xref: /openbmc/linux/drivers/tty/serial/mvebu-uart.c (revision 7272b8bf)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * ***************************************************************************
4 * Marvell Armada-3700 Serial Driver
5 * Author: Wilson Ding <dingwei@marvell.com>
6 * Copyright (C) 2015 Marvell International Ltd.
7 * ***************************************************************************
8 */
9 
10 #include <linux/clk.h>
11 #include <linux/clk-provider.h>
12 #include <linux/console.h>
13 #include <linux/delay.h>
14 #include <linux/device.h>
15 #include <linux/init.h>
16 #include <linux/io.h>
17 #include <linux/iopoll.h>
18 #include <linux/math64.h>
19 #include <linux/of.h>
20 #include <linux/of_address.h>
21 #include <linux/of_device.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_platform.h>
24 #include <linux/platform_device.h>
25 #include <linux/serial.h>
26 #include <linux/serial_core.h>
27 #include <linux/slab.h>
28 #include <linux/tty.h>
29 #include <linux/tty_flip.h>
30 
31 /* Register Map */
32 #define UART_STD_RBR		0x00
33 #define UART_EXT_RBR		0x18
34 
35 #define UART_STD_TSH		0x04
36 #define UART_EXT_TSH		0x1C
37 
38 #define UART_STD_CTRL1		0x08
39 #define UART_EXT_CTRL1		0x04
40 #define  CTRL_SOFT_RST		BIT(31)
41 #define  CTRL_TXFIFO_RST	BIT(15)
42 #define  CTRL_RXFIFO_RST	BIT(14)
43 #define  CTRL_SND_BRK_SEQ	BIT(11)
44 #define  CTRL_BRK_DET_INT	BIT(3)
45 #define  CTRL_FRM_ERR_INT	BIT(2)
46 #define  CTRL_PAR_ERR_INT	BIT(1)
47 #define  CTRL_OVR_ERR_INT	BIT(0)
48 #define  CTRL_BRK_INT		(CTRL_BRK_DET_INT | CTRL_FRM_ERR_INT | \
49 				CTRL_PAR_ERR_INT | CTRL_OVR_ERR_INT)
50 
51 #define UART_STD_CTRL2		UART_STD_CTRL1
52 #define UART_EXT_CTRL2		0x20
53 #define  CTRL_STD_TX_RDY_INT	BIT(5)
54 #define  CTRL_EXT_TX_RDY_INT	BIT(6)
55 #define  CTRL_STD_RX_RDY_INT	BIT(4)
56 #define  CTRL_EXT_RX_RDY_INT	BIT(5)
57 
58 #define UART_STAT		0x0C
59 #define  STAT_TX_FIFO_EMP	BIT(13)
60 #define  STAT_TX_FIFO_FUL	BIT(11)
61 #define  STAT_TX_EMP		BIT(6)
62 #define  STAT_STD_TX_RDY	BIT(5)
63 #define  STAT_EXT_TX_RDY	BIT(15)
64 #define  STAT_STD_RX_RDY	BIT(4)
65 #define  STAT_EXT_RX_RDY	BIT(14)
66 #define  STAT_BRK_DET		BIT(3)
67 #define  STAT_FRM_ERR		BIT(2)
68 #define  STAT_PAR_ERR		BIT(1)
69 #define  STAT_OVR_ERR		BIT(0)
70 #define  STAT_BRK_ERR		(STAT_BRK_DET | STAT_FRM_ERR \
71 				 | STAT_PAR_ERR | STAT_OVR_ERR)
72 
73 /*
74  * Marvell Armada 3700 Functional Specifications describes that bit 21 of UART
75  * Clock Control register controls UART1 and bit 20 controls UART2. But in
76  * reality bit 21 controls UART2 and bit 20 controls UART1. This seems to be an
77  * error in Marvell's documentation. Hence following CLK_DIS macros are swapped.
78  */
79 
80 #define UART_BRDV		0x10
81 /* These bits are located in UART1 address space and control UART2 */
82 #define  UART2_CLK_DIS		BIT(21)
83 /* These bits are located in UART1 address space and control UART1 */
84 #define  UART1_CLK_DIS		BIT(20)
85 /* These bits are located in UART1 address space and control both UARTs */
86 #define  CLK_NO_XTAL		BIT(19)
87 #define  CLK_TBG_DIV1_SHIFT	15
88 #define  CLK_TBG_DIV1_MASK	0x7
89 #define  CLK_TBG_DIV1_MAX	6
90 #define  CLK_TBG_DIV2_SHIFT	12
91 #define  CLK_TBG_DIV2_MASK	0x7
92 #define  CLK_TBG_DIV2_MAX	6
93 #define  CLK_TBG_SEL_SHIFT	10
94 #define  CLK_TBG_SEL_MASK	0x3
95 /* These bits are located in both UARTs address space */
96 #define  BRDV_BAUD_MASK         0x3FF
97 #define  BRDV_BAUD_MAX		BRDV_BAUD_MASK
98 
99 #define UART_OSAMP		0x14
100 #define  OSAMP_DEFAULT_DIVISOR	16
101 #define  OSAMP_DIVISORS_MASK	0x3F3F3F3F
102 #define  OSAMP_MAX_DIVISOR	63
103 
104 #define MVEBU_NR_UARTS		2
105 
106 #define MVEBU_UART_TYPE		"mvebu-uart"
107 #define DRIVER_NAME		"mvebu_serial"
108 
109 enum {
110 	/* Either there is only one summed IRQ... */
111 	UART_IRQ_SUM = 0,
112 	/* ...or there are two separate IRQ for RX and TX */
113 	UART_RX_IRQ = 0,
114 	UART_TX_IRQ,
115 	UART_IRQ_COUNT
116 };
117 
118 /* Diverging register offsets */
119 struct uart_regs_layout {
120 	unsigned int rbr;
121 	unsigned int tsh;
122 	unsigned int ctrl;
123 	unsigned int intr;
124 };
125 
126 /* Diverging flags */
127 struct uart_flags {
128 	unsigned int ctrl_tx_rdy_int;
129 	unsigned int ctrl_rx_rdy_int;
130 	unsigned int stat_tx_rdy;
131 	unsigned int stat_rx_rdy;
132 };
133 
134 /* Driver data, a structure for each UART port */
135 struct mvebu_uart_driver_data {
136 	bool is_ext;
137 	struct uart_regs_layout regs;
138 	struct uart_flags flags;
139 };
140 
141 /* Saved registers during suspend */
142 struct mvebu_uart_pm_regs {
143 	unsigned int rbr;
144 	unsigned int tsh;
145 	unsigned int ctrl;
146 	unsigned int intr;
147 	unsigned int stat;
148 	unsigned int brdv;
149 	unsigned int osamp;
150 };
151 
152 /* MVEBU UART driver structure */
153 struct mvebu_uart {
154 	struct uart_port *port;
155 	struct clk *clk;
156 	int irq[UART_IRQ_COUNT];
157 	struct mvebu_uart_driver_data *data;
158 #if defined(CONFIG_PM)
159 	struct mvebu_uart_pm_regs pm_regs;
160 #endif /* CONFIG_PM */
161 };
162 
163 static struct mvebu_uart *to_mvuart(struct uart_port *port)
164 {
165 	return (struct mvebu_uart *)port->private_data;
166 }
167 
168 #define IS_EXTENDED(port) (to_mvuart(port)->data->is_ext)
169 
170 #define UART_RBR(port) (to_mvuart(port)->data->regs.rbr)
171 #define UART_TSH(port) (to_mvuart(port)->data->regs.tsh)
172 #define UART_CTRL(port) (to_mvuart(port)->data->regs.ctrl)
173 #define UART_INTR(port) (to_mvuart(port)->data->regs.intr)
174 
175 #define CTRL_TX_RDY_INT(port) (to_mvuart(port)->data->flags.ctrl_tx_rdy_int)
176 #define CTRL_RX_RDY_INT(port) (to_mvuart(port)->data->flags.ctrl_rx_rdy_int)
177 #define STAT_TX_RDY(port) (to_mvuart(port)->data->flags.stat_tx_rdy)
178 #define STAT_RX_RDY(port) (to_mvuart(port)->data->flags.stat_rx_rdy)
179 
180 static struct uart_port mvebu_uart_ports[MVEBU_NR_UARTS];
181 
182 static DEFINE_SPINLOCK(mvebu_uart_lock);
183 
184 /* Core UART Driver Operations */
185 static unsigned int mvebu_uart_tx_empty(struct uart_port *port)
186 {
187 	unsigned long flags;
188 	unsigned int st;
189 
190 	spin_lock_irqsave(&port->lock, flags);
191 	st = readl(port->membase + UART_STAT);
192 	spin_unlock_irqrestore(&port->lock, flags);
193 
194 	return (st & STAT_TX_EMP) ? TIOCSER_TEMT : 0;
195 }
196 
197 static unsigned int mvebu_uart_get_mctrl(struct uart_port *port)
198 {
199 	return TIOCM_CTS | TIOCM_DSR | TIOCM_CAR;
200 }
201 
202 static void mvebu_uart_set_mctrl(struct uart_port *port,
203 				 unsigned int mctrl)
204 {
205 /*
206  * Even if we do not support configuring the modem control lines, this
207  * function must be proided to the serial core
208  */
209 }
210 
211 static void mvebu_uart_stop_tx(struct uart_port *port)
212 {
213 	unsigned int ctl = readl(port->membase + UART_INTR(port));
214 
215 	ctl &= ~CTRL_TX_RDY_INT(port);
216 	writel(ctl, port->membase + UART_INTR(port));
217 }
218 
219 static void mvebu_uart_start_tx(struct uart_port *port)
220 {
221 	unsigned int ctl;
222 	struct circ_buf *xmit = &port->state->xmit;
223 
224 	if (IS_EXTENDED(port) && !uart_circ_empty(xmit)) {
225 		writel(xmit->buf[xmit->tail], port->membase + UART_TSH(port));
226 		uart_xmit_advance(port, 1);
227 	}
228 
229 	ctl = readl(port->membase + UART_INTR(port));
230 	ctl |= CTRL_TX_RDY_INT(port);
231 	writel(ctl, port->membase + UART_INTR(port));
232 }
233 
234 static void mvebu_uart_stop_rx(struct uart_port *port)
235 {
236 	unsigned int ctl;
237 
238 	ctl = readl(port->membase + UART_CTRL(port));
239 	ctl &= ~CTRL_BRK_INT;
240 	writel(ctl, port->membase + UART_CTRL(port));
241 
242 	ctl = readl(port->membase + UART_INTR(port));
243 	ctl &= ~CTRL_RX_RDY_INT(port);
244 	writel(ctl, port->membase + UART_INTR(port));
245 }
246 
247 static void mvebu_uart_break_ctl(struct uart_port *port, int brk)
248 {
249 	unsigned int ctl;
250 	unsigned long flags;
251 
252 	spin_lock_irqsave(&port->lock, flags);
253 	ctl = readl(port->membase + UART_CTRL(port));
254 	if (brk == -1)
255 		ctl |= CTRL_SND_BRK_SEQ;
256 	else
257 		ctl &= ~CTRL_SND_BRK_SEQ;
258 	writel(ctl, port->membase + UART_CTRL(port));
259 	spin_unlock_irqrestore(&port->lock, flags);
260 }
261 
262 static void mvebu_uart_rx_chars(struct uart_port *port, unsigned int status)
263 {
264 	struct tty_port *tport = &port->state->port;
265 	unsigned char ch = 0;
266 	char flag = 0;
267 	int ret;
268 
269 	do {
270 		if (status & STAT_RX_RDY(port)) {
271 			ch = readl(port->membase + UART_RBR(port));
272 			ch &= 0xff;
273 			flag = TTY_NORMAL;
274 			port->icount.rx++;
275 
276 			if (status & STAT_PAR_ERR)
277 				port->icount.parity++;
278 		}
279 
280 		/*
281 		 * For UART2, error bits are not cleared on buffer read.
282 		 * This causes interrupt loop and system hang.
283 		 */
284 		if (IS_EXTENDED(port) && (status & STAT_BRK_ERR)) {
285 			ret = readl(port->membase + UART_STAT);
286 			ret |= STAT_BRK_ERR;
287 			writel(ret, port->membase + UART_STAT);
288 		}
289 
290 		if (status & STAT_BRK_DET) {
291 			port->icount.brk++;
292 			status &= ~(STAT_FRM_ERR | STAT_PAR_ERR);
293 			if (uart_handle_break(port))
294 				goto ignore_char;
295 		}
296 
297 		if (status & STAT_OVR_ERR)
298 			port->icount.overrun++;
299 
300 		if (status & STAT_FRM_ERR)
301 			port->icount.frame++;
302 
303 		if (uart_handle_sysrq_char(port, ch))
304 			goto ignore_char;
305 
306 		if (status & port->ignore_status_mask & STAT_PAR_ERR)
307 			status &= ~STAT_RX_RDY(port);
308 
309 		status &= port->read_status_mask;
310 
311 		if (status & STAT_PAR_ERR)
312 			flag = TTY_PARITY;
313 
314 		status &= ~port->ignore_status_mask;
315 
316 		if (status & STAT_RX_RDY(port))
317 			tty_insert_flip_char(tport, ch, flag);
318 
319 		if (status & STAT_BRK_DET)
320 			tty_insert_flip_char(tport, 0, TTY_BREAK);
321 
322 		if (status & STAT_FRM_ERR)
323 			tty_insert_flip_char(tport, 0, TTY_FRAME);
324 
325 		if (status & STAT_OVR_ERR)
326 			tty_insert_flip_char(tport, 0, TTY_OVERRUN);
327 
328 ignore_char:
329 		status = readl(port->membase + UART_STAT);
330 	} while (status & (STAT_RX_RDY(port) | STAT_BRK_DET));
331 
332 	tty_flip_buffer_push(tport);
333 }
334 
335 static void mvebu_uart_tx_chars(struct uart_port *port, unsigned int status)
336 {
337 	u8 ch;
338 
339 	uart_port_tx_limited(port, ch, port->fifosize,
340 		!(readl(port->membase + UART_STAT) & STAT_TX_FIFO_FUL),
341 		writel(ch, port->membase + UART_TSH(port)),
342 		({}));
343 }
344 
345 static irqreturn_t mvebu_uart_isr(int irq, void *dev_id)
346 {
347 	struct uart_port *port = (struct uart_port *)dev_id;
348 	unsigned int st = readl(port->membase + UART_STAT);
349 
350 	if (st & (STAT_RX_RDY(port) | STAT_OVR_ERR | STAT_FRM_ERR |
351 		  STAT_BRK_DET))
352 		mvebu_uart_rx_chars(port, st);
353 
354 	if (st & STAT_TX_RDY(port))
355 		mvebu_uart_tx_chars(port, st);
356 
357 	return IRQ_HANDLED;
358 }
359 
360 static irqreturn_t mvebu_uart_rx_isr(int irq, void *dev_id)
361 {
362 	struct uart_port *port = (struct uart_port *)dev_id;
363 	unsigned int st = readl(port->membase + UART_STAT);
364 
365 	if (st & (STAT_RX_RDY(port) | STAT_OVR_ERR | STAT_FRM_ERR |
366 			STAT_BRK_DET))
367 		mvebu_uart_rx_chars(port, st);
368 
369 	return IRQ_HANDLED;
370 }
371 
372 static irqreturn_t mvebu_uart_tx_isr(int irq, void *dev_id)
373 {
374 	struct uart_port *port = (struct uart_port *)dev_id;
375 	unsigned int st = readl(port->membase + UART_STAT);
376 
377 	if (st & STAT_TX_RDY(port))
378 		mvebu_uart_tx_chars(port, st);
379 
380 	return IRQ_HANDLED;
381 }
382 
383 static int mvebu_uart_startup(struct uart_port *port)
384 {
385 	struct mvebu_uart *mvuart = to_mvuart(port);
386 	unsigned int ctl;
387 	int ret;
388 
389 	writel(CTRL_TXFIFO_RST | CTRL_RXFIFO_RST,
390 	       port->membase + UART_CTRL(port));
391 	udelay(1);
392 
393 	/* Clear the error bits of state register before IRQ request */
394 	ret = readl(port->membase + UART_STAT);
395 	ret |= STAT_BRK_ERR;
396 	writel(ret, port->membase + UART_STAT);
397 
398 	writel(CTRL_BRK_INT, port->membase + UART_CTRL(port));
399 
400 	ctl = readl(port->membase + UART_INTR(port));
401 	ctl |= CTRL_RX_RDY_INT(port);
402 	writel(ctl, port->membase + UART_INTR(port));
403 
404 	if (!mvuart->irq[UART_TX_IRQ]) {
405 		/* Old bindings with just one interrupt (UART0 only) */
406 		ret = devm_request_irq(port->dev, mvuart->irq[UART_IRQ_SUM],
407 				       mvebu_uart_isr, port->irqflags,
408 				       dev_name(port->dev), port);
409 		if (ret) {
410 			dev_err(port->dev, "unable to request IRQ %d\n",
411 				mvuart->irq[UART_IRQ_SUM]);
412 			return ret;
413 		}
414 	} else {
415 		/* New bindings with an IRQ for RX and TX (both UART) */
416 		ret = devm_request_irq(port->dev, mvuart->irq[UART_RX_IRQ],
417 				       mvebu_uart_rx_isr, port->irqflags,
418 				       dev_name(port->dev), port);
419 		if (ret) {
420 			dev_err(port->dev, "unable to request IRQ %d\n",
421 				mvuart->irq[UART_RX_IRQ]);
422 			return ret;
423 		}
424 
425 		ret = devm_request_irq(port->dev, mvuart->irq[UART_TX_IRQ],
426 				       mvebu_uart_tx_isr, port->irqflags,
427 				       dev_name(port->dev),
428 				       port);
429 		if (ret) {
430 			dev_err(port->dev, "unable to request IRQ %d\n",
431 				mvuart->irq[UART_TX_IRQ]);
432 			devm_free_irq(port->dev, mvuart->irq[UART_RX_IRQ],
433 				      port);
434 			return ret;
435 		}
436 	}
437 
438 	return 0;
439 }
440 
441 static void mvebu_uart_shutdown(struct uart_port *port)
442 {
443 	struct mvebu_uart *mvuart = to_mvuart(port);
444 
445 	writel(0, port->membase + UART_INTR(port));
446 
447 	if (!mvuart->irq[UART_TX_IRQ]) {
448 		devm_free_irq(port->dev, mvuart->irq[UART_IRQ_SUM], port);
449 	} else {
450 		devm_free_irq(port->dev, mvuart->irq[UART_RX_IRQ], port);
451 		devm_free_irq(port->dev, mvuart->irq[UART_TX_IRQ], port);
452 	}
453 }
454 
455 static unsigned int mvebu_uart_baud_rate_set(struct uart_port *port, unsigned int baud)
456 {
457 	unsigned int d_divisor, m_divisor;
458 	unsigned long flags;
459 	u32 brdv, osamp;
460 
461 	if (!port->uartclk)
462 		return 0;
463 
464 	/*
465 	 * The baudrate is derived from the UART clock thanks to divisors:
466 	 *   > d1 * d2 ("TBG divisors"): can divide only TBG clock from 1 to 6
467 	 *   > D ("baud generator"): can divide the clock from 1 to 1023
468 	 *   > M ("fractional divisor"): allows a better accuracy (from 1 to 63)
469 	 *
470 	 * Exact formulas for calculating baudrate:
471 	 *
472 	 * with default x16 scheme:
473 	 *   baudrate = xtal / (d * 16)
474 	 *   baudrate = tbg / (d1 * d2 * d * 16)
475 	 *
476 	 * with fractional divisor:
477 	 *   baudrate = 10 * xtal / (d * (3 * (m1 + m2) + 2 * (m3 + m4)))
478 	 *   baudrate = 10 * tbg / (d1*d2 * d * (3 * (m1 + m2) + 2 * (m3 + m4)))
479 	 *
480 	 * Oversampling value:
481 	 *   osamp = (m1 << 0) | (m2 << 8) | (m3 << 16) | (m4 << 24);
482 	 *
483 	 * Where m1 controls number of clock cycles per bit for bits 1,2,3;
484 	 * m2 for bits 4,5,6; m3 for bits 7,8 and m4 for bits 9,10.
485 	 *
486 	 * To simplify baudrate setup set all the M prescalers to the same
487 	 * value. For baudrates 9600 Bd and higher, it is enough to use the
488 	 * default (x16) divisor or fractional divisor with M = 63, so there
489 	 * is no need to use real fractional support (where the M prescalers
490 	 * are not equal).
491 	 *
492 	 * When all the M prescalers are zeroed then default (x16) divisor is
493 	 * used. Default x16 scheme is more stable than M (fractional divisor),
494 	 * so use M only when D divisor is not enough to derive baudrate.
495 	 *
496 	 * Member port->uartclk is either xtal clock rate or TBG clock rate
497 	 * divided by (d1 * d2). So d1 and d2 are already set by the UART clock
498 	 * driver (and UART driver itself cannot change them). Moreover they are
499 	 * shared between both UARTs.
500 	 */
501 
502 	m_divisor = OSAMP_DEFAULT_DIVISOR;
503 	d_divisor = DIV_ROUND_CLOSEST(port->uartclk, baud * m_divisor);
504 
505 	if (d_divisor > BRDV_BAUD_MAX) {
506 		/*
507 		 * Experiments show that small M divisors are unstable.
508 		 * Use maximal possible M = 63 and calculate D divisor.
509 		 */
510 		m_divisor = OSAMP_MAX_DIVISOR;
511 		d_divisor = DIV_ROUND_CLOSEST(port->uartclk, baud * m_divisor);
512 	}
513 
514 	if (d_divisor < 1)
515 		d_divisor = 1;
516 	else if (d_divisor > BRDV_BAUD_MAX)
517 		d_divisor = BRDV_BAUD_MAX;
518 
519 	spin_lock_irqsave(&mvebu_uart_lock, flags);
520 	brdv = readl(port->membase + UART_BRDV);
521 	brdv &= ~BRDV_BAUD_MASK;
522 	brdv |= d_divisor;
523 	writel(brdv, port->membase + UART_BRDV);
524 	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
525 
526 	osamp = readl(port->membase + UART_OSAMP);
527 	osamp &= ~OSAMP_DIVISORS_MASK;
528 	if (m_divisor != OSAMP_DEFAULT_DIVISOR)
529 		osamp |= (m_divisor << 0) | (m_divisor << 8) |
530 			(m_divisor << 16) | (m_divisor << 24);
531 	writel(osamp, port->membase + UART_OSAMP);
532 
533 	return DIV_ROUND_CLOSEST(port->uartclk, d_divisor * m_divisor);
534 }
535 
536 static void mvebu_uart_set_termios(struct uart_port *port,
537 				   struct ktermios *termios,
538 				   const struct ktermios *old)
539 {
540 	unsigned long flags;
541 	unsigned int baud, min_baud, max_baud;
542 
543 	spin_lock_irqsave(&port->lock, flags);
544 
545 	port->read_status_mask = STAT_RX_RDY(port) | STAT_OVR_ERR |
546 		STAT_TX_RDY(port) | STAT_TX_FIFO_FUL;
547 
548 	if (termios->c_iflag & INPCK)
549 		port->read_status_mask |= STAT_FRM_ERR | STAT_PAR_ERR;
550 
551 	port->ignore_status_mask = 0;
552 	if (termios->c_iflag & IGNPAR)
553 		port->ignore_status_mask |=
554 			STAT_FRM_ERR | STAT_PAR_ERR | STAT_OVR_ERR;
555 
556 	if ((termios->c_cflag & CREAD) == 0)
557 		port->ignore_status_mask |= STAT_RX_RDY(port) | STAT_BRK_ERR;
558 
559 	/*
560 	 * Maximal divisor is 1023 and maximal fractional divisor is 63. And
561 	 * experiments show that baudrates above 1/80 of parent clock rate are
562 	 * not stable. So disallow baudrates above 1/80 of the parent clock
563 	 * rate. If port->uartclk is not available, then
564 	 * mvebu_uart_baud_rate_set() fails, so values min_baud and max_baud
565 	 * in this case do not matter.
566 	 */
567 	min_baud = DIV_ROUND_UP(port->uartclk, BRDV_BAUD_MAX *
568 				OSAMP_MAX_DIVISOR);
569 	max_baud = port->uartclk / 80;
570 
571 	baud = uart_get_baud_rate(port, termios, old, min_baud, max_baud);
572 	baud = mvebu_uart_baud_rate_set(port, baud);
573 
574 	/* In case baudrate cannot be changed, report previous old value */
575 	if (baud == 0 && old)
576 		baud = tty_termios_baud_rate(old);
577 
578 	/* Only the following flag changes are supported */
579 	if (old) {
580 		termios->c_iflag &= INPCK | IGNPAR;
581 		termios->c_iflag |= old->c_iflag & ~(INPCK | IGNPAR);
582 		termios->c_cflag &= CREAD | CBAUD;
583 		termios->c_cflag |= old->c_cflag & ~(CREAD | CBAUD);
584 		termios->c_cflag |= CS8;
585 	}
586 
587 	if (baud != 0) {
588 		tty_termios_encode_baud_rate(termios, baud, baud);
589 		uart_update_timeout(port, termios->c_cflag, baud);
590 	}
591 
592 	spin_unlock_irqrestore(&port->lock, flags);
593 }
594 
595 static const char *mvebu_uart_type(struct uart_port *port)
596 {
597 	return MVEBU_UART_TYPE;
598 }
599 
600 static void mvebu_uart_release_port(struct uart_port *port)
601 {
602 	/* Nothing to do here */
603 }
604 
605 static int mvebu_uart_request_port(struct uart_port *port)
606 {
607 	return 0;
608 }
609 
610 #ifdef CONFIG_CONSOLE_POLL
611 static int mvebu_uart_get_poll_char(struct uart_port *port)
612 {
613 	unsigned int st = readl(port->membase + UART_STAT);
614 
615 	if (!(st & STAT_RX_RDY(port)))
616 		return NO_POLL_CHAR;
617 
618 	return readl(port->membase + UART_RBR(port));
619 }
620 
621 static void mvebu_uart_put_poll_char(struct uart_port *port, unsigned char c)
622 {
623 	unsigned int st;
624 
625 	for (;;) {
626 		st = readl(port->membase + UART_STAT);
627 
628 		if (!(st & STAT_TX_FIFO_FUL))
629 			break;
630 
631 		udelay(1);
632 	}
633 
634 	writel(c, port->membase + UART_TSH(port));
635 }
636 #endif
637 
638 static const struct uart_ops mvebu_uart_ops = {
639 	.tx_empty	= mvebu_uart_tx_empty,
640 	.set_mctrl	= mvebu_uart_set_mctrl,
641 	.get_mctrl	= mvebu_uart_get_mctrl,
642 	.stop_tx	= mvebu_uart_stop_tx,
643 	.start_tx	= mvebu_uart_start_tx,
644 	.stop_rx	= mvebu_uart_stop_rx,
645 	.break_ctl	= mvebu_uart_break_ctl,
646 	.startup	= mvebu_uart_startup,
647 	.shutdown	= mvebu_uart_shutdown,
648 	.set_termios	= mvebu_uart_set_termios,
649 	.type		= mvebu_uart_type,
650 	.release_port	= mvebu_uart_release_port,
651 	.request_port	= mvebu_uart_request_port,
652 #ifdef CONFIG_CONSOLE_POLL
653 	.poll_get_char	= mvebu_uart_get_poll_char,
654 	.poll_put_char	= mvebu_uart_put_poll_char,
655 #endif
656 };
657 
658 /* Console Driver Operations  */
659 
660 #ifdef CONFIG_SERIAL_MVEBU_CONSOLE
661 /* Early Console */
662 static void mvebu_uart_putc(struct uart_port *port, unsigned char c)
663 {
664 	unsigned int st;
665 
666 	for (;;) {
667 		st = readl(port->membase + UART_STAT);
668 		if (!(st & STAT_TX_FIFO_FUL))
669 			break;
670 	}
671 
672 	/* At early stage, DT is not parsed yet, only use UART0 */
673 	writel(c, port->membase + UART_STD_TSH);
674 
675 	for (;;) {
676 		st = readl(port->membase + UART_STAT);
677 		if (st & STAT_TX_FIFO_EMP)
678 			break;
679 	}
680 }
681 
682 static void mvebu_uart_putc_early_write(struct console *con,
683 					const char *s,
684 					unsigned int n)
685 {
686 	struct earlycon_device *dev = con->data;
687 
688 	uart_console_write(&dev->port, s, n, mvebu_uart_putc);
689 }
690 
691 static int __init
692 mvebu_uart_early_console_setup(struct earlycon_device *device,
693 			       const char *opt)
694 {
695 	if (!device->port.membase)
696 		return -ENODEV;
697 
698 	device->con->write = mvebu_uart_putc_early_write;
699 
700 	return 0;
701 }
702 
703 EARLYCON_DECLARE(ar3700_uart, mvebu_uart_early_console_setup);
704 OF_EARLYCON_DECLARE(ar3700_uart, "marvell,armada-3700-uart",
705 		    mvebu_uart_early_console_setup);
706 
707 static void wait_for_xmitr(struct uart_port *port)
708 {
709 	u32 val;
710 
711 	readl_poll_timeout_atomic(port->membase + UART_STAT, val,
712 				  (val & STAT_TX_RDY(port)), 1, 10000);
713 }
714 
715 static void wait_for_xmite(struct uart_port *port)
716 {
717 	u32 val;
718 
719 	readl_poll_timeout_atomic(port->membase + UART_STAT, val,
720 				  (val & STAT_TX_EMP), 1, 10000);
721 }
722 
723 static void mvebu_uart_console_putchar(struct uart_port *port, unsigned char ch)
724 {
725 	wait_for_xmitr(port);
726 	writel(ch, port->membase + UART_TSH(port));
727 }
728 
729 static void mvebu_uart_console_write(struct console *co, const char *s,
730 				     unsigned int count)
731 {
732 	struct uart_port *port = &mvebu_uart_ports[co->index];
733 	unsigned long flags;
734 	unsigned int ier, intr, ctl;
735 	int locked = 1;
736 
737 	if (oops_in_progress)
738 		locked = spin_trylock_irqsave(&port->lock, flags);
739 	else
740 		spin_lock_irqsave(&port->lock, flags);
741 
742 	ier = readl(port->membase + UART_CTRL(port)) & CTRL_BRK_INT;
743 	intr = readl(port->membase + UART_INTR(port)) &
744 		(CTRL_RX_RDY_INT(port) | CTRL_TX_RDY_INT(port));
745 	writel(0, port->membase + UART_CTRL(port));
746 	writel(0, port->membase + UART_INTR(port));
747 
748 	uart_console_write(port, s, count, mvebu_uart_console_putchar);
749 
750 	wait_for_xmite(port);
751 
752 	if (ier)
753 		writel(ier, port->membase + UART_CTRL(port));
754 
755 	if (intr) {
756 		ctl = intr | readl(port->membase + UART_INTR(port));
757 		writel(ctl, port->membase + UART_INTR(port));
758 	}
759 
760 	if (locked)
761 		spin_unlock_irqrestore(&port->lock, flags);
762 }
763 
764 static int mvebu_uart_console_setup(struct console *co, char *options)
765 {
766 	struct uart_port *port;
767 	int baud = 9600;
768 	int bits = 8;
769 	int parity = 'n';
770 	int flow = 'n';
771 
772 	if (co->index < 0 || co->index >= MVEBU_NR_UARTS)
773 		return -EINVAL;
774 
775 	port = &mvebu_uart_ports[co->index];
776 
777 	if (!port->mapbase || !port->membase) {
778 		pr_debug("console on ttyMV%i not present\n", co->index);
779 		return -ENODEV;
780 	}
781 
782 	if (options)
783 		uart_parse_options(options, &baud, &parity, &bits, &flow);
784 
785 	return uart_set_options(port, co, baud, parity, bits, flow);
786 }
787 
788 static struct uart_driver mvebu_uart_driver;
789 
790 static struct console mvebu_uart_console = {
791 	.name	= "ttyMV",
792 	.write	= mvebu_uart_console_write,
793 	.device	= uart_console_device,
794 	.setup	= mvebu_uart_console_setup,
795 	.flags	= CON_PRINTBUFFER,
796 	.index	= -1,
797 	.data	= &mvebu_uart_driver,
798 };
799 
800 static int __init mvebu_uart_console_init(void)
801 {
802 	register_console(&mvebu_uart_console);
803 	return 0;
804 }
805 
806 console_initcall(mvebu_uart_console_init);
807 
808 
809 #endif /* CONFIG_SERIAL_MVEBU_CONSOLE */
810 
811 static struct uart_driver mvebu_uart_driver = {
812 	.owner			= THIS_MODULE,
813 	.driver_name		= DRIVER_NAME,
814 	.dev_name		= "ttyMV",
815 	.nr			= MVEBU_NR_UARTS,
816 #ifdef CONFIG_SERIAL_MVEBU_CONSOLE
817 	.cons			= &mvebu_uart_console,
818 #endif
819 };
820 
821 #if defined(CONFIG_PM)
822 static int mvebu_uart_suspend(struct device *dev)
823 {
824 	struct mvebu_uart *mvuart = dev_get_drvdata(dev);
825 	struct uart_port *port = mvuart->port;
826 	unsigned long flags;
827 
828 	uart_suspend_port(&mvebu_uart_driver, port);
829 
830 	mvuart->pm_regs.rbr = readl(port->membase + UART_RBR(port));
831 	mvuart->pm_regs.tsh = readl(port->membase + UART_TSH(port));
832 	mvuart->pm_regs.ctrl = readl(port->membase + UART_CTRL(port));
833 	mvuart->pm_regs.intr = readl(port->membase + UART_INTR(port));
834 	mvuart->pm_regs.stat = readl(port->membase + UART_STAT);
835 	spin_lock_irqsave(&mvebu_uart_lock, flags);
836 	mvuart->pm_regs.brdv = readl(port->membase + UART_BRDV);
837 	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
838 	mvuart->pm_regs.osamp = readl(port->membase + UART_OSAMP);
839 
840 	device_set_wakeup_enable(dev, true);
841 
842 	return 0;
843 }
844 
845 static int mvebu_uart_resume(struct device *dev)
846 {
847 	struct mvebu_uart *mvuart = dev_get_drvdata(dev);
848 	struct uart_port *port = mvuart->port;
849 	unsigned long flags;
850 
851 	writel(mvuart->pm_regs.rbr, port->membase + UART_RBR(port));
852 	writel(mvuart->pm_regs.tsh, port->membase + UART_TSH(port));
853 	writel(mvuart->pm_regs.ctrl, port->membase + UART_CTRL(port));
854 	writel(mvuart->pm_regs.intr, port->membase + UART_INTR(port));
855 	writel(mvuart->pm_regs.stat, port->membase + UART_STAT);
856 	spin_lock_irqsave(&mvebu_uart_lock, flags);
857 	writel(mvuart->pm_regs.brdv, port->membase + UART_BRDV);
858 	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
859 	writel(mvuart->pm_regs.osamp, port->membase + UART_OSAMP);
860 
861 	uart_resume_port(&mvebu_uart_driver, port);
862 
863 	return 0;
864 }
865 
866 static const struct dev_pm_ops mvebu_uart_pm_ops = {
867 	.suspend        = mvebu_uart_suspend,
868 	.resume         = mvebu_uart_resume,
869 };
870 #endif /* CONFIG_PM */
871 
872 static const struct of_device_id mvebu_uart_of_match[];
873 
874 /* Counter to keep track of each UART port id when not using CONFIG_OF */
875 static int uart_num_counter;
876 
877 static int mvebu_uart_probe(struct platform_device *pdev)
878 {
879 	const struct of_device_id *match = of_match_device(mvebu_uart_of_match,
880 							   &pdev->dev);
881 	struct uart_port *port;
882 	struct mvebu_uart *mvuart;
883 	struct resource *reg;
884 	int id, irq;
885 
886 	/* Assume that all UART ports have a DT alias or none has */
887 	id = of_alias_get_id(pdev->dev.of_node, "serial");
888 	if (!pdev->dev.of_node || id < 0)
889 		pdev->id = uart_num_counter++;
890 	else
891 		pdev->id = id;
892 
893 	if (pdev->id >= MVEBU_NR_UARTS) {
894 		dev_err(&pdev->dev, "cannot have more than %d UART ports\n",
895 			MVEBU_NR_UARTS);
896 		return -EINVAL;
897 	}
898 
899 	port = &mvebu_uart_ports[pdev->id];
900 
901 	spin_lock_init(&port->lock);
902 
903 	port->dev        = &pdev->dev;
904 	port->type       = PORT_MVEBU;
905 	port->ops        = &mvebu_uart_ops;
906 	port->regshift   = 0;
907 
908 	port->fifosize   = 32;
909 	port->iotype     = UPIO_MEM32;
910 	port->flags      = UPF_FIXED_PORT;
911 	port->line       = pdev->id;
912 
913 	/*
914 	 * IRQ number is not stored in this structure because we may have two of
915 	 * them per port (RX and TX). Instead, use the driver UART structure
916 	 * array so called ->irq[].
917 	 */
918 	port->irq        = 0;
919 	port->irqflags   = 0;
920 
921 	port->membase = devm_platform_get_and_ioremap_resource(pdev, 0, &reg);
922 	if (IS_ERR(port->membase))
923 		return PTR_ERR(port->membase);
924 	port->mapbase    = reg->start;
925 
926 	mvuart = devm_kzalloc(&pdev->dev, sizeof(struct mvebu_uart),
927 			      GFP_KERNEL);
928 	if (!mvuart)
929 		return -ENOMEM;
930 
931 	/* Get controller data depending on the compatible string */
932 	mvuart->data = (struct mvebu_uart_driver_data *)match->data;
933 	mvuart->port = port;
934 
935 	port->private_data = mvuart;
936 	platform_set_drvdata(pdev, mvuart);
937 
938 	/* Get fixed clock frequency */
939 	mvuart->clk = devm_clk_get(&pdev->dev, NULL);
940 	if (IS_ERR(mvuart->clk)) {
941 		if (PTR_ERR(mvuart->clk) == -EPROBE_DEFER)
942 			return PTR_ERR(mvuart->clk);
943 
944 		if (IS_EXTENDED(port)) {
945 			dev_err(&pdev->dev, "unable to get UART clock\n");
946 			return PTR_ERR(mvuart->clk);
947 		}
948 	} else {
949 		if (!clk_prepare_enable(mvuart->clk))
950 			port->uartclk = clk_get_rate(mvuart->clk);
951 	}
952 
953 	/* Manage interrupts */
954 	if (platform_irq_count(pdev) == 1) {
955 		/* Old bindings: no name on the single unamed UART0 IRQ */
956 		irq = platform_get_irq(pdev, 0);
957 		if (irq < 0)
958 			return irq;
959 
960 		mvuart->irq[UART_IRQ_SUM] = irq;
961 	} else {
962 		/*
963 		 * New bindings: named interrupts (RX, TX) for both UARTS,
964 		 * only make use of uart-rx and uart-tx interrupts, do not use
965 		 * uart-sum of UART0 port.
966 		 */
967 		irq = platform_get_irq_byname(pdev, "uart-rx");
968 		if (irq < 0)
969 			return irq;
970 
971 		mvuart->irq[UART_RX_IRQ] = irq;
972 
973 		irq = platform_get_irq_byname(pdev, "uart-tx");
974 		if (irq < 0)
975 			return irq;
976 
977 		mvuart->irq[UART_TX_IRQ] = irq;
978 	}
979 
980 	/* UART Soft Reset*/
981 	writel(CTRL_SOFT_RST, port->membase + UART_CTRL(port));
982 	udelay(1);
983 	writel(0, port->membase + UART_CTRL(port));
984 
985 	return uart_add_one_port(&mvebu_uart_driver, port);
986 }
987 
988 static struct mvebu_uart_driver_data uart_std_driver_data = {
989 	.is_ext = false,
990 	.regs.rbr = UART_STD_RBR,
991 	.regs.tsh = UART_STD_TSH,
992 	.regs.ctrl = UART_STD_CTRL1,
993 	.regs.intr = UART_STD_CTRL2,
994 	.flags.ctrl_tx_rdy_int = CTRL_STD_TX_RDY_INT,
995 	.flags.ctrl_rx_rdy_int = CTRL_STD_RX_RDY_INT,
996 	.flags.stat_tx_rdy = STAT_STD_TX_RDY,
997 	.flags.stat_rx_rdy = STAT_STD_RX_RDY,
998 };
999 
1000 static struct mvebu_uart_driver_data uart_ext_driver_data = {
1001 	.is_ext = true,
1002 	.regs.rbr = UART_EXT_RBR,
1003 	.regs.tsh = UART_EXT_TSH,
1004 	.regs.ctrl = UART_EXT_CTRL1,
1005 	.regs.intr = UART_EXT_CTRL2,
1006 	.flags.ctrl_tx_rdy_int = CTRL_EXT_TX_RDY_INT,
1007 	.flags.ctrl_rx_rdy_int = CTRL_EXT_RX_RDY_INT,
1008 	.flags.stat_tx_rdy = STAT_EXT_TX_RDY,
1009 	.flags.stat_rx_rdy = STAT_EXT_RX_RDY,
1010 };
1011 
1012 /* Match table for of_platform binding */
1013 static const struct of_device_id mvebu_uart_of_match[] = {
1014 	{
1015 		.compatible = "marvell,armada-3700-uart",
1016 		.data = (void *)&uart_std_driver_data,
1017 	},
1018 	{
1019 		.compatible = "marvell,armada-3700-uart-ext",
1020 		.data = (void *)&uart_ext_driver_data,
1021 	},
1022 	{}
1023 };
1024 
1025 static struct platform_driver mvebu_uart_platform_driver = {
1026 	.probe	= mvebu_uart_probe,
1027 	.driver	= {
1028 		.name  = "mvebu-uart",
1029 		.of_match_table = of_match_ptr(mvebu_uart_of_match),
1030 		.suppress_bind_attrs = true,
1031 #if defined(CONFIG_PM)
1032 		.pm	= &mvebu_uart_pm_ops,
1033 #endif /* CONFIG_PM */
1034 	},
1035 };
1036 
1037 /* This code is based on clk-fixed-factor.c driver and modified. */
1038 
1039 struct mvebu_uart_clock {
1040 	struct clk_hw clk_hw;
1041 	int clock_idx;
1042 	u32 pm_context_reg1;
1043 	u32 pm_context_reg2;
1044 };
1045 
1046 struct mvebu_uart_clock_base {
1047 	struct mvebu_uart_clock clocks[2];
1048 	unsigned int parent_rates[5];
1049 	int parent_idx;
1050 	unsigned int div;
1051 	void __iomem *reg1;
1052 	void __iomem *reg2;
1053 	bool configured;
1054 };
1055 
1056 #define PARENT_CLOCK_XTAL 4
1057 
1058 #define to_uart_clock(hw) container_of(hw, struct mvebu_uart_clock, clk_hw)
1059 #define to_uart_clock_base(uart_clock) container_of(uart_clock, \
1060 	struct mvebu_uart_clock_base, clocks[uart_clock->clock_idx])
1061 
1062 static int mvebu_uart_clock_prepare(struct clk_hw *hw)
1063 {
1064 	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1065 	struct mvebu_uart_clock_base *uart_clock_base =
1066 						to_uart_clock_base(uart_clock);
1067 	unsigned int prev_clock_idx, prev_clock_rate, prev_d1d2;
1068 	unsigned int parent_clock_idx, parent_clock_rate;
1069 	unsigned long flags;
1070 	unsigned int d1, d2;
1071 	u64 divisor;
1072 	u32 val;
1073 
1074 	/*
1075 	 * This function just reconfigures UART Clock Control register (located
1076 	 * in UART1 address space which controls both UART1 and UART2) to
1077 	 * selected UART base clock and recalculates current UART1/UART2
1078 	 * divisors in their address spaces, so that final baudrate will not be
1079 	 * changed by switching UART parent clock. This is required for
1080 	 * otherwise kernel's boot log stops working - we need to ensure that
1081 	 * UART baudrate does not change during this setup. It is a one time
1082 	 * operation, it will execute only once and set `configured` to true,
1083 	 * and be skipped on subsequent calls. Because this UART Clock Control
1084 	 * register (UART_BRDV) is shared between UART1 baudrate function,
1085 	 * UART1 clock selector and UART2 clock selector, every access to
1086 	 * UART_BRDV (reg1) needs to be protected by a lock.
1087 	 */
1088 
1089 	spin_lock_irqsave(&mvebu_uart_lock, flags);
1090 
1091 	if (uart_clock_base->configured) {
1092 		spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1093 		return 0;
1094 	}
1095 
1096 	parent_clock_idx = uart_clock_base->parent_idx;
1097 	parent_clock_rate = uart_clock_base->parent_rates[parent_clock_idx];
1098 
1099 	val = readl(uart_clock_base->reg1);
1100 
1101 	if (uart_clock_base->div > CLK_TBG_DIV1_MAX) {
1102 		d1 = CLK_TBG_DIV1_MAX;
1103 		d2 = uart_clock_base->div / CLK_TBG_DIV1_MAX;
1104 	} else {
1105 		d1 = uart_clock_base->div;
1106 		d2 = 1;
1107 	}
1108 
1109 	if (val & CLK_NO_XTAL) {
1110 		prev_clock_idx = (val >> CLK_TBG_SEL_SHIFT) & CLK_TBG_SEL_MASK;
1111 		prev_d1d2 = ((val >> CLK_TBG_DIV1_SHIFT) & CLK_TBG_DIV1_MASK) *
1112 			    ((val >> CLK_TBG_DIV2_SHIFT) & CLK_TBG_DIV2_MASK);
1113 	} else {
1114 		prev_clock_idx = PARENT_CLOCK_XTAL;
1115 		prev_d1d2 = 1;
1116 	}
1117 
1118 	/* Note that uart_clock_base->parent_rates[i] may not be available */
1119 	prev_clock_rate = uart_clock_base->parent_rates[prev_clock_idx];
1120 
1121 	/* Recalculate UART1 divisor so UART1 baudrate does not change */
1122 	if (prev_clock_rate) {
1123 		divisor = DIV_U64_ROUND_CLOSEST((u64)(val & BRDV_BAUD_MASK) *
1124 						parent_clock_rate * prev_d1d2,
1125 						prev_clock_rate * d1 * d2);
1126 		if (divisor < 1)
1127 			divisor = 1;
1128 		else if (divisor > BRDV_BAUD_MAX)
1129 			divisor = BRDV_BAUD_MAX;
1130 		val = (val & ~BRDV_BAUD_MASK) | divisor;
1131 	}
1132 
1133 	if (parent_clock_idx != PARENT_CLOCK_XTAL) {
1134 		/* Do not use XTAL, select TBG clock and TBG d1 * d2 divisors */
1135 		val |= CLK_NO_XTAL;
1136 		val &= ~(CLK_TBG_DIV1_MASK << CLK_TBG_DIV1_SHIFT);
1137 		val |= d1 << CLK_TBG_DIV1_SHIFT;
1138 		val &= ~(CLK_TBG_DIV2_MASK << CLK_TBG_DIV2_SHIFT);
1139 		val |= d2 << CLK_TBG_DIV2_SHIFT;
1140 		val &= ~(CLK_TBG_SEL_MASK << CLK_TBG_SEL_SHIFT);
1141 		val |= parent_clock_idx << CLK_TBG_SEL_SHIFT;
1142 	} else {
1143 		/* Use XTAL, TBG bits are then ignored */
1144 		val &= ~CLK_NO_XTAL;
1145 	}
1146 
1147 	writel(val, uart_clock_base->reg1);
1148 
1149 	/* Recalculate UART2 divisor so UART2 baudrate does not change */
1150 	if (prev_clock_rate) {
1151 		val = readl(uart_clock_base->reg2);
1152 		divisor = DIV_U64_ROUND_CLOSEST((u64)(val & BRDV_BAUD_MASK) *
1153 						parent_clock_rate * prev_d1d2,
1154 						prev_clock_rate * d1 * d2);
1155 		if (divisor < 1)
1156 			divisor = 1;
1157 		else if (divisor > BRDV_BAUD_MAX)
1158 			divisor = BRDV_BAUD_MAX;
1159 		val = (val & ~BRDV_BAUD_MASK) | divisor;
1160 		writel(val, uart_clock_base->reg2);
1161 	}
1162 
1163 	uart_clock_base->configured = true;
1164 
1165 	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1166 
1167 	return 0;
1168 }
1169 
1170 static int mvebu_uart_clock_enable(struct clk_hw *hw)
1171 {
1172 	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1173 	struct mvebu_uart_clock_base *uart_clock_base =
1174 						to_uart_clock_base(uart_clock);
1175 	unsigned long flags;
1176 	u32 val;
1177 
1178 	spin_lock_irqsave(&mvebu_uart_lock, flags);
1179 
1180 	val = readl(uart_clock_base->reg1);
1181 
1182 	if (uart_clock->clock_idx == 0)
1183 		val &= ~UART1_CLK_DIS;
1184 	else
1185 		val &= ~UART2_CLK_DIS;
1186 
1187 	writel(val, uart_clock_base->reg1);
1188 
1189 	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1190 
1191 	return 0;
1192 }
1193 
1194 static void mvebu_uart_clock_disable(struct clk_hw *hw)
1195 {
1196 	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1197 	struct mvebu_uart_clock_base *uart_clock_base =
1198 						to_uart_clock_base(uart_clock);
1199 	unsigned long flags;
1200 	u32 val;
1201 
1202 	spin_lock_irqsave(&mvebu_uart_lock, flags);
1203 
1204 	val = readl(uart_clock_base->reg1);
1205 
1206 	if (uart_clock->clock_idx == 0)
1207 		val |= UART1_CLK_DIS;
1208 	else
1209 		val |= UART2_CLK_DIS;
1210 
1211 	writel(val, uart_clock_base->reg1);
1212 
1213 	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1214 }
1215 
1216 static int mvebu_uart_clock_is_enabled(struct clk_hw *hw)
1217 {
1218 	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1219 	struct mvebu_uart_clock_base *uart_clock_base =
1220 						to_uart_clock_base(uart_clock);
1221 	u32 val;
1222 
1223 	val = readl(uart_clock_base->reg1);
1224 
1225 	if (uart_clock->clock_idx == 0)
1226 		return !(val & UART1_CLK_DIS);
1227 	else
1228 		return !(val & UART2_CLK_DIS);
1229 }
1230 
1231 static int mvebu_uart_clock_save_context(struct clk_hw *hw)
1232 {
1233 	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1234 	struct mvebu_uart_clock_base *uart_clock_base =
1235 						to_uart_clock_base(uart_clock);
1236 	unsigned long flags;
1237 
1238 	spin_lock_irqsave(&mvebu_uart_lock, flags);
1239 	uart_clock->pm_context_reg1 = readl(uart_clock_base->reg1);
1240 	uart_clock->pm_context_reg2 = readl(uart_clock_base->reg2);
1241 	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1242 
1243 	return 0;
1244 }
1245 
1246 static void mvebu_uart_clock_restore_context(struct clk_hw *hw)
1247 {
1248 	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1249 	struct mvebu_uart_clock_base *uart_clock_base =
1250 						to_uart_clock_base(uart_clock);
1251 	unsigned long flags;
1252 
1253 	spin_lock_irqsave(&mvebu_uart_lock, flags);
1254 	writel(uart_clock->pm_context_reg1, uart_clock_base->reg1);
1255 	writel(uart_clock->pm_context_reg2, uart_clock_base->reg2);
1256 	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1257 }
1258 
1259 static unsigned long mvebu_uart_clock_recalc_rate(struct clk_hw *hw,
1260 						  unsigned long parent_rate)
1261 {
1262 	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1263 	struct mvebu_uart_clock_base *uart_clock_base =
1264 						to_uart_clock_base(uart_clock);
1265 
1266 	return parent_rate / uart_clock_base->div;
1267 }
1268 
1269 static long mvebu_uart_clock_round_rate(struct clk_hw *hw, unsigned long rate,
1270 					unsigned long *parent_rate)
1271 {
1272 	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1273 	struct mvebu_uart_clock_base *uart_clock_base =
1274 						to_uart_clock_base(uart_clock);
1275 
1276 	return *parent_rate / uart_clock_base->div;
1277 }
1278 
1279 static int mvebu_uart_clock_set_rate(struct clk_hw *hw, unsigned long rate,
1280 				     unsigned long parent_rate)
1281 {
1282 	/*
1283 	 * We must report success but we can do so unconditionally because
1284 	 * mvebu_uart_clock_round_rate returns values that ensure this call is a
1285 	 * nop.
1286 	 */
1287 
1288 	return 0;
1289 }
1290 
1291 static const struct clk_ops mvebu_uart_clock_ops = {
1292 	.prepare = mvebu_uart_clock_prepare,
1293 	.enable = mvebu_uart_clock_enable,
1294 	.disable = mvebu_uart_clock_disable,
1295 	.is_enabled = mvebu_uart_clock_is_enabled,
1296 	.save_context = mvebu_uart_clock_save_context,
1297 	.restore_context = mvebu_uart_clock_restore_context,
1298 	.round_rate = mvebu_uart_clock_round_rate,
1299 	.set_rate = mvebu_uart_clock_set_rate,
1300 	.recalc_rate = mvebu_uart_clock_recalc_rate,
1301 };
1302 
1303 static int mvebu_uart_clock_register(struct device *dev,
1304 				     struct mvebu_uart_clock *uart_clock,
1305 				     const char *name,
1306 				     const char *parent_name)
1307 {
1308 	struct clk_init_data init = { };
1309 
1310 	uart_clock->clk_hw.init = &init;
1311 
1312 	init.name = name;
1313 	init.ops = &mvebu_uart_clock_ops;
1314 	init.flags = 0;
1315 	init.num_parents = 1;
1316 	init.parent_names = &parent_name;
1317 
1318 	return devm_clk_hw_register(dev, &uart_clock->clk_hw);
1319 }
1320 
1321 static int mvebu_uart_clock_probe(struct platform_device *pdev)
1322 {
1323 	static const char *const uart_clk_names[] = { "uart_1", "uart_2" };
1324 	static const char *const parent_clk_names[] = { "TBG-A-P", "TBG-B-P",
1325 							"TBG-A-S", "TBG-B-S",
1326 							"xtal" };
1327 	struct clk *parent_clks[ARRAY_SIZE(parent_clk_names)];
1328 	struct mvebu_uart_clock_base *uart_clock_base;
1329 	struct clk_hw_onecell_data *hw_clk_data;
1330 	struct device *dev = &pdev->dev;
1331 	int i, parent_clk_idx, ret;
1332 	unsigned long div, rate;
1333 	struct resource *res;
1334 	unsigned int d1, d2;
1335 
1336 	BUILD_BUG_ON(ARRAY_SIZE(uart_clk_names) !=
1337 		     ARRAY_SIZE(uart_clock_base->clocks));
1338 	BUILD_BUG_ON(ARRAY_SIZE(parent_clk_names) !=
1339 		     ARRAY_SIZE(uart_clock_base->parent_rates));
1340 
1341 	uart_clock_base = devm_kzalloc(dev,
1342 				       sizeof(*uart_clock_base),
1343 				       GFP_KERNEL);
1344 	if (!uart_clock_base)
1345 		return -ENOMEM;
1346 
1347 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1348 	if (!res) {
1349 		dev_err(dev, "Couldn't get first register\n");
1350 		return -ENOENT;
1351 	}
1352 
1353 	/*
1354 	 * UART Clock Control register (reg1 / UART_BRDV) is in the address
1355 	 * space of UART1 (standard UART variant), controls parent clock and
1356 	 * dividers for both UART1 and UART2 and is supplied via DT as the first
1357 	 * resource. Therefore use ioremap() rather than ioremap_resource() to
1358 	 * avoid conflicts with UART1 driver. Access to UART_BRDV is protected
1359 	 * by a lock shared between clock and UART driver.
1360 	 */
1361 	uart_clock_base->reg1 = devm_ioremap(dev, res->start,
1362 					     resource_size(res));
1363 	if (!uart_clock_base->reg1)
1364 		return -ENOMEM;
1365 
1366 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1367 	if (!res) {
1368 		dev_err(dev, "Couldn't get second register\n");
1369 		return -ENOENT;
1370 	}
1371 
1372 	/*
1373 	 * UART 2 Baud Rate Divisor register (reg2 / UART_BRDV) is in address
1374 	 * space of UART2 (extended UART variant), controls only one UART2
1375 	 * specific divider and is supplied via DT as second resource.
1376 	 * Therefore use ioremap() rather than ioremap_resource() to avoid
1377 	 * conflicts with UART2 driver. Access to UART_BRDV is protected by a
1378 	 * by lock shared between clock and UART driver.
1379 	 */
1380 	uart_clock_base->reg2 = devm_ioremap(dev, res->start,
1381 					     resource_size(res));
1382 	if (!uart_clock_base->reg2)
1383 		return -ENOMEM;
1384 
1385 	hw_clk_data = devm_kzalloc(dev,
1386 				   struct_size(hw_clk_data, hws,
1387 					       ARRAY_SIZE(uart_clk_names)),
1388 				   GFP_KERNEL);
1389 	if (!hw_clk_data)
1390 		return -ENOMEM;
1391 
1392 	hw_clk_data->num = ARRAY_SIZE(uart_clk_names);
1393 	for (i = 0; i < ARRAY_SIZE(uart_clk_names); i++) {
1394 		hw_clk_data->hws[i] = &uart_clock_base->clocks[i].clk_hw;
1395 		uart_clock_base->clocks[i].clock_idx = i;
1396 	}
1397 
1398 	parent_clk_idx = -1;
1399 
1400 	for (i = 0; i < ARRAY_SIZE(parent_clk_names); i++) {
1401 		parent_clks[i] = devm_clk_get(dev, parent_clk_names[i]);
1402 		if (IS_ERR(parent_clks[i])) {
1403 			if (PTR_ERR(parent_clks[i]) == -EPROBE_DEFER)
1404 				return -EPROBE_DEFER;
1405 			dev_warn(dev, "Couldn't get the parent clock %s: %ld\n",
1406 				 parent_clk_names[i], PTR_ERR(parent_clks[i]));
1407 			continue;
1408 		}
1409 
1410 		ret = clk_prepare_enable(parent_clks[i]);
1411 		if (ret) {
1412 			dev_warn(dev, "Couldn't enable parent clock %s: %d\n",
1413 				 parent_clk_names[i], ret);
1414 			continue;
1415 		}
1416 		rate = clk_get_rate(parent_clks[i]);
1417 		uart_clock_base->parent_rates[i] = rate;
1418 
1419 		if (i != PARENT_CLOCK_XTAL) {
1420 			/*
1421 			 * Calculate the smallest TBG d1 and d2 divisors that
1422 			 * still can provide 9600 baudrate.
1423 			 */
1424 			d1 = DIV_ROUND_UP(rate, 9600 * OSAMP_MAX_DIVISOR *
1425 					  BRDV_BAUD_MAX);
1426 			if (d1 < 1)
1427 				d1 = 1;
1428 			else if (d1 > CLK_TBG_DIV1_MAX)
1429 				d1 = CLK_TBG_DIV1_MAX;
1430 
1431 			d2 = DIV_ROUND_UP(rate, 9600 * OSAMP_MAX_DIVISOR *
1432 					  BRDV_BAUD_MAX * d1);
1433 			if (d2 < 1)
1434 				d2 = 1;
1435 			else if (d2 > CLK_TBG_DIV2_MAX)
1436 				d2 = CLK_TBG_DIV2_MAX;
1437 		} else {
1438 			/*
1439 			 * When UART clock uses XTAL clock as a source then it
1440 			 * is not possible to use d1 and d2 divisors.
1441 			 */
1442 			d1 = d2 = 1;
1443 		}
1444 
1445 		/* Skip clock source which cannot provide 9600 baudrate */
1446 		if (rate > 9600 * OSAMP_MAX_DIVISOR * BRDV_BAUD_MAX * d1 * d2)
1447 			continue;
1448 
1449 		/*
1450 		 * Choose TBG clock source with the smallest divisors. Use XTAL
1451 		 * clock source only in case TBG is not available as XTAL cannot
1452 		 * be used for baudrates higher than 230400.
1453 		 */
1454 		if (parent_clk_idx == -1 ||
1455 		    (i != PARENT_CLOCK_XTAL && div > d1 * d2)) {
1456 			parent_clk_idx = i;
1457 			div = d1 * d2;
1458 		}
1459 	}
1460 
1461 	for (i = 0; i < ARRAY_SIZE(parent_clk_names); i++) {
1462 		if (i == parent_clk_idx || IS_ERR(parent_clks[i]))
1463 			continue;
1464 		clk_disable_unprepare(parent_clks[i]);
1465 		devm_clk_put(dev, parent_clks[i]);
1466 	}
1467 
1468 	if (parent_clk_idx == -1) {
1469 		dev_err(dev, "No usable parent clock\n");
1470 		return -ENOENT;
1471 	}
1472 
1473 	uart_clock_base->parent_idx = parent_clk_idx;
1474 	uart_clock_base->div = div;
1475 
1476 	dev_notice(dev, "Using parent clock %s as base UART clock\n",
1477 		   __clk_get_name(parent_clks[parent_clk_idx]));
1478 
1479 	for (i = 0; i < ARRAY_SIZE(uart_clk_names); i++) {
1480 		ret = mvebu_uart_clock_register(dev,
1481 				&uart_clock_base->clocks[i],
1482 				uart_clk_names[i],
1483 				__clk_get_name(parent_clks[parent_clk_idx]));
1484 		if (ret) {
1485 			dev_err(dev, "Can't register UART clock %d: %d\n",
1486 				i, ret);
1487 			return ret;
1488 		}
1489 	}
1490 
1491 	return devm_of_clk_add_hw_provider(dev, of_clk_hw_onecell_get,
1492 					   hw_clk_data);
1493 }
1494 
1495 static const struct of_device_id mvebu_uart_clock_of_match[] = {
1496 	{ .compatible = "marvell,armada-3700-uart-clock", },
1497 	{ }
1498 };
1499 
1500 static struct platform_driver mvebu_uart_clock_platform_driver = {
1501 	.probe = mvebu_uart_clock_probe,
1502 	.driver		= {
1503 		.name	= "mvebu-uart-clock",
1504 		.of_match_table = mvebu_uart_clock_of_match,
1505 	},
1506 };
1507 
1508 static int __init mvebu_uart_init(void)
1509 {
1510 	int ret;
1511 
1512 	ret = uart_register_driver(&mvebu_uart_driver);
1513 	if (ret)
1514 		return ret;
1515 
1516 	ret = platform_driver_register(&mvebu_uart_clock_platform_driver);
1517 	if (ret) {
1518 		uart_unregister_driver(&mvebu_uart_driver);
1519 		return ret;
1520 	}
1521 
1522 	ret = platform_driver_register(&mvebu_uart_platform_driver);
1523 	if (ret) {
1524 		platform_driver_unregister(&mvebu_uart_clock_platform_driver);
1525 		uart_unregister_driver(&mvebu_uart_driver);
1526 		return ret;
1527 	}
1528 
1529 	return 0;
1530 }
1531 arch_initcall(mvebu_uart_init);
1532