xref: /openbmc/linux/drivers/tty/serial/mvebu-uart.c (revision 48ca54e3)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * ***************************************************************************
4 * Marvell Armada-3700 Serial Driver
5 * Author: Wilson Ding <dingwei@marvell.com>
6 * Copyright (C) 2015 Marvell International Ltd.
7 * ***************************************************************************
8 */
9 
10 #include <linux/clk.h>
11 #include <linux/clk-provider.h>
12 #include <linux/console.h>
13 #include <linux/delay.h>
14 #include <linux/device.h>
15 #include <linux/init.h>
16 #include <linux/io.h>
17 #include <linux/iopoll.h>
18 #include <linux/math64.h>
19 #include <linux/of.h>
20 #include <linux/of_address.h>
21 #include <linux/of_device.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_platform.h>
24 #include <linux/platform_device.h>
25 #include <linux/serial.h>
26 #include <linux/serial_core.h>
27 #include <linux/slab.h>
28 #include <linux/tty.h>
29 #include <linux/tty_flip.h>
30 
31 /* Register Map */
32 #define UART_STD_RBR		0x00
33 #define UART_EXT_RBR		0x18
34 
35 #define UART_STD_TSH		0x04
36 #define UART_EXT_TSH		0x1C
37 
38 #define UART_STD_CTRL1		0x08
39 #define UART_EXT_CTRL1		0x04
40 #define  CTRL_SOFT_RST		BIT(31)
41 #define  CTRL_TXFIFO_RST	BIT(15)
42 #define  CTRL_RXFIFO_RST	BIT(14)
43 #define  CTRL_SND_BRK_SEQ	BIT(11)
44 #define  CTRL_BRK_DET_INT	BIT(3)
45 #define  CTRL_FRM_ERR_INT	BIT(2)
46 #define  CTRL_PAR_ERR_INT	BIT(1)
47 #define  CTRL_OVR_ERR_INT	BIT(0)
48 #define  CTRL_BRK_INT		(CTRL_BRK_DET_INT | CTRL_FRM_ERR_INT | \
49 				CTRL_PAR_ERR_INT | CTRL_OVR_ERR_INT)
50 
51 #define UART_STD_CTRL2		UART_STD_CTRL1
52 #define UART_EXT_CTRL2		0x20
53 #define  CTRL_STD_TX_RDY_INT	BIT(5)
54 #define  CTRL_EXT_TX_RDY_INT	BIT(6)
55 #define  CTRL_STD_RX_RDY_INT	BIT(4)
56 #define  CTRL_EXT_RX_RDY_INT	BIT(5)
57 
58 #define UART_STAT		0x0C
59 #define  STAT_TX_FIFO_EMP	BIT(13)
60 #define  STAT_TX_FIFO_FUL	BIT(11)
61 #define  STAT_TX_EMP		BIT(6)
62 #define  STAT_STD_TX_RDY	BIT(5)
63 #define  STAT_EXT_TX_RDY	BIT(15)
64 #define  STAT_STD_RX_RDY	BIT(4)
65 #define  STAT_EXT_RX_RDY	BIT(14)
66 #define  STAT_BRK_DET		BIT(3)
67 #define  STAT_FRM_ERR		BIT(2)
68 #define  STAT_PAR_ERR		BIT(1)
69 #define  STAT_OVR_ERR		BIT(0)
70 #define  STAT_BRK_ERR		(STAT_BRK_DET | STAT_FRM_ERR \
71 				 | STAT_PAR_ERR | STAT_OVR_ERR)
72 
73 /*
74  * Marvell Armada 3700 Functional Specifications describes that bit 21 of UART
75  * Clock Control register controls UART1 and bit 20 controls UART2. But in
76  * reality bit 21 controls UART2 and bit 20 controls UART1. This seems to be an
77  * error in Marvell's documentation. Hence following CLK_DIS macros are swapped.
78  */
79 
80 #define UART_BRDV		0x10
81 /* These bits are located in UART1 address space and control UART2 */
82 #define  UART2_CLK_DIS		BIT(21)
83 /* These bits are located in UART1 address space and control UART1 */
84 #define  UART1_CLK_DIS		BIT(20)
85 /* These bits are located in UART1 address space and control both UARTs */
86 #define  CLK_NO_XTAL		BIT(19)
87 #define  CLK_TBG_DIV1_SHIFT	15
88 #define  CLK_TBG_DIV1_MASK	0x7
89 #define  CLK_TBG_DIV1_MAX	6
90 #define  CLK_TBG_DIV2_SHIFT	12
91 #define  CLK_TBG_DIV2_MASK	0x7
92 #define  CLK_TBG_DIV2_MAX	6
93 #define  CLK_TBG_SEL_SHIFT	10
94 #define  CLK_TBG_SEL_MASK	0x3
95 /* These bits are located in both UARTs address space */
96 #define  BRDV_BAUD_MASK         0x3FF
97 #define  BRDV_BAUD_MAX		BRDV_BAUD_MASK
98 
99 #define UART_OSAMP		0x14
100 #define  OSAMP_DEFAULT_DIVISOR	16
101 #define  OSAMP_DIVISORS_MASK	0x3F3F3F3F
102 #define  OSAMP_MAX_DIVISOR	63
103 
104 #define MVEBU_NR_UARTS		2
105 
106 #define MVEBU_UART_TYPE		"mvebu-uart"
107 #define DRIVER_NAME		"mvebu_serial"
108 
109 enum {
110 	/* Either there is only one summed IRQ... */
111 	UART_IRQ_SUM = 0,
112 	/* ...or there are two separate IRQ for RX and TX */
113 	UART_RX_IRQ = 0,
114 	UART_TX_IRQ,
115 	UART_IRQ_COUNT
116 };
117 
118 /* Diverging register offsets */
119 struct uart_regs_layout {
120 	unsigned int rbr;
121 	unsigned int tsh;
122 	unsigned int ctrl;
123 	unsigned int intr;
124 };
125 
126 /* Diverging flags */
127 struct uart_flags {
128 	unsigned int ctrl_tx_rdy_int;
129 	unsigned int ctrl_rx_rdy_int;
130 	unsigned int stat_tx_rdy;
131 	unsigned int stat_rx_rdy;
132 };
133 
134 /* Driver data, a structure for each UART port */
135 struct mvebu_uart_driver_data {
136 	bool is_ext;
137 	struct uart_regs_layout regs;
138 	struct uart_flags flags;
139 };
140 
141 /* Saved registers during suspend */
142 struct mvebu_uart_pm_regs {
143 	unsigned int rbr;
144 	unsigned int tsh;
145 	unsigned int ctrl;
146 	unsigned int intr;
147 	unsigned int stat;
148 	unsigned int brdv;
149 	unsigned int osamp;
150 };
151 
152 /* MVEBU UART driver structure */
153 struct mvebu_uart {
154 	struct uart_port *port;
155 	struct clk *clk;
156 	int irq[UART_IRQ_COUNT];
157 	struct mvebu_uart_driver_data *data;
158 #if defined(CONFIG_PM)
159 	struct mvebu_uart_pm_regs pm_regs;
160 #endif /* CONFIG_PM */
161 };
162 
163 static struct mvebu_uart *to_mvuart(struct uart_port *port)
164 {
165 	return (struct mvebu_uart *)port->private_data;
166 }
167 
168 #define IS_EXTENDED(port) (to_mvuart(port)->data->is_ext)
169 
170 #define UART_RBR(port) (to_mvuart(port)->data->regs.rbr)
171 #define UART_TSH(port) (to_mvuart(port)->data->regs.tsh)
172 #define UART_CTRL(port) (to_mvuart(port)->data->regs.ctrl)
173 #define UART_INTR(port) (to_mvuart(port)->data->regs.intr)
174 
175 #define CTRL_TX_RDY_INT(port) (to_mvuart(port)->data->flags.ctrl_tx_rdy_int)
176 #define CTRL_RX_RDY_INT(port) (to_mvuart(port)->data->flags.ctrl_rx_rdy_int)
177 #define STAT_TX_RDY(port) (to_mvuart(port)->data->flags.stat_tx_rdy)
178 #define STAT_RX_RDY(port) (to_mvuart(port)->data->flags.stat_rx_rdy)
179 
180 static struct uart_port mvebu_uart_ports[MVEBU_NR_UARTS];
181 
182 static DEFINE_SPINLOCK(mvebu_uart_lock);
183 
184 /* Core UART Driver Operations */
185 static unsigned int mvebu_uart_tx_empty(struct uart_port *port)
186 {
187 	unsigned long flags;
188 	unsigned int st;
189 
190 	spin_lock_irqsave(&port->lock, flags);
191 	st = readl(port->membase + UART_STAT);
192 	spin_unlock_irqrestore(&port->lock, flags);
193 
194 	return (st & STAT_TX_EMP) ? TIOCSER_TEMT : 0;
195 }
196 
197 static unsigned int mvebu_uart_get_mctrl(struct uart_port *port)
198 {
199 	return TIOCM_CTS | TIOCM_DSR | TIOCM_CAR;
200 }
201 
202 static void mvebu_uart_set_mctrl(struct uart_port *port,
203 				 unsigned int mctrl)
204 {
205 /*
206  * Even if we do not support configuring the modem control lines, this
207  * function must be proided to the serial core
208  */
209 }
210 
211 static void mvebu_uart_stop_tx(struct uart_port *port)
212 {
213 	unsigned int ctl = readl(port->membase + UART_INTR(port));
214 
215 	ctl &= ~CTRL_TX_RDY_INT(port);
216 	writel(ctl, port->membase + UART_INTR(port));
217 }
218 
219 static void mvebu_uart_start_tx(struct uart_port *port)
220 {
221 	unsigned int ctl;
222 	struct circ_buf *xmit = &port->state->xmit;
223 
224 	if (IS_EXTENDED(port) && !uart_circ_empty(xmit)) {
225 		writel(xmit->buf[xmit->tail], port->membase + UART_TSH(port));
226 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
227 		port->icount.tx++;
228 	}
229 
230 	ctl = readl(port->membase + UART_INTR(port));
231 	ctl |= CTRL_TX_RDY_INT(port);
232 	writel(ctl, port->membase + UART_INTR(port));
233 }
234 
235 static void mvebu_uart_stop_rx(struct uart_port *port)
236 {
237 	unsigned int ctl;
238 
239 	ctl = readl(port->membase + UART_CTRL(port));
240 	ctl &= ~CTRL_BRK_INT;
241 	writel(ctl, port->membase + UART_CTRL(port));
242 
243 	ctl = readl(port->membase + UART_INTR(port));
244 	ctl &= ~CTRL_RX_RDY_INT(port);
245 	writel(ctl, port->membase + UART_INTR(port));
246 }
247 
248 static void mvebu_uart_break_ctl(struct uart_port *port, int brk)
249 {
250 	unsigned int ctl;
251 	unsigned long flags;
252 
253 	spin_lock_irqsave(&port->lock, flags);
254 	ctl = readl(port->membase + UART_CTRL(port));
255 	if (brk == -1)
256 		ctl |= CTRL_SND_BRK_SEQ;
257 	else
258 		ctl &= ~CTRL_SND_BRK_SEQ;
259 	writel(ctl, port->membase + UART_CTRL(port));
260 	spin_unlock_irqrestore(&port->lock, flags);
261 }
262 
263 static void mvebu_uart_rx_chars(struct uart_port *port, unsigned int status)
264 {
265 	struct tty_port *tport = &port->state->port;
266 	unsigned char ch = 0;
267 	char flag = 0;
268 
269 	do {
270 		if (status & STAT_RX_RDY(port)) {
271 			ch = readl(port->membase + UART_RBR(port));
272 			ch &= 0xff;
273 			flag = TTY_NORMAL;
274 			port->icount.rx++;
275 
276 			if (status & STAT_PAR_ERR)
277 				port->icount.parity++;
278 		}
279 
280 		if (status & STAT_BRK_DET) {
281 			port->icount.brk++;
282 			status &= ~(STAT_FRM_ERR | STAT_PAR_ERR);
283 			if (uart_handle_break(port))
284 				goto ignore_char;
285 		}
286 
287 		if (status & STAT_OVR_ERR)
288 			port->icount.overrun++;
289 
290 		if (status & STAT_FRM_ERR)
291 			port->icount.frame++;
292 
293 		if (uart_handle_sysrq_char(port, ch))
294 			goto ignore_char;
295 
296 		if (status & port->ignore_status_mask & STAT_PAR_ERR)
297 			status &= ~STAT_RX_RDY(port);
298 
299 		status &= port->read_status_mask;
300 
301 		if (status & STAT_PAR_ERR)
302 			flag = TTY_PARITY;
303 
304 		status &= ~port->ignore_status_mask;
305 
306 		if (status & STAT_RX_RDY(port))
307 			tty_insert_flip_char(tport, ch, flag);
308 
309 		if (status & STAT_BRK_DET)
310 			tty_insert_flip_char(tport, 0, TTY_BREAK);
311 
312 		if (status & STAT_FRM_ERR)
313 			tty_insert_flip_char(tport, 0, TTY_FRAME);
314 
315 		if (status & STAT_OVR_ERR)
316 			tty_insert_flip_char(tport, 0, TTY_OVERRUN);
317 
318 ignore_char:
319 		status = readl(port->membase + UART_STAT);
320 	} while (status & (STAT_RX_RDY(port) | STAT_BRK_DET));
321 
322 	tty_flip_buffer_push(tport);
323 }
324 
325 static void mvebu_uart_tx_chars(struct uart_port *port, unsigned int status)
326 {
327 	struct circ_buf *xmit = &port->state->xmit;
328 	unsigned int count;
329 	unsigned int st;
330 
331 	if (port->x_char) {
332 		writel(port->x_char, port->membase + UART_TSH(port));
333 		port->icount.tx++;
334 		port->x_char = 0;
335 		return;
336 	}
337 
338 	if (uart_circ_empty(xmit) || uart_tx_stopped(port)) {
339 		mvebu_uart_stop_tx(port);
340 		return;
341 	}
342 
343 	for (count = 0; count < port->fifosize; count++) {
344 		writel(xmit->buf[xmit->tail], port->membase + UART_TSH(port));
345 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
346 		port->icount.tx++;
347 
348 		if (uart_circ_empty(xmit))
349 			break;
350 
351 		st = readl(port->membase + UART_STAT);
352 		if (st & STAT_TX_FIFO_FUL)
353 			break;
354 	}
355 
356 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
357 		uart_write_wakeup(port);
358 
359 	if (uart_circ_empty(xmit))
360 		mvebu_uart_stop_tx(port);
361 }
362 
363 static irqreturn_t mvebu_uart_isr(int irq, void *dev_id)
364 {
365 	struct uart_port *port = (struct uart_port *)dev_id;
366 	unsigned int st = readl(port->membase + UART_STAT);
367 
368 	if (st & (STAT_RX_RDY(port) | STAT_OVR_ERR | STAT_FRM_ERR |
369 		  STAT_BRK_DET))
370 		mvebu_uart_rx_chars(port, st);
371 
372 	if (st & STAT_TX_RDY(port))
373 		mvebu_uart_tx_chars(port, st);
374 
375 	return IRQ_HANDLED;
376 }
377 
378 static irqreturn_t mvebu_uart_rx_isr(int irq, void *dev_id)
379 {
380 	struct uart_port *port = (struct uart_port *)dev_id;
381 	unsigned int st = readl(port->membase + UART_STAT);
382 
383 	if (st & (STAT_RX_RDY(port) | STAT_OVR_ERR | STAT_FRM_ERR |
384 			STAT_BRK_DET))
385 		mvebu_uart_rx_chars(port, st);
386 
387 	return IRQ_HANDLED;
388 }
389 
390 static irqreturn_t mvebu_uart_tx_isr(int irq, void *dev_id)
391 {
392 	struct uart_port *port = (struct uart_port *)dev_id;
393 	unsigned int st = readl(port->membase + UART_STAT);
394 
395 	if (st & STAT_TX_RDY(port))
396 		mvebu_uart_tx_chars(port, st);
397 
398 	return IRQ_HANDLED;
399 }
400 
401 static int mvebu_uart_startup(struct uart_port *port)
402 {
403 	struct mvebu_uart *mvuart = to_mvuart(port);
404 	unsigned int ctl;
405 	int ret;
406 
407 	writel(CTRL_TXFIFO_RST | CTRL_RXFIFO_RST,
408 	       port->membase + UART_CTRL(port));
409 	udelay(1);
410 
411 	/* Clear the error bits of state register before IRQ request */
412 	ret = readl(port->membase + UART_STAT);
413 	ret |= STAT_BRK_ERR;
414 	writel(ret, port->membase + UART_STAT);
415 
416 	writel(CTRL_BRK_INT, port->membase + UART_CTRL(port));
417 
418 	ctl = readl(port->membase + UART_INTR(port));
419 	ctl |= CTRL_RX_RDY_INT(port);
420 	writel(ctl, port->membase + UART_INTR(port));
421 
422 	if (!mvuart->irq[UART_TX_IRQ]) {
423 		/* Old bindings with just one interrupt (UART0 only) */
424 		ret = devm_request_irq(port->dev, mvuart->irq[UART_IRQ_SUM],
425 				       mvebu_uart_isr, port->irqflags,
426 				       dev_name(port->dev), port);
427 		if (ret) {
428 			dev_err(port->dev, "unable to request IRQ %d\n",
429 				mvuart->irq[UART_IRQ_SUM]);
430 			return ret;
431 		}
432 	} else {
433 		/* New bindings with an IRQ for RX and TX (both UART) */
434 		ret = devm_request_irq(port->dev, mvuart->irq[UART_RX_IRQ],
435 				       mvebu_uart_rx_isr, port->irqflags,
436 				       dev_name(port->dev), port);
437 		if (ret) {
438 			dev_err(port->dev, "unable to request IRQ %d\n",
439 				mvuart->irq[UART_RX_IRQ]);
440 			return ret;
441 		}
442 
443 		ret = devm_request_irq(port->dev, mvuart->irq[UART_TX_IRQ],
444 				       mvebu_uart_tx_isr, port->irqflags,
445 				       dev_name(port->dev),
446 				       port);
447 		if (ret) {
448 			dev_err(port->dev, "unable to request IRQ %d\n",
449 				mvuart->irq[UART_TX_IRQ]);
450 			devm_free_irq(port->dev, mvuart->irq[UART_RX_IRQ],
451 				      port);
452 			return ret;
453 		}
454 	}
455 
456 	return 0;
457 }
458 
459 static void mvebu_uart_shutdown(struct uart_port *port)
460 {
461 	struct mvebu_uart *mvuart = to_mvuart(port);
462 
463 	writel(0, port->membase + UART_INTR(port));
464 
465 	if (!mvuart->irq[UART_TX_IRQ]) {
466 		devm_free_irq(port->dev, mvuart->irq[UART_IRQ_SUM], port);
467 	} else {
468 		devm_free_irq(port->dev, mvuart->irq[UART_RX_IRQ], port);
469 		devm_free_irq(port->dev, mvuart->irq[UART_TX_IRQ], port);
470 	}
471 }
472 
473 static int mvebu_uart_baud_rate_set(struct uart_port *port, unsigned int baud)
474 {
475 	unsigned int d_divisor, m_divisor;
476 	unsigned long flags;
477 	u32 brdv, osamp;
478 
479 	if (!port->uartclk)
480 		return -EOPNOTSUPP;
481 
482 	/*
483 	 * The baudrate is derived from the UART clock thanks to divisors:
484 	 *   > d1 * d2 ("TBG divisors"): can divide only TBG clock from 1 to 6
485 	 *   > D ("baud generator"): can divide the clock from 1 to 1023
486 	 *   > M ("fractional divisor"): allows a better accuracy (from 1 to 63)
487 	 *
488 	 * Exact formulas for calculating baudrate:
489 	 *
490 	 * with default x16 scheme:
491 	 *   baudrate = xtal / (d * 16)
492 	 *   baudrate = tbg / (d1 * d2 * d * 16)
493 	 *
494 	 * with fractional divisor:
495 	 *   baudrate = 10 * xtal / (d * (3 * (m1 + m2) + 2 * (m3 + m4)))
496 	 *   baudrate = 10 * tbg / (d1*d2 * d * (3 * (m1 + m2) + 2 * (m3 + m4)))
497 	 *
498 	 * Oversampling value:
499 	 *   osamp = (m1 << 0) | (m2 << 8) | (m3 << 16) | (m4 << 24);
500 	 *
501 	 * Where m1 controls number of clock cycles per bit for bits 1,2,3;
502 	 * m2 for bits 4,5,6; m3 for bits 7,8 and m4 for bits 9,10.
503 	 *
504 	 * To simplify baudrate setup set all the M prescalers to the same
505 	 * value. For baudrates 9600 Bd and higher, it is enough to use the
506 	 * default (x16) divisor or fractional divisor with M = 63, so there
507 	 * is no need to use real fractional support (where the M prescalers
508 	 * are not equal).
509 	 *
510 	 * When all the M prescalers are zeroed then default (x16) divisor is
511 	 * used. Default x16 scheme is more stable than M (fractional divisor),
512 	 * so use M only when D divisor is not enough to derive baudrate.
513 	 *
514 	 * Member port->uartclk is either xtal clock rate or TBG clock rate
515 	 * divided by (d1 * d2). So d1 and d2 are already set by the UART clock
516 	 * driver (and UART driver itself cannot change them). Moreover they are
517 	 * shared between both UARTs.
518 	 */
519 
520 	m_divisor = OSAMP_DEFAULT_DIVISOR;
521 	d_divisor = DIV_ROUND_CLOSEST(port->uartclk, baud * m_divisor);
522 
523 	if (d_divisor > BRDV_BAUD_MAX) {
524 		/*
525 		 * Experiments show that small M divisors are unstable.
526 		 * Use maximal possible M = 63 and calculate D divisor.
527 		 */
528 		m_divisor = OSAMP_MAX_DIVISOR;
529 		d_divisor = DIV_ROUND_CLOSEST(port->uartclk, baud * m_divisor);
530 	}
531 
532 	if (d_divisor < 1)
533 		d_divisor = 1;
534 	else if (d_divisor > BRDV_BAUD_MAX)
535 		d_divisor = BRDV_BAUD_MAX;
536 
537 	spin_lock_irqsave(&mvebu_uart_lock, flags);
538 	brdv = readl(port->membase + UART_BRDV);
539 	brdv &= ~BRDV_BAUD_MASK;
540 	brdv |= d_divisor;
541 	writel(brdv, port->membase + UART_BRDV);
542 	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
543 
544 	osamp = readl(port->membase + UART_OSAMP);
545 	osamp &= ~OSAMP_DIVISORS_MASK;
546 	if (m_divisor != OSAMP_DEFAULT_DIVISOR)
547 		osamp |= (m_divisor << 0) | (m_divisor << 8) |
548 			(m_divisor << 16) | (m_divisor << 24);
549 	writel(osamp, port->membase + UART_OSAMP);
550 
551 	return 0;
552 }
553 
554 static void mvebu_uart_set_termios(struct uart_port *port,
555 				   struct ktermios *termios,
556 				   struct ktermios *old)
557 {
558 	unsigned long flags;
559 	unsigned int baud, min_baud, max_baud;
560 
561 	spin_lock_irqsave(&port->lock, flags);
562 
563 	port->read_status_mask = STAT_RX_RDY(port) | STAT_OVR_ERR |
564 		STAT_TX_RDY(port) | STAT_TX_FIFO_FUL;
565 
566 	if (termios->c_iflag & INPCK)
567 		port->read_status_mask |= STAT_FRM_ERR | STAT_PAR_ERR;
568 
569 	port->ignore_status_mask = 0;
570 	if (termios->c_iflag & IGNPAR)
571 		port->ignore_status_mask |=
572 			STAT_FRM_ERR | STAT_PAR_ERR | STAT_OVR_ERR;
573 
574 	if ((termios->c_cflag & CREAD) == 0)
575 		port->ignore_status_mask |= STAT_RX_RDY(port) | STAT_BRK_ERR;
576 
577 	/*
578 	 * Maximal divisor is 1023 and maximal fractional divisor is 63. And
579 	 * experiments show that baudrates above 1/80 of parent clock rate are
580 	 * not stable. So disallow baudrates above 1/80 of the parent clock
581 	 * rate. If port->uartclk is not available, then
582 	 * mvebu_uart_baud_rate_set() fails, so values min_baud and max_baud
583 	 * in this case do not matter.
584 	 */
585 	min_baud = DIV_ROUND_UP(port->uartclk, BRDV_BAUD_MAX *
586 				OSAMP_MAX_DIVISOR);
587 	max_baud = port->uartclk / 80;
588 
589 	baud = uart_get_baud_rate(port, termios, old, min_baud, max_baud);
590 	if (mvebu_uart_baud_rate_set(port, baud)) {
591 		/* No clock available, baudrate cannot be changed */
592 		if (old)
593 			baud = uart_get_baud_rate(port, old, NULL,
594 						  min_baud, max_baud);
595 	} else {
596 		tty_termios_encode_baud_rate(termios, baud, baud);
597 		uart_update_timeout(port, termios->c_cflag, baud);
598 	}
599 
600 	/* Only the following flag changes are supported */
601 	if (old) {
602 		termios->c_iflag &= INPCK | IGNPAR;
603 		termios->c_iflag |= old->c_iflag & ~(INPCK | IGNPAR);
604 		termios->c_cflag &= CREAD | CBAUD;
605 		termios->c_cflag |= old->c_cflag & ~(CREAD | CBAUD);
606 		termios->c_cflag |= CS8;
607 	}
608 
609 	spin_unlock_irqrestore(&port->lock, flags);
610 }
611 
612 static const char *mvebu_uart_type(struct uart_port *port)
613 {
614 	return MVEBU_UART_TYPE;
615 }
616 
617 static void mvebu_uart_release_port(struct uart_port *port)
618 {
619 	/* Nothing to do here */
620 }
621 
622 static int mvebu_uart_request_port(struct uart_port *port)
623 {
624 	return 0;
625 }
626 
627 #ifdef CONFIG_CONSOLE_POLL
628 static int mvebu_uart_get_poll_char(struct uart_port *port)
629 {
630 	unsigned int st = readl(port->membase + UART_STAT);
631 
632 	if (!(st & STAT_RX_RDY(port)))
633 		return NO_POLL_CHAR;
634 
635 	return readl(port->membase + UART_RBR(port));
636 }
637 
638 static void mvebu_uart_put_poll_char(struct uart_port *port, unsigned char c)
639 {
640 	unsigned int st;
641 
642 	for (;;) {
643 		st = readl(port->membase + UART_STAT);
644 
645 		if (!(st & STAT_TX_FIFO_FUL))
646 			break;
647 
648 		udelay(1);
649 	}
650 
651 	writel(c, port->membase + UART_TSH(port));
652 }
653 #endif
654 
655 static const struct uart_ops mvebu_uart_ops = {
656 	.tx_empty	= mvebu_uart_tx_empty,
657 	.set_mctrl	= mvebu_uart_set_mctrl,
658 	.get_mctrl	= mvebu_uart_get_mctrl,
659 	.stop_tx	= mvebu_uart_stop_tx,
660 	.start_tx	= mvebu_uart_start_tx,
661 	.stop_rx	= mvebu_uart_stop_rx,
662 	.break_ctl	= mvebu_uart_break_ctl,
663 	.startup	= mvebu_uart_startup,
664 	.shutdown	= mvebu_uart_shutdown,
665 	.set_termios	= mvebu_uart_set_termios,
666 	.type		= mvebu_uart_type,
667 	.release_port	= mvebu_uart_release_port,
668 	.request_port	= mvebu_uart_request_port,
669 #ifdef CONFIG_CONSOLE_POLL
670 	.poll_get_char	= mvebu_uart_get_poll_char,
671 	.poll_put_char	= mvebu_uart_put_poll_char,
672 #endif
673 };
674 
675 /* Console Driver Operations  */
676 
677 #ifdef CONFIG_SERIAL_MVEBU_CONSOLE
678 /* Early Console */
679 static void mvebu_uart_putc(struct uart_port *port, unsigned char c)
680 {
681 	unsigned int st;
682 
683 	for (;;) {
684 		st = readl(port->membase + UART_STAT);
685 		if (!(st & STAT_TX_FIFO_FUL))
686 			break;
687 	}
688 
689 	/* At early stage, DT is not parsed yet, only use UART0 */
690 	writel(c, port->membase + UART_STD_TSH);
691 
692 	for (;;) {
693 		st = readl(port->membase + UART_STAT);
694 		if (st & STAT_TX_FIFO_EMP)
695 			break;
696 	}
697 }
698 
699 static void mvebu_uart_putc_early_write(struct console *con,
700 					const char *s,
701 					unsigned int n)
702 {
703 	struct earlycon_device *dev = con->data;
704 
705 	uart_console_write(&dev->port, s, n, mvebu_uart_putc);
706 }
707 
708 static int __init
709 mvebu_uart_early_console_setup(struct earlycon_device *device,
710 			       const char *opt)
711 {
712 	if (!device->port.membase)
713 		return -ENODEV;
714 
715 	device->con->write = mvebu_uart_putc_early_write;
716 
717 	return 0;
718 }
719 
720 EARLYCON_DECLARE(ar3700_uart, mvebu_uart_early_console_setup);
721 OF_EARLYCON_DECLARE(ar3700_uart, "marvell,armada-3700-uart",
722 		    mvebu_uart_early_console_setup);
723 
724 static void wait_for_xmitr(struct uart_port *port)
725 {
726 	u32 val;
727 
728 	readl_poll_timeout_atomic(port->membase + UART_STAT, val,
729 				  (val & STAT_TX_RDY(port)), 1, 10000);
730 }
731 
732 static void wait_for_xmite(struct uart_port *port)
733 {
734 	u32 val;
735 
736 	readl_poll_timeout_atomic(port->membase + UART_STAT, val,
737 				  (val & STAT_TX_EMP), 1, 10000);
738 }
739 
740 static void mvebu_uart_console_putchar(struct uart_port *port, unsigned char ch)
741 {
742 	wait_for_xmitr(port);
743 	writel(ch, port->membase + UART_TSH(port));
744 }
745 
746 static void mvebu_uart_console_write(struct console *co, const char *s,
747 				     unsigned int count)
748 {
749 	struct uart_port *port = &mvebu_uart_ports[co->index];
750 	unsigned long flags;
751 	unsigned int ier, intr, ctl;
752 	int locked = 1;
753 
754 	if (oops_in_progress)
755 		locked = spin_trylock_irqsave(&port->lock, flags);
756 	else
757 		spin_lock_irqsave(&port->lock, flags);
758 
759 	ier = readl(port->membase + UART_CTRL(port)) & CTRL_BRK_INT;
760 	intr = readl(port->membase + UART_INTR(port)) &
761 		(CTRL_RX_RDY_INT(port) | CTRL_TX_RDY_INT(port));
762 	writel(0, port->membase + UART_CTRL(port));
763 	writel(0, port->membase + UART_INTR(port));
764 
765 	uart_console_write(port, s, count, mvebu_uart_console_putchar);
766 
767 	wait_for_xmite(port);
768 
769 	if (ier)
770 		writel(ier, port->membase + UART_CTRL(port));
771 
772 	if (intr) {
773 		ctl = intr | readl(port->membase + UART_INTR(port));
774 		writel(ctl, port->membase + UART_INTR(port));
775 	}
776 
777 	if (locked)
778 		spin_unlock_irqrestore(&port->lock, flags);
779 }
780 
781 static int mvebu_uart_console_setup(struct console *co, char *options)
782 {
783 	struct uart_port *port;
784 	int baud = 9600;
785 	int bits = 8;
786 	int parity = 'n';
787 	int flow = 'n';
788 
789 	if (co->index < 0 || co->index >= MVEBU_NR_UARTS)
790 		return -EINVAL;
791 
792 	port = &mvebu_uart_ports[co->index];
793 
794 	if (!port->mapbase || !port->membase) {
795 		pr_debug("console on ttyMV%i not present\n", co->index);
796 		return -ENODEV;
797 	}
798 
799 	if (options)
800 		uart_parse_options(options, &baud, &parity, &bits, &flow);
801 
802 	return uart_set_options(port, co, baud, parity, bits, flow);
803 }
804 
805 static struct uart_driver mvebu_uart_driver;
806 
807 static struct console mvebu_uart_console = {
808 	.name	= "ttyMV",
809 	.write	= mvebu_uart_console_write,
810 	.device	= uart_console_device,
811 	.setup	= mvebu_uart_console_setup,
812 	.flags	= CON_PRINTBUFFER,
813 	.index	= -1,
814 	.data	= &mvebu_uart_driver,
815 };
816 
817 static int __init mvebu_uart_console_init(void)
818 {
819 	register_console(&mvebu_uart_console);
820 	return 0;
821 }
822 
823 console_initcall(mvebu_uart_console_init);
824 
825 
826 #endif /* CONFIG_SERIAL_MVEBU_CONSOLE */
827 
828 static struct uart_driver mvebu_uart_driver = {
829 	.owner			= THIS_MODULE,
830 	.driver_name		= DRIVER_NAME,
831 	.dev_name		= "ttyMV",
832 	.nr			= MVEBU_NR_UARTS,
833 #ifdef CONFIG_SERIAL_MVEBU_CONSOLE
834 	.cons			= &mvebu_uart_console,
835 #endif
836 };
837 
838 #if defined(CONFIG_PM)
839 static int mvebu_uart_suspend(struct device *dev)
840 {
841 	struct mvebu_uart *mvuart = dev_get_drvdata(dev);
842 	struct uart_port *port = mvuart->port;
843 	unsigned long flags;
844 
845 	uart_suspend_port(&mvebu_uart_driver, port);
846 
847 	mvuart->pm_regs.rbr = readl(port->membase + UART_RBR(port));
848 	mvuart->pm_regs.tsh = readl(port->membase + UART_TSH(port));
849 	mvuart->pm_regs.ctrl = readl(port->membase + UART_CTRL(port));
850 	mvuart->pm_regs.intr = readl(port->membase + UART_INTR(port));
851 	mvuart->pm_regs.stat = readl(port->membase + UART_STAT);
852 	spin_lock_irqsave(&mvebu_uart_lock, flags);
853 	mvuart->pm_regs.brdv = readl(port->membase + UART_BRDV);
854 	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
855 	mvuart->pm_regs.osamp = readl(port->membase + UART_OSAMP);
856 
857 	device_set_wakeup_enable(dev, true);
858 
859 	return 0;
860 }
861 
862 static int mvebu_uart_resume(struct device *dev)
863 {
864 	struct mvebu_uart *mvuart = dev_get_drvdata(dev);
865 	struct uart_port *port = mvuart->port;
866 	unsigned long flags;
867 
868 	writel(mvuart->pm_regs.rbr, port->membase + UART_RBR(port));
869 	writel(mvuart->pm_regs.tsh, port->membase + UART_TSH(port));
870 	writel(mvuart->pm_regs.ctrl, port->membase + UART_CTRL(port));
871 	writel(mvuart->pm_regs.intr, port->membase + UART_INTR(port));
872 	writel(mvuart->pm_regs.stat, port->membase + UART_STAT);
873 	spin_lock_irqsave(&mvebu_uart_lock, flags);
874 	writel(mvuart->pm_regs.brdv, port->membase + UART_BRDV);
875 	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
876 	writel(mvuart->pm_regs.osamp, port->membase + UART_OSAMP);
877 
878 	uart_resume_port(&mvebu_uart_driver, port);
879 
880 	return 0;
881 }
882 
883 static const struct dev_pm_ops mvebu_uart_pm_ops = {
884 	.suspend        = mvebu_uart_suspend,
885 	.resume         = mvebu_uart_resume,
886 };
887 #endif /* CONFIG_PM */
888 
889 static const struct of_device_id mvebu_uart_of_match[];
890 
891 /* Counter to keep track of each UART port id when not using CONFIG_OF */
892 static int uart_num_counter;
893 
894 static int mvebu_uart_probe(struct platform_device *pdev)
895 {
896 	struct resource *reg = platform_get_resource(pdev, IORESOURCE_MEM, 0);
897 	const struct of_device_id *match = of_match_device(mvebu_uart_of_match,
898 							   &pdev->dev);
899 	struct uart_port *port;
900 	struct mvebu_uart *mvuart;
901 	int id, irq;
902 
903 	if (!reg) {
904 		dev_err(&pdev->dev, "no registers defined\n");
905 		return -EINVAL;
906 	}
907 
908 	/* Assume that all UART ports have a DT alias or none has */
909 	id = of_alias_get_id(pdev->dev.of_node, "serial");
910 	if (!pdev->dev.of_node || id < 0)
911 		pdev->id = uart_num_counter++;
912 	else
913 		pdev->id = id;
914 
915 	if (pdev->id >= MVEBU_NR_UARTS) {
916 		dev_err(&pdev->dev, "cannot have more than %d UART ports\n",
917 			MVEBU_NR_UARTS);
918 		return -EINVAL;
919 	}
920 
921 	port = &mvebu_uart_ports[pdev->id];
922 
923 	spin_lock_init(&port->lock);
924 
925 	port->dev        = &pdev->dev;
926 	port->type       = PORT_MVEBU;
927 	port->ops        = &mvebu_uart_ops;
928 	port->regshift   = 0;
929 
930 	port->fifosize   = 32;
931 	port->iotype     = UPIO_MEM32;
932 	port->flags      = UPF_FIXED_PORT;
933 	port->line       = pdev->id;
934 
935 	/*
936 	 * IRQ number is not stored in this structure because we may have two of
937 	 * them per port (RX and TX). Instead, use the driver UART structure
938 	 * array so called ->irq[].
939 	 */
940 	port->irq        = 0;
941 	port->irqflags   = 0;
942 	port->mapbase    = reg->start;
943 
944 	port->membase = devm_ioremap_resource(&pdev->dev, reg);
945 	if (IS_ERR(port->membase))
946 		return PTR_ERR(port->membase);
947 
948 	mvuart = devm_kzalloc(&pdev->dev, sizeof(struct mvebu_uart),
949 			      GFP_KERNEL);
950 	if (!mvuart)
951 		return -ENOMEM;
952 
953 	/* Get controller data depending on the compatible string */
954 	mvuart->data = (struct mvebu_uart_driver_data *)match->data;
955 	mvuart->port = port;
956 
957 	port->private_data = mvuart;
958 	platform_set_drvdata(pdev, mvuart);
959 
960 	/* Get fixed clock frequency */
961 	mvuart->clk = devm_clk_get(&pdev->dev, NULL);
962 	if (IS_ERR(mvuart->clk)) {
963 		if (PTR_ERR(mvuart->clk) == -EPROBE_DEFER)
964 			return PTR_ERR(mvuart->clk);
965 
966 		if (IS_EXTENDED(port)) {
967 			dev_err(&pdev->dev, "unable to get UART clock\n");
968 			return PTR_ERR(mvuart->clk);
969 		}
970 	} else {
971 		if (!clk_prepare_enable(mvuart->clk))
972 			port->uartclk = clk_get_rate(mvuart->clk);
973 	}
974 
975 	/* Manage interrupts */
976 	if (platform_irq_count(pdev) == 1) {
977 		/* Old bindings: no name on the single unamed UART0 IRQ */
978 		irq = platform_get_irq(pdev, 0);
979 		if (irq < 0)
980 			return irq;
981 
982 		mvuart->irq[UART_IRQ_SUM] = irq;
983 	} else {
984 		/*
985 		 * New bindings: named interrupts (RX, TX) for both UARTS,
986 		 * only make use of uart-rx and uart-tx interrupts, do not use
987 		 * uart-sum of UART0 port.
988 		 */
989 		irq = platform_get_irq_byname(pdev, "uart-rx");
990 		if (irq < 0)
991 			return irq;
992 
993 		mvuart->irq[UART_RX_IRQ] = irq;
994 
995 		irq = platform_get_irq_byname(pdev, "uart-tx");
996 		if (irq < 0)
997 			return irq;
998 
999 		mvuart->irq[UART_TX_IRQ] = irq;
1000 	}
1001 
1002 	/* UART Soft Reset*/
1003 	writel(CTRL_SOFT_RST, port->membase + UART_CTRL(port));
1004 	udelay(1);
1005 	writel(0, port->membase + UART_CTRL(port));
1006 
1007 	return uart_add_one_port(&mvebu_uart_driver, port);
1008 }
1009 
1010 static struct mvebu_uart_driver_data uart_std_driver_data = {
1011 	.is_ext = false,
1012 	.regs.rbr = UART_STD_RBR,
1013 	.regs.tsh = UART_STD_TSH,
1014 	.regs.ctrl = UART_STD_CTRL1,
1015 	.regs.intr = UART_STD_CTRL2,
1016 	.flags.ctrl_tx_rdy_int = CTRL_STD_TX_RDY_INT,
1017 	.flags.ctrl_rx_rdy_int = CTRL_STD_RX_RDY_INT,
1018 	.flags.stat_tx_rdy = STAT_STD_TX_RDY,
1019 	.flags.stat_rx_rdy = STAT_STD_RX_RDY,
1020 };
1021 
1022 static struct mvebu_uart_driver_data uart_ext_driver_data = {
1023 	.is_ext = true,
1024 	.regs.rbr = UART_EXT_RBR,
1025 	.regs.tsh = UART_EXT_TSH,
1026 	.regs.ctrl = UART_EXT_CTRL1,
1027 	.regs.intr = UART_EXT_CTRL2,
1028 	.flags.ctrl_tx_rdy_int = CTRL_EXT_TX_RDY_INT,
1029 	.flags.ctrl_rx_rdy_int = CTRL_EXT_RX_RDY_INT,
1030 	.flags.stat_tx_rdy = STAT_EXT_TX_RDY,
1031 	.flags.stat_rx_rdy = STAT_EXT_RX_RDY,
1032 };
1033 
1034 /* Match table for of_platform binding */
1035 static const struct of_device_id mvebu_uart_of_match[] = {
1036 	{
1037 		.compatible = "marvell,armada-3700-uart",
1038 		.data = (void *)&uart_std_driver_data,
1039 	},
1040 	{
1041 		.compatible = "marvell,armada-3700-uart-ext",
1042 		.data = (void *)&uart_ext_driver_data,
1043 	},
1044 	{}
1045 };
1046 
1047 static struct platform_driver mvebu_uart_platform_driver = {
1048 	.probe	= mvebu_uart_probe,
1049 	.driver	= {
1050 		.name  = "mvebu-uart",
1051 		.of_match_table = of_match_ptr(mvebu_uart_of_match),
1052 		.suppress_bind_attrs = true,
1053 #if defined(CONFIG_PM)
1054 		.pm	= &mvebu_uart_pm_ops,
1055 #endif /* CONFIG_PM */
1056 	},
1057 };
1058 
1059 /* This code is based on clk-fixed-factor.c driver and modified. */
1060 
1061 struct mvebu_uart_clock {
1062 	struct clk_hw clk_hw;
1063 	int clock_idx;
1064 	u32 pm_context_reg1;
1065 	u32 pm_context_reg2;
1066 };
1067 
1068 struct mvebu_uart_clock_base {
1069 	struct mvebu_uart_clock clocks[2];
1070 	unsigned int parent_rates[5];
1071 	int parent_idx;
1072 	unsigned int div;
1073 	void __iomem *reg1;
1074 	void __iomem *reg2;
1075 	bool configured;
1076 };
1077 
1078 #define PARENT_CLOCK_XTAL 4
1079 
1080 #define to_uart_clock(hw) container_of(hw, struct mvebu_uart_clock, clk_hw)
1081 #define to_uart_clock_base(uart_clock) container_of(uart_clock, \
1082 	struct mvebu_uart_clock_base, clocks[uart_clock->clock_idx])
1083 
1084 static int mvebu_uart_clock_prepare(struct clk_hw *hw)
1085 {
1086 	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1087 	struct mvebu_uart_clock_base *uart_clock_base =
1088 						to_uart_clock_base(uart_clock);
1089 	unsigned int prev_clock_idx, prev_clock_rate, prev_d1d2;
1090 	unsigned int parent_clock_idx, parent_clock_rate;
1091 	unsigned long flags;
1092 	unsigned int d1, d2;
1093 	u64 divisor;
1094 	u32 val;
1095 
1096 	/*
1097 	 * This function just reconfigures UART Clock Control register (located
1098 	 * in UART1 address space which controls both UART1 and UART2) to
1099 	 * selected UART base clock and recalculates current UART1/UART2
1100 	 * divisors in their address spaces, so that final baudrate will not be
1101 	 * changed by switching UART parent clock. This is required for
1102 	 * otherwise kernel's boot log stops working - we need to ensure that
1103 	 * UART baudrate does not change during this setup. It is a one time
1104 	 * operation, it will execute only once and set `configured` to true,
1105 	 * and be skipped on subsequent calls. Because this UART Clock Control
1106 	 * register (UART_BRDV) is shared between UART1 baudrate function,
1107 	 * UART1 clock selector and UART2 clock selector, every access to
1108 	 * UART_BRDV (reg1) needs to be protected by a lock.
1109 	 */
1110 
1111 	spin_lock_irqsave(&mvebu_uart_lock, flags);
1112 
1113 	if (uart_clock_base->configured) {
1114 		spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1115 		return 0;
1116 	}
1117 
1118 	parent_clock_idx = uart_clock_base->parent_idx;
1119 	parent_clock_rate = uart_clock_base->parent_rates[parent_clock_idx];
1120 
1121 	val = readl(uart_clock_base->reg1);
1122 
1123 	if (uart_clock_base->div > CLK_TBG_DIV1_MAX) {
1124 		d1 = CLK_TBG_DIV1_MAX;
1125 		d2 = uart_clock_base->div / CLK_TBG_DIV1_MAX;
1126 	} else {
1127 		d1 = uart_clock_base->div;
1128 		d2 = 1;
1129 	}
1130 
1131 	if (val & CLK_NO_XTAL) {
1132 		prev_clock_idx = (val >> CLK_TBG_SEL_SHIFT) & CLK_TBG_SEL_MASK;
1133 		prev_d1d2 = ((val >> CLK_TBG_DIV1_SHIFT) & CLK_TBG_DIV1_MASK) *
1134 			    ((val >> CLK_TBG_DIV2_SHIFT) & CLK_TBG_DIV2_MASK);
1135 	} else {
1136 		prev_clock_idx = PARENT_CLOCK_XTAL;
1137 		prev_d1d2 = 1;
1138 	}
1139 
1140 	/* Note that uart_clock_base->parent_rates[i] may not be available */
1141 	prev_clock_rate = uart_clock_base->parent_rates[prev_clock_idx];
1142 
1143 	/* Recalculate UART1 divisor so UART1 baudrate does not change */
1144 	if (prev_clock_rate) {
1145 		divisor = DIV_U64_ROUND_CLOSEST((u64)(val & BRDV_BAUD_MASK) *
1146 						parent_clock_rate * prev_d1d2,
1147 						prev_clock_rate * d1 * d2);
1148 		if (divisor < 1)
1149 			divisor = 1;
1150 		else if (divisor > BRDV_BAUD_MAX)
1151 			divisor = BRDV_BAUD_MAX;
1152 		val = (val & ~BRDV_BAUD_MASK) | divisor;
1153 	}
1154 
1155 	if (parent_clock_idx != PARENT_CLOCK_XTAL) {
1156 		/* Do not use XTAL, select TBG clock and TBG d1 * d2 divisors */
1157 		val |= CLK_NO_XTAL;
1158 		val &= ~(CLK_TBG_DIV1_MASK << CLK_TBG_DIV1_SHIFT);
1159 		val |= d1 << CLK_TBG_DIV1_SHIFT;
1160 		val &= ~(CLK_TBG_DIV2_MASK << CLK_TBG_DIV2_SHIFT);
1161 		val |= d2 << CLK_TBG_DIV2_SHIFT;
1162 		val &= ~(CLK_TBG_SEL_MASK << CLK_TBG_SEL_SHIFT);
1163 		val |= parent_clock_idx << CLK_TBG_SEL_SHIFT;
1164 	} else {
1165 		/* Use XTAL, TBG bits are then ignored */
1166 		val &= ~CLK_NO_XTAL;
1167 	}
1168 
1169 	writel(val, uart_clock_base->reg1);
1170 
1171 	/* Recalculate UART2 divisor so UART2 baudrate does not change */
1172 	if (prev_clock_rate) {
1173 		val = readl(uart_clock_base->reg2);
1174 		divisor = DIV_U64_ROUND_CLOSEST((u64)(val & BRDV_BAUD_MASK) *
1175 						parent_clock_rate * prev_d1d2,
1176 						prev_clock_rate * d1 * d2);
1177 		if (divisor < 1)
1178 			divisor = 1;
1179 		else if (divisor > BRDV_BAUD_MAX)
1180 			divisor = BRDV_BAUD_MAX;
1181 		val = (val & ~BRDV_BAUD_MASK) | divisor;
1182 		writel(val, uart_clock_base->reg2);
1183 	}
1184 
1185 	uart_clock_base->configured = true;
1186 
1187 	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1188 
1189 	return 0;
1190 }
1191 
1192 static int mvebu_uart_clock_enable(struct clk_hw *hw)
1193 {
1194 	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1195 	struct mvebu_uart_clock_base *uart_clock_base =
1196 						to_uart_clock_base(uart_clock);
1197 	unsigned long flags;
1198 	u32 val;
1199 
1200 	spin_lock_irqsave(&mvebu_uart_lock, flags);
1201 
1202 	val = readl(uart_clock_base->reg1);
1203 
1204 	if (uart_clock->clock_idx == 0)
1205 		val &= ~UART1_CLK_DIS;
1206 	else
1207 		val &= ~UART2_CLK_DIS;
1208 
1209 	writel(val, uart_clock_base->reg1);
1210 
1211 	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1212 
1213 	return 0;
1214 }
1215 
1216 static void mvebu_uart_clock_disable(struct clk_hw *hw)
1217 {
1218 	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1219 	struct mvebu_uart_clock_base *uart_clock_base =
1220 						to_uart_clock_base(uart_clock);
1221 	unsigned long flags;
1222 	u32 val;
1223 
1224 	spin_lock_irqsave(&mvebu_uart_lock, flags);
1225 
1226 	val = readl(uart_clock_base->reg1);
1227 
1228 	if (uart_clock->clock_idx == 0)
1229 		val |= UART1_CLK_DIS;
1230 	else
1231 		val |= UART2_CLK_DIS;
1232 
1233 	writel(val, uart_clock_base->reg1);
1234 
1235 	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1236 }
1237 
1238 static int mvebu_uart_clock_is_enabled(struct clk_hw *hw)
1239 {
1240 	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1241 	struct mvebu_uart_clock_base *uart_clock_base =
1242 						to_uart_clock_base(uart_clock);
1243 	u32 val;
1244 
1245 	val = readl(uart_clock_base->reg1);
1246 
1247 	if (uart_clock->clock_idx == 0)
1248 		return !(val & UART1_CLK_DIS);
1249 	else
1250 		return !(val & UART2_CLK_DIS);
1251 }
1252 
1253 static int mvebu_uart_clock_save_context(struct clk_hw *hw)
1254 {
1255 	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1256 	struct mvebu_uart_clock_base *uart_clock_base =
1257 						to_uart_clock_base(uart_clock);
1258 	unsigned long flags;
1259 
1260 	spin_lock_irqsave(&mvebu_uart_lock, flags);
1261 	uart_clock->pm_context_reg1 = readl(uart_clock_base->reg1);
1262 	uart_clock->pm_context_reg2 = readl(uart_clock_base->reg2);
1263 	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1264 
1265 	return 0;
1266 }
1267 
1268 static void mvebu_uart_clock_restore_context(struct clk_hw *hw)
1269 {
1270 	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1271 	struct mvebu_uart_clock_base *uart_clock_base =
1272 						to_uart_clock_base(uart_clock);
1273 	unsigned long flags;
1274 
1275 	spin_lock_irqsave(&mvebu_uart_lock, flags);
1276 	writel(uart_clock->pm_context_reg1, uart_clock_base->reg1);
1277 	writel(uart_clock->pm_context_reg2, uart_clock_base->reg2);
1278 	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1279 }
1280 
1281 static unsigned long mvebu_uart_clock_recalc_rate(struct clk_hw *hw,
1282 						  unsigned long parent_rate)
1283 {
1284 	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1285 	struct mvebu_uart_clock_base *uart_clock_base =
1286 						to_uart_clock_base(uart_clock);
1287 
1288 	return parent_rate / uart_clock_base->div;
1289 }
1290 
1291 static long mvebu_uart_clock_round_rate(struct clk_hw *hw, unsigned long rate,
1292 					unsigned long *parent_rate)
1293 {
1294 	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1295 	struct mvebu_uart_clock_base *uart_clock_base =
1296 						to_uart_clock_base(uart_clock);
1297 
1298 	return *parent_rate / uart_clock_base->div;
1299 }
1300 
1301 static int mvebu_uart_clock_set_rate(struct clk_hw *hw, unsigned long rate,
1302 				     unsigned long parent_rate)
1303 {
1304 	/*
1305 	 * We must report success but we can do so unconditionally because
1306 	 * mvebu_uart_clock_round_rate returns values that ensure this call is a
1307 	 * nop.
1308 	 */
1309 
1310 	return 0;
1311 }
1312 
1313 static const struct clk_ops mvebu_uart_clock_ops = {
1314 	.prepare = mvebu_uart_clock_prepare,
1315 	.enable = mvebu_uart_clock_enable,
1316 	.disable = mvebu_uart_clock_disable,
1317 	.is_enabled = mvebu_uart_clock_is_enabled,
1318 	.save_context = mvebu_uart_clock_save_context,
1319 	.restore_context = mvebu_uart_clock_restore_context,
1320 	.round_rate = mvebu_uart_clock_round_rate,
1321 	.set_rate = mvebu_uart_clock_set_rate,
1322 	.recalc_rate = mvebu_uart_clock_recalc_rate,
1323 };
1324 
1325 static int mvebu_uart_clock_register(struct device *dev,
1326 				     struct mvebu_uart_clock *uart_clock,
1327 				     const char *name,
1328 				     const char *parent_name)
1329 {
1330 	struct clk_init_data init = { };
1331 
1332 	uart_clock->clk_hw.init = &init;
1333 
1334 	init.name = name;
1335 	init.ops = &mvebu_uart_clock_ops;
1336 	init.flags = 0;
1337 	init.num_parents = 1;
1338 	init.parent_names = &parent_name;
1339 
1340 	return devm_clk_hw_register(dev, &uart_clock->clk_hw);
1341 }
1342 
1343 static int mvebu_uart_clock_probe(struct platform_device *pdev)
1344 {
1345 	static const char *const uart_clk_names[] = { "uart_1", "uart_2" };
1346 	static const char *const parent_clk_names[] = { "TBG-A-P", "TBG-B-P",
1347 							"TBG-A-S", "TBG-B-S",
1348 							"xtal" };
1349 	struct clk *parent_clks[ARRAY_SIZE(parent_clk_names)];
1350 	struct mvebu_uart_clock_base *uart_clock_base;
1351 	struct clk_hw_onecell_data *hw_clk_data;
1352 	struct device *dev = &pdev->dev;
1353 	int i, parent_clk_idx, ret;
1354 	unsigned long div, rate;
1355 	struct resource *res;
1356 	unsigned int d1, d2;
1357 
1358 	BUILD_BUG_ON(ARRAY_SIZE(uart_clk_names) !=
1359 		     ARRAY_SIZE(uart_clock_base->clocks));
1360 	BUILD_BUG_ON(ARRAY_SIZE(parent_clk_names) !=
1361 		     ARRAY_SIZE(uart_clock_base->parent_rates));
1362 
1363 	uart_clock_base = devm_kzalloc(dev,
1364 				       sizeof(*uart_clock_base),
1365 				       GFP_KERNEL);
1366 	if (!uart_clock_base)
1367 		return -ENOMEM;
1368 
1369 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1370 	if (!res) {
1371 		dev_err(dev, "Couldn't get first register\n");
1372 		return -ENOENT;
1373 	}
1374 
1375 	/*
1376 	 * UART Clock Control register (reg1 / UART_BRDV) is in the address
1377 	 * space of UART1 (standard UART variant), controls parent clock and
1378 	 * dividers for both UART1 and UART2 and is supplied via DT as the first
1379 	 * resource. Therefore use ioremap() rather than ioremap_resource() to
1380 	 * avoid conflicts with UART1 driver. Access to UART_BRDV is protected
1381 	 * by a lock shared between clock and UART driver.
1382 	 */
1383 	uart_clock_base->reg1 = devm_ioremap(dev, res->start,
1384 					     resource_size(res));
1385 	if (!uart_clock_base->reg1)
1386 		return -ENOMEM;
1387 
1388 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1389 	if (!res) {
1390 		dev_err(dev, "Couldn't get second register\n");
1391 		return -ENOENT;
1392 	}
1393 
1394 	/*
1395 	 * UART 2 Baud Rate Divisor register (reg2 / UART_BRDV) is in address
1396 	 * space of UART2 (extended UART variant), controls only one UART2
1397 	 * specific divider and is supplied via DT as second resource.
1398 	 * Therefore use ioremap() rather than ioremap_resource() to avoid
1399 	 * conflicts with UART2 driver. Access to UART_BRDV is protected by a
1400 	 * by lock shared between clock and UART driver.
1401 	 */
1402 	uart_clock_base->reg2 = devm_ioremap(dev, res->start,
1403 					     resource_size(res));
1404 	if (!uart_clock_base->reg2)
1405 		return -ENOMEM;
1406 
1407 	hw_clk_data = devm_kzalloc(dev,
1408 				   struct_size(hw_clk_data, hws,
1409 					       ARRAY_SIZE(uart_clk_names)),
1410 				   GFP_KERNEL);
1411 	if (!hw_clk_data)
1412 		return -ENOMEM;
1413 
1414 	hw_clk_data->num = ARRAY_SIZE(uart_clk_names);
1415 	for (i = 0; i < ARRAY_SIZE(uart_clk_names); i++) {
1416 		hw_clk_data->hws[i] = &uart_clock_base->clocks[i].clk_hw;
1417 		uart_clock_base->clocks[i].clock_idx = i;
1418 	}
1419 
1420 	parent_clk_idx = -1;
1421 
1422 	for (i = 0; i < ARRAY_SIZE(parent_clk_names); i++) {
1423 		parent_clks[i] = devm_clk_get(dev, parent_clk_names[i]);
1424 		if (IS_ERR(parent_clks[i])) {
1425 			if (PTR_ERR(parent_clks[i]) == -EPROBE_DEFER)
1426 				return -EPROBE_DEFER;
1427 			dev_warn(dev, "Couldn't get the parent clock %s: %ld\n",
1428 				 parent_clk_names[i], PTR_ERR(parent_clks[i]));
1429 			continue;
1430 		}
1431 
1432 		ret = clk_prepare_enable(parent_clks[i]);
1433 		if (ret) {
1434 			dev_warn(dev, "Couldn't enable parent clock %s: %d\n",
1435 				 parent_clk_names[i], ret);
1436 			continue;
1437 		}
1438 		rate = clk_get_rate(parent_clks[i]);
1439 		uart_clock_base->parent_rates[i] = rate;
1440 
1441 		if (i != PARENT_CLOCK_XTAL) {
1442 			/*
1443 			 * Calculate the smallest TBG d1 and d2 divisors that
1444 			 * still can provide 9600 baudrate.
1445 			 */
1446 			d1 = DIV_ROUND_UP(rate, 9600 * OSAMP_MAX_DIVISOR *
1447 					  BRDV_BAUD_MAX);
1448 			if (d1 < 1)
1449 				d1 = 1;
1450 			else if (d1 > CLK_TBG_DIV1_MAX)
1451 				d1 = CLK_TBG_DIV1_MAX;
1452 
1453 			d2 = DIV_ROUND_UP(rate, 9600 * OSAMP_MAX_DIVISOR *
1454 					  BRDV_BAUD_MAX * d1);
1455 			if (d2 < 1)
1456 				d2 = 1;
1457 			else if (d2 > CLK_TBG_DIV2_MAX)
1458 				d2 = CLK_TBG_DIV2_MAX;
1459 		} else {
1460 			/*
1461 			 * When UART clock uses XTAL clock as a source then it
1462 			 * is not possible to use d1 and d2 divisors.
1463 			 */
1464 			d1 = d2 = 1;
1465 		}
1466 
1467 		/* Skip clock source which cannot provide 9600 baudrate */
1468 		if (rate > 9600 * OSAMP_MAX_DIVISOR * BRDV_BAUD_MAX * d1 * d2)
1469 			continue;
1470 
1471 		/*
1472 		 * Choose TBG clock source with the smallest divisors. Use XTAL
1473 		 * clock source only in case TBG is not available as XTAL cannot
1474 		 * be used for baudrates higher than 230400.
1475 		 */
1476 		if (parent_clk_idx == -1 ||
1477 		    (i != PARENT_CLOCK_XTAL && div > d1 * d2)) {
1478 			parent_clk_idx = i;
1479 			div = d1 * d2;
1480 		}
1481 	}
1482 
1483 	for (i = 0; i < ARRAY_SIZE(parent_clk_names); i++) {
1484 		if (i == parent_clk_idx || IS_ERR(parent_clks[i]))
1485 			continue;
1486 		clk_disable_unprepare(parent_clks[i]);
1487 		devm_clk_put(dev, parent_clks[i]);
1488 	}
1489 
1490 	if (parent_clk_idx == -1) {
1491 		dev_err(dev, "No usable parent clock\n");
1492 		return -ENOENT;
1493 	}
1494 
1495 	uart_clock_base->parent_idx = parent_clk_idx;
1496 	uart_clock_base->div = div;
1497 
1498 	dev_notice(dev, "Using parent clock %s as base UART clock\n",
1499 		   __clk_get_name(parent_clks[parent_clk_idx]));
1500 
1501 	for (i = 0; i < ARRAY_SIZE(uart_clk_names); i++) {
1502 		ret = mvebu_uart_clock_register(dev,
1503 				&uart_clock_base->clocks[i],
1504 				uart_clk_names[i],
1505 				__clk_get_name(parent_clks[parent_clk_idx]));
1506 		if (ret) {
1507 			dev_err(dev, "Can't register UART clock %d: %d\n",
1508 				i, ret);
1509 			return ret;
1510 		}
1511 	}
1512 
1513 	return devm_of_clk_add_hw_provider(dev, of_clk_hw_onecell_get,
1514 					   hw_clk_data);
1515 }
1516 
1517 static const struct of_device_id mvebu_uart_clock_of_match[] = {
1518 	{ .compatible = "marvell,armada-3700-uart-clock", },
1519 	{ }
1520 };
1521 
1522 static struct platform_driver mvebu_uart_clock_platform_driver = {
1523 	.probe = mvebu_uart_clock_probe,
1524 	.driver		= {
1525 		.name	= "mvebu-uart-clock",
1526 		.of_match_table = mvebu_uart_clock_of_match,
1527 	},
1528 };
1529 
1530 static int __init mvebu_uart_init(void)
1531 {
1532 	int ret;
1533 
1534 	ret = uart_register_driver(&mvebu_uart_driver);
1535 	if (ret)
1536 		return ret;
1537 
1538 	ret = platform_driver_register(&mvebu_uart_clock_platform_driver);
1539 	if (ret) {
1540 		uart_unregister_driver(&mvebu_uart_driver);
1541 		return ret;
1542 	}
1543 
1544 	ret = platform_driver_register(&mvebu_uart_platform_driver);
1545 	if (ret) {
1546 		platform_driver_unregister(&mvebu_uart_clock_platform_driver);
1547 		uart_unregister_driver(&mvebu_uart_driver);
1548 		return ret;
1549 	}
1550 
1551 	return 0;
1552 }
1553 arch_initcall(mvebu_uart_init);
1554