xref: /openbmc/linux/drivers/tty/serial/msm_serial.c (revision 5d0e4d78)
1 /*
2  * Driver for msm7k serial device and console
3  *
4  * Copyright (C) 2007 Google, Inc.
5  * Author: Robert Love <rlove@google.com>
6  * Copyright (c) 2011, Code Aurora Forum. All rights reserved.
7  *
8  * This software is licensed under the terms of the GNU General Public
9  * License version 2, as published by the Free Software Foundation, and
10  * may be copied, distributed, and modified under those terms.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17 
18 #if defined(CONFIG_SERIAL_MSM_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
19 # define SUPPORT_SYSRQ
20 #endif
21 
22 #include <linux/kernel.h>
23 #include <linux/atomic.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/dmaengine.h>
26 #include <linux/module.h>
27 #include <linux/io.h>
28 #include <linux/ioport.h>
29 #include <linux/interrupt.h>
30 #include <linux/init.h>
31 #include <linux/console.h>
32 #include <linux/tty.h>
33 #include <linux/tty_flip.h>
34 #include <linux/serial_core.h>
35 #include <linux/slab.h>
36 #include <linux/clk.h>
37 #include <linux/platform_device.h>
38 #include <linux/delay.h>
39 #include <linux/of.h>
40 #include <linux/of_device.h>
41 #include <linux/wait.h>
42 
43 #define UART_MR1			0x0000
44 
45 #define UART_MR1_AUTO_RFR_LEVEL0	0x3F
46 #define UART_MR1_AUTO_RFR_LEVEL1	0x3FF00
47 #define UART_DM_MR1_AUTO_RFR_LEVEL1	0xFFFFFF00
48 #define UART_MR1_RX_RDY_CTL		BIT(7)
49 #define UART_MR1_CTS_CTL		BIT(6)
50 
51 #define UART_MR2			0x0004
52 #define UART_MR2_ERROR_MODE		BIT(6)
53 #define UART_MR2_BITS_PER_CHAR		0x30
54 #define UART_MR2_BITS_PER_CHAR_5	(0x0 << 4)
55 #define UART_MR2_BITS_PER_CHAR_6	(0x1 << 4)
56 #define UART_MR2_BITS_PER_CHAR_7	(0x2 << 4)
57 #define UART_MR2_BITS_PER_CHAR_8	(0x3 << 4)
58 #define UART_MR2_STOP_BIT_LEN_ONE	(0x1 << 2)
59 #define UART_MR2_STOP_BIT_LEN_TWO	(0x3 << 2)
60 #define UART_MR2_PARITY_MODE_NONE	0x0
61 #define UART_MR2_PARITY_MODE_ODD	0x1
62 #define UART_MR2_PARITY_MODE_EVEN	0x2
63 #define UART_MR2_PARITY_MODE_SPACE	0x3
64 #define UART_MR2_PARITY_MODE		0x3
65 
66 #define UART_CSR			0x0008
67 
68 #define UART_TF				0x000C
69 #define UARTDM_TF			0x0070
70 
71 #define UART_CR				0x0010
72 #define UART_CR_CMD_NULL		(0 << 4)
73 #define UART_CR_CMD_RESET_RX		(1 << 4)
74 #define UART_CR_CMD_RESET_TX		(2 << 4)
75 #define UART_CR_CMD_RESET_ERR		(3 << 4)
76 #define UART_CR_CMD_RESET_BREAK_INT	(4 << 4)
77 #define UART_CR_CMD_START_BREAK		(5 << 4)
78 #define UART_CR_CMD_STOP_BREAK		(6 << 4)
79 #define UART_CR_CMD_RESET_CTS		(7 << 4)
80 #define UART_CR_CMD_RESET_STALE_INT	(8 << 4)
81 #define UART_CR_CMD_PACKET_MODE		(9 << 4)
82 #define UART_CR_CMD_MODE_RESET		(12 << 4)
83 #define UART_CR_CMD_SET_RFR		(13 << 4)
84 #define UART_CR_CMD_RESET_RFR		(14 << 4)
85 #define UART_CR_CMD_PROTECTION_EN	(16 << 4)
86 #define UART_CR_CMD_STALE_EVENT_DISABLE	(6 << 8)
87 #define UART_CR_CMD_STALE_EVENT_ENABLE	(80 << 4)
88 #define UART_CR_CMD_FORCE_STALE		(4 << 8)
89 #define UART_CR_CMD_RESET_TX_READY	(3 << 8)
90 #define UART_CR_TX_DISABLE		BIT(3)
91 #define UART_CR_TX_ENABLE		BIT(2)
92 #define UART_CR_RX_DISABLE		BIT(1)
93 #define UART_CR_RX_ENABLE		BIT(0)
94 #define UART_CR_CMD_RESET_RXBREAK_START	((1 << 11) | (2 << 4))
95 
96 #define UART_IMR			0x0014
97 #define UART_IMR_TXLEV			BIT(0)
98 #define UART_IMR_RXSTALE		BIT(3)
99 #define UART_IMR_RXLEV			BIT(4)
100 #define UART_IMR_DELTA_CTS		BIT(5)
101 #define UART_IMR_CURRENT_CTS		BIT(6)
102 #define UART_IMR_RXBREAK_START		BIT(10)
103 
104 #define UART_IPR_RXSTALE_LAST		0x20
105 #define UART_IPR_STALE_LSB		0x1F
106 #define UART_IPR_STALE_TIMEOUT_MSB	0x3FF80
107 #define UART_DM_IPR_STALE_TIMEOUT_MSB	0xFFFFFF80
108 
109 #define UART_IPR			0x0018
110 #define UART_TFWR			0x001C
111 #define UART_RFWR			0x0020
112 #define UART_HCR			0x0024
113 
114 #define UART_MREG			0x0028
115 #define UART_NREG			0x002C
116 #define UART_DREG			0x0030
117 #define UART_MNDREG			0x0034
118 #define UART_IRDA			0x0038
119 #define UART_MISR_MODE			0x0040
120 #define UART_MISR_RESET			0x0044
121 #define UART_MISR_EXPORT		0x0048
122 #define UART_MISR_VAL			0x004C
123 #define UART_TEST_CTRL			0x0050
124 
125 #define UART_SR				0x0008
126 #define UART_SR_HUNT_CHAR		BIT(7)
127 #define UART_SR_RX_BREAK		BIT(6)
128 #define UART_SR_PAR_FRAME_ERR		BIT(5)
129 #define UART_SR_OVERRUN			BIT(4)
130 #define UART_SR_TX_EMPTY		BIT(3)
131 #define UART_SR_TX_READY		BIT(2)
132 #define UART_SR_RX_FULL			BIT(1)
133 #define UART_SR_RX_READY		BIT(0)
134 
135 #define UART_RF				0x000C
136 #define UARTDM_RF			0x0070
137 #define UART_MISR			0x0010
138 #define UART_ISR			0x0014
139 #define UART_ISR_TX_READY		BIT(7)
140 
141 #define UARTDM_RXFS			0x50
142 #define UARTDM_RXFS_BUF_SHIFT		0x7
143 #define UARTDM_RXFS_BUF_MASK		0x7
144 
145 #define UARTDM_DMEN			0x3C
146 #define UARTDM_DMEN_RX_SC_ENABLE	BIT(5)
147 #define UARTDM_DMEN_TX_SC_ENABLE	BIT(4)
148 
149 #define UARTDM_DMEN_TX_BAM_ENABLE	BIT(2)	/* UARTDM_1P4 */
150 #define UARTDM_DMEN_TX_DM_ENABLE	BIT(0)	/* < UARTDM_1P4 */
151 
152 #define UARTDM_DMEN_RX_BAM_ENABLE	BIT(3)	/* UARTDM_1P4 */
153 #define UARTDM_DMEN_RX_DM_ENABLE	BIT(1)	/* < UARTDM_1P4 */
154 
155 #define UARTDM_DMRX			0x34
156 #define UARTDM_NCF_TX			0x40
157 #define UARTDM_RX_TOTAL_SNAP		0x38
158 
159 #define UARTDM_BURST_SIZE		16   /* in bytes */
160 #define UARTDM_TX_AIGN(x)		((x) & ~0x3) /* valid for > 1p3 */
161 #define UARTDM_TX_MAX			256   /* in bytes, valid for <= 1p3 */
162 #define UARTDM_RX_SIZE			(UART_XMIT_SIZE / 4)
163 
164 enum {
165 	UARTDM_1P1 = 1,
166 	UARTDM_1P2,
167 	UARTDM_1P3,
168 	UARTDM_1P4,
169 };
170 
171 struct msm_dma {
172 	struct dma_chan		*chan;
173 	enum dma_data_direction dir;
174 	dma_addr_t		phys;
175 	unsigned char		*virt;
176 	dma_cookie_t		cookie;
177 	u32			enable_bit;
178 	unsigned int		count;
179 	struct dma_async_tx_descriptor	*desc;
180 };
181 
182 struct msm_port {
183 	struct uart_port	uart;
184 	char			name[16];
185 	struct clk		*clk;
186 	struct clk		*pclk;
187 	unsigned int		imr;
188 	int			is_uartdm;
189 	unsigned int		old_snap_state;
190 	bool			break_detected;
191 	struct msm_dma		tx_dma;
192 	struct msm_dma		rx_dma;
193 };
194 
195 #define UART_TO_MSM(uart_port)	container_of(uart_port, struct msm_port, uart)
196 
197 static
198 void msm_write(struct uart_port *port, unsigned int val, unsigned int off)
199 {
200 	writel_relaxed(val, port->membase + off);
201 }
202 
203 static
204 unsigned int msm_read(struct uart_port *port, unsigned int off)
205 {
206 	return readl_relaxed(port->membase + off);
207 }
208 
209 /*
210  * Setup the MND registers to use the TCXO clock.
211  */
212 static void msm_serial_set_mnd_regs_tcxo(struct uart_port *port)
213 {
214 	msm_write(port, 0x06, UART_MREG);
215 	msm_write(port, 0xF1, UART_NREG);
216 	msm_write(port, 0x0F, UART_DREG);
217 	msm_write(port, 0x1A, UART_MNDREG);
218 	port->uartclk = 1843200;
219 }
220 
221 /*
222  * Setup the MND registers to use the TCXO clock divided by 4.
223  */
224 static void msm_serial_set_mnd_regs_tcxoby4(struct uart_port *port)
225 {
226 	msm_write(port, 0x18, UART_MREG);
227 	msm_write(port, 0xF6, UART_NREG);
228 	msm_write(port, 0x0F, UART_DREG);
229 	msm_write(port, 0x0A, UART_MNDREG);
230 	port->uartclk = 1843200;
231 }
232 
233 static void msm_serial_set_mnd_regs(struct uart_port *port)
234 {
235 	struct msm_port *msm_port = UART_TO_MSM(port);
236 
237 	/*
238 	 * These registers don't exist so we change the clk input rate
239 	 * on uartdm hardware instead
240 	 */
241 	if (msm_port->is_uartdm)
242 		return;
243 
244 	if (port->uartclk == 19200000)
245 		msm_serial_set_mnd_regs_tcxo(port);
246 	else if (port->uartclk == 4800000)
247 		msm_serial_set_mnd_regs_tcxoby4(port);
248 }
249 
250 static void msm_handle_tx(struct uart_port *port);
251 static void msm_start_rx_dma(struct msm_port *msm_port);
252 
253 static void msm_stop_dma(struct uart_port *port, struct msm_dma *dma)
254 {
255 	struct device *dev = port->dev;
256 	unsigned int mapped;
257 	u32 val;
258 
259 	mapped = dma->count;
260 	dma->count = 0;
261 
262 	dmaengine_terminate_all(dma->chan);
263 
264 	/*
265 	 * DMA Stall happens if enqueue and flush command happens concurrently.
266 	 * For example before changing the baud rate/protocol configuration and
267 	 * sending flush command to ADM, disable the channel of UARTDM.
268 	 * Note: should not reset the receiver here immediately as it is not
269 	 * suggested to do disable/reset or reset/disable at the same time.
270 	 */
271 	val = msm_read(port, UARTDM_DMEN);
272 	val &= ~dma->enable_bit;
273 	msm_write(port, val, UARTDM_DMEN);
274 
275 	if (mapped)
276 		dma_unmap_single(dev, dma->phys, mapped, dma->dir);
277 }
278 
279 static void msm_release_dma(struct msm_port *msm_port)
280 {
281 	struct msm_dma *dma;
282 
283 	dma = &msm_port->tx_dma;
284 	if (dma->chan) {
285 		msm_stop_dma(&msm_port->uart, dma);
286 		dma_release_channel(dma->chan);
287 	}
288 
289 	memset(dma, 0, sizeof(*dma));
290 
291 	dma = &msm_port->rx_dma;
292 	if (dma->chan) {
293 		msm_stop_dma(&msm_port->uart, dma);
294 		dma_release_channel(dma->chan);
295 		kfree(dma->virt);
296 	}
297 
298 	memset(dma, 0, sizeof(*dma));
299 }
300 
301 static void msm_request_tx_dma(struct msm_port *msm_port, resource_size_t base)
302 {
303 	struct device *dev = msm_port->uart.dev;
304 	struct dma_slave_config conf;
305 	struct msm_dma *dma;
306 	u32 crci = 0;
307 	int ret;
308 
309 	dma = &msm_port->tx_dma;
310 
311 	/* allocate DMA resources, if available */
312 	dma->chan = dma_request_slave_channel_reason(dev, "tx");
313 	if (IS_ERR(dma->chan))
314 		goto no_tx;
315 
316 	of_property_read_u32(dev->of_node, "qcom,tx-crci", &crci);
317 
318 	memset(&conf, 0, sizeof(conf));
319 	conf.direction = DMA_MEM_TO_DEV;
320 	conf.device_fc = true;
321 	conf.dst_addr = base + UARTDM_TF;
322 	conf.dst_maxburst = UARTDM_BURST_SIZE;
323 	conf.slave_id = crci;
324 
325 	ret = dmaengine_slave_config(dma->chan, &conf);
326 	if (ret)
327 		goto rel_tx;
328 
329 	dma->dir = DMA_TO_DEVICE;
330 
331 	if (msm_port->is_uartdm < UARTDM_1P4)
332 		dma->enable_bit = UARTDM_DMEN_TX_DM_ENABLE;
333 	else
334 		dma->enable_bit = UARTDM_DMEN_TX_BAM_ENABLE;
335 
336 	return;
337 
338 rel_tx:
339 	dma_release_channel(dma->chan);
340 no_tx:
341 	memset(dma, 0, sizeof(*dma));
342 }
343 
344 static void msm_request_rx_dma(struct msm_port *msm_port, resource_size_t base)
345 {
346 	struct device *dev = msm_port->uart.dev;
347 	struct dma_slave_config conf;
348 	struct msm_dma *dma;
349 	u32 crci = 0;
350 	int ret;
351 
352 	dma = &msm_port->rx_dma;
353 
354 	/* allocate DMA resources, if available */
355 	dma->chan = dma_request_slave_channel_reason(dev, "rx");
356 	if (IS_ERR(dma->chan))
357 		goto no_rx;
358 
359 	of_property_read_u32(dev->of_node, "qcom,rx-crci", &crci);
360 
361 	dma->virt = kzalloc(UARTDM_RX_SIZE, GFP_KERNEL);
362 	if (!dma->virt)
363 		goto rel_rx;
364 
365 	memset(&conf, 0, sizeof(conf));
366 	conf.direction = DMA_DEV_TO_MEM;
367 	conf.device_fc = true;
368 	conf.src_addr = base + UARTDM_RF;
369 	conf.src_maxburst = UARTDM_BURST_SIZE;
370 	conf.slave_id = crci;
371 
372 	ret = dmaengine_slave_config(dma->chan, &conf);
373 	if (ret)
374 		goto err;
375 
376 	dma->dir = DMA_FROM_DEVICE;
377 
378 	if (msm_port->is_uartdm < UARTDM_1P4)
379 		dma->enable_bit = UARTDM_DMEN_RX_DM_ENABLE;
380 	else
381 		dma->enable_bit = UARTDM_DMEN_RX_BAM_ENABLE;
382 
383 	return;
384 err:
385 	kfree(dma->virt);
386 rel_rx:
387 	dma_release_channel(dma->chan);
388 no_rx:
389 	memset(dma, 0, sizeof(*dma));
390 }
391 
392 static inline void msm_wait_for_xmitr(struct uart_port *port)
393 {
394 	while (!(msm_read(port, UART_SR) & UART_SR_TX_EMPTY)) {
395 		if (msm_read(port, UART_ISR) & UART_ISR_TX_READY)
396 			break;
397 		udelay(1);
398 	}
399 	msm_write(port, UART_CR_CMD_RESET_TX_READY, UART_CR);
400 }
401 
402 static void msm_stop_tx(struct uart_port *port)
403 {
404 	struct msm_port *msm_port = UART_TO_MSM(port);
405 
406 	msm_port->imr &= ~UART_IMR_TXLEV;
407 	msm_write(port, msm_port->imr, UART_IMR);
408 }
409 
410 static void msm_start_tx(struct uart_port *port)
411 {
412 	struct msm_port *msm_port = UART_TO_MSM(port);
413 	struct msm_dma *dma = &msm_port->tx_dma;
414 
415 	/* Already started in DMA mode */
416 	if (dma->count)
417 		return;
418 
419 	msm_port->imr |= UART_IMR_TXLEV;
420 	msm_write(port, msm_port->imr, UART_IMR);
421 }
422 
423 static void msm_reset_dm_count(struct uart_port *port, int count)
424 {
425 	msm_wait_for_xmitr(port);
426 	msm_write(port, count, UARTDM_NCF_TX);
427 	msm_read(port, UARTDM_NCF_TX);
428 }
429 
430 static void msm_complete_tx_dma(void *args)
431 {
432 	struct msm_port *msm_port = args;
433 	struct uart_port *port = &msm_port->uart;
434 	struct circ_buf *xmit = &port->state->xmit;
435 	struct msm_dma *dma = &msm_port->tx_dma;
436 	struct dma_tx_state state;
437 	enum dma_status status;
438 	unsigned long flags;
439 	unsigned int count;
440 	u32 val;
441 
442 	spin_lock_irqsave(&port->lock, flags);
443 
444 	/* Already stopped */
445 	if (!dma->count)
446 		goto done;
447 
448 	status = dmaengine_tx_status(dma->chan, dma->cookie, &state);
449 
450 	dma_unmap_single(port->dev, dma->phys, dma->count, dma->dir);
451 
452 	val = msm_read(port, UARTDM_DMEN);
453 	val &= ~dma->enable_bit;
454 	msm_write(port, val, UARTDM_DMEN);
455 
456 	if (msm_port->is_uartdm > UARTDM_1P3) {
457 		msm_write(port, UART_CR_CMD_RESET_TX, UART_CR);
458 		msm_write(port, UART_CR_TX_ENABLE, UART_CR);
459 	}
460 
461 	count = dma->count - state.residue;
462 	port->icount.tx += count;
463 	dma->count = 0;
464 
465 	xmit->tail += count;
466 	xmit->tail &= UART_XMIT_SIZE - 1;
467 
468 	/* Restore "Tx FIFO below watermark" interrupt */
469 	msm_port->imr |= UART_IMR_TXLEV;
470 	msm_write(port, msm_port->imr, UART_IMR);
471 
472 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
473 		uart_write_wakeup(port);
474 
475 	msm_handle_tx(port);
476 done:
477 	spin_unlock_irqrestore(&port->lock, flags);
478 }
479 
480 static int msm_handle_tx_dma(struct msm_port *msm_port, unsigned int count)
481 {
482 	struct circ_buf *xmit = &msm_port->uart.state->xmit;
483 	struct uart_port *port = &msm_port->uart;
484 	struct msm_dma *dma = &msm_port->tx_dma;
485 	void *cpu_addr;
486 	int ret;
487 	u32 val;
488 
489 	cpu_addr = &xmit->buf[xmit->tail];
490 
491 	dma->phys = dma_map_single(port->dev, cpu_addr, count, dma->dir);
492 	ret = dma_mapping_error(port->dev, dma->phys);
493 	if (ret)
494 		return ret;
495 
496 	dma->desc = dmaengine_prep_slave_single(dma->chan, dma->phys,
497 						count, DMA_MEM_TO_DEV,
498 						DMA_PREP_INTERRUPT |
499 						DMA_PREP_FENCE);
500 	if (!dma->desc) {
501 		ret = -EIO;
502 		goto unmap;
503 	}
504 
505 	dma->desc->callback = msm_complete_tx_dma;
506 	dma->desc->callback_param = msm_port;
507 
508 	dma->cookie = dmaengine_submit(dma->desc);
509 	ret = dma_submit_error(dma->cookie);
510 	if (ret)
511 		goto unmap;
512 
513 	/*
514 	 * Using DMA complete for Tx FIFO reload, no need for
515 	 * "Tx FIFO below watermark" one, disable it
516 	 */
517 	msm_port->imr &= ~UART_IMR_TXLEV;
518 	msm_write(port, msm_port->imr, UART_IMR);
519 
520 	dma->count = count;
521 
522 	val = msm_read(port, UARTDM_DMEN);
523 	val |= dma->enable_bit;
524 
525 	if (msm_port->is_uartdm < UARTDM_1P4)
526 		msm_write(port, val, UARTDM_DMEN);
527 
528 	msm_reset_dm_count(port, count);
529 
530 	if (msm_port->is_uartdm > UARTDM_1P3)
531 		msm_write(port, val, UARTDM_DMEN);
532 
533 	dma_async_issue_pending(dma->chan);
534 	return 0;
535 unmap:
536 	dma_unmap_single(port->dev, dma->phys, count, dma->dir);
537 	return ret;
538 }
539 
540 static void msm_complete_rx_dma(void *args)
541 {
542 	struct msm_port *msm_port = args;
543 	struct uart_port *port = &msm_port->uart;
544 	struct tty_port *tport = &port->state->port;
545 	struct msm_dma *dma = &msm_port->rx_dma;
546 	int count = 0, i, sysrq;
547 	unsigned long flags;
548 	u32 val;
549 
550 	spin_lock_irqsave(&port->lock, flags);
551 
552 	/* Already stopped */
553 	if (!dma->count)
554 		goto done;
555 
556 	val = msm_read(port, UARTDM_DMEN);
557 	val &= ~dma->enable_bit;
558 	msm_write(port, val, UARTDM_DMEN);
559 
560 	if (msm_read(port, UART_SR) & UART_SR_OVERRUN) {
561 		port->icount.overrun++;
562 		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
563 		msm_write(port, UART_CR_CMD_RESET_ERR, UART_CR);
564 	}
565 
566 	count = msm_read(port, UARTDM_RX_TOTAL_SNAP);
567 
568 	port->icount.rx += count;
569 
570 	dma->count = 0;
571 
572 	dma_unmap_single(port->dev, dma->phys, UARTDM_RX_SIZE, dma->dir);
573 
574 	for (i = 0; i < count; i++) {
575 		char flag = TTY_NORMAL;
576 
577 		if (msm_port->break_detected && dma->virt[i] == 0) {
578 			port->icount.brk++;
579 			flag = TTY_BREAK;
580 			msm_port->break_detected = false;
581 			if (uart_handle_break(port))
582 				continue;
583 		}
584 
585 		if (!(port->read_status_mask & UART_SR_RX_BREAK))
586 			flag = TTY_NORMAL;
587 
588 		spin_unlock_irqrestore(&port->lock, flags);
589 		sysrq = uart_handle_sysrq_char(port, dma->virt[i]);
590 		spin_lock_irqsave(&port->lock, flags);
591 		if (!sysrq)
592 			tty_insert_flip_char(tport, dma->virt[i], flag);
593 	}
594 
595 	msm_start_rx_dma(msm_port);
596 done:
597 	spin_unlock_irqrestore(&port->lock, flags);
598 
599 	if (count)
600 		tty_flip_buffer_push(tport);
601 }
602 
603 static void msm_start_rx_dma(struct msm_port *msm_port)
604 {
605 	struct msm_dma *dma = &msm_port->rx_dma;
606 	struct uart_port *uart = &msm_port->uart;
607 	u32 val;
608 	int ret;
609 
610 	if (!dma->chan)
611 		return;
612 
613 	dma->phys = dma_map_single(uart->dev, dma->virt,
614 				   UARTDM_RX_SIZE, dma->dir);
615 	ret = dma_mapping_error(uart->dev, dma->phys);
616 	if (ret)
617 		return;
618 
619 	dma->desc = dmaengine_prep_slave_single(dma->chan, dma->phys,
620 						UARTDM_RX_SIZE, DMA_DEV_TO_MEM,
621 						DMA_PREP_INTERRUPT);
622 	if (!dma->desc)
623 		goto unmap;
624 
625 	dma->desc->callback = msm_complete_rx_dma;
626 	dma->desc->callback_param = msm_port;
627 
628 	dma->cookie = dmaengine_submit(dma->desc);
629 	ret = dma_submit_error(dma->cookie);
630 	if (ret)
631 		goto unmap;
632 	/*
633 	 * Using DMA for FIFO off-load, no need for "Rx FIFO over
634 	 * watermark" or "stale" interrupts, disable them
635 	 */
636 	msm_port->imr &= ~(UART_IMR_RXLEV | UART_IMR_RXSTALE);
637 
638 	/*
639 	 * Well, when DMA is ADM3 engine(implied by <= UARTDM v1.3),
640 	 * we need RXSTALE to flush input DMA fifo to memory
641 	 */
642 	if (msm_port->is_uartdm < UARTDM_1P4)
643 		msm_port->imr |= UART_IMR_RXSTALE;
644 
645 	msm_write(uart, msm_port->imr, UART_IMR);
646 
647 	dma->count = UARTDM_RX_SIZE;
648 
649 	dma_async_issue_pending(dma->chan);
650 
651 	msm_write(uart, UART_CR_CMD_RESET_STALE_INT, UART_CR);
652 	msm_write(uart, UART_CR_CMD_STALE_EVENT_ENABLE, UART_CR);
653 
654 	val = msm_read(uart, UARTDM_DMEN);
655 	val |= dma->enable_bit;
656 
657 	if (msm_port->is_uartdm < UARTDM_1P4)
658 		msm_write(uart, val, UARTDM_DMEN);
659 
660 	msm_write(uart, UARTDM_RX_SIZE, UARTDM_DMRX);
661 
662 	if (msm_port->is_uartdm > UARTDM_1P3)
663 		msm_write(uart, val, UARTDM_DMEN);
664 
665 	return;
666 unmap:
667 	dma_unmap_single(uart->dev, dma->phys, UARTDM_RX_SIZE, dma->dir);
668 }
669 
670 static void msm_stop_rx(struct uart_port *port)
671 {
672 	struct msm_port *msm_port = UART_TO_MSM(port);
673 	struct msm_dma *dma = &msm_port->rx_dma;
674 
675 	msm_port->imr &= ~(UART_IMR_RXLEV | UART_IMR_RXSTALE);
676 	msm_write(port, msm_port->imr, UART_IMR);
677 
678 	if (dma->chan)
679 		msm_stop_dma(port, dma);
680 }
681 
682 static void msm_enable_ms(struct uart_port *port)
683 {
684 	struct msm_port *msm_port = UART_TO_MSM(port);
685 
686 	msm_port->imr |= UART_IMR_DELTA_CTS;
687 	msm_write(port, msm_port->imr, UART_IMR);
688 }
689 
690 static void msm_handle_rx_dm(struct uart_port *port, unsigned int misr)
691 {
692 	struct tty_port *tport = &port->state->port;
693 	unsigned int sr;
694 	int count = 0;
695 	struct msm_port *msm_port = UART_TO_MSM(port);
696 
697 	if ((msm_read(port, UART_SR) & UART_SR_OVERRUN)) {
698 		port->icount.overrun++;
699 		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
700 		msm_write(port, UART_CR_CMD_RESET_ERR, UART_CR);
701 	}
702 
703 	if (misr & UART_IMR_RXSTALE) {
704 		count = msm_read(port, UARTDM_RX_TOTAL_SNAP) -
705 			msm_port->old_snap_state;
706 		msm_port->old_snap_state = 0;
707 	} else {
708 		count = 4 * (msm_read(port, UART_RFWR));
709 		msm_port->old_snap_state += count;
710 	}
711 
712 	/* TODO: Precise error reporting */
713 
714 	port->icount.rx += count;
715 
716 	while (count > 0) {
717 		unsigned char buf[4];
718 		int sysrq, r_count, i;
719 
720 		sr = msm_read(port, UART_SR);
721 		if ((sr & UART_SR_RX_READY) == 0) {
722 			msm_port->old_snap_state -= count;
723 			break;
724 		}
725 
726 		ioread32_rep(port->membase + UARTDM_RF, buf, 1);
727 		r_count = min_t(int, count, sizeof(buf));
728 
729 		for (i = 0; i < r_count; i++) {
730 			char flag = TTY_NORMAL;
731 
732 			if (msm_port->break_detected && buf[i] == 0) {
733 				port->icount.brk++;
734 				flag = TTY_BREAK;
735 				msm_port->break_detected = false;
736 				if (uart_handle_break(port))
737 					continue;
738 			}
739 
740 			if (!(port->read_status_mask & UART_SR_RX_BREAK))
741 				flag = TTY_NORMAL;
742 
743 			spin_unlock(&port->lock);
744 			sysrq = uart_handle_sysrq_char(port, buf[i]);
745 			spin_lock(&port->lock);
746 			if (!sysrq)
747 				tty_insert_flip_char(tport, buf[i], flag);
748 		}
749 		count -= r_count;
750 	}
751 
752 	spin_unlock(&port->lock);
753 	tty_flip_buffer_push(tport);
754 	spin_lock(&port->lock);
755 
756 	if (misr & (UART_IMR_RXSTALE))
757 		msm_write(port, UART_CR_CMD_RESET_STALE_INT, UART_CR);
758 	msm_write(port, 0xFFFFFF, UARTDM_DMRX);
759 	msm_write(port, UART_CR_CMD_STALE_EVENT_ENABLE, UART_CR);
760 
761 	/* Try to use DMA */
762 	msm_start_rx_dma(msm_port);
763 }
764 
765 static void msm_handle_rx(struct uart_port *port)
766 {
767 	struct tty_port *tport = &port->state->port;
768 	unsigned int sr;
769 
770 	/*
771 	 * Handle overrun. My understanding of the hardware is that overrun
772 	 * is not tied to the RX buffer, so we handle the case out of band.
773 	 */
774 	if ((msm_read(port, UART_SR) & UART_SR_OVERRUN)) {
775 		port->icount.overrun++;
776 		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
777 		msm_write(port, UART_CR_CMD_RESET_ERR, UART_CR);
778 	}
779 
780 	/* and now the main RX loop */
781 	while ((sr = msm_read(port, UART_SR)) & UART_SR_RX_READY) {
782 		unsigned int c;
783 		char flag = TTY_NORMAL;
784 		int sysrq;
785 
786 		c = msm_read(port, UART_RF);
787 
788 		if (sr & UART_SR_RX_BREAK) {
789 			port->icount.brk++;
790 			if (uart_handle_break(port))
791 				continue;
792 		} else if (sr & UART_SR_PAR_FRAME_ERR) {
793 			port->icount.frame++;
794 		} else {
795 			port->icount.rx++;
796 		}
797 
798 		/* Mask conditions we're ignorning. */
799 		sr &= port->read_status_mask;
800 
801 		if (sr & UART_SR_RX_BREAK)
802 			flag = TTY_BREAK;
803 		else if (sr & UART_SR_PAR_FRAME_ERR)
804 			flag = TTY_FRAME;
805 
806 		spin_unlock(&port->lock);
807 		sysrq = uart_handle_sysrq_char(port, c);
808 		spin_lock(&port->lock);
809 		if (!sysrq)
810 			tty_insert_flip_char(tport, c, flag);
811 	}
812 
813 	spin_unlock(&port->lock);
814 	tty_flip_buffer_push(tport);
815 	spin_lock(&port->lock);
816 }
817 
818 static void msm_handle_tx_pio(struct uart_port *port, unsigned int tx_count)
819 {
820 	struct circ_buf *xmit = &port->state->xmit;
821 	struct msm_port *msm_port = UART_TO_MSM(port);
822 	unsigned int num_chars;
823 	unsigned int tf_pointer = 0;
824 	void __iomem *tf;
825 
826 	if (msm_port->is_uartdm)
827 		tf = port->membase + UARTDM_TF;
828 	else
829 		tf = port->membase + UART_TF;
830 
831 	if (tx_count && msm_port->is_uartdm)
832 		msm_reset_dm_count(port, tx_count);
833 
834 	while (tf_pointer < tx_count) {
835 		int i;
836 		char buf[4] = { 0 };
837 
838 		if (!(msm_read(port, UART_SR) & UART_SR_TX_READY))
839 			break;
840 
841 		if (msm_port->is_uartdm)
842 			num_chars = min(tx_count - tf_pointer,
843 					(unsigned int)sizeof(buf));
844 		else
845 			num_chars = 1;
846 
847 		for (i = 0; i < num_chars; i++) {
848 			buf[i] = xmit->buf[xmit->tail + i];
849 			port->icount.tx++;
850 		}
851 
852 		iowrite32_rep(tf, buf, 1);
853 		xmit->tail = (xmit->tail + num_chars) & (UART_XMIT_SIZE - 1);
854 		tf_pointer += num_chars;
855 	}
856 
857 	/* disable tx interrupts if nothing more to send */
858 	if (uart_circ_empty(xmit))
859 		msm_stop_tx(port);
860 
861 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
862 		uart_write_wakeup(port);
863 }
864 
865 static void msm_handle_tx(struct uart_port *port)
866 {
867 	struct msm_port *msm_port = UART_TO_MSM(port);
868 	struct circ_buf *xmit = &msm_port->uart.state->xmit;
869 	struct msm_dma *dma = &msm_port->tx_dma;
870 	unsigned int pio_count, dma_count, dma_min;
871 	void __iomem *tf;
872 	int err = 0;
873 
874 	if (port->x_char) {
875 		if (msm_port->is_uartdm)
876 			tf = port->membase + UARTDM_TF;
877 		else
878 			tf = port->membase + UART_TF;
879 
880 		if (msm_port->is_uartdm)
881 			msm_reset_dm_count(port, 1);
882 
883 		iowrite8_rep(tf, &port->x_char, 1);
884 		port->icount.tx++;
885 		port->x_char = 0;
886 		return;
887 	}
888 
889 	if (uart_circ_empty(xmit) || uart_tx_stopped(port)) {
890 		msm_stop_tx(port);
891 		return;
892 	}
893 
894 	pio_count = CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE);
895 	dma_count = CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE);
896 
897 	dma_min = 1;	/* Always DMA */
898 	if (msm_port->is_uartdm > UARTDM_1P3) {
899 		dma_count = UARTDM_TX_AIGN(dma_count);
900 		dma_min = UARTDM_BURST_SIZE;
901 	} else {
902 		if (dma_count > UARTDM_TX_MAX)
903 			dma_count = UARTDM_TX_MAX;
904 	}
905 
906 	if (pio_count > port->fifosize)
907 		pio_count = port->fifosize;
908 
909 	if (!dma->chan || dma_count < dma_min)
910 		msm_handle_tx_pio(port, pio_count);
911 	else
912 		err = msm_handle_tx_dma(msm_port, dma_count);
913 
914 	if (err)	/* fall back to PIO mode */
915 		msm_handle_tx_pio(port, pio_count);
916 }
917 
918 static void msm_handle_delta_cts(struct uart_port *port)
919 {
920 	msm_write(port, UART_CR_CMD_RESET_CTS, UART_CR);
921 	port->icount.cts++;
922 	wake_up_interruptible(&port->state->port.delta_msr_wait);
923 }
924 
925 static irqreturn_t msm_uart_irq(int irq, void *dev_id)
926 {
927 	struct uart_port *port = dev_id;
928 	struct msm_port *msm_port = UART_TO_MSM(port);
929 	struct msm_dma *dma = &msm_port->rx_dma;
930 	unsigned long flags;
931 	unsigned int misr;
932 	u32 val;
933 
934 	spin_lock_irqsave(&port->lock, flags);
935 	misr = msm_read(port, UART_MISR);
936 	msm_write(port, 0, UART_IMR); /* disable interrupt */
937 
938 	if (misr & UART_IMR_RXBREAK_START) {
939 		msm_port->break_detected = true;
940 		msm_write(port, UART_CR_CMD_RESET_RXBREAK_START, UART_CR);
941 	}
942 
943 	if (misr & (UART_IMR_RXLEV | UART_IMR_RXSTALE)) {
944 		if (dma->count) {
945 			val = UART_CR_CMD_STALE_EVENT_DISABLE;
946 			msm_write(port, val, UART_CR);
947 			val = UART_CR_CMD_RESET_STALE_INT;
948 			msm_write(port, val, UART_CR);
949 			/*
950 			 * Flush DMA input fifo to memory, this will also
951 			 * trigger DMA RX completion
952 			 */
953 			dmaengine_terminate_all(dma->chan);
954 		} else if (msm_port->is_uartdm) {
955 			msm_handle_rx_dm(port, misr);
956 		} else {
957 			msm_handle_rx(port);
958 		}
959 	}
960 	if (misr & UART_IMR_TXLEV)
961 		msm_handle_tx(port);
962 	if (misr & UART_IMR_DELTA_CTS)
963 		msm_handle_delta_cts(port);
964 
965 	msm_write(port, msm_port->imr, UART_IMR); /* restore interrupt */
966 	spin_unlock_irqrestore(&port->lock, flags);
967 
968 	return IRQ_HANDLED;
969 }
970 
971 static unsigned int msm_tx_empty(struct uart_port *port)
972 {
973 	return (msm_read(port, UART_SR) & UART_SR_TX_EMPTY) ? TIOCSER_TEMT : 0;
974 }
975 
976 static unsigned int msm_get_mctrl(struct uart_port *port)
977 {
978 	return TIOCM_CAR | TIOCM_CTS | TIOCM_DSR | TIOCM_RTS;
979 }
980 
981 static void msm_reset(struct uart_port *port)
982 {
983 	struct msm_port *msm_port = UART_TO_MSM(port);
984 
985 	/* reset everything */
986 	msm_write(port, UART_CR_CMD_RESET_RX, UART_CR);
987 	msm_write(port, UART_CR_CMD_RESET_TX, UART_CR);
988 	msm_write(port, UART_CR_CMD_RESET_ERR, UART_CR);
989 	msm_write(port, UART_CR_CMD_RESET_BREAK_INT, UART_CR);
990 	msm_write(port, UART_CR_CMD_RESET_CTS, UART_CR);
991 	msm_write(port, UART_CR_CMD_SET_RFR, UART_CR);
992 
993 	/* Disable DM modes */
994 	if (msm_port->is_uartdm)
995 		msm_write(port, 0, UARTDM_DMEN);
996 }
997 
998 static void msm_set_mctrl(struct uart_port *port, unsigned int mctrl)
999 {
1000 	unsigned int mr;
1001 
1002 	mr = msm_read(port, UART_MR1);
1003 
1004 	if (!(mctrl & TIOCM_RTS)) {
1005 		mr &= ~UART_MR1_RX_RDY_CTL;
1006 		msm_write(port, mr, UART_MR1);
1007 		msm_write(port, UART_CR_CMD_RESET_RFR, UART_CR);
1008 	} else {
1009 		mr |= UART_MR1_RX_RDY_CTL;
1010 		msm_write(port, mr, UART_MR1);
1011 	}
1012 }
1013 
1014 static void msm_break_ctl(struct uart_port *port, int break_ctl)
1015 {
1016 	if (break_ctl)
1017 		msm_write(port, UART_CR_CMD_START_BREAK, UART_CR);
1018 	else
1019 		msm_write(port, UART_CR_CMD_STOP_BREAK, UART_CR);
1020 }
1021 
1022 struct msm_baud_map {
1023 	u16	divisor;
1024 	u8	code;
1025 	u8	rxstale;
1026 };
1027 
1028 static const struct msm_baud_map *
1029 msm_find_best_baud(struct uart_port *port, unsigned int baud,
1030 		   unsigned long *rate)
1031 {
1032 	struct msm_port *msm_port = UART_TO_MSM(port);
1033 	unsigned int divisor, result;
1034 	unsigned long target, old, best_rate = 0, diff, best_diff = ULONG_MAX;
1035 	const struct msm_baud_map *entry, *end, *best;
1036 	static const struct msm_baud_map table[] = {
1037 		{    1, 0xff, 31 },
1038 		{    2, 0xee, 16 },
1039 		{    3, 0xdd,  8 },
1040 		{    4, 0xcc,  6 },
1041 		{    6, 0xbb,  6 },
1042 		{    8, 0xaa,  6 },
1043 		{   12, 0x99,  6 },
1044 		{   16, 0x88,  1 },
1045 		{   24, 0x77,  1 },
1046 		{   32, 0x66,  1 },
1047 		{   48, 0x55,  1 },
1048 		{   96, 0x44,  1 },
1049 		{  192, 0x33,  1 },
1050 		{  384, 0x22,  1 },
1051 		{  768, 0x11,  1 },
1052 		{ 1536, 0x00,  1 },
1053 	};
1054 
1055 	best = table; /* Default to smallest divider */
1056 	target = clk_round_rate(msm_port->clk, 16 * baud);
1057 	divisor = DIV_ROUND_CLOSEST(target, 16 * baud);
1058 
1059 	end = table + ARRAY_SIZE(table);
1060 	entry = table;
1061 	while (entry < end) {
1062 		if (entry->divisor <= divisor) {
1063 			result = target / entry->divisor / 16;
1064 			diff = abs(result - baud);
1065 
1066 			/* Keep track of best entry */
1067 			if (diff < best_diff) {
1068 				best_diff = diff;
1069 				best = entry;
1070 				best_rate = target;
1071 			}
1072 
1073 			if (result == baud)
1074 				break;
1075 		} else if (entry->divisor > divisor) {
1076 			old = target;
1077 			target = clk_round_rate(msm_port->clk, old + 1);
1078 			/*
1079 			 * The rate didn't get any faster so we can't do
1080 			 * better at dividing it down
1081 			 */
1082 			if (target == old)
1083 				break;
1084 
1085 			/* Start the divisor search over at this new rate */
1086 			entry = table;
1087 			divisor = DIV_ROUND_CLOSEST(target, 16 * baud);
1088 			continue;
1089 		}
1090 		entry++;
1091 	}
1092 
1093 	*rate = best_rate;
1094 	return best;
1095 }
1096 
1097 static int msm_set_baud_rate(struct uart_port *port, unsigned int baud,
1098 			     unsigned long *saved_flags)
1099 {
1100 	unsigned int rxstale, watermark, mask;
1101 	struct msm_port *msm_port = UART_TO_MSM(port);
1102 	const struct msm_baud_map *entry;
1103 	unsigned long flags, rate;
1104 
1105 	flags = *saved_flags;
1106 	spin_unlock_irqrestore(&port->lock, flags);
1107 
1108 	entry = msm_find_best_baud(port, baud, &rate);
1109 	clk_set_rate(msm_port->clk, rate);
1110 	baud = rate / 16 / entry->divisor;
1111 
1112 	spin_lock_irqsave(&port->lock, flags);
1113 	*saved_flags = flags;
1114 	port->uartclk = rate;
1115 
1116 	msm_write(port, entry->code, UART_CSR);
1117 
1118 	/* RX stale watermark */
1119 	rxstale = entry->rxstale;
1120 	watermark = UART_IPR_STALE_LSB & rxstale;
1121 	if (msm_port->is_uartdm) {
1122 		mask = UART_DM_IPR_STALE_TIMEOUT_MSB;
1123 	} else {
1124 		watermark |= UART_IPR_RXSTALE_LAST;
1125 		mask = UART_IPR_STALE_TIMEOUT_MSB;
1126 	}
1127 
1128 	watermark |= mask & (rxstale << 2);
1129 
1130 	msm_write(port, watermark, UART_IPR);
1131 
1132 	/* set RX watermark */
1133 	watermark = (port->fifosize * 3) / 4;
1134 	msm_write(port, watermark, UART_RFWR);
1135 
1136 	/* set TX watermark */
1137 	msm_write(port, 10, UART_TFWR);
1138 
1139 	msm_write(port, UART_CR_CMD_PROTECTION_EN, UART_CR);
1140 	msm_reset(port);
1141 
1142 	/* Enable RX and TX */
1143 	msm_write(port, UART_CR_TX_ENABLE | UART_CR_RX_ENABLE, UART_CR);
1144 
1145 	/* turn on RX and CTS interrupts */
1146 	msm_port->imr = UART_IMR_RXLEV | UART_IMR_RXSTALE |
1147 			UART_IMR_CURRENT_CTS | UART_IMR_RXBREAK_START;
1148 
1149 	msm_write(port, msm_port->imr, UART_IMR);
1150 
1151 	if (msm_port->is_uartdm) {
1152 		msm_write(port, UART_CR_CMD_RESET_STALE_INT, UART_CR);
1153 		msm_write(port, 0xFFFFFF, UARTDM_DMRX);
1154 		msm_write(port, UART_CR_CMD_STALE_EVENT_ENABLE, UART_CR);
1155 	}
1156 
1157 	return baud;
1158 }
1159 
1160 static void msm_init_clock(struct uart_port *port)
1161 {
1162 	struct msm_port *msm_port = UART_TO_MSM(port);
1163 
1164 	clk_prepare_enable(msm_port->clk);
1165 	clk_prepare_enable(msm_port->pclk);
1166 	msm_serial_set_mnd_regs(port);
1167 }
1168 
1169 static int msm_startup(struct uart_port *port)
1170 {
1171 	struct msm_port *msm_port = UART_TO_MSM(port);
1172 	unsigned int data, rfr_level, mask;
1173 	int ret;
1174 
1175 	snprintf(msm_port->name, sizeof(msm_port->name),
1176 		 "msm_serial%d", port->line);
1177 
1178 	ret = request_irq(port->irq, msm_uart_irq, IRQF_TRIGGER_HIGH,
1179 			  msm_port->name, port);
1180 	if (unlikely(ret))
1181 		return ret;
1182 
1183 	msm_init_clock(port);
1184 
1185 	if (likely(port->fifosize > 12))
1186 		rfr_level = port->fifosize - 12;
1187 	else
1188 		rfr_level = port->fifosize;
1189 
1190 	/* set automatic RFR level */
1191 	data = msm_read(port, UART_MR1);
1192 
1193 	if (msm_port->is_uartdm)
1194 		mask = UART_DM_MR1_AUTO_RFR_LEVEL1;
1195 	else
1196 		mask = UART_MR1_AUTO_RFR_LEVEL1;
1197 
1198 	data &= ~mask;
1199 	data &= ~UART_MR1_AUTO_RFR_LEVEL0;
1200 	data |= mask & (rfr_level << 2);
1201 	data |= UART_MR1_AUTO_RFR_LEVEL0 & rfr_level;
1202 	msm_write(port, data, UART_MR1);
1203 
1204 	if (msm_port->is_uartdm) {
1205 		msm_request_tx_dma(msm_port, msm_port->uart.mapbase);
1206 		msm_request_rx_dma(msm_port, msm_port->uart.mapbase);
1207 	}
1208 
1209 	return 0;
1210 }
1211 
1212 static void msm_shutdown(struct uart_port *port)
1213 {
1214 	struct msm_port *msm_port = UART_TO_MSM(port);
1215 
1216 	msm_port->imr = 0;
1217 	msm_write(port, 0, UART_IMR); /* disable interrupts */
1218 
1219 	if (msm_port->is_uartdm)
1220 		msm_release_dma(msm_port);
1221 
1222 	clk_disable_unprepare(msm_port->clk);
1223 
1224 	free_irq(port->irq, port);
1225 }
1226 
1227 static void msm_set_termios(struct uart_port *port, struct ktermios *termios,
1228 			    struct ktermios *old)
1229 {
1230 	struct msm_port *msm_port = UART_TO_MSM(port);
1231 	struct msm_dma *dma = &msm_port->rx_dma;
1232 	unsigned long flags;
1233 	unsigned int baud, mr;
1234 
1235 	spin_lock_irqsave(&port->lock, flags);
1236 
1237 	if (dma->chan) /* Terminate if any */
1238 		msm_stop_dma(port, dma);
1239 
1240 	/* calculate and set baud rate */
1241 	baud = uart_get_baud_rate(port, termios, old, 300, 4000000);
1242 	baud = msm_set_baud_rate(port, baud, &flags);
1243 	if (tty_termios_baud_rate(termios))
1244 		tty_termios_encode_baud_rate(termios, baud, baud);
1245 
1246 	/* calculate parity */
1247 	mr = msm_read(port, UART_MR2);
1248 	mr &= ~UART_MR2_PARITY_MODE;
1249 	if (termios->c_cflag & PARENB) {
1250 		if (termios->c_cflag & PARODD)
1251 			mr |= UART_MR2_PARITY_MODE_ODD;
1252 		else if (termios->c_cflag & CMSPAR)
1253 			mr |= UART_MR2_PARITY_MODE_SPACE;
1254 		else
1255 			mr |= UART_MR2_PARITY_MODE_EVEN;
1256 	}
1257 
1258 	/* calculate bits per char */
1259 	mr &= ~UART_MR2_BITS_PER_CHAR;
1260 	switch (termios->c_cflag & CSIZE) {
1261 	case CS5:
1262 		mr |= UART_MR2_BITS_PER_CHAR_5;
1263 		break;
1264 	case CS6:
1265 		mr |= UART_MR2_BITS_PER_CHAR_6;
1266 		break;
1267 	case CS7:
1268 		mr |= UART_MR2_BITS_PER_CHAR_7;
1269 		break;
1270 	case CS8:
1271 	default:
1272 		mr |= UART_MR2_BITS_PER_CHAR_8;
1273 		break;
1274 	}
1275 
1276 	/* calculate stop bits */
1277 	mr &= ~(UART_MR2_STOP_BIT_LEN_ONE | UART_MR2_STOP_BIT_LEN_TWO);
1278 	if (termios->c_cflag & CSTOPB)
1279 		mr |= UART_MR2_STOP_BIT_LEN_TWO;
1280 	else
1281 		mr |= UART_MR2_STOP_BIT_LEN_ONE;
1282 
1283 	/* set parity, bits per char, and stop bit */
1284 	msm_write(port, mr, UART_MR2);
1285 
1286 	/* calculate and set hardware flow control */
1287 	mr = msm_read(port, UART_MR1);
1288 	mr &= ~(UART_MR1_CTS_CTL | UART_MR1_RX_RDY_CTL);
1289 	if (termios->c_cflag & CRTSCTS) {
1290 		mr |= UART_MR1_CTS_CTL;
1291 		mr |= UART_MR1_RX_RDY_CTL;
1292 	}
1293 	msm_write(port, mr, UART_MR1);
1294 
1295 	/* Configure status bits to ignore based on termio flags. */
1296 	port->read_status_mask = 0;
1297 	if (termios->c_iflag & INPCK)
1298 		port->read_status_mask |= UART_SR_PAR_FRAME_ERR;
1299 	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
1300 		port->read_status_mask |= UART_SR_RX_BREAK;
1301 
1302 	uart_update_timeout(port, termios->c_cflag, baud);
1303 
1304 	/* Try to use DMA */
1305 	msm_start_rx_dma(msm_port);
1306 
1307 	spin_unlock_irqrestore(&port->lock, flags);
1308 }
1309 
1310 static const char *msm_type(struct uart_port *port)
1311 {
1312 	return "MSM";
1313 }
1314 
1315 static void msm_release_port(struct uart_port *port)
1316 {
1317 	struct platform_device *pdev = to_platform_device(port->dev);
1318 	struct resource *uart_resource;
1319 	resource_size_t size;
1320 
1321 	uart_resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1322 	if (unlikely(!uart_resource))
1323 		return;
1324 	size = resource_size(uart_resource);
1325 
1326 	release_mem_region(port->mapbase, size);
1327 	iounmap(port->membase);
1328 	port->membase = NULL;
1329 }
1330 
1331 static int msm_request_port(struct uart_port *port)
1332 {
1333 	struct platform_device *pdev = to_platform_device(port->dev);
1334 	struct resource *uart_resource;
1335 	resource_size_t size;
1336 	int ret;
1337 
1338 	uart_resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1339 	if (unlikely(!uart_resource))
1340 		return -ENXIO;
1341 
1342 	size = resource_size(uart_resource);
1343 
1344 	if (!request_mem_region(port->mapbase, size, "msm_serial"))
1345 		return -EBUSY;
1346 
1347 	port->membase = ioremap(port->mapbase, size);
1348 	if (!port->membase) {
1349 		ret = -EBUSY;
1350 		goto fail_release_port;
1351 	}
1352 
1353 	return 0;
1354 
1355 fail_release_port:
1356 	release_mem_region(port->mapbase, size);
1357 	return ret;
1358 }
1359 
1360 static void msm_config_port(struct uart_port *port, int flags)
1361 {
1362 	int ret;
1363 
1364 	if (flags & UART_CONFIG_TYPE) {
1365 		port->type = PORT_MSM;
1366 		ret = msm_request_port(port);
1367 		if (ret)
1368 			return;
1369 	}
1370 }
1371 
1372 static int msm_verify_port(struct uart_port *port, struct serial_struct *ser)
1373 {
1374 	if (unlikely(ser->type != PORT_UNKNOWN && ser->type != PORT_MSM))
1375 		return -EINVAL;
1376 	if (unlikely(port->irq != ser->irq))
1377 		return -EINVAL;
1378 	return 0;
1379 }
1380 
1381 static void msm_power(struct uart_port *port, unsigned int state,
1382 		      unsigned int oldstate)
1383 {
1384 	struct msm_port *msm_port = UART_TO_MSM(port);
1385 
1386 	switch (state) {
1387 	case 0:
1388 		clk_prepare_enable(msm_port->clk);
1389 		clk_prepare_enable(msm_port->pclk);
1390 		break;
1391 	case 3:
1392 		clk_disable_unprepare(msm_port->clk);
1393 		clk_disable_unprepare(msm_port->pclk);
1394 		break;
1395 	default:
1396 		pr_err("msm_serial: Unknown PM state %d\n", state);
1397 	}
1398 }
1399 
1400 #ifdef CONFIG_CONSOLE_POLL
1401 static int msm_poll_get_char_single(struct uart_port *port)
1402 {
1403 	struct msm_port *msm_port = UART_TO_MSM(port);
1404 	unsigned int rf_reg = msm_port->is_uartdm ? UARTDM_RF : UART_RF;
1405 
1406 	if (!(msm_read(port, UART_SR) & UART_SR_RX_READY))
1407 		return NO_POLL_CHAR;
1408 
1409 	return msm_read(port, rf_reg) & 0xff;
1410 }
1411 
1412 static int msm_poll_get_char_dm(struct uart_port *port)
1413 {
1414 	int c;
1415 	static u32 slop;
1416 	static int count;
1417 	unsigned char *sp = (unsigned char *)&slop;
1418 
1419 	/* Check if a previous read had more than one char */
1420 	if (count) {
1421 		c = sp[sizeof(slop) - count];
1422 		count--;
1423 	/* Or if FIFO is empty */
1424 	} else if (!(msm_read(port, UART_SR) & UART_SR_RX_READY)) {
1425 		/*
1426 		 * If RX packing buffer has less than a word, force stale to
1427 		 * push contents into RX FIFO
1428 		 */
1429 		count = msm_read(port, UARTDM_RXFS);
1430 		count = (count >> UARTDM_RXFS_BUF_SHIFT) & UARTDM_RXFS_BUF_MASK;
1431 		if (count) {
1432 			msm_write(port, UART_CR_CMD_FORCE_STALE, UART_CR);
1433 			slop = msm_read(port, UARTDM_RF);
1434 			c = sp[0];
1435 			count--;
1436 			msm_write(port, UART_CR_CMD_RESET_STALE_INT, UART_CR);
1437 			msm_write(port, 0xFFFFFF, UARTDM_DMRX);
1438 			msm_write(port, UART_CR_CMD_STALE_EVENT_ENABLE,
1439 				  UART_CR);
1440 		} else {
1441 			c = NO_POLL_CHAR;
1442 		}
1443 	/* FIFO has a word */
1444 	} else {
1445 		slop = msm_read(port, UARTDM_RF);
1446 		c = sp[0];
1447 		count = sizeof(slop) - 1;
1448 	}
1449 
1450 	return c;
1451 }
1452 
1453 static int msm_poll_get_char(struct uart_port *port)
1454 {
1455 	u32 imr;
1456 	int c;
1457 	struct msm_port *msm_port = UART_TO_MSM(port);
1458 
1459 	/* Disable all interrupts */
1460 	imr = msm_read(port, UART_IMR);
1461 	msm_write(port, 0, UART_IMR);
1462 
1463 	if (msm_port->is_uartdm)
1464 		c = msm_poll_get_char_dm(port);
1465 	else
1466 		c = msm_poll_get_char_single(port);
1467 
1468 	/* Enable interrupts */
1469 	msm_write(port, imr, UART_IMR);
1470 
1471 	return c;
1472 }
1473 
1474 static void msm_poll_put_char(struct uart_port *port, unsigned char c)
1475 {
1476 	u32 imr;
1477 	struct msm_port *msm_port = UART_TO_MSM(port);
1478 
1479 	/* Disable all interrupts */
1480 	imr = msm_read(port, UART_IMR);
1481 	msm_write(port, 0, UART_IMR);
1482 
1483 	if (msm_port->is_uartdm)
1484 		msm_reset_dm_count(port, 1);
1485 
1486 	/* Wait until FIFO is empty */
1487 	while (!(msm_read(port, UART_SR) & UART_SR_TX_READY))
1488 		cpu_relax();
1489 
1490 	/* Write a character */
1491 	msm_write(port, c, msm_port->is_uartdm ? UARTDM_TF : UART_TF);
1492 
1493 	/* Wait until FIFO is empty */
1494 	while (!(msm_read(port, UART_SR) & UART_SR_TX_READY))
1495 		cpu_relax();
1496 
1497 	/* Enable interrupts */
1498 	msm_write(port, imr, UART_IMR);
1499 }
1500 #endif
1501 
1502 static struct uart_ops msm_uart_pops = {
1503 	.tx_empty = msm_tx_empty,
1504 	.set_mctrl = msm_set_mctrl,
1505 	.get_mctrl = msm_get_mctrl,
1506 	.stop_tx = msm_stop_tx,
1507 	.start_tx = msm_start_tx,
1508 	.stop_rx = msm_stop_rx,
1509 	.enable_ms = msm_enable_ms,
1510 	.break_ctl = msm_break_ctl,
1511 	.startup = msm_startup,
1512 	.shutdown = msm_shutdown,
1513 	.set_termios = msm_set_termios,
1514 	.type = msm_type,
1515 	.release_port = msm_release_port,
1516 	.request_port = msm_request_port,
1517 	.config_port = msm_config_port,
1518 	.verify_port = msm_verify_port,
1519 	.pm = msm_power,
1520 #ifdef CONFIG_CONSOLE_POLL
1521 	.poll_get_char	= msm_poll_get_char,
1522 	.poll_put_char	= msm_poll_put_char,
1523 #endif
1524 };
1525 
1526 static struct msm_port msm_uart_ports[] = {
1527 	{
1528 		.uart = {
1529 			.iotype = UPIO_MEM,
1530 			.ops = &msm_uart_pops,
1531 			.flags = UPF_BOOT_AUTOCONF,
1532 			.fifosize = 64,
1533 			.line = 0,
1534 		},
1535 	},
1536 	{
1537 		.uart = {
1538 			.iotype = UPIO_MEM,
1539 			.ops = &msm_uart_pops,
1540 			.flags = UPF_BOOT_AUTOCONF,
1541 			.fifosize = 64,
1542 			.line = 1,
1543 		},
1544 	},
1545 	{
1546 		.uart = {
1547 			.iotype = UPIO_MEM,
1548 			.ops = &msm_uart_pops,
1549 			.flags = UPF_BOOT_AUTOCONF,
1550 			.fifosize = 64,
1551 			.line = 2,
1552 		},
1553 	},
1554 };
1555 
1556 #define UART_NR	ARRAY_SIZE(msm_uart_ports)
1557 
1558 static inline struct uart_port *msm_get_port_from_line(unsigned int line)
1559 {
1560 	return &msm_uart_ports[line].uart;
1561 }
1562 
1563 #ifdef CONFIG_SERIAL_MSM_CONSOLE
1564 static void __msm_console_write(struct uart_port *port, const char *s,
1565 				unsigned int count, bool is_uartdm)
1566 {
1567 	int i;
1568 	int num_newlines = 0;
1569 	bool replaced = false;
1570 	void __iomem *tf;
1571 
1572 	if (is_uartdm)
1573 		tf = port->membase + UARTDM_TF;
1574 	else
1575 		tf = port->membase + UART_TF;
1576 
1577 	/* Account for newlines that will get a carriage return added */
1578 	for (i = 0; i < count; i++)
1579 		if (s[i] == '\n')
1580 			num_newlines++;
1581 	count += num_newlines;
1582 
1583 	spin_lock(&port->lock);
1584 	if (is_uartdm)
1585 		msm_reset_dm_count(port, count);
1586 
1587 	i = 0;
1588 	while (i < count) {
1589 		int j;
1590 		unsigned int num_chars;
1591 		char buf[4] = { 0 };
1592 
1593 		if (is_uartdm)
1594 			num_chars = min(count - i, (unsigned int)sizeof(buf));
1595 		else
1596 			num_chars = 1;
1597 
1598 		for (j = 0; j < num_chars; j++) {
1599 			char c = *s;
1600 
1601 			if (c == '\n' && !replaced) {
1602 				buf[j] = '\r';
1603 				j++;
1604 				replaced = true;
1605 			}
1606 			if (j < num_chars) {
1607 				buf[j] = c;
1608 				s++;
1609 				replaced = false;
1610 			}
1611 		}
1612 
1613 		while (!(msm_read(port, UART_SR) & UART_SR_TX_READY))
1614 			cpu_relax();
1615 
1616 		iowrite32_rep(tf, buf, 1);
1617 		i += num_chars;
1618 	}
1619 	spin_unlock(&port->lock);
1620 }
1621 
1622 static void msm_console_write(struct console *co, const char *s,
1623 			      unsigned int count)
1624 {
1625 	struct uart_port *port;
1626 	struct msm_port *msm_port;
1627 
1628 	BUG_ON(co->index < 0 || co->index >= UART_NR);
1629 
1630 	port = msm_get_port_from_line(co->index);
1631 	msm_port = UART_TO_MSM(port);
1632 
1633 	__msm_console_write(port, s, count, msm_port->is_uartdm);
1634 }
1635 
1636 static int __init msm_console_setup(struct console *co, char *options)
1637 {
1638 	struct uart_port *port;
1639 	int baud = 115200;
1640 	int bits = 8;
1641 	int parity = 'n';
1642 	int flow = 'n';
1643 
1644 	if (unlikely(co->index >= UART_NR || co->index < 0))
1645 		return -ENXIO;
1646 
1647 	port = msm_get_port_from_line(co->index);
1648 
1649 	if (unlikely(!port->membase))
1650 		return -ENXIO;
1651 
1652 	msm_init_clock(port);
1653 
1654 	if (options)
1655 		uart_parse_options(options, &baud, &parity, &bits, &flow);
1656 
1657 	pr_info("msm_serial: console setup on port #%d\n", port->line);
1658 
1659 	return uart_set_options(port, co, baud, parity, bits, flow);
1660 }
1661 
1662 static void
1663 msm_serial_early_write(struct console *con, const char *s, unsigned n)
1664 {
1665 	struct earlycon_device *dev = con->data;
1666 
1667 	__msm_console_write(&dev->port, s, n, false);
1668 }
1669 
1670 static int __init
1671 msm_serial_early_console_setup(struct earlycon_device *device, const char *opt)
1672 {
1673 	if (!device->port.membase)
1674 		return -ENODEV;
1675 
1676 	device->con->write = msm_serial_early_write;
1677 	return 0;
1678 }
1679 OF_EARLYCON_DECLARE(msm_serial, "qcom,msm-uart",
1680 		    msm_serial_early_console_setup);
1681 
1682 static void
1683 msm_serial_early_write_dm(struct console *con, const char *s, unsigned n)
1684 {
1685 	struct earlycon_device *dev = con->data;
1686 
1687 	__msm_console_write(&dev->port, s, n, true);
1688 }
1689 
1690 static int __init
1691 msm_serial_early_console_setup_dm(struct earlycon_device *device,
1692 				  const char *opt)
1693 {
1694 	if (!device->port.membase)
1695 		return -ENODEV;
1696 
1697 	device->con->write = msm_serial_early_write_dm;
1698 	return 0;
1699 }
1700 OF_EARLYCON_DECLARE(msm_serial_dm, "qcom,msm-uartdm",
1701 		    msm_serial_early_console_setup_dm);
1702 
1703 static struct uart_driver msm_uart_driver;
1704 
1705 static struct console msm_console = {
1706 	.name = "ttyMSM",
1707 	.write = msm_console_write,
1708 	.device = uart_console_device,
1709 	.setup = msm_console_setup,
1710 	.flags = CON_PRINTBUFFER,
1711 	.index = -1,
1712 	.data = &msm_uart_driver,
1713 };
1714 
1715 #define MSM_CONSOLE	(&msm_console)
1716 
1717 #else
1718 #define MSM_CONSOLE	NULL
1719 #endif
1720 
1721 static struct uart_driver msm_uart_driver = {
1722 	.owner = THIS_MODULE,
1723 	.driver_name = "msm_serial",
1724 	.dev_name = "ttyMSM",
1725 	.nr = UART_NR,
1726 	.cons = MSM_CONSOLE,
1727 };
1728 
1729 static atomic_t msm_uart_next_id = ATOMIC_INIT(0);
1730 
1731 static const struct of_device_id msm_uartdm_table[] = {
1732 	{ .compatible = "qcom,msm-uartdm-v1.1", .data = (void *)UARTDM_1P1 },
1733 	{ .compatible = "qcom,msm-uartdm-v1.2", .data = (void *)UARTDM_1P2 },
1734 	{ .compatible = "qcom,msm-uartdm-v1.3", .data = (void *)UARTDM_1P3 },
1735 	{ .compatible = "qcom,msm-uartdm-v1.4", .data = (void *)UARTDM_1P4 },
1736 	{ }
1737 };
1738 
1739 static int msm_serial_probe(struct platform_device *pdev)
1740 {
1741 	struct msm_port *msm_port;
1742 	struct resource *resource;
1743 	struct uart_port *port;
1744 	const struct of_device_id *id;
1745 	int irq, line;
1746 
1747 	if (pdev->dev.of_node)
1748 		line = of_alias_get_id(pdev->dev.of_node, "serial");
1749 	else
1750 		line = pdev->id;
1751 
1752 	if (line < 0)
1753 		line = atomic_inc_return(&msm_uart_next_id) - 1;
1754 
1755 	if (unlikely(line < 0 || line >= UART_NR))
1756 		return -ENXIO;
1757 
1758 	dev_info(&pdev->dev, "msm_serial: detected port #%d\n", line);
1759 
1760 	port = msm_get_port_from_line(line);
1761 	port->dev = &pdev->dev;
1762 	msm_port = UART_TO_MSM(port);
1763 
1764 	id = of_match_device(msm_uartdm_table, &pdev->dev);
1765 	if (id)
1766 		msm_port->is_uartdm = (unsigned long)id->data;
1767 	else
1768 		msm_port->is_uartdm = 0;
1769 
1770 	msm_port->clk = devm_clk_get(&pdev->dev, "core");
1771 	if (IS_ERR(msm_port->clk))
1772 		return PTR_ERR(msm_port->clk);
1773 
1774 	if (msm_port->is_uartdm) {
1775 		msm_port->pclk = devm_clk_get(&pdev->dev, "iface");
1776 		if (IS_ERR(msm_port->pclk))
1777 			return PTR_ERR(msm_port->pclk);
1778 	}
1779 
1780 	port->uartclk = clk_get_rate(msm_port->clk);
1781 	dev_info(&pdev->dev, "uartclk = %d\n", port->uartclk);
1782 
1783 	resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1784 	if (unlikely(!resource))
1785 		return -ENXIO;
1786 	port->mapbase = resource->start;
1787 
1788 	irq = platform_get_irq(pdev, 0);
1789 	if (unlikely(irq < 0))
1790 		return -ENXIO;
1791 	port->irq = irq;
1792 
1793 	platform_set_drvdata(pdev, port);
1794 
1795 	return uart_add_one_port(&msm_uart_driver, port);
1796 }
1797 
1798 static int msm_serial_remove(struct platform_device *pdev)
1799 {
1800 	struct uart_port *port = platform_get_drvdata(pdev);
1801 
1802 	uart_remove_one_port(&msm_uart_driver, port);
1803 
1804 	return 0;
1805 }
1806 
1807 static const struct of_device_id msm_match_table[] = {
1808 	{ .compatible = "qcom,msm-uart" },
1809 	{ .compatible = "qcom,msm-uartdm" },
1810 	{}
1811 };
1812 MODULE_DEVICE_TABLE(of, msm_match_table);
1813 
1814 static struct platform_driver msm_platform_driver = {
1815 	.remove = msm_serial_remove,
1816 	.probe = msm_serial_probe,
1817 	.driver = {
1818 		.name = "msm_serial",
1819 		.of_match_table = msm_match_table,
1820 	},
1821 };
1822 
1823 static int __init msm_serial_init(void)
1824 {
1825 	int ret;
1826 
1827 	ret = uart_register_driver(&msm_uart_driver);
1828 	if (unlikely(ret))
1829 		return ret;
1830 
1831 	ret = platform_driver_register(&msm_platform_driver);
1832 	if (unlikely(ret))
1833 		uart_unregister_driver(&msm_uart_driver);
1834 
1835 	pr_info("msm_serial: driver initialized\n");
1836 
1837 	return ret;
1838 }
1839 
1840 static void __exit msm_serial_exit(void)
1841 {
1842 	platform_driver_unregister(&msm_platform_driver);
1843 	uart_unregister_driver(&msm_uart_driver);
1844 }
1845 
1846 module_init(msm_serial_init);
1847 module_exit(msm_serial_exit);
1848 
1849 MODULE_AUTHOR("Robert Love <rlove@google.com>");
1850 MODULE_DESCRIPTION("Driver for msm7x serial device");
1851 MODULE_LICENSE("GPL");
1852