1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * *************************************************************************** 4 * Marvell Armada-3700 Serial Driver 5 * Author: Wilson Ding <dingwei@marvell.com> 6 * Copyright (C) 2015 Marvell International Ltd. 7 * *************************************************************************** 8 */ 9 10 #include <linux/clk.h> 11 #include <linux/clk-provider.h> 12 #include <linux/console.h> 13 #include <linux/delay.h> 14 #include <linux/device.h> 15 #include <linux/init.h> 16 #include <linux/io.h> 17 #include <linux/iopoll.h> 18 #include <linux/math64.h> 19 #include <linux/of.h> 20 #include <linux/of_address.h> 21 #include <linux/of_device.h> 22 #include <linux/of_irq.h> 23 #include <linux/of_platform.h> 24 #include <linux/platform_device.h> 25 #include <linux/serial.h> 26 #include <linux/serial_core.h> 27 #include <linux/slab.h> 28 #include <linux/tty.h> 29 #include <linux/tty_flip.h> 30 31 /* Register Map */ 32 #define UART_STD_RBR 0x00 33 #define UART_EXT_RBR 0x18 34 35 #define UART_STD_TSH 0x04 36 #define UART_EXT_TSH 0x1C 37 38 #define UART_STD_CTRL1 0x08 39 #define UART_EXT_CTRL1 0x04 40 #define CTRL_SOFT_RST BIT(31) 41 #define CTRL_TXFIFO_RST BIT(15) 42 #define CTRL_RXFIFO_RST BIT(14) 43 #define CTRL_SND_BRK_SEQ BIT(11) 44 #define CTRL_BRK_DET_INT BIT(3) 45 #define CTRL_FRM_ERR_INT BIT(2) 46 #define CTRL_PAR_ERR_INT BIT(1) 47 #define CTRL_OVR_ERR_INT BIT(0) 48 #define CTRL_BRK_INT (CTRL_BRK_DET_INT | CTRL_FRM_ERR_INT | \ 49 CTRL_PAR_ERR_INT | CTRL_OVR_ERR_INT) 50 51 #define UART_STD_CTRL2 UART_STD_CTRL1 52 #define UART_EXT_CTRL2 0x20 53 #define CTRL_STD_TX_RDY_INT BIT(5) 54 #define CTRL_EXT_TX_RDY_INT BIT(6) 55 #define CTRL_STD_RX_RDY_INT BIT(4) 56 #define CTRL_EXT_RX_RDY_INT BIT(5) 57 58 #define UART_STAT 0x0C 59 #define STAT_TX_FIFO_EMP BIT(13) 60 #define STAT_TX_FIFO_FUL BIT(11) 61 #define STAT_TX_EMP BIT(6) 62 #define STAT_STD_TX_RDY BIT(5) 63 #define STAT_EXT_TX_RDY BIT(15) 64 #define STAT_STD_RX_RDY BIT(4) 65 #define STAT_EXT_RX_RDY BIT(14) 66 #define STAT_BRK_DET BIT(3) 67 #define STAT_FRM_ERR BIT(2) 68 #define STAT_PAR_ERR BIT(1) 69 #define STAT_OVR_ERR BIT(0) 70 #define STAT_BRK_ERR (STAT_BRK_DET | STAT_FRM_ERR \ 71 | STAT_PAR_ERR | STAT_OVR_ERR) 72 73 /* 74 * Marvell Armada 3700 Functional Specifications describes that bit 21 of UART 75 * Clock Control register controls UART1 and bit 20 controls UART2. But in 76 * reality bit 21 controls UART2 and bit 20 controls UART1. This seems to be an 77 * error in Marvell's documentation. Hence following CLK_DIS macros are swapped. 78 */ 79 80 #define UART_BRDV 0x10 81 /* These bits are located in UART1 address space and control UART2 */ 82 #define UART2_CLK_DIS BIT(21) 83 /* These bits are located in UART1 address space and control UART1 */ 84 #define UART1_CLK_DIS BIT(20) 85 /* These bits are located in UART1 address space and control both UARTs */ 86 #define CLK_NO_XTAL BIT(19) 87 #define CLK_TBG_DIV1_SHIFT 15 88 #define CLK_TBG_DIV1_MASK 0x7 89 #define CLK_TBG_DIV1_MAX 6 90 #define CLK_TBG_DIV2_SHIFT 12 91 #define CLK_TBG_DIV2_MASK 0x7 92 #define CLK_TBG_DIV2_MAX 6 93 #define CLK_TBG_SEL_SHIFT 10 94 #define CLK_TBG_SEL_MASK 0x3 95 /* These bits are located in both UARTs address space */ 96 #define BRDV_BAUD_MASK 0x3FF 97 #define BRDV_BAUD_MAX BRDV_BAUD_MASK 98 99 #define UART_OSAMP 0x14 100 #define OSAMP_DEFAULT_DIVISOR 16 101 #define OSAMP_DIVISORS_MASK 0x3F3F3F3F 102 #define OSAMP_MAX_DIVISOR 63 103 104 #define MVEBU_NR_UARTS 2 105 106 #define MVEBU_UART_TYPE "mvebu-uart" 107 #define DRIVER_NAME "mvebu_serial" 108 109 enum { 110 /* Either there is only one summed IRQ... */ 111 UART_IRQ_SUM = 0, 112 /* ...or there are two separate IRQ for RX and TX */ 113 UART_RX_IRQ = 0, 114 UART_TX_IRQ, 115 UART_IRQ_COUNT 116 }; 117 118 /* Diverging register offsets */ 119 struct uart_regs_layout { 120 unsigned int rbr; 121 unsigned int tsh; 122 unsigned int ctrl; 123 unsigned int intr; 124 }; 125 126 /* Diverging flags */ 127 struct uart_flags { 128 unsigned int ctrl_tx_rdy_int; 129 unsigned int ctrl_rx_rdy_int; 130 unsigned int stat_tx_rdy; 131 unsigned int stat_rx_rdy; 132 }; 133 134 /* Driver data, a structure for each UART port */ 135 struct mvebu_uart_driver_data { 136 bool is_ext; 137 struct uart_regs_layout regs; 138 struct uart_flags flags; 139 }; 140 141 /* Saved registers during suspend */ 142 struct mvebu_uart_pm_regs { 143 unsigned int rbr; 144 unsigned int tsh; 145 unsigned int ctrl; 146 unsigned int intr; 147 unsigned int stat; 148 unsigned int brdv; 149 unsigned int osamp; 150 }; 151 152 /* MVEBU UART driver structure */ 153 struct mvebu_uart { 154 struct uart_port *port; 155 struct clk *clk; 156 int irq[UART_IRQ_COUNT]; 157 struct mvebu_uart_driver_data *data; 158 #if defined(CONFIG_PM) 159 struct mvebu_uart_pm_regs pm_regs; 160 #endif /* CONFIG_PM */ 161 }; 162 163 static struct mvebu_uart *to_mvuart(struct uart_port *port) 164 { 165 return (struct mvebu_uart *)port->private_data; 166 } 167 168 #define IS_EXTENDED(port) (to_mvuart(port)->data->is_ext) 169 170 #define UART_RBR(port) (to_mvuart(port)->data->regs.rbr) 171 #define UART_TSH(port) (to_mvuart(port)->data->regs.tsh) 172 #define UART_CTRL(port) (to_mvuart(port)->data->regs.ctrl) 173 #define UART_INTR(port) (to_mvuart(port)->data->regs.intr) 174 175 #define CTRL_TX_RDY_INT(port) (to_mvuart(port)->data->flags.ctrl_tx_rdy_int) 176 #define CTRL_RX_RDY_INT(port) (to_mvuart(port)->data->flags.ctrl_rx_rdy_int) 177 #define STAT_TX_RDY(port) (to_mvuart(port)->data->flags.stat_tx_rdy) 178 #define STAT_RX_RDY(port) (to_mvuart(port)->data->flags.stat_rx_rdy) 179 180 static struct uart_port mvebu_uart_ports[MVEBU_NR_UARTS]; 181 182 static DEFINE_SPINLOCK(mvebu_uart_lock); 183 184 /* Core UART Driver Operations */ 185 static unsigned int mvebu_uart_tx_empty(struct uart_port *port) 186 { 187 unsigned long flags; 188 unsigned int st; 189 190 spin_lock_irqsave(&port->lock, flags); 191 st = readl(port->membase + UART_STAT); 192 spin_unlock_irqrestore(&port->lock, flags); 193 194 return (st & STAT_TX_EMP) ? TIOCSER_TEMT : 0; 195 } 196 197 static unsigned int mvebu_uart_get_mctrl(struct uart_port *port) 198 { 199 return TIOCM_CTS | TIOCM_DSR | TIOCM_CAR; 200 } 201 202 static void mvebu_uart_set_mctrl(struct uart_port *port, 203 unsigned int mctrl) 204 { 205 /* 206 * Even if we do not support configuring the modem control lines, this 207 * function must be proided to the serial core 208 */ 209 } 210 211 static void mvebu_uart_stop_tx(struct uart_port *port) 212 { 213 unsigned int ctl = readl(port->membase + UART_INTR(port)); 214 215 ctl &= ~CTRL_TX_RDY_INT(port); 216 writel(ctl, port->membase + UART_INTR(port)); 217 } 218 219 static void mvebu_uart_start_tx(struct uart_port *port) 220 { 221 unsigned int ctl; 222 struct circ_buf *xmit = &port->state->xmit; 223 224 if (IS_EXTENDED(port) && !uart_circ_empty(xmit)) { 225 writel(xmit->buf[xmit->tail], port->membase + UART_TSH(port)); 226 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); 227 port->icount.tx++; 228 } 229 230 ctl = readl(port->membase + UART_INTR(port)); 231 ctl |= CTRL_TX_RDY_INT(port); 232 writel(ctl, port->membase + UART_INTR(port)); 233 } 234 235 static void mvebu_uart_stop_rx(struct uart_port *port) 236 { 237 unsigned int ctl; 238 239 ctl = readl(port->membase + UART_CTRL(port)); 240 ctl &= ~CTRL_BRK_INT; 241 writel(ctl, port->membase + UART_CTRL(port)); 242 243 ctl = readl(port->membase + UART_INTR(port)); 244 ctl &= ~CTRL_RX_RDY_INT(port); 245 writel(ctl, port->membase + UART_INTR(port)); 246 } 247 248 static void mvebu_uart_break_ctl(struct uart_port *port, int brk) 249 { 250 unsigned int ctl; 251 unsigned long flags; 252 253 spin_lock_irqsave(&port->lock, flags); 254 ctl = readl(port->membase + UART_CTRL(port)); 255 if (brk == -1) 256 ctl |= CTRL_SND_BRK_SEQ; 257 else 258 ctl &= ~CTRL_SND_BRK_SEQ; 259 writel(ctl, port->membase + UART_CTRL(port)); 260 spin_unlock_irqrestore(&port->lock, flags); 261 } 262 263 static void mvebu_uart_rx_chars(struct uart_port *port, unsigned int status) 264 { 265 struct tty_port *tport = &port->state->port; 266 unsigned char ch = 0; 267 char flag = 0; 268 int ret; 269 270 do { 271 if (status & STAT_RX_RDY(port)) { 272 ch = readl(port->membase + UART_RBR(port)); 273 ch &= 0xff; 274 flag = TTY_NORMAL; 275 port->icount.rx++; 276 277 if (status & STAT_PAR_ERR) 278 port->icount.parity++; 279 } 280 281 /* 282 * For UART2, error bits are not cleared on buffer read. 283 * This causes interrupt loop and system hang. 284 */ 285 if (IS_EXTENDED(port) && (status & STAT_BRK_ERR)) { 286 ret = readl(port->membase + UART_STAT); 287 ret |= STAT_BRK_ERR; 288 writel(ret, port->membase + UART_STAT); 289 } 290 291 if (status & STAT_BRK_DET) { 292 port->icount.brk++; 293 status &= ~(STAT_FRM_ERR | STAT_PAR_ERR); 294 if (uart_handle_break(port)) 295 goto ignore_char; 296 } 297 298 if (status & STAT_OVR_ERR) 299 port->icount.overrun++; 300 301 if (status & STAT_FRM_ERR) 302 port->icount.frame++; 303 304 if (uart_handle_sysrq_char(port, ch)) 305 goto ignore_char; 306 307 if (status & port->ignore_status_mask & STAT_PAR_ERR) 308 status &= ~STAT_RX_RDY(port); 309 310 status &= port->read_status_mask; 311 312 if (status & STAT_PAR_ERR) 313 flag = TTY_PARITY; 314 315 status &= ~port->ignore_status_mask; 316 317 if (status & STAT_RX_RDY(port)) 318 tty_insert_flip_char(tport, ch, flag); 319 320 if (status & STAT_BRK_DET) 321 tty_insert_flip_char(tport, 0, TTY_BREAK); 322 323 if (status & STAT_FRM_ERR) 324 tty_insert_flip_char(tport, 0, TTY_FRAME); 325 326 if (status & STAT_OVR_ERR) 327 tty_insert_flip_char(tport, 0, TTY_OVERRUN); 328 329 ignore_char: 330 status = readl(port->membase + UART_STAT); 331 } while (status & (STAT_RX_RDY(port) | STAT_BRK_DET)); 332 333 tty_flip_buffer_push(tport); 334 } 335 336 static void mvebu_uart_tx_chars(struct uart_port *port, unsigned int status) 337 { 338 struct circ_buf *xmit = &port->state->xmit; 339 unsigned int count; 340 unsigned int st; 341 342 if (port->x_char) { 343 writel(port->x_char, port->membase + UART_TSH(port)); 344 port->icount.tx++; 345 port->x_char = 0; 346 return; 347 } 348 349 if (uart_circ_empty(xmit) || uart_tx_stopped(port)) { 350 mvebu_uart_stop_tx(port); 351 return; 352 } 353 354 for (count = 0; count < port->fifosize; count++) { 355 writel(xmit->buf[xmit->tail], port->membase + UART_TSH(port)); 356 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); 357 port->icount.tx++; 358 359 if (uart_circ_empty(xmit)) 360 break; 361 362 st = readl(port->membase + UART_STAT); 363 if (st & STAT_TX_FIFO_FUL) 364 break; 365 } 366 367 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 368 uart_write_wakeup(port); 369 370 if (uart_circ_empty(xmit)) 371 mvebu_uart_stop_tx(port); 372 } 373 374 static irqreturn_t mvebu_uart_isr(int irq, void *dev_id) 375 { 376 struct uart_port *port = (struct uart_port *)dev_id; 377 unsigned int st = readl(port->membase + UART_STAT); 378 379 if (st & (STAT_RX_RDY(port) | STAT_OVR_ERR | STAT_FRM_ERR | 380 STAT_BRK_DET)) 381 mvebu_uart_rx_chars(port, st); 382 383 if (st & STAT_TX_RDY(port)) 384 mvebu_uart_tx_chars(port, st); 385 386 return IRQ_HANDLED; 387 } 388 389 static irqreturn_t mvebu_uart_rx_isr(int irq, void *dev_id) 390 { 391 struct uart_port *port = (struct uart_port *)dev_id; 392 unsigned int st = readl(port->membase + UART_STAT); 393 394 if (st & (STAT_RX_RDY(port) | STAT_OVR_ERR | STAT_FRM_ERR | 395 STAT_BRK_DET)) 396 mvebu_uart_rx_chars(port, st); 397 398 return IRQ_HANDLED; 399 } 400 401 static irqreturn_t mvebu_uart_tx_isr(int irq, void *dev_id) 402 { 403 struct uart_port *port = (struct uart_port *)dev_id; 404 unsigned int st = readl(port->membase + UART_STAT); 405 406 if (st & STAT_TX_RDY(port)) 407 mvebu_uart_tx_chars(port, st); 408 409 return IRQ_HANDLED; 410 } 411 412 static int mvebu_uart_startup(struct uart_port *port) 413 { 414 struct mvebu_uart *mvuart = to_mvuart(port); 415 unsigned int ctl; 416 int ret; 417 418 writel(CTRL_TXFIFO_RST | CTRL_RXFIFO_RST, 419 port->membase + UART_CTRL(port)); 420 udelay(1); 421 422 /* Clear the error bits of state register before IRQ request */ 423 ret = readl(port->membase + UART_STAT); 424 ret |= STAT_BRK_ERR; 425 writel(ret, port->membase + UART_STAT); 426 427 writel(CTRL_BRK_INT, port->membase + UART_CTRL(port)); 428 429 ctl = readl(port->membase + UART_INTR(port)); 430 ctl |= CTRL_RX_RDY_INT(port); 431 writel(ctl, port->membase + UART_INTR(port)); 432 433 if (!mvuart->irq[UART_TX_IRQ]) { 434 /* Old bindings with just one interrupt (UART0 only) */ 435 ret = devm_request_irq(port->dev, mvuart->irq[UART_IRQ_SUM], 436 mvebu_uart_isr, port->irqflags, 437 dev_name(port->dev), port); 438 if (ret) { 439 dev_err(port->dev, "unable to request IRQ %d\n", 440 mvuart->irq[UART_IRQ_SUM]); 441 return ret; 442 } 443 } else { 444 /* New bindings with an IRQ for RX and TX (both UART) */ 445 ret = devm_request_irq(port->dev, mvuart->irq[UART_RX_IRQ], 446 mvebu_uart_rx_isr, port->irqflags, 447 dev_name(port->dev), port); 448 if (ret) { 449 dev_err(port->dev, "unable to request IRQ %d\n", 450 mvuart->irq[UART_RX_IRQ]); 451 return ret; 452 } 453 454 ret = devm_request_irq(port->dev, mvuart->irq[UART_TX_IRQ], 455 mvebu_uart_tx_isr, port->irqflags, 456 dev_name(port->dev), 457 port); 458 if (ret) { 459 dev_err(port->dev, "unable to request IRQ %d\n", 460 mvuart->irq[UART_TX_IRQ]); 461 devm_free_irq(port->dev, mvuart->irq[UART_RX_IRQ], 462 port); 463 return ret; 464 } 465 } 466 467 return 0; 468 } 469 470 static void mvebu_uart_shutdown(struct uart_port *port) 471 { 472 struct mvebu_uart *mvuart = to_mvuart(port); 473 474 writel(0, port->membase + UART_INTR(port)); 475 476 if (!mvuart->irq[UART_TX_IRQ]) { 477 devm_free_irq(port->dev, mvuart->irq[UART_IRQ_SUM], port); 478 } else { 479 devm_free_irq(port->dev, mvuart->irq[UART_RX_IRQ], port); 480 devm_free_irq(port->dev, mvuart->irq[UART_TX_IRQ], port); 481 } 482 } 483 484 static unsigned int mvebu_uart_baud_rate_set(struct uart_port *port, unsigned int baud) 485 { 486 unsigned int d_divisor, m_divisor; 487 unsigned long flags; 488 u32 brdv, osamp; 489 490 if (!port->uartclk) 491 return 0; 492 493 /* 494 * The baudrate is derived from the UART clock thanks to divisors: 495 * > d1 * d2 ("TBG divisors"): can divide only TBG clock from 1 to 6 496 * > D ("baud generator"): can divide the clock from 1 to 1023 497 * > M ("fractional divisor"): allows a better accuracy (from 1 to 63) 498 * 499 * Exact formulas for calculating baudrate: 500 * 501 * with default x16 scheme: 502 * baudrate = xtal / (d * 16) 503 * baudrate = tbg / (d1 * d2 * d * 16) 504 * 505 * with fractional divisor: 506 * baudrate = 10 * xtal / (d * (3 * (m1 + m2) + 2 * (m3 + m4))) 507 * baudrate = 10 * tbg / (d1*d2 * d * (3 * (m1 + m2) + 2 * (m3 + m4))) 508 * 509 * Oversampling value: 510 * osamp = (m1 << 0) | (m2 << 8) | (m3 << 16) | (m4 << 24); 511 * 512 * Where m1 controls number of clock cycles per bit for bits 1,2,3; 513 * m2 for bits 4,5,6; m3 for bits 7,8 and m4 for bits 9,10. 514 * 515 * To simplify baudrate setup set all the M prescalers to the same 516 * value. For baudrates 9600 Bd and higher, it is enough to use the 517 * default (x16) divisor or fractional divisor with M = 63, so there 518 * is no need to use real fractional support (where the M prescalers 519 * are not equal). 520 * 521 * When all the M prescalers are zeroed then default (x16) divisor is 522 * used. Default x16 scheme is more stable than M (fractional divisor), 523 * so use M only when D divisor is not enough to derive baudrate. 524 * 525 * Member port->uartclk is either xtal clock rate or TBG clock rate 526 * divided by (d1 * d2). So d1 and d2 are already set by the UART clock 527 * driver (and UART driver itself cannot change them). Moreover they are 528 * shared between both UARTs. 529 */ 530 531 m_divisor = OSAMP_DEFAULT_DIVISOR; 532 d_divisor = DIV_ROUND_CLOSEST(port->uartclk, baud * m_divisor); 533 534 if (d_divisor > BRDV_BAUD_MAX) { 535 /* 536 * Experiments show that small M divisors are unstable. 537 * Use maximal possible M = 63 and calculate D divisor. 538 */ 539 m_divisor = OSAMP_MAX_DIVISOR; 540 d_divisor = DIV_ROUND_CLOSEST(port->uartclk, baud * m_divisor); 541 } 542 543 if (d_divisor < 1) 544 d_divisor = 1; 545 else if (d_divisor > BRDV_BAUD_MAX) 546 d_divisor = BRDV_BAUD_MAX; 547 548 spin_lock_irqsave(&mvebu_uart_lock, flags); 549 brdv = readl(port->membase + UART_BRDV); 550 brdv &= ~BRDV_BAUD_MASK; 551 brdv |= d_divisor; 552 writel(brdv, port->membase + UART_BRDV); 553 spin_unlock_irqrestore(&mvebu_uart_lock, flags); 554 555 osamp = readl(port->membase + UART_OSAMP); 556 osamp &= ~OSAMP_DIVISORS_MASK; 557 if (m_divisor != OSAMP_DEFAULT_DIVISOR) 558 osamp |= (m_divisor << 0) | (m_divisor << 8) | 559 (m_divisor << 16) | (m_divisor << 24); 560 writel(osamp, port->membase + UART_OSAMP); 561 562 return DIV_ROUND_CLOSEST(port->uartclk, d_divisor * m_divisor); 563 } 564 565 static void mvebu_uart_set_termios(struct uart_port *port, 566 struct ktermios *termios, 567 struct ktermios *old) 568 { 569 unsigned long flags; 570 unsigned int baud, min_baud, max_baud; 571 572 spin_lock_irqsave(&port->lock, flags); 573 574 port->read_status_mask = STAT_RX_RDY(port) | STAT_OVR_ERR | 575 STAT_TX_RDY(port) | STAT_TX_FIFO_FUL; 576 577 if (termios->c_iflag & INPCK) 578 port->read_status_mask |= STAT_FRM_ERR | STAT_PAR_ERR; 579 580 port->ignore_status_mask = 0; 581 if (termios->c_iflag & IGNPAR) 582 port->ignore_status_mask |= 583 STAT_FRM_ERR | STAT_PAR_ERR | STAT_OVR_ERR; 584 585 if ((termios->c_cflag & CREAD) == 0) 586 port->ignore_status_mask |= STAT_RX_RDY(port) | STAT_BRK_ERR; 587 588 /* 589 * Maximal divisor is 1023 and maximal fractional divisor is 63. And 590 * experiments show that baudrates above 1/80 of parent clock rate are 591 * not stable. So disallow baudrates above 1/80 of the parent clock 592 * rate. If port->uartclk is not available, then 593 * mvebu_uart_baud_rate_set() fails, so values min_baud and max_baud 594 * in this case do not matter. 595 */ 596 min_baud = DIV_ROUND_UP(port->uartclk, BRDV_BAUD_MAX * 597 OSAMP_MAX_DIVISOR); 598 max_baud = port->uartclk / 80; 599 600 baud = uart_get_baud_rate(port, termios, old, min_baud, max_baud); 601 baud = mvebu_uart_baud_rate_set(port, baud); 602 603 /* In case baudrate cannot be changed, report previous old value */ 604 if (baud == 0 && old) 605 baud = tty_termios_baud_rate(old); 606 607 /* Only the following flag changes are supported */ 608 if (old) { 609 termios->c_iflag &= INPCK | IGNPAR; 610 termios->c_iflag |= old->c_iflag & ~(INPCK | IGNPAR); 611 termios->c_cflag &= CREAD | CBAUD; 612 termios->c_cflag |= old->c_cflag & ~(CREAD | CBAUD); 613 termios->c_cflag |= CS8; 614 } 615 616 if (baud != 0) { 617 tty_termios_encode_baud_rate(termios, baud, baud); 618 uart_update_timeout(port, termios->c_cflag, baud); 619 } 620 621 spin_unlock_irqrestore(&port->lock, flags); 622 } 623 624 static const char *mvebu_uart_type(struct uart_port *port) 625 { 626 return MVEBU_UART_TYPE; 627 } 628 629 static void mvebu_uart_release_port(struct uart_port *port) 630 { 631 /* Nothing to do here */ 632 } 633 634 static int mvebu_uart_request_port(struct uart_port *port) 635 { 636 return 0; 637 } 638 639 #ifdef CONFIG_CONSOLE_POLL 640 static int mvebu_uart_get_poll_char(struct uart_port *port) 641 { 642 unsigned int st = readl(port->membase + UART_STAT); 643 644 if (!(st & STAT_RX_RDY(port))) 645 return NO_POLL_CHAR; 646 647 return readl(port->membase + UART_RBR(port)); 648 } 649 650 static void mvebu_uart_put_poll_char(struct uart_port *port, unsigned char c) 651 { 652 unsigned int st; 653 654 for (;;) { 655 st = readl(port->membase + UART_STAT); 656 657 if (!(st & STAT_TX_FIFO_FUL)) 658 break; 659 660 udelay(1); 661 } 662 663 writel(c, port->membase + UART_TSH(port)); 664 } 665 #endif 666 667 static const struct uart_ops mvebu_uart_ops = { 668 .tx_empty = mvebu_uart_tx_empty, 669 .set_mctrl = mvebu_uart_set_mctrl, 670 .get_mctrl = mvebu_uart_get_mctrl, 671 .stop_tx = mvebu_uart_stop_tx, 672 .start_tx = mvebu_uart_start_tx, 673 .stop_rx = mvebu_uart_stop_rx, 674 .break_ctl = mvebu_uart_break_ctl, 675 .startup = mvebu_uart_startup, 676 .shutdown = mvebu_uart_shutdown, 677 .set_termios = mvebu_uart_set_termios, 678 .type = mvebu_uart_type, 679 .release_port = mvebu_uart_release_port, 680 .request_port = mvebu_uart_request_port, 681 #ifdef CONFIG_CONSOLE_POLL 682 .poll_get_char = mvebu_uart_get_poll_char, 683 .poll_put_char = mvebu_uart_put_poll_char, 684 #endif 685 }; 686 687 /* Console Driver Operations */ 688 689 #ifdef CONFIG_SERIAL_MVEBU_CONSOLE 690 /* Early Console */ 691 static void mvebu_uart_putc(struct uart_port *port, unsigned char c) 692 { 693 unsigned int st; 694 695 for (;;) { 696 st = readl(port->membase + UART_STAT); 697 if (!(st & STAT_TX_FIFO_FUL)) 698 break; 699 } 700 701 /* At early stage, DT is not parsed yet, only use UART0 */ 702 writel(c, port->membase + UART_STD_TSH); 703 704 for (;;) { 705 st = readl(port->membase + UART_STAT); 706 if (st & STAT_TX_FIFO_EMP) 707 break; 708 } 709 } 710 711 static void mvebu_uart_putc_early_write(struct console *con, 712 const char *s, 713 unsigned int n) 714 { 715 struct earlycon_device *dev = con->data; 716 717 uart_console_write(&dev->port, s, n, mvebu_uart_putc); 718 } 719 720 static int __init 721 mvebu_uart_early_console_setup(struct earlycon_device *device, 722 const char *opt) 723 { 724 if (!device->port.membase) 725 return -ENODEV; 726 727 device->con->write = mvebu_uart_putc_early_write; 728 729 return 0; 730 } 731 732 EARLYCON_DECLARE(ar3700_uart, mvebu_uart_early_console_setup); 733 OF_EARLYCON_DECLARE(ar3700_uart, "marvell,armada-3700-uart", 734 mvebu_uart_early_console_setup); 735 736 static void wait_for_xmitr(struct uart_port *port) 737 { 738 u32 val; 739 740 readl_poll_timeout_atomic(port->membase + UART_STAT, val, 741 (val & STAT_TX_RDY(port)), 1, 10000); 742 } 743 744 static void wait_for_xmite(struct uart_port *port) 745 { 746 u32 val; 747 748 readl_poll_timeout_atomic(port->membase + UART_STAT, val, 749 (val & STAT_TX_EMP), 1, 10000); 750 } 751 752 static void mvebu_uart_console_putchar(struct uart_port *port, unsigned char ch) 753 { 754 wait_for_xmitr(port); 755 writel(ch, port->membase + UART_TSH(port)); 756 } 757 758 static void mvebu_uart_console_write(struct console *co, const char *s, 759 unsigned int count) 760 { 761 struct uart_port *port = &mvebu_uart_ports[co->index]; 762 unsigned long flags; 763 unsigned int ier, intr, ctl; 764 int locked = 1; 765 766 if (oops_in_progress) 767 locked = spin_trylock_irqsave(&port->lock, flags); 768 else 769 spin_lock_irqsave(&port->lock, flags); 770 771 ier = readl(port->membase + UART_CTRL(port)) & CTRL_BRK_INT; 772 intr = readl(port->membase + UART_INTR(port)) & 773 (CTRL_RX_RDY_INT(port) | CTRL_TX_RDY_INT(port)); 774 writel(0, port->membase + UART_CTRL(port)); 775 writel(0, port->membase + UART_INTR(port)); 776 777 uart_console_write(port, s, count, mvebu_uart_console_putchar); 778 779 wait_for_xmite(port); 780 781 if (ier) 782 writel(ier, port->membase + UART_CTRL(port)); 783 784 if (intr) { 785 ctl = intr | readl(port->membase + UART_INTR(port)); 786 writel(ctl, port->membase + UART_INTR(port)); 787 } 788 789 if (locked) 790 spin_unlock_irqrestore(&port->lock, flags); 791 } 792 793 static int mvebu_uart_console_setup(struct console *co, char *options) 794 { 795 struct uart_port *port; 796 int baud = 9600; 797 int bits = 8; 798 int parity = 'n'; 799 int flow = 'n'; 800 801 if (co->index < 0 || co->index >= MVEBU_NR_UARTS) 802 return -EINVAL; 803 804 port = &mvebu_uart_ports[co->index]; 805 806 if (!port->mapbase || !port->membase) { 807 pr_debug("console on ttyMV%i not present\n", co->index); 808 return -ENODEV; 809 } 810 811 if (options) 812 uart_parse_options(options, &baud, &parity, &bits, &flow); 813 814 return uart_set_options(port, co, baud, parity, bits, flow); 815 } 816 817 static struct uart_driver mvebu_uart_driver; 818 819 static struct console mvebu_uart_console = { 820 .name = "ttyMV", 821 .write = mvebu_uart_console_write, 822 .device = uart_console_device, 823 .setup = mvebu_uart_console_setup, 824 .flags = CON_PRINTBUFFER, 825 .index = -1, 826 .data = &mvebu_uart_driver, 827 }; 828 829 static int __init mvebu_uart_console_init(void) 830 { 831 register_console(&mvebu_uart_console); 832 return 0; 833 } 834 835 console_initcall(mvebu_uart_console_init); 836 837 838 #endif /* CONFIG_SERIAL_MVEBU_CONSOLE */ 839 840 static struct uart_driver mvebu_uart_driver = { 841 .owner = THIS_MODULE, 842 .driver_name = DRIVER_NAME, 843 .dev_name = "ttyMV", 844 .nr = MVEBU_NR_UARTS, 845 #ifdef CONFIG_SERIAL_MVEBU_CONSOLE 846 .cons = &mvebu_uart_console, 847 #endif 848 }; 849 850 #if defined(CONFIG_PM) 851 static int mvebu_uart_suspend(struct device *dev) 852 { 853 struct mvebu_uart *mvuart = dev_get_drvdata(dev); 854 struct uart_port *port = mvuart->port; 855 unsigned long flags; 856 857 uart_suspend_port(&mvebu_uart_driver, port); 858 859 mvuart->pm_regs.rbr = readl(port->membase + UART_RBR(port)); 860 mvuart->pm_regs.tsh = readl(port->membase + UART_TSH(port)); 861 mvuart->pm_regs.ctrl = readl(port->membase + UART_CTRL(port)); 862 mvuart->pm_regs.intr = readl(port->membase + UART_INTR(port)); 863 mvuart->pm_regs.stat = readl(port->membase + UART_STAT); 864 spin_lock_irqsave(&mvebu_uart_lock, flags); 865 mvuart->pm_regs.brdv = readl(port->membase + UART_BRDV); 866 spin_unlock_irqrestore(&mvebu_uart_lock, flags); 867 mvuart->pm_regs.osamp = readl(port->membase + UART_OSAMP); 868 869 device_set_wakeup_enable(dev, true); 870 871 return 0; 872 } 873 874 static int mvebu_uart_resume(struct device *dev) 875 { 876 struct mvebu_uart *mvuart = dev_get_drvdata(dev); 877 struct uart_port *port = mvuart->port; 878 unsigned long flags; 879 880 writel(mvuart->pm_regs.rbr, port->membase + UART_RBR(port)); 881 writel(mvuart->pm_regs.tsh, port->membase + UART_TSH(port)); 882 writel(mvuart->pm_regs.ctrl, port->membase + UART_CTRL(port)); 883 writel(mvuart->pm_regs.intr, port->membase + UART_INTR(port)); 884 writel(mvuart->pm_regs.stat, port->membase + UART_STAT); 885 spin_lock_irqsave(&mvebu_uart_lock, flags); 886 writel(mvuart->pm_regs.brdv, port->membase + UART_BRDV); 887 spin_unlock_irqrestore(&mvebu_uart_lock, flags); 888 writel(mvuart->pm_regs.osamp, port->membase + UART_OSAMP); 889 890 uart_resume_port(&mvebu_uart_driver, port); 891 892 return 0; 893 } 894 895 static const struct dev_pm_ops mvebu_uart_pm_ops = { 896 .suspend = mvebu_uart_suspend, 897 .resume = mvebu_uart_resume, 898 }; 899 #endif /* CONFIG_PM */ 900 901 static const struct of_device_id mvebu_uart_of_match[]; 902 903 /* Counter to keep track of each UART port id when not using CONFIG_OF */ 904 static int uart_num_counter; 905 906 static int mvebu_uart_probe(struct platform_device *pdev) 907 { 908 struct resource *reg = platform_get_resource(pdev, IORESOURCE_MEM, 0); 909 const struct of_device_id *match = of_match_device(mvebu_uart_of_match, 910 &pdev->dev); 911 struct uart_port *port; 912 struct mvebu_uart *mvuart; 913 int id, irq; 914 915 if (!reg) { 916 dev_err(&pdev->dev, "no registers defined\n"); 917 return -EINVAL; 918 } 919 920 /* Assume that all UART ports have a DT alias or none has */ 921 id = of_alias_get_id(pdev->dev.of_node, "serial"); 922 if (!pdev->dev.of_node || id < 0) 923 pdev->id = uart_num_counter++; 924 else 925 pdev->id = id; 926 927 if (pdev->id >= MVEBU_NR_UARTS) { 928 dev_err(&pdev->dev, "cannot have more than %d UART ports\n", 929 MVEBU_NR_UARTS); 930 return -EINVAL; 931 } 932 933 port = &mvebu_uart_ports[pdev->id]; 934 935 spin_lock_init(&port->lock); 936 937 port->dev = &pdev->dev; 938 port->type = PORT_MVEBU; 939 port->ops = &mvebu_uart_ops; 940 port->regshift = 0; 941 942 port->fifosize = 32; 943 port->iotype = UPIO_MEM32; 944 port->flags = UPF_FIXED_PORT; 945 port->line = pdev->id; 946 947 /* 948 * IRQ number is not stored in this structure because we may have two of 949 * them per port (RX and TX). Instead, use the driver UART structure 950 * array so called ->irq[]. 951 */ 952 port->irq = 0; 953 port->irqflags = 0; 954 port->mapbase = reg->start; 955 956 port->membase = devm_ioremap_resource(&pdev->dev, reg); 957 if (IS_ERR(port->membase)) 958 return PTR_ERR(port->membase); 959 960 mvuart = devm_kzalloc(&pdev->dev, sizeof(struct mvebu_uart), 961 GFP_KERNEL); 962 if (!mvuart) 963 return -ENOMEM; 964 965 /* Get controller data depending on the compatible string */ 966 mvuart->data = (struct mvebu_uart_driver_data *)match->data; 967 mvuart->port = port; 968 969 port->private_data = mvuart; 970 platform_set_drvdata(pdev, mvuart); 971 972 /* Get fixed clock frequency */ 973 mvuart->clk = devm_clk_get(&pdev->dev, NULL); 974 if (IS_ERR(mvuart->clk)) { 975 if (PTR_ERR(mvuart->clk) == -EPROBE_DEFER) 976 return PTR_ERR(mvuart->clk); 977 978 if (IS_EXTENDED(port)) { 979 dev_err(&pdev->dev, "unable to get UART clock\n"); 980 return PTR_ERR(mvuart->clk); 981 } 982 } else { 983 if (!clk_prepare_enable(mvuart->clk)) 984 port->uartclk = clk_get_rate(mvuart->clk); 985 } 986 987 /* Manage interrupts */ 988 if (platform_irq_count(pdev) == 1) { 989 /* Old bindings: no name on the single unamed UART0 IRQ */ 990 irq = platform_get_irq(pdev, 0); 991 if (irq < 0) 992 return irq; 993 994 mvuart->irq[UART_IRQ_SUM] = irq; 995 } else { 996 /* 997 * New bindings: named interrupts (RX, TX) for both UARTS, 998 * only make use of uart-rx and uart-tx interrupts, do not use 999 * uart-sum of UART0 port. 1000 */ 1001 irq = platform_get_irq_byname(pdev, "uart-rx"); 1002 if (irq < 0) 1003 return irq; 1004 1005 mvuart->irq[UART_RX_IRQ] = irq; 1006 1007 irq = platform_get_irq_byname(pdev, "uart-tx"); 1008 if (irq < 0) 1009 return irq; 1010 1011 mvuart->irq[UART_TX_IRQ] = irq; 1012 } 1013 1014 /* UART Soft Reset*/ 1015 writel(CTRL_SOFT_RST, port->membase + UART_CTRL(port)); 1016 udelay(1); 1017 writel(0, port->membase + UART_CTRL(port)); 1018 1019 return uart_add_one_port(&mvebu_uart_driver, port); 1020 } 1021 1022 static struct mvebu_uart_driver_data uart_std_driver_data = { 1023 .is_ext = false, 1024 .regs.rbr = UART_STD_RBR, 1025 .regs.tsh = UART_STD_TSH, 1026 .regs.ctrl = UART_STD_CTRL1, 1027 .regs.intr = UART_STD_CTRL2, 1028 .flags.ctrl_tx_rdy_int = CTRL_STD_TX_RDY_INT, 1029 .flags.ctrl_rx_rdy_int = CTRL_STD_RX_RDY_INT, 1030 .flags.stat_tx_rdy = STAT_STD_TX_RDY, 1031 .flags.stat_rx_rdy = STAT_STD_RX_RDY, 1032 }; 1033 1034 static struct mvebu_uart_driver_data uart_ext_driver_data = { 1035 .is_ext = true, 1036 .regs.rbr = UART_EXT_RBR, 1037 .regs.tsh = UART_EXT_TSH, 1038 .regs.ctrl = UART_EXT_CTRL1, 1039 .regs.intr = UART_EXT_CTRL2, 1040 .flags.ctrl_tx_rdy_int = CTRL_EXT_TX_RDY_INT, 1041 .flags.ctrl_rx_rdy_int = CTRL_EXT_RX_RDY_INT, 1042 .flags.stat_tx_rdy = STAT_EXT_TX_RDY, 1043 .flags.stat_rx_rdy = STAT_EXT_RX_RDY, 1044 }; 1045 1046 /* Match table for of_platform binding */ 1047 static const struct of_device_id mvebu_uart_of_match[] = { 1048 { 1049 .compatible = "marvell,armada-3700-uart", 1050 .data = (void *)&uart_std_driver_data, 1051 }, 1052 { 1053 .compatible = "marvell,armada-3700-uart-ext", 1054 .data = (void *)&uart_ext_driver_data, 1055 }, 1056 {} 1057 }; 1058 1059 static struct platform_driver mvebu_uart_platform_driver = { 1060 .probe = mvebu_uart_probe, 1061 .driver = { 1062 .name = "mvebu-uart", 1063 .of_match_table = of_match_ptr(mvebu_uart_of_match), 1064 .suppress_bind_attrs = true, 1065 #if defined(CONFIG_PM) 1066 .pm = &mvebu_uart_pm_ops, 1067 #endif /* CONFIG_PM */ 1068 }, 1069 }; 1070 1071 /* This code is based on clk-fixed-factor.c driver and modified. */ 1072 1073 struct mvebu_uart_clock { 1074 struct clk_hw clk_hw; 1075 int clock_idx; 1076 u32 pm_context_reg1; 1077 u32 pm_context_reg2; 1078 }; 1079 1080 struct mvebu_uart_clock_base { 1081 struct mvebu_uart_clock clocks[2]; 1082 unsigned int parent_rates[5]; 1083 int parent_idx; 1084 unsigned int div; 1085 void __iomem *reg1; 1086 void __iomem *reg2; 1087 bool configured; 1088 }; 1089 1090 #define PARENT_CLOCK_XTAL 4 1091 1092 #define to_uart_clock(hw) container_of(hw, struct mvebu_uart_clock, clk_hw) 1093 #define to_uart_clock_base(uart_clock) container_of(uart_clock, \ 1094 struct mvebu_uart_clock_base, clocks[uart_clock->clock_idx]) 1095 1096 static int mvebu_uart_clock_prepare(struct clk_hw *hw) 1097 { 1098 struct mvebu_uart_clock *uart_clock = to_uart_clock(hw); 1099 struct mvebu_uart_clock_base *uart_clock_base = 1100 to_uart_clock_base(uart_clock); 1101 unsigned int prev_clock_idx, prev_clock_rate, prev_d1d2; 1102 unsigned int parent_clock_idx, parent_clock_rate; 1103 unsigned long flags; 1104 unsigned int d1, d2; 1105 u64 divisor; 1106 u32 val; 1107 1108 /* 1109 * This function just reconfigures UART Clock Control register (located 1110 * in UART1 address space which controls both UART1 and UART2) to 1111 * selected UART base clock and recalculates current UART1/UART2 1112 * divisors in their address spaces, so that final baudrate will not be 1113 * changed by switching UART parent clock. This is required for 1114 * otherwise kernel's boot log stops working - we need to ensure that 1115 * UART baudrate does not change during this setup. It is a one time 1116 * operation, it will execute only once and set `configured` to true, 1117 * and be skipped on subsequent calls. Because this UART Clock Control 1118 * register (UART_BRDV) is shared between UART1 baudrate function, 1119 * UART1 clock selector and UART2 clock selector, every access to 1120 * UART_BRDV (reg1) needs to be protected by a lock. 1121 */ 1122 1123 spin_lock_irqsave(&mvebu_uart_lock, flags); 1124 1125 if (uart_clock_base->configured) { 1126 spin_unlock_irqrestore(&mvebu_uart_lock, flags); 1127 return 0; 1128 } 1129 1130 parent_clock_idx = uart_clock_base->parent_idx; 1131 parent_clock_rate = uart_clock_base->parent_rates[parent_clock_idx]; 1132 1133 val = readl(uart_clock_base->reg1); 1134 1135 if (uart_clock_base->div > CLK_TBG_DIV1_MAX) { 1136 d1 = CLK_TBG_DIV1_MAX; 1137 d2 = uart_clock_base->div / CLK_TBG_DIV1_MAX; 1138 } else { 1139 d1 = uart_clock_base->div; 1140 d2 = 1; 1141 } 1142 1143 if (val & CLK_NO_XTAL) { 1144 prev_clock_idx = (val >> CLK_TBG_SEL_SHIFT) & CLK_TBG_SEL_MASK; 1145 prev_d1d2 = ((val >> CLK_TBG_DIV1_SHIFT) & CLK_TBG_DIV1_MASK) * 1146 ((val >> CLK_TBG_DIV2_SHIFT) & CLK_TBG_DIV2_MASK); 1147 } else { 1148 prev_clock_idx = PARENT_CLOCK_XTAL; 1149 prev_d1d2 = 1; 1150 } 1151 1152 /* Note that uart_clock_base->parent_rates[i] may not be available */ 1153 prev_clock_rate = uart_clock_base->parent_rates[prev_clock_idx]; 1154 1155 /* Recalculate UART1 divisor so UART1 baudrate does not change */ 1156 if (prev_clock_rate) { 1157 divisor = DIV_U64_ROUND_CLOSEST((u64)(val & BRDV_BAUD_MASK) * 1158 parent_clock_rate * prev_d1d2, 1159 prev_clock_rate * d1 * d2); 1160 if (divisor < 1) 1161 divisor = 1; 1162 else if (divisor > BRDV_BAUD_MAX) 1163 divisor = BRDV_BAUD_MAX; 1164 val = (val & ~BRDV_BAUD_MASK) | divisor; 1165 } 1166 1167 if (parent_clock_idx != PARENT_CLOCK_XTAL) { 1168 /* Do not use XTAL, select TBG clock and TBG d1 * d2 divisors */ 1169 val |= CLK_NO_XTAL; 1170 val &= ~(CLK_TBG_DIV1_MASK << CLK_TBG_DIV1_SHIFT); 1171 val |= d1 << CLK_TBG_DIV1_SHIFT; 1172 val &= ~(CLK_TBG_DIV2_MASK << CLK_TBG_DIV2_SHIFT); 1173 val |= d2 << CLK_TBG_DIV2_SHIFT; 1174 val &= ~(CLK_TBG_SEL_MASK << CLK_TBG_SEL_SHIFT); 1175 val |= parent_clock_idx << CLK_TBG_SEL_SHIFT; 1176 } else { 1177 /* Use XTAL, TBG bits are then ignored */ 1178 val &= ~CLK_NO_XTAL; 1179 } 1180 1181 writel(val, uart_clock_base->reg1); 1182 1183 /* Recalculate UART2 divisor so UART2 baudrate does not change */ 1184 if (prev_clock_rate) { 1185 val = readl(uart_clock_base->reg2); 1186 divisor = DIV_U64_ROUND_CLOSEST((u64)(val & BRDV_BAUD_MASK) * 1187 parent_clock_rate * prev_d1d2, 1188 prev_clock_rate * d1 * d2); 1189 if (divisor < 1) 1190 divisor = 1; 1191 else if (divisor > BRDV_BAUD_MAX) 1192 divisor = BRDV_BAUD_MAX; 1193 val = (val & ~BRDV_BAUD_MASK) | divisor; 1194 writel(val, uart_clock_base->reg2); 1195 } 1196 1197 uart_clock_base->configured = true; 1198 1199 spin_unlock_irqrestore(&mvebu_uart_lock, flags); 1200 1201 return 0; 1202 } 1203 1204 static int mvebu_uart_clock_enable(struct clk_hw *hw) 1205 { 1206 struct mvebu_uart_clock *uart_clock = to_uart_clock(hw); 1207 struct mvebu_uart_clock_base *uart_clock_base = 1208 to_uart_clock_base(uart_clock); 1209 unsigned long flags; 1210 u32 val; 1211 1212 spin_lock_irqsave(&mvebu_uart_lock, flags); 1213 1214 val = readl(uart_clock_base->reg1); 1215 1216 if (uart_clock->clock_idx == 0) 1217 val &= ~UART1_CLK_DIS; 1218 else 1219 val &= ~UART2_CLK_DIS; 1220 1221 writel(val, uart_clock_base->reg1); 1222 1223 spin_unlock_irqrestore(&mvebu_uart_lock, flags); 1224 1225 return 0; 1226 } 1227 1228 static void mvebu_uart_clock_disable(struct clk_hw *hw) 1229 { 1230 struct mvebu_uart_clock *uart_clock = to_uart_clock(hw); 1231 struct mvebu_uart_clock_base *uart_clock_base = 1232 to_uart_clock_base(uart_clock); 1233 unsigned long flags; 1234 u32 val; 1235 1236 spin_lock_irqsave(&mvebu_uart_lock, flags); 1237 1238 val = readl(uart_clock_base->reg1); 1239 1240 if (uart_clock->clock_idx == 0) 1241 val |= UART1_CLK_DIS; 1242 else 1243 val |= UART2_CLK_DIS; 1244 1245 writel(val, uart_clock_base->reg1); 1246 1247 spin_unlock_irqrestore(&mvebu_uart_lock, flags); 1248 } 1249 1250 static int mvebu_uart_clock_is_enabled(struct clk_hw *hw) 1251 { 1252 struct mvebu_uart_clock *uart_clock = to_uart_clock(hw); 1253 struct mvebu_uart_clock_base *uart_clock_base = 1254 to_uart_clock_base(uart_clock); 1255 u32 val; 1256 1257 val = readl(uart_clock_base->reg1); 1258 1259 if (uart_clock->clock_idx == 0) 1260 return !(val & UART1_CLK_DIS); 1261 else 1262 return !(val & UART2_CLK_DIS); 1263 } 1264 1265 static int mvebu_uart_clock_save_context(struct clk_hw *hw) 1266 { 1267 struct mvebu_uart_clock *uart_clock = to_uart_clock(hw); 1268 struct mvebu_uart_clock_base *uart_clock_base = 1269 to_uart_clock_base(uart_clock); 1270 unsigned long flags; 1271 1272 spin_lock_irqsave(&mvebu_uart_lock, flags); 1273 uart_clock->pm_context_reg1 = readl(uart_clock_base->reg1); 1274 uart_clock->pm_context_reg2 = readl(uart_clock_base->reg2); 1275 spin_unlock_irqrestore(&mvebu_uart_lock, flags); 1276 1277 return 0; 1278 } 1279 1280 static void mvebu_uart_clock_restore_context(struct clk_hw *hw) 1281 { 1282 struct mvebu_uart_clock *uart_clock = to_uart_clock(hw); 1283 struct mvebu_uart_clock_base *uart_clock_base = 1284 to_uart_clock_base(uart_clock); 1285 unsigned long flags; 1286 1287 spin_lock_irqsave(&mvebu_uart_lock, flags); 1288 writel(uart_clock->pm_context_reg1, uart_clock_base->reg1); 1289 writel(uart_clock->pm_context_reg2, uart_clock_base->reg2); 1290 spin_unlock_irqrestore(&mvebu_uart_lock, flags); 1291 } 1292 1293 static unsigned long mvebu_uart_clock_recalc_rate(struct clk_hw *hw, 1294 unsigned long parent_rate) 1295 { 1296 struct mvebu_uart_clock *uart_clock = to_uart_clock(hw); 1297 struct mvebu_uart_clock_base *uart_clock_base = 1298 to_uart_clock_base(uart_clock); 1299 1300 return parent_rate / uart_clock_base->div; 1301 } 1302 1303 static long mvebu_uart_clock_round_rate(struct clk_hw *hw, unsigned long rate, 1304 unsigned long *parent_rate) 1305 { 1306 struct mvebu_uart_clock *uart_clock = to_uart_clock(hw); 1307 struct mvebu_uart_clock_base *uart_clock_base = 1308 to_uart_clock_base(uart_clock); 1309 1310 return *parent_rate / uart_clock_base->div; 1311 } 1312 1313 static int mvebu_uart_clock_set_rate(struct clk_hw *hw, unsigned long rate, 1314 unsigned long parent_rate) 1315 { 1316 /* 1317 * We must report success but we can do so unconditionally because 1318 * mvebu_uart_clock_round_rate returns values that ensure this call is a 1319 * nop. 1320 */ 1321 1322 return 0; 1323 } 1324 1325 static const struct clk_ops mvebu_uart_clock_ops = { 1326 .prepare = mvebu_uart_clock_prepare, 1327 .enable = mvebu_uart_clock_enable, 1328 .disable = mvebu_uart_clock_disable, 1329 .is_enabled = mvebu_uart_clock_is_enabled, 1330 .save_context = mvebu_uart_clock_save_context, 1331 .restore_context = mvebu_uart_clock_restore_context, 1332 .round_rate = mvebu_uart_clock_round_rate, 1333 .set_rate = mvebu_uart_clock_set_rate, 1334 .recalc_rate = mvebu_uart_clock_recalc_rate, 1335 }; 1336 1337 static int mvebu_uart_clock_register(struct device *dev, 1338 struct mvebu_uart_clock *uart_clock, 1339 const char *name, 1340 const char *parent_name) 1341 { 1342 struct clk_init_data init = { }; 1343 1344 uart_clock->clk_hw.init = &init; 1345 1346 init.name = name; 1347 init.ops = &mvebu_uart_clock_ops; 1348 init.flags = 0; 1349 init.num_parents = 1; 1350 init.parent_names = &parent_name; 1351 1352 return devm_clk_hw_register(dev, &uart_clock->clk_hw); 1353 } 1354 1355 static int mvebu_uart_clock_probe(struct platform_device *pdev) 1356 { 1357 static const char *const uart_clk_names[] = { "uart_1", "uart_2" }; 1358 static const char *const parent_clk_names[] = { "TBG-A-P", "TBG-B-P", 1359 "TBG-A-S", "TBG-B-S", 1360 "xtal" }; 1361 struct clk *parent_clks[ARRAY_SIZE(parent_clk_names)]; 1362 struct mvebu_uart_clock_base *uart_clock_base; 1363 struct clk_hw_onecell_data *hw_clk_data; 1364 struct device *dev = &pdev->dev; 1365 int i, parent_clk_idx, ret; 1366 unsigned long div, rate; 1367 struct resource *res; 1368 unsigned int d1, d2; 1369 1370 BUILD_BUG_ON(ARRAY_SIZE(uart_clk_names) != 1371 ARRAY_SIZE(uart_clock_base->clocks)); 1372 BUILD_BUG_ON(ARRAY_SIZE(parent_clk_names) != 1373 ARRAY_SIZE(uart_clock_base->parent_rates)); 1374 1375 uart_clock_base = devm_kzalloc(dev, 1376 sizeof(*uart_clock_base), 1377 GFP_KERNEL); 1378 if (!uart_clock_base) 1379 return -ENOMEM; 1380 1381 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1382 if (!res) { 1383 dev_err(dev, "Couldn't get first register\n"); 1384 return -ENOENT; 1385 } 1386 1387 /* 1388 * UART Clock Control register (reg1 / UART_BRDV) is in the address 1389 * space of UART1 (standard UART variant), controls parent clock and 1390 * dividers for both UART1 and UART2 and is supplied via DT as the first 1391 * resource. Therefore use ioremap() rather than ioremap_resource() to 1392 * avoid conflicts with UART1 driver. Access to UART_BRDV is protected 1393 * by a lock shared between clock and UART driver. 1394 */ 1395 uart_clock_base->reg1 = devm_ioremap(dev, res->start, 1396 resource_size(res)); 1397 if (!uart_clock_base->reg1) 1398 return -ENOMEM; 1399 1400 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1401 if (!res) { 1402 dev_err(dev, "Couldn't get second register\n"); 1403 return -ENOENT; 1404 } 1405 1406 /* 1407 * UART 2 Baud Rate Divisor register (reg2 / UART_BRDV) is in address 1408 * space of UART2 (extended UART variant), controls only one UART2 1409 * specific divider and is supplied via DT as second resource. 1410 * Therefore use ioremap() rather than ioremap_resource() to avoid 1411 * conflicts with UART2 driver. Access to UART_BRDV is protected by a 1412 * by lock shared between clock and UART driver. 1413 */ 1414 uart_clock_base->reg2 = devm_ioremap(dev, res->start, 1415 resource_size(res)); 1416 if (!uart_clock_base->reg2) 1417 return -ENOMEM; 1418 1419 hw_clk_data = devm_kzalloc(dev, 1420 struct_size(hw_clk_data, hws, 1421 ARRAY_SIZE(uart_clk_names)), 1422 GFP_KERNEL); 1423 if (!hw_clk_data) 1424 return -ENOMEM; 1425 1426 hw_clk_data->num = ARRAY_SIZE(uart_clk_names); 1427 for (i = 0; i < ARRAY_SIZE(uart_clk_names); i++) { 1428 hw_clk_data->hws[i] = &uart_clock_base->clocks[i].clk_hw; 1429 uart_clock_base->clocks[i].clock_idx = i; 1430 } 1431 1432 parent_clk_idx = -1; 1433 1434 for (i = 0; i < ARRAY_SIZE(parent_clk_names); i++) { 1435 parent_clks[i] = devm_clk_get(dev, parent_clk_names[i]); 1436 if (IS_ERR(parent_clks[i])) { 1437 if (PTR_ERR(parent_clks[i]) == -EPROBE_DEFER) 1438 return -EPROBE_DEFER; 1439 dev_warn(dev, "Couldn't get the parent clock %s: %ld\n", 1440 parent_clk_names[i], PTR_ERR(parent_clks[i])); 1441 continue; 1442 } 1443 1444 ret = clk_prepare_enable(parent_clks[i]); 1445 if (ret) { 1446 dev_warn(dev, "Couldn't enable parent clock %s: %d\n", 1447 parent_clk_names[i], ret); 1448 continue; 1449 } 1450 rate = clk_get_rate(parent_clks[i]); 1451 uart_clock_base->parent_rates[i] = rate; 1452 1453 if (i != PARENT_CLOCK_XTAL) { 1454 /* 1455 * Calculate the smallest TBG d1 and d2 divisors that 1456 * still can provide 9600 baudrate. 1457 */ 1458 d1 = DIV_ROUND_UP(rate, 9600 * OSAMP_MAX_DIVISOR * 1459 BRDV_BAUD_MAX); 1460 if (d1 < 1) 1461 d1 = 1; 1462 else if (d1 > CLK_TBG_DIV1_MAX) 1463 d1 = CLK_TBG_DIV1_MAX; 1464 1465 d2 = DIV_ROUND_UP(rate, 9600 * OSAMP_MAX_DIVISOR * 1466 BRDV_BAUD_MAX * d1); 1467 if (d2 < 1) 1468 d2 = 1; 1469 else if (d2 > CLK_TBG_DIV2_MAX) 1470 d2 = CLK_TBG_DIV2_MAX; 1471 } else { 1472 /* 1473 * When UART clock uses XTAL clock as a source then it 1474 * is not possible to use d1 and d2 divisors. 1475 */ 1476 d1 = d2 = 1; 1477 } 1478 1479 /* Skip clock source which cannot provide 9600 baudrate */ 1480 if (rate > 9600 * OSAMP_MAX_DIVISOR * BRDV_BAUD_MAX * d1 * d2) 1481 continue; 1482 1483 /* 1484 * Choose TBG clock source with the smallest divisors. Use XTAL 1485 * clock source only in case TBG is not available as XTAL cannot 1486 * be used for baudrates higher than 230400. 1487 */ 1488 if (parent_clk_idx == -1 || 1489 (i != PARENT_CLOCK_XTAL && div > d1 * d2)) { 1490 parent_clk_idx = i; 1491 div = d1 * d2; 1492 } 1493 } 1494 1495 for (i = 0; i < ARRAY_SIZE(parent_clk_names); i++) { 1496 if (i == parent_clk_idx || IS_ERR(parent_clks[i])) 1497 continue; 1498 clk_disable_unprepare(parent_clks[i]); 1499 devm_clk_put(dev, parent_clks[i]); 1500 } 1501 1502 if (parent_clk_idx == -1) { 1503 dev_err(dev, "No usable parent clock\n"); 1504 return -ENOENT; 1505 } 1506 1507 uart_clock_base->parent_idx = parent_clk_idx; 1508 uart_clock_base->div = div; 1509 1510 dev_notice(dev, "Using parent clock %s as base UART clock\n", 1511 __clk_get_name(parent_clks[parent_clk_idx])); 1512 1513 for (i = 0; i < ARRAY_SIZE(uart_clk_names); i++) { 1514 ret = mvebu_uart_clock_register(dev, 1515 &uart_clock_base->clocks[i], 1516 uart_clk_names[i], 1517 __clk_get_name(parent_clks[parent_clk_idx])); 1518 if (ret) { 1519 dev_err(dev, "Can't register UART clock %d: %d\n", 1520 i, ret); 1521 return ret; 1522 } 1523 } 1524 1525 return devm_of_clk_add_hw_provider(dev, of_clk_hw_onecell_get, 1526 hw_clk_data); 1527 } 1528 1529 static const struct of_device_id mvebu_uart_clock_of_match[] = { 1530 { .compatible = "marvell,armada-3700-uart-clock", }, 1531 { } 1532 }; 1533 1534 static struct platform_driver mvebu_uart_clock_platform_driver = { 1535 .probe = mvebu_uart_clock_probe, 1536 .driver = { 1537 .name = "mvebu-uart-clock", 1538 .of_match_table = mvebu_uart_clock_of_match, 1539 }, 1540 }; 1541 1542 static int __init mvebu_uart_init(void) 1543 { 1544 int ret; 1545 1546 ret = uart_register_driver(&mvebu_uart_driver); 1547 if (ret) 1548 return ret; 1549 1550 ret = platform_driver_register(&mvebu_uart_clock_platform_driver); 1551 if (ret) { 1552 uart_unregister_driver(&mvebu_uart_driver); 1553 return ret; 1554 } 1555 1556 ret = platform_driver_register(&mvebu_uart_platform_driver); 1557 if (ret) { 1558 platform_driver_unregister(&mvebu_uart_clock_platform_driver); 1559 uart_unregister_driver(&mvebu_uart_driver); 1560 return ret; 1561 } 1562 1563 return 0; 1564 } 1565 arch_initcall(mvebu_uart_init); 1566