xref: /openbmc/linux/drivers/tty/serial/sh-sci.c (revision 05bcf503)
1 /*
2  * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
3  *
4  *  Copyright (C) 2002 - 2011  Paul Mundt
5  *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
6  *
7  * based off of the old drivers/char/sh-sci.c by:
8  *
9  *   Copyright (C) 1999, 2000  Niibe Yutaka
10  *   Copyright (C) 2000  Sugioka Toshinobu
11  *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
12  *   Modified to support SecureEdge. David McCullough (2002)
13  *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
14  *   Removed SH7300 support (Jul 2007).
15  *
16  * This file is subject to the terms and conditions of the GNU General Public
17  * License.  See the file "COPYING" in the main directory of this archive
18  * for more details.
19  */
20 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
21 #define SUPPORT_SYSRQ
22 #endif
23 
24 #undef DEBUG
25 
26 #include <linux/module.h>
27 #include <linux/errno.h>
28 #include <linux/sh_dma.h>
29 #include <linux/timer.h>
30 #include <linux/interrupt.h>
31 #include <linux/tty.h>
32 #include <linux/tty_flip.h>
33 #include <linux/serial.h>
34 #include <linux/major.h>
35 #include <linux/string.h>
36 #include <linux/sysrq.h>
37 #include <linux/ioport.h>
38 #include <linux/mm.h>
39 #include <linux/init.h>
40 #include <linux/delay.h>
41 #include <linux/console.h>
42 #include <linux/platform_device.h>
43 #include <linux/serial_sci.h>
44 #include <linux/notifier.h>
45 #include <linux/pm_runtime.h>
46 #include <linux/cpufreq.h>
47 #include <linux/clk.h>
48 #include <linux/ctype.h>
49 #include <linux/err.h>
50 #include <linux/dmaengine.h>
51 #include <linux/dma-mapping.h>
52 #include <linux/scatterlist.h>
53 #include <linux/slab.h>
54 #include <linux/gpio.h>
55 
56 #ifdef CONFIG_SUPERH
57 #include <asm/sh_bios.h>
58 #endif
59 
60 #include "sh-sci.h"
61 
62 struct sci_port {
63 	struct uart_port	port;
64 
65 	/* Platform configuration */
66 	struct plat_sci_port	*cfg;
67 
68 	/* Break timer */
69 	struct timer_list	break_timer;
70 	int			break_flag;
71 
72 	/* Interface clock */
73 	struct clk		*iclk;
74 	/* Function clock */
75 	struct clk		*fclk;
76 
77 	char			*irqstr[SCIx_NR_IRQS];
78 	char			*gpiostr[SCIx_NR_FNS];
79 
80 	struct dma_chan			*chan_tx;
81 	struct dma_chan			*chan_rx;
82 
83 #ifdef CONFIG_SERIAL_SH_SCI_DMA
84 	struct dma_async_tx_descriptor	*desc_tx;
85 	struct dma_async_tx_descriptor	*desc_rx[2];
86 	dma_cookie_t			cookie_tx;
87 	dma_cookie_t			cookie_rx[2];
88 	dma_cookie_t			active_rx;
89 	struct scatterlist		sg_tx;
90 	unsigned int			sg_len_tx;
91 	struct scatterlist		sg_rx[2];
92 	size_t				buf_len_rx;
93 	struct sh_dmae_slave		param_tx;
94 	struct sh_dmae_slave		param_rx;
95 	struct work_struct		work_tx;
96 	struct work_struct		work_rx;
97 	struct timer_list		rx_timer;
98 	unsigned int			rx_timeout;
99 #endif
100 
101 	struct notifier_block		freq_transition;
102 
103 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
104 	unsigned short saved_smr;
105 	unsigned short saved_fcr;
106 	unsigned char saved_brr;
107 #endif
108 };
109 
110 /* Function prototypes */
111 static void sci_start_tx(struct uart_port *port);
112 static void sci_stop_tx(struct uart_port *port);
113 static void sci_start_rx(struct uart_port *port);
114 
115 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
116 
117 static struct sci_port sci_ports[SCI_NPORTS];
118 static struct uart_driver sci_uart_driver;
119 
120 static inline struct sci_port *
121 to_sci_port(struct uart_port *uart)
122 {
123 	return container_of(uart, struct sci_port, port);
124 }
125 
126 struct plat_sci_reg {
127 	u8 offset, size;
128 };
129 
130 /* Helper for invalidating specific entries of an inherited map. */
131 #define sci_reg_invalid	{ .offset = 0, .size = 0 }
132 
133 static struct plat_sci_reg sci_regmap[SCIx_NR_REGTYPES][SCIx_NR_REGS] = {
134 	[SCIx_PROBE_REGTYPE] = {
135 		[0 ... SCIx_NR_REGS - 1] = sci_reg_invalid,
136 	},
137 
138 	/*
139 	 * Common SCI definitions, dependent on the port's regshift
140 	 * value.
141 	 */
142 	[SCIx_SCI_REGTYPE] = {
143 		[SCSMR]		= { 0x00,  8 },
144 		[SCBRR]		= { 0x01,  8 },
145 		[SCSCR]		= { 0x02,  8 },
146 		[SCxTDR]	= { 0x03,  8 },
147 		[SCxSR]		= { 0x04,  8 },
148 		[SCxRDR]	= { 0x05,  8 },
149 		[SCFCR]		= sci_reg_invalid,
150 		[SCFDR]		= sci_reg_invalid,
151 		[SCTFDR]	= sci_reg_invalid,
152 		[SCRFDR]	= sci_reg_invalid,
153 		[SCSPTR]	= sci_reg_invalid,
154 		[SCLSR]		= sci_reg_invalid,
155 	},
156 
157 	/*
158 	 * Common definitions for legacy IrDA ports, dependent on
159 	 * regshift value.
160 	 */
161 	[SCIx_IRDA_REGTYPE] = {
162 		[SCSMR]		= { 0x00,  8 },
163 		[SCBRR]		= { 0x01,  8 },
164 		[SCSCR]		= { 0x02,  8 },
165 		[SCxTDR]	= { 0x03,  8 },
166 		[SCxSR]		= { 0x04,  8 },
167 		[SCxRDR]	= { 0x05,  8 },
168 		[SCFCR]		= { 0x06,  8 },
169 		[SCFDR]		= { 0x07, 16 },
170 		[SCTFDR]	= sci_reg_invalid,
171 		[SCRFDR]	= sci_reg_invalid,
172 		[SCSPTR]	= sci_reg_invalid,
173 		[SCLSR]		= sci_reg_invalid,
174 	},
175 
176 	/*
177 	 * Common SCIFA definitions.
178 	 */
179 	[SCIx_SCIFA_REGTYPE] = {
180 		[SCSMR]		= { 0x00, 16 },
181 		[SCBRR]		= { 0x04,  8 },
182 		[SCSCR]		= { 0x08, 16 },
183 		[SCxTDR]	= { 0x20,  8 },
184 		[SCxSR]		= { 0x14, 16 },
185 		[SCxRDR]	= { 0x24,  8 },
186 		[SCFCR]		= { 0x18, 16 },
187 		[SCFDR]		= { 0x1c, 16 },
188 		[SCTFDR]	= sci_reg_invalid,
189 		[SCRFDR]	= sci_reg_invalid,
190 		[SCSPTR]	= sci_reg_invalid,
191 		[SCLSR]		= sci_reg_invalid,
192 	},
193 
194 	/*
195 	 * Common SCIFB definitions.
196 	 */
197 	[SCIx_SCIFB_REGTYPE] = {
198 		[SCSMR]		= { 0x00, 16 },
199 		[SCBRR]		= { 0x04,  8 },
200 		[SCSCR]		= { 0x08, 16 },
201 		[SCxTDR]	= { 0x40,  8 },
202 		[SCxSR]		= { 0x14, 16 },
203 		[SCxRDR]	= { 0x60,  8 },
204 		[SCFCR]		= { 0x18, 16 },
205 		[SCFDR]		= { 0x1c, 16 },
206 		[SCTFDR]	= sci_reg_invalid,
207 		[SCRFDR]	= sci_reg_invalid,
208 		[SCSPTR]	= sci_reg_invalid,
209 		[SCLSR]		= sci_reg_invalid,
210 	},
211 
212 	/*
213 	 * Common SH-2(A) SCIF definitions for ports with FIFO data
214 	 * count registers.
215 	 */
216 	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
217 		[SCSMR]		= { 0x00, 16 },
218 		[SCBRR]		= { 0x04,  8 },
219 		[SCSCR]		= { 0x08, 16 },
220 		[SCxTDR]	= { 0x0c,  8 },
221 		[SCxSR]		= { 0x10, 16 },
222 		[SCxRDR]	= { 0x14,  8 },
223 		[SCFCR]		= { 0x18, 16 },
224 		[SCFDR]		= { 0x1c, 16 },
225 		[SCTFDR]	= sci_reg_invalid,
226 		[SCRFDR]	= sci_reg_invalid,
227 		[SCSPTR]	= { 0x20, 16 },
228 		[SCLSR]		= { 0x24, 16 },
229 	},
230 
231 	/*
232 	 * Common SH-3 SCIF definitions.
233 	 */
234 	[SCIx_SH3_SCIF_REGTYPE] = {
235 		[SCSMR]		= { 0x00,  8 },
236 		[SCBRR]		= { 0x02,  8 },
237 		[SCSCR]		= { 0x04,  8 },
238 		[SCxTDR]	= { 0x06,  8 },
239 		[SCxSR]		= { 0x08, 16 },
240 		[SCxRDR]	= { 0x0a,  8 },
241 		[SCFCR]		= { 0x0c,  8 },
242 		[SCFDR]		= { 0x0e, 16 },
243 		[SCTFDR]	= sci_reg_invalid,
244 		[SCRFDR]	= sci_reg_invalid,
245 		[SCSPTR]	= sci_reg_invalid,
246 		[SCLSR]		= sci_reg_invalid,
247 	},
248 
249 	/*
250 	 * Common SH-4(A) SCIF(B) definitions.
251 	 */
252 	[SCIx_SH4_SCIF_REGTYPE] = {
253 		[SCSMR]		= { 0x00, 16 },
254 		[SCBRR]		= { 0x04,  8 },
255 		[SCSCR]		= { 0x08, 16 },
256 		[SCxTDR]	= { 0x0c,  8 },
257 		[SCxSR]		= { 0x10, 16 },
258 		[SCxRDR]	= { 0x14,  8 },
259 		[SCFCR]		= { 0x18, 16 },
260 		[SCFDR]		= { 0x1c, 16 },
261 		[SCTFDR]	= sci_reg_invalid,
262 		[SCRFDR]	= sci_reg_invalid,
263 		[SCSPTR]	= { 0x20, 16 },
264 		[SCLSR]		= { 0x24, 16 },
265 	},
266 
267 	/*
268 	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
269 	 * register.
270 	 */
271 	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
272 		[SCSMR]		= { 0x00, 16 },
273 		[SCBRR]		= { 0x04,  8 },
274 		[SCSCR]		= { 0x08, 16 },
275 		[SCxTDR]	= { 0x0c,  8 },
276 		[SCxSR]		= { 0x10, 16 },
277 		[SCxRDR]	= { 0x14,  8 },
278 		[SCFCR]		= { 0x18, 16 },
279 		[SCFDR]		= { 0x1c, 16 },
280 		[SCTFDR]	= sci_reg_invalid,
281 		[SCRFDR]	= sci_reg_invalid,
282 		[SCSPTR]	= sci_reg_invalid,
283 		[SCLSR]		= { 0x24, 16 },
284 	},
285 
286 	/*
287 	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
288 	 * count registers.
289 	 */
290 	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
291 		[SCSMR]		= { 0x00, 16 },
292 		[SCBRR]		= { 0x04,  8 },
293 		[SCSCR]		= { 0x08, 16 },
294 		[SCxTDR]	= { 0x0c,  8 },
295 		[SCxSR]		= { 0x10, 16 },
296 		[SCxRDR]	= { 0x14,  8 },
297 		[SCFCR]		= { 0x18, 16 },
298 		[SCFDR]		= { 0x1c, 16 },
299 		[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
300 		[SCRFDR]	= { 0x20, 16 },
301 		[SCSPTR]	= { 0x24, 16 },
302 		[SCLSR]		= { 0x28, 16 },
303 	},
304 
305 	/*
306 	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
307 	 * registers.
308 	 */
309 	[SCIx_SH7705_SCIF_REGTYPE] = {
310 		[SCSMR]		= { 0x00, 16 },
311 		[SCBRR]		= { 0x04,  8 },
312 		[SCSCR]		= { 0x08, 16 },
313 		[SCxTDR]	= { 0x20,  8 },
314 		[SCxSR]		= { 0x14, 16 },
315 		[SCxRDR]	= { 0x24,  8 },
316 		[SCFCR]		= { 0x18, 16 },
317 		[SCFDR]		= { 0x1c, 16 },
318 		[SCTFDR]	= sci_reg_invalid,
319 		[SCRFDR]	= sci_reg_invalid,
320 		[SCSPTR]	= sci_reg_invalid,
321 		[SCLSR]		= sci_reg_invalid,
322 	},
323 };
324 
325 #define sci_getreg(up, offset)		(sci_regmap[to_sci_port(up)->cfg->regtype] + offset)
326 
327 /*
328  * The "offset" here is rather misleading, in that it refers to an enum
329  * value relative to the port mapping rather than the fixed offset
330  * itself, which needs to be manually retrieved from the platform's
331  * register map for the given port.
332  */
333 static unsigned int sci_serial_in(struct uart_port *p, int offset)
334 {
335 	struct plat_sci_reg *reg = sci_getreg(p, offset);
336 
337 	if (reg->size == 8)
338 		return ioread8(p->membase + (reg->offset << p->regshift));
339 	else if (reg->size == 16)
340 		return ioread16(p->membase + (reg->offset << p->regshift));
341 	else
342 		WARN(1, "Invalid register access\n");
343 
344 	return 0;
345 }
346 
347 static void sci_serial_out(struct uart_port *p, int offset, int value)
348 {
349 	struct plat_sci_reg *reg = sci_getreg(p, offset);
350 
351 	if (reg->size == 8)
352 		iowrite8(value, p->membase + (reg->offset << p->regshift));
353 	else if (reg->size == 16)
354 		iowrite16(value, p->membase + (reg->offset << p->regshift));
355 	else
356 		WARN(1, "Invalid register access\n");
357 }
358 
359 static int sci_probe_regmap(struct plat_sci_port *cfg)
360 {
361 	switch (cfg->type) {
362 	case PORT_SCI:
363 		cfg->regtype = SCIx_SCI_REGTYPE;
364 		break;
365 	case PORT_IRDA:
366 		cfg->regtype = SCIx_IRDA_REGTYPE;
367 		break;
368 	case PORT_SCIFA:
369 		cfg->regtype = SCIx_SCIFA_REGTYPE;
370 		break;
371 	case PORT_SCIFB:
372 		cfg->regtype = SCIx_SCIFB_REGTYPE;
373 		break;
374 	case PORT_SCIF:
375 		/*
376 		 * The SH-4 is a bit of a misnomer here, although that's
377 		 * where this particular port layout originated. This
378 		 * configuration (or some slight variation thereof)
379 		 * remains the dominant model for all SCIFs.
380 		 */
381 		cfg->regtype = SCIx_SH4_SCIF_REGTYPE;
382 		break;
383 	default:
384 		printk(KERN_ERR "Can't probe register map for given port\n");
385 		return -EINVAL;
386 	}
387 
388 	return 0;
389 }
390 
391 static void sci_port_enable(struct sci_port *sci_port)
392 {
393 	if (!sci_port->port.dev)
394 		return;
395 
396 	pm_runtime_get_sync(sci_port->port.dev);
397 
398 	clk_enable(sci_port->iclk);
399 	sci_port->port.uartclk = clk_get_rate(sci_port->iclk);
400 	clk_enable(sci_port->fclk);
401 }
402 
403 static void sci_port_disable(struct sci_port *sci_port)
404 {
405 	if (!sci_port->port.dev)
406 		return;
407 
408 	clk_disable(sci_port->fclk);
409 	clk_disable(sci_port->iclk);
410 
411 	pm_runtime_put_sync(sci_port->port.dev);
412 }
413 
414 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
415 
416 #ifdef CONFIG_CONSOLE_POLL
417 static int sci_poll_get_char(struct uart_port *port)
418 {
419 	unsigned short status;
420 	int c;
421 
422 	do {
423 		status = serial_port_in(port, SCxSR);
424 		if (status & SCxSR_ERRORS(port)) {
425 			serial_port_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
426 			continue;
427 		}
428 		break;
429 	} while (1);
430 
431 	if (!(status & SCxSR_RDxF(port)))
432 		return NO_POLL_CHAR;
433 
434 	c = serial_port_in(port, SCxRDR);
435 
436 	/* Dummy read */
437 	serial_port_in(port, SCxSR);
438 	serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
439 
440 	return c;
441 }
442 #endif
443 
444 static void sci_poll_put_char(struct uart_port *port, unsigned char c)
445 {
446 	unsigned short status;
447 
448 	do {
449 		status = serial_port_in(port, SCxSR);
450 	} while (!(status & SCxSR_TDxE(port)));
451 
452 	serial_port_out(port, SCxTDR, c);
453 	serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
454 }
455 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE */
456 
457 static void sci_init_pins(struct uart_port *port, unsigned int cflag)
458 {
459 	struct sci_port *s = to_sci_port(port);
460 	struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
461 
462 	/*
463 	 * Use port-specific handler if provided.
464 	 */
465 	if (s->cfg->ops && s->cfg->ops->init_pins) {
466 		s->cfg->ops->init_pins(port, cflag);
467 		return;
468 	}
469 
470 	/*
471 	 * For the generic path SCSPTR is necessary. Bail out if that's
472 	 * unavailable, too.
473 	 */
474 	if (!reg->size)
475 		return;
476 
477 	if ((s->cfg->capabilities & SCIx_HAVE_RTSCTS) &&
478 	    ((!(cflag & CRTSCTS)))) {
479 		unsigned short status;
480 
481 		status = serial_port_in(port, SCSPTR);
482 		status &= ~SCSPTR_CTSIO;
483 		status |= SCSPTR_RTSIO;
484 		serial_port_out(port, SCSPTR, status); /* Set RTS = 1 */
485 	}
486 }
487 
488 static int sci_txfill(struct uart_port *port)
489 {
490 	struct plat_sci_reg *reg;
491 
492 	reg = sci_getreg(port, SCTFDR);
493 	if (reg->size)
494 		return serial_port_in(port, SCTFDR) & 0xff;
495 
496 	reg = sci_getreg(port, SCFDR);
497 	if (reg->size)
498 		return serial_port_in(port, SCFDR) >> 8;
499 
500 	return !(serial_port_in(port, SCxSR) & SCI_TDRE);
501 }
502 
503 static int sci_txroom(struct uart_port *port)
504 {
505 	return port->fifosize - sci_txfill(port);
506 }
507 
508 static int sci_rxfill(struct uart_port *port)
509 {
510 	struct plat_sci_reg *reg;
511 
512 	reg = sci_getreg(port, SCRFDR);
513 	if (reg->size)
514 		return serial_port_in(port, SCRFDR) & 0xff;
515 
516 	reg = sci_getreg(port, SCFDR);
517 	if (reg->size)
518 		return serial_port_in(port, SCFDR) & ((port->fifosize << 1) - 1);
519 
520 	return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
521 }
522 
523 /*
524  * SCI helper for checking the state of the muxed port/RXD pins.
525  */
526 static inline int sci_rxd_in(struct uart_port *port)
527 {
528 	struct sci_port *s = to_sci_port(port);
529 
530 	if (s->cfg->port_reg <= 0)
531 		return 1;
532 
533 	/* Cast for ARM damage */
534 	return !!__raw_readb((void __iomem *)s->cfg->port_reg);
535 }
536 
537 /* ********************************************************************** *
538  *                   the interrupt related routines                       *
539  * ********************************************************************** */
540 
541 static void sci_transmit_chars(struct uart_port *port)
542 {
543 	struct circ_buf *xmit = &port->state->xmit;
544 	unsigned int stopped = uart_tx_stopped(port);
545 	unsigned short status;
546 	unsigned short ctrl;
547 	int count;
548 
549 	status = serial_port_in(port, SCxSR);
550 	if (!(status & SCxSR_TDxE(port))) {
551 		ctrl = serial_port_in(port, SCSCR);
552 		if (uart_circ_empty(xmit))
553 			ctrl &= ~SCSCR_TIE;
554 		else
555 			ctrl |= SCSCR_TIE;
556 		serial_port_out(port, SCSCR, ctrl);
557 		return;
558 	}
559 
560 	count = sci_txroom(port);
561 
562 	do {
563 		unsigned char c;
564 
565 		if (port->x_char) {
566 			c = port->x_char;
567 			port->x_char = 0;
568 		} else if (!uart_circ_empty(xmit) && !stopped) {
569 			c = xmit->buf[xmit->tail];
570 			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
571 		} else {
572 			break;
573 		}
574 
575 		serial_port_out(port, SCxTDR, c);
576 
577 		port->icount.tx++;
578 	} while (--count > 0);
579 
580 	serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
581 
582 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
583 		uart_write_wakeup(port);
584 	if (uart_circ_empty(xmit)) {
585 		sci_stop_tx(port);
586 	} else {
587 		ctrl = serial_port_in(port, SCSCR);
588 
589 		if (port->type != PORT_SCI) {
590 			serial_port_in(port, SCxSR); /* Dummy read */
591 			serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
592 		}
593 
594 		ctrl |= SCSCR_TIE;
595 		serial_port_out(port, SCSCR, ctrl);
596 	}
597 }
598 
599 /* On SH3, SCIF may read end-of-break as a space->mark char */
600 #define STEPFN(c)  ({int __c = (c); (((__c-1)|(__c)) == -1); })
601 
602 static void sci_receive_chars(struct uart_port *port)
603 {
604 	struct sci_port *sci_port = to_sci_port(port);
605 	struct tty_struct *tty = port->state->port.tty;
606 	int i, count, copied = 0;
607 	unsigned short status;
608 	unsigned char flag;
609 
610 	status = serial_port_in(port, SCxSR);
611 	if (!(status & SCxSR_RDxF(port)))
612 		return;
613 
614 	while (1) {
615 		/* Don't copy more bytes than there is room for in the buffer */
616 		count = tty_buffer_request_room(tty, sci_rxfill(port));
617 
618 		/* If for any reason we can't copy more data, we're done! */
619 		if (count == 0)
620 			break;
621 
622 		if (port->type == PORT_SCI) {
623 			char c = serial_port_in(port, SCxRDR);
624 			if (uart_handle_sysrq_char(port, c) ||
625 			    sci_port->break_flag)
626 				count = 0;
627 			else
628 				tty_insert_flip_char(tty, c, TTY_NORMAL);
629 		} else {
630 			for (i = 0; i < count; i++) {
631 				char c = serial_port_in(port, SCxRDR);
632 
633 				status = serial_port_in(port, SCxSR);
634 #if defined(CONFIG_CPU_SH3)
635 				/* Skip "chars" during break */
636 				if (sci_port->break_flag) {
637 					if ((c == 0) &&
638 					    (status & SCxSR_FER(port))) {
639 						count--; i--;
640 						continue;
641 					}
642 
643 					/* Nonzero => end-of-break */
644 					dev_dbg(port->dev, "debounce<%02x>\n", c);
645 					sci_port->break_flag = 0;
646 
647 					if (STEPFN(c)) {
648 						count--; i--;
649 						continue;
650 					}
651 				}
652 #endif /* CONFIG_CPU_SH3 */
653 				if (uart_handle_sysrq_char(port, c)) {
654 					count--; i--;
655 					continue;
656 				}
657 
658 				/* Store data and status */
659 				if (status & SCxSR_FER(port)) {
660 					flag = TTY_FRAME;
661 					port->icount.frame++;
662 					dev_notice(port->dev, "frame error\n");
663 				} else if (status & SCxSR_PER(port)) {
664 					flag = TTY_PARITY;
665 					port->icount.parity++;
666 					dev_notice(port->dev, "parity error\n");
667 				} else
668 					flag = TTY_NORMAL;
669 
670 				tty_insert_flip_char(tty, c, flag);
671 			}
672 		}
673 
674 		serial_port_in(port, SCxSR); /* dummy read */
675 		serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
676 
677 		copied += count;
678 		port->icount.rx += count;
679 	}
680 
681 	if (copied) {
682 		/* Tell the rest of the system the news. New characters! */
683 		tty_flip_buffer_push(tty);
684 	} else {
685 		serial_port_in(port, SCxSR); /* dummy read */
686 		serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
687 	}
688 }
689 
690 #define SCI_BREAK_JIFFIES (HZ/20)
691 
692 /*
693  * The sci generates interrupts during the break,
694  * 1 per millisecond or so during the break period, for 9600 baud.
695  * So dont bother disabling interrupts.
696  * But dont want more than 1 break event.
697  * Use a kernel timer to periodically poll the rx line until
698  * the break is finished.
699  */
700 static inline void sci_schedule_break_timer(struct sci_port *port)
701 {
702 	mod_timer(&port->break_timer, jiffies + SCI_BREAK_JIFFIES);
703 }
704 
705 /* Ensure that two consecutive samples find the break over. */
706 static void sci_break_timer(unsigned long data)
707 {
708 	struct sci_port *port = (struct sci_port *)data;
709 
710 	sci_port_enable(port);
711 
712 	if (sci_rxd_in(&port->port) == 0) {
713 		port->break_flag = 1;
714 		sci_schedule_break_timer(port);
715 	} else if (port->break_flag == 1) {
716 		/* break is over. */
717 		port->break_flag = 2;
718 		sci_schedule_break_timer(port);
719 	} else
720 		port->break_flag = 0;
721 
722 	sci_port_disable(port);
723 }
724 
725 static int sci_handle_errors(struct uart_port *port)
726 {
727 	int copied = 0;
728 	unsigned short status = serial_port_in(port, SCxSR);
729 	struct tty_struct *tty = port->state->port.tty;
730 	struct sci_port *s = to_sci_port(port);
731 
732 	/*
733 	 * Handle overruns, if supported.
734 	 */
735 	if (s->cfg->overrun_bit != SCIx_NOT_SUPPORTED) {
736 		if (status & (1 << s->cfg->overrun_bit)) {
737 			port->icount.overrun++;
738 
739 			/* overrun error */
740 			if (tty_insert_flip_char(tty, 0, TTY_OVERRUN))
741 				copied++;
742 
743 			dev_notice(port->dev, "overrun error");
744 		}
745 	}
746 
747 	if (status & SCxSR_FER(port)) {
748 		if (sci_rxd_in(port) == 0) {
749 			/* Notify of BREAK */
750 			struct sci_port *sci_port = to_sci_port(port);
751 
752 			if (!sci_port->break_flag) {
753 				port->icount.brk++;
754 
755 				sci_port->break_flag = 1;
756 				sci_schedule_break_timer(sci_port);
757 
758 				/* Do sysrq handling. */
759 				if (uart_handle_break(port))
760 					return 0;
761 
762 				dev_dbg(port->dev, "BREAK detected\n");
763 
764 				if (tty_insert_flip_char(tty, 0, TTY_BREAK))
765 					copied++;
766 			}
767 
768 		} else {
769 			/* frame error */
770 			port->icount.frame++;
771 
772 			if (tty_insert_flip_char(tty, 0, TTY_FRAME))
773 				copied++;
774 
775 			dev_notice(port->dev, "frame error\n");
776 		}
777 	}
778 
779 	if (status & SCxSR_PER(port)) {
780 		/* parity error */
781 		port->icount.parity++;
782 
783 		if (tty_insert_flip_char(tty, 0, TTY_PARITY))
784 			copied++;
785 
786 		dev_notice(port->dev, "parity error");
787 	}
788 
789 	if (copied)
790 		tty_flip_buffer_push(tty);
791 
792 	return copied;
793 }
794 
795 static int sci_handle_fifo_overrun(struct uart_port *port)
796 {
797 	struct tty_struct *tty = port->state->port.tty;
798 	struct sci_port *s = to_sci_port(port);
799 	struct plat_sci_reg *reg;
800 	int copied = 0;
801 
802 	reg = sci_getreg(port, SCLSR);
803 	if (!reg->size)
804 		return 0;
805 
806 	if ((serial_port_in(port, SCLSR) & (1 << s->cfg->overrun_bit))) {
807 		serial_port_out(port, SCLSR, 0);
808 
809 		port->icount.overrun++;
810 
811 		tty_insert_flip_char(tty, 0, TTY_OVERRUN);
812 		tty_flip_buffer_push(tty);
813 
814 		dev_notice(port->dev, "overrun error\n");
815 		copied++;
816 	}
817 
818 	return copied;
819 }
820 
821 static int sci_handle_breaks(struct uart_port *port)
822 {
823 	int copied = 0;
824 	unsigned short status = serial_port_in(port, SCxSR);
825 	struct tty_struct *tty = port->state->port.tty;
826 	struct sci_port *s = to_sci_port(port);
827 
828 	if (uart_handle_break(port))
829 		return 0;
830 
831 	if (!s->break_flag && status & SCxSR_BRK(port)) {
832 #if defined(CONFIG_CPU_SH3)
833 		/* Debounce break */
834 		s->break_flag = 1;
835 #endif
836 
837 		port->icount.brk++;
838 
839 		/* Notify of BREAK */
840 		if (tty_insert_flip_char(tty, 0, TTY_BREAK))
841 			copied++;
842 
843 		dev_dbg(port->dev, "BREAK detected\n");
844 	}
845 
846 	if (copied)
847 		tty_flip_buffer_push(tty);
848 
849 	copied += sci_handle_fifo_overrun(port);
850 
851 	return copied;
852 }
853 
854 static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
855 {
856 #ifdef CONFIG_SERIAL_SH_SCI_DMA
857 	struct uart_port *port = ptr;
858 	struct sci_port *s = to_sci_port(port);
859 
860 	if (s->chan_rx) {
861 		u16 scr = serial_port_in(port, SCSCR);
862 		u16 ssr = serial_port_in(port, SCxSR);
863 
864 		/* Disable future Rx interrupts */
865 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
866 			disable_irq_nosync(irq);
867 			scr |= 0x4000;
868 		} else {
869 			scr &= ~SCSCR_RIE;
870 		}
871 		serial_port_out(port, SCSCR, scr);
872 		/* Clear current interrupt */
873 		serial_port_out(port, SCxSR, ssr & ~(1 | SCxSR_RDxF(port)));
874 		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n",
875 			jiffies, s->rx_timeout);
876 		mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
877 
878 		return IRQ_HANDLED;
879 	}
880 #endif
881 
882 	/* I think sci_receive_chars has to be called irrespective
883 	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
884 	 * to be disabled?
885 	 */
886 	sci_receive_chars(ptr);
887 
888 	return IRQ_HANDLED;
889 }
890 
891 static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
892 {
893 	struct uart_port *port = ptr;
894 	unsigned long flags;
895 
896 	spin_lock_irqsave(&port->lock, flags);
897 	sci_transmit_chars(port);
898 	spin_unlock_irqrestore(&port->lock, flags);
899 
900 	return IRQ_HANDLED;
901 }
902 
903 static irqreturn_t sci_er_interrupt(int irq, void *ptr)
904 {
905 	struct uart_port *port = ptr;
906 
907 	/* Handle errors */
908 	if (port->type == PORT_SCI) {
909 		if (sci_handle_errors(port)) {
910 			/* discard character in rx buffer */
911 			serial_port_in(port, SCxSR);
912 			serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
913 		}
914 	} else {
915 		sci_handle_fifo_overrun(port);
916 		sci_rx_interrupt(irq, ptr);
917 	}
918 
919 	serial_port_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
920 
921 	/* Kick the transmission */
922 	sci_tx_interrupt(irq, ptr);
923 
924 	return IRQ_HANDLED;
925 }
926 
927 static irqreturn_t sci_br_interrupt(int irq, void *ptr)
928 {
929 	struct uart_port *port = ptr;
930 
931 	/* Handle BREAKs */
932 	sci_handle_breaks(port);
933 	serial_port_out(port, SCxSR, SCxSR_BREAK_CLEAR(port));
934 
935 	return IRQ_HANDLED;
936 }
937 
938 static inline unsigned long port_rx_irq_mask(struct uart_port *port)
939 {
940 	/*
941 	 * Not all ports (such as SCIFA) will support REIE. Rather than
942 	 * special-casing the port type, we check the port initialization
943 	 * IRQ enable mask to see whether the IRQ is desired at all. If
944 	 * it's unset, it's logically inferred that there's no point in
945 	 * testing for it.
946 	 */
947 	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
948 }
949 
950 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
951 {
952 	unsigned short ssr_status, scr_status, err_enabled;
953 	struct uart_port *port = ptr;
954 	struct sci_port *s = to_sci_port(port);
955 	irqreturn_t ret = IRQ_NONE;
956 
957 	ssr_status = serial_port_in(port, SCxSR);
958 	scr_status = serial_port_in(port, SCSCR);
959 	err_enabled = scr_status & port_rx_irq_mask(port);
960 
961 	/* Tx Interrupt */
962 	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
963 	    !s->chan_tx)
964 		ret = sci_tx_interrupt(irq, ptr);
965 
966 	/*
967 	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
968 	 * DR flags
969 	 */
970 	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
971 	    (scr_status & SCSCR_RIE))
972 		ret = sci_rx_interrupt(irq, ptr);
973 
974 	/* Error Interrupt */
975 	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
976 		ret = sci_er_interrupt(irq, ptr);
977 
978 	/* Break Interrupt */
979 	if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
980 		ret = sci_br_interrupt(irq, ptr);
981 
982 	return ret;
983 }
984 
985 /*
986  * Here we define a transition notifier so that we can update all of our
987  * ports' baud rate when the peripheral clock changes.
988  */
989 static int sci_notifier(struct notifier_block *self,
990 			unsigned long phase, void *p)
991 {
992 	struct sci_port *sci_port;
993 	unsigned long flags;
994 
995 	sci_port = container_of(self, struct sci_port, freq_transition);
996 
997 	if ((phase == CPUFREQ_POSTCHANGE) ||
998 	    (phase == CPUFREQ_RESUMECHANGE)) {
999 		struct uart_port *port = &sci_port->port;
1000 
1001 		spin_lock_irqsave(&port->lock, flags);
1002 		port->uartclk = clk_get_rate(sci_port->iclk);
1003 		spin_unlock_irqrestore(&port->lock, flags);
1004 	}
1005 
1006 	return NOTIFY_OK;
1007 }
1008 
1009 static struct sci_irq_desc {
1010 	const char	*desc;
1011 	irq_handler_t	handler;
1012 } sci_irq_desc[] = {
1013 	/*
1014 	 * Split out handlers, the default case.
1015 	 */
1016 	[SCIx_ERI_IRQ] = {
1017 		.desc = "rx err",
1018 		.handler = sci_er_interrupt,
1019 	},
1020 
1021 	[SCIx_RXI_IRQ] = {
1022 		.desc = "rx full",
1023 		.handler = sci_rx_interrupt,
1024 	},
1025 
1026 	[SCIx_TXI_IRQ] = {
1027 		.desc = "tx empty",
1028 		.handler = sci_tx_interrupt,
1029 	},
1030 
1031 	[SCIx_BRI_IRQ] = {
1032 		.desc = "break",
1033 		.handler = sci_br_interrupt,
1034 	},
1035 
1036 	/*
1037 	 * Special muxed handler.
1038 	 */
1039 	[SCIx_MUX_IRQ] = {
1040 		.desc = "mux",
1041 		.handler = sci_mpxed_interrupt,
1042 	},
1043 };
1044 
1045 static int sci_request_irq(struct sci_port *port)
1046 {
1047 	struct uart_port *up = &port->port;
1048 	int i, j, ret = 0;
1049 
1050 	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1051 		struct sci_irq_desc *desc;
1052 		unsigned int irq;
1053 
1054 		if (SCIx_IRQ_IS_MUXED(port)) {
1055 			i = SCIx_MUX_IRQ;
1056 			irq = up->irq;
1057 		} else {
1058 			irq = port->cfg->irqs[i];
1059 
1060 			/*
1061 			 * Certain port types won't support all of the
1062 			 * available interrupt sources.
1063 			 */
1064 			if (unlikely(!irq))
1065 				continue;
1066 		}
1067 
1068 		desc = sci_irq_desc + i;
1069 		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1070 					    dev_name(up->dev), desc->desc);
1071 		if (!port->irqstr[j]) {
1072 			dev_err(up->dev, "Failed to allocate %s IRQ string\n",
1073 				desc->desc);
1074 			goto out_nomem;
1075 		}
1076 
1077 		ret = request_irq(irq, desc->handler, up->irqflags,
1078 				  port->irqstr[j], port);
1079 		if (unlikely(ret)) {
1080 			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1081 			goto out_noirq;
1082 		}
1083 	}
1084 
1085 	return 0;
1086 
1087 out_noirq:
1088 	while (--i >= 0)
1089 		free_irq(port->cfg->irqs[i], port);
1090 
1091 out_nomem:
1092 	while (--j >= 0)
1093 		kfree(port->irqstr[j]);
1094 
1095 	return ret;
1096 }
1097 
1098 static void sci_free_irq(struct sci_port *port)
1099 {
1100 	int i;
1101 
1102 	/*
1103 	 * Intentionally in reverse order so we iterate over the muxed
1104 	 * IRQ first.
1105 	 */
1106 	for (i = 0; i < SCIx_NR_IRQS; i++) {
1107 		unsigned int irq = port->cfg->irqs[i];
1108 
1109 		/*
1110 		 * Certain port types won't support all of the available
1111 		 * interrupt sources.
1112 		 */
1113 		if (unlikely(!irq))
1114 			continue;
1115 
1116 		free_irq(port->cfg->irqs[i], port);
1117 		kfree(port->irqstr[i]);
1118 
1119 		if (SCIx_IRQ_IS_MUXED(port)) {
1120 			/* If there's only one IRQ, we're done. */
1121 			return;
1122 		}
1123 	}
1124 }
1125 
1126 static const char *sci_gpio_names[SCIx_NR_FNS] = {
1127 	"sck", "rxd", "txd", "cts", "rts",
1128 };
1129 
1130 static const char *sci_gpio_str(unsigned int index)
1131 {
1132 	return sci_gpio_names[index];
1133 }
1134 
1135 static void __devinit sci_init_gpios(struct sci_port *port)
1136 {
1137 	struct uart_port *up = &port->port;
1138 	int i;
1139 
1140 	if (!port->cfg)
1141 		return;
1142 
1143 	for (i = 0; i < SCIx_NR_FNS; i++) {
1144 		const char *desc;
1145 		int ret;
1146 
1147 		if (!port->cfg->gpios[i])
1148 			continue;
1149 
1150 		desc = sci_gpio_str(i);
1151 
1152 		port->gpiostr[i] = kasprintf(GFP_KERNEL, "%s:%s",
1153 					     dev_name(up->dev), desc);
1154 
1155 		/*
1156 		 * If we've failed the allocation, we can still continue
1157 		 * on with a NULL string.
1158 		 */
1159 		if (!port->gpiostr[i])
1160 			dev_notice(up->dev, "%s string allocation failure\n",
1161 				   desc);
1162 
1163 		ret = gpio_request(port->cfg->gpios[i], port->gpiostr[i]);
1164 		if (unlikely(ret != 0)) {
1165 			dev_notice(up->dev, "failed %s gpio request\n", desc);
1166 
1167 			/*
1168 			 * If we can't get the GPIO for whatever reason,
1169 			 * no point in keeping the verbose string around.
1170 			 */
1171 			kfree(port->gpiostr[i]);
1172 		}
1173 	}
1174 }
1175 
1176 static void sci_free_gpios(struct sci_port *port)
1177 {
1178 	int i;
1179 
1180 	for (i = 0; i < SCIx_NR_FNS; i++)
1181 		if (port->cfg->gpios[i]) {
1182 			gpio_free(port->cfg->gpios[i]);
1183 			kfree(port->gpiostr[i]);
1184 		}
1185 }
1186 
1187 static unsigned int sci_tx_empty(struct uart_port *port)
1188 {
1189 	unsigned short status = serial_port_in(port, SCxSR);
1190 	unsigned short in_tx_fifo = sci_txfill(port);
1191 
1192 	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1193 }
1194 
1195 /*
1196  * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
1197  * CTS/RTS is supported in hardware by at least one port and controlled
1198  * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
1199  * handled via the ->init_pins() op, which is a bit of a one-way street,
1200  * lacking any ability to defer pin control -- this will later be
1201  * converted over to the GPIO framework).
1202  *
1203  * Other modes (such as loopback) are supported generically on certain
1204  * port types, but not others. For these it's sufficient to test for the
1205  * existence of the support register and simply ignore the port type.
1206  */
1207 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
1208 {
1209 	if (mctrl & TIOCM_LOOP) {
1210 		struct plat_sci_reg *reg;
1211 
1212 		/*
1213 		 * Standard loopback mode for SCFCR ports.
1214 		 */
1215 		reg = sci_getreg(port, SCFCR);
1216 		if (reg->size)
1217 			serial_port_out(port, SCFCR, serial_port_in(port, SCFCR) | 1);
1218 	}
1219 }
1220 
1221 static unsigned int sci_get_mctrl(struct uart_port *port)
1222 {
1223 	/*
1224 	 * CTS/RTS is handled in hardware when supported, while nothing
1225 	 * else is wired up. Keep it simple and simply assert DSR/CAR.
1226 	 */
1227 	return TIOCM_DSR | TIOCM_CAR;
1228 }
1229 
1230 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1231 static void sci_dma_tx_complete(void *arg)
1232 {
1233 	struct sci_port *s = arg;
1234 	struct uart_port *port = &s->port;
1235 	struct circ_buf *xmit = &port->state->xmit;
1236 	unsigned long flags;
1237 
1238 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1239 
1240 	spin_lock_irqsave(&port->lock, flags);
1241 
1242 	xmit->tail += sg_dma_len(&s->sg_tx);
1243 	xmit->tail &= UART_XMIT_SIZE - 1;
1244 
1245 	port->icount.tx += sg_dma_len(&s->sg_tx);
1246 
1247 	async_tx_ack(s->desc_tx);
1248 	s->desc_tx = NULL;
1249 
1250 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1251 		uart_write_wakeup(port);
1252 
1253 	if (!uart_circ_empty(xmit)) {
1254 		s->cookie_tx = 0;
1255 		schedule_work(&s->work_tx);
1256 	} else {
1257 		s->cookie_tx = -EINVAL;
1258 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1259 			u16 ctrl = serial_port_in(port, SCSCR);
1260 			serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1261 		}
1262 	}
1263 
1264 	spin_unlock_irqrestore(&port->lock, flags);
1265 }
1266 
1267 /* Locking: called with port lock held */
1268 static int sci_dma_rx_push(struct sci_port *s, struct tty_struct *tty,
1269 			   size_t count)
1270 {
1271 	struct uart_port *port = &s->port;
1272 	int i, active, room;
1273 
1274 	room = tty_buffer_request_room(tty, count);
1275 
1276 	if (s->active_rx == s->cookie_rx[0]) {
1277 		active = 0;
1278 	} else if (s->active_rx == s->cookie_rx[1]) {
1279 		active = 1;
1280 	} else {
1281 		dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
1282 		return 0;
1283 	}
1284 
1285 	if (room < count)
1286 		dev_warn(port->dev, "Rx overrun: dropping %u bytes\n",
1287 			 count - room);
1288 	if (!room)
1289 		return room;
1290 
1291 	for (i = 0; i < room; i++)
1292 		tty_insert_flip_char(tty, ((u8 *)sg_virt(&s->sg_rx[active]))[i],
1293 				     TTY_NORMAL);
1294 
1295 	port->icount.rx += room;
1296 
1297 	return room;
1298 }
1299 
1300 static void sci_dma_rx_complete(void *arg)
1301 {
1302 	struct sci_port *s = arg;
1303 	struct uart_port *port = &s->port;
1304 	struct tty_struct *tty = port->state->port.tty;
1305 	unsigned long flags;
1306 	int count;
1307 
1308 	dev_dbg(port->dev, "%s(%d) active #%d\n", __func__, port->line, s->active_rx);
1309 
1310 	spin_lock_irqsave(&port->lock, flags);
1311 
1312 	count = sci_dma_rx_push(s, tty, s->buf_len_rx);
1313 
1314 	mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1315 
1316 	spin_unlock_irqrestore(&port->lock, flags);
1317 
1318 	if (count)
1319 		tty_flip_buffer_push(tty);
1320 
1321 	schedule_work(&s->work_rx);
1322 }
1323 
1324 static void sci_rx_dma_release(struct sci_port *s, bool enable_pio)
1325 {
1326 	struct dma_chan *chan = s->chan_rx;
1327 	struct uart_port *port = &s->port;
1328 
1329 	s->chan_rx = NULL;
1330 	s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL;
1331 	dma_release_channel(chan);
1332 	if (sg_dma_address(&s->sg_rx[0]))
1333 		dma_free_coherent(port->dev, s->buf_len_rx * 2,
1334 				  sg_virt(&s->sg_rx[0]), sg_dma_address(&s->sg_rx[0]));
1335 	if (enable_pio)
1336 		sci_start_rx(port);
1337 }
1338 
1339 static void sci_tx_dma_release(struct sci_port *s, bool enable_pio)
1340 {
1341 	struct dma_chan *chan = s->chan_tx;
1342 	struct uart_port *port = &s->port;
1343 
1344 	s->chan_tx = NULL;
1345 	s->cookie_tx = -EINVAL;
1346 	dma_release_channel(chan);
1347 	if (enable_pio)
1348 		sci_start_tx(port);
1349 }
1350 
1351 static void sci_submit_rx(struct sci_port *s)
1352 {
1353 	struct dma_chan *chan = s->chan_rx;
1354 	int i;
1355 
1356 	for (i = 0; i < 2; i++) {
1357 		struct scatterlist *sg = &s->sg_rx[i];
1358 		struct dma_async_tx_descriptor *desc;
1359 
1360 		desc = dmaengine_prep_slave_sg(chan,
1361 			sg, 1, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
1362 
1363 		if (desc) {
1364 			s->desc_rx[i] = desc;
1365 			desc->callback = sci_dma_rx_complete;
1366 			desc->callback_param = s;
1367 			s->cookie_rx[i] = desc->tx_submit(desc);
1368 		}
1369 
1370 		if (!desc || s->cookie_rx[i] < 0) {
1371 			if (i) {
1372 				async_tx_ack(s->desc_rx[0]);
1373 				s->cookie_rx[0] = -EINVAL;
1374 			}
1375 			if (desc) {
1376 				async_tx_ack(desc);
1377 				s->cookie_rx[i] = -EINVAL;
1378 			}
1379 			dev_warn(s->port.dev,
1380 				 "failed to re-start DMA, using PIO\n");
1381 			sci_rx_dma_release(s, true);
1382 			return;
1383 		}
1384 		dev_dbg(s->port.dev, "%s(): cookie %d to #%d\n", __func__,
1385 			s->cookie_rx[i], i);
1386 	}
1387 
1388 	s->active_rx = s->cookie_rx[0];
1389 
1390 	dma_async_issue_pending(chan);
1391 }
1392 
1393 static void work_fn_rx(struct work_struct *work)
1394 {
1395 	struct sci_port *s = container_of(work, struct sci_port, work_rx);
1396 	struct uart_port *port = &s->port;
1397 	struct dma_async_tx_descriptor *desc;
1398 	int new;
1399 
1400 	if (s->active_rx == s->cookie_rx[0]) {
1401 		new = 0;
1402 	} else if (s->active_rx == s->cookie_rx[1]) {
1403 		new = 1;
1404 	} else {
1405 		dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
1406 		return;
1407 	}
1408 	desc = s->desc_rx[new];
1409 
1410 	if (dma_async_is_tx_complete(s->chan_rx, s->active_rx, NULL, NULL) !=
1411 	    DMA_SUCCESS) {
1412 		/* Handle incomplete DMA receive */
1413 		struct tty_struct *tty = port->state->port.tty;
1414 		struct dma_chan *chan = s->chan_rx;
1415 		struct shdma_desc *sh_desc = container_of(desc,
1416 					struct shdma_desc, async_tx);
1417 		unsigned long flags;
1418 		int count;
1419 
1420 		chan->device->device_control(chan, DMA_TERMINATE_ALL, 0);
1421 		dev_dbg(port->dev, "Read %u bytes with cookie %d\n",
1422 			sh_desc->partial, sh_desc->cookie);
1423 
1424 		spin_lock_irqsave(&port->lock, flags);
1425 		count = sci_dma_rx_push(s, tty, sh_desc->partial);
1426 		spin_unlock_irqrestore(&port->lock, flags);
1427 
1428 		if (count)
1429 			tty_flip_buffer_push(tty);
1430 
1431 		sci_submit_rx(s);
1432 
1433 		return;
1434 	}
1435 
1436 	s->cookie_rx[new] = desc->tx_submit(desc);
1437 	if (s->cookie_rx[new] < 0) {
1438 		dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1439 		sci_rx_dma_release(s, true);
1440 		return;
1441 	}
1442 
1443 	s->active_rx = s->cookie_rx[!new];
1444 
1445 	dev_dbg(port->dev, "%s: cookie %d #%d, new active #%d\n", __func__,
1446 		s->cookie_rx[new], new, s->active_rx);
1447 }
1448 
1449 static void work_fn_tx(struct work_struct *work)
1450 {
1451 	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1452 	struct dma_async_tx_descriptor *desc;
1453 	struct dma_chan *chan = s->chan_tx;
1454 	struct uart_port *port = &s->port;
1455 	struct circ_buf *xmit = &port->state->xmit;
1456 	struct scatterlist *sg = &s->sg_tx;
1457 
1458 	/*
1459 	 * DMA is idle now.
1460 	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1461 	 * offsets and lengths. Since it is a circular buffer, we have to
1462 	 * transmit till the end, and then the rest. Take the port lock to get a
1463 	 * consistent xmit buffer state.
1464 	 */
1465 	spin_lock_irq(&port->lock);
1466 	sg->offset = xmit->tail & (UART_XMIT_SIZE - 1);
1467 	sg_dma_address(sg) = (sg_dma_address(sg) & ~(UART_XMIT_SIZE - 1)) +
1468 		sg->offset;
1469 	sg_dma_len(sg) = min((int)CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
1470 		CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
1471 	spin_unlock_irq(&port->lock);
1472 
1473 	BUG_ON(!sg_dma_len(sg));
1474 
1475 	desc = dmaengine_prep_slave_sg(chan,
1476 			sg, s->sg_len_tx, DMA_MEM_TO_DEV,
1477 			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1478 	if (!desc) {
1479 		/* switch to PIO */
1480 		sci_tx_dma_release(s, true);
1481 		return;
1482 	}
1483 
1484 	dma_sync_sg_for_device(port->dev, sg, 1, DMA_TO_DEVICE);
1485 
1486 	spin_lock_irq(&port->lock);
1487 	s->desc_tx = desc;
1488 	desc->callback = sci_dma_tx_complete;
1489 	desc->callback_param = s;
1490 	spin_unlock_irq(&port->lock);
1491 	s->cookie_tx = desc->tx_submit(desc);
1492 	if (s->cookie_tx < 0) {
1493 		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1494 		/* switch to PIO */
1495 		sci_tx_dma_release(s, true);
1496 		return;
1497 	}
1498 
1499 	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n", __func__,
1500 		xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
1501 
1502 	dma_async_issue_pending(chan);
1503 }
1504 #endif
1505 
1506 static void sci_start_tx(struct uart_port *port)
1507 {
1508 	struct sci_port *s = to_sci_port(port);
1509 	unsigned short ctrl;
1510 
1511 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1512 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1513 		u16 new, scr = serial_port_in(port, SCSCR);
1514 		if (s->chan_tx)
1515 			new = scr | 0x8000;
1516 		else
1517 			new = scr & ~0x8000;
1518 		if (new != scr)
1519 			serial_port_out(port, SCSCR, new);
1520 	}
1521 
1522 	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
1523 	    s->cookie_tx < 0) {
1524 		s->cookie_tx = 0;
1525 		schedule_work(&s->work_tx);
1526 	}
1527 #endif
1528 
1529 	if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1530 		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
1531 		ctrl = serial_port_in(port, SCSCR);
1532 		serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
1533 	}
1534 }
1535 
1536 static void sci_stop_tx(struct uart_port *port)
1537 {
1538 	unsigned short ctrl;
1539 
1540 	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
1541 	ctrl = serial_port_in(port, SCSCR);
1542 
1543 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1544 		ctrl &= ~0x8000;
1545 
1546 	ctrl &= ~SCSCR_TIE;
1547 
1548 	serial_port_out(port, SCSCR, ctrl);
1549 }
1550 
1551 static void sci_start_rx(struct uart_port *port)
1552 {
1553 	unsigned short ctrl;
1554 
1555 	ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
1556 
1557 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1558 		ctrl &= ~0x4000;
1559 
1560 	serial_port_out(port, SCSCR, ctrl);
1561 }
1562 
1563 static void sci_stop_rx(struct uart_port *port)
1564 {
1565 	unsigned short ctrl;
1566 
1567 	ctrl = serial_port_in(port, SCSCR);
1568 
1569 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1570 		ctrl &= ~0x4000;
1571 
1572 	ctrl &= ~port_rx_irq_mask(port);
1573 
1574 	serial_port_out(port, SCSCR, ctrl);
1575 }
1576 
1577 static void sci_enable_ms(struct uart_port *port)
1578 {
1579 	/*
1580 	 * Not supported by hardware, always a nop.
1581 	 */
1582 }
1583 
1584 static void sci_break_ctl(struct uart_port *port, int break_state)
1585 {
1586 	struct sci_port *s = to_sci_port(port);
1587 	struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
1588 	unsigned short scscr, scsptr;
1589 
1590 	/* check wheter the port has SCSPTR */
1591 	if (!reg->size) {
1592 		/*
1593 		 * Not supported by hardware. Most parts couple break and rx
1594 		 * interrupts together, with break detection always enabled.
1595 		 */
1596 		return;
1597 	}
1598 
1599 	scsptr = serial_port_in(port, SCSPTR);
1600 	scscr = serial_port_in(port, SCSCR);
1601 
1602 	if (break_state == -1) {
1603 		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
1604 		scscr &= ~SCSCR_TE;
1605 	} else {
1606 		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
1607 		scscr |= SCSCR_TE;
1608 	}
1609 
1610 	serial_port_out(port, SCSPTR, scsptr);
1611 	serial_port_out(port, SCSCR, scscr);
1612 }
1613 
1614 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1615 static bool filter(struct dma_chan *chan, void *slave)
1616 {
1617 	struct sh_dmae_slave *param = slave;
1618 
1619 	dev_dbg(chan->device->dev, "%s: slave ID %d\n", __func__,
1620 		param->shdma_slave.slave_id);
1621 
1622 	chan->private = &param->shdma_slave;
1623 	return true;
1624 }
1625 
1626 static void rx_timer_fn(unsigned long arg)
1627 {
1628 	struct sci_port *s = (struct sci_port *)arg;
1629 	struct uart_port *port = &s->port;
1630 	u16 scr = serial_port_in(port, SCSCR);
1631 
1632 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1633 		scr &= ~0x4000;
1634 		enable_irq(s->cfg->irqs[1]);
1635 	}
1636 	serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1637 	dev_dbg(port->dev, "DMA Rx timed out\n");
1638 	schedule_work(&s->work_rx);
1639 }
1640 
1641 static void sci_request_dma(struct uart_port *port)
1642 {
1643 	struct sci_port *s = to_sci_port(port);
1644 	struct sh_dmae_slave *param;
1645 	struct dma_chan *chan;
1646 	dma_cap_mask_t mask;
1647 	int nent;
1648 
1649 	dev_dbg(port->dev, "%s: port %d\n", __func__,
1650 		port->line);
1651 
1652 	if (s->cfg->dma_slave_tx <= 0 || s->cfg->dma_slave_rx <= 0)
1653 		return;
1654 
1655 	dma_cap_zero(mask);
1656 	dma_cap_set(DMA_SLAVE, mask);
1657 
1658 	param = &s->param_tx;
1659 
1660 	/* Slave ID, e.g., SHDMA_SLAVE_SCIF0_TX */
1661 	param->shdma_slave.slave_id = s->cfg->dma_slave_tx;
1662 
1663 	s->cookie_tx = -EINVAL;
1664 	chan = dma_request_channel(mask, filter, param);
1665 	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1666 	if (chan) {
1667 		s->chan_tx = chan;
1668 		sg_init_table(&s->sg_tx, 1);
1669 		/* UART circular tx buffer is an aligned page. */
1670 		BUG_ON((int)port->state->xmit.buf & ~PAGE_MASK);
1671 		sg_set_page(&s->sg_tx, virt_to_page(port->state->xmit.buf),
1672 			    UART_XMIT_SIZE, (int)port->state->xmit.buf & ~PAGE_MASK);
1673 		nent = dma_map_sg(port->dev, &s->sg_tx, 1, DMA_TO_DEVICE);
1674 		if (!nent)
1675 			sci_tx_dma_release(s, false);
1676 		else
1677 			dev_dbg(port->dev, "%s: mapped %d@%p to %x\n", __func__,
1678 				sg_dma_len(&s->sg_tx),
1679 				port->state->xmit.buf, sg_dma_address(&s->sg_tx));
1680 
1681 		s->sg_len_tx = nent;
1682 
1683 		INIT_WORK(&s->work_tx, work_fn_tx);
1684 	}
1685 
1686 	param = &s->param_rx;
1687 
1688 	/* Slave ID, e.g., SHDMA_SLAVE_SCIF0_RX */
1689 	param->shdma_slave.slave_id = s->cfg->dma_slave_rx;
1690 
1691 	chan = dma_request_channel(mask, filter, param);
1692 	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1693 	if (chan) {
1694 		dma_addr_t dma[2];
1695 		void *buf[2];
1696 		int i;
1697 
1698 		s->chan_rx = chan;
1699 
1700 		s->buf_len_rx = 2 * max(16, (int)port->fifosize);
1701 		buf[0] = dma_alloc_coherent(port->dev, s->buf_len_rx * 2,
1702 					    &dma[0], GFP_KERNEL);
1703 
1704 		if (!buf[0]) {
1705 			dev_warn(port->dev,
1706 				 "failed to allocate dma buffer, using PIO\n");
1707 			sci_rx_dma_release(s, true);
1708 			return;
1709 		}
1710 
1711 		buf[1] = buf[0] + s->buf_len_rx;
1712 		dma[1] = dma[0] + s->buf_len_rx;
1713 
1714 		for (i = 0; i < 2; i++) {
1715 			struct scatterlist *sg = &s->sg_rx[i];
1716 
1717 			sg_init_table(sg, 1);
1718 			sg_set_page(sg, virt_to_page(buf[i]), s->buf_len_rx,
1719 				    (int)buf[i] & ~PAGE_MASK);
1720 			sg_dma_address(sg) = dma[i];
1721 		}
1722 
1723 		INIT_WORK(&s->work_rx, work_fn_rx);
1724 		setup_timer(&s->rx_timer, rx_timer_fn, (unsigned long)s);
1725 
1726 		sci_submit_rx(s);
1727 	}
1728 }
1729 
1730 static void sci_free_dma(struct uart_port *port)
1731 {
1732 	struct sci_port *s = to_sci_port(port);
1733 
1734 	if (s->chan_tx)
1735 		sci_tx_dma_release(s, false);
1736 	if (s->chan_rx)
1737 		sci_rx_dma_release(s, false);
1738 }
1739 #else
1740 static inline void sci_request_dma(struct uart_port *port)
1741 {
1742 }
1743 
1744 static inline void sci_free_dma(struct uart_port *port)
1745 {
1746 }
1747 #endif
1748 
1749 static int sci_startup(struct uart_port *port)
1750 {
1751 	struct sci_port *s = to_sci_port(port);
1752 	int ret;
1753 
1754 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1755 
1756 	pm_runtime_put_noidle(port->dev);
1757 
1758 	sci_port_enable(s);
1759 
1760 	ret = sci_request_irq(s);
1761 	if (unlikely(ret < 0))
1762 		return ret;
1763 
1764 	sci_request_dma(port);
1765 
1766 	sci_start_tx(port);
1767 	sci_start_rx(port);
1768 
1769 	return 0;
1770 }
1771 
1772 static void sci_shutdown(struct uart_port *port)
1773 {
1774 	struct sci_port *s = to_sci_port(port);
1775 
1776 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1777 
1778 	sci_stop_rx(port);
1779 	sci_stop_tx(port);
1780 
1781 	sci_free_dma(port);
1782 	sci_free_irq(s);
1783 
1784 	sci_port_disable(s);
1785 
1786 	pm_runtime_get_noresume(port->dev);
1787 }
1788 
1789 static unsigned int sci_scbrr_calc(unsigned int algo_id, unsigned int bps,
1790 				   unsigned long freq)
1791 {
1792 	switch (algo_id) {
1793 	case SCBRR_ALGO_1:
1794 		return ((freq + 16 * bps) / (16 * bps) - 1);
1795 	case SCBRR_ALGO_2:
1796 		return ((freq + 16 * bps) / (32 * bps) - 1);
1797 	case SCBRR_ALGO_3:
1798 		return (((freq * 2) + 16 * bps) / (16 * bps) - 1);
1799 	case SCBRR_ALGO_4:
1800 		return (((freq * 2) + 16 * bps) / (32 * bps) - 1);
1801 	case SCBRR_ALGO_5:
1802 		return (((freq * 1000 / 32) / bps) - 1);
1803 	}
1804 
1805 	/* Warn, but use a safe default */
1806 	WARN_ON(1);
1807 
1808 	return ((freq + 16 * bps) / (32 * bps) - 1);
1809 }
1810 
1811 static void sci_reset(struct uart_port *port)
1812 {
1813 	struct plat_sci_reg *reg;
1814 	unsigned int status;
1815 
1816 	do {
1817 		status = serial_port_in(port, SCxSR);
1818 	} while (!(status & SCxSR_TEND(port)));
1819 
1820 	serial_port_out(port, SCSCR, 0x00);	/* TE=0, RE=0, CKE1=0 */
1821 
1822 	reg = sci_getreg(port, SCFCR);
1823 	if (reg->size)
1824 		serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
1825 }
1826 
1827 static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
1828 			    struct ktermios *old)
1829 {
1830 	struct sci_port *s = to_sci_port(port);
1831 	struct plat_sci_reg *reg;
1832 	unsigned int baud, smr_val, max_baud;
1833 	int t = -1;
1834 
1835 	/*
1836 	 * earlyprintk comes here early on with port->uartclk set to zero.
1837 	 * the clock framework is not up and running at this point so here
1838 	 * we assume that 115200 is the maximum baud rate. please note that
1839 	 * the baud rate is not programmed during earlyprintk - it is assumed
1840 	 * that the previous boot loader has enabled required clocks and
1841 	 * setup the baud rate generator hardware for us already.
1842 	 */
1843 	max_baud = port->uartclk ? port->uartclk / 16 : 115200;
1844 
1845 	baud = uart_get_baud_rate(port, termios, old, 0, max_baud);
1846 	if (likely(baud && port->uartclk))
1847 		t = sci_scbrr_calc(s->cfg->scbrr_algo_id, baud, port->uartclk);
1848 
1849 	sci_port_enable(s);
1850 
1851 	sci_reset(port);
1852 
1853 	smr_val = serial_port_in(port, SCSMR) & 3;
1854 
1855 	if ((termios->c_cflag & CSIZE) == CS7)
1856 		smr_val |= 0x40;
1857 	if (termios->c_cflag & PARENB)
1858 		smr_val |= 0x20;
1859 	if (termios->c_cflag & PARODD)
1860 		smr_val |= 0x30;
1861 	if (termios->c_cflag & CSTOPB)
1862 		smr_val |= 0x08;
1863 
1864 	uart_update_timeout(port, termios->c_cflag, baud);
1865 
1866 	serial_port_out(port, SCSMR, smr_val);
1867 
1868 	dev_dbg(port->dev, "%s: SMR %x, t %x, SCSCR %x\n", __func__, smr_val, t,
1869 		s->cfg->scscr);
1870 
1871 	if (t > 0) {
1872 		if (t >= 256) {
1873 			serial_port_out(port, SCSMR, (serial_port_in(port, SCSMR) & ~3) | 1);
1874 			t >>= 2;
1875 		} else
1876 			serial_port_out(port, SCSMR, serial_port_in(port, SCSMR) & ~3);
1877 
1878 		serial_port_out(port, SCBRR, t);
1879 		udelay((1000000+(baud-1)) / baud); /* Wait one bit interval */
1880 	}
1881 
1882 	sci_init_pins(port, termios->c_cflag);
1883 
1884 	reg = sci_getreg(port, SCFCR);
1885 	if (reg->size) {
1886 		unsigned short ctrl = serial_port_in(port, SCFCR);
1887 
1888 		if (s->cfg->capabilities & SCIx_HAVE_RTSCTS) {
1889 			if (termios->c_cflag & CRTSCTS)
1890 				ctrl |= SCFCR_MCE;
1891 			else
1892 				ctrl &= ~SCFCR_MCE;
1893 		}
1894 
1895 		/*
1896 		 * As we've done a sci_reset() above, ensure we don't
1897 		 * interfere with the FIFOs while toggling MCE. As the
1898 		 * reset values could still be set, simply mask them out.
1899 		 */
1900 		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
1901 
1902 		serial_port_out(port, SCFCR, ctrl);
1903 	}
1904 
1905 	serial_port_out(port, SCSCR, s->cfg->scscr);
1906 
1907 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1908 	/*
1909 	 * Calculate delay for 1.5 DMA buffers: see
1910 	 * drivers/serial/serial_core.c::uart_update_timeout(). With 10 bits
1911 	 * (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above function
1912 	 * calculates 1 jiffie for the data plus 5 jiffies for the "slop(e)."
1913 	 * Then below we calculate 3 jiffies (12ms) for 1.5 DMA buffers (3 FIFO
1914 	 * sizes), but it has been found out experimentally, that this is not
1915 	 * enough: the driver too often needlessly runs on a DMA timeout. 20ms
1916 	 * as a minimum seem to work perfectly.
1917 	 */
1918 	if (s->chan_rx) {
1919 		s->rx_timeout = (port->timeout - HZ / 50) * s->buf_len_rx * 3 /
1920 			port->fifosize / 2;
1921 		dev_dbg(port->dev,
1922 			"DMA Rx t-out %ums, tty t-out %u jiffies\n",
1923 			s->rx_timeout * 1000 / HZ, port->timeout);
1924 		if (s->rx_timeout < msecs_to_jiffies(20))
1925 			s->rx_timeout = msecs_to_jiffies(20);
1926 	}
1927 #endif
1928 
1929 	if ((termios->c_cflag & CREAD) != 0)
1930 		sci_start_rx(port);
1931 
1932 	sci_port_disable(s);
1933 }
1934 
1935 static const char *sci_type(struct uart_port *port)
1936 {
1937 	switch (port->type) {
1938 	case PORT_IRDA:
1939 		return "irda";
1940 	case PORT_SCI:
1941 		return "sci";
1942 	case PORT_SCIF:
1943 		return "scif";
1944 	case PORT_SCIFA:
1945 		return "scifa";
1946 	case PORT_SCIFB:
1947 		return "scifb";
1948 	}
1949 
1950 	return NULL;
1951 }
1952 
1953 static inline unsigned long sci_port_size(struct uart_port *port)
1954 {
1955 	/*
1956 	 * Pick an arbitrary size that encapsulates all of the base
1957 	 * registers by default. This can be optimized later, or derived
1958 	 * from platform resource data at such a time that ports begin to
1959 	 * behave more erratically.
1960 	 */
1961 	return 64;
1962 }
1963 
1964 static int sci_remap_port(struct uart_port *port)
1965 {
1966 	unsigned long size = sci_port_size(port);
1967 
1968 	/*
1969 	 * Nothing to do if there's already an established membase.
1970 	 */
1971 	if (port->membase)
1972 		return 0;
1973 
1974 	if (port->flags & UPF_IOREMAP) {
1975 		port->membase = ioremap_nocache(port->mapbase, size);
1976 		if (unlikely(!port->membase)) {
1977 			dev_err(port->dev, "can't remap port#%d\n", port->line);
1978 			return -ENXIO;
1979 		}
1980 	} else {
1981 		/*
1982 		 * For the simple (and majority of) cases where we don't
1983 		 * need to do any remapping, just cast the cookie
1984 		 * directly.
1985 		 */
1986 		port->membase = (void __iomem *)port->mapbase;
1987 	}
1988 
1989 	return 0;
1990 }
1991 
1992 static void sci_release_port(struct uart_port *port)
1993 {
1994 	if (port->flags & UPF_IOREMAP) {
1995 		iounmap(port->membase);
1996 		port->membase = NULL;
1997 	}
1998 
1999 	release_mem_region(port->mapbase, sci_port_size(port));
2000 }
2001 
2002 static int sci_request_port(struct uart_port *port)
2003 {
2004 	unsigned long size = sci_port_size(port);
2005 	struct resource *res;
2006 	int ret;
2007 
2008 	res = request_mem_region(port->mapbase, size, dev_name(port->dev));
2009 	if (unlikely(res == NULL))
2010 		return -EBUSY;
2011 
2012 	ret = sci_remap_port(port);
2013 	if (unlikely(ret != 0)) {
2014 		release_resource(res);
2015 		return ret;
2016 	}
2017 
2018 	return 0;
2019 }
2020 
2021 static void sci_config_port(struct uart_port *port, int flags)
2022 {
2023 	if (flags & UART_CONFIG_TYPE) {
2024 		struct sci_port *sport = to_sci_port(port);
2025 
2026 		port->type = sport->cfg->type;
2027 		sci_request_port(port);
2028 	}
2029 }
2030 
2031 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2032 {
2033 	struct sci_port *s = to_sci_port(port);
2034 
2035 	if (ser->irq != s->cfg->irqs[SCIx_TXI_IRQ] || ser->irq > nr_irqs)
2036 		return -EINVAL;
2037 	if (ser->baud_base < 2400)
2038 		/* No paper tape reader for Mitch.. */
2039 		return -EINVAL;
2040 
2041 	return 0;
2042 }
2043 
2044 static struct uart_ops sci_uart_ops = {
2045 	.tx_empty	= sci_tx_empty,
2046 	.set_mctrl	= sci_set_mctrl,
2047 	.get_mctrl	= sci_get_mctrl,
2048 	.start_tx	= sci_start_tx,
2049 	.stop_tx	= sci_stop_tx,
2050 	.stop_rx	= sci_stop_rx,
2051 	.enable_ms	= sci_enable_ms,
2052 	.break_ctl	= sci_break_ctl,
2053 	.startup	= sci_startup,
2054 	.shutdown	= sci_shutdown,
2055 	.set_termios	= sci_set_termios,
2056 	.type		= sci_type,
2057 	.release_port	= sci_release_port,
2058 	.request_port	= sci_request_port,
2059 	.config_port	= sci_config_port,
2060 	.verify_port	= sci_verify_port,
2061 #ifdef CONFIG_CONSOLE_POLL
2062 	.poll_get_char	= sci_poll_get_char,
2063 	.poll_put_char	= sci_poll_put_char,
2064 #endif
2065 };
2066 
2067 static int __devinit sci_init_single(struct platform_device *dev,
2068 				     struct sci_port *sci_port,
2069 				     unsigned int index,
2070 				     struct plat_sci_port *p)
2071 {
2072 	struct uart_port *port = &sci_port->port;
2073 	int ret;
2074 
2075 	sci_port->cfg	= p;
2076 
2077 	port->ops	= &sci_uart_ops;
2078 	port->iotype	= UPIO_MEM;
2079 	port->line	= index;
2080 
2081 	switch (p->type) {
2082 	case PORT_SCIFB:
2083 		port->fifosize = 256;
2084 		break;
2085 	case PORT_SCIFA:
2086 		port->fifosize = 64;
2087 		break;
2088 	case PORT_SCIF:
2089 		port->fifosize = 16;
2090 		break;
2091 	default:
2092 		port->fifosize = 1;
2093 		break;
2094 	}
2095 
2096 	if (p->regtype == SCIx_PROBE_REGTYPE) {
2097 		ret = sci_probe_regmap(p);
2098 		if (unlikely(ret))
2099 			return ret;
2100 	}
2101 
2102 	if (dev) {
2103 		sci_port->iclk = clk_get(&dev->dev, "sci_ick");
2104 		if (IS_ERR(sci_port->iclk)) {
2105 			sci_port->iclk = clk_get(&dev->dev, "peripheral_clk");
2106 			if (IS_ERR(sci_port->iclk)) {
2107 				dev_err(&dev->dev, "can't get iclk\n");
2108 				return PTR_ERR(sci_port->iclk);
2109 			}
2110 		}
2111 
2112 		/*
2113 		 * The function clock is optional, ignore it if we can't
2114 		 * find it.
2115 		 */
2116 		sci_port->fclk = clk_get(&dev->dev, "sci_fck");
2117 		if (IS_ERR(sci_port->fclk))
2118 			sci_port->fclk = NULL;
2119 
2120 		port->dev = &dev->dev;
2121 
2122 		sci_init_gpios(sci_port);
2123 
2124 		pm_runtime_irq_safe(&dev->dev);
2125 		pm_runtime_get_noresume(&dev->dev);
2126 		pm_runtime_enable(&dev->dev);
2127 	}
2128 
2129 	sci_port->break_timer.data = (unsigned long)sci_port;
2130 	sci_port->break_timer.function = sci_break_timer;
2131 	init_timer(&sci_port->break_timer);
2132 
2133 	/*
2134 	 * Establish some sensible defaults for the error detection.
2135 	 */
2136 	if (!p->error_mask)
2137 		p->error_mask = (p->type == PORT_SCI) ?
2138 			SCI_DEFAULT_ERROR_MASK : SCIF_DEFAULT_ERROR_MASK;
2139 
2140 	/*
2141 	 * Establish sensible defaults for the overrun detection, unless
2142 	 * the part has explicitly disabled support for it.
2143 	 */
2144 	if (p->overrun_bit != SCIx_NOT_SUPPORTED) {
2145 		if (p->type == PORT_SCI)
2146 			p->overrun_bit = 5;
2147 		else if (p->scbrr_algo_id == SCBRR_ALGO_4)
2148 			p->overrun_bit = 9;
2149 		else
2150 			p->overrun_bit = 0;
2151 
2152 		/*
2153 		 * Make the error mask inclusive of overrun detection, if
2154 		 * supported.
2155 		 */
2156 		p->error_mask |= (1 << p->overrun_bit);
2157 	}
2158 
2159 	port->mapbase		= p->mapbase;
2160 	port->type		= p->type;
2161 	port->flags		= p->flags;
2162 	port->regshift		= p->regshift;
2163 
2164 	/*
2165 	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
2166 	 * for the multi-IRQ ports, which is where we are primarily
2167 	 * concerned with the shutdown path synchronization.
2168 	 *
2169 	 * For the muxed case there's nothing more to do.
2170 	 */
2171 	port->irq		= p->irqs[SCIx_RXI_IRQ];
2172 	port->irqflags		= 0;
2173 
2174 	port->serial_in		= sci_serial_in;
2175 	port->serial_out	= sci_serial_out;
2176 
2177 	if (p->dma_slave_tx > 0 && p->dma_slave_rx > 0)
2178 		dev_dbg(port->dev, "DMA tx %d, rx %d\n",
2179 			p->dma_slave_tx, p->dma_slave_rx);
2180 
2181 	return 0;
2182 }
2183 
2184 static void sci_cleanup_single(struct sci_port *port)
2185 {
2186 	sci_free_gpios(port);
2187 
2188 	clk_put(port->iclk);
2189 	clk_put(port->fclk);
2190 
2191 	pm_runtime_disable(port->port.dev);
2192 }
2193 
2194 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
2195 static void serial_console_putchar(struct uart_port *port, int ch)
2196 {
2197 	sci_poll_put_char(port, ch);
2198 }
2199 
2200 /*
2201  *	Print a string to the serial port trying not to disturb
2202  *	any possible real use of the port...
2203  */
2204 static void serial_console_write(struct console *co, const char *s,
2205 				 unsigned count)
2206 {
2207 	struct sci_port *sci_port = &sci_ports[co->index];
2208 	struct uart_port *port = &sci_port->port;
2209 	unsigned short bits;
2210 
2211 	sci_port_enable(sci_port);
2212 
2213 	uart_console_write(port, s, count, serial_console_putchar);
2214 
2215 	/* wait until fifo is empty and last bit has been transmitted */
2216 	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
2217 	while ((serial_port_in(port, SCxSR) & bits) != bits)
2218 		cpu_relax();
2219 
2220 	sci_port_disable(sci_port);
2221 }
2222 
2223 static int __devinit serial_console_setup(struct console *co, char *options)
2224 {
2225 	struct sci_port *sci_port;
2226 	struct uart_port *port;
2227 	int baud = 115200;
2228 	int bits = 8;
2229 	int parity = 'n';
2230 	int flow = 'n';
2231 	int ret;
2232 
2233 	/*
2234 	 * Refuse to handle any bogus ports.
2235 	 */
2236 	if (co->index < 0 || co->index >= SCI_NPORTS)
2237 		return -ENODEV;
2238 
2239 	sci_port = &sci_ports[co->index];
2240 	port = &sci_port->port;
2241 
2242 	/*
2243 	 * Refuse to handle uninitialized ports.
2244 	 */
2245 	if (!port->ops)
2246 		return -ENODEV;
2247 
2248 	ret = sci_remap_port(port);
2249 	if (unlikely(ret != 0))
2250 		return ret;
2251 
2252 	sci_port_enable(sci_port);
2253 
2254 	if (options)
2255 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2256 
2257 	sci_port_disable(sci_port);
2258 
2259 	return uart_set_options(port, co, baud, parity, bits, flow);
2260 }
2261 
2262 static struct console serial_console = {
2263 	.name		= "ttySC",
2264 	.device		= uart_console_device,
2265 	.write		= serial_console_write,
2266 	.setup		= serial_console_setup,
2267 	.flags		= CON_PRINTBUFFER,
2268 	.index		= -1,
2269 	.data		= &sci_uart_driver,
2270 };
2271 
2272 static struct console early_serial_console = {
2273 	.name           = "early_ttySC",
2274 	.write          = serial_console_write,
2275 	.flags          = CON_PRINTBUFFER,
2276 	.index		= -1,
2277 };
2278 
2279 static char early_serial_buf[32];
2280 
2281 static int __devinit sci_probe_earlyprintk(struct platform_device *pdev)
2282 {
2283 	struct plat_sci_port *cfg = pdev->dev.platform_data;
2284 
2285 	if (early_serial_console.data)
2286 		return -EEXIST;
2287 
2288 	early_serial_console.index = pdev->id;
2289 
2290 	sci_init_single(NULL, &sci_ports[pdev->id], pdev->id, cfg);
2291 
2292 	serial_console_setup(&early_serial_console, early_serial_buf);
2293 
2294 	if (!strstr(early_serial_buf, "keep"))
2295 		early_serial_console.flags |= CON_BOOT;
2296 
2297 	register_console(&early_serial_console);
2298 	return 0;
2299 }
2300 
2301 #define uart_console(port)	((port)->cons->index == (port)->line)
2302 
2303 static int sci_runtime_suspend(struct device *dev)
2304 {
2305 	struct sci_port *sci_port = dev_get_drvdata(dev);
2306 	struct uart_port *port = &sci_port->port;
2307 
2308 	if (uart_console(port)) {
2309 		struct plat_sci_reg *reg;
2310 
2311 		sci_port->saved_smr = serial_port_in(port, SCSMR);
2312 		sci_port->saved_brr = serial_port_in(port, SCBRR);
2313 
2314 		reg = sci_getreg(port, SCFCR);
2315 		if (reg->size)
2316 			sci_port->saved_fcr = serial_port_in(port, SCFCR);
2317 		else
2318 			sci_port->saved_fcr = 0;
2319 	}
2320 	return 0;
2321 }
2322 
2323 static int sci_runtime_resume(struct device *dev)
2324 {
2325 	struct sci_port *sci_port = dev_get_drvdata(dev);
2326 	struct uart_port *port = &sci_port->port;
2327 
2328 	if (uart_console(port)) {
2329 		sci_reset(port);
2330 		serial_port_out(port, SCSMR, sci_port->saved_smr);
2331 		serial_port_out(port, SCBRR, sci_port->saved_brr);
2332 
2333 		if (sci_port->saved_fcr)
2334 			serial_port_out(port, SCFCR, sci_port->saved_fcr);
2335 
2336 		serial_port_out(port, SCSCR, sci_port->cfg->scscr);
2337 	}
2338 	return 0;
2339 }
2340 
2341 #define SCI_CONSOLE	(&serial_console)
2342 
2343 #else
2344 static inline int __devinit sci_probe_earlyprintk(struct platform_device *pdev)
2345 {
2346 	return -EINVAL;
2347 }
2348 
2349 #define SCI_CONSOLE	NULL
2350 #define sci_runtime_suspend	NULL
2351 #define sci_runtime_resume	NULL
2352 
2353 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE */
2354 
2355 static char banner[] __initdata =
2356 	KERN_INFO "SuperH SCI(F) driver initialized\n";
2357 
2358 static struct uart_driver sci_uart_driver = {
2359 	.owner		= THIS_MODULE,
2360 	.driver_name	= "sci",
2361 	.dev_name	= "ttySC",
2362 	.major		= SCI_MAJOR,
2363 	.minor		= SCI_MINOR_START,
2364 	.nr		= SCI_NPORTS,
2365 	.cons		= SCI_CONSOLE,
2366 };
2367 
2368 static int sci_remove(struct platform_device *dev)
2369 {
2370 	struct sci_port *port = platform_get_drvdata(dev);
2371 
2372 	cpufreq_unregister_notifier(&port->freq_transition,
2373 				    CPUFREQ_TRANSITION_NOTIFIER);
2374 
2375 	uart_remove_one_port(&sci_uart_driver, &port->port);
2376 
2377 	sci_cleanup_single(port);
2378 
2379 	return 0;
2380 }
2381 
2382 static int __devinit sci_probe_single(struct platform_device *dev,
2383 				      unsigned int index,
2384 				      struct plat_sci_port *p,
2385 				      struct sci_port *sciport)
2386 {
2387 	int ret;
2388 
2389 	/* Sanity check */
2390 	if (unlikely(index >= SCI_NPORTS)) {
2391 		dev_notice(&dev->dev, "Attempting to register port "
2392 			   "%d when only %d are available.\n",
2393 			   index+1, SCI_NPORTS);
2394 		dev_notice(&dev->dev, "Consider bumping "
2395 			   "CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
2396 		return -EINVAL;
2397 	}
2398 
2399 	ret = sci_init_single(dev, sciport, index, p);
2400 	if (ret)
2401 		return ret;
2402 
2403 	ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
2404 	if (ret) {
2405 		sci_cleanup_single(sciport);
2406 		return ret;
2407 	}
2408 
2409 	return 0;
2410 }
2411 
2412 static int __devinit sci_probe(struct platform_device *dev)
2413 {
2414 	struct plat_sci_port *p = dev->dev.platform_data;
2415 	struct sci_port *sp = &sci_ports[dev->id];
2416 	int ret;
2417 
2418 	/*
2419 	 * If we've come here via earlyprintk initialization, head off to
2420 	 * the special early probe. We don't have sufficient device state
2421 	 * to make it beyond this yet.
2422 	 */
2423 	if (is_early_platform_device(dev))
2424 		return sci_probe_earlyprintk(dev);
2425 
2426 	platform_set_drvdata(dev, sp);
2427 
2428 	ret = sci_probe_single(dev, dev->id, p, sp);
2429 	if (ret)
2430 		return ret;
2431 
2432 	sp->freq_transition.notifier_call = sci_notifier;
2433 
2434 	ret = cpufreq_register_notifier(&sp->freq_transition,
2435 					CPUFREQ_TRANSITION_NOTIFIER);
2436 	if (unlikely(ret < 0)) {
2437 		sci_cleanup_single(sp);
2438 		return ret;
2439 	}
2440 
2441 #ifdef CONFIG_SH_STANDARD_BIOS
2442 	sh_bios_gdb_detach();
2443 #endif
2444 
2445 	return 0;
2446 }
2447 
2448 static int sci_suspend(struct device *dev)
2449 {
2450 	struct sci_port *sport = dev_get_drvdata(dev);
2451 
2452 	if (sport)
2453 		uart_suspend_port(&sci_uart_driver, &sport->port);
2454 
2455 	return 0;
2456 }
2457 
2458 static int sci_resume(struct device *dev)
2459 {
2460 	struct sci_port *sport = dev_get_drvdata(dev);
2461 
2462 	if (sport)
2463 		uart_resume_port(&sci_uart_driver, &sport->port);
2464 
2465 	return 0;
2466 }
2467 
2468 static const struct dev_pm_ops sci_dev_pm_ops = {
2469 	.runtime_suspend = sci_runtime_suspend,
2470 	.runtime_resume = sci_runtime_resume,
2471 	.suspend	= sci_suspend,
2472 	.resume		= sci_resume,
2473 };
2474 
2475 static struct platform_driver sci_driver = {
2476 	.probe		= sci_probe,
2477 	.remove		= sci_remove,
2478 	.driver		= {
2479 		.name	= "sh-sci",
2480 		.owner	= THIS_MODULE,
2481 		.pm	= &sci_dev_pm_ops,
2482 	},
2483 };
2484 
2485 static int __init sci_init(void)
2486 {
2487 	int ret;
2488 
2489 	printk(banner);
2490 
2491 	ret = uart_register_driver(&sci_uart_driver);
2492 	if (likely(ret == 0)) {
2493 		ret = platform_driver_register(&sci_driver);
2494 		if (unlikely(ret))
2495 			uart_unregister_driver(&sci_uart_driver);
2496 	}
2497 
2498 	return ret;
2499 }
2500 
2501 static void __exit sci_exit(void)
2502 {
2503 	platform_driver_unregister(&sci_driver);
2504 	uart_unregister_driver(&sci_uart_driver);
2505 }
2506 
2507 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
2508 early_platform_init_buffer("earlyprintk", &sci_driver,
2509 			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
2510 #endif
2511 module_init(sci_init);
2512 module_exit(sci_exit);
2513 
2514 MODULE_LICENSE("GPL");
2515 MODULE_ALIAS("platform:sh-sci");
2516 MODULE_AUTHOR("Paul Mundt");
2517 MODULE_DESCRIPTION("SuperH SCI(F) serial driver");
2518