, SCRFDR) & fifo_mask; 793 794 reg = sci_getreg(port, SCFDR); 795 if (reg->size) 796 return serial_port_in(port, SCFDR) & fifo_mask; 797 798 return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0; 799 } 800 801 /* ********************************************************************** * 802 * the interrupt related routines * 803 * ********************************************************************** */ 804 805 static void sci_transmit_chars(struct uart_port *port) 806 { 807 struct circ_buf *xmit = &port->state->xmit; 808 unsigned int stopped = uart_tx_stopped(port); 809 unsigned short status; 810 unsigned short ctrl; 811 int count; 812 813 status = serial_port_in(port, SCxSR); 814 if (!(status & SCxSR_TDxE(port))) { 815 ctrl = serial_port_in(port, SCSCR); 816 if (uart_circ_empty(xmit)) 817 ctrl &= ~SCSCR_TIE; 818 else 819 ctrl |= SCSCR_TIE; 820 serial_port_out(port, SCSCR, ctrl); 821 return; 822 } 823 824 count = sci_txroom(port); 825 826 do { 827 unsigned char c; 828 829 if (port->x_char) { 830 c = port->x_char; 831 port->x_char = 0; 832 } else if (!uart_circ_empty(xmit) && !stopped) { 833 c = xmit->buf[xmit->tail]; 834 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); 835 } else { 836 break; 837 } 838 839 serial_port_out(port, SCxTDR, c); 840 841 port->icount.tx++; 842 } while (--count > 0); 843 844 sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port)); 845 846 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 847 uart_write_wakeup(port); 848 if (uart_circ_empty(xmit)) 849 sci_stop_tx(port); 850 851 } 852 853 static void sci_receive_chars(struct uart_port *port) 854 { 855 struct tty_port *tport = &port->state->port; 856 int i, count, copied = 0; 857 unsigned short status; 858 unsigned char flag; 859 860 status = serial_port_in(port, SCxSR); 861 if (!(status & SCxSR_RDxF(port))) 862 return; 863 864 while (1) { 865 /* Don't copy more bytes than there is room for in the buffer */ 866 count = tty_buffer_request_room(tport, sci_rxfill(port)); 867 868 /* If for any reason we can't copy more data, we're done! */ 869 if (count == 0) 870 break; 871 872 if (port->type == PORT_SCI) { 873 char c = serial_port_in(port, SCxRDR); 874 if (uart_handle_sysrq_char(port, c)) 875 count = 0; 876 else 877 tty_insert_flip_char(tport, c, TTY_NORMAL); 878 } else { 879 for (i = 0; i < count; i++) { 880 char c; 881 882 if (port->type == PORT_SCIF || 883 port->type == PORT_HSCIF) { 884 status = serial_port_in(port, SCxSR); 885 c = serial_port_in(port, SCxRDR); 886 } else { 887 c = serial_port_in(port, SCxRDR); 888 status = serial_port_in(port, SCxSR); 889 } 890 if (uart_handle_sysrq_char(port, c)) { 891 count--; i--; 892 continue; 893 } 894 895 /* Store data and status */ 896 if (status & SCxSR_FER(port)) { 897 flag = TTY_FRAME; 898 port->icount.frame++; 899 } else if (status & SCxSR_PER(port)) { 900 flag = TTY_PARITY; 901 port->icount.parity++; 902 } else 903 flag = TTY_NORMAL; 904 905 tty_insert_flip_char(tport, c, flag); 906 } 907 } 908 909 serial_port_in(port, SCxSR); /* dummy read */ 910 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port)); 911 912 copied += count; 913 port->icount.rx += count; 914 } 915 916 if (copied) { 917 /* Tell the rest of the system the news. New characters! */ 918 tty_flip_buffer_push(tport); 919 } else { 920 /* TTY buffers full; read from RX reg to prevent lockup */ 921 serial_port_in(port, SCxRDR); 922 serial_port_in(port, SCxSR); /* dummy read */ 923 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port)); 924 } 925 } 926 927 static int sci_handle_errors(struct uart_port *port) 928 { 929 int copied = 0; 930 unsigned short status = serial_port_in(port, SCxSR); 931 struct tty_port *tport = &port->state->port; 932 struct sci_port *s = to_sci_port(port); 933 934 /* Handle overruns */ 935 if (status & s->params->overrun_mask) { 936 port->icount.overrun++; 937 938 /* overrun error */ 939 if (tty_insert_flip_char(tport, 0, TTY_OVERRUN)) 940 copied++; 941 } 942 943 if (status & SCxSR_FER(port)) { 944 /* frame error */ 945 port->icount.frame++; 946 947 if (tty_insert_flip_char(tport, 0, TTY_FRAME)) 948 copied++; 949 } 950 951 if (status & SCxSR_PER(port)) { 952 /* parity error */ 953 port->icount.parity++; 954 955 if (tty_insert_flip_char(tport, 0, TTY_PARITY)) 956 copied++; 957 } 958 959 if (copied) 960 tty_flip_buffer_push(tport); 961 962 return copied; 963 } 964 965 static int sci_handle_fifo_overrun(struct uart_port *port) 966 { 967 struct tty_port *tport = &port->state->port; 968 struct sci_port *s = to_sci_port(port); 969 const struct plat_sci_reg *reg; 970 int copied = 0; 971 u16 status; 972 973 reg = sci_getreg(port, s->params->overrun_reg); 974 if (!reg->size) 975 return 0; 976 977 status = serial_port_in(port, s->params->overrun_reg); 978 if (status & s->params->overrun_mask) { 979 status &= ~s->params->overrun_mask; 980 serial_port_out(port, s->params->overrun_reg, status); 981 982 port->icount.overrun++; 983 984 tty_insert_flip_char(tport, 0, TTY_OVERRUN); 985 tty_flip_buffer_push(tport); 986 copied++; 987 } 988 989 return copied; 990 } 991 992 static int sci_handle_breaks(struct uart_port *port) 993 { 994 int copied = 0; 995 unsigned short status = serial_port_in(port, SCxSR); 996 struct tty_port *tport = &port->state->port; 997 998 if (uart_handle_break(port)) 999 return 0; 1000 1001 if (status & SCxSR_BRK(port)) { 1002 port->icount.brk++; 1003 1004 /* Notify of BREAK */ 1005 if (tty_insert_flip_char(tport, 0, TTY_BREAK)) 1006 copied++; 1007 } 1008 1009 if (copied) 1010 tty_flip_buffer_push(tport); 1011 1012 copied += sci_handle_fifo_overrun(port); 1013 1014 return copied; 1015 } 1016 1017 static int scif_set_rtrg(struct uart_port *port, int rx_trig) 1018 { 1019 unsigned int bits; 1020 1021 if (rx_trig >= port->fifosize) 1022 rx_trig = port->fifosize - 1; 1023 if (rx_trig < 1) 1024 rx_trig = 1; 1025 1026 /* HSCIF can be set to an arbitrary level. */ 1027 if (sci_getreg(port, HSRTRGR)->size) { 1028 serial_port_out(port, HSRTRGR, rx_trig); 1029 return rx_trig; 1030 } 1031 1032 switch (port->type) { 1033 case PORT_SCIF: 1034 if (rx_trig < 4) { 1035 bits = 0; 1036 rx_trig = 1; 1037 } else if (rx_trig < 8) { 1038 bits = SCFCR_RTRG0; 1039 rx_trig = 4; 1040 } else if (rx_trig < 14) { 1041 bits = SCFCR_RTRG1; 1042 rx_trig = 8; 1043 } else { 1044 bits = SCFCR_RTRG0 | SCFCR_RTRG1; 1045 rx_trig = 14; 1046 } 1047 break; 1048 case PORT_SCIFA: 1049 case PORT_SCIFB: 1050 if (rx_trig < 16) { 1051 bits = 0; 1052 rx_trig = 1; 1053 } else if (rx_trig < 32) { 1054 bits = SCFCR_RTRG0; 1055 rx_trig = 16; 1056 } else if (rx_trig < 48) { 1057 bits = SCFCR_RTRG1; 1058 rx_trig = 32; 1059 } else { 1060 bits = SCFCR_RTRG0 | SCFCR_RTRG1; 1061 rx_trig = 48; 1062 } 1063 break; 1064 default: 1065 WARN(1, "unknown FIFO configuration"); 1066 return 1; 1067 } 1068 1069 serial_port_out(port, SCFCR, 1070 (serial_port_in(port, SCFCR) & 1071 ~(SCFCR_RTRG1 | SCFCR_RTRG0)) | bits); 1072 1073 return rx_trig; 1074 } 1075 1076 static int scif_rtrg_enabled(struct uart_port *port) 1077 { 1078 if (sci_getreg(port, HSRTRGR)->size) 1079 return serial_port_in(port, HSRTRGR) != 0; 1080 else 1081 return (serial_port_in(port, SCFCR) & 1082 (SCFCR_RTRG0 | SCFCR_RTRG1)) != 0; 1083 } 1084 1085 static void rx_fifo_timer_fn(struct timer_list *t) 1086 { 1087 struct sci_port *s = from_timer(s, t, rx_fifo_timer); 1088 struct uart_port *port = &s->port; 1089 1090 dev_dbg(port->dev, "Rx timed out\n"); 1091 scif_set_rtrg(port, 1); 1092 } 1093 1094 static ssize_t rx_fifo_trigger_show(struct device *dev, 1095 struct device_attribute *attr, char *buf) 1096 { 1097 struct uart_port *port = dev_get_drvdata(dev); 1098 struct sci_port *sci = to_sci_port(port); 1099 1100 return sprintf(buf, "%d\n", sci->rx_trigger); 1101 } 1102 1103 static ssize_t rx_fifo_trigger_store(struct device *dev, 1104 struct device_attribute *attr, 1105 const char *buf, size_t count) 1106 { 1107 struct uart_port *port = dev_get_drvdata(dev); 1108 struct sci_port *sci = to_sci_port(port); 1109 int ret; 1110 long r; 1111 1112 ret = kstrtol(buf, 0, &r); 1113 if (ret) 1114 return ret; 1115 1116 sci->rx_trigger = scif_set_rtrg(port, r); 1117 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) 1118 scif_set_rtrg(port, 1); 1119 1120 return count; 1121 } 1122 1123 static DEVICE_ATTR_RW(rx_fifo_trigger); 1124 1125 static ssize_t rx_fifo_timeout_show(struct device *dev, 1126 struct device_attribute *attr, 1127 char *buf) 1128 { 1129 struct uart_port *port = dev_get_drvdata(dev); 1130 struct sci_port *sci = to_sci_port(port); 1131 int v; 1132 1133 if (port->type == PORT_HSCIF) 1134 v = sci->hscif_tot >> HSSCR_TOT_SHIFT; 1135 else 1136 v = sci->rx_fifo_timeout; 1137 1138 return sprintf(buf, "%d\n", v); 1139 } 1140 1141 static ssize_t rx_fifo_timeout_store(struct device *dev, 1142 struct device_attribute *attr, 1143 const char *buf, 1144 size_t count) 1145 { 1146 struct uart_port *port = dev_get_drvdata(dev); 1147 struct sci_port *sci = to_sci_port(port); 1148 int ret; 1149 long r; 1150 1151 ret = kstrtol(buf, 0, &r); 1152 if (ret) 1153 return ret; 1154 1155 if (port->type == PORT_HSCIF) { 1156 if (r < 0 || r > 3) 1157 return -EINVAL; 1158 sci->hscif_tot = r << HSSCR_TOT_SHIFT; 1159 } else { 1160 sci->rx_fifo_timeout = r; 1161 scif_set_rtrg(port, 1); 1162 if (r > 0) 1163 timer_setup(&sci->rx_fifo_timer, rx_fifo_timer_fn, 0); 1164 } 1165 1166 return count; 1167 } 1168 1169 static DEVICE_ATTR_RW(rx_fifo_timeout); 1170 1171 1172 #ifdef CONFIG_SERIAL_SH_SCI_DMA 1173 static void sci_dma_tx_complete(void *arg) 1174 { 1175 struct sci_port *s = arg; 1176 struct uart_port *port = &s->port; 1177 struct circ_buf *xmit = &port->state->xmit; 1178 unsigned long flags; 1179 1180 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line); 1181 1182 spin_lock_irqsave(&port->lock, flags); 1183 1184 xmit->tail += s->tx_dma_len; 1185 xmit->tail &= UART_XMIT_SIZE - 1; 1186 1187 port->icount.tx += s->tx_dma_len; 1188 1189 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 1190 uart_write_wakeup(port); 1191 1192 if (!uart_circ_empty(xmit)) { 1193 s->cookie_tx = 0; 1194 schedule_work(&s->work_tx); 1195 } else { 1196 s->cookie_tx = -EINVAL; 1197 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 1198 u16 ctrl = serial_port_in(port, SCSCR); 1199 serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE); 1200 } 1201 } 1202 1203 spin_unlock_irqrestore(&port->lock, flags); 1204 } 1205 1206 /* Locking: called with port lock held */ 1207 static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count) 1208 { 1209 struct uart_port *port = &s->port; 1210 struct tty_port *tport = &port->state->port; 1211 int copied; 1212 1213 copied = tty_insert_flip_string(tport, buf, count); 1214 if (copied < count) 1215 port->icount.buf_overrun++; 1216 1217 port->icount.rx += copied; 1218 1219 return copied; 1220 } 1221 1222 static int sci_dma_rx_find_active(struct sci_port *s) 1223 { 1224 unsigned int i; 1225 1226 for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++) 1227 if (s->active_rx == s->cookie_rx[i]) 1228 return i; 1229 1230 return -1; 1231 } 1232 1233 static void sci_dma_rx_chan_invalidate(struct sci_port *s) 1234 { 1235 unsigned int i; 1236 1237 s->chan_rx = NULL; 1238 for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++) 1239 s->cookie_rx[i] = -EINVAL; 1240 s->active_rx = 0; 1241 } 1242 1243 static void sci_dma_rx_release(struct sci_port *s) 1244 { 1245 struct dma_chan *chan = s->chan_rx_saved; 1246 1247 s->chan_rx_saved = NULL; 1248 sci_dma_rx_chan_invalidate(s); 1249 dmaengine_terminate_sync(chan); 1250 dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0], 1251 sg_dma_address(&s->sg_rx[0])); 1252 dma_release_channel(chan); 1253 } 1254 1255 static void start_hrtimer_us(struct hrtimer *hrt, unsigned long usec) 1256 { 1257 long sec = usec / 1000000; 1258 long nsec = (usec % 1000000) * 1000; 1259 ktime_t t = ktime_set(sec, nsec); 1260 1261 hrtimer_start(hrt, t, HRTIMER_MODE_REL); 1262 } 1263 1264 static void sci_dma_rx_reenable_irq(struct sci_port *s) 1265 { 1266 struct uart_port *port = &s->port; 1267 u16 scr; 1268 1269 /* Direct new serial port interrupts back to CPU */ 1270 scr = serial_port_in(port, SCSCR); 1271 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 1272 scr &= ~SCSCR_RDRQE; 1273 enable_irq(s->irqs[SCIx_RXI_IRQ]); 1274 } 1275 serial_port_out(port, SCSCR, scr | SCSCR_RIE); 1276 } 1277 1278 static void sci_dma_rx_complete(void *arg) 1279 { 1280 struct sci_port *s = arg; 1281 struct dma_chan *chan = s->chan_rx; 1282 struct uart_port *port = &s->port; 1283 struct dma_async_tx_descriptor *desc; 1284 unsigned long flags; 1285 int active, count = 0; 1286 1287 dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line, 1288 s->active_rx); 1289 1290 spin_lock_irqsave(&port->lock, flags); 1291 1292 active = sci_dma_rx_find_active(s); 1293 if (active >= 0) 1294 count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx); 1295 1296 start_hrtimer_us(&s->rx_timer, s->rx_timeout); 1297 1298 if (count) 1299 tty_flip_buffer_push(&port->state->port); 1300 1301 desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1, 1302 DMA_DEV_TO_MEM, 1303 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1304 if (!desc) 1305 goto fail; 1306 1307 desc->callback = sci_dma_rx_complete; 1308 desc->callback_param = s; 1309 s->cookie_rx[active] = dmaengine_submit(desc); 1310 if (dma_submit_error(s->cookie_rx[active])) 1311 goto fail; 1312 1313 s->active_rx = s->cookie_rx[!active]; 1314 1315 dma_async_issue_pending(chan); 1316 1317 spin_unlock_irqrestore(&port->lock, flags); 1318 dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n", 1319 __func__, s->cookie_rx[active], active, s->active_rx); 1320 return; 1321 1322 fail: 1323 spin_unlock_irqrestore(&port->lock, flags); 1324 dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n"); 1325 /* Switch to PIO */ 1326 spin_lock_irqsave(&port->lock, flags); 1327 dmaengine_terminate_async(chan); 1328 sci_dma_rx_chan_invalidate(s); 1329 sci_dma_rx_reenable_irq(s); 1330 spin_unlock_irqrestore(&port->lock, flags); 1331 } 1332 1333 static void sci_dma_tx_release(struct sci_port *s) 1334 { 1335 struct dma_chan *chan = s->chan_tx_saved; 1336 1337 cancel_work_sync(&s->work_tx); 1338 s->chan_tx_saved = s->chan_tx = NULL; 1339 s->cookie_tx = -EINVAL; 1340 dmaengine_terminate_sync(chan); 1341 dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE, 1342 DMA_TO_DEVICE); 1343 dma_release_channel(chan); 1344 } 1345 1346 static int sci_dma_rx_submit(struct sci_port *s, bool port_lock_held) 1347 { 1348 struct dma_chan *chan = s->chan_rx; 1349 struct uart_port *port = &s->port; 1350 unsigned long flags; 1351 int i; 1352 1353 for (i = 0; i < 2; i++) { 1354 struct scatterlist *sg = &s->sg_rx[i]; 1355 struct dma_async_tx_descriptor *desc; 1356 1357 desc = dmaengine_prep_slave_sg(chan, 1358 sg, 1, DMA_DEV_TO_MEM, 1359 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1360 if (!desc) 1361 goto fail; 1362 1363 desc->callback = sci_dma_rx_complete; 1364 desc->callback_param = s; 1365 s->cookie_rx[i] = dmaengine_submit(desc); 1366 if (dma_submit_error(s->cookie_rx[i])) 1367 goto fail; 1368 1369 } 1370 1371 s->active_rx = s->cookie_rx[0]; 1372 1373 dma_async_issue_pending(chan); 1374 return 0; 1375 1376 fail: 1377 /* Switch to PIO */ 1378 if (!port_lock_held) 1379 spin_lock_irqsave(&port->lock, flags); 1380 if (i) 1381 dmaengine_terminate_async(chan); 1382 sci_dma_rx_chan_invalidate(s); 1383 sci_start_rx(port); 1384 if (!port_lock_held) 1385 spin_unlock_irqrestore(&port->lock, flags); 1386 return -EAGAIN; 1387 } 1388 1389 static void sci_dma_tx_work_fn(struct work_struct *work) 1390 { 1391 struct sci_port *s = container_of(work, struct sci_port, work_tx); 1392 struct dma_async_tx_descriptor *desc; 1393 struct dma_chan *chan = s->chan_tx; 1394 struct uart_port *port = &s->port; 1395 struct circ_buf *xmit = &port->state->xmit; 1396 unsigned long flags; 1397 dma_addr_t buf; 1398 int head, tail; 1399 1400 /* 1401 * DMA is idle now. 1402 * Port xmit buffer is already mapped, and it is one page... Just adjust 1403 * offsets and lengths. Since it is a circular buffer, we have to 1404 * transmit till the end, and then the rest. Take the port lock to get a 1405 * consistent xmit buffer state. 1406 */ 1407 spin_lock_irq(&port->lock); 1408 head = xmit->head; 1409 tail = xmit->tail; 1410 buf = s->tx_dma_addr + tail; 1411 s->tx_dma_len = CIRC_CNT_TO_END(head, tail, UART_XMIT_SIZE); 1412 if (!s->tx_dma_len) { 1413 /* Transmit buffer has been flushed */ 1414 spin_unlock_irq(&port->lock); 1415 return; 1416 } 1417 1418 desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len, 1419 DMA_MEM_TO_DEV, 1420 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1421 if (!desc) { 1422 spin_unlock_irq(&port->lock); 1423 dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n"); 1424 goto switch_to_pio; 1425 } 1426 1427 dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len, 1428 DMA_TO_DEVICE); 1429 1430 desc->callback = sci_dma_tx_complete; 1431 desc->callback_param = s; 1432 s->cookie_tx = dmaengine_submit(desc); 1433 if (dma_submit_error(s->cookie_tx)) { 1434 spin_unlock_irq(&port->lock); 1435 dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n"); 1436 goto switch_to_pio; 1437 } 1438 1439 spin_unlock_irq(&port->lock); 1440 dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n", 1441 __func__, xmit->buf, tail, head, s->cookie_tx); 1442 1443 dma_async_issue_pending(chan); 1444 return; 1445 1446 switch_to_pio: 1447 spin_lock_irqsave(&port->lock, flags); 1448 s->chan_tx = NULL; 1449 sci_start_tx(port); 1450 spin_unlock_irqrestore(&port->lock, flags); 1451 return; 1452 } 1453 1454 static enum hrtimer_restart sci_dma_rx_timer_fn(struct hrtimer *t) 1455 { 1456 struct sci_port *s = container_of(t, struct sci_port, rx_timer); 1457 struct dma_chan *chan = s->chan_rx; 1458 struct uart_port *port = &s->port; 1459 struct dma_tx_state state; 1460 enum dma_status status; 1461 unsigned long flags; 1462 unsigned int read; 1463 int active, count; 1464 1465 dev_dbg(port->dev, "DMA Rx timed out\n"); 1466 1467 spin_lock_irqsave(&port->lock, flags); 1468 1469 active = sci_dma_rx_find_active(s); 1470 if (active < 0) { 1471 spin_unlock_irqrestore(&port->lock, flags); 1472 return HRTIMER_NORESTART; 1473 } 1474 1475 status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state); 1476 if (status == DMA_COMPLETE) { 1477 spin_unlock_irqrestore(&port->lock, flags); 1478 dev_dbg(port->dev, "Cookie %d #%d has already completed\n", 1479 s->active_rx, active); 1480 1481 /* Let packet complete handler take care of the packet */ 1482 return HRTIMER_NORESTART; 1483 } 1484 1485 dmaengine_pause(chan); 1486 1487 /* 1488 * sometimes DMA transfer doesn't stop even if it is stopped and 1489 * data keeps on coming until transaction is complete so check 1490 * for DMA_COMPLETE again 1491 * Let packet complete handler take care of the packet 1492 */ 1493 status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state); 1494 if (status == DMA_COMPLETE) { 1495 spin_unlock_irqrestore(&port->lock, flags); 1496 dev_dbg(port->dev, "Transaction complete after DMA engine was stopped"); 1497 return HRTIMER_NORESTART; 1498 } 1499 1500 /* Handle incomplete DMA receive */ 1501 dmaengine_terminate_async(s->chan_rx); 1502 read = sg_dma_len(&s->sg_rx[active]) - state.residue; 1503 1504 if (read) { 1505 count = sci_dma_rx_push(s, s->rx_buf[active], read); 1506 if (count) 1507 tty_flip_buffer_push(&port->state->port); 1508 } 1509 1510 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) 1511 sci_dma_rx_submit(s, true); 1512 1513 sci_dma_rx_reenable_irq(s); 1514 1515 spin_unlock_irqrestore(&port->lock, flags); 1516 1517 return HRTIMER_NORESTART; 1518 } 1519 1520 static struct dma_chan *sci_request_dma_chan(struct uart_port *port, 1521 enum dma_transfer_direction dir) 1522 { 1523 struct dma_chan *chan; 1524 struct dma_slave_config cfg; 1525 int ret; 1526 1527 chan = dma_request_slave_channel(port->dev, 1528 dir == DMA_MEM_TO_DEV ? "tx" : "rx"); 1529 if (!chan) { 1530 dev_dbg(port->dev, "dma_request_slave_channel failed\n"); 1531 return NULL; 1532 } 1533 1534 memset(&cfg, 0, sizeof(cfg)); 1535 cfg.direction = dir; 1536 if (dir == DMA_MEM_TO_DEV) { 1537 cfg.dst_addr = port->mapbase + 1538 (sci_getreg(port, SCxTDR)->offset << port->regshift); 1539 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1540 } else { 1541 cfg.src_addr = port->mapbase + 1542 (sci_getreg(port, SCxRDR)->offset << port->regshift); 1543 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1544 } 1545 1546 ret = dmaengine_slave_config(chan, &cfg); 1547 if (ret) { 1548 dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret); 1549 dma_release_channel(chan); 1550 return NULL; 1551 } 1552 1553 return chan; 1554 } 1555 1556 static void sci_request_dma(struct uart_port *port) 1557 { 1558 struct sci_port *s = to_sci_port(port); 1559 struct dma_chan *chan; 1560 1561 dev_dbg(port->dev, "%s: port %d\n", __func__, port->line); 1562 1563 /* 1564 * DMA on console may interfere with Kernel log messages which use 1565 * plain putchar(). So, simply don't use it with a console. 1566 */ 1567 if (uart_console(port)) 1568 return; 1569 1570 if (!port->dev->of_node) 1571 return; 1572 1573 s->cookie_tx = -EINVAL; 1574 1575 /* 1576 * Don't request a dma channel if no channel was specified 1577 * in the device tree. 1578 */ 1579 if (!of_find_property(port->dev->of_node, "dmas", NULL)) 1580 return; 1581 1582 chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV); 1583 dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan); 1584 if (chan) { 1585 /* UART circular tx buffer is an aligned page. */ 1586 s->tx_dma_addr = dma_map_single(chan->device->dev, 1587 port->state->xmit.buf, 1588 UART_XMIT_SIZE, 1589 DMA_TO_DEVICE); 1590 if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) { 1591 dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n"); 1592 dma_release_channel(chan); 1593 } else { 1594 dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n", 1595 __func__, UART_XMIT_SIZE, 1596 port->state->xmit.buf, &s->tx_dma_addr); 1597 1598 INIT_WORK(&s->work_tx, sci_dma_tx_work_fn); 1599 s->chan_tx_saved = s->chan_tx = chan; 1600 } 1601 } 1602 1603 chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM); 1604 dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan); 1605 if (chan) { 1606 unsigned int i; 1607 dma_addr_t dma; 1608 void *buf; 1609 1610 s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize); 1611 buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2, 1612 &dma, GFP_KERNEL); 1613 if (!buf) { 1614 dev_warn(port->dev, 1615 "Failed to allocate Rx dma buffer, using PIO\n"); 1616 dma_release_channel(chan); 1617 return; 1618 } 1619 1620 for (i = 0; i < 2; i++) { 1621 struct scatterlist *sg = &s->sg_rx[i]; 1622 1623 sg_init_table(sg, 1); 1624 s->rx_buf[i] = buf; 1625 sg_dma_address(sg) = dma; 1626 sg_dma_len(sg) = s->buf_len_rx; 1627 1628 buf += s->buf_len_rx; 1629 dma += s->buf_len_rx; 1630 } 1631 1632 hrtimer_init(&s->rx_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1633 s->rx_timer.function = sci_dma_rx_timer_fn; 1634 1635 s->chan_rx_saved = s->chan_rx = chan; 1636 1637 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) 1638 sci_dma_rx_submit(s, false); 1639 } 1640 } 1641 1642 static void sci_free_dma(struct uart_port *port) 1643 { 1644 struct sci_port *s = to_sci_port(port); 1645 1646 if (s->chan_tx_saved) 1647 sci_dma_tx_release(s); 1648 if (s->chan_rx_saved) 1649 sci_dma_rx_release(s); 1650 } 1651 1652 static void sci_flush_buffer(struct uart_port *port) 1653 { 1654 struct sci_port *s = to_sci_port(port); 1655 1656 /* 1657 * In uart_flush_buffer(), the xmit circular buffer has just been 1658 * cleared, so we have to reset tx_dma_len accordingly, and stop any 1659 * pending transfers 1660 */ 1661 s->tx_dma_len = 0; 1662 if (s->chan_tx) { 1663 dmaengine_terminate_async(s->chan_tx); 1664 s->cookie_tx = -EINVAL; 1665 } 1666 } 1667 #else /* !CONFIG_SERIAL_SH_SCI_DMA */ 1668 static inline void sci_request_dma(struct uart_port *port) 1669 { 1670 } 1671 1672 static inline void sci_free_dma(struct uart_port *port) 1673 { 1674 } 1675 1676 #define sci_flush_buffer NULL 1677 #endif /* !CONFIG_SERIAL_SH_SCI_DMA */ 1678 1679 static irqreturn_t sci_rx_interrupt(int irq, void *ptr) 1680 { 1681 struct uart_port *port = ptr; 1682 struct sci_port *s = to_sci_port(port); 1683 1684 #ifdef CONFIG_SERIAL_SH_SCI_DMA 1685 if (s->chan_rx) { 1686 u16 scr = serial_port_in(port, SCSCR); 1687 u16 ssr = serial_port_in(port, SCxSR); 1688 1689 /* Disable future Rx interrupts */ 1690 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 1691 disable_irq_nosync(irq); 1692 scr |= SCSCR_RDRQE; 1693 } else { 1694 if (sci_dma_rx_submit(s, false) < 0) 1695 goto handle_pio; 1696 1697 scr &= ~SCSCR_RIE; 1698 } 1699 serial_port_out(port, SCSCR, scr); 1700 /* Clear current interrupt */ 1701 serial_port_out(port, SCxSR, 1702 ssr & ~(SCIF_DR | SCxSR_RDxF(port))); 1703 dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u us\n", 1704 jiffies, s->rx_timeout); 1705 start_hrtimer_us(&s->rx_timer, s->rx_timeout); 1706 1707 return IRQ_HANDLED; 1708 } 1709 1710 handle_pio: 1711 #endif 1712 1713 if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0) { 1714 if (!scif_rtrg_enabled(port)) 1715 scif_set_rtrg(port, s->rx_trigger); 1716 1717 mod_timer(&s->rx_fifo_timer, jiffies + DIV_ROUND_UP( 1718 s->rx_frame * HZ * s->rx_fifo_timeout, 1000000)); 1719 } 1720 1721 /* I think sci_receive_chars has to be called irrespective 1722 * of whether the I_IXOFF is set, otherwise, how is the interrupt 1723 * to be disabled? 1724 */ 1725 sci_receive_chars(port); 1726 1727 return IRQ_HANDLED; 1728 } 1729 1730 static irqreturn_t sci_tx_interrupt(int irq, void *ptr) 1731 { 1732 struct uart_port *port = ptr; 1733 unsigned long flags; 1734 1735 spin_lock_irqsave(&port->lock, flags); 1736 sci_transmit_chars(port); 1737 spin_unlock_irqrestore(&port->lock, flags); 1738 1739 return IRQ_HANDLED; 1740 } 1741 1742 static irqreturn_t sci_br_interrupt(int irq, void *ptr) 1743 { 1744 struct uart_port *port = ptr; 1745 1746 /* Handle BREAKs */ 1747 sci_handle_breaks(port); 1748 1749 /* drop invalid character received before break was detected */ 1750 serial_port_in(port, SCxRDR); 1751 1752 sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port)); 1753 1754 return IRQ_HANDLED; 1755 } 1756 1757 static irqreturn_t sci_er_interrupt(int irq, void *ptr) 1758 { 1759 struct uart_port *port = ptr; 1760 struct sci_port *s = to_sci_port(port); 1761 1762 if (s->irqs[SCIx_ERI_IRQ] == s->irqs[SCIx_BRI_IRQ]) { 1763 /* Break and Error interrupts are muxed */ 1764 unsigned short ssr_status = serial_port_in(port, SCxSR); 1765 1766 /* Break Interrupt */ 1767 if (ssr_status & SCxSR_BRK(port)) 1768 sci_br_interrupt(irq, ptr); 1769 1770 /* Break only? */ 1771 if (!(ssr_status & SCxSR_ERRORS(port))) 1772 return IRQ_HANDLED; 1773 } 1774 1775 /* Handle errors */ 1776 if (port->type == PORT_SCI) { 1777 if (sci_handle_errors(port)) { 1778 /* discard character in rx buffer */ 1779 serial_port_in(port, SCxSR); 1780 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port)); 1781 } 1782 } else { 1783 sci_handle_fifo_overrun(port); 1784 if (!s->chan_rx) 1785 sci_receive_chars(port); 1786 } 1787 1788 sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port)); 1789 1790 /* Kick the transmission */ 1791 if (!s->chan_tx) 1792 sci_tx_interrupt(irq, ptr); 1793 1794 return IRQ_HANDLED; 1795 } 1796 1797 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr) 1798 { 1799 unsigned short ssr_status, scr_status, err_enabled, orer_status = 0; 1800 struct uart_port *port = ptr; 1801 struct sci_port *s = to_sci_port(port); 1802 irqreturn_t ret = IRQ_NONE; 1803 1804 ssr_status = serial_port_in(port, SCxSR); 1805 scr_status = serial_port_in(port, SCSCR); 1806 if (s->params->overrun_reg == SCxSR) 1807 orer_status = ssr_status; 1808 else if (sci_getreg(port, s->params->overrun_reg)->size) 1809 orer_status = serial_port_in(port, s->params->overrun_reg); 1810 1811 err_enabled = scr_status & port_rx_irq_mask(port); 1812 1813 /* Tx Interrupt */ 1814 if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) && 1815 !s->chan_tx) 1816 ret = sci_tx_interrupt(irq, ptr); 1817 1818 /* 1819 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF / 1820 * DR flags 1821 */ 1822 if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) && 1823 (scr_status & SCSCR_RIE)) 1824 ret = sci_rx_interrupt(irq, ptr); 1825 1826 /* Error Interrupt */ 1827 if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled) 1828 ret = sci_er_interrupt(irq, ptr); 1829 1830 /* Break Interrupt */ 1831 if (s->irqs[SCIx_ERI_IRQ] != s->irqs[SCIx_BRI_IRQ] && 1832 (ssr_status & SCxSR_BRK(port)) && err_enabled) 1833 ret = sci_br_interrupt(irq, ptr); 1834 1835 /* Overrun Interrupt */ 1836 if (orer_status & s->params->overrun_mask) { 1837 sci_handle_fifo_overrun(port); 1838 ret = IRQ_HANDLED; 1839 } 1840 1841 return ret; 1842 } 1843 1844 static const struct sci_irq_desc { 1845 const char *desc; 1846 irq_handler_t handler; 1847 } sci_irq_desc[] = { 1848 /* 1849 * Split out handlers, the default case. 1850 */ 1851 [SCIx_ERI_IRQ] = { 1852 .desc = "rx err", 1853 .handler = sci_er_interrupt, 1854 }, 1855 1856 [SCIx_RXI_IRQ] = { 1857 .desc = "rx full", 1858 .handler = sci_rx_interrupt, 1859 }, 1860 1861 [SCIx_TXI_IRQ] = { 1862 .desc = "tx empty", 1863 .handler = sci_tx_interrupt, 1864 }, 1865 1866 [SCIx_BRI_IRQ] = { 1867 .desc = "break", 1868 .handler = sci_br_interrupt, 1869 }, 1870 1871 [SCIx_DRI_IRQ] = { 1872 .desc = "rx ready", 1873 .handler = sci_rx_interrupt, 1874 }, 1875 1876 [SCIx_TEI_IRQ] = { 1877 .desc = "tx end", 1878 .handler = sci_tx_interrupt, 1879 }, 1880 1881 /* 1882 * Special muxed handler. 1883 */ 1884 [SCIx_MUX_IRQ] = { 1885 .desc = "mux", 1886 .handler = sci_mpxed_interrupt, 1887 }, 1888 }; 1889 1890 static int sci_request_irq(struct sci_port *port) 1891 { 1892 struct uart_port *up = &port->port; 1893 int i, j, w, ret = 0; 1894 1895 for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) { 1896 const struct sci_irq_desc *desc; 1897 int irq; 1898 1899 /* Check if already registered (muxed) */ 1900 for (w = 0; w < i; w++) 1901 if (port->irqs[w] == port->irqs[i]) 1902 w = i + 1; 1903 if (w > i) 1904 continue; 1905 1906 if (SCIx_IRQ_IS_MUXED(port)) { 1907 i = SCIx_MUX_IRQ; 1908 irq = up->irq; 1909 } else { 1910 irq = port->irqs[i]; 1911 1912 /* 1913 * Certain port types won't support all of the 1914 * available interrupt sources. 1915 */ 1916 if (unlikely(irq < 0)) 1917 continue; 1918 } 1919 1920 desc = sci_irq_desc + i; 1921 port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s", 1922 dev_name(up->dev), desc->desc); 1923 if (!port->irqstr[j]) { 1924 ret = -ENOMEM; 1925 goto out_nomem; 1926 } 1927 1928 ret = request_irq(irq, desc->handler, up->irqflags, 1929 port->irqstr[j], port); 1930 if (unlikely(ret)) { 1931 dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc); 1932 goto out_noirq; 1933 } 1934 } 1935 1936 return 0; 1937 1938 out_noirq: 1939 while (--i >= 0) 1940 free_irq(port->irqs[i], port); 1941 1942 out_nomem: 1943 while (--j >= 0) 1944 kfree(port->irqstr[j]); 1945 1946 return ret; 1947 } 1948 1949 static void sci_free_irq(struct sci_port *port) 1950 { 1951 int i, j; 1952 1953 /* 1954 * Intentionally in reverse order so we iterate over the muxed 1955 * IRQ first. 1956 */ 1957 for (i = 0; i < SCIx_NR_IRQS; i++) { 1958 int irq = port->irqs[i]; 1959 1960 /* 1961 * Certain port types won't support all of the available 1962 * interrupt sources. 1963 */ 1964 if (unlikely(irq < 0)) 1965 continue; 1966 1967 /* Check if already freed (irq was muxed) */ 1968 for (j = 0; j < i; j++) 1969 if (port->irqs[j] == irq) 1970 j = i + 1; 1971 if (j > i) 1972 continue; 1973 1974 free_irq(port->irqs[i], port); 1975 kfree(port->irqstr[i]); 1976 1977 if (SCIx_IRQ_IS_MUXED(port)) { 1978 /* If there's only one IRQ, we're done. */ 1979 return; 1980 } 1981 } 1982 } 1983 1984 static unsigned int sci_tx_empty(struct uart_port *port) 1985 { 1986 unsigned short status = serial_port_in(port, SCxSR); 1987 unsigned short in_tx_fifo = sci_txfill(port); 1988 1989 return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0; 1990 } 1991 1992 static void sci_set_rts(struct uart_port *port, bool state) 1993 { 1994 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 1995 u16 data = serial_port_in(port, SCPDR); 1996 1997 /* Active low */ 1998 if (state) 1999 data &= ~SCPDR_RTSD; 2000 else 2001 data |= SCPDR_RTSD; 2002 serial_port_out(port, SCPDR, data); 2003 2004 /* RTS# is output */ 2005 serial_port_out(port, SCPCR, 2006 serial_port_in(port, SCPCR) | SCPCR_RTSC); 2007 } else if (sci_getreg(port, SCSPTR)->size) { 2008 u16 ctrl = serial_port_in(port, SCSPTR); 2009 2010 /* Active low */ 2011 if (state) 2012 ctrl &= ~SCSPTR_RTSDT; 2013 else 2014 ctrl |= SCSPTR_RTSDT; 2015 serial_port_out(port, SCSPTR, ctrl); 2016 } 2017 } 2018 2019 static bool sci_get_cts(struct uart_port *port) 2020 { 2021 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 2022 /* Active low */ 2023 return !(serial_port_in(port, SCPDR) & SCPDR_CTSD); 2024 } else if (sci_getreg(port, SCSPTR)->size) { 2025 /* Active low */ 2026 return !(serial_port_in(port, SCSPTR) & SCSPTR_CTSDT); 2027 } 2028 2029 return true; 2030 } 2031 2032 /* 2033 * Modem control is a bit of a mixed bag for SCI(F) ports. Generally 2034 * CTS/RTS is supported in hardware by at least one port and controlled 2035 * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently 2036 * handled via the ->init_pins() op, which is a bit of a one-way street, 2037 * lacking any ability to defer pin control -- this will later be 2038 * converted over to the GPIO framework). 2039 * 2040 * Other modes (such as loopback) are supported generically on certain 2041 * port types, but not others. For these it's sufficient to test for the 2042 * existence of the support register and simply ignore the port type. 2043 */ 2044 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl) 2045 { 2046 struct sci_port *s = to_sci_port(port); 2047 2048 if (mctrl & TIOCM_LOOP) { 2049 const struct plat_sci_reg *reg; 2050 2051 /* 2052 * Standard loopback mode for SCFCR ports. 2053 */ 2054 reg = sci_getreg(port, SCFCR); 2055 if (reg->size) 2056 serial_port_out(port, SCFCR, 2057 serial_port_in(port, SCFCR) | 2058 SCFCR_LOOP); 2059 } 2060 2061 mctrl_gpio_set(s->gpios, mctrl); 2062 2063 if (!s->has_rtscts) 2064 return; 2065 2066 if (!(mctrl & TIOCM_RTS)) { 2067 /* Disable Auto RTS */ 2068 serial_port_out(port, SCFCR, 2069 serial_port_in(port, SCFCR) & ~SCFCR_MCE); 2070 2071 /* Clear RTS */ 2072 sci_set_rts(port, 0); 2073 } else if (s->autorts) { 2074 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { 2075 /* Enable RTS# pin function */ 2076 serial_port_out(port, SCPCR, 2077 serial_port_in(port, SCPCR) & ~SCPCR_RTSC); 2078 } 2079 2080 /* Enable Auto RTS */ 2081 serial_port_out(port, SCFCR, 2082 serial_port_in(port, SCFCR) | SCFCR_MCE); 2083 } else { 2084 /* Set RTS */ 2085 sci_set_rts(port, 1); 2086 } 2087 } 2088 2089 static unsigned int sci_get_mctrl(struct uart_port *port) 2090 { 2091 struct sci_port *s = to_sci_port(port); 2092 struct mctrl_gpios *gpios = s->gpios; 2093 unsigned int mctrl = 0; 2094 2095 mctrl_gpio_get(gpios, &mctrl); 2096 2097 /* 2098 * CTS/RTS is handled in hardware when supported, while nothing 2099 * else is wired up. 2100 */ 2101 if (s->autorts) { 2102 if (sci_get_cts(port)) 2103 mctrl |= TIOCM_CTS; 2104 } else if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_CTS)) { 2105 mctrl |= TIOCM_CTS; 2106 } 2107 if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DSR)) 2108 mctrl |= TIOCM_DSR; 2109 if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DCD)) 2110 mctrl |= TIOCM_CAR; 2111 2112 return mctrl; 2113 } 2114 2115 static void sci_enable_ms(struct uart_port *port) 2116 { 2117 mctrl_gpio_enable_ms(to_sci_port(port)->gpios); 2118 } 2119 2120 static void sci_break_ctl(struct uart_port *port, int break_state) 2121 { 2122 unsigned short scscr, scsptr; 2123 unsigned long flags; 2124 2125 /* check whether the port has SCSPTR */ 2126 if (!sci_getreg(port, SCSPTR)->size) { 2127 /* 2128 * Not supported by hardware. Most parts couple break and rx 2129 * interrupts together, with break detection always enabled. 2130 */ 2131 return; 2132 } 2133 2134 spin_lock_irqsave(&port->lock, flags); 2135 scsptr = serial_port_in(port, SCSPTR); 2136 scscr = serial_port_in(port, SCSCR); 2137 2138 if (break_state == -1) { 2139 scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT; 2140 scscr &= ~SCSCR_TE; 2141 } else { 2142 scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO; 2143 scscr |= SCSCR_TE; 2144 } 2145 2146 serial_port_out(port, SCSPTR, scsptr); 2147 serial_port_out(port, SCSCR, scscr); 2148 spin_unlock_irqrestore(&port->lock, flags); 2149 } 2150 2151 static int sci_startup(struct uart_port *port) 2152 { 2153 struct sci_port *s = to_sci_port(port); 2154 int ret; 2155 2156 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line); 2157 2158 sci_request_dma(port); 2159 2160 ret = sci_request_irq(s); 2161 if (unlikely(ret < 0)) { 2162 sci_free_dma(port); 2163 return ret; 2164 } 2165 2166 return 0; 2167 } 2168 2169 static void sci_shutdown(struct uart_port *port) 2170 { 2171 struct sci_port *s = to_sci_port(port); 2172 unsigned long flags; 2173 u16 scr; 2174 2175 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line); 2176 2177 s->autorts = false; 2178 mctrl_gpio_disable_ms(to_sci_port(port)->gpios); 2179 2180 spin_lock_irqsave(&port->lock, flags); 2181 sci_stop_rx(port); 2182 sci_stop_tx(port); 2183 /* 2184 * Stop RX and TX, disable related interrupts, keep clock source 2185 * and HSCIF TOT bits 2186 */ 2187 scr = serial_port_in(port, SCSCR); 2188 serial_port_out(port, SCSCR, scr & 2189 (SCSCR_CKE1 | SCSCR_CKE0 | s->hscif_tot)); 2190 spin_unlock_irqrestore(&port->lock, flags); 2191 2192 #ifdef CONFIG_SERIAL_SH_SCI_DMA 2193 if (s->chan_rx_saved) { 2194 dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__, 2195 port->line); 2196 hrtimer_cancel(&s->rx_timer); 2197 } 2198 #endif 2199 2200 if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0) 2201 del_timer_sync(&s->rx_fifo_timer); 2202 sci_free_irq(s); 2203 sci_free_dma(port); 2204 } 2205 2206 static int sci_sck_calc(struct sci_port *s, unsigned int bps, 2207 unsigned int *srr) 2208 { 2209 unsigned long freq = s->clk_rates[SCI_SCK]; 2210 int err, min_err = INT_MAX; 2211 unsigned int sr; 2212 2213 if (s->port.type != PORT_HSCIF) 2214 freq *= 2; 2215 2216 for_each_sr(sr, s) { 2217 err = DIV_ROUND_CLOSEST(freq, sr) - bps; 2218 if (abs(err) >= abs(min_err)) 2219 continue; 2220 2221 min_err = err; 2222 *srr = sr - 1; 2223 2224 if (!err) 2225 break; 2226 } 2227 2228 dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err, 2229 *srr + 1); 2230 return min_err; 2231 } 2232 2233 static int sci_brg_calc(struct sci_port *s, unsigned int bps, 2234 unsigned long freq, unsigned int *dlr, 2235 unsigned int *srr) 2236 { 2237 int err, min_err = INT_MAX; 2238 unsigned int sr, dl; 2239 2240 if (s->port.type != PORT_HSCIF) 2241 freq *= 2; 2242 2243 for_each_sr(sr, s) { 2244 dl = DIV_ROUND_CLOSEST(freq, sr * bps); 2245 dl = clamp(dl, 1U, 65535U); 2246 2247 err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps; 2248 if (abs(err) >= abs(min_err)) 2249 continue; 2250 2251 min_err = err; 2252 *dlr = dl; 2253 *srr = sr - 1; 2254 2255 if (!err) 2256 break; 2257 } 2258 2259 dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps, 2260 min_err, *dlr, *srr + 1); 2261 return min_err; 2262 } 2263 2264 /* calculate sample rate, BRR, and clock select */ 2265 static int sci_scbrr_calc(struct sci_port *s, unsigned int bps, 2266 unsigned int *brr, unsigned int *srr, 2267 unsigned int *cks) 2268 { 2269 unsigned long freq = s->clk_rates[SCI_FCK]; 2270 unsigned int sr, br, prediv, scrate, c; 2271 int err, min_err = INT_MAX; 2272 2273 if (s->port.type != PORT_HSCIF) 2274 freq *= 2; 2275 2276 /* 2277 * Find the combination of sample rate and clock select with the 2278 * smallest deviation from the desired baud rate. 2279 * Prefer high sample rates to maximise the receive margin. 2280 * 2281 * M: Receive margin (%) 2282 * N: Ratio of bit rate to clock (N = sampling rate) 2283 * D: Clock duty (D = 0 to 1.0) 2284 * L: Frame length (L = 9 to 12) 2285 * F: Absolute value of clock frequency deviation 2286 * 2287 * M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) - 2288 * (|D - 0.5| / N * (1 + F))| 2289 * NOTE: Usually, treat D for 0.5, F is 0 by this calculation. 2290 */ 2291 for_each_sr(sr, s) { 2292 for (c = 0; c <= 3; c++) { 2293 /* integerized formulas from HSCIF documentation */ 2294 prediv = sr << (2 * c + 1); 2295 2296 /* 2297 * We need to calculate: 2298 * 2299 * br = freq / (prediv * bps) clamped to [1..256] 2300 * err = freq / (br * prediv) - bps 2301 * 2302 * Watch out for overflow when calculating the desired 2303 * sampling clock rate! 2304 */ 2305 if (bps > UINT_MAX / prediv) 2306 break; 2307 2308 scrate = prediv * bps; 2309 br = DIV_ROUND_CLOSEST(freq, scrate); 2310 br = clamp(br, 1U, 256U); 2311 2312 err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps; 2313 if (abs(err) >= abs(min_err)) 2314 continue; 2315 2316 min_err = err; 2317 *brr = br - 1; 2318 *srr = sr - 1; 2319 *cks = c; 2320 2321 if (!err) 2322 goto found; 2323 } 2324 } 2325 2326 found: 2327 dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps, 2328 min_err, *brr, *srr + 1, *cks); 2329 return min_err; 2330 } 2331 2332 static void sci_reset(struct uart_port *port) 2333 { 2334 const struct plat_sci_reg *reg; 2335 unsigned int status; 2336 struct sci_port *s = to_sci_port(port); 2337 2338 serial_port_out(port, SCSCR, s->hscif_tot); /* TE=0, RE=0, CKE1=0 */ 2339 2340 reg = sci_getreg(port, SCFCR); 2341 if (reg->size) 2342 serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST); 2343 2344 sci_clear_SCxSR(port, 2345 SCxSR_RDxF_CLEAR(port) & SCxSR_ERROR_CLEAR(port) & 2346 SCxSR_BREAK_CLEAR(port)); 2347 if (sci_getreg(port, SCLSR)->size) { 2348 status = serial_port_in(port, SCLSR); 2349 status &= ~(SCLSR_TO | SCLSR_ORER); 2350 serial_port_out(port, SCLSR, status); 2351 } 2352 2353 if (s->rx_trigger > 1) { 2354 if (s->rx_fifo_timeout) { 2355 scif_set_rtrg(port, 1); 2356 timer_setup(&s->rx_fifo_timer, rx_fifo_timer_fn, 0); 2357 } else { 2358 if (port->type == PORT_SCIFA || 2359 port->type == PORT_SCIFB) 2360 scif_set_rtrg(port, 1); 2361 else 2362 scif_set_rtrg(port, s->rx_trigger); 2363 } 2364 } 2365 } 2366 2367 static void sci_set_termios(struct uart_port *port, struct ktermios *termios, 2368 const struct ktermios *old) 2369 { 2370 unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i, bits; 2371 unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0; 2372 unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0; 2373 struct sci_port *s = to_sci_port(port); 2374 const struct plat_sci_reg *reg; 2375 int min_err = INT_MAX, err; 2376 unsigned long max_freq = 0; 2377 int best_clk = -1; 2378 unsigned long flags; 2379 2380 if ((termios->c_cflag & CSIZE) == CS7) { 2381 smr_val |= SCSMR_CHR; 2382 } else { 2383 termios->c_cflag &= ~CSIZE; 2384 termios->c_cflag |= CS8; 2385 } 2386 if (termios->c_cflag & PARENB) 2387 smr_val |= SCSMR_PE; 2388 if (termios->c_cflag & PARODD) 2389 smr_val |= SCSMR_PE | SCSMR_ODD; 2390 if (termios->c_cflag & CSTOPB) 2391 smr_val |= SCSMR_STOP; 2392 2393 /* 2394 * earlyprintk comes here early on with port->uartclk set to zero. 2395 * the clock framework is not up and running at this point so here 2396 * we assume that 115200 is the maximum baud rate. please note that 2397 * the baud rate is not programmed during earlyprintk - it is assumed 2398 * that the previous boot loader has enabled required clocks and 2399 * setup the baud rate generator hardware for us already. 2400 */ 2401 if (!port->uartclk) { 2402 baud = uart_get_baud_rate(port, termios, old, 0, 115200); 2403 goto done; 2404 } 2405 2406 for (i = 0; i < SCI_NUM_CLKS; i++) 2407 max_freq = max(max_freq, s->clk_rates[i]); 2408 2409 baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s)); 2410 if (!baud) 2411 goto done; 2412 2413 /* 2414 * There can be multiple sources for the sampling clock. Find the one 2415 * that gives us the smallest deviation from the desired baud rate. 2416 */ 2417 2418 /* Optional Undivided External Clock */ 2419 if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA && 2420 port->type != PORT_SCIFB) { 2421 err = sci_sck_calc(s, baud, &srr1); 2422 if (abs(err) < abs(min_err)) { 2423 best_clk = SCI_SCK; 2424 scr_val = SCSCR_CKE1; 2425 sccks = SCCKS_CKS; 2426 min_err = err; 2427 srr = srr1; 2428 if (!err) 2429 goto done; 2430 } 2431 } 2432 2433 /* Optional BRG Frequency Divided External Clock */ 2434 if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) { 2435 err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1, 2436 &srr1); 2437 if (abs(err) < abs(min_err)) { 2438 best_clk = SCI_SCIF_CLK; 2439 scr_val = SCSCR_CKE1; 2440 sccks = 0; 2441 min_err = err; 2442 dl = dl1; 2443 srr = srr1; 2444 if (!err) 2445 goto done; 2446 } 2447 } 2448 2449 /* Optional BRG Frequency Divided Internal Clock */ 2450 if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) { 2451 err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1, 2452 &srr1); 2453 if (abs(err) < abs(min_err)) { 2454 best_clk = SCI_BRG_INT; 2455 scr_val = SCSCR_CKE1; 2456 sccks = SCCKS_XIN; 2457 min_err = err; 2458 dl = dl1; 2459 srr = srr1; 2460 if (!min_err) 2461 goto done; 2462 } 2463 } 2464 2465 /* Divided Functional Clock using standard Bit Rate Register */ 2466 err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1); 2467 if (abs(err) < abs(min_err)) { 2468 best_clk = SCI_FCK; 2469 scr_val = 0; 2470 min_err = err; 2471 brr = brr1; 2472 srr = srr1; 2473 cks = cks1; 2474 } 2475 2476 done: 2477 if (best_clk >= 0) 2478 dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n", 2479 s->clks[best_clk], baud, min_err); 2480 2481 sci_port_enable(s); 2482 2483 /* 2484 * Program the optional External Baud Rate Generator (BRG) first. 2485 * It controls the mux to select (H)SCK or frequency divided clock. 2486 */ 2487 if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) { 2488 serial_port_out(port, SCDL, dl); 2489 serial_port_out(port, SCCKS, sccks); 2490 } 2491 2492 spin_lock_irqsave(&port->lock, flags); 2493 2494 sci_reset(port); 2495 2496 uart_update_timeout(port, termios->c_cflag, baud); 2497 2498 /* byte size and parity */ 2499 bits = tty_get_frame_size(termios->c_cflag); 2500 2501 if (sci_getreg(port, SEMR)->size) 2502 serial_port_out(port, SEMR, 0); 2503 2504 if (best_clk >= 0) { 2505 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) 2506 switch (srr + 1) { 2507 case 5: smr_val |= SCSMR_SRC_5; break; 2508 case 7: smr_val |= SCSMR_SRC_7; break; 2509 case 11: smr_val |= SCSMR_SRC_11; break; 2510 case 13: smr_val |= SCSMR_SRC_13; break; 2511 case 16: smr_val |= SCSMR_SRC_16; break; 2512 case 17: smr_val |= SCSMR_SRC_17; break; 2513 case 19: smr_val |= SCSMR_SRC_19; break; 2514 case 27: smr_val |= SCSMR_SRC_27; break; 2515 } 2516 smr_val |= cks; 2517 serial_port_out(port, SCSCR, scr_val | s->hscif_tot); 2518 serial_port_out(port, SCSMR, smr_val); 2519 serial_port_out(port, SCBRR, brr); 2520 if (sci_getreg(port, HSSRR)->size) { 2521 unsigned int hssrr = srr | HSCIF_SRE; 2522 /* Calculate deviation from intended rate at the 2523 * center of the last stop bit in sampling clocks. 2524 */ 2525 int last_stop = bits * 2 - 1; 2526 int deviation = DIV_ROUND_CLOSEST(min_err * last_stop * 2527 (int)(srr + 1), 2528 2 * (int)baud); 2529 2530 if (abs(deviation) >= 2) { 2531 /* At least two sampling clocks off at the 2532 * last stop bit; we can increase the error 2533 * margin by shifting the sampling point. 2534 */ 2535 int shift = clamp(deviation / 2, -8, 7); 2536 2537 hssrr |= (shift << HSCIF_SRHP_SHIFT) & 2538 HSCIF_SRHP_MASK; 2539 hssrr |= HSCIF_SRDE; 2540 } 2541 serial_port_out(port, HSSRR, hssrr); 2542 } 2543 2544 /* Wait one bit interval */ 2545 udelay((1000000 + (baud - 1)) / baud); 2546 } else { 2547 /* Don't touch the bit rate configuration */ 2548 scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0); 2549 smr_val |= serial_port_in(port, SCSMR) & 2550 (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS); 2551 serial_port_out(port, SCSCR, scr_val | s->hscif_tot); 2552 serial_port_out(port, SCSMR, smr_val); 2553 } 2554 2555 sci_init_pins(port, termios->c_cflag); 2556 2557 port->status &= ~UPSTAT_AUTOCTS; 2558 s->autorts = false; 2559 reg = sci_getreg(port, SCFCR); 2560 if (reg->size) { 2561 unsigned short ctrl = serial_port_in(port, SCFCR); 2562 2563 if ((port->flags & UPF_HARD_FLOW) && 2564 (termios->c_cflag & CRTSCTS)) { 2565 /* There is no CTS interrupt to restart the hardware */ 2566 port->status |= UPSTAT_AUTOCTS; 2567 /* MCE is enabled when RTS is raised */ 2568 s->autorts = true; 2569 } 2570 2571 /* 2572 * As we've done a sci_reset() above, ensure we don't 2573 * interfere with the FIFOs while toggling MCE. As the 2574 * reset values could still be set, simply mask them out. 2575 */ 2576 ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST); 2577 2578 serial_port_out(port, SCFCR, ctrl); 2579 } 2580 if (port->flags & UPF_HARD_FLOW) { 2581 /* Refresh (Auto) RTS */ 2582 sci_set_mctrl(port, port->mctrl); 2583 } 2584 2585 scr_val |= SCSCR_RE | SCSCR_TE | 2586 (s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)); 2587 serial_port_out(port, SCSCR, scr_val | s->hscif_tot); 2588 if ((srr + 1 == 5) && 2589 (port->type == PORT_SCIFA || port->type == PORT_SCIFB)) { 2590 /* 2591 * In asynchronous mode, when the sampling rate is 1/5, first 2592 * received data may become invalid on some SCIFA and SCIFB. 2593 * To avoid this problem wait more than 1 serial data time (1 2594 * bit time x serial data number) after setting SCSCR.RE = 1. 2595 */ 2596 udelay(DIV_ROUND_UP(10 * 1000000, baud)); 2597 } 2598 2599 /* Calculate delay for 2 DMA buffers (4 FIFO). */ 2600 s->rx_frame = (10000 * bits) / (baud / 100); 2601 #ifdef CONFIG_SERIAL_SH_SCI_DMA 2602 s->rx_timeout = s->buf_len_rx * 2 * s->rx_frame; 2603 #endif 2604 2605 if ((termios->c_cflag & CREAD) != 0) 2606 sci_start_rx(port); 2607 2608 spin_unlock_irqrestore(&port->lock, flags); 2609 2610 sci_port_disable(s); 2611 2612 if (UART_ENABLE_MS(port, termios->c_cflag)) 2613 sci_enable_ms(port); 2614 } 2615 2616 static void sci_pm(struct uart_port *port, unsigned int state, 2617 unsigned int oldstate) 2618 { 2619 struct sci_port *sci_port = to_sci_port(port); 2620 2621 switch (state) { 2622 case UART_PM_STATE_OFF: 2623 sci_port_disable(sci_port); 2624 break; 2625 default: 2626 sci_port_enable(sci_port); 2627 break; 2628 } 2629 } 2630 2631 static const char *sci_type(struct uart_port *port) 2632 { 2633 switch (port->type) { 2634 case PORT_IRDA: 2635 return "irda"; 2636 case PORT_SCI: 2637 return "sci"; 2638 case PORT_SCIF: 2639 return "scif"; 2640 case PORT_SCIFA: 2641 return "scifa"; 2642 case PORT_SCIFB: 2643 return "scifb"; 2644 case PORT_HSCIF: 2645 return "hscif"; 2646 } 2647 2648 return NULL; 2649 } 2650 2651 static int sci_remap_port(struct uart_port *port) 2652 { 2653 struct sci_port *sport = to_sci_port(port); 2654 2655 /* 2656 * Nothing to do if there's already an established membase. 2657 */ 2658 if (port->membase) 2659 return 0; 2660 2661 if (port->dev->of_node || (port->flags & UPF_IOREMAP)) { 2662 port->membase = ioremap(port->mapbase, sport->reg_size); 2663 if (unlikely(!port->membase)) { 2664 dev_err(port->dev, "can't remap port#%d\n", port->line); 2665 return -ENXIO; 2666 } 2667 } else { 2668 /* 2669 * For the simple (and majority of) cases where we don't 2670 * need to do any remapping, just cast the cookie 2671 * directly. 2672 */ 2673 port->membase = (void __iomem *)(uintptr_t)port->mapbase; 2674 } 2675 2676 return 0; 2677 } 2678 2679 static void sci_release_port(struct uart_port *port) 2680 { 2681 struct sci_port *sport = to_sci_port(port); 2682 2683 if (port->dev->of_node || (port->flags & UPF_IOREMAP)) { 2684 iounmap(port->membase); 2685 port->membase = NULL; 2686 } 2687 2688 release_mem_region(port->mapbase, sport->reg_size); 2689 } 2690 2691 static int sci_request_port(struct uart_port *port) 2692 { 2693 struct resource *res; 2694 struct sci_port *sport = to_sci_port(port); 2695 int ret; 2696 2697 res = request_mem_region(port->mapbase, sport->reg_size, 2698 dev_name(port->dev)); 2699 if (unlikely(res == NULL)) { 2700 dev_err(port->dev, "request_mem_region failed."); 2701 return -EBUSY; 2702 } 2703 2704 ret = sci_remap_port(port); 2705 if (unlikely(ret != 0)) { 2706 release_resource(res); 2707 return ret; 2708 } 2709 2710 return 0; 2711 } 2712 2713 static void sci_config_port(struct uart_port *port, int flags) 2714 { 2715 if (flags & UART_CONFIG_TYPE) { 2716 struct sci_port *sport = to_sci_port(port); 2717 2718 port->type = sport->cfg->type; 2719 sci_request_port(port); 2720 } 2721 } 2722 2723 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser) 2724 { 2725 if (ser->baud_base < 2400) 2726 /* No paper tape reader for Mitch.. */ 2727 return -EINVAL; 2728 2729 return 0; 2730 } 2731 2732 static const struct uart_ops sci_uart_ops = { 2733 .tx_empty = sci_tx_empty, 2734 .set_mctrl = sci_set_mctrl, 2735 .get_mctrl = sci_get_mctrl, 2736 .start_tx = sci_start_tx, 2737 .stop_tx = sci_stop_tx, 2738 .stop_rx = sci_stop_rx, 2739 .enable_ms = sci_enable_ms, 2740 .break_ctl = sci_break_ctl, 2741 .startup = sci_startup, 2742 .shutdown = sci_shutdown, 2743 .flush_buffer = sci_flush_buffer, 2744 .set_termios = sci_set_termios, 2745 .pm = sci_pm, 2746 .type = sci_type, 2747 .release_port = sci_release_port, 2748 .request_port = sci_request_port, 2749 .config_port = sci_config_port, 2750 .verify_port = sci_verify_port, 2751 #ifdef CONFIG_CONSOLE_POLL 2752 .poll_get_char = sci_poll_get_char, 2753 .poll_put_char = sci_poll_put_char, 2754 #endif 2755 }; 2756 2757 static int sci_init_clocks(struct sci_port *sci_port, struct device *dev) 2758 { 2759 const char *clk_names[] = { 2760 [SCI_FCK] = "fck", 2761 [SCI_SCK] = "sck", 2762 [SCI_BRG_INT] = "brg_int", 2763 [SCI_SCIF_CLK] = "scif_clk", 2764 }; 2765 struct clk *clk; 2766 unsigned int i; 2767 2768 if (sci_port->cfg->type == PORT_HSCIF) 2769 clk_names[SCI_SCK] = "hsck"; 2770 2771 for (i = 0; i < SCI_NUM_CLKS; i++) { 2772 clk = devm_clk_get_optional(dev, clk_names[i]); 2773 if (IS_ERR(clk)) 2774 return PTR_ERR(clk); 2775 2776 if (!clk && i == SCI_FCK) { 2777 /* 2778 * Not all SH platforms declare a clock lookup entry 2779 * for SCI devices, in which case we need to get the 2780 * global "peripheral_clk" clock. 2781 */ 2782 clk = devm_clk_get(dev, "peripheral_clk"); 2783 if (IS_ERR(clk)) 2784 return dev_err_probe(dev, PTR_ERR(clk), 2785 "failed to get %s\n", 2786 clk_names[i]); 2787 } 2788 2789 if (!clk) 2790 dev_dbg(dev, "failed to get %s\n", clk_names[i]); 2791 else 2792 dev_dbg(dev, "clk %s is %pC rate %lu\n", clk_names[i], 2793 clk, clk_get_rate(clk)); 2794 sci_port->clks[i] = clk; 2795 } 2796 return 0; 2797 } 2798 2799 static const struct sci_port_params * 2800 sci_probe_regmap(const struct plat_sci_port *cfg) 2801 { 2802 unsigned int regtype; 2803 2804 if (cfg->regtype != SCIx_PROBE_REGTYPE) 2805 return &sci_port_params[cfg->regtype]; 2806 2807 switch (cfg->type) { 2808 case PORT_SCI: 2809 regtype = SCIx_SCI_REGTYPE; 2810 break; 2811 case PORT_IRDA: 2812 regtype = SCIx_IRDA_REGTYPE; 2813 break; 2814 case PORT_SCIFA: 2815 regtype = SCIx_SCIFA_REGTYPE; 2816 break; 2817 case PORT_SCIFB: 2818 regtype = SCIx_SCIFB_REGTYPE; 2819 break; 2820 case PORT_SCIF: 2821 /* 2822 * The SH-4 is a bit of a misnomer here, although that's 2823 * where this particular port layout originated. This 2824 * configuration (or some slight variation thereof) 2825 * remains the dominant model for all SCIFs. 2826 */ 2827 regtype = SCIx_SH4_SCIF_REGTYPE; 2828 break; 2829 case PORT_HSCIF: 2830 regtype = SCIx_HSCIF_REGTYPE; 2831 break; 2832 default: 2833 pr_err("Can't probe register map for given port\n"); 2834 return NULL; 2835 } 2836 2837 return &sci_port_params[regtype]; 2838 } 2839 2840 static int sci_init_single(struct platform_device *dev, 2841 struct sci_port *sci_port, unsigned int index, 2842 const struct plat_sci_port *p, bool early) 2843 { 2844 struct uart_port *port = &sci_port->port; 2845 const struct resource *res; 2846 unsigned int i; 2847 int ret; 2848 2849 sci_port->cfg = p; 2850 2851 port->ops = &sci_uart_ops; 2852 port->iotype = UPIO_MEM; 2853 port->line = index; 2854 port->has_sysrq = IS_ENABLED(CONFIG_SERIAL_SH_SCI_CONSOLE); 2855 2856 res = platform_get_resource(dev, IORESOURCE_MEM, 0); 2857 if (res == NULL) 2858 return -ENOMEM; 2859 2860 port->mapbase = res->start; 2861 sci_port->reg_size = resource_size(res); 2862 2863 for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i) { 2864 if (i) 2865 sci_port->irqs[i] = platform_get_irq_optional(dev, i); 2866 else 2867 sci_port->irqs[i] = platform_get_irq(dev, i); 2868 } 2869 2870 /* The SCI generates several interrupts. They can be muxed together or 2871 * connected to different interrupt lines. In the muxed case only one 2872 * interrupt resource is specified as there is only one interrupt ID. 2873 * In the non-muxed case, up to 6 interrupt signals might be generated 2874 * from the SCI, however those signals might have their own individual 2875 * interrupt ID numbers, or muxed together with another interrupt. 2876 */ 2877 if (sci_port->irqs[0] < 0) 2878 return -ENXIO; 2879 2880 if (sci_port->irqs[1] < 0) 2881 for (i = 1; i < ARRAY_SIZE(sci_port->irqs); i++) 2882 sci_port->irqs[i] = sci_port->irqs[0]; 2883 2884 sci_port->params = sci_probe_regmap(p); 2885 if (unlikely(sci_port->params == NULL)) 2886 return -EINVAL; 2887 2888 switch (p->type) { 2889 case PORT_SCIFB: 2890 sci_port->rx_trigger = 48; 2891 break; 2892 case PORT_HSCIF: 2893 sci_port->rx_trigger = 64; 2894 break; 2895 case PORT_SCIFA: 2896 sci_port->rx_trigger = 32; 2897 break; 2898 case PORT_SCIF: 2899 if (p->regtype == SCIx_SH7705_SCIF_REGTYPE) 2900 /* RX triggering not implemented for this IP */ 2901 sci_port->rx_trigger = 1; 2902 else 2903 sci_port->rx_trigger = 8; 2904 break; 2905 default: 2906 sci_port->rx_trigger = 1; 2907 break; 2908 } 2909 2910 sci_port->rx_fifo_timeout = 0; 2911 sci_port->hscif_tot = 0; 2912 2913 /* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't 2914 * match the SoC datasheet, this should be investigated. Let platform 2915 * data override the sampling rate for now. 2916 */ 2917 sci_port->sampling_rate_mask = p->sampling_rate 2918 ? SCI_SR(p->sampling_rate) 2919 : sci_port->params->sampling_rate_mask; 2920 2921 if (!early) { 2922 ret = sci_init_clocks(sci_port, &dev->dev); 2923 if (ret < 0) 2924 return ret; 2925 2926 port->dev = &dev->dev; 2927 2928 pm_runtime_enable(&dev->dev); 2929 } 2930 2931 port->type = p->type; 2932 port->flags = UPF_FIXED_PORT | UPF_BOOT_AUTOCONF | p->flags; 2933 port->fifosize = sci_port->params->fifosize; 2934 2935 if (port->type == PORT_SCI) { 2936 if (sci_port->reg_size >= 0x20) 2937 port->regshift = 2; 2938 else 2939 port->regshift = 1; 2940 } 2941 2942 /* 2943 * The UART port needs an IRQ value, so we peg this to the RX IRQ 2944 * for the multi-IRQ ports, which is where we are primarily 2945 * concerned with the shutdown path synchronization. 2946 * 2947 * For the muxed case there's nothing more to do. 2948 */ 2949 port->irq = sci_port->irqs[SCIx_RXI_IRQ]; 2950 port->irqflags = 0; 2951 2952 port->serial_in = sci_serial_in; 2953 port->serial_out = sci_serial_out; 2954 2955 return 0; 2956 } 2957 2958 static void sci_cleanup_single(struct sci_port *port) 2959 { 2960 pm_runtime_disable(port->port.dev); 2961 } 2962 2963 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \ 2964 defined(CONFIG_SERIAL_SH_SCI_EARLYCON) 2965 static void serial_console_putchar(struct uart_port *port, unsigned char ch) 2966 { 2967 sci_poll_put_char(port, ch); 2968 } 2969 2970 /* 2971 * Print a string to the serial port trying not to disturb 2972 * any possible real use of the port... 2973 */ 2974 static void serial_console_write(struct console *co, const char *s, 2975 unsigned count) 2976 { 2977 struct sci_port *sci_port = &sci_ports[co->index]; 2978 struct uart_port *port = &sci_port->port; 2979 unsigned short bits, ctrl, ctrl_temp; 2980 unsigned long flags; 2981 int locked = 1; 2982 2983 if (port->sysrq) 2984 locked = 0; 2985 else if (oops_in_progress) 2986 locked = spin_trylock_irqsave(&port->lock, flags); 2987 else 2988 spin_lock_irqsave(&port->lock, flags); 2989 2990 /* first save SCSCR then disable interrupts, keep clock source */ 2991 ctrl = serial_port_in(port, SCSCR); 2992 ctrl_temp = SCSCR_RE | SCSCR_TE | 2993 (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) | 2994 (ctrl & (SCSCR_CKE1 | SCSCR_CKE0)); 2995 serial_port_out(port, SCSCR, ctrl_temp | sci_port->hscif_tot); 2996 2997 uart_console_write(port, s, count, serial_console_putchar); 2998 2999 /* wait until fifo is empty and last bit has been transmitted */ 3000 bits = SCxSR_TDxE(port) | SCxSR_TEND(port); 3001 while ((serial_port_in(port, SCxSR) & bits) != bits) 3002 cpu_relax(); 3003 3004 /* restore the SCSCR */ 3005 serial_port_out(port, SCSCR, ctrl); 3006 3007 if (locked) 3008 spin_unlock_irqrestore(&port->lock, flags); 3009 } 3010 3011 static int serial_console_setup(struct console *co, char *options) 3012 { 3013 struct sci_port *sci_port; 3014 struct uart_port *port; 3015 int baud = 115200; 3016 int bits = 8; 3017 int parity = 'n'; 3018 int flow = 'n'; 3019 int ret; 3020 3021 /* 3022 * Refuse to handle any bogus ports. 3023 */ 3024 if (co->index < 0 || co->index >= SCI_NPORTS) 3025 return -ENODEV; 3026 3027 sci_port = &sci_ports[co->index]; 3028 port = &sci_port->port; 3029 3030 /* 3031 * Refuse to handle uninitialized ports. 3032 */ 3033 if (!port->ops) 3034 return -ENODEV; 3035 3036 ret = sci_remap_port(port); 3037 if (unlikely(ret != 0)) 3038 return ret; 3039 3040 if (options) 3041 uart_parse_options(options, &baud, &parity, &bits, &flow); 3042 3043 return uart_set_options(port, co, baud, parity, bits, flow); 3044 } 3045 3046 static struct console serial_console = { 3047 .name = "ttySC", 3048 .device = uart_console_device, 3049 .write = serial_console_write, 3050 .setup = serial_console_setup, 3051 .flags = CON_PRINTBUFFER, 3052 .index = -1, 3053 .data = &sci_uart_driver, 3054 }; 3055 3056 #ifdef CONFIG_SUPERH 3057 static struct console early_serial_console = { 3058 .name = "early_ttySC", 3059 .write = serial_console_write, 3060 .flags = CON_PRINTBUFFER, 3061 .index = -1, 3062 }; 3063 3064 static char early_serial_buf[32]; 3065 3066 static int sci_probe_earlyprintk(struct platform_device *pdev) 3067 { 3068 const struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev); 3069 3070 if (early_serial_console.data) 3071 return -EEXIST; 3072 3073 early_serial_console.index = pdev->id; 3074 3075 sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true); 3076 3077 serial_console_setup(&early_serial_console, early_serial_buf); 3078 3079 if (!strstr(early_serial_buf, "keep")) 3080 early_serial_console.flags |= CON_BOOT; 3081 3082 register_console(&early_serial_console); 3083 return 0; 3084 } 3085 #endif 3086 3087 #define SCI_CONSOLE (&serial_console) 3088 3089 #else 3090 static inline int sci_probe_earlyprintk(struct platform_device *pdev) 3091 { 3092 return -EINVAL; 3093 } 3094 3095 #define SCI_CONSOLE NULL 3096 3097 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */ 3098 3099 static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized"; 3100 3101 static DEFINE_MUTEX(sci_uart_registration_lock); 3102 static struct uart_driver sci_uart_driver = { 3103 .owner = THIS_MODULE, 3104 .driver_name = "sci", 3105 .dev_name = "ttySC", 3106 .major = SCI_MAJOR, 3107 .minor = SCI_MINOR_START, 3108 .nr = SCI_NPORTS, 3109 .cons = SCI_CONSOLE, 3110 }; 3111 3112 static int sci_remove(struct platform_device *dev) 3113 { 3114 struct sci_port *port = platform_get_drvdata(dev); 3115 unsigned int type = port->port.type; /* uart_remove_... clears it */ 3116 3117 sci_ports_in_use &= ~BIT(port->port.line); 3118 uart_remove_one_port(&sci_uart_driver, &port->port); 3119 3120 sci_cleanup_single(port); 3121 3122 if (port->port.fifosize > 1) 3123 device_remove_file(&dev->dev, &dev_attr_rx_fifo_trigger); 3124 if (type == PORT_SCIFA || type == PORT_SCIFB || type == PORT_HSCIF) 3125 device_remove_file(&dev->dev, &dev_attr_rx_fifo_timeout); 3126 3127 return 0; 3128 } 3129 3130 3131 #define SCI_OF_DATA(type, regtype) (void *)((type) << 16 | (regtype)) 3132 #define SCI_OF_TYPE(data) ((unsigned long)(data) >> 16) 3133 #define SCI_OF_REGTYPE(data) ((unsigned long)(data) & 0xffff) 3134 3135 static const struct of_device_id of_sci_match[] = { 3136 /* SoC-specific types */ 3137 { 3138 .compatible = "renesas,scif-r7s72100", 3139 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE), 3140 }, 3141 { 3142 .compatible = "renesas,scif-r7s9210", 3143 .data = SCI_OF_DATA(PORT_SCIF, SCIx_RZ_SCIFA_REGTYPE), 3144 }, 3145 { 3146 .compatible = "renesas,scif-r9a07g044", 3147 .data = SCI_OF_DATA(PORT_SCIF, SCIx_RZ_SCIFA_REGTYPE), 3148 }, 3149 /* Family-specific types */ 3150 { 3151 .compatible = "renesas,rcar-gen1-scif", 3152 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE), 3153 }, { 3154 .compatible = "renesas,rcar-gen2-scif", 3155 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE), 3156 }, { 3157 .compatible = "renesas,rcar-gen3-scif", 3158 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE), 3159 }, { 3160 .compatible = "renesas,rcar-gen4-scif", 3161 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE), 3162 }, 3163 /* Generic types */ 3164 { 3165 .compatible = "renesas,scif", 3166 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE), 3167 }, { 3168 .compatible = "renesas,scifa", 3169 .data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE), 3170 }, { 3171 .compatible = "renesas,scifb", 3172 .data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE), 3173 }, { 3174 .compatible = "renesas,hscif", 3175 .data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE), 3176 }, { 3177 .compatible = "renesas,sci", 3178 .data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE), 3179 }, { 3180 /* Terminator */ 3181 }, 3182 }; 3183 MODULE_DEVICE_TABLE(of, of_sci_match); 3184 3185 static void sci_reset_control_assert(void *data) 3186 { 3187 reset_control_assert(data); 3188 } 3189 3190 static struct plat_sci_port *sci_parse_dt(struct platform_device *pdev, 3191 unsigned int *dev_id) 3192 { 3193 struct device_node *np = pdev->dev.of_node; 3194 struct reset_control *rstc; 3195 struct plat_sci_port *p; 3196 struct sci_port *sp; 3197 const void *data; 3198 int id, ret; 3199 3200 if (!IS_ENABLED(CONFIG_OF) || !np) 3201 return ERR_PTR(-EINVAL); 3202 3203 data = of_device_get_match_data(&pdev->dev); 3204 3205 rstc = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL); 3206 if (IS_ERR(rstc)) 3207 return ERR_PTR(dev_err_probe(&pdev->dev, PTR_ERR(rstc), 3208 "failed to get reset ctrl\n")); 3209 3210 ret = reset_control_deassert(rstc); 3211 if (ret) { 3212 dev_err(&pdev->dev, "failed to deassert reset %d\n", ret); 3213 return ERR_PTR(ret); 3214 } 3215 3216 ret = devm_add_action_or_reset(&pdev->dev, sci_reset_control_assert, rstc); 3217 if (ret) { 3218 dev_err(&pdev->dev, "failed to register assert devm action, %d\n", 3219 ret); 3220 return ERR_PTR(ret); 3221 } 3222 3223 p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL); 3224 if (!p) 3225 return ERR_PTR(-ENOMEM); 3226 3227 /* Get the line number from the aliases node. */ 3228 id = of_alias_get_id(np, "serial"); 3229 if (id < 0 && ~sci_ports_in_use) 3230 id = ffz(sci_ports_in_use); 3231 if (id < 0) { 3232 dev_err(&pdev->dev, "failed to get alias id (%d)\n", id); 3233 return ERR_PTR(-EINVAL); 3234 } 3235 if (id >= ARRAY_SIZE(sci_ports)) { 3236 dev_err(&pdev->dev, "serial%d out of range\n", id); 3237 return ERR_PTR(-EINVAL); 3238 } 3239 3240 sp = &sci_ports[id]; 3241 *dev_id = id; 3242 3243 p->type = SCI_OF_TYPE(data); 3244 p->regtype = SCI_OF_REGTYPE(data); 3245 3246 sp->has_rtscts = of_property_read_bool(np, "uart-has-rtscts"); 3247 3248 return p; 3249 } 3250 3251 static int sci_probe_single(struct platform_device *dev, 3252 unsigned int index, 3253 struct plat_sci_port *p, 3254 struct sci_port *sciport) 3255 { 3256 int ret; 3257 3258 /* Sanity check */ 3259 if (unlikely(index >= SCI_NPORTS)) { 3260 dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n", 3261 index+1, SCI_NPORTS); 3262 dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n"); 3263 return -EINVAL; 3264 } 3265 BUILD_BUG_ON(SCI_NPORTS > sizeof(sci_ports_in_use) * 8); 3266 if (sci_ports_in_use & BIT(index)) 3267 return -EBUSY; 3268 3269 mutex_lock(&sci_uart_registration_lock); 3270 if (!sci_uart_driver.state) { 3271 ret = uart_register_driver(&sci_uart_driver); 3272 if (ret) { 3273 mutex_unlock(&sci_uart_registration_lock); 3274 return ret; 3275 } 3276 } 3277 mutex_unlock(&sci_uart_registration_lock); 3278 3279 ret = sci_init_single(dev, sciport, index, p, false); 3280 if (ret) 3281 return ret; 3282 3283 sciport->gpios = mctrl_gpio_init(&sciport->port, 0); 3284 if (IS_ERR(sciport->gpios)) 3285 return PTR_ERR(sciport->gpios); 3286 3287 if (sciport->has_rtscts) { 3288 if (mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_CTS) || 3289 mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_RTS)) { 3290 dev_err(&dev->dev, "Conflicting RTS/CTS config\n"); 3291 return -EINVAL; 3292 } 3293 sciport->port.flags |= UPF_HARD_FLOW; 3294 } 3295 3296 ret = uart_add_one_port(&sci_uart_driver, &sciport->port); 3297 if (ret) { 3298 sci_cleanup_single(sciport); 3299 return ret; 3300 } 3301 3302 return 0; 3303 } 3304 3305 static int sci_probe(struct platform_device *dev) 3306 { 3307 struct plat_sci_port *p; 3308 struct sci_port *sp; 3309 unsigned int dev_id; 3310 int ret; 3311 3312 /* 3313 * If we've come here via earlyprintk initialization, head off to 3314 * the special early probe. We don't have sufficient device state 3315 * to make it beyond this yet. 3316 */ 3317 #ifdef CONFIG_SUPERH 3318 if (is_sh_early_platform_device(dev)) 3319 return sci_probe_earlyprintk(dev); 3320 #endif 3321 3322 if (dev->dev.of_node) { 3323 p = sci_parse_dt(dev, &dev_id); 3324 if (IS_ERR(p)) 3325 return PTR_ERR(p); 3326 } else { 3327 p = dev->dev.platform_data; 3328 if (p == NULL) { 3329 dev_err(&dev->dev, "no platform data supplied\n"); 3330 return -EINVAL; 3331 } 3332 3333 dev_id = dev->id; 3334 } 3335 3336 sp = &sci_ports[dev_id]; 3337 platform_set_drvdata(dev, sp); 3338 3339 ret = sci_probe_single(dev, dev_id, p, sp); 3340 if (ret) 3341 return ret; 3342 3343 if (sp->port.fifosize > 1) { 3344 ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_trigger); 3345 if (ret) 3346 return ret; 3347 } 3348 if (sp->port.type == PORT_SCIFA || sp->port.type == PORT_SCIFB || 3349 sp->port.type == PORT_HSCIF) { 3350 ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_timeout); 3351 if (ret) { 3352 if (sp->port.fifosize > 1) { 3353 device_remove_file(&dev->dev, 3354 &dev_attr_rx_fifo_trigger); 3355 } 3356 return ret; 3357 } 3358 } 3359 3360 #ifdef CONFIG_SH_STANDARD_BIOS 3361 sh_bios_gdb_detach(); 3362 #endif 3363 3364 sci_ports_in_use |= BIT(dev_id); 3365 return 0; 3366 } 3367 3368 static __maybe_unused int sci_suspend(struct device *dev) 3369 { 3370 struct sci_port *sport = dev_get_drvdata(dev); 3371 3372 if (sport) 3373 uart_suspend_port(&sci_uart_driver, &sport->port); 3374 3375 return 0; 3376 } 3377 3378 static __maybe_unused int sci_resume(struct device *dev) 3379 { 3380 struct sci_port *sport = dev_get_drvdata(dev); 3381 3382 if (sport) 3383 uart_resume_port(&sci_uart_driver, &sport->port); 3384 3385 return 0; 3386 } 3387 3388 static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume); 3389 3390 static struct platform_driver sci_driver = { 3391 .probe = sci_probe, 3392 .remove = sci_remove, 3393 .driver = { 3394 .name = "sh-sci", 3395 .pm = &sci_dev_pm_ops, 3396 .of_match_table = of_match_ptr(of_sci_match), 3397 }, 3398 }; 3399 3400 static int __init sci_init(void) 3401 { 3402 pr_info("%s\n", banner); 3403 3404 return platform_driver_register(&sci_driver); 3405 } 3406 3407 static void __exit sci_exit(void) 3408 { 3409 platform_driver_unregister(&sci_driver); 3410 3411 if (sci_uart_driver.state) 3412 uart_unregister_driver(&sci_uart_driver); 3413 } 3414 3415 #if defined(CONFIG_SUPERH) && defined(CONFIG_SERIAL_SH_SCI_CONSOLE) 3416 sh_early_platform_init_buffer("earlyprintk", &sci_driver, 3417 early_serial_buf, ARRAY_SIZE(early_serial_buf)); 3418 #endif 3419 #ifdef CONFIG_SERIAL_SH_SCI_EARLYCON 3420 static struct plat_sci_port port_cfg __initdata; 3421 3422 static int __init early_console_setup(struct earlycon_device *device, 3423 int type) 3424 { 3425 if (!device->port.membase) 3426 return -ENODEV; 3427 3428 device->port.serial_in = sci_serial_in; 3429 device->port.serial_out = sci_serial_out; 3430 device->port.type = type; 3431 memcpy(&sci_ports[0].port, &device->port, sizeof(struct uart_port)); 3432 port_cfg.type = type; 3433 sci_ports[0].cfg = &port_cfg; 3434 sci_ports[0].params = sci_probe_regmap(&port_cfg); 3435 port_cfg.scscr = sci_serial_in(&sci_ports[0].port, SCSCR); 3436 sci_serial_out(&sci_ports[0].port, SCSCR, 3437 SCSCR_RE | SCSCR_TE | port_cfg.scscr); 3438 3439 device->con->write = serial_console_write; 3440 return 0; 3441 } 3442 static int __init sci_early_console_setup(struct earlycon_device *device, 3443 const char *opt) 3444 { 3445 return early_console_setup(device, PORT_SCI); 3446 } 3447 static int __init scif_early_console_setup(struct earlycon_device *device, 3448 const char *opt) 3449 { 3450 return early_console_setup(device, PORT_SCIF); 3451 } 3452 static int __init rzscifa_early_console_setup(struct earlycon_device *device, 3453 const char *opt) 3454 { 3455 port_cfg.regtype = SCIx_RZ_SCIFA_REGTYPE; 3456 return early_console_setup(device, PORT_SCIF); 3457 } 3458 3459 static int __init scifa_early_console_setup(struct earlycon_device *device, 3460 const char *opt) 3461 { 3462 return early_console_setup(device, PORT_SCIFA); 3463 } 3464 static int __init scifb_early_console_setup(struct earlycon_device *device, 3465 const char *opt) 3466 { 3467 return early_console_setup(device, PORT_SCIFB); 3468 } 3469 static int __init hscif_early_console_setup(struct earlycon_device *device, 3470 const char *opt) 3471 { 3472 return early_console_setup(device, PORT_HSCIF); 3473 } 3474 3475 OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup); 3476 OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup); 3477 OF_EARLYCON_DECLARE(scif, "renesas,scif-r7s9210", rzscifa_early_console_setup); 3478 OF_EARLYCON_DECLARE(scif, "renesas,scif-r9a07g044", rzscifa_early_console_setup); 3479 OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup); 3480 OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup); 3481 OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup); 3482 #endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */ 3483 3484 module_init(sci_init); 3485 module_exit(sci_exit); 3486 3487 MODULE_LICENSE("GPL"); 3488 MODULE_ALIAS("platform:sh-sci"); 3489 MODULE_AUTHOR("Paul Mundt"); 3490 MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver"); 3491