1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * *************************************************************************** 4 * Marvell Armada-3700 Serial Driver 5 * Author: Wilson Ding <dingwei@marvell.com> 6 * Copyright (C) 2015 Marvell International Ltd. 7 * *************************************************************************** 8 */ 9 10 #include <linux/clk.h> 11 #include <linux/clk-provider.h> 12 #include <linux/console.h> 13 #include <linux/delay.h> 14 #include <linux/device.h> 15 #include <linux/init.h> 16 #include <linux/io.h> 17 #include <linux/iopoll.h> 18 #include <linux/math64.h> 19 #include <linux/of.h> 20 #include <linux/of_address.h> 21 #include <linux/of_device.h> 22 #include <linux/of_irq.h> 23 #include <linux/of_platform.h> 24 #include <linux/platform_device.h> 25 #include <linux/serial.h> 26 #include <linux/serial_core.h> 27 #include <linux/slab.h> 28 #include <linux/tty.h> 29 #include <linux/tty_flip.h> 30 31 /* Register Map */ 32 #define UART_STD_RBR 0x00 33 #define UART_EXT_RBR 0x18 34 35 #define UART_STD_TSH 0x04 36 #define UART_EXT_TSH 0x1C 37 38 #define UART_STD_CTRL1 0x08 39 #define UART_EXT_CTRL1 0x04 40 #define CTRL_SOFT_RST BIT(31) 41 #define CTRL_TXFIFO_RST BIT(15) 42 #define CTRL_RXFIFO_RST BIT(14) 43 #define CTRL_SND_BRK_SEQ BIT(11) 44 #define CTRL_BRK_DET_INT BIT(3) 45 #define CTRL_FRM_ERR_INT BIT(2) 46 #define CTRL_PAR_ERR_INT BIT(1) 47 #define CTRL_OVR_ERR_INT BIT(0) 48 #define CTRL_BRK_INT (CTRL_BRK_DET_INT | CTRL_FRM_ERR_INT | \ 49 CTRL_PAR_ERR_INT | CTRL_OVR_ERR_INT) 50 51 #define UART_STD_CTRL2 UART_STD_CTRL1 52 #define UART_EXT_CTRL2 0x20 53 #define CTRL_STD_TX_RDY_INT BIT(5) 54 #define CTRL_EXT_TX_RDY_INT BIT(6) 55 #define CTRL_STD_RX_RDY_INT BIT(4) 56 #define CTRL_EXT_RX_RDY_INT BIT(5) 57 58 #define UART_STAT 0x0C 59 #define STAT_TX_FIFO_EMP BIT(13) 60 #define STAT_TX_FIFO_FUL BIT(11) 61 #define STAT_TX_EMP BIT(6) 62 #define STAT_STD_TX_RDY BIT(5) 63 #define STAT_EXT_TX_RDY BIT(15) 64 #define STAT_STD_RX_RDY BIT(4) 65 #define STAT_EXT_RX_RDY BIT(14) 66 #define STAT_BRK_DET BIT(3) 67 #define STAT_FRM_ERR BIT(2) 68 #define STAT_PAR_ERR BIT(1) 69 #define STAT_OVR_ERR BIT(0) 70 #define STAT_BRK_ERR (STAT_BRK_DET | STAT_FRM_ERR \ 71 | STAT_PAR_ERR | STAT_OVR_ERR) 72 73 /* 74 * Marvell Armada 3700 Functional Specifications describes that bit 21 of UART 75 * Clock Control register controls UART1 and bit 20 controls UART2. But in 76 * reality bit 21 controls UART2 and bit 20 controls UART1. This seems to be an 77 * error in Marvell's documentation. Hence following CLK_DIS macros are swapped. 78 */ 79 80 #define UART_BRDV 0x10 81 /* These bits are located in UART1 address space and control UART2 */ 82 #define UART2_CLK_DIS BIT(21) 83 /* These bits are located in UART1 address space and control UART1 */ 84 #define UART1_CLK_DIS BIT(20) 85 /* These bits are located in UART1 address space and control both UARTs */ 86 #define CLK_NO_XTAL BIT(19) 87 #define CLK_TBG_DIV1_SHIFT 15 88 #define CLK_TBG_DIV1_MASK 0x7 89 #define CLK_TBG_DIV1_MAX 6 90 #define CLK_TBG_DIV2_SHIFT 12 91 #define CLK_TBG_DIV2_MASK 0x7 92 #define CLK_TBG_DIV2_MAX 6 93 #define CLK_TBG_SEL_SHIFT 10 94 #define CLK_TBG_SEL_MASK 0x3 95 /* These bits are located in both UARTs address space */ 96 #define BRDV_BAUD_MASK 0x3FF 97 #define BRDV_BAUD_MAX BRDV_BAUD_MASK 98 99 #define UART_OSAMP 0x14 100 #define OSAMP_DEFAULT_DIVISOR 16 101 #define OSAMP_DIVISORS_MASK 0x3F3F3F3F 102 #define OSAMP_MAX_DIVISOR 63 103 104 #define MVEBU_NR_UARTS 2 105 106 #define MVEBU_UART_TYPE "mvebu-uart" 107 #define DRIVER_NAME "mvebu_serial" 108 109 enum { 110 /* Either there is only one summed IRQ... */ 111 UART_IRQ_SUM = 0, 112 /* ...or there are two separate IRQ for RX and TX */ 113 UART_RX_IRQ = 0, 114 UART_TX_IRQ, 115 UART_IRQ_COUNT 116 }; 117 118 /* Diverging register offsets */ 119 struct uart_regs_layout { 120 unsigned int rbr; 121 unsigned int tsh; 122 unsigned int ctrl; 123 unsigned int intr; 124 }; 125 126 /* Diverging flags */ 127 struct uart_flags { 128 unsigned int ctrl_tx_rdy_int; 129 unsigned int ctrl_rx_rdy_int; 130 unsigned int stat_tx_rdy; 131 unsigned int stat_rx_rdy; 132 }; 133 134 /* Driver data, a structure for each UART port */ 135 struct mvebu_uart_driver_data { 136 bool is_ext; 137 struct uart_regs_layout regs; 138 struct uart_flags flags; 139 }; 140 141 /* Saved registers during suspend */ 142 struct mvebu_uart_pm_regs { 143 unsigned int rbr; 144 unsigned int tsh; 145 unsigned int ctrl; 146 unsigned int intr; 147 unsigned int stat; 148 unsigned int brdv; 149 unsigned int osamp; 150 }; 151 152 /* MVEBU UART driver structure */ 153 struct mvebu_uart { 154 struct uart_port *port; 155 struct clk *clk; 156 int irq[UART_IRQ_COUNT]; 157 struct mvebu_uart_driver_data *data; 158 #if defined(CONFIG_PM) 159 struct mvebu_uart_pm_regs pm_regs; 160 #endif /* CONFIG_PM */ 161 }; 162 163 static struct mvebu_uart *to_mvuart(struct uart_port *port) 164 { 165 return (struct mvebu_uart *)port->private_data; 166 } 167 168 #define IS_EXTENDED(port) (to_mvuart(port)->data->is_ext) 169 170 #define UART_RBR(port) (to_mvuart(port)->data->regs.rbr) 171 #define UART_TSH(port) (to_mvuart(port)->data->regs.tsh) 172 #define UART_CTRL(port) (to_mvuart(port)->data->regs.ctrl) 173 #define UART_INTR(port) (to_mvuart(port)->data->regs.intr) 174 175 #define CTRL_TX_RDY_INT(port) (to_mvuart(port)->data->flags.ctrl_tx_rdy_int) 176 #define CTRL_RX_RDY_INT(port) (to_mvuart(port)->data->flags.ctrl_rx_rdy_int) 177 #define STAT_TX_RDY(port) (to_mvuart(port)->data->flags.stat_tx_rdy) 178 #define STAT_RX_RDY(port) (to_mvuart(port)->data->flags.stat_rx_rdy) 179 180 static struct uart_port mvebu_uart_ports[MVEBU_NR_UARTS]; 181 182 static DEFINE_SPINLOCK(mvebu_uart_lock); 183 184 /* Core UART Driver Operations */ 185 static unsigned int mvebu_uart_tx_empty(struct uart_port *port) 186 { 187 unsigned long flags; 188 unsigned int st; 189 190 spin_lock_irqsave(&port->lock, flags); 191 st = readl(port->membase + UART_STAT); 192 spin_unlock_irqrestore(&port->lock, flags); 193 194 return (st & STAT_TX_EMP) ? TIOCSER_TEMT : 0; 195 } 196 197 static unsigned int mvebu_uart_get_mctrl(struct uart_port *port) 198 { 199 return TIOCM_CTS | TIOCM_DSR | TIOCM_CAR; 200 } 201 202 static void mvebu_uart_set_mctrl(struct uart_port *port, 203 unsigned int mctrl) 204 { 205 /* 206 * Even if we do not support configuring the modem control lines, this 207 * function must be proided to the serial core 208 */ 209 } 210 211 static void mvebu_uart_stop_tx(struct uart_port *port) 212 { 213 unsigned int ctl = readl(port->membase + UART_INTR(port)); 214 215 ctl &= ~CTRL_TX_RDY_INT(port); 216 writel(ctl, port->membase + UART_INTR(port)); 217 } 218 219 static void mvebu_uart_start_tx(struct uart_port *port) 220 { 221 unsigned int ctl; 222 struct circ_buf *xmit = &port->state->xmit; 223 224 if (IS_EXTENDED(port) && !uart_circ_empty(xmit)) { 225 writel(xmit->buf[xmit->tail], port->membase + UART_TSH(port)); 226 uart_xmit_advance(port, 1); 227 } 228 229 ctl = readl(port->membase + UART_INTR(port)); 230 ctl |= CTRL_TX_RDY_INT(port); 231 writel(ctl, port->membase + UART_INTR(port)); 232 } 233 234 static void mvebu_uart_stop_rx(struct uart_port *port) 235 { 236 unsigned int ctl; 237 238 ctl = readl(port->membase + UART_CTRL(port)); 239 ctl &= ~CTRL_BRK_INT; 240 writel(ctl, port->membase + UART_CTRL(port)); 241 242 ctl = readl(port->membase + UART_INTR(port)); 243 ctl &= ~CTRL_RX_RDY_INT(port); 244 writel(ctl, port->membase + UART_INTR(port)); 245 } 246 247 static void mvebu_uart_break_ctl(struct uart_port *port, int brk) 248 { 249 unsigned int ctl; 250 unsigned long flags; 251 252 spin_lock_irqsave(&port->lock, flags); 253 ctl = readl(port->membase + UART_CTRL(port)); 254 if (brk == -1) 255 ctl |= CTRL_SND_BRK_SEQ; 256 else 257 ctl &= ~CTRL_SND_BRK_SEQ; 258 writel(ctl, port->membase + UART_CTRL(port)); 259 spin_unlock_irqrestore(&port->lock, flags); 260 } 261 262 static void mvebu_uart_rx_chars(struct uart_port *port, unsigned int status) 263 { 264 struct tty_port *tport = &port->state->port; 265 unsigned char ch = 0; 266 char flag = 0; 267 int ret; 268 269 do { 270 if (status & STAT_RX_RDY(port)) { 271 ch = readl(port->membase + UART_RBR(port)); 272 ch &= 0xff; 273 flag = TTY_NORMAL; 274 port->icount.rx++; 275 276 if (status & STAT_PAR_ERR) 277 port->icount.parity++; 278 } 279 280 /* 281 * For UART2, error bits are not cleared on buffer read. 282 * This causes interrupt loop and system hang. 283 */ 284 if (IS_EXTENDED(port) && (status & STAT_BRK_ERR)) { 285 ret = readl(port->membase + UART_STAT); 286 ret |= STAT_BRK_ERR; 287 writel(ret, port->membase + UART_STAT); 288 } 289 290 if (status & STAT_BRK_DET) { 291 port->icount.brk++; 292 status &= ~(STAT_FRM_ERR | STAT_PAR_ERR); 293 if (uart_handle_break(port)) 294 goto ignore_char; 295 } 296 297 if (status & STAT_OVR_ERR) 298 port->icount.overrun++; 299 300 if (status & STAT_FRM_ERR) 301 port->icount.frame++; 302 303 if (uart_handle_sysrq_char(port, ch)) 304 goto ignore_char; 305 306 if (status & port->ignore_status_mask & STAT_PAR_ERR) 307 status &= ~STAT_RX_RDY(port); 308 309 status &= port->read_status_mask; 310 311 if (status & STAT_PAR_ERR) 312 flag = TTY_PARITY; 313 314 status &= ~port->ignore_status_mask; 315 316 if (status & STAT_RX_RDY(port)) 317 tty_insert_flip_char(tport, ch, flag); 318 319 if (status & STAT_BRK_DET) 320 tty_insert_flip_char(tport, 0, TTY_BREAK); 321 322 if (status & STAT_FRM_ERR) 323 tty_insert_flip_char(tport, 0, TTY_FRAME); 324 325 if (status & STAT_OVR_ERR) 326 tty_insert_flip_char(tport, 0, TTY_OVERRUN); 327 328 ignore_char: 329 status = readl(port->membase + UART_STAT); 330 } while (status & (STAT_RX_RDY(port) | STAT_BRK_DET)); 331 332 tty_flip_buffer_push(tport); 333 } 334 335 static void mvebu_uart_tx_chars(struct uart_port *port, unsigned int status) 336 { 337 u8 ch; 338 339 uart_port_tx_limited(port, ch, port->fifosize, 340 !(readl(port->membase + UART_STAT) & STAT_TX_FIFO_FUL), 341 writel(ch, port->membase + UART_TSH(port)), 342 ({})); 343 } 344 345 static irqreturn_t mvebu_uart_isr(int irq, void *dev_id) 346 { 347 struct uart_port *port = (struct uart_port *)dev_id; 348 unsigned int st = readl(port->membase + UART_STAT); 349 350 if (st & (STAT_RX_RDY(port) | STAT_OVR_ERR | STAT_FRM_ERR | 351 STAT_BRK_DET)) 352 mvebu_uart_rx_chars(port, st); 353 354 if (st & STAT_TX_RDY(port)) 355 mvebu_uart_tx_chars(port, st); 356 357 return IRQ_HANDLED; 358 } 359 360 static irqreturn_t mvebu_uart_rx_isr(int irq, void *dev_id) 361 { 362 struct uart_port *port = (struct uart_port *)dev_id; 363 unsigned int st = readl(port->membase + UART_STAT); 364 365 if (st & (STAT_RX_RDY(port) | STAT_OVR_ERR | STAT_FRM_ERR | 366 STAT_BRK_DET)) 367 mvebu_uart_rx_chars(port, st); 368 369 return IRQ_HANDLED; 370 } 371 372 static irqreturn_t mvebu_uart_tx_isr(int irq, void *dev_id) 373 { 374 struct uart_port *port = (struct uart_port *)dev_id; 375 unsigned int st = readl(port->membase + UART_STAT); 376 377 if (st & STAT_TX_RDY(port)) 378 mvebu_uart_tx_chars(port, st); 379 380 return IRQ_HANDLED; 381 } 382 383 static int mvebu_uart_startup(struct uart_port *port) 384 { 385 struct mvebu_uart *mvuart = to_mvuart(port); 386 unsigned int ctl; 387 int ret; 388 389 writel(CTRL_TXFIFO_RST | CTRL_RXFIFO_RST, 390 port->membase + UART_CTRL(port)); 391 udelay(1); 392 393 /* Clear the error bits of state register before IRQ request */ 394 ret = readl(port->membase + UART_STAT); 395 ret |= STAT_BRK_ERR; 396 writel(ret, port->membase + UART_STAT); 397 398 writel(CTRL_BRK_INT, port->membase + UART_CTRL(port)); 399 400 ctl = readl(port->membase + UART_INTR(port)); 401 ctl |= CTRL_RX_RDY_INT(port); 402 writel(ctl, port->membase + UART_INTR(port)); 403 404 if (!mvuart->irq[UART_TX_IRQ]) { 405 /* Old bindings with just one interrupt (UART0 only) */ 406 ret = devm_request_irq(port->dev, mvuart->irq[UART_IRQ_SUM], 407 mvebu_uart_isr, port->irqflags, 408 dev_name(port->dev), port); 409 if (ret) { 410 dev_err(port->dev, "unable to request IRQ %d\n", 411 mvuart->irq[UART_IRQ_SUM]); 412 return ret; 413 } 414 } else { 415 /* New bindings with an IRQ for RX and TX (both UART) */ 416 ret = devm_request_irq(port->dev, mvuart->irq[UART_RX_IRQ], 417 mvebu_uart_rx_isr, port->irqflags, 418 dev_name(port->dev), port); 419 if (ret) { 420 dev_err(port->dev, "unable to request IRQ %d\n", 421 mvuart->irq[UART_RX_IRQ]); 422 return ret; 423 } 424 425 ret = devm_request_irq(port->dev, mvuart->irq[UART_TX_IRQ], 426 mvebu_uart_tx_isr, port->irqflags, 427 dev_name(port->dev), 428 port); 429 if (ret) { 430 dev_err(port->dev, "unable to request IRQ %d\n", 431 mvuart->irq[UART_TX_IRQ]); 432 devm_free_irq(port->dev, mvuart->irq[UART_RX_IRQ], 433 port); 434 return ret; 435 } 436 } 437 438 return 0; 439 } 440 441 static void mvebu_uart_shutdown(struct uart_port *port) 442 { 443 struct mvebu_uart *mvuart = to_mvuart(port); 444 445 writel(0, port->membase + UART_INTR(port)); 446 447 if (!mvuart->irq[UART_TX_IRQ]) { 448 devm_free_irq(port->dev, mvuart->irq[UART_IRQ_SUM], port); 449 } else { 450 devm_free_irq(port->dev, mvuart->irq[UART_RX_IRQ], port); 451 devm_free_irq(port->dev, mvuart->irq[UART_TX_IRQ], port); 452 } 453 } 454 455 static unsigned int mvebu_uart_baud_rate_set(struct uart_port *port, unsigned int baud) 456 { 457 unsigned int d_divisor, m_divisor; 458 unsigned long flags; 459 u32 brdv, osamp; 460 461 if (!port->uartclk) 462 return 0; 463 464 /* 465 * The baudrate is derived from the UART clock thanks to divisors: 466 * > d1 * d2 ("TBG divisors"): can divide only TBG clock from 1 to 6 467 * > D ("baud generator"): can divide the clock from 1 to 1023 468 * > M ("fractional divisor"): allows a better accuracy (from 1 to 63) 469 * 470 * Exact formulas for calculating baudrate: 471 * 472 * with default x16 scheme: 473 * baudrate = xtal / (d * 16) 474 * baudrate = tbg / (d1 * d2 * d * 16) 475 * 476 * with fractional divisor: 477 * baudrate = 10 * xtal / (d * (3 * (m1 + m2) + 2 * (m3 + m4))) 478 * baudrate = 10 * tbg / (d1*d2 * d * (3 * (m1 + m2) + 2 * (m3 + m4))) 479 * 480 * Oversampling value: 481 * osamp = (m1 << 0) | (m2 << 8) | (m3 << 16) | (m4 << 24); 482 * 483 * Where m1 controls number of clock cycles per bit for bits 1,2,3; 484 * m2 for bits 4,5,6; m3 for bits 7,8 and m4 for bits 9,10. 485 * 486 * To simplify baudrate setup set all the M prescalers to the same 487 * value. For baudrates 9600 Bd and higher, it is enough to use the 488 * default (x16) divisor or fractional divisor with M = 63, so there 489 * is no need to use real fractional support (where the M prescalers 490 * are not equal). 491 * 492 * When all the M prescalers are zeroed then default (x16) divisor is 493 * used. Default x16 scheme is more stable than M (fractional divisor), 494 * so use M only when D divisor is not enough to derive baudrate. 495 * 496 * Member port->uartclk is either xtal clock rate or TBG clock rate 497 * divided by (d1 * d2). So d1 and d2 are already set by the UART clock 498 * driver (and UART driver itself cannot change them). Moreover they are 499 * shared between both UARTs. 500 */ 501 502 m_divisor = OSAMP_DEFAULT_DIVISOR; 503 d_divisor = DIV_ROUND_CLOSEST(port->uartclk, baud * m_divisor); 504 505 if (d_divisor > BRDV_BAUD_MAX) { 506 /* 507 * Experiments show that small M divisors are unstable. 508 * Use maximal possible M = 63 and calculate D divisor. 509 */ 510 m_divisor = OSAMP_MAX_DIVISOR; 511 d_divisor = DIV_ROUND_CLOSEST(port->uartclk, baud * m_divisor); 512 } 513 514 if (d_divisor < 1) 515 d_divisor = 1; 516 else if (d_divisor > BRDV_BAUD_MAX) 517 d_divisor = BRDV_BAUD_MAX; 518 519 spin_lock_irqsave(&mvebu_uart_lock, flags); 520 brdv = readl(port->membase + UART_BRDV); 521 brdv &= ~BRDV_BAUD_MASK; 522 brdv |= d_divisor; 523 writel(brdv, port->membase + UART_BRDV); 524 spin_unlock_irqrestore(&mvebu_uart_lock, flags); 525 526 osamp = readl(port->membase + UART_OSAMP); 527 osamp &= ~OSAMP_DIVISORS_MASK; 528 if (m_divisor != OSAMP_DEFAULT_DIVISOR) 529 osamp |= (m_divisor << 0) | (m_divisor << 8) | 530 (m_divisor << 16) | (m_divisor << 24); 531 writel(osamp, port->membase + UART_OSAMP); 532 533 return DIV_ROUND_CLOSEST(port->uartclk, d_divisor * m_divisor); 534 } 535 536 static void mvebu_uart_set_termios(struct uart_port *port, 537 struct ktermios *termios, 538 const struct ktermios *old) 539 { 540 unsigned long flags; 541 unsigned int baud, min_baud, max_baud; 542 543 spin_lock_irqsave(&port->lock, flags); 544 545 port->read_status_mask = STAT_RX_RDY(port) | STAT_OVR_ERR | 546 STAT_TX_RDY(port) | STAT_TX_FIFO_FUL; 547 548 if (termios->c_iflag & INPCK) 549 port->read_status_mask |= STAT_FRM_ERR | STAT_PAR_ERR; 550 551 port->ignore_status_mask = 0; 552 if (termios->c_iflag & IGNPAR) 553 port->ignore_status_mask |= 554 STAT_FRM_ERR | STAT_PAR_ERR | STAT_OVR_ERR; 555 556 if ((termios->c_cflag & CREAD) == 0) 557 port->ignore_status_mask |= STAT_RX_RDY(port) | STAT_BRK_ERR; 558 559 /* 560 * Maximal divisor is 1023 and maximal fractional divisor is 63. And 561 * experiments show that baudrates above 1/80 of parent clock rate are 562 * not stable. So disallow baudrates above 1/80 of the parent clock 563 * rate. If port->uartclk is not available, then 564 * mvebu_uart_baud_rate_set() fails, so values min_baud and max_baud 565 * in this case do not matter. 566 */ 567 min_baud = DIV_ROUND_UP(port->uartclk, BRDV_BAUD_MAX * 568 OSAMP_MAX_DIVISOR); 569 max_baud = port->uartclk / 80; 570 571 baud = uart_get_baud_rate(port, termios, old, min_baud, max_baud); 572 baud = mvebu_uart_baud_rate_set(port, baud); 573 574 /* In case baudrate cannot be changed, report previous old value */ 575 if (baud == 0 && old) 576 baud = tty_termios_baud_rate(old); 577 578 /* Only the following flag changes are supported */ 579 if (old) { 580 termios->c_iflag &= INPCK | IGNPAR; 581 termios->c_iflag |= old->c_iflag & ~(INPCK | IGNPAR); 582 termios->c_cflag &= CREAD | CBAUD; 583 termios->c_cflag |= old->c_cflag & ~(CREAD | CBAUD); 584 termios->c_cflag |= CS8; 585 } 586 587 if (baud != 0) { 588 tty_termios_encode_baud_rate(termios, baud, baud); 589 uart_update_timeout(port, termios->c_cflag, baud); 590 } 591 592 spin_unlock_irqrestore(&port->lock, flags); 593 } 594 595 static const char *mvebu_uart_type(struct uart_port *port) 596 { 597 return MVEBU_UART_TYPE; 598 } 599 600 static void mvebu_uart_release_port(struct uart_port *port) 601 { 602 /* Nothing to do here */ 603 } 604 605 static int mvebu_uart_request_port(struct uart_port *port) 606 { 607 return 0; 608 } 609 610 #ifdef CONFIG_CONSOLE_POLL 611 static int mvebu_uart_get_poll_char(struct uart_port *port) 612 { 613 unsigned int st = readl(port->membase + UART_STAT); 614 615 if (!(st & STAT_RX_RDY(port))) 616 return NO_POLL_CHAR; 617 618 return readl(port->membase + UART_RBR(port)); 619 } 620 621 static void mvebu_uart_put_poll_char(struct uart_port *port, unsigned char c) 622 { 623 unsigned int st; 624 625 for (;;) { 626 st = readl(port->membase + UART_STAT); 627 628 if (!(st & STAT_TX_FIFO_FUL)) 629 break; 630 631 udelay(1); 632 } 633 634 writel(c, port->membase + UART_TSH(port)); 635 } 636 #endif 637 638 static const struct uart_ops mvebu_uart_ops = { 639 .tx_empty = mvebu_uart_tx_empty, 640 .set_mctrl = mvebu_uart_set_mctrl, 641 .get_mctrl = mvebu_uart_get_mctrl, 642 .stop_tx = mvebu_uart_stop_tx, 643 .start_tx = mvebu_uart_start_tx, 644 .stop_rx = mvebu_uart_stop_rx, 645 .break_ctl = mvebu_uart_break_ctl, 646 .startup = mvebu_uart_startup, 647 .shutdown = mvebu_uart_shutdown, 648 .set_termios = mvebu_uart_set_termios, 649 .type = mvebu_uart_type, 650 .release_port = mvebu_uart_release_port, 651 .request_port = mvebu_uart_request_port, 652 #ifdef CONFIG_CONSOLE_POLL 653 .poll_get_char = mvebu_uart_get_poll_char, 654 .poll_put_char = mvebu_uart_put_poll_char, 655 #endif 656 }; 657 658 /* Console Driver Operations */ 659 660 #ifdef CONFIG_SERIAL_MVEBU_CONSOLE 661 /* Early Console */ 662 static void mvebu_uart_putc(struct uart_port *port, unsigned char c) 663 { 664 unsigned int st; 665 666 for (;;) { 667 st = readl(port->membase + UART_STAT); 668 if (!(st & STAT_TX_FIFO_FUL)) 669 break; 670 } 671 672 /* At early stage, DT is not parsed yet, only use UART0 */ 673 writel(c, port->membase + UART_STD_TSH); 674 675 for (;;) { 676 st = readl(port->membase + UART_STAT); 677 if (st & STAT_TX_FIFO_EMP) 678 break; 679 } 680 } 681 682 static void mvebu_uart_putc_early_write(struct console *con, 683 const char *s, 684 unsigned int n) 685 { 686 struct earlycon_device *dev = con->data; 687 688 uart_console_write(&dev->port, s, n, mvebu_uart_putc); 689 } 690 691 static int __init 692 mvebu_uart_early_console_setup(struct earlycon_device *device, 693 const char *opt) 694 { 695 if (!device->port.membase) 696 return -ENODEV; 697 698 device->con->write = mvebu_uart_putc_early_write; 699 700 return 0; 701 } 702 703 EARLYCON_DECLARE(ar3700_uart, mvebu_uart_early_console_setup); 704 OF_EARLYCON_DECLARE(ar3700_uart, "marvell,armada-3700-uart", 705 mvebu_uart_early_console_setup); 706 707 static void wait_for_xmitr(struct uart_port *port) 708 { 709 u32 val; 710 711 readl_poll_timeout_atomic(port->membase + UART_STAT, val, 712 (val & STAT_TX_RDY(port)), 1, 10000); 713 } 714 715 static void wait_for_xmite(struct uart_port *port) 716 { 717 u32 val; 718 719 readl_poll_timeout_atomic(port->membase + UART_STAT, val, 720 (val & STAT_TX_EMP), 1, 10000); 721 } 722 723 static void mvebu_uart_console_putchar(struct uart_port *port, unsigned char ch) 724 { 725 wait_for_xmitr(port); 726 writel(ch, port->membase + UART_TSH(port)); 727 } 728 729 static void mvebu_uart_console_write(struct console *co, const char *s, 730 unsigned int count) 731 { 732 struct uart_port *port = &mvebu_uart_ports[co->index]; 733 unsigned long flags; 734 unsigned int ier, intr, ctl; 735 int locked = 1; 736 737 if (oops_in_progress) 738 locked = spin_trylock_irqsave(&port->lock, flags); 739 else 740 spin_lock_irqsave(&port->lock, flags); 741 742 ier = readl(port->membase + UART_CTRL(port)) & CTRL_BRK_INT; 743 intr = readl(port->membase + UART_INTR(port)) & 744 (CTRL_RX_RDY_INT(port) | CTRL_TX_RDY_INT(port)); 745 writel(0, port->membase + UART_CTRL(port)); 746 writel(0, port->membase + UART_INTR(port)); 747 748 uart_console_write(port, s, count, mvebu_uart_console_putchar); 749 750 wait_for_xmite(port); 751 752 if (ier) 753 writel(ier, port->membase + UART_CTRL(port)); 754 755 if (intr) { 756 ctl = intr | readl(port->membase + UART_INTR(port)); 757 writel(ctl, port->membase + UART_INTR(port)); 758 } 759 760 if (locked) 761 spin_unlock_irqrestore(&port->lock, flags); 762 } 763 764 static int mvebu_uart_console_setup(struct console *co, char *options) 765 { 766 struct uart_port *port; 767 int baud = 9600; 768 int bits = 8; 769 int parity = 'n'; 770 int flow = 'n'; 771 772 if (co->index < 0 || co->index >= MVEBU_NR_UARTS) 773 return -EINVAL; 774 775 port = &mvebu_uart_ports[co->index]; 776 777 if (!port->mapbase || !port->membase) { 778 pr_debug("console on ttyMV%i not present\n", co->index); 779 return -ENODEV; 780 } 781 782 if (options) 783 uart_parse_options(options, &baud, &parity, &bits, &flow); 784 785 return uart_set_options(port, co, baud, parity, bits, flow); 786 } 787 788 static struct uart_driver mvebu_uart_driver; 789 790 static struct console mvebu_uart_console = { 791 .name = "ttyMV", 792 .write = mvebu_uart_console_write, 793 .device = uart_console_device, 794 .setup = mvebu_uart_console_setup, 795 .flags = CON_PRINTBUFFER, 796 .index = -1, 797 .data = &mvebu_uart_driver, 798 }; 799 800 static int __init mvebu_uart_console_init(void) 801 { 802 register_console(&mvebu_uart_console); 803 return 0; 804 } 805 806 console_initcall(mvebu_uart_console_init); 807 808 809 #endif /* CONFIG_SERIAL_MVEBU_CONSOLE */ 810 811 static struct uart_driver mvebu_uart_driver = { 812 .owner = THIS_MODULE, 813 .driver_name = DRIVER_NAME, 814 .dev_name = "ttyMV", 815 .nr = MVEBU_NR_UARTS, 816 #ifdef CONFIG_SERIAL_MVEBU_CONSOLE 817 .cons = &mvebu_uart_console, 818 #endif 819 }; 820 821 #if defined(CONFIG_PM) 822 static int mvebu_uart_suspend(struct device *dev) 823 { 824 struct mvebu_uart *mvuart = dev_get_drvdata(dev); 825 struct uart_port *port = mvuart->port; 826 unsigned long flags; 827 828 uart_suspend_port(&mvebu_uart_driver, port); 829 830 mvuart->pm_regs.rbr = readl(port->membase + UART_RBR(port)); 831 mvuart->pm_regs.tsh = readl(port->membase + UART_TSH(port)); 832 mvuart->pm_regs.ctrl = readl(port->membase + UART_CTRL(port)); 833 mvuart->pm_regs.intr = readl(port->membase + UART_INTR(port)); 834 mvuart->pm_regs.stat = readl(port->membase + UART_STAT); 835 spin_lock_irqsave(&mvebu_uart_lock, flags); 836 mvuart->pm_regs.brdv = readl(port->membase + UART_BRDV); 837 spin_unlock_irqrestore(&mvebu_uart_lock, flags); 838 mvuart->pm_regs.osamp = readl(port->membase + UART_OSAMP); 839 840 device_set_wakeup_enable(dev, true); 841 842 return 0; 843 } 844 845 static int mvebu_uart_resume(struct device *dev) 846 { 847 struct mvebu_uart *mvuart = dev_get_drvdata(dev); 848 struct uart_port *port = mvuart->port; 849 unsigned long flags; 850 851 writel(mvuart->pm_regs.rbr, port->membase + UART_RBR(port)); 852 writel(mvuart->pm_regs.tsh, port->membase + UART_TSH(port)); 853 writel(mvuart->pm_regs.ctrl, port->membase + UART_CTRL(port)); 854 writel(mvuart->pm_regs.intr, port->membase + UART_INTR(port)); 855 writel(mvuart->pm_regs.stat, port->membase + UART_STAT); 856 spin_lock_irqsave(&mvebu_uart_lock, flags); 857 writel(mvuart->pm_regs.brdv, port->membase + UART_BRDV); 858 spin_unlock_irqrestore(&mvebu_uart_lock, flags); 859 writel(mvuart->pm_regs.osamp, port->membase + UART_OSAMP); 860 861 uart_resume_port(&mvebu_uart_driver, port); 862 863 return 0; 864 } 865 866 static const struct dev_pm_ops mvebu_uart_pm_ops = { 867 .suspend = mvebu_uart_suspend, 868 .resume = mvebu_uart_resume, 869 }; 870 #endif /* CONFIG_PM */ 871 872 static const struct of_device_id mvebu_uart_of_match[]; 873 874 /* Counter to keep track of each UART port id when not using CONFIG_OF */ 875 static int uart_num_counter; 876 877 static int mvebu_uart_probe(struct platform_device *pdev) 878 { 879 const struct of_device_id *match = of_match_device(mvebu_uart_of_match, 880 &pdev->dev); 881 struct uart_port *port; 882 struct mvebu_uart *mvuart; 883 struct resource *reg; 884 int id, irq; 885 886 /* Assume that all UART ports have a DT alias or none has */ 887 id = of_alias_get_id(pdev->dev.of_node, "serial"); 888 if (!pdev->dev.of_node || id < 0) 889 pdev->id = uart_num_counter++; 890 else 891 pdev->id = id; 892 893 if (pdev->id >= MVEBU_NR_UARTS) { 894 dev_err(&pdev->dev, "cannot have more than %d UART ports\n", 895 MVEBU_NR_UARTS); 896 return -EINVAL; 897 } 898 899 port = &mvebu_uart_ports[pdev->id]; 900 901 spin_lock_init(&port->lock); 902 903 port->dev = &pdev->dev; 904 port->type = PORT_MVEBU; 905 port->ops = &mvebu_uart_ops; 906 port->regshift = 0; 907 908 port->fifosize = 32; 909 port->iotype = UPIO_MEM32; 910 port->flags = UPF_FIXED_PORT; 911 port->line = pdev->id; 912 913 /* 914 * IRQ number is not stored in this structure because we may have two of 915 * them per port (RX and TX). Instead, use the driver UART structure 916 * array so called ->irq[]. 917 */ 918 port->irq = 0; 919 port->irqflags = 0; 920 921 port->membase = devm_platform_get_and_ioremap_resource(pdev, 0, ®); 922 if (IS_ERR(port->membase)) 923 return PTR_ERR(port->membase); 924 port->mapbase = reg->start; 925 926 mvuart = devm_kzalloc(&pdev->dev, sizeof(struct mvebu_uart), 927 GFP_KERNEL); 928 if (!mvuart) 929 return -ENOMEM; 930 931 /* Get controller data depending on the compatible string */ 932 mvuart->data = (struct mvebu_uart_driver_data *)match->data; 933 mvuart->port = port; 934 935 port->private_data = mvuart; 936 platform_set_drvdata(pdev, mvuart); 937 938 /* Get fixed clock frequency */ 939 mvuart->clk = devm_clk_get(&pdev->dev, NULL); 940 if (IS_ERR(mvuart->clk)) { 941 if (PTR_ERR(mvuart->clk) == -EPROBE_DEFER) 942 return PTR_ERR(mvuart->clk); 943 944 if (IS_EXTENDED(port)) { 945 dev_err(&pdev->dev, "unable to get UART clock\n"); 946 return PTR_ERR(mvuart->clk); 947 } 948 } else { 949 if (!clk_prepare_enable(mvuart->clk)) 950 port->uartclk = clk_get_rate(mvuart->clk); 951 } 952 953 /* Manage interrupts */ 954 if (platform_irq_count(pdev) == 1) { 955 /* Old bindings: no name on the single unamed UART0 IRQ */ 956 irq = platform_get_irq(pdev, 0); 957 if (irq < 0) 958 return irq; 959 960 mvuart->irq[UART_IRQ_SUM] = irq; 961 } else { 962 /* 963 * New bindings: named interrupts (RX, TX) for both UARTS, 964 * only make use of uart-rx and uart-tx interrupts, do not use 965 * uart-sum of UART0 port. 966 */ 967 irq = platform_get_irq_byname(pdev, "uart-rx"); 968 if (irq < 0) 969 return irq; 970 971 mvuart->irq[UART_RX_IRQ] = irq; 972 973 irq = platform_get_irq_byname(pdev, "uart-tx"); 974 if (irq < 0) 975 return irq; 976 977 mvuart->irq[UART_TX_IRQ] = irq; 978 } 979 980 /* UART Soft Reset*/ 981 writel(CTRL_SOFT_RST, port->membase + UART_CTRL(port)); 982 udelay(1); 983 writel(0, port->membase + UART_CTRL(port)); 984 985 return uart_add_one_port(&mvebu_uart_driver, port); 986 } 987 988 static struct mvebu_uart_driver_data uart_std_driver_data = { 989 .is_ext = false, 990 .regs.rbr = UART_STD_RBR, 991 .regs.tsh = UART_STD_TSH, 992 .regs.ctrl = UART_STD_CTRL1, 993 .regs.intr = UART_STD_CTRL2, 994 .flags.ctrl_tx_rdy_int = CTRL_STD_TX_RDY_INT, 995 .flags.ctrl_rx_rdy_int = CTRL_STD_RX_RDY_INT, 996 .flags.stat_tx_rdy = STAT_STD_TX_RDY, 997 .flags.stat_rx_rdy = STAT_STD_RX_RDY, 998 }; 999 1000 static struct mvebu_uart_driver_data uart_ext_driver_data = { 1001 .is_ext = true, 1002 .regs.rbr = UART_EXT_RBR, 1003 .regs.tsh = UART_EXT_TSH, 1004 .regs.ctrl = UART_EXT_CTRL1, 1005 .regs.intr = UART_EXT_CTRL2, 1006 .flags.ctrl_tx_rdy_int = CTRL_EXT_TX_RDY_INT, 1007 .flags.ctrl_rx_rdy_int = CTRL_EXT_RX_RDY_INT, 1008 .flags.stat_tx_rdy = STAT_EXT_TX_RDY, 1009 .flags.stat_rx_rdy = STAT_EXT_RX_RDY, 1010 }; 1011 1012 /* Match table for of_platform binding */ 1013 static const struct of_device_id mvebu_uart_of_match[] = { 1014 { 1015 .compatible = "marvell,armada-3700-uart", 1016 .data = (void *)&uart_std_driver_data, 1017 }, 1018 { 1019 .compatible = "marvell,armada-3700-uart-ext", 1020 .data = (void *)&uart_ext_driver_data, 1021 }, 1022 {} 1023 }; 1024 1025 static struct platform_driver mvebu_uart_platform_driver = { 1026 .probe = mvebu_uart_probe, 1027 .driver = { 1028 .name = "mvebu-uart", 1029 .of_match_table = of_match_ptr(mvebu_uart_of_match), 1030 .suppress_bind_attrs = true, 1031 #if defined(CONFIG_PM) 1032 .pm = &mvebu_uart_pm_ops, 1033 #endif /* CONFIG_PM */ 1034 }, 1035 }; 1036 1037 /* This code is based on clk-fixed-factor.c driver and modified. */ 1038 1039 struct mvebu_uart_clock { 1040 struct clk_hw clk_hw; 1041 int clock_idx; 1042 u32 pm_context_reg1; 1043 u32 pm_context_reg2; 1044 }; 1045 1046 struct mvebu_uart_clock_base { 1047 struct mvebu_uart_clock clocks[2]; 1048 unsigned int parent_rates[5]; 1049 int parent_idx; 1050 unsigned int div; 1051 void __iomem *reg1; 1052 void __iomem *reg2; 1053 bool configured; 1054 }; 1055 1056 #define PARENT_CLOCK_XTAL 4 1057 1058 #define to_uart_clock(hw) container_of(hw, struct mvebu_uart_clock, clk_hw) 1059 #define to_uart_clock_base(uart_clock) container_of(uart_clock, \ 1060 struct mvebu_uart_clock_base, clocks[uart_clock->clock_idx]) 1061 1062 static int mvebu_uart_clock_prepare(struct clk_hw *hw) 1063 { 1064 struct mvebu_uart_clock *uart_clock = to_uart_clock(hw); 1065 struct mvebu_uart_clock_base *uart_clock_base = 1066 to_uart_clock_base(uart_clock); 1067 unsigned int prev_clock_idx, prev_clock_rate, prev_d1d2; 1068 unsigned int parent_clock_idx, parent_clock_rate; 1069 unsigned long flags; 1070 unsigned int d1, d2; 1071 u64 divisor; 1072 u32 val; 1073 1074 /* 1075 * This function just reconfigures UART Clock Control register (located 1076 * in UART1 address space which controls both UART1 and UART2) to 1077 * selected UART base clock and recalculates current UART1/UART2 1078 * divisors in their address spaces, so that final baudrate will not be 1079 * changed by switching UART parent clock. This is required for 1080 * otherwise kernel's boot log stops working - we need to ensure that 1081 * UART baudrate does not change during this setup. It is a one time 1082 * operation, it will execute only once and set `configured` to true, 1083 * and be skipped on subsequent calls. Because this UART Clock Control 1084 * register (UART_BRDV) is shared between UART1 baudrate function, 1085 * UART1 clock selector and UART2 clock selector, every access to 1086 * UART_BRDV (reg1) needs to be protected by a lock. 1087 */ 1088 1089 spin_lock_irqsave(&mvebu_uart_lock, flags); 1090 1091 if (uart_clock_base->configured) { 1092 spin_unlock_irqrestore(&mvebu_uart_lock, flags); 1093 return 0; 1094 } 1095 1096 parent_clock_idx = uart_clock_base->parent_idx; 1097 parent_clock_rate = uart_clock_base->parent_rates[parent_clock_idx]; 1098 1099 val = readl(uart_clock_base->reg1); 1100 1101 if (uart_clock_base->div > CLK_TBG_DIV1_MAX) { 1102 d1 = CLK_TBG_DIV1_MAX; 1103 d2 = uart_clock_base->div / CLK_TBG_DIV1_MAX; 1104 } else { 1105 d1 = uart_clock_base->div; 1106 d2 = 1; 1107 } 1108 1109 if (val & CLK_NO_XTAL) { 1110 prev_clock_idx = (val >> CLK_TBG_SEL_SHIFT) & CLK_TBG_SEL_MASK; 1111 prev_d1d2 = ((val >> CLK_TBG_DIV1_SHIFT) & CLK_TBG_DIV1_MASK) * 1112 ((val >> CLK_TBG_DIV2_SHIFT) & CLK_TBG_DIV2_MASK); 1113 } else { 1114 prev_clock_idx = PARENT_CLOCK_XTAL; 1115 prev_d1d2 = 1; 1116 } 1117 1118 /* Note that uart_clock_base->parent_rates[i] may not be available */ 1119 prev_clock_rate = uart_clock_base->parent_rates[prev_clock_idx]; 1120 1121 /* Recalculate UART1 divisor so UART1 baudrate does not change */ 1122 if (prev_clock_rate) { 1123 divisor = DIV_U64_ROUND_CLOSEST((u64)(val & BRDV_BAUD_MASK) * 1124 parent_clock_rate * prev_d1d2, 1125 prev_clock_rate * d1 * d2); 1126 if (divisor < 1) 1127 divisor = 1; 1128 else if (divisor > BRDV_BAUD_MAX) 1129 divisor = BRDV_BAUD_MAX; 1130 val = (val & ~BRDV_BAUD_MASK) | divisor; 1131 } 1132 1133 if (parent_clock_idx != PARENT_CLOCK_XTAL) { 1134 /* Do not use XTAL, select TBG clock and TBG d1 * d2 divisors */ 1135 val |= CLK_NO_XTAL; 1136 val &= ~(CLK_TBG_DIV1_MASK << CLK_TBG_DIV1_SHIFT); 1137 val |= d1 << CLK_TBG_DIV1_SHIFT; 1138 val &= ~(CLK_TBG_DIV2_MASK << CLK_TBG_DIV2_SHIFT); 1139 val |= d2 << CLK_TBG_DIV2_SHIFT; 1140 val &= ~(CLK_TBG_SEL_MASK << CLK_TBG_SEL_SHIFT); 1141 val |= parent_clock_idx << CLK_TBG_SEL_SHIFT; 1142 } else { 1143 /* Use XTAL, TBG bits are then ignored */ 1144 val &= ~CLK_NO_XTAL; 1145 } 1146 1147 writel(val, uart_clock_base->reg1); 1148 1149 /* Recalculate UART2 divisor so UART2 baudrate does not change */ 1150 if (prev_clock_rate) { 1151 val = readl(uart_clock_base->reg2); 1152 divisor = DIV_U64_ROUND_CLOSEST((u64)(val & BRDV_BAUD_MASK) * 1153 parent_clock_rate * prev_d1d2, 1154 prev_clock_rate * d1 * d2); 1155 if (divisor < 1) 1156 divisor = 1; 1157 else if (divisor > BRDV_BAUD_MAX) 1158 divisor = BRDV_BAUD_MAX; 1159 val = (val & ~BRDV_BAUD_MASK) | divisor; 1160 writel(val, uart_clock_base->reg2); 1161 } 1162 1163 uart_clock_base->configured = true; 1164 1165 spin_unlock_irqrestore(&mvebu_uart_lock, flags); 1166 1167 return 0; 1168 } 1169 1170 static int mvebu_uart_clock_enable(struct clk_hw *hw) 1171 { 1172 struct mvebu_uart_clock *uart_clock = to_uart_clock(hw); 1173 struct mvebu_uart_clock_base *uart_clock_base = 1174 to_uart_clock_base(uart_clock); 1175 unsigned long flags; 1176 u32 val; 1177 1178 spin_lock_irqsave(&mvebu_uart_lock, flags); 1179 1180 val = readl(uart_clock_base->reg1); 1181 1182 if (uart_clock->clock_idx == 0) 1183 val &= ~UART1_CLK_DIS; 1184 else 1185 val &= ~UART2_CLK_DIS; 1186 1187 writel(val, uart_clock_base->reg1); 1188 1189 spin_unlock_irqrestore(&mvebu_uart_lock, flags); 1190 1191 return 0; 1192 } 1193 1194 static void mvebu_uart_clock_disable(struct clk_hw *hw) 1195 { 1196 struct mvebu_uart_clock *uart_clock = to_uart_clock(hw); 1197 struct mvebu_uart_clock_base *uart_clock_base = 1198 to_uart_clock_base(uart_clock); 1199 unsigned long flags; 1200 u32 val; 1201 1202 spin_lock_irqsave(&mvebu_uart_lock, flags); 1203 1204 val = readl(uart_clock_base->reg1); 1205 1206 if (uart_clock->clock_idx == 0) 1207 val |= UART1_CLK_DIS; 1208 else 1209 val |= UART2_CLK_DIS; 1210 1211 writel(val, uart_clock_base->reg1); 1212 1213 spin_unlock_irqrestore(&mvebu_uart_lock, flags); 1214 } 1215 1216 static int mvebu_uart_clock_is_enabled(struct clk_hw *hw) 1217 { 1218 struct mvebu_uart_clock *uart_clock = to_uart_clock(hw); 1219 struct mvebu_uart_clock_base *uart_clock_base = 1220 to_uart_clock_base(uart_clock); 1221 u32 val; 1222 1223 val = readl(uart_clock_base->reg1); 1224 1225 if (uart_clock->clock_idx == 0) 1226 return !(val & UART1_CLK_DIS); 1227 else 1228 return !(val & UART2_CLK_DIS); 1229 } 1230 1231 static int mvebu_uart_clock_save_context(struct clk_hw *hw) 1232 { 1233 struct mvebu_uart_clock *uart_clock = to_uart_clock(hw); 1234 struct mvebu_uart_clock_base *uart_clock_base = 1235 to_uart_clock_base(uart_clock); 1236 unsigned long flags; 1237 1238 spin_lock_irqsave(&mvebu_uart_lock, flags); 1239 uart_clock->pm_context_reg1 = readl(uart_clock_base->reg1); 1240 uart_clock->pm_context_reg2 = readl(uart_clock_base->reg2); 1241 spin_unlock_irqrestore(&mvebu_uart_lock, flags); 1242 1243 return 0; 1244 } 1245 1246 static void mvebu_uart_clock_restore_context(struct clk_hw *hw) 1247 { 1248 struct mvebu_uart_clock *uart_clock = to_uart_clock(hw); 1249 struct mvebu_uart_clock_base *uart_clock_base = 1250 to_uart_clock_base(uart_clock); 1251 unsigned long flags; 1252 1253 spin_lock_irqsave(&mvebu_uart_lock, flags); 1254 writel(uart_clock->pm_context_reg1, uart_clock_base->reg1); 1255 writel(uart_clock->pm_context_reg2, uart_clock_base->reg2); 1256 spin_unlock_irqrestore(&mvebu_uart_lock, flags); 1257 } 1258 1259 static unsigned long mvebu_uart_clock_recalc_rate(struct clk_hw *hw, 1260 unsigned long parent_rate) 1261 { 1262 struct mvebu_uart_clock *uart_clock = to_uart_clock(hw); 1263 struct mvebu_uart_clock_base *uart_clock_base = 1264 to_uart_clock_base(uart_clock); 1265 1266 return parent_rate / uart_clock_base->div; 1267 } 1268 1269 static long mvebu_uart_clock_round_rate(struct clk_hw *hw, unsigned long rate, 1270 unsigned long *parent_rate) 1271 { 1272 struct mvebu_uart_clock *uart_clock = to_uart_clock(hw); 1273 struct mvebu_uart_clock_base *uart_clock_base = 1274 to_uart_clock_base(uart_clock); 1275 1276 return *parent_rate / uart_clock_base->div; 1277 } 1278 1279 static int mvebu_uart_clock_set_rate(struct clk_hw *hw, unsigned long rate, 1280 unsigned long parent_rate) 1281 { 1282 /* 1283 * We must report success but we can do so unconditionally because 1284 * mvebu_uart_clock_round_rate returns values that ensure this call is a 1285 * nop. 1286 */ 1287 1288 return 0; 1289 } 1290 1291 static const struct clk_ops mvebu_uart_clock_ops = { 1292 .prepare = mvebu_uart_clock_prepare, 1293 .enable = mvebu_uart_clock_enable, 1294 .disable = mvebu_uart_clock_disable, 1295 .is_enabled = mvebu_uart_clock_is_enabled, 1296 .save_context = mvebu_uart_clock_save_context, 1297 .restore_context = mvebu_uart_clock_restore_context, 1298 .round_rate = mvebu_uart_clock_round_rate, 1299 .set_rate = mvebu_uart_clock_set_rate, 1300 .recalc_rate = mvebu_uart_clock_recalc_rate, 1301 }; 1302 1303 static int mvebu_uart_clock_register(struct device *dev, 1304 struct mvebu_uart_clock *uart_clock, 1305 const char *name, 1306 const char *parent_name) 1307 { 1308 struct clk_init_data init = { }; 1309 1310 uart_clock->clk_hw.init = &init; 1311 1312 init.name = name; 1313 init.ops = &mvebu_uart_clock_ops; 1314 init.flags = 0; 1315 init.num_parents = 1; 1316 init.parent_names = &parent_name; 1317 1318 return devm_clk_hw_register(dev, &uart_clock->clk_hw); 1319 } 1320 1321 static int mvebu_uart_clock_probe(struct platform_device *pdev) 1322 { 1323 static const char *const uart_clk_names[] = { "uart_1", "uart_2" }; 1324 static const char *const parent_clk_names[] = { "TBG-A-P", "TBG-B-P", 1325 "TBG-A-S", "TBG-B-S", 1326 "xtal" }; 1327 struct clk *parent_clks[ARRAY_SIZE(parent_clk_names)]; 1328 struct mvebu_uart_clock_base *uart_clock_base; 1329 struct clk_hw_onecell_data *hw_clk_data; 1330 struct device *dev = &pdev->dev; 1331 int i, parent_clk_idx, ret; 1332 unsigned long div, rate; 1333 struct resource *res; 1334 unsigned int d1, d2; 1335 1336 BUILD_BUG_ON(ARRAY_SIZE(uart_clk_names) != 1337 ARRAY_SIZE(uart_clock_base->clocks)); 1338 BUILD_BUG_ON(ARRAY_SIZE(parent_clk_names) != 1339 ARRAY_SIZE(uart_clock_base->parent_rates)); 1340 1341 uart_clock_base = devm_kzalloc(dev, 1342 sizeof(*uart_clock_base), 1343 GFP_KERNEL); 1344 if (!uart_clock_base) 1345 return -ENOMEM; 1346 1347 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1348 if (!res) { 1349 dev_err(dev, "Couldn't get first register\n"); 1350 return -ENOENT; 1351 } 1352 1353 /* 1354 * UART Clock Control register (reg1 / UART_BRDV) is in the address 1355 * space of UART1 (standard UART variant), controls parent clock and 1356 * dividers for both UART1 and UART2 and is supplied via DT as the first 1357 * resource. Therefore use ioremap() rather than ioremap_resource() to 1358 * avoid conflicts with UART1 driver. Access to UART_BRDV is protected 1359 * by a lock shared between clock and UART driver. 1360 */ 1361 uart_clock_base->reg1 = devm_ioremap(dev, res->start, 1362 resource_size(res)); 1363 if (!uart_clock_base->reg1) 1364 return -ENOMEM; 1365 1366 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1367 if (!res) { 1368 dev_err(dev, "Couldn't get second register\n"); 1369 return -ENOENT; 1370 } 1371 1372 /* 1373 * UART 2 Baud Rate Divisor register (reg2 / UART_BRDV) is in address 1374 * space of UART2 (extended UART variant), controls only one UART2 1375 * specific divider and is supplied via DT as second resource. 1376 * Therefore use ioremap() rather than ioremap_resource() to avoid 1377 * conflicts with UART2 driver. Access to UART_BRDV is protected by a 1378 * by lock shared between clock and UART driver. 1379 */ 1380 uart_clock_base->reg2 = devm_ioremap(dev, res->start, 1381 resource_size(res)); 1382 if (!uart_clock_base->reg2) 1383 return -ENOMEM; 1384 1385 hw_clk_data = devm_kzalloc(dev, 1386 struct_size(hw_clk_data, hws, 1387 ARRAY_SIZE(uart_clk_names)), 1388 GFP_KERNEL); 1389 if (!hw_clk_data) 1390 return -ENOMEM; 1391 1392 hw_clk_data->num = ARRAY_SIZE(uart_clk_names); 1393 for (i = 0; i < ARRAY_SIZE(uart_clk_names); i++) { 1394 hw_clk_data->hws[i] = &uart_clock_base->clocks[i].clk_hw; 1395 uart_clock_base->clocks[i].clock_idx = i; 1396 } 1397 1398 parent_clk_idx = -1; 1399 1400 for (i = 0; i < ARRAY_SIZE(parent_clk_names); i++) { 1401 parent_clks[i] = devm_clk_get(dev, parent_clk_names[i]); 1402 if (IS_ERR(parent_clks[i])) { 1403 if (PTR_ERR(parent_clks[i]) == -EPROBE_DEFER) 1404 return -EPROBE_DEFER; 1405 dev_warn(dev, "Couldn't get the parent clock %s: %ld\n", 1406 parent_clk_names[i], PTR_ERR(parent_clks[i])); 1407 continue; 1408 } 1409 1410 ret = clk_prepare_enable(parent_clks[i]); 1411 if (ret) { 1412 dev_warn(dev, "Couldn't enable parent clock %s: %d\n", 1413 parent_clk_names[i], ret); 1414 continue; 1415 } 1416 rate = clk_get_rate(parent_clks[i]); 1417 uart_clock_base->parent_rates[i] = rate; 1418 1419 if (i != PARENT_CLOCK_XTAL) { 1420 /* 1421 * Calculate the smallest TBG d1 and d2 divisors that 1422 * still can provide 9600 baudrate. 1423 */ 1424 d1 = DIV_ROUND_UP(rate, 9600 * OSAMP_MAX_DIVISOR * 1425 BRDV_BAUD_MAX); 1426 if (d1 < 1) 1427 d1 = 1; 1428 else if (d1 > CLK_TBG_DIV1_MAX) 1429 d1 = CLK_TBG_DIV1_MAX; 1430 1431 d2 = DIV_ROUND_UP(rate, 9600 * OSAMP_MAX_DIVISOR * 1432 BRDV_BAUD_MAX * d1); 1433 if (d2 < 1) 1434 d2 = 1; 1435 else if (d2 > CLK_TBG_DIV2_MAX) 1436 d2 = CLK_TBG_DIV2_MAX; 1437 } else { 1438 /* 1439 * When UART clock uses XTAL clock as a source then it 1440 * is not possible to use d1 and d2 divisors. 1441 */ 1442 d1 = d2 = 1; 1443 } 1444 1445 /* Skip clock source which cannot provide 9600 baudrate */ 1446 if (rate > 9600 * OSAMP_MAX_DIVISOR * BRDV_BAUD_MAX * d1 * d2) 1447 continue; 1448 1449 /* 1450 * Choose TBG clock source with the smallest divisors. Use XTAL 1451 * clock source only in case TBG is not available as XTAL cannot 1452 * be used for baudrates higher than 230400. 1453 */ 1454 if (parent_clk_idx == -1 || 1455 (i != PARENT_CLOCK_XTAL && div > d1 * d2)) { 1456 parent_clk_idx = i; 1457 div = d1 * d2; 1458 } 1459 } 1460 1461 for (i = 0; i < ARRAY_SIZE(parent_clk_names); i++) { 1462 if (i == parent_clk_idx || IS_ERR(parent_clks[i])) 1463 continue; 1464 clk_disable_unprepare(parent_clks[i]); 1465 devm_clk_put(dev, parent_clks[i]); 1466 } 1467 1468 if (parent_clk_idx == -1) { 1469 dev_err(dev, "No usable parent clock\n"); 1470 return -ENOENT; 1471 } 1472 1473 uart_clock_base->parent_idx = parent_clk_idx; 1474 uart_clock_base->div = div; 1475 1476 dev_notice(dev, "Using parent clock %s as base UART clock\n", 1477 __clk_get_name(parent_clks[parent_clk_idx])); 1478 1479 for (i = 0; i < ARRAY_SIZE(uart_clk_names); i++) { 1480 ret = mvebu_uart_clock_register(dev, 1481 &uart_clock_base->clocks[i], 1482 uart_clk_names[i], 1483 __clk_get_name(parent_clks[parent_clk_idx])); 1484 if (ret) { 1485 dev_err(dev, "Can't register UART clock %d: %d\n", 1486 i, ret); 1487 return ret; 1488 } 1489 } 1490 1491 return devm_of_clk_add_hw_provider(dev, of_clk_hw_onecell_get, 1492 hw_clk_data); 1493 } 1494 1495 static const struct of_device_id mvebu_uart_clock_of_match[] = { 1496 { .compatible = "marvell,armada-3700-uart-clock", }, 1497 { } 1498 }; 1499 1500 static struct platform_driver mvebu_uart_clock_platform_driver = { 1501 .probe = mvebu_uart_clock_probe, 1502 .driver = { 1503 .name = "mvebu-uart-clock", 1504 .of_match_table = mvebu_uart_clock_of_match, 1505 }, 1506 }; 1507 1508 static int __init mvebu_uart_init(void) 1509 { 1510 int ret; 1511 1512 ret = uart_register_driver(&mvebu_uart_driver); 1513 if (ret) 1514 return ret; 1515 1516 ret = platform_driver_register(&mvebu_uart_clock_platform_driver); 1517 if (ret) { 1518 uart_unregister_driver(&mvebu_uart_driver); 1519 return ret; 1520 } 1521 1522 ret = platform_driver_register(&mvebu_uart_platform_driver); 1523 if (ret) { 1524 platform_driver_unregister(&mvebu_uart_clock_platform_driver); 1525 uart_unregister_driver(&mvebu_uart_driver); 1526 return ret; 1527 } 1528 1529 return 0; 1530 } 1531 arch_initcall(mvebu_uart_init); 1532