xref: /openbmc/linux/drivers/tty/serial/mvebu-uart.c (revision 4f57332d6a551185ba729617f04455e83fbe4e41)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * ***************************************************************************
4 * Marvell Armada-3700 Serial Driver
5 * Author: Wilson Ding <dingwei@marvell.com>
6 * Copyright (C) 2015 Marvell International Ltd.
7 * ***************************************************************************
8 */
9 
10 #include <linux/clk.h>
11 #include <linux/clk-provider.h>
12 #include <linux/console.h>
13 #include <linux/delay.h>
14 #include <linux/device.h>
15 #include <linux/init.h>
16 #include <linux/io.h>
17 #include <linux/iopoll.h>
18 #include <linux/math64.h>
19 #include <linux/of.h>
20 #include <linux/of_address.h>
21 #include <linux/of_device.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_platform.h>
24 #include <linux/platform_device.h>
25 #include <linux/serial.h>
26 #include <linux/serial_core.h>
27 #include <linux/slab.h>
28 #include <linux/tty.h>
29 #include <linux/tty_flip.h>
30 
31 /* Register Map */
32 #define UART_STD_RBR		0x00
33 #define UART_EXT_RBR		0x18
34 
35 #define UART_STD_TSH		0x04
36 #define UART_EXT_TSH		0x1C
37 
38 #define UART_STD_CTRL1		0x08
39 #define UART_EXT_CTRL1		0x04
40 #define  CTRL_SOFT_RST		BIT(31)
41 #define  CTRL_TXFIFO_RST	BIT(15)
42 #define  CTRL_RXFIFO_RST	BIT(14)
43 #define  CTRL_SND_BRK_SEQ	BIT(11)
44 #define  CTRL_BRK_DET_INT	BIT(3)
45 #define  CTRL_FRM_ERR_INT	BIT(2)
46 #define  CTRL_PAR_ERR_INT	BIT(1)
47 #define  CTRL_OVR_ERR_INT	BIT(0)
48 #define  CTRL_BRK_INT		(CTRL_BRK_DET_INT | CTRL_FRM_ERR_INT | \
49 				CTRL_PAR_ERR_INT | CTRL_OVR_ERR_INT)
50 
51 #define UART_STD_CTRL2		UART_STD_CTRL1
52 #define UART_EXT_CTRL2		0x20
53 #define  CTRL_STD_TX_RDY_INT	BIT(5)
54 #define  CTRL_EXT_TX_RDY_INT	BIT(6)
55 #define  CTRL_STD_RX_RDY_INT	BIT(4)
56 #define  CTRL_EXT_RX_RDY_INT	BIT(5)
57 
58 #define UART_STAT		0x0C
59 #define  STAT_TX_FIFO_EMP	BIT(13)
60 #define  STAT_TX_FIFO_FUL	BIT(11)
61 #define  STAT_TX_EMP		BIT(6)
62 #define  STAT_STD_TX_RDY	BIT(5)
63 #define  STAT_EXT_TX_RDY	BIT(15)
64 #define  STAT_STD_RX_RDY	BIT(4)
65 #define  STAT_EXT_RX_RDY	BIT(14)
66 #define  STAT_BRK_DET		BIT(3)
67 #define  STAT_FRM_ERR		BIT(2)
68 #define  STAT_PAR_ERR		BIT(1)
69 #define  STAT_OVR_ERR		BIT(0)
70 #define  STAT_BRK_ERR		(STAT_BRK_DET | STAT_FRM_ERR \
71 				 | STAT_PAR_ERR | STAT_OVR_ERR)
72 
73 /*
74  * Marvell Armada 3700 Functional Specifications describes that bit 21 of UART
75  * Clock Control register controls UART1 and bit 20 controls UART2. But in
76  * reality bit 21 controls UART2 and bit 20 controls UART1. This seems to be an
77  * error in Marvell's documentation. Hence following CLK_DIS macros are swapped.
78  */
79 
80 #define UART_BRDV		0x10
81 /* These bits are located in UART1 address space and control UART2 */
82 #define  UART2_CLK_DIS		BIT(21)
83 /* These bits are located in UART1 address space and control UART1 */
84 #define  UART1_CLK_DIS		BIT(20)
85 /* These bits are located in UART1 address space and control both UARTs */
86 #define  CLK_NO_XTAL		BIT(19)
87 #define  CLK_TBG_DIV1_SHIFT	15
88 #define  CLK_TBG_DIV1_MASK	0x7
89 #define  CLK_TBG_DIV1_MAX	6
90 #define  CLK_TBG_DIV2_SHIFT	12
91 #define  CLK_TBG_DIV2_MASK	0x7
92 #define  CLK_TBG_DIV2_MAX	6
93 #define  CLK_TBG_SEL_SHIFT	10
94 #define  CLK_TBG_SEL_MASK	0x3
95 /* These bits are located in both UARTs address space */
96 #define  BRDV_BAUD_MASK         0x3FF
97 #define  BRDV_BAUD_MAX		BRDV_BAUD_MASK
98 
99 #define UART_OSAMP		0x14
100 #define  OSAMP_DEFAULT_DIVISOR	16
101 #define  OSAMP_DIVISORS_MASK	0x3F3F3F3F
102 #define  OSAMP_MAX_DIVISOR	63
103 
104 #define MVEBU_NR_UARTS		2
105 
106 #define MVEBU_UART_TYPE		"mvebu-uart"
107 #define DRIVER_NAME		"mvebu_serial"
108 
109 enum {
110 	/* Either there is only one summed IRQ... */
111 	UART_IRQ_SUM = 0,
112 	/* ...or there are two separate IRQ for RX and TX */
113 	UART_RX_IRQ = 0,
114 	UART_TX_IRQ,
115 	UART_IRQ_COUNT
116 };
117 
118 /* Diverging register offsets */
119 struct uart_regs_layout {
120 	unsigned int rbr;
121 	unsigned int tsh;
122 	unsigned int ctrl;
123 	unsigned int intr;
124 };
125 
126 /* Diverging flags */
127 struct uart_flags {
128 	unsigned int ctrl_tx_rdy_int;
129 	unsigned int ctrl_rx_rdy_int;
130 	unsigned int stat_tx_rdy;
131 	unsigned int stat_rx_rdy;
132 };
133 
134 /* Driver data, a structure for each UART port */
135 struct mvebu_uart_driver_data {
136 	bool is_ext;
137 	struct uart_regs_layout regs;
138 	struct uart_flags flags;
139 };
140 
141 /* Saved registers during suspend */
142 struct mvebu_uart_pm_regs {
143 	unsigned int rbr;
144 	unsigned int tsh;
145 	unsigned int ctrl;
146 	unsigned int intr;
147 	unsigned int stat;
148 	unsigned int brdv;
149 	unsigned int osamp;
150 };
151 
152 /* MVEBU UART driver structure */
153 struct mvebu_uart {
154 	struct uart_port *port;
155 	struct clk *clk;
156 	int irq[UART_IRQ_COUNT];
157 	struct mvebu_uart_driver_data *data;
158 #if defined(CONFIG_PM)
159 	struct mvebu_uart_pm_regs pm_regs;
160 #endif /* CONFIG_PM */
161 };
162 
163 static struct mvebu_uart *to_mvuart(struct uart_port *port)
164 {
165 	return (struct mvebu_uart *)port->private_data;
166 }
167 
168 #define IS_EXTENDED(port) (to_mvuart(port)->data->is_ext)
169 
170 #define UART_RBR(port) (to_mvuart(port)->data->regs.rbr)
171 #define UART_TSH(port) (to_mvuart(port)->data->regs.tsh)
172 #define UART_CTRL(port) (to_mvuart(port)->data->regs.ctrl)
173 #define UART_INTR(port) (to_mvuart(port)->data->regs.intr)
174 
175 #define CTRL_TX_RDY_INT(port) (to_mvuart(port)->data->flags.ctrl_tx_rdy_int)
176 #define CTRL_RX_RDY_INT(port) (to_mvuart(port)->data->flags.ctrl_rx_rdy_int)
177 #define STAT_TX_RDY(port) (to_mvuart(port)->data->flags.stat_tx_rdy)
178 #define STAT_RX_RDY(port) (to_mvuart(port)->data->flags.stat_rx_rdy)
179 
180 static struct uart_port mvebu_uart_ports[MVEBU_NR_UARTS];
181 
182 static DEFINE_SPINLOCK(mvebu_uart_lock);
183 
184 /* Core UART Driver Operations */
185 static unsigned int mvebu_uart_tx_empty(struct uart_port *port)
186 {
187 	unsigned long flags;
188 	unsigned int st;
189 
190 	spin_lock_irqsave(&port->lock, flags);
191 	st = readl(port->membase + UART_STAT);
192 	spin_unlock_irqrestore(&port->lock, flags);
193 
194 	return (st & STAT_TX_EMP) ? TIOCSER_TEMT : 0;
195 }
196 
197 static unsigned int mvebu_uart_get_mctrl(struct uart_port *port)
198 {
199 	return TIOCM_CTS | TIOCM_DSR | TIOCM_CAR;
200 }
201 
202 static void mvebu_uart_set_mctrl(struct uart_port *port,
203 				 unsigned int mctrl)
204 {
205 /*
206  * Even if we do not support configuring the modem control lines, this
207  * function must be proided to the serial core
208  */
209 }
210 
211 static void mvebu_uart_stop_tx(struct uart_port *port)
212 {
213 	unsigned int ctl = readl(port->membase + UART_INTR(port));
214 
215 	ctl &= ~CTRL_TX_RDY_INT(port);
216 	writel(ctl, port->membase + UART_INTR(port));
217 }
218 
219 static void mvebu_uart_start_tx(struct uart_port *port)
220 {
221 	unsigned int ctl;
222 	struct circ_buf *xmit = &port->state->xmit;
223 
224 	if (IS_EXTENDED(port) && !uart_circ_empty(xmit)) {
225 		writel(xmit->buf[xmit->tail], port->membase + UART_TSH(port));
226 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
227 		port->icount.tx++;
228 	}
229 
230 	ctl = readl(port->membase + UART_INTR(port));
231 	ctl |= CTRL_TX_RDY_INT(port);
232 	writel(ctl, port->membase + UART_INTR(port));
233 }
234 
235 static void mvebu_uart_stop_rx(struct uart_port *port)
236 {
237 	unsigned int ctl;
238 
239 	ctl = readl(port->membase + UART_CTRL(port));
240 	ctl &= ~CTRL_BRK_INT;
241 	writel(ctl, port->membase + UART_CTRL(port));
242 
243 	ctl = readl(port->membase + UART_INTR(port));
244 	ctl &= ~CTRL_RX_RDY_INT(port);
245 	writel(ctl, port->membase + UART_INTR(port));
246 }
247 
248 static void mvebu_uart_break_ctl(struct uart_port *port, int brk)
249 {
250 	unsigned int ctl;
251 	unsigned long flags;
252 
253 	spin_lock_irqsave(&port->lock, flags);
254 	ctl = readl(port->membase + UART_CTRL(port));
255 	if (brk == -1)
256 		ctl |= CTRL_SND_BRK_SEQ;
257 	else
258 		ctl &= ~CTRL_SND_BRK_SEQ;
259 	writel(ctl, port->membase + UART_CTRL(port));
260 	spin_unlock_irqrestore(&port->lock, flags);
261 }
262 
263 static void mvebu_uart_rx_chars(struct uart_port *port, unsigned int status)
264 {
265 	struct tty_port *tport = &port->state->port;
266 	unsigned char ch = 0;
267 	char flag = 0;
268 	int ret;
269 
270 	do {
271 		if (status & STAT_RX_RDY(port)) {
272 			ch = readl(port->membase + UART_RBR(port));
273 			ch &= 0xff;
274 			flag = TTY_NORMAL;
275 			port->icount.rx++;
276 
277 			if (status & STAT_PAR_ERR)
278 				port->icount.parity++;
279 		}
280 
281 		/*
282 		 * For UART2, error bits are not cleared on buffer read.
283 		 * This causes interrupt loop and system hang.
284 		 */
285 		if (IS_EXTENDED(port) && (status & STAT_BRK_ERR)) {
286 			ret = readl(port->membase + UART_STAT);
287 			ret |= STAT_BRK_ERR;
288 			writel(ret, port->membase + UART_STAT);
289 		}
290 
291 		if (status & STAT_BRK_DET) {
292 			port->icount.brk++;
293 			status &= ~(STAT_FRM_ERR | STAT_PAR_ERR);
294 			if (uart_handle_break(port))
295 				goto ignore_char;
296 		}
297 
298 		if (status & STAT_OVR_ERR)
299 			port->icount.overrun++;
300 
301 		if (status & STAT_FRM_ERR)
302 			port->icount.frame++;
303 
304 		if (uart_handle_sysrq_char(port, ch))
305 			goto ignore_char;
306 
307 		if (status & port->ignore_status_mask & STAT_PAR_ERR)
308 			status &= ~STAT_RX_RDY(port);
309 
310 		status &= port->read_status_mask;
311 
312 		if (status & STAT_PAR_ERR)
313 			flag = TTY_PARITY;
314 
315 		status &= ~port->ignore_status_mask;
316 
317 		if (status & STAT_RX_RDY(port))
318 			tty_insert_flip_char(tport, ch, flag);
319 
320 		if (status & STAT_BRK_DET)
321 			tty_insert_flip_char(tport, 0, TTY_BREAK);
322 
323 		if (status & STAT_FRM_ERR)
324 			tty_insert_flip_char(tport, 0, TTY_FRAME);
325 
326 		if (status & STAT_OVR_ERR)
327 			tty_insert_flip_char(tport, 0, TTY_OVERRUN);
328 
329 ignore_char:
330 		status = readl(port->membase + UART_STAT);
331 	} while (status & (STAT_RX_RDY(port) | STAT_BRK_DET));
332 
333 	tty_flip_buffer_push(tport);
334 }
335 
336 static void mvebu_uart_tx_chars(struct uart_port *port, unsigned int status)
337 {
338 	struct circ_buf *xmit = &port->state->xmit;
339 	unsigned int count;
340 	unsigned int st;
341 
342 	if (port->x_char) {
343 		writel(port->x_char, port->membase + UART_TSH(port));
344 		port->icount.tx++;
345 		port->x_char = 0;
346 		return;
347 	}
348 
349 	if (uart_circ_empty(xmit) || uart_tx_stopped(port)) {
350 		mvebu_uart_stop_tx(port);
351 		return;
352 	}
353 
354 	for (count = 0; count < port->fifosize; count++) {
355 		writel(xmit->buf[xmit->tail], port->membase + UART_TSH(port));
356 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
357 		port->icount.tx++;
358 
359 		if (uart_circ_empty(xmit))
360 			break;
361 
362 		st = readl(port->membase + UART_STAT);
363 		if (st & STAT_TX_FIFO_FUL)
364 			break;
365 	}
366 
367 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
368 		uart_write_wakeup(port);
369 
370 	if (uart_circ_empty(xmit))
371 		mvebu_uart_stop_tx(port);
372 }
373 
374 static irqreturn_t mvebu_uart_isr(int irq, void *dev_id)
375 {
376 	struct uart_port *port = (struct uart_port *)dev_id;
377 	unsigned int st = readl(port->membase + UART_STAT);
378 
379 	if (st & (STAT_RX_RDY(port) | STAT_OVR_ERR | STAT_FRM_ERR |
380 		  STAT_BRK_DET))
381 		mvebu_uart_rx_chars(port, st);
382 
383 	if (st & STAT_TX_RDY(port))
384 		mvebu_uart_tx_chars(port, st);
385 
386 	return IRQ_HANDLED;
387 }
388 
389 static irqreturn_t mvebu_uart_rx_isr(int irq, void *dev_id)
390 {
391 	struct uart_port *port = (struct uart_port *)dev_id;
392 	unsigned int st = readl(port->membase + UART_STAT);
393 
394 	if (st & (STAT_RX_RDY(port) | STAT_OVR_ERR | STAT_FRM_ERR |
395 			STAT_BRK_DET))
396 		mvebu_uart_rx_chars(port, st);
397 
398 	return IRQ_HANDLED;
399 }
400 
401 static irqreturn_t mvebu_uart_tx_isr(int irq, void *dev_id)
402 {
403 	struct uart_port *port = (struct uart_port *)dev_id;
404 	unsigned int st = readl(port->membase + UART_STAT);
405 
406 	if (st & STAT_TX_RDY(port))
407 		mvebu_uart_tx_chars(port, st);
408 
409 	return IRQ_HANDLED;
410 }
411 
412 static int mvebu_uart_startup(struct uart_port *port)
413 {
414 	struct mvebu_uart *mvuart = to_mvuart(port);
415 	unsigned int ctl;
416 	int ret;
417 
418 	writel(CTRL_TXFIFO_RST | CTRL_RXFIFO_RST,
419 	       port->membase + UART_CTRL(port));
420 	udelay(1);
421 
422 	/* Clear the error bits of state register before IRQ request */
423 	ret = readl(port->membase + UART_STAT);
424 	ret |= STAT_BRK_ERR;
425 	writel(ret, port->membase + UART_STAT);
426 
427 	writel(CTRL_BRK_INT, port->membase + UART_CTRL(port));
428 
429 	ctl = readl(port->membase + UART_INTR(port));
430 	ctl |= CTRL_RX_RDY_INT(port);
431 	writel(ctl, port->membase + UART_INTR(port));
432 
433 	if (!mvuart->irq[UART_TX_IRQ]) {
434 		/* Old bindings with just one interrupt (UART0 only) */
435 		ret = devm_request_irq(port->dev, mvuart->irq[UART_IRQ_SUM],
436 				       mvebu_uart_isr, port->irqflags,
437 				       dev_name(port->dev), port);
438 		if (ret) {
439 			dev_err(port->dev, "unable to request IRQ %d\n",
440 				mvuart->irq[UART_IRQ_SUM]);
441 			return ret;
442 		}
443 	} else {
444 		/* New bindings with an IRQ for RX and TX (both UART) */
445 		ret = devm_request_irq(port->dev, mvuart->irq[UART_RX_IRQ],
446 				       mvebu_uart_rx_isr, port->irqflags,
447 				       dev_name(port->dev), port);
448 		if (ret) {
449 			dev_err(port->dev, "unable to request IRQ %d\n",
450 				mvuart->irq[UART_RX_IRQ]);
451 			return ret;
452 		}
453 
454 		ret = devm_request_irq(port->dev, mvuart->irq[UART_TX_IRQ],
455 				       mvebu_uart_tx_isr, port->irqflags,
456 				       dev_name(port->dev),
457 				       port);
458 		if (ret) {
459 			dev_err(port->dev, "unable to request IRQ %d\n",
460 				mvuart->irq[UART_TX_IRQ]);
461 			devm_free_irq(port->dev, mvuart->irq[UART_RX_IRQ],
462 				      port);
463 			return ret;
464 		}
465 	}
466 
467 	return 0;
468 }
469 
470 static void mvebu_uart_shutdown(struct uart_port *port)
471 {
472 	struct mvebu_uart *mvuart = to_mvuart(port);
473 
474 	writel(0, port->membase + UART_INTR(port));
475 
476 	if (!mvuart->irq[UART_TX_IRQ]) {
477 		devm_free_irq(port->dev, mvuart->irq[UART_IRQ_SUM], port);
478 	} else {
479 		devm_free_irq(port->dev, mvuart->irq[UART_RX_IRQ], port);
480 		devm_free_irq(port->dev, mvuart->irq[UART_TX_IRQ], port);
481 	}
482 }
483 
484 static unsigned int mvebu_uart_baud_rate_set(struct uart_port *port, unsigned int baud)
485 {
486 	unsigned int d_divisor, m_divisor;
487 	unsigned long flags;
488 	u32 brdv, osamp;
489 
490 	if (!port->uartclk)
491 		return 0;
492 
493 	/*
494 	 * The baudrate is derived from the UART clock thanks to divisors:
495 	 *   > d1 * d2 ("TBG divisors"): can divide only TBG clock from 1 to 6
496 	 *   > D ("baud generator"): can divide the clock from 1 to 1023
497 	 *   > M ("fractional divisor"): allows a better accuracy (from 1 to 63)
498 	 *
499 	 * Exact formulas for calculating baudrate:
500 	 *
501 	 * with default x16 scheme:
502 	 *   baudrate = xtal / (d * 16)
503 	 *   baudrate = tbg / (d1 * d2 * d * 16)
504 	 *
505 	 * with fractional divisor:
506 	 *   baudrate = 10 * xtal / (d * (3 * (m1 + m2) + 2 * (m3 + m4)))
507 	 *   baudrate = 10 * tbg / (d1*d2 * d * (3 * (m1 + m2) + 2 * (m3 + m4)))
508 	 *
509 	 * Oversampling value:
510 	 *   osamp = (m1 << 0) | (m2 << 8) | (m3 << 16) | (m4 << 24);
511 	 *
512 	 * Where m1 controls number of clock cycles per bit for bits 1,2,3;
513 	 * m2 for bits 4,5,6; m3 for bits 7,8 and m4 for bits 9,10.
514 	 *
515 	 * To simplify baudrate setup set all the M prescalers to the same
516 	 * value. For baudrates 9600 Bd and higher, it is enough to use the
517 	 * default (x16) divisor or fractional divisor with M = 63, so there
518 	 * is no need to use real fractional support (where the M prescalers
519 	 * are not equal).
520 	 *
521 	 * When all the M prescalers are zeroed then default (x16) divisor is
522 	 * used. Default x16 scheme is more stable than M (fractional divisor),
523 	 * so use M only when D divisor is not enough to derive baudrate.
524 	 *
525 	 * Member port->uartclk is either xtal clock rate or TBG clock rate
526 	 * divided by (d1 * d2). So d1 and d2 are already set by the UART clock
527 	 * driver (and UART driver itself cannot change them). Moreover they are
528 	 * shared between both UARTs.
529 	 */
530 
531 	m_divisor = OSAMP_DEFAULT_DIVISOR;
532 	d_divisor = DIV_ROUND_CLOSEST(port->uartclk, baud * m_divisor);
533 
534 	if (d_divisor > BRDV_BAUD_MAX) {
535 		/*
536 		 * Experiments show that small M divisors are unstable.
537 		 * Use maximal possible M = 63 and calculate D divisor.
538 		 */
539 		m_divisor = OSAMP_MAX_DIVISOR;
540 		d_divisor = DIV_ROUND_CLOSEST(port->uartclk, baud * m_divisor);
541 	}
542 
543 	if (d_divisor < 1)
544 		d_divisor = 1;
545 	else if (d_divisor > BRDV_BAUD_MAX)
546 		d_divisor = BRDV_BAUD_MAX;
547 
548 	spin_lock_irqsave(&mvebu_uart_lock, flags);
549 	brdv = readl(port->membase + UART_BRDV);
550 	brdv &= ~BRDV_BAUD_MASK;
551 	brdv |= d_divisor;
552 	writel(brdv, port->membase + UART_BRDV);
553 	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
554 
555 	osamp = readl(port->membase + UART_OSAMP);
556 	osamp &= ~OSAMP_DIVISORS_MASK;
557 	if (m_divisor != OSAMP_DEFAULT_DIVISOR)
558 		osamp |= (m_divisor << 0) | (m_divisor << 8) |
559 			(m_divisor << 16) | (m_divisor << 24);
560 	writel(osamp, port->membase + UART_OSAMP);
561 
562 	return DIV_ROUND_CLOSEST(port->uartclk, d_divisor * m_divisor);
563 }
564 
565 static void mvebu_uart_set_termios(struct uart_port *port,
566 				   struct ktermios *termios,
567 				   const struct ktermios *old)
568 {
569 	unsigned long flags;
570 	unsigned int baud, min_baud, max_baud;
571 
572 	spin_lock_irqsave(&port->lock, flags);
573 
574 	port->read_status_mask = STAT_RX_RDY(port) | STAT_OVR_ERR |
575 		STAT_TX_RDY(port) | STAT_TX_FIFO_FUL;
576 
577 	if (termios->c_iflag & INPCK)
578 		port->read_status_mask |= STAT_FRM_ERR | STAT_PAR_ERR;
579 
580 	port->ignore_status_mask = 0;
581 	if (termios->c_iflag & IGNPAR)
582 		port->ignore_status_mask |=
583 			STAT_FRM_ERR | STAT_PAR_ERR | STAT_OVR_ERR;
584 
585 	if ((termios->c_cflag & CREAD) == 0)
586 		port->ignore_status_mask |= STAT_RX_RDY(port) | STAT_BRK_ERR;
587 
588 	/*
589 	 * Maximal divisor is 1023 and maximal fractional divisor is 63. And
590 	 * experiments show that baudrates above 1/80 of parent clock rate are
591 	 * not stable. So disallow baudrates above 1/80 of the parent clock
592 	 * rate. If port->uartclk is not available, then
593 	 * mvebu_uart_baud_rate_set() fails, so values min_baud and max_baud
594 	 * in this case do not matter.
595 	 */
596 	min_baud = DIV_ROUND_UP(port->uartclk, BRDV_BAUD_MAX *
597 				OSAMP_MAX_DIVISOR);
598 	max_baud = port->uartclk / 80;
599 
600 	baud = uart_get_baud_rate(port, termios, old, min_baud, max_baud);
601 	baud = mvebu_uart_baud_rate_set(port, baud);
602 
603 	/* In case baudrate cannot be changed, report previous old value */
604 	if (baud == 0 && old)
605 		baud = tty_termios_baud_rate(old);
606 
607 	/* Only the following flag changes are supported */
608 	if (old) {
609 		termios->c_iflag &= INPCK | IGNPAR;
610 		termios->c_iflag |= old->c_iflag & ~(INPCK | IGNPAR);
611 		termios->c_cflag &= CREAD | CBAUD;
612 		termios->c_cflag |= old->c_cflag & ~(CREAD | CBAUD);
613 		termios->c_cflag |= CS8;
614 	}
615 
616 	if (baud != 0) {
617 		tty_termios_encode_baud_rate(termios, baud, baud);
618 		uart_update_timeout(port, termios->c_cflag, baud);
619 	}
620 
621 	spin_unlock_irqrestore(&port->lock, flags);
622 }
623 
624 static const char *mvebu_uart_type(struct uart_port *port)
625 {
626 	return MVEBU_UART_TYPE;
627 }
628 
629 static void mvebu_uart_release_port(struct uart_port *port)
630 {
631 	/* Nothing to do here */
632 }
633 
634 static int mvebu_uart_request_port(struct uart_port *port)
635 {
636 	return 0;
637 }
638 
639 #ifdef CONFIG_CONSOLE_POLL
640 static int mvebu_uart_get_poll_char(struct uart_port *port)
641 {
642 	unsigned int st = readl(port->membase + UART_STAT);
643 
644 	if (!(st & STAT_RX_RDY(port)))
645 		return NO_POLL_CHAR;
646 
647 	return readl(port->membase + UART_RBR(port));
648 }
649 
650 static void mvebu_uart_put_poll_char(struct uart_port *port, unsigned char c)
651 {
652 	unsigned int st;
653 
654 	for (;;) {
655 		st = readl(port->membase + UART_STAT);
656 
657 		if (!(st & STAT_TX_FIFO_FUL))
658 			break;
659 
660 		udelay(1);
661 	}
662 
663 	writel(c, port->membase + UART_TSH(port));
664 }
665 #endif
666 
667 static const struct uart_ops mvebu_uart_ops = {
668 	.tx_empty	= mvebu_uart_tx_empty,
669 	.set_mctrl	= mvebu_uart_set_mctrl,
670 	.get_mctrl	= mvebu_uart_get_mctrl,
671 	.stop_tx	= mvebu_uart_stop_tx,
672 	.start_tx	= mvebu_uart_start_tx,
673 	.stop_rx	= mvebu_uart_stop_rx,
674 	.break_ctl	= mvebu_uart_break_ctl,
675 	.startup	= mvebu_uart_startup,
676 	.shutdown	= mvebu_uart_shutdown,
677 	.set_termios	= mvebu_uart_set_termios,
678 	.type		= mvebu_uart_type,
679 	.release_port	= mvebu_uart_release_port,
680 	.request_port	= mvebu_uart_request_port,
681 #ifdef CONFIG_CONSOLE_POLL
682 	.poll_get_char	= mvebu_uart_get_poll_char,
683 	.poll_put_char	= mvebu_uart_put_poll_char,
684 #endif
685 };
686 
687 /* Console Driver Operations  */
688 
689 #ifdef CONFIG_SERIAL_MVEBU_CONSOLE
690 /* Early Console */
691 static void mvebu_uart_putc(struct uart_port *port, unsigned char c)
692 {
693 	unsigned int st;
694 
695 	for (;;) {
696 		st = readl(port->membase + UART_STAT);
697 		if (!(st & STAT_TX_FIFO_FUL))
698 			break;
699 	}
700 
701 	/* At early stage, DT is not parsed yet, only use UART0 */
702 	writel(c, port->membase + UART_STD_TSH);
703 
704 	for (;;) {
705 		st = readl(port->membase + UART_STAT);
706 		if (st & STAT_TX_FIFO_EMP)
707 			break;
708 	}
709 }
710 
711 static void mvebu_uart_putc_early_write(struct console *con,
712 					const char *s,
713 					unsigned int n)
714 {
715 	struct earlycon_device *dev = con->data;
716 
717 	uart_console_write(&dev->port, s, n, mvebu_uart_putc);
718 }
719 
720 static int __init
721 mvebu_uart_early_console_setup(struct earlycon_device *device,
722 			       const char *opt)
723 {
724 	if (!device->port.membase)
725 		return -ENODEV;
726 
727 	device->con->write = mvebu_uart_putc_early_write;
728 
729 	return 0;
730 }
731 
732 EARLYCON_DECLARE(ar3700_uart, mvebu_uart_early_console_setup);
733 OF_EARLYCON_DECLARE(ar3700_uart, "marvell,armada-3700-uart",
734 		    mvebu_uart_early_console_setup);
735 
736 static void wait_for_xmitr(struct uart_port *port)
737 {
738 	u32 val;
739 
740 	readl_poll_timeout_atomic(port->membase + UART_STAT, val,
741 				  (val & STAT_TX_RDY(port)), 1, 10000);
742 }
743 
744 static void wait_for_xmite(struct uart_port *port)
745 {
746 	u32 val;
747 
748 	readl_poll_timeout_atomic(port->membase + UART_STAT, val,
749 				  (val & STAT_TX_EMP), 1, 10000);
750 }
751 
752 static void mvebu_uart_console_putchar(struct uart_port *port, unsigned char ch)
753 {
754 	wait_for_xmitr(port);
755 	writel(ch, port->membase + UART_TSH(port));
756 }
757 
758 static void mvebu_uart_console_write(struct console *co, const char *s,
759 				     unsigned int count)
760 {
761 	struct uart_port *port = &mvebu_uart_ports[co->index];
762 	unsigned long flags;
763 	unsigned int ier, intr, ctl;
764 	int locked = 1;
765 
766 	if (oops_in_progress)
767 		locked = spin_trylock_irqsave(&port->lock, flags);
768 	else
769 		spin_lock_irqsave(&port->lock, flags);
770 
771 	ier = readl(port->membase + UART_CTRL(port)) & CTRL_BRK_INT;
772 	intr = readl(port->membase + UART_INTR(port)) &
773 		(CTRL_RX_RDY_INT(port) | CTRL_TX_RDY_INT(port));
774 	writel(0, port->membase + UART_CTRL(port));
775 	writel(0, port->membase + UART_INTR(port));
776 
777 	uart_console_write(port, s, count, mvebu_uart_console_putchar);
778 
779 	wait_for_xmite(port);
780 
781 	if (ier)
782 		writel(ier, port->membase + UART_CTRL(port));
783 
784 	if (intr) {
785 		ctl = intr | readl(port->membase + UART_INTR(port));
786 		writel(ctl, port->membase + UART_INTR(port));
787 	}
788 
789 	if (locked)
790 		spin_unlock_irqrestore(&port->lock, flags);
791 }
792 
793 static int mvebu_uart_console_setup(struct console *co, char *options)
794 {
795 	struct uart_port *port;
796 	int baud = 9600;
797 	int bits = 8;
798 	int parity = 'n';
799 	int flow = 'n';
800 
801 	if (co->index < 0 || co->index >= MVEBU_NR_UARTS)
802 		return -EINVAL;
803 
804 	port = &mvebu_uart_ports[co->index];
805 
806 	if (!port->mapbase || !port->membase) {
807 		pr_debug("console on ttyMV%i not present\n", co->index);
808 		return -ENODEV;
809 	}
810 
811 	if (options)
812 		uart_parse_options(options, &baud, &parity, &bits, &flow);
813 
814 	return uart_set_options(port, co, baud, parity, bits, flow);
815 }
816 
817 static struct uart_driver mvebu_uart_driver;
818 
819 static struct console mvebu_uart_console = {
820 	.name	= "ttyMV",
821 	.write	= mvebu_uart_console_write,
822 	.device	= uart_console_device,
823 	.setup	= mvebu_uart_console_setup,
824 	.flags	= CON_PRINTBUFFER,
825 	.index	= -1,
826 	.data	= &mvebu_uart_driver,
827 };
828 
829 static int __init mvebu_uart_console_init(void)
830 {
831 	register_console(&mvebu_uart_console);
832 	return 0;
833 }
834 
835 console_initcall(mvebu_uart_console_init);
836 
837 
838 #endif /* CONFIG_SERIAL_MVEBU_CONSOLE */
839 
840 static struct uart_driver mvebu_uart_driver = {
841 	.owner			= THIS_MODULE,
842 	.driver_name		= DRIVER_NAME,
843 	.dev_name		= "ttyMV",
844 	.nr			= MVEBU_NR_UARTS,
845 #ifdef CONFIG_SERIAL_MVEBU_CONSOLE
846 	.cons			= &mvebu_uart_console,
847 #endif
848 };
849 
850 #if defined(CONFIG_PM)
851 static int mvebu_uart_suspend(struct device *dev)
852 {
853 	struct mvebu_uart *mvuart = dev_get_drvdata(dev);
854 	struct uart_port *port = mvuart->port;
855 	unsigned long flags;
856 
857 	uart_suspend_port(&mvebu_uart_driver, port);
858 
859 	mvuart->pm_regs.rbr = readl(port->membase + UART_RBR(port));
860 	mvuart->pm_regs.tsh = readl(port->membase + UART_TSH(port));
861 	mvuart->pm_regs.ctrl = readl(port->membase + UART_CTRL(port));
862 	mvuart->pm_regs.intr = readl(port->membase + UART_INTR(port));
863 	mvuart->pm_regs.stat = readl(port->membase + UART_STAT);
864 	spin_lock_irqsave(&mvebu_uart_lock, flags);
865 	mvuart->pm_regs.brdv = readl(port->membase + UART_BRDV);
866 	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
867 	mvuart->pm_regs.osamp = readl(port->membase + UART_OSAMP);
868 
869 	device_set_wakeup_enable(dev, true);
870 
871 	return 0;
872 }
873 
874 static int mvebu_uart_resume(struct device *dev)
875 {
876 	struct mvebu_uart *mvuart = dev_get_drvdata(dev);
877 	struct uart_port *port = mvuart->port;
878 	unsigned long flags;
879 
880 	writel(mvuart->pm_regs.rbr, port->membase + UART_RBR(port));
881 	writel(mvuart->pm_regs.tsh, port->membase + UART_TSH(port));
882 	writel(mvuart->pm_regs.ctrl, port->membase + UART_CTRL(port));
883 	writel(mvuart->pm_regs.intr, port->membase + UART_INTR(port));
884 	writel(mvuart->pm_regs.stat, port->membase + UART_STAT);
885 	spin_lock_irqsave(&mvebu_uart_lock, flags);
886 	writel(mvuart->pm_regs.brdv, port->membase + UART_BRDV);
887 	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
888 	writel(mvuart->pm_regs.osamp, port->membase + UART_OSAMP);
889 
890 	uart_resume_port(&mvebu_uart_driver, port);
891 
892 	return 0;
893 }
894 
895 static const struct dev_pm_ops mvebu_uart_pm_ops = {
896 	.suspend        = mvebu_uart_suspend,
897 	.resume         = mvebu_uart_resume,
898 };
899 #endif /* CONFIG_PM */
900 
901 static const struct of_device_id mvebu_uart_of_match[];
902 
903 /* Counter to keep track of each UART port id when not using CONFIG_OF */
904 static int uart_num_counter;
905 
906 static int mvebu_uart_probe(struct platform_device *pdev)
907 {
908 	struct resource *reg = platform_get_resource(pdev, IORESOURCE_MEM, 0);
909 	const struct of_device_id *match = of_match_device(mvebu_uart_of_match,
910 							   &pdev->dev);
911 	struct uart_port *port;
912 	struct mvebu_uart *mvuart;
913 	int id, irq;
914 
915 	if (!reg) {
916 		dev_err(&pdev->dev, "no registers defined\n");
917 		return -EINVAL;
918 	}
919 
920 	/* Assume that all UART ports have a DT alias or none has */
921 	id = of_alias_get_id(pdev->dev.of_node, "serial");
922 	if (!pdev->dev.of_node || id < 0)
923 		pdev->id = uart_num_counter++;
924 	else
925 		pdev->id = id;
926 
927 	if (pdev->id >= MVEBU_NR_UARTS) {
928 		dev_err(&pdev->dev, "cannot have more than %d UART ports\n",
929 			MVEBU_NR_UARTS);
930 		return -EINVAL;
931 	}
932 
933 	port = &mvebu_uart_ports[pdev->id];
934 
935 	spin_lock_init(&port->lock);
936 
937 	port->dev        = &pdev->dev;
938 	port->type       = PORT_MVEBU;
939 	port->ops        = &mvebu_uart_ops;
940 	port->regshift   = 0;
941 
942 	port->fifosize   = 32;
943 	port->iotype     = UPIO_MEM32;
944 	port->flags      = UPF_FIXED_PORT;
945 	port->line       = pdev->id;
946 
947 	/*
948 	 * IRQ number is not stored in this structure because we may have two of
949 	 * them per port (RX and TX). Instead, use the driver UART structure
950 	 * array so called ->irq[].
951 	 */
952 	port->irq        = 0;
953 	port->irqflags   = 0;
954 	port->mapbase    = reg->start;
955 
956 	port->membase = devm_ioremap_resource(&pdev->dev, reg);
957 	if (IS_ERR(port->membase))
958 		return PTR_ERR(port->membase);
959 
960 	mvuart = devm_kzalloc(&pdev->dev, sizeof(struct mvebu_uart),
961 			      GFP_KERNEL);
962 	if (!mvuart)
963 		return -ENOMEM;
964 
965 	/* Get controller data depending on the compatible string */
966 	mvuart->data = (struct mvebu_uart_driver_data *)match->data;
967 	mvuart->port = port;
968 
969 	port->private_data = mvuart;
970 	platform_set_drvdata(pdev, mvuart);
971 
972 	/* Get fixed clock frequency */
973 	mvuart->clk = devm_clk_get(&pdev->dev, NULL);
974 	if (IS_ERR(mvuart->clk)) {
975 		if (PTR_ERR(mvuart->clk) == -EPROBE_DEFER)
976 			return PTR_ERR(mvuart->clk);
977 
978 		if (IS_EXTENDED(port)) {
979 			dev_err(&pdev->dev, "unable to get UART clock\n");
980 			return PTR_ERR(mvuart->clk);
981 		}
982 	} else {
983 		if (!clk_prepare_enable(mvuart->clk))
984 			port->uartclk = clk_get_rate(mvuart->clk);
985 	}
986 
987 	/* Manage interrupts */
988 	if (platform_irq_count(pdev) == 1) {
989 		/* Old bindings: no name on the single unamed UART0 IRQ */
990 		irq = platform_get_irq(pdev, 0);
991 		if (irq < 0)
992 			return irq;
993 
994 		mvuart->irq[UART_IRQ_SUM] = irq;
995 	} else {
996 		/*
997 		 * New bindings: named interrupts (RX, TX) for both UARTS,
998 		 * only make use of uart-rx and uart-tx interrupts, do not use
999 		 * uart-sum of UART0 port.
1000 		 */
1001 		irq = platform_get_irq_byname(pdev, "uart-rx");
1002 		if (irq < 0)
1003 			return irq;
1004 
1005 		mvuart->irq[UART_RX_IRQ] = irq;
1006 
1007 		irq = platform_get_irq_byname(pdev, "uart-tx");
1008 		if (irq < 0)
1009 			return irq;
1010 
1011 		mvuart->irq[UART_TX_IRQ] = irq;
1012 	}
1013 
1014 	/* UART Soft Reset*/
1015 	writel(CTRL_SOFT_RST, port->membase + UART_CTRL(port));
1016 	udelay(1);
1017 	writel(0, port->membase + UART_CTRL(port));
1018 
1019 	return uart_add_one_port(&mvebu_uart_driver, port);
1020 }
1021 
1022 static struct mvebu_uart_driver_data uart_std_driver_data = {
1023 	.is_ext = false,
1024 	.regs.rbr = UART_STD_RBR,
1025 	.regs.tsh = UART_STD_TSH,
1026 	.regs.ctrl = UART_STD_CTRL1,
1027 	.regs.intr = UART_STD_CTRL2,
1028 	.flags.ctrl_tx_rdy_int = CTRL_STD_TX_RDY_INT,
1029 	.flags.ctrl_rx_rdy_int = CTRL_STD_RX_RDY_INT,
1030 	.flags.stat_tx_rdy = STAT_STD_TX_RDY,
1031 	.flags.stat_rx_rdy = STAT_STD_RX_RDY,
1032 };
1033 
1034 static struct mvebu_uart_driver_data uart_ext_driver_data = {
1035 	.is_ext = true,
1036 	.regs.rbr = UART_EXT_RBR,
1037 	.regs.tsh = UART_EXT_TSH,
1038 	.regs.ctrl = UART_EXT_CTRL1,
1039 	.regs.intr = UART_EXT_CTRL2,
1040 	.flags.ctrl_tx_rdy_int = CTRL_EXT_TX_RDY_INT,
1041 	.flags.ctrl_rx_rdy_int = CTRL_EXT_RX_RDY_INT,
1042 	.flags.stat_tx_rdy = STAT_EXT_TX_RDY,
1043 	.flags.stat_rx_rdy = STAT_EXT_RX_RDY,
1044 };
1045 
1046 /* Match table for of_platform binding */
1047 static const struct of_device_id mvebu_uart_of_match[] = {
1048 	{
1049 		.compatible = "marvell,armada-3700-uart",
1050 		.data = (void *)&uart_std_driver_data,
1051 	},
1052 	{
1053 		.compatible = "marvell,armada-3700-uart-ext",
1054 		.data = (void *)&uart_ext_driver_data,
1055 	},
1056 	{}
1057 };
1058 
1059 static struct platform_driver mvebu_uart_platform_driver = {
1060 	.probe	= mvebu_uart_probe,
1061 	.driver	= {
1062 		.name  = "mvebu-uart",
1063 		.of_match_table = of_match_ptr(mvebu_uart_of_match),
1064 		.suppress_bind_attrs = true,
1065 #if defined(CONFIG_PM)
1066 		.pm	= &mvebu_uart_pm_ops,
1067 #endif /* CONFIG_PM */
1068 	},
1069 };
1070 
1071 /* This code is based on clk-fixed-factor.c driver and modified. */
1072 
1073 struct mvebu_uart_clock {
1074 	struct clk_hw clk_hw;
1075 	int clock_idx;
1076 	u32 pm_context_reg1;
1077 	u32 pm_context_reg2;
1078 };
1079 
1080 struct mvebu_uart_clock_base {
1081 	struct mvebu_uart_clock clocks[2];
1082 	unsigned int parent_rates[5];
1083 	int parent_idx;
1084 	unsigned int div;
1085 	void __iomem *reg1;
1086 	void __iomem *reg2;
1087 	bool configured;
1088 };
1089 
1090 #define PARENT_CLOCK_XTAL 4
1091 
1092 #define to_uart_clock(hw) container_of(hw, struct mvebu_uart_clock, clk_hw)
1093 #define to_uart_clock_base(uart_clock) container_of(uart_clock, \
1094 	struct mvebu_uart_clock_base, clocks[uart_clock->clock_idx])
1095 
1096 static int mvebu_uart_clock_prepare(struct clk_hw *hw)
1097 {
1098 	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1099 	struct mvebu_uart_clock_base *uart_clock_base =
1100 						to_uart_clock_base(uart_clock);
1101 	unsigned int prev_clock_idx, prev_clock_rate, prev_d1d2;
1102 	unsigned int parent_clock_idx, parent_clock_rate;
1103 	unsigned long flags;
1104 	unsigned int d1, d2;
1105 	u64 divisor;
1106 	u32 val;
1107 
1108 	/*
1109 	 * This function just reconfigures UART Clock Control register (located
1110 	 * in UART1 address space which controls both UART1 and UART2) to
1111 	 * selected UART base clock and recalculates current UART1/UART2
1112 	 * divisors in their address spaces, so that final baudrate will not be
1113 	 * changed by switching UART parent clock. This is required for
1114 	 * otherwise kernel's boot log stops working - we need to ensure that
1115 	 * UART baudrate does not change during this setup. It is a one time
1116 	 * operation, it will execute only once and set `configured` to true,
1117 	 * and be skipped on subsequent calls. Because this UART Clock Control
1118 	 * register (UART_BRDV) is shared between UART1 baudrate function,
1119 	 * UART1 clock selector and UART2 clock selector, every access to
1120 	 * UART_BRDV (reg1) needs to be protected by a lock.
1121 	 */
1122 
1123 	spin_lock_irqsave(&mvebu_uart_lock, flags);
1124 
1125 	if (uart_clock_base->configured) {
1126 		spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1127 		return 0;
1128 	}
1129 
1130 	parent_clock_idx = uart_clock_base->parent_idx;
1131 	parent_clock_rate = uart_clock_base->parent_rates[parent_clock_idx];
1132 
1133 	val = readl(uart_clock_base->reg1);
1134 
1135 	if (uart_clock_base->div > CLK_TBG_DIV1_MAX) {
1136 		d1 = CLK_TBG_DIV1_MAX;
1137 		d2 = uart_clock_base->div / CLK_TBG_DIV1_MAX;
1138 	} else {
1139 		d1 = uart_clock_base->div;
1140 		d2 = 1;
1141 	}
1142 
1143 	if (val & CLK_NO_XTAL) {
1144 		prev_clock_idx = (val >> CLK_TBG_SEL_SHIFT) & CLK_TBG_SEL_MASK;
1145 		prev_d1d2 = ((val >> CLK_TBG_DIV1_SHIFT) & CLK_TBG_DIV1_MASK) *
1146 			    ((val >> CLK_TBG_DIV2_SHIFT) & CLK_TBG_DIV2_MASK);
1147 	} else {
1148 		prev_clock_idx = PARENT_CLOCK_XTAL;
1149 		prev_d1d2 = 1;
1150 	}
1151 
1152 	/* Note that uart_clock_base->parent_rates[i] may not be available */
1153 	prev_clock_rate = uart_clock_base->parent_rates[prev_clock_idx];
1154 
1155 	/* Recalculate UART1 divisor so UART1 baudrate does not change */
1156 	if (prev_clock_rate) {
1157 		divisor = DIV_U64_ROUND_CLOSEST((u64)(val & BRDV_BAUD_MASK) *
1158 						parent_clock_rate * prev_d1d2,
1159 						prev_clock_rate * d1 * d2);
1160 		if (divisor < 1)
1161 			divisor = 1;
1162 		else if (divisor > BRDV_BAUD_MAX)
1163 			divisor = BRDV_BAUD_MAX;
1164 		val = (val & ~BRDV_BAUD_MASK) | divisor;
1165 	}
1166 
1167 	if (parent_clock_idx != PARENT_CLOCK_XTAL) {
1168 		/* Do not use XTAL, select TBG clock and TBG d1 * d2 divisors */
1169 		val |= CLK_NO_XTAL;
1170 		val &= ~(CLK_TBG_DIV1_MASK << CLK_TBG_DIV1_SHIFT);
1171 		val |= d1 << CLK_TBG_DIV1_SHIFT;
1172 		val &= ~(CLK_TBG_DIV2_MASK << CLK_TBG_DIV2_SHIFT);
1173 		val |= d2 << CLK_TBG_DIV2_SHIFT;
1174 		val &= ~(CLK_TBG_SEL_MASK << CLK_TBG_SEL_SHIFT);
1175 		val |= parent_clock_idx << CLK_TBG_SEL_SHIFT;
1176 	} else {
1177 		/* Use XTAL, TBG bits are then ignored */
1178 		val &= ~CLK_NO_XTAL;
1179 	}
1180 
1181 	writel(val, uart_clock_base->reg1);
1182 
1183 	/* Recalculate UART2 divisor so UART2 baudrate does not change */
1184 	if (prev_clock_rate) {
1185 		val = readl(uart_clock_base->reg2);
1186 		divisor = DIV_U64_ROUND_CLOSEST((u64)(val & BRDV_BAUD_MASK) *
1187 						parent_clock_rate * prev_d1d2,
1188 						prev_clock_rate * d1 * d2);
1189 		if (divisor < 1)
1190 			divisor = 1;
1191 		else if (divisor > BRDV_BAUD_MAX)
1192 			divisor = BRDV_BAUD_MAX;
1193 		val = (val & ~BRDV_BAUD_MASK) | divisor;
1194 		writel(val, uart_clock_base->reg2);
1195 	}
1196 
1197 	uart_clock_base->configured = true;
1198 
1199 	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1200 
1201 	return 0;
1202 }
1203 
1204 static int mvebu_uart_clock_enable(struct clk_hw *hw)
1205 {
1206 	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1207 	struct mvebu_uart_clock_base *uart_clock_base =
1208 						to_uart_clock_base(uart_clock);
1209 	unsigned long flags;
1210 	u32 val;
1211 
1212 	spin_lock_irqsave(&mvebu_uart_lock, flags);
1213 
1214 	val = readl(uart_clock_base->reg1);
1215 
1216 	if (uart_clock->clock_idx == 0)
1217 		val &= ~UART1_CLK_DIS;
1218 	else
1219 		val &= ~UART2_CLK_DIS;
1220 
1221 	writel(val, uart_clock_base->reg1);
1222 
1223 	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1224 
1225 	return 0;
1226 }
1227 
1228 static void mvebu_uart_clock_disable(struct clk_hw *hw)
1229 {
1230 	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1231 	struct mvebu_uart_clock_base *uart_clock_base =
1232 						to_uart_clock_base(uart_clock);
1233 	unsigned long flags;
1234 	u32 val;
1235 
1236 	spin_lock_irqsave(&mvebu_uart_lock, flags);
1237 
1238 	val = readl(uart_clock_base->reg1);
1239 
1240 	if (uart_clock->clock_idx == 0)
1241 		val |= UART1_CLK_DIS;
1242 	else
1243 		val |= UART2_CLK_DIS;
1244 
1245 	writel(val, uart_clock_base->reg1);
1246 
1247 	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1248 }
1249 
1250 static int mvebu_uart_clock_is_enabled(struct clk_hw *hw)
1251 {
1252 	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1253 	struct mvebu_uart_clock_base *uart_clock_base =
1254 						to_uart_clock_base(uart_clock);
1255 	u32 val;
1256 
1257 	val = readl(uart_clock_base->reg1);
1258 
1259 	if (uart_clock->clock_idx == 0)
1260 		return !(val & UART1_CLK_DIS);
1261 	else
1262 		return !(val & UART2_CLK_DIS);
1263 }
1264 
1265 static int mvebu_uart_clock_save_context(struct clk_hw *hw)
1266 {
1267 	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1268 	struct mvebu_uart_clock_base *uart_clock_base =
1269 						to_uart_clock_base(uart_clock);
1270 	unsigned long flags;
1271 
1272 	spin_lock_irqsave(&mvebu_uart_lock, flags);
1273 	uart_clock->pm_context_reg1 = readl(uart_clock_base->reg1);
1274 	uart_clock->pm_context_reg2 = readl(uart_clock_base->reg2);
1275 	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1276 
1277 	return 0;
1278 }
1279 
1280 static void mvebu_uart_clock_restore_context(struct clk_hw *hw)
1281 {
1282 	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1283 	struct mvebu_uart_clock_base *uart_clock_base =
1284 						to_uart_clock_base(uart_clock);
1285 	unsigned long flags;
1286 
1287 	spin_lock_irqsave(&mvebu_uart_lock, flags);
1288 	writel(uart_clock->pm_context_reg1, uart_clock_base->reg1);
1289 	writel(uart_clock->pm_context_reg2, uart_clock_base->reg2);
1290 	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1291 }
1292 
1293 static unsigned long mvebu_uart_clock_recalc_rate(struct clk_hw *hw,
1294 						  unsigned long parent_rate)
1295 {
1296 	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1297 	struct mvebu_uart_clock_base *uart_clock_base =
1298 						to_uart_clock_base(uart_clock);
1299 
1300 	return parent_rate / uart_clock_base->div;
1301 }
1302 
1303 static long mvebu_uart_clock_round_rate(struct clk_hw *hw, unsigned long rate,
1304 					unsigned long *parent_rate)
1305 {
1306 	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1307 	struct mvebu_uart_clock_base *uart_clock_base =
1308 						to_uart_clock_base(uart_clock);
1309 
1310 	return *parent_rate / uart_clock_base->div;
1311 }
1312 
1313 static int mvebu_uart_clock_set_rate(struct clk_hw *hw, unsigned long rate,
1314 				     unsigned long parent_rate)
1315 {
1316 	/*
1317 	 * We must report success but we can do so unconditionally because
1318 	 * mvebu_uart_clock_round_rate returns values that ensure this call is a
1319 	 * nop.
1320 	 */
1321 
1322 	return 0;
1323 }
1324 
1325 static const struct clk_ops mvebu_uart_clock_ops = {
1326 	.prepare = mvebu_uart_clock_prepare,
1327 	.enable = mvebu_uart_clock_enable,
1328 	.disable = mvebu_uart_clock_disable,
1329 	.is_enabled = mvebu_uart_clock_is_enabled,
1330 	.save_context = mvebu_uart_clock_save_context,
1331 	.restore_context = mvebu_uart_clock_restore_context,
1332 	.round_rate = mvebu_uart_clock_round_rate,
1333 	.set_rate = mvebu_uart_clock_set_rate,
1334 	.recalc_rate = mvebu_uart_clock_recalc_rate,
1335 };
1336 
1337 static int mvebu_uart_clock_register(struct device *dev,
1338 				     struct mvebu_uart_clock *uart_clock,
1339 				     const char *name,
1340 				     const char *parent_name)
1341 {
1342 	struct clk_init_data init = { };
1343 
1344 	uart_clock->clk_hw.init = &init;
1345 
1346 	init.name = name;
1347 	init.ops = &mvebu_uart_clock_ops;
1348 	init.flags = 0;
1349 	init.num_parents = 1;
1350 	init.parent_names = &parent_name;
1351 
1352 	return devm_clk_hw_register(dev, &uart_clock->clk_hw);
1353 }
1354 
1355 static int mvebu_uart_clock_probe(struct platform_device *pdev)
1356 {
1357 	static const char *const uart_clk_names[] = { "uart_1", "uart_2" };
1358 	static const char *const parent_clk_names[] = { "TBG-A-P", "TBG-B-P",
1359 							"TBG-A-S", "TBG-B-S",
1360 							"xtal" };
1361 	struct clk *parent_clks[ARRAY_SIZE(parent_clk_names)];
1362 	struct mvebu_uart_clock_base *uart_clock_base;
1363 	struct clk_hw_onecell_data *hw_clk_data;
1364 	struct device *dev = &pdev->dev;
1365 	int i, parent_clk_idx, ret;
1366 	unsigned long div, rate;
1367 	struct resource *res;
1368 	unsigned int d1, d2;
1369 
1370 	BUILD_BUG_ON(ARRAY_SIZE(uart_clk_names) !=
1371 		     ARRAY_SIZE(uart_clock_base->clocks));
1372 	BUILD_BUG_ON(ARRAY_SIZE(parent_clk_names) !=
1373 		     ARRAY_SIZE(uart_clock_base->parent_rates));
1374 
1375 	uart_clock_base = devm_kzalloc(dev,
1376 				       sizeof(*uart_clock_base),
1377 				       GFP_KERNEL);
1378 	if (!uart_clock_base)
1379 		return -ENOMEM;
1380 
1381 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1382 	if (!res) {
1383 		dev_err(dev, "Couldn't get first register\n");
1384 		return -ENOENT;
1385 	}
1386 
1387 	/*
1388 	 * UART Clock Control register (reg1 / UART_BRDV) is in the address
1389 	 * space of UART1 (standard UART variant), controls parent clock and
1390 	 * dividers for both UART1 and UART2 and is supplied via DT as the first
1391 	 * resource. Therefore use ioremap() rather than ioremap_resource() to
1392 	 * avoid conflicts with UART1 driver. Access to UART_BRDV is protected
1393 	 * by a lock shared between clock and UART driver.
1394 	 */
1395 	uart_clock_base->reg1 = devm_ioremap(dev, res->start,
1396 					     resource_size(res));
1397 	if (!uart_clock_base->reg1)
1398 		return -ENOMEM;
1399 
1400 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1401 	if (!res) {
1402 		dev_err(dev, "Couldn't get second register\n");
1403 		return -ENOENT;
1404 	}
1405 
1406 	/*
1407 	 * UART 2 Baud Rate Divisor register (reg2 / UART_BRDV) is in address
1408 	 * space of UART2 (extended UART variant), controls only one UART2
1409 	 * specific divider and is supplied via DT as second resource.
1410 	 * Therefore use ioremap() rather than ioremap_resource() to avoid
1411 	 * conflicts with UART2 driver. Access to UART_BRDV is protected by a
1412 	 * by lock shared between clock and UART driver.
1413 	 */
1414 	uart_clock_base->reg2 = devm_ioremap(dev, res->start,
1415 					     resource_size(res));
1416 	if (!uart_clock_base->reg2)
1417 		return -ENOMEM;
1418 
1419 	hw_clk_data = devm_kzalloc(dev,
1420 				   struct_size(hw_clk_data, hws,
1421 					       ARRAY_SIZE(uart_clk_names)),
1422 				   GFP_KERNEL);
1423 	if (!hw_clk_data)
1424 		return -ENOMEM;
1425 
1426 	hw_clk_data->num = ARRAY_SIZE(uart_clk_names);
1427 	for (i = 0; i < ARRAY_SIZE(uart_clk_names); i++) {
1428 		hw_clk_data->hws[i] = &uart_clock_base->clocks[i].clk_hw;
1429 		uart_clock_base->clocks[i].clock_idx = i;
1430 	}
1431 
1432 	parent_clk_idx = -1;
1433 
1434 	for (i = 0; i < ARRAY_SIZE(parent_clk_names); i++) {
1435 		parent_clks[i] = devm_clk_get(dev, parent_clk_names[i]);
1436 		if (IS_ERR(parent_clks[i])) {
1437 			if (PTR_ERR(parent_clks[i]) == -EPROBE_DEFER)
1438 				return -EPROBE_DEFER;
1439 			dev_warn(dev, "Couldn't get the parent clock %s: %ld\n",
1440 				 parent_clk_names[i], PTR_ERR(parent_clks[i]));
1441 			continue;
1442 		}
1443 
1444 		ret = clk_prepare_enable(parent_clks[i]);
1445 		if (ret) {
1446 			dev_warn(dev, "Couldn't enable parent clock %s: %d\n",
1447 				 parent_clk_names[i], ret);
1448 			continue;
1449 		}
1450 		rate = clk_get_rate(parent_clks[i]);
1451 		uart_clock_base->parent_rates[i] = rate;
1452 
1453 		if (i != PARENT_CLOCK_XTAL) {
1454 			/*
1455 			 * Calculate the smallest TBG d1 and d2 divisors that
1456 			 * still can provide 9600 baudrate.
1457 			 */
1458 			d1 = DIV_ROUND_UP(rate, 9600 * OSAMP_MAX_DIVISOR *
1459 					  BRDV_BAUD_MAX);
1460 			if (d1 < 1)
1461 				d1 = 1;
1462 			else if (d1 > CLK_TBG_DIV1_MAX)
1463 				d1 = CLK_TBG_DIV1_MAX;
1464 
1465 			d2 = DIV_ROUND_UP(rate, 9600 * OSAMP_MAX_DIVISOR *
1466 					  BRDV_BAUD_MAX * d1);
1467 			if (d2 < 1)
1468 				d2 = 1;
1469 			else if (d2 > CLK_TBG_DIV2_MAX)
1470 				d2 = CLK_TBG_DIV2_MAX;
1471 		} else {
1472 			/*
1473 			 * When UART clock uses XTAL clock as a source then it
1474 			 * is not possible to use d1 and d2 divisors.
1475 			 */
1476 			d1 = d2 = 1;
1477 		}
1478 
1479 		/* Skip clock source which cannot provide 9600 baudrate */
1480 		if (rate > 9600 * OSAMP_MAX_DIVISOR * BRDV_BAUD_MAX * d1 * d2)
1481 			continue;
1482 
1483 		/*
1484 		 * Choose TBG clock source with the smallest divisors. Use XTAL
1485 		 * clock source only in case TBG is not available as XTAL cannot
1486 		 * be used for baudrates higher than 230400.
1487 		 */
1488 		if (parent_clk_idx == -1 ||
1489 		    (i != PARENT_CLOCK_XTAL && div > d1 * d2)) {
1490 			parent_clk_idx = i;
1491 			div = d1 * d2;
1492 		}
1493 	}
1494 
1495 	for (i = 0; i < ARRAY_SIZE(parent_clk_names); i++) {
1496 		if (i == parent_clk_idx || IS_ERR(parent_clks[i]))
1497 			continue;
1498 		clk_disable_unprepare(parent_clks[i]);
1499 		devm_clk_put(dev, parent_clks[i]);
1500 	}
1501 
1502 	if (parent_clk_idx == -1) {
1503 		dev_err(dev, "No usable parent clock\n");
1504 		return -ENOENT;
1505 	}
1506 
1507 	uart_clock_base->parent_idx = parent_clk_idx;
1508 	uart_clock_base->div = div;
1509 
1510 	dev_notice(dev, "Using parent clock %s as base UART clock\n",
1511 		   __clk_get_name(parent_clks[parent_clk_idx]));
1512 
1513 	for (i = 0; i < ARRAY_SIZE(uart_clk_names); i++) {
1514 		ret = mvebu_uart_clock_register(dev,
1515 				&uart_clock_base->clocks[i],
1516 				uart_clk_names[i],
1517 				__clk_get_name(parent_clks[parent_clk_idx]));
1518 		if (ret) {
1519 			dev_err(dev, "Can't register UART clock %d: %d\n",
1520 				i, ret);
1521 			return ret;
1522 		}
1523 	}
1524 
1525 	return devm_of_clk_add_hw_provider(dev, of_clk_hw_onecell_get,
1526 					   hw_clk_data);
1527 }
1528 
1529 static const struct of_device_id mvebu_uart_clock_of_match[] = {
1530 	{ .compatible = "marvell,armada-3700-uart-clock", },
1531 	{ }
1532 };
1533 
1534 static struct platform_driver mvebu_uart_clock_platform_driver = {
1535 	.probe = mvebu_uart_clock_probe,
1536 	.driver		= {
1537 		.name	= "mvebu-uart-clock",
1538 		.of_match_table = mvebu_uart_clock_of_match,
1539 	},
1540 };
1541 
1542 static int __init mvebu_uart_init(void)
1543 {
1544 	int ret;
1545 
1546 	ret = uart_register_driver(&mvebu_uart_driver);
1547 	if (ret)
1548 		return ret;
1549 
1550 	ret = platform_driver_register(&mvebu_uart_clock_platform_driver);
1551 	if (ret) {
1552 		uart_unregister_driver(&mvebu_uart_driver);
1553 		return ret;
1554 	}
1555 
1556 	ret = platform_driver_register(&mvebu_uart_platform_driver);
1557 	if (ret) {
1558 		platform_driver_unregister(&mvebu_uart_clock_platform_driver);
1559 		uart_unregister_driver(&mvebu_uart_driver);
1560 		return ret;
1561 	}
1562 
1563 	return 0;
1564 }
1565 arch_initcall(mvebu_uart_init);
1566