1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * ***************************************************************************
4 * Marvell Armada-3700 Serial Driver
5 * Author: Wilson Ding <dingwei@marvell.com>
6 * Copyright (C) 2015 Marvell International Ltd.
7 * ***************************************************************************
8 */
9
10 #include <linux/clk.h>
11 #include <linux/clk-provider.h>
12 #include <linux/console.h>
13 #include <linux/delay.h>
14 #include <linux/device.h>
15 #include <linux/init.h>
16 #include <linux/io.h>
17 #include <linux/iopoll.h>
18 #include <linux/math64.h>
19 #include <linux/of.h>
20 #include <linux/of_address.h>
21 #include <linux/of_device.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_platform.h>
24 #include <linux/platform_device.h>
25 #include <linux/serial.h>
26 #include <linux/serial_core.h>
27 #include <linux/slab.h>
28 #include <linux/tty.h>
29 #include <linux/tty_flip.h>
30
31 /* Register Map */
32 #define UART_STD_RBR 0x00
33 #define UART_EXT_RBR 0x18
34
35 #define UART_STD_TSH 0x04
36 #define UART_EXT_TSH 0x1C
37
38 #define UART_STD_CTRL1 0x08
39 #define UART_EXT_CTRL1 0x04
40 #define CTRL_SOFT_RST BIT(31)
41 #define CTRL_TXFIFO_RST BIT(15)
42 #define CTRL_RXFIFO_RST BIT(14)
43 #define CTRL_SND_BRK_SEQ BIT(11)
44 #define CTRL_BRK_DET_INT BIT(3)
45 #define CTRL_FRM_ERR_INT BIT(2)
46 #define CTRL_PAR_ERR_INT BIT(1)
47 #define CTRL_OVR_ERR_INT BIT(0)
48 #define CTRL_BRK_INT (CTRL_BRK_DET_INT | CTRL_FRM_ERR_INT | \
49 CTRL_PAR_ERR_INT | CTRL_OVR_ERR_INT)
50
51 #define UART_STD_CTRL2 UART_STD_CTRL1
52 #define UART_EXT_CTRL2 0x20
53 #define CTRL_STD_TX_RDY_INT BIT(5)
54 #define CTRL_EXT_TX_RDY_INT BIT(6)
55 #define CTRL_STD_RX_RDY_INT BIT(4)
56 #define CTRL_EXT_RX_RDY_INT BIT(5)
57
58 #define UART_STAT 0x0C
59 #define STAT_TX_FIFO_EMP BIT(13)
60 #define STAT_TX_FIFO_FUL BIT(11)
61 #define STAT_TX_EMP BIT(6)
62 #define STAT_STD_TX_RDY BIT(5)
63 #define STAT_EXT_TX_RDY BIT(15)
64 #define STAT_STD_RX_RDY BIT(4)
65 #define STAT_EXT_RX_RDY BIT(14)
66 #define STAT_BRK_DET BIT(3)
67 #define STAT_FRM_ERR BIT(2)
68 #define STAT_PAR_ERR BIT(1)
69 #define STAT_OVR_ERR BIT(0)
70 #define STAT_BRK_ERR (STAT_BRK_DET | STAT_FRM_ERR \
71 | STAT_PAR_ERR | STAT_OVR_ERR)
72
73 /*
74 * Marvell Armada 3700 Functional Specifications describes that bit 21 of UART
75 * Clock Control register controls UART1 and bit 20 controls UART2. But in
76 * reality bit 21 controls UART2 and bit 20 controls UART1. This seems to be an
77 * error in Marvell's documentation. Hence following CLK_DIS macros are swapped.
78 */
79
80 #define UART_BRDV 0x10
81 /* These bits are located in UART1 address space and control UART2 */
82 #define UART2_CLK_DIS BIT(21)
83 /* These bits are located in UART1 address space and control UART1 */
84 #define UART1_CLK_DIS BIT(20)
85 /* These bits are located in UART1 address space and control both UARTs */
86 #define CLK_NO_XTAL BIT(19)
87 #define CLK_TBG_DIV1_SHIFT 15
88 #define CLK_TBG_DIV1_MASK 0x7
89 #define CLK_TBG_DIV1_MAX 6
90 #define CLK_TBG_DIV2_SHIFT 12
91 #define CLK_TBG_DIV2_MASK 0x7
92 #define CLK_TBG_DIV2_MAX 6
93 #define CLK_TBG_SEL_SHIFT 10
94 #define CLK_TBG_SEL_MASK 0x3
95 /* These bits are located in both UARTs address space */
96 #define BRDV_BAUD_MASK 0x3FF
97 #define BRDV_BAUD_MAX BRDV_BAUD_MASK
98
99 #define UART_OSAMP 0x14
100 #define OSAMP_DEFAULT_DIVISOR 16
101 #define OSAMP_DIVISORS_MASK 0x3F3F3F3F
102 #define OSAMP_MAX_DIVISOR 63
103
104 #define MVEBU_NR_UARTS 2
105
106 #define MVEBU_UART_TYPE "mvebu-uart"
107 #define DRIVER_NAME "mvebu_serial"
108
109 enum {
110 /* Either there is only one summed IRQ... */
111 UART_IRQ_SUM = 0,
112 /* ...or there are two separate IRQ for RX and TX */
113 UART_RX_IRQ = 0,
114 UART_TX_IRQ,
115 UART_IRQ_COUNT
116 };
117
118 /* Diverging register offsets */
119 struct uart_regs_layout {
120 unsigned int rbr;
121 unsigned int tsh;
122 unsigned int ctrl;
123 unsigned int intr;
124 };
125
126 /* Diverging flags */
127 struct uart_flags {
128 unsigned int ctrl_tx_rdy_int;
129 unsigned int ctrl_rx_rdy_int;
130 unsigned int stat_tx_rdy;
131 unsigned int stat_rx_rdy;
132 };
133
134 /* Driver data, a structure for each UART port */
135 struct mvebu_uart_driver_data {
136 bool is_ext;
137 struct uart_regs_layout regs;
138 struct uart_flags flags;
139 };
140
141 /* Saved registers during suspend */
142 struct mvebu_uart_pm_regs {
143 unsigned int rbr;
144 unsigned int tsh;
145 unsigned int ctrl;
146 unsigned int intr;
147 unsigned int stat;
148 unsigned int brdv;
149 unsigned int osamp;
150 };
151
152 /* MVEBU UART driver structure */
153 struct mvebu_uart {
154 struct uart_port *port;
155 struct clk *clk;
156 int irq[UART_IRQ_COUNT];
157 struct mvebu_uart_driver_data *data;
158 #if defined(CONFIG_PM)
159 struct mvebu_uart_pm_regs pm_regs;
160 #endif /* CONFIG_PM */
161 };
162
to_mvuart(struct uart_port * port)163 static struct mvebu_uart *to_mvuart(struct uart_port *port)
164 {
165 return (struct mvebu_uart *)port->private_data;
166 }
167
168 #define IS_EXTENDED(port) (to_mvuart(port)->data->is_ext)
169
170 #define UART_RBR(port) (to_mvuart(port)->data->regs.rbr)
171 #define UART_TSH(port) (to_mvuart(port)->data->regs.tsh)
172 #define UART_CTRL(port) (to_mvuart(port)->data->regs.ctrl)
173 #define UART_INTR(port) (to_mvuart(port)->data->regs.intr)
174
175 #define CTRL_TX_RDY_INT(port) (to_mvuart(port)->data->flags.ctrl_tx_rdy_int)
176 #define CTRL_RX_RDY_INT(port) (to_mvuart(port)->data->flags.ctrl_rx_rdy_int)
177 #define STAT_TX_RDY(port) (to_mvuart(port)->data->flags.stat_tx_rdy)
178 #define STAT_RX_RDY(port) (to_mvuart(port)->data->flags.stat_rx_rdy)
179
180 static struct uart_port mvebu_uart_ports[MVEBU_NR_UARTS];
181
182 static DEFINE_SPINLOCK(mvebu_uart_lock);
183
184 /* Core UART Driver Operations */
mvebu_uart_tx_empty(struct uart_port * port)185 static unsigned int mvebu_uart_tx_empty(struct uart_port *port)
186 {
187 unsigned long flags;
188 unsigned int st;
189
190 spin_lock_irqsave(&port->lock, flags);
191 st = readl(port->membase + UART_STAT);
192 spin_unlock_irqrestore(&port->lock, flags);
193
194 return (st & STAT_TX_EMP) ? TIOCSER_TEMT : 0;
195 }
196
mvebu_uart_get_mctrl(struct uart_port * port)197 static unsigned int mvebu_uart_get_mctrl(struct uart_port *port)
198 {
199 return TIOCM_CTS | TIOCM_DSR | TIOCM_CAR;
200 }
201
mvebu_uart_set_mctrl(struct uart_port * port,unsigned int mctrl)202 static void mvebu_uart_set_mctrl(struct uart_port *port,
203 unsigned int mctrl)
204 {
205 /*
206 * Even if we do not support configuring the modem control lines, this
207 * function must be proided to the serial core
208 */
209 }
210
mvebu_uart_stop_tx(struct uart_port * port)211 static void mvebu_uart_stop_tx(struct uart_port *port)
212 {
213 unsigned int ctl = readl(port->membase + UART_INTR(port));
214
215 ctl &= ~CTRL_TX_RDY_INT(port);
216 writel(ctl, port->membase + UART_INTR(port));
217 }
218
mvebu_uart_start_tx(struct uart_port * port)219 static void mvebu_uart_start_tx(struct uart_port *port)
220 {
221 unsigned int ctl;
222 struct circ_buf *xmit = &port->state->xmit;
223
224 if (IS_EXTENDED(port) && !uart_circ_empty(xmit)) {
225 writel(xmit->buf[xmit->tail], port->membase + UART_TSH(port));
226 uart_xmit_advance(port, 1);
227 }
228
229 ctl = readl(port->membase + UART_INTR(port));
230 ctl |= CTRL_TX_RDY_INT(port);
231 writel(ctl, port->membase + UART_INTR(port));
232 }
233
mvebu_uart_stop_rx(struct uart_port * port)234 static void mvebu_uart_stop_rx(struct uart_port *port)
235 {
236 unsigned int ctl;
237
238 ctl = readl(port->membase + UART_CTRL(port));
239 ctl &= ~CTRL_BRK_INT;
240 writel(ctl, port->membase + UART_CTRL(port));
241
242 ctl = readl(port->membase + UART_INTR(port));
243 ctl &= ~CTRL_RX_RDY_INT(port);
244 writel(ctl, port->membase + UART_INTR(port));
245 }
246
mvebu_uart_break_ctl(struct uart_port * port,int brk)247 static void mvebu_uart_break_ctl(struct uart_port *port, int brk)
248 {
249 unsigned int ctl;
250 unsigned long flags;
251
252 spin_lock_irqsave(&port->lock, flags);
253 ctl = readl(port->membase + UART_CTRL(port));
254 if (brk == -1)
255 ctl |= CTRL_SND_BRK_SEQ;
256 else
257 ctl &= ~CTRL_SND_BRK_SEQ;
258 writel(ctl, port->membase + UART_CTRL(port));
259 spin_unlock_irqrestore(&port->lock, flags);
260 }
261
mvebu_uart_rx_chars(struct uart_port * port,unsigned int status)262 static void mvebu_uart_rx_chars(struct uart_port *port, unsigned int status)
263 {
264 struct tty_port *tport = &port->state->port;
265 unsigned char ch = 0;
266 char flag = 0;
267 int ret;
268
269 do {
270 if (status & STAT_RX_RDY(port)) {
271 ch = readl(port->membase + UART_RBR(port));
272 ch &= 0xff;
273 flag = TTY_NORMAL;
274 port->icount.rx++;
275
276 if (status & STAT_PAR_ERR)
277 port->icount.parity++;
278 }
279
280 /*
281 * For UART2, error bits are not cleared on buffer read.
282 * This causes interrupt loop and system hang.
283 */
284 if (IS_EXTENDED(port) && (status & STAT_BRK_ERR)) {
285 ret = readl(port->membase + UART_STAT);
286 ret |= STAT_BRK_ERR;
287 writel(ret, port->membase + UART_STAT);
288 }
289
290 if (status & STAT_BRK_DET) {
291 port->icount.brk++;
292 status &= ~(STAT_FRM_ERR | STAT_PAR_ERR);
293 if (uart_handle_break(port))
294 goto ignore_char;
295 }
296
297 if (status & STAT_OVR_ERR)
298 port->icount.overrun++;
299
300 if (status & STAT_FRM_ERR)
301 port->icount.frame++;
302
303 if (uart_handle_sysrq_char(port, ch))
304 goto ignore_char;
305
306 if (status & port->ignore_status_mask & STAT_PAR_ERR)
307 status &= ~STAT_RX_RDY(port);
308
309 status &= port->read_status_mask;
310
311 if (status & STAT_PAR_ERR)
312 flag = TTY_PARITY;
313
314 status &= ~port->ignore_status_mask;
315
316 if (status & STAT_RX_RDY(port))
317 tty_insert_flip_char(tport, ch, flag);
318
319 if (status & STAT_BRK_DET)
320 tty_insert_flip_char(tport, 0, TTY_BREAK);
321
322 if (status & STAT_FRM_ERR)
323 tty_insert_flip_char(tport, 0, TTY_FRAME);
324
325 if (status & STAT_OVR_ERR)
326 tty_insert_flip_char(tport, 0, TTY_OVERRUN);
327
328 ignore_char:
329 status = readl(port->membase + UART_STAT);
330 } while (status & (STAT_RX_RDY(port) | STAT_BRK_DET));
331
332 tty_flip_buffer_push(tport);
333 }
334
mvebu_uart_tx_chars(struct uart_port * port,unsigned int status)335 static void mvebu_uart_tx_chars(struct uart_port *port, unsigned int status)
336 {
337 u8 ch;
338
339 uart_port_tx_limited(port, ch, port->fifosize,
340 !(readl(port->membase + UART_STAT) & STAT_TX_FIFO_FUL),
341 writel(ch, port->membase + UART_TSH(port)),
342 ({}));
343 }
344
mvebu_uart_isr(int irq,void * dev_id)345 static irqreturn_t mvebu_uart_isr(int irq, void *dev_id)
346 {
347 struct uart_port *port = (struct uart_port *)dev_id;
348 unsigned int st = readl(port->membase + UART_STAT);
349
350 if (st & (STAT_RX_RDY(port) | STAT_OVR_ERR | STAT_FRM_ERR |
351 STAT_BRK_DET))
352 mvebu_uart_rx_chars(port, st);
353
354 if (st & STAT_TX_RDY(port))
355 mvebu_uart_tx_chars(port, st);
356
357 return IRQ_HANDLED;
358 }
359
mvebu_uart_rx_isr(int irq,void * dev_id)360 static irqreturn_t mvebu_uart_rx_isr(int irq, void *dev_id)
361 {
362 struct uart_port *port = (struct uart_port *)dev_id;
363 unsigned int st = readl(port->membase + UART_STAT);
364
365 if (st & (STAT_RX_RDY(port) | STAT_OVR_ERR | STAT_FRM_ERR |
366 STAT_BRK_DET))
367 mvebu_uart_rx_chars(port, st);
368
369 return IRQ_HANDLED;
370 }
371
mvebu_uart_tx_isr(int irq,void * dev_id)372 static irqreturn_t mvebu_uart_tx_isr(int irq, void *dev_id)
373 {
374 struct uart_port *port = (struct uart_port *)dev_id;
375 unsigned int st = readl(port->membase + UART_STAT);
376
377 if (st & STAT_TX_RDY(port))
378 mvebu_uart_tx_chars(port, st);
379
380 return IRQ_HANDLED;
381 }
382
mvebu_uart_startup(struct uart_port * port)383 static int mvebu_uart_startup(struct uart_port *port)
384 {
385 struct mvebu_uart *mvuart = to_mvuart(port);
386 unsigned int ctl;
387 int ret;
388
389 writel(CTRL_TXFIFO_RST | CTRL_RXFIFO_RST,
390 port->membase + UART_CTRL(port));
391 udelay(1);
392
393 /* Clear the error bits of state register before IRQ request */
394 ret = readl(port->membase + UART_STAT);
395 ret |= STAT_BRK_ERR;
396 writel(ret, port->membase + UART_STAT);
397
398 writel(CTRL_BRK_INT, port->membase + UART_CTRL(port));
399
400 ctl = readl(port->membase + UART_INTR(port));
401 ctl |= CTRL_RX_RDY_INT(port);
402 writel(ctl, port->membase + UART_INTR(port));
403
404 if (!mvuart->irq[UART_TX_IRQ]) {
405 /* Old bindings with just one interrupt (UART0 only) */
406 ret = devm_request_irq(port->dev, mvuart->irq[UART_IRQ_SUM],
407 mvebu_uart_isr, port->irqflags,
408 dev_name(port->dev), port);
409 if (ret) {
410 dev_err(port->dev, "unable to request IRQ %d\n",
411 mvuart->irq[UART_IRQ_SUM]);
412 return ret;
413 }
414 } else {
415 /* New bindings with an IRQ for RX and TX (both UART) */
416 ret = devm_request_irq(port->dev, mvuart->irq[UART_RX_IRQ],
417 mvebu_uart_rx_isr, port->irqflags,
418 dev_name(port->dev), port);
419 if (ret) {
420 dev_err(port->dev, "unable to request IRQ %d\n",
421 mvuart->irq[UART_RX_IRQ]);
422 return ret;
423 }
424
425 ret = devm_request_irq(port->dev, mvuart->irq[UART_TX_IRQ],
426 mvebu_uart_tx_isr, port->irqflags,
427 dev_name(port->dev),
428 port);
429 if (ret) {
430 dev_err(port->dev, "unable to request IRQ %d\n",
431 mvuart->irq[UART_TX_IRQ]);
432 devm_free_irq(port->dev, mvuart->irq[UART_RX_IRQ],
433 port);
434 return ret;
435 }
436 }
437
438 return 0;
439 }
440
mvebu_uart_shutdown(struct uart_port * port)441 static void mvebu_uart_shutdown(struct uart_port *port)
442 {
443 struct mvebu_uart *mvuart = to_mvuart(port);
444
445 writel(0, port->membase + UART_INTR(port));
446
447 if (!mvuart->irq[UART_TX_IRQ]) {
448 devm_free_irq(port->dev, mvuart->irq[UART_IRQ_SUM], port);
449 } else {
450 devm_free_irq(port->dev, mvuart->irq[UART_RX_IRQ], port);
451 devm_free_irq(port->dev, mvuart->irq[UART_TX_IRQ], port);
452 }
453 }
454
mvebu_uart_baud_rate_set(struct uart_port * port,unsigned int baud)455 static unsigned int mvebu_uart_baud_rate_set(struct uart_port *port, unsigned int baud)
456 {
457 unsigned int d_divisor, m_divisor;
458 unsigned long flags;
459 u32 brdv, osamp;
460
461 if (!port->uartclk)
462 return 0;
463
464 /*
465 * The baudrate is derived from the UART clock thanks to divisors:
466 * > d1 * d2 ("TBG divisors"): can divide only TBG clock from 1 to 6
467 * > D ("baud generator"): can divide the clock from 1 to 1023
468 * > M ("fractional divisor"): allows a better accuracy (from 1 to 63)
469 *
470 * Exact formulas for calculating baudrate:
471 *
472 * with default x16 scheme:
473 * baudrate = xtal / (d * 16)
474 * baudrate = tbg / (d1 * d2 * d * 16)
475 *
476 * with fractional divisor:
477 * baudrate = 10 * xtal / (d * (3 * (m1 + m2) + 2 * (m3 + m4)))
478 * baudrate = 10 * tbg / (d1*d2 * d * (3 * (m1 + m2) + 2 * (m3 + m4)))
479 *
480 * Oversampling value:
481 * osamp = (m1 << 0) | (m2 << 8) | (m3 << 16) | (m4 << 24);
482 *
483 * Where m1 controls number of clock cycles per bit for bits 1,2,3;
484 * m2 for bits 4,5,6; m3 for bits 7,8 and m4 for bits 9,10.
485 *
486 * To simplify baudrate setup set all the M prescalers to the same
487 * value. For baudrates 9600 Bd and higher, it is enough to use the
488 * default (x16) divisor or fractional divisor with M = 63, so there
489 * is no need to use real fractional support (where the M prescalers
490 * are not equal).
491 *
492 * When all the M prescalers are zeroed then default (x16) divisor is
493 * used. Default x16 scheme is more stable than M (fractional divisor),
494 * so use M only when D divisor is not enough to derive baudrate.
495 *
496 * Member port->uartclk is either xtal clock rate or TBG clock rate
497 * divided by (d1 * d2). So d1 and d2 are already set by the UART clock
498 * driver (and UART driver itself cannot change them). Moreover they are
499 * shared between both UARTs.
500 */
501
502 m_divisor = OSAMP_DEFAULT_DIVISOR;
503 d_divisor = DIV_ROUND_CLOSEST(port->uartclk, baud * m_divisor);
504
505 if (d_divisor > BRDV_BAUD_MAX) {
506 /*
507 * Experiments show that small M divisors are unstable.
508 * Use maximal possible M = 63 and calculate D divisor.
509 */
510 m_divisor = OSAMP_MAX_DIVISOR;
511 d_divisor = DIV_ROUND_CLOSEST(port->uartclk, baud * m_divisor);
512 }
513
514 if (d_divisor < 1)
515 d_divisor = 1;
516 else if (d_divisor > BRDV_BAUD_MAX)
517 d_divisor = BRDV_BAUD_MAX;
518
519 spin_lock_irqsave(&mvebu_uart_lock, flags);
520 brdv = readl(port->membase + UART_BRDV);
521 brdv &= ~BRDV_BAUD_MASK;
522 brdv |= d_divisor;
523 writel(brdv, port->membase + UART_BRDV);
524 spin_unlock_irqrestore(&mvebu_uart_lock, flags);
525
526 osamp = readl(port->membase + UART_OSAMP);
527 osamp &= ~OSAMP_DIVISORS_MASK;
528 if (m_divisor != OSAMP_DEFAULT_DIVISOR)
529 osamp |= (m_divisor << 0) | (m_divisor << 8) |
530 (m_divisor << 16) | (m_divisor << 24);
531 writel(osamp, port->membase + UART_OSAMP);
532
533 return DIV_ROUND_CLOSEST(port->uartclk, d_divisor * m_divisor);
534 }
535
mvebu_uart_set_termios(struct uart_port * port,struct ktermios * termios,const struct ktermios * old)536 static void mvebu_uart_set_termios(struct uart_port *port,
537 struct ktermios *termios,
538 const struct ktermios *old)
539 {
540 unsigned long flags;
541 unsigned int baud, min_baud, max_baud;
542
543 spin_lock_irqsave(&port->lock, flags);
544
545 port->read_status_mask = STAT_RX_RDY(port) | STAT_OVR_ERR |
546 STAT_TX_RDY(port) | STAT_TX_FIFO_FUL;
547
548 if (termios->c_iflag & INPCK)
549 port->read_status_mask |= STAT_FRM_ERR | STAT_PAR_ERR;
550
551 port->ignore_status_mask = 0;
552 if (termios->c_iflag & IGNPAR)
553 port->ignore_status_mask |=
554 STAT_FRM_ERR | STAT_PAR_ERR | STAT_OVR_ERR;
555
556 if ((termios->c_cflag & CREAD) == 0)
557 port->ignore_status_mask |= STAT_RX_RDY(port) | STAT_BRK_ERR;
558
559 /*
560 * Maximal divisor is 1023 and maximal fractional divisor is 63. And
561 * experiments show that baudrates above 1/80 of parent clock rate are
562 * not stable. So disallow baudrates above 1/80 of the parent clock
563 * rate. If port->uartclk is not available, then
564 * mvebu_uart_baud_rate_set() fails, so values min_baud and max_baud
565 * in this case do not matter.
566 */
567 min_baud = DIV_ROUND_UP(port->uartclk, BRDV_BAUD_MAX *
568 OSAMP_MAX_DIVISOR);
569 max_baud = port->uartclk / 80;
570
571 baud = uart_get_baud_rate(port, termios, old, min_baud, max_baud);
572 baud = mvebu_uart_baud_rate_set(port, baud);
573
574 /* In case baudrate cannot be changed, report previous old value */
575 if (baud == 0 && old)
576 baud = tty_termios_baud_rate(old);
577
578 /* Only the following flag changes are supported */
579 if (old) {
580 termios->c_iflag &= INPCK | IGNPAR;
581 termios->c_iflag |= old->c_iflag & ~(INPCK | IGNPAR);
582 termios->c_cflag &= CREAD | CBAUD;
583 termios->c_cflag |= old->c_cflag & ~(CREAD | CBAUD);
584 termios->c_cflag |= CS8;
585 }
586
587 if (baud != 0) {
588 tty_termios_encode_baud_rate(termios, baud, baud);
589 uart_update_timeout(port, termios->c_cflag, baud);
590 }
591
592 spin_unlock_irqrestore(&port->lock, flags);
593 }
594
mvebu_uart_type(struct uart_port * port)595 static const char *mvebu_uart_type(struct uart_port *port)
596 {
597 return MVEBU_UART_TYPE;
598 }
599
mvebu_uart_release_port(struct uart_port * port)600 static void mvebu_uart_release_port(struct uart_port *port)
601 {
602 /* Nothing to do here */
603 }
604
mvebu_uart_request_port(struct uart_port * port)605 static int mvebu_uart_request_port(struct uart_port *port)
606 {
607 return 0;
608 }
609
610 #ifdef CONFIG_CONSOLE_POLL
mvebu_uart_get_poll_char(struct uart_port * port)611 static int mvebu_uart_get_poll_char(struct uart_port *port)
612 {
613 unsigned int st = readl(port->membase + UART_STAT);
614
615 if (!(st & STAT_RX_RDY(port)))
616 return NO_POLL_CHAR;
617
618 return readl(port->membase + UART_RBR(port));
619 }
620
mvebu_uart_put_poll_char(struct uart_port * port,unsigned char c)621 static void mvebu_uart_put_poll_char(struct uart_port *port, unsigned char c)
622 {
623 unsigned int st;
624
625 for (;;) {
626 st = readl(port->membase + UART_STAT);
627
628 if (!(st & STAT_TX_FIFO_FUL))
629 break;
630
631 udelay(1);
632 }
633
634 writel(c, port->membase + UART_TSH(port));
635 }
636 #endif
637
638 static const struct uart_ops mvebu_uart_ops = {
639 .tx_empty = mvebu_uart_tx_empty,
640 .set_mctrl = mvebu_uart_set_mctrl,
641 .get_mctrl = mvebu_uart_get_mctrl,
642 .stop_tx = mvebu_uart_stop_tx,
643 .start_tx = mvebu_uart_start_tx,
644 .stop_rx = mvebu_uart_stop_rx,
645 .break_ctl = mvebu_uart_break_ctl,
646 .startup = mvebu_uart_startup,
647 .shutdown = mvebu_uart_shutdown,
648 .set_termios = mvebu_uart_set_termios,
649 .type = mvebu_uart_type,
650 .release_port = mvebu_uart_release_port,
651 .request_port = mvebu_uart_request_port,
652 #ifdef CONFIG_CONSOLE_POLL
653 .poll_get_char = mvebu_uart_get_poll_char,
654 .poll_put_char = mvebu_uart_put_poll_char,
655 #endif
656 };
657
658 /* Console Driver Operations */
659
660 #ifdef CONFIG_SERIAL_MVEBU_CONSOLE
661 /* Early Console */
mvebu_uart_putc(struct uart_port * port,unsigned char c)662 static void mvebu_uart_putc(struct uart_port *port, unsigned char c)
663 {
664 unsigned int st;
665
666 for (;;) {
667 st = readl(port->membase + UART_STAT);
668 if (!(st & STAT_TX_FIFO_FUL))
669 break;
670 }
671
672 /* At early stage, DT is not parsed yet, only use UART0 */
673 writel(c, port->membase + UART_STD_TSH);
674
675 for (;;) {
676 st = readl(port->membase + UART_STAT);
677 if (st & STAT_TX_FIFO_EMP)
678 break;
679 }
680 }
681
mvebu_uart_putc_early_write(struct console * con,const char * s,unsigned int n)682 static void mvebu_uart_putc_early_write(struct console *con,
683 const char *s,
684 unsigned int n)
685 {
686 struct earlycon_device *dev = con->data;
687
688 uart_console_write(&dev->port, s, n, mvebu_uart_putc);
689 }
690
691 static int __init
mvebu_uart_early_console_setup(struct earlycon_device * device,const char * opt)692 mvebu_uart_early_console_setup(struct earlycon_device *device,
693 const char *opt)
694 {
695 if (!device->port.membase)
696 return -ENODEV;
697
698 device->con->write = mvebu_uart_putc_early_write;
699
700 return 0;
701 }
702
703 EARLYCON_DECLARE(ar3700_uart, mvebu_uart_early_console_setup);
704 OF_EARLYCON_DECLARE(ar3700_uart, "marvell,armada-3700-uart",
705 mvebu_uart_early_console_setup);
706
wait_for_xmitr(struct uart_port * port)707 static void wait_for_xmitr(struct uart_port *port)
708 {
709 u32 val;
710
711 readl_poll_timeout_atomic(port->membase + UART_STAT, val,
712 (val & STAT_TX_RDY(port)), 1, 10000);
713 }
714
wait_for_xmite(struct uart_port * port)715 static void wait_for_xmite(struct uart_port *port)
716 {
717 u32 val;
718
719 readl_poll_timeout_atomic(port->membase + UART_STAT, val,
720 (val & STAT_TX_EMP), 1, 10000);
721 }
722
mvebu_uart_console_putchar(struct uart_port * port,unsigned char ch)723 static void mvebu_uart_console_putchar(struct uart_port *port, unsigned char ch)
724 {
725 wait_for_xmitr(port);
726 writel(ch, port->membase + UART_TSH(port));
727 }
728
mvebu_uart_console_write(struct console * co,const char * s,unsigned int count)729 static void mvebu_uart_console_write(struct console *co, const char *s,
730 unsigned int count)
731 {
732 struct uart_port *port = &mvebu_uart_ports[co->index];
733 unsigned long flags;
734 unsigned int ier, intr, ctl;
735 int locked = 1;
736
737 if (oops_in_progress)
738 locked = spin_trylock_irqsave(&port->lock, flags);
739 else
740 spin_lock_irqsave(&port->lock, flags);
741
742 ier = readl(port->membase + UART_CTRL(port)) & CTRL_BRK_INT;
743 intr = readl(port->membase + UART_INTR(port)) &
744 (CTRL_RX_RDY_INT(port) | CTRL_TX_RDY_INT(port));
745 writel(0, port->membase + UART_CTRL(port));
746 writel(0, port->membase + UART_INTR(port));
747
748 uart_console_write(port, s, count, mvebu_uart_console_putchar);
749
750 wait_for_xmite(port);
751
752 if (ier)
753 writel(ier, port->membase + UART_CTRL(port));
754
755 if (intr) {
756 ctl = intr | readl(port->membase + UART_INTR(port));
757 writel(ctl, port->membase + UART_INTR(port));
758 }
759
760 if (locked)
761 spin_unlock_irqrestore(&port->lock, flags);
762 }
763
mvebu_uart_console_setup(struct console * co,char * options)764 static int mvebu_uart_console_setup(struct console *co, char *options)
765 {
766 struct uart_port *port;
767 int baud = 9600;
768 int bits = 8;
769 int parity = 'n';
770 int flow = 'n';
771
772 if (co->index < 0 || co->index >= MVEBU_NR_UARTS)
773 return -EINVAL;
774
775 port = &mvebu_uart_ports[co->index];
776
777 if (!port->mapbase || !port->membase) {
778 pr_debug("console on ttyMV%i not present\n", co->index);
779 return -ENODEV;
780 }
781
782 if (options)
783 uart_parse_options(options, &baud, &parity, &bits, &flow);
784
785 return uart_set_options(port, co, baud, parity, bits, flow);
786 }
787
788 static struct uart_driver mvebu_uart_driver;
789
790 static struct console mvebu_uart_console = {
791 .name = "ttyMV",
792 .write = mvebu_uart_console_write,
793 .device = uart_console_device,
794 .setup = mvebu_uart_console_setup,
795 .flags = CON_PRINTBUFFER,
796 .index = -1,
797 .data = &mvebu_uart_driver,
798 };
799
mvebu_uart_console_init(void)800 static int __init mvebu_uart_console_init(void)
801 {
802 register_console(&mvebu_uart_console);
803 return 0;
804 }
805
806 console_initcall(mvebu_uart_console_init);
807
808
809 #endif /* CONFIG_SERIAL_MVEBU_CONSOLE */
810
811 static struct uart_driver mvebu_uart_driver = {
812 .owner = THIS_MODULE,
813 .driver_name = DRIVER_NAME,
814 .dev_name = "ttyMV",
815 .nr = MVEBU_NR_UARTS,
816 #ifdef CONFIG_SERIAL_MVEBU_CONSOLE
817 .cons = &mvebu_uart_console,
818 #endif
819 };
820
821 #if defined(CONFIG_PM)
mvebu_uart_suspend(struct device * dev)822 static int mvebu_uart_suspend(struct device *dev)
823 {
824 struct mvebu_uart *mvuart = dev_get_drvdata(dev);
825 struct uart_port *port = mvuart->port;
826 unsigned long flags;
827
828 uart_suspend_port(&mvebu_uart_driver, port);
829
830 mvuart->pm_regs.rbr = readl(port->membase + UART_RBR(port));
831 mvuart->pm_regs.tsh = readl(port->membase + UART_TSH(port));
832 mvuart->pm_regs.ctrl = readl(port->membase + UART_CTRL(port));
833 mvuart->pm_regs.intr = readl(port->membase + UART_INTR(port));
834 mvuart->pm_regs.stat = readl(port->membase + UART_STAT);
835 spin_lock_irqsave(&mvebu_uart_lock, flags);
836 mvuart->pm_regs.brdv = readl(port->membase + UART_BRDV);
837 spin_unlock_irqrestore(&mvebu_uart_lock, flags);
838 mvuart->pm_regs.osamp = readl(port->membase + UART_OSAMP);
839
840 device_set_wakeup_enable(dev, true);
841
842 return 0;
843 }
844
mvebu_uart_resume(struct device * dev)845 static int mvebu_uart_resume(struct device *dev)
846 {
847 struct mvebu_uart *mvuart = dev_get_drvdata(dev);
848 struct uart_port *port = mvuart->port;
849 unsigned long flags;
850
851 writel(mvuart->pm_regs.rbr, port->membase + UART_RBR(port));
852 writel(mvuart->pm_regs.tsh, port->membase + UART_TSH(port));
853 writel(mvuart->pm_regs.ctrl, port->membase + UART_CTRL(port));
854 writel(mvuart->pm_regs.intr, port->membase + UART_INTR(port));
855 writel(mvuart->pm_regs.stat, port->membase + UART_STAT);
856 spin_lock_irqsave(&mvebu_uart_lock, flags);
857 writel(mvuart->pm_regs.brdv, port->membase + UART_BRDV);
858 spin_unlock_irqrestore(&mvebu_uart_lock, flags);
859 writel(mvuart->pm_regs.osamp, port->membase + UART_OSAMP);
860
861 uart_resume_port(&mvebu_uart_driver, port);
862
863 return 0;
864 }
865
866 static const struct dev_pm_ops mvebu_uart_pm_ops = {
867 .suspend = mvebu_uart_suspend,
868 .resume = mvebu_uart_resume,
869 };
870 #endif /* CONFIG_PM */
871
872 static const struct of_device_id mvebu_uart_of_match[];
873
874 /* Counter to keep track of each UART port id when not using CONFIG_OF */
875 static int uart_num_counter;
876
mvebu_uart_probe(struct platform_device * pdev)877 static int mvebu_uart_probe(struct platform_device *pdev)
878 {
879 const struct of_device_id *match = of_match_device(mvebu_uart_of_match,
880 &pdev->dev);
881 struct uart_port *port;
882 struct mvebu_uart *mvuart;
883 struct resource *reg;
884 int id, irq;
885
886 /* Assume that all UART ports have a DT alias or none has */
887 id = of_alias_get_id(pdev->dev.of_node, "serial");
888 if (!pdev->dev.of_node || id < 0)
889 pdev->id = uart_num_counter++;
890 else
891 pdev->id = id;
892
893 if (pdev->id >= MVEBU_NR_UARTS) {
894 dev_err(&pdev->dev, "cannot have more than %d UART ports\n",
895 MVEBU_NR_UARTS);
896 return -EINVAL;
897 }
898
899 port = &mvebu_uart_ports[pdev->id];
900
901 spin_lock_init(&port->lock);
902
903 port->dev = &pdev->dev;
904 port->type = PORT_MVEBU;
905 port->ops = &mvebu_uart_ops;
906 port->regshift = 0;
907
908 port->fifosize = 32;
909 port->iotype = UPIO_MEM32;
910 port->flags = UPF_FIXED_PORT;
911 port->line = pdev->id;
912
913 /*
914 * IRQ number is not stored in this structure because we may have two of
915 * them per port (RX and TX). Instead, use the driver UART structure
916 * array so called ->irq[].
917 */
918 port->irq = 0;
919 port->irqflags = 0;
920
921 port->membase = devm_platform_get_and_ioremap_resource(pdev, 0, ®);
922 if (IS_ERR(port->membase))
923 return PTR_ERR(port->membase);
924 port->mapbase = reg->start;
925
926 mvuart = devm_kzalloc(&pdev->dev, sizeof(struct mvebu_uart),
927 GFP_KERNEL);
928 if (!mvuart)
929 return -ENOMEM;
930
931 /* Get controller data depending on the compatible string */
932 mvuart->data = (struct mvebu_uart_driver_data *)match->data;
933 mvuart->port = port;
934
935 port->private_data = mvuart;
936 platform_set_drvdata(pdev, mvuart);
937
938 /* Get fixed clock frequency */
939 mvuart->clk = devm_clk_get(&pdev->dev, NULL);
940 if (IS_ERR(mvuart->clk)) {
941 if (PTR_ERR(mvuart->clk) == -EPROBE_DEFER)
942 return PTR_ERR(mvuart->clk);
943
944 if (IS_EXTENDED(port)) {
945 dev_err(&pdev->dev, "unable to get UART clock\n");
946 return PTR_ERR(mvuart->clk);
947 }
948 } else {
949 if (!clk_prepare_enable(mvuart->clk))
950 port->uartclk = clk_get_rate(mvuart->clk);
951 }
952
953 /* Manage interrupts */
954 if (platform_irq_count(pdev) == 1) {
955 /* Old bindings: no name on the single unamed UART0 IRQ */
956 irq = platform_get_irq(pdev, 0);
957 if (irq < 0)
958 return irq;
959
960 mvuart->irq[UART_IRQ_SUM] = irq;
961 } else {
962 /*
963 * New bindings: named interrupts (RX, TX) for both UARTS,
964 * only make use of uart-rx and uart-tx interrupts, do not use
965 * uart-sum of UART0 port.
966 */
967 irq = platform_get_irq_byname(pdev, "uart-rx");
968 if (irq < 0)
969 return irq;
970
971 mvuart->irq[UART_RX_IRQ] = irq;
972
973 irq = platform_get_irq_byname(pdev, "uart-tx");
974 if (irq < 0)
975 return irq;
976
977 mvuart->irq[UART_TX_IRQ] = irq;
978 }
979
980 /* UART Soft Reset*/
981 writel(CTRL_SOFT_RST, port->membase + UART_CTRL(port));
982 udelay(1);
983 writel(0, port->membase + UART_CTRL(port));
984
985 return uart_add_one_port(&mvebu_uart_driver, port);
986 }
987
988 static struct mvebu_uart_driver_data uart_std_driver_data = {
989 .is_ext = false,
990 .regs.rbr = UART_STD_RBR,
991 .regs.tsh = UART_STD_TSH,
992 .regs.ctrl = UART_STD_CTRL1,
993 .regs.intr = UART_STD_CTRL2,
994 .flags.ctrl_tx_rdy_int = CTRL_STD_TX_RDY_INT,
995 .flags.ctrl_rx_rdy_int = CTRL_STD_RX_RDY_INT,
996 .flags.stat_tx_rdy = STAT_STD_TX_RDY,
997 .flags.stat_rx_rdy = STAT_STD_RX_RDY,
998 };
999
1000 static struct mvebu_uart_driver_data uart_ext_driver_data = {
1001 .is_ext = true,
1002 .regs.rbr = UART_EXT_RBR,
1003 .regs.tsh = UART_EXT_TSH,
1004 .regs.ctrl = UART_EXT_CTRL1,
1005 .regs.intr = UART_EXT_CTRL2,
1006 .flags.ctrl_tx_rdy_int = CTRL_EXT_TX_RDY_INT,
1007 .flags.ctrl_rx_rdy_int = CTRL_EXT_RX_RDY_INT,
1008 .flags.stat_tx_rdy = STAT_EXT_TX_RDY,
1009 .flags.stat_rx_rdy = STAT_EXT_RX_RDY,
1010 };
1011
1012 /* Match table for of_platform binding */
1013 static const struct of_device_id mvebu_uart_of_match[] = {
1014 {
1015 .compatible = "marvell,armada-3700-uart",
1016 .data = (void *)&uart_std_driver_data,
1017 },
1018 {
1019 .compatible = "marvell,armada-3700-uart-ext",
1020 .data = (void *)&uart_ext_driver_data,
1021 },
1022 {}
1023 };
1024
1025 static struct platform_driver mvebu_uart_platform_driver = {
1026 .probe = mvebu_uart_probe,
1027 .driver = {
1028 .name = "mvebu-uart",
1029 .of_match_table = of_match_ptr(mvebu_uart_of_match),
1030 .suppress_bind_attrs = true,
1031 #if defined(CONFIG_PM)
1032 .pm = &mvebu_uart_pm_ops,
1033 #endif /* CONFIG_PM */
1034 },
1035 };
1036
1037 /* This code is based on clk-fixed-factor.c driver and modified. */
1038
1039 struct mvebu_uart_clock {
1040 struct clk_hw clk_hw;
1041 int clock_idx;
1042 u32 pm_context_reg1;
1043 u32 pm_context_reg2;
1044 };
1045
1046 struct mvebu_uart_clock_base {
1047 struct mvebu_uart_clock clocks[2];
1048 unsigned int parent_rates[5];
1049 int parent_idx;
1050 unsigned int div;
1051 void __iomem *reg1;
1052 void __iomem *reg2;
1053 bool configured;
1054 };
1055
1056 #define PARENT_CLOCK_XTAL 4
1057
1058 #define to_uart_clock(hw) container_of(hw, struct mvebu_uart_clock, clk_hw)
1059 #define to_uart_clock_base(uart_clock) container_of(uart_clock, \
1060 struct mvebu_uart_clock_base, clocks[uart_clock->clock_idx])
1061
mvebu_uart_clock_prepare(struct clk_hw * hw)1062 static int mvebu_uart_clock_prepare(struct clk_hw *hw)
1063 {
1064 struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1065 struct mvebu_uart_clock_base *uart_clock_base =
1066 to_uart_clock_base(uart_clock);
1067 unsigned int prev_clock_idx, prev_clock_rate, prev_d1d2;
1068 unsigned int parent_clock_idx, parent_clock_rate;
1069 unsigned long flags;
1070 unsigned int d1, d2;
1071 u64 divisor;
1072 u32 val;
1073
1074 /*
1075 * This function just reconfigures UART Clock Control register (located
1076 * in UART1 address space which controls both UART1 and UART2) to
1077 * selected UART base clock and recalculates current UART1/UART2
1078 * divisors in their address spaces, so that final baudrate will not be
1079 * changed by switching UART parent clock. This is required for
1080 * otherwise kernel's boot log stops working - we need to ensure that
1081 * UART baudrate does not change during this setup. It is a one time
1082 * operation, it will execute only once and set `configured` to true,
1083 * and be skipped on subsequent calls. Because this UART Clock Control
1084 * register (UART_BRDV) is shared between UART1 baudrate function,
1085 * UART1 clock selector and UART2 clock selector, every access to
1086 * UART_BRDV (reg1) needs to be protected by a lock.
1087 */
1088
1089 spin_lock_irqsave(&mvebu_uart_lock, flags);
1090
1091 if (uart_clock_base->configured) {
1092 spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1093 return 0;
1094 }
1095
1096 parent_clock_idx = uart_clock_base->parent_idx;
1097 parent_clock_rate = uart_clock_base->parent_rates[parent_clock_idx];
1098
1099 val = readl(uart_clock_base->reg1);
1100
1101 if (uart_clock_base->div > CLK_TBG_DIV1_MAX) {
1102 d1 = CLK_TBG_DIV1_MAX;
1103 d2 = uart_clock_base->div / CLK_TBG_DIV1_MAX;
1104 } else {
1105 d1 = uart_clock_base->div;
1106 d2 = 1;
1107 }
1108
1109 if (val & CLK_NO_XTAL) {
1110 prev_clock_idx = (val >> CLK_TBG_SEL_SHIFT) & CLK_TBG_SEL_MASK;
1111 prev_d1d2 = ((val >> CLK_TBG_DIV1_SHIFT) & CLK_TBG_DIV1_MASK) *
1112 ((val >> CLK_TBG_DIV2_SHIFT) & CLK_TBG_DIV2_MASK);
1113 } else {
1114 prev_clock_idx = PARENT_CLOCK_XTAL;
1115 prev_d1d2 = 1;
1116 }
1117
1118 /* Note that uart_clock_base->parent_rates[i] may not be available */
1119 prev_clock_rate = uart_clock_base->parent_rates[prev_clock_idx];
1120
1121 /* Recalculate UART1 divisor so UART1 baudrate does not change */
1122 if (prev_clock_rate) {
1123 divisor = DIV_U64_ROUND_CLOSEST((u64)(val & BRDV_BAUD_MASK) *
1124 parent_clock_rate * prev_d1d2,
1125 prev_clock_rate * d1 * d2);
1126 if (divisor < 1)
1127 divisor = 1;
1128 else if (divisor > BRDV_BAUD_MAX)
1129 divisor = BRDV_BAUD_MAX;
1130 val = (val & ~BRDV_BAUD_MASK) | divisor;
1131 }
1132
1133 if (parent_clock_idx != PARENT_CLOCK_XTAL) {
1134 /* Do not use XTAL, select TBG clock and TBG d1 * d2 divisors */
1135 val |= CLK_NO_XTAL;
1136 val &= ~(CLK_TBG_DIV1_MASK << CLK_TBG_DIV1_SHIFT);
1137 val |= d1 << CLK_TBG_DIV1_SHIFT;
1138 val &= ~(CLK_TBG_DIV2_MASK << CLK_TBG_DIV2_SHIFT);
1139 val |= d2 << CLK_TBG_DIV2_SHIFT;
1140 val &= ~(CLK_TBG_SEL_MASK << CLK_TBG_SEL_SHIFT);
1141 val |= parent_clock_idx << CLK_TBG_SEL_SHIFT;
1142 } else {
1143 /* Use XTAL, TBG bits are then ignored */
1144 val &= ~CLK_NO_XTAL;
1145 }
1146
1147 writel(val, uart_clock_base->reg1);
1148
1149 /* Recalculate UART2 divisor so UART2 baudrate does not change */
1150 if (prev_clock_rate) {
1151 val = readl(uart_clock_base->reg2);
1152 divisor = DIV_U64_ROUND_CLOSEST((u64)(val & BRDV_BAUD_MASK) *
1153 parent_clock_rate * prev_d1d2,
1154 prev_clock_rate * d1 * d2);
1155 if (divisor < 1)
1156 divisor = 1;
1157 else if (divisor > BRDV_BAUD_MAX)
1158 divisor = BRDV_BAUD_MAX;
1159 val = (val & ~BRDV_BAUD_MASK) | divisor;
1160 writel(val, uart_clock_base->reg2);
1161 }
1162
1163 uart_clock_base->configured = true;
1164
1165 spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1166
1167 return 0;
1168 }
1169
mvebu_uart_clock_enable(struct clk_hw * hw)1170 static int mvebu_uart_clock_enable(struct clk_hw *hw)
1171 {
1172 struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1173 struct mvebu_uart_clock_base *uart_clock_base =
1174 to_uart_clock_base(uart_clock);
1175 unsigned long flags;
1176 u32 val;
1177
1178 spin_lock_irqsave(&mvebu_uart_lock, flags);
1179
1180 val = readl(uart_clock_base->reg1);
1181
1182 if (uart_clock->clock_idx == 0)
1183 val &= ~UART1_CLK_DIS;
1184 else
1185 val &= ~UART2_CLK_DIS;
1186
1187 writel(val, uart_clock_base->reg1);
1188
1189 spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1190
1191 return 0;
1192 }
1193
mvebu_uart_clock_disable(struct clk_hw * hw)1194 static void mvebu_uart_clock_disable(struct clk_hw *hw)
1195 {
1196 struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1197 struct mvebu_uart_clock_base *uart_clock_base =
1198 to_uart_clock_base(uart_clock);
1199 unsigned long flags;
1200 u32 val;
1201
1202 spin_lock_irqsave(&mvebu_uart_lock, flags);
1203
1204 val = readl(uart_clock_base->reg1);
1205
1206 if (uart_clock->clock_idx == 0)
1207 val |= UART1_CLK_DIS;
1208 else
1209 val |= UART2_CLK_DIS;
1210
1211 writel(val, uart_clock_base->reg1);
1212
1213 spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1214 }
1215
mvebu_uart_clock_is_enabled(struct clk_hw * hw)1216 static int mvebu_uart_clock_is_enabled(struct clk_hw *hw)
1217 {
1218 struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1219 struct mvebu_uart_clock_base *uart_clock_base =
1220 to_uart_clock_base(uart_clock);
1221 u32 val;
1222
1223 val = readl(uart_clock_base->reg1);
1224
1225 if (uart_clock->clock_idx == 0)
1226 return !(val & UART1_CLK_DIS);
1227 else
1228 return !(val & UART2_CLK_DIS);
1229 }
1230
mvebu_uart_clock_save_context(struct clk_hw * hw)1231 static int mvebu_uart_clock_save_context(struct clk_hw *hw)
1232 {
1233 struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1234 struct mvebu_uart_clock_base *uart_clock_base =
1235 to_uart_clock_base(uart_clock);
1236 unsigned long flags;
1237
1238 spin_lock_irqsave(&mvebu_uart_lock, flags);
1239 uart_clock->pm_context_reg1 = readl(uart_clock_base->reg1);
1240 uart_clock->pm_context_reg2 = readl(uart_clock_base->reg2);
1241 spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1242
1243 return 0;
1244 }
1245
mvebu_uart_clock_restore_context(struct clk_hw * hw)1246 static void mvebu_uart_clock_restore_context(struct clk_hw *hw)
1247 {
1248 struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1249 struct mvebu_uart_clock_base *uart_clock_base =
1250 to_uart_clock_base(uart_clock);
1251 unsigned long flags;
1252
1253 spin_lock_irqsave(&mvebu_uart_lock, flags);
1254 writel(uart_clock->pm_context_reg1, uart_clock_base->reg1);
1255 writel(uart_clock->pm_context_reg2, uart_clock_base->reg2);
1256 spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1257 }
1258
mvebu_uart_clock_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)1259 static unsigned long mvebu_uart_clock_recalc_rate(struct clk_hw *hw,
1260 unsigned long parent_rate)
1261 {
1262 struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1263 struct mvebu_uart_clock_base *uart_clock_base =
1264 to_uart_clock_base(uart_clock);
1265
1266 return parent_rate / uart_clock_base->div;
1267 }
1268
mvebu_uart_clock_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * parent_rate)1269 static long mvebu_uart_clock_round_rate(struct clk_hw *hw, unsigned long rate,
1270 unsigned long *parent_rate)
1271 {
1272 struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1273 struct mvebu_uart_clock_base *uart_clock_base =
1274 to_uart_clock_base(uart_clock);
1275
1276 return *parent_rate / uart_clock_base->div;
1277 }
1278
mvebu_uart_clock_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)1279 static int mvebu_uart_clock_set_rate(struct clk_hw *hw, unsigned long rate,
1280 unsigned long parent_rate)
1281 {
1282 /*
1283 * We must report success but we can do so unconditionally because
1284 * mvebu_uart_clock_round_rate returns values that ensure this call is a
1285 * nop.
1286 */
1287
1288 return 0;
1289 }
1290
1291 static const struct clk_ops mvebu_uart_clock_ops = {
1292 .prepare = mvebu_uart_clock_prepare,
1293 .enable = mvebu_uart_clock_enable,
1294 .disable = mvebu_uart_clock_disable,
1295 .is_enabled = mvebu_uart_clock_is_enabled,
1296 .save_context = mvebu_uart_clock_save_context,
1297 .restore_context = mvebu_uart_clock_restore_context,
1298 .round_rate = mvebu_uart_clock_round_rate,
1299 .set_rate = mvebu_uart_clock_set_rate,
1300 .recalc_rate = mvebu_uart_clock_recalc_rate,
1301 };
1302
mvebu_uart_clock_register(struct device * dev,struct mvebu_uart_clock * uart_clock,const char * name,const char * parent_name)1303 static int mvebu_uart_clock_register(struct device *dev,
1304 struct mvebu_uart_clock *uart_clock,
1305 const char *name,
1306 const char *parent_name)
1307 {
1308 struct clk_init_data init = { };
1309
1310 uart_clock->clk_hw.init = &init;
1311
1312 init.name = name;
1313 init.ops = &mvebu_uart_clock_ops;
1314 init.flags = 0;
1315 init.num_parents = 1;
1316 init.parent_names = &parent_name;
1317
1318 return devm_clk_hw_register(dev, &uart_clock->clk_hw);
1319 }
1320
mvebu_uart_clock_probe(struct platform_device * pdev)1321 static int mvebu_uart_clock_probe(struct platform_device *pdev)
1322 {
1323 static const char *const uart_clk_names[] = { "uart_1", "uart_2" };
1324 static const char *const parent_clk_names[] = { "TBG-A-P", "TBG-B-P",
1325 "TBG-A-S", "TBG-B-S",
1326 "xtal" };
1327 struct clk *parent_clks[ARRAY_SIZE(parent_clk_names)];
1328 struct mvebu_uart_clock_base *uart_clock_base;
1329 struct clk_hw_onecell_data *hw_clk_data;
1330 struct device *dev = &pdev->dev;
1331 int i, parent_clk_idx, ret;
1332 unsigned long div, rate;
1333 struct resource *res;
1334 unsigned int d1, d2;
1335
1336 BUILD_BUG_ON(ARRAY_SIZE(uart_clk_names) !=
1337 ARRAY_SIZE(uart_clock_base->clocks));
1338 BUILD_BUG_ON(ARRAY_SIZE(parent_clk_names) !=
1339 ARRAY_SIZE(uart_clock_base->parent_rates));
1340
1341 uart_clock_base = devm_kzalloc(dev,
1342 sizeof(*uart_clock_base),
1343 GFP_KERNEL);
1344 if (!uart_clock_base)
1345 return -ENOMEM;
1346
1347 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1348 if (!res) {
1349 dev_err(dev, "Couldn't get first register\n");
1350 return -ENOENT;
1351 }
1352
1353 /*
1354 * UART Clock Control register (reg1 / UART_BRDV) is in the address
1355 * space of UART1 (standard UART variant), controls parent clock and
1356 * dividers for both UART1 and UART2 and is supplied via DT as the first
1357 * resource. Therefore use ioremap() rather than ioremap_resource() to
1358 * avoid conflicts with UART1 driver. Access to UART_BRDV is protected
1359 * by a lock shared between clock and UART driver.
1360 */
1361 uart_clock_base->reg1 = devm_ioremap(dev, res->start,
1362 resource_size(res));
1363 if (!uart_clock_base->reg1)
1364 return -ENOMEM;
1365
1366 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1367 if (!res) {
1368 dev_err(dev, "Couldn't get second register\n");
1369 return -ENOENT;
1370 }
1371
1372 /*
1373 * UART 2 Baud Rate Divisor register (reg2 / UART_BRDV) is in address
1374 * space of UART2 (extended UART variant), controls only one UART2
1375 * specific divider and is supplied via DT as second resource.
1376 * Therefore use ioremap() rather than ioremap_resource() to avoid
1377 * conflicts with UART2 driver. Access to UART_BRDV is protected by a
1378 * by lock shared between clock and UART driver.
1379 */
1380 uart_clock_base->reg2 = devm_ioremap(dev, res->start,
1381 resource_size(res));
1382 if (!uart_clock_base->reg2)
1383 return -ENOMEM;
1384
1385 hw_clk_data = devm_kzalloc(dev,
1386 struct_size(hw_clk_data, hws,
1387 ARRAY_SIZE(uart_clk_names)),
1388 GFP_KERNEL);
1389 if (!hw_clk_data)
1390 return -ENOMEM;
1391
1392 hw_clk_data->num = ARRAY_SIZE(uart_clk_names);
1393 for (i = 0; i < ARRAY_SIZE(uart_clk_names); i++) {
1394 hw_clk_data->hws[i] = &uart_clock_base->clocks[i].clk_hw;
1395 uart_clock_base->clocks[i].clock_idx = i;
1396 }
1397
1398 parent_clk_idx = -1;
1399
1400 for (i = 0; i < ARRAY_SIZE(parent_clk_names); i++) {
1401 parent_clks[i] = devm_clk_get(dev, parent_clk_names[i]);
1402 if (IS_ERR(parent_clks[i])) {
1403 if (PTR_ERR(parent_clks[i]) == -EPROBE_DEFER)
1404 return -EPROBE_DEFER;
1405 dev_warn(dev, "Couldn't get the parent clock %s: %ld\n",
1406 parent_clk_names[i], PTR_ERR(parent_clks[i]));
1407 continue;
1408 }
1409
1410 ret = clk_prepare_enable(parent_clks[i]);
1411 if (ret) {
1412 dev_warn(dev, "Couldn't enable parent clock %s: %d\n",
1413 parent_clk_names[i], ret);
1414 continue;
1415 }
1416 rate = clk_get_rate(parent_clks[i]);
1417 uart_clock_base->parent_rates[i] = rate;
1418
1419 if (i != PARENT_CLOCK_XTAL) {
1420 /*
1421 * Calculate the smallest TBG d1 and d2 divisors that
1422 * still can provide 9600 baudrate.
1423 */
1424 d1 = DIV_ROUND_UP(rate, 9600 * OSAMP_MAX_DIVISOR *
1425 BRDV_BAUD_MAX);
1426 if (d1 < 1)
1427 d1 = 1;
1428 else if (d1 > CLK_TBG_DIV1_MAX)
1429 d1 = CLK_TBG_DIV1_MAX;
1430
1431 d2 = DIV_ROUND_UP(rate, 9600 * OSAMP_MAX_DIVISOR *
1432 BRDV_BAUD_MAX * d1);
1433 if (d2 < 1)
1434 d2 = 1;
1435 else if (d2 > CLK_TBG_DIV2_MAX)
1436 d2 = CLK_TBG_DIV2_MAX;
1437 } else {
1438 /*
1439 * When UART clock uses XTAL clock as a source then it
1440 * is not possible to use d1 and d2 divisors.
1441 */
1442 d1 = d2 = 1;
1443 }
1444
1445 /* Skip clock source which cannot provide 9600 baudrate */
1446 if (rate > 9600 * OSAMP_MAX_DIVISOR * BRDV_BAUD_MAX * d1 * d2)
1447 continue;
1448
1449 /*
1450 * Choose TBG clock source with the smallest divisors. Use XTAL
1451 * clock source only in case TBG is not available as XTAL cannot
1452 * be used for baudrates higher than 230400.
1453 */
1454 if (parent_clk_idx == -1 ||
1455 (i != PARENT_CLOCK_XTAL && div > d1 * d2)) {
1456 parent_clk_idx = i;
1457 div = d1 * d2;
1458 }
1459 }
1460
1461 for (i = 0; i < ARRAY_SIZE(parent_clk_names); i++) {
1462 if (i == parent_clk_idx || IS_ERR(parent_clks[i]))
1463 continue;
1464 clk_disable_unprepare(parent_clks[i]);
1465 devm_clk_put(dev, parent_clks[i]);
1466 }
1467
1468 if (parent_clk_idx == -1) {
1469 dev_err(dev, "No usable parent clock\n");
1470 return -ENOENT;
1471 }
1472
1473 uart_clock_base->parent_idx = parent_clk_idx;
1474 uart_clock_base->div = div;
1475
1476 dev_notice(dev, "Using parent clock %s as base UART clock\n",
1477 __clk_get_name(parent_clks[parent_clk_idx]));
1478
1479 for (i = 0; i < ARRAY_SIZE(uart_clk_names); i++) {
1480 ret = mvebu_uart_clock_register(dev,
1481 &uart_clock_base->clocks[i],
1482 uart_clk_names[i],
1483 __clk_get_name(parent_clks[parent_clk_idx]));
1484 if (ret) {
1485 dev_err(dev, "Can't register UART clock %d: %d\n",
1486 i, ret);
1487 return ret;
1488 }
1489 }
1490
1491 return devm_of_clk_add_hw_provider(dev, of_clk_hw_onecell_get,
1492 hw_clk_data);
1493 }
1494
1495 static const struct of_device_id mvebu_uart_clock_of_match[] = {
1496 { .compatible = "marvell,armada-3700-uart-clock", },
1497 { }
1498 };
1499
1500 static struct platform_driver mvebu_uart_clock_platform_driver = {
1501 .probe = mvebu_uart_clock_probe,
1502 .driver = {
1503 .name = "mvebu-uart-clock",
1504 .of_match_table = mvebu_uart_clock_of_match,
1505 },
1506 };
1507
mvebu_uart_init(void)1508 static int __init mvebu_uart_init(void)
1509 {
1510 int ret;
1511
1512 ret = uart_register_driver(&mvebu_uart_driver);
1513 if (ret)
1514 return ret;
1515
1516 ret = platform_driver_register(&mvebu_uart_clock_platform_driver);
1517 if (ret) {
1518 uart_unregister_driver(&mvebu_uart_driver);
1519 return ret;
1520 }
1521
1522 ret = platform_driver_register(&mvebu_uart_platform_driver);
1523 if (ret) {
1524 platform_driver_unregister(&mvebu_uart_clock_platform_driver);
1525 uart_unregister_driver(&mvebu_uart_driver);
1526 return ret;
1527 }
1528
1529 return 0;
1530 }
1531 arch_initcall(mvebu_uart_init);
1532