1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Driver for msm7k serial device and console 4 * 5 * Copyright (C) 2007 Google, Inc. 6 * Author: Robert Love <rlove@google.com> 7 * Copyright (c) 2011, Code Aurora Forum. All rights reserved. 8 */ 9 10 #if defined(CONFIG_SERIAL_MSM_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) 11 # define SUPPORT_SYSRQ 12 #endif 13 14 #include <linux/kernel.h> 15 #include <linux/atomic.h> 16 #include <linux/dma-mapping.h> 17 #include <linux/dmaengine.h> 18 #include <linux/module.h> 19 #include <linux/io.h> 20 #include <linux/ioport.h> 21 #include <linux/interrupt.h> 22 #include <linux/init.h> 23 #include <linux/console.h> 24 #include <linux/tty.h> 25 #include <linux/tty_flip.h> 26 #include <linux/serial_core.h> 27 #include <linux/slab.h> 28 #include <linux/clk.h> 29 #include <linux/platform_device.h> 30 #include <linux/delay.h> 31 #include <linux/of.h> 32 #include <linux/of_device.h> 33 #include <linux/wait.h> 34 35 #define UART_MR1 0x0000 36 37 #define UART_MR1_AUTO_RFR_LEVEL0 0x3F 38 #define UART_MR1_AUTO_RFR_LEVEL1 0x3FF00 39 #define UART_DM_MR1_AUTO_RFR_LEVEL1 0xFFFFFF00 40 #define UART_MR1_RX_RDY_CTL BIT(7) 41 #define UART_MR1_CTS_CTL BIT(6) 42 43 #define UART_MR2 0x0004 44 #define UART_MR2_ERROR_MODE BIT(6) 45 #define UART_MR2_BITS_PER_CHAR 0x30 46 #define UART_MR2_BITS_PER_CHAR_5 (0x0 << 4) 47 #define UART_MR2_BITS_PER_CHAR_6 (0x1 << 4) 48 #define UART_MR2_BITS_PER_CHAR_7 (0x2 << 4) 49 #define UART_MR2_BITS_PER_CHAR_8 (0x3 << 4) 50 #define UART_MR2_STOP_BIT_LEN_ONE (0x1 << 2) 51 #define UART_MR2_STOP_BIT_LEN_TWO (0x3 << 2) 52 #define UART_MR2_PARITY_MODE_NONE 0x0 53 #define UART_MR2_PARITY_MODE_ODD 0x1 54 #define UART_MR2_PARITY_MODE_EVEN 0x2 55 #define UART_MR2_PARITY_MODE_SPACE 0x3 56 #define UART_MR2_PARITY_MODE 0x3 57 58 #define UART_CSR 0x0008 59 60 #define UART_TF 0x000C 61 #define UARTDM_TF 0x0070 62 63 #define UART_CR 0x0010 64 #define UART_CR_CMD_NULL (0 << 4) 65 #define UART_CR_CMD_RESET_RX (1 << 4) 66 #define UART_CR_CMD_RESET_TX (2 << 4) 67 #define UART_CR_CMD_RESET_ERR (3 << 4) 68 #define UART_CR_CMD_RESET_BREAK_INT (4 << 4) 69 #define UART_CR_CMD_START_BREAK (5 << 4) 70 #define UART_CR_CMD_STOP_BREAK (6 << 4) 71 #define UART_CR_CMD_RESET_CTS (7 << 4) 72 #define UART_CR_CMD_RESET_STALE_INT (8 << 4) 73 #define UART_CR_CMD_PACKET_MODE (9 << 4) 74 #define UART_CR_CMD_MODE_RESET (12 << 4) 75 #define UART_CR_CMD_SET_RFR (13 << 4) 76 #define UART_CR_CMD_RESET_RFR (14 << 4) 77 #define UART_CR_CMD_PROTECTION_EN (16 << 4) 78 #define UART_CR_CMD_STALE_EVENT_DISABLE (6 << 8) 79 #define UART_CR_CMD_STALE_EVENT_ENABLE (80 << 4) 80 #define UART_CR_CMD_FORCE_STALE (4 << 8) 81 #define UART_CR_CMD_RESET_TX_READY (3 << 8) 82 #define UART_CR_TX_DISABLE BIT(3) 83 #define UART_CR_TX_ENABLE BIT(2) 84 #define UART_CR_RX_DISABLE BIT(1) 85 #define UART_CR_RX_ENABLE BIT(0) 86 #define UART_CR_CMD_RESET_RXBREAK_START ((1 << 11) | (2 << 4)) 87 88 #define UART_IMR 0x0014 89 #define UART_IMR_TXLEV BIT(0) 90 #define UART_IMR_RXSTALE BIT(3) 91 #define UART_IMR_RXLEV BIT(4) 92 #define UART_IMR_DELTA_CTS BIT(5) 93 #define UART_IMR_CURRENT_CTS BIT(6) 94 #define UART_IMR_RXBREAK_START BIT(10) 95 96 #define UART_IPR_RXSTALE_LAST 0x20 97 #define UART_IPR_STALE_LSB 0x1F 98 #define UART_IPR_STALE_TIMEOUT_MSB 0x3FF80 99 #define UART_DM_IPR_STALE_TIMEOUT_MSB 0xFFFFFF80 100 101 #define UART_IPR 0x0018 102 #define UART_TFWR 0x001C 103 #define UART_RFWR 0x0020 104 #define UART_HCR 0x0024 105 106 #define UART_MREG 0x0028 107 #define UART_NREG 0x002C 108 #define UART_DREG 0x0030 109 #define UART_MNDREG 0x0034 110 #define UART_IRDA 0x0038 111 #define UART_MISR_MODE 0x0040 112 #define UART_MISR_RESET 0x0044 113 #define UART_MISR_EXPORT 0x0048 114 #define UART_MISR_VAL 0x004C 115 #define UART_TEST_CTRL 0x0050 116 117 #define UART_SR 0x0008 118 #define UART_SR_HUNT_CHAR BIT(7) 119 #define UART_SR_RX_BREAK BIT(6) 120 #define UART_SR_PAR_FRAME_ERR BIT(5) 121 #define UART_SR_OVERRUN BIT(4) 122 #define UART_SR_TX_EMPTY BIT(3) 123 #define UART_SR_TX_READY BIT(2) 124 #define UART_SR_RX_FULL BIT(1) 125 #define UART_SR_RX_READY BIT(0) 126 127 #define UART_RF 0x000C 128 #define UARTDM_RF 0x0070 129 #define UART_MISR 0x0010 130 #define UART_ISR 0x0014 131 #define UART_ISR_TX_READY BIT(7) 132 133 #define UARTDM_RXFS 0x50 134 #define UARTDM_RXFS_BUF_SHIFT 0x7 135 #define UARTDM_RXFS_BUF_MASK 0x7 136 137 #define UARTDM_DMEN 0x3C 138 #define UARTDM_DMEN_RX_SC_ENABLE BIT(5) 139 #define UARTDM_DMEN_TX_SC_ENABLE BIT(4) 140 141 #define UARTDM_DMEN_TX_BAM_ENABLE BIT(2) /* UARTDM_1P4 */ 142 #define UARTDM_DMEN_TX_DM_ENABLE BIT(0) /* < UARTDM_1P4 */ 143 144 #define UARTDM_DMEN_RX_BAM_ENABLE BIT(3) /* UARTDM_1P4 */ 145 #define UARTDM_DMEN_RX_DM_ENABLE BIT(1) /* < UARTDM_1P4 */ 146 147 #define UARTDM_DMRX 0x34 148 #define UARTDM_NCF_TX 0x40 149 #define UARTDM_RX_TOTAL_SNAP 0x38 150 151 #define UARTDM_BURST_SIZE 16 /* in bytes */ 152 #define UARTDM_TX_AIGN(x) ((x) & ~0x3) /* valid for > 1p3 */ 153 #define UARTDM_TX_MAX 256 /* in bytes, valid for <= 1p3 */ 154 #define UARTDM_RX_SIZE (UART_XMIT_SIZE / 4) 155 156 enum { 157 UARTDM_1P1 = 1, 158 UARTDM_1P2, 159 UARTDM_1P3, 160 UARTDM_1P4, 161 }; 162 163 struct msm_dma { 164 struct dma_chan *chan; 165 enum dma_data_direction dir; 166 dma_addr_t phys; 167 unsigned char *virt; 168 dma_cookie_t cookie; 169 u32 enable_bit; 170 unsigned int count; 171 struct dma_async_tx_descriptor *desc; 172 }; 173 174 struct msm_port { 175 struct uart_port uart; 176 char name[16]; 177 struct clk *clk; 178 struct clk *pclk; 179 unsigned int imr; 180 int is_uartdm; 181 unsigned int old_snap_state; 182 bool break_detected; 183 struct msm_dma tx_dma; 184 struct msm_dma rx_dma; 185 }; 186 187 #define UART_TO_MSM(uart_port) container_of(uart_port, struct msm_port, uart) 188 189 static 190 void msm_write(struct uart_port *port, unsigned int val, unsigned int off) 191 { 192 writel_relaxed(val, port->membase + off); 193 } 194 195 static 196 unsigned int msm_read(struct uart_port *port, unsigned int off) 197 { 198 return readl_relaxed(port->membase + off); 199 } 200 201 /* 202 * Setup the MND registers to use the TCXO clock. 203 */ 204 static void msm_serial_set_mnd_regs_tcxo(struct uart_port *port) 205 { 206 msm_write(port, 0x06, UART_MREG); 207 msm_write(port, 0xF1, UART_NREG); 208 msm_write(port, 0x0F, UART_DREG); 209 msm_write(port, 0x1A, UART_MNDREG); 210 port->uartclk = 1843200; 211 } 212 213 /* 214 * Setup the MND registers to use the TCXO clock divided by 4. 215 */ 216 static void msm_serial_set_mnd_regs_tcxoby4(struct uart_port *port) 217 { 218 msm_write(port, 0x18, UART_MREG); 219 msm_write(port, 0xF6, UART_NREG); 220 msm_write(port, 0x0F, UART_DREG); 221 msm_write(port, 0x0A, UART_MNDREG); 222 port->uartclk = 1843200; 223 } 224 225 static void msm_serial_set_mnd_regs(struct uart_port *port) 226 { 227 struct msm_port *msm_port = UART_TO_MSM(port); 228 229 /* 230 * These registers don't exist so we change the clk input rate 231 * on uartdm hardware instead 232 */ 233 if (msm_port->is_uartdm) 234 return; 235 236 if (port->uartclk == 19200000) 237 msm_serial_set_mnd_regs_tcxo(port); 238 else if (port->uartclk == 4800000) 239 msm_serial_set_mnd_regs_tcxoby4(port); 240 } 241 242 static void msm_handle_tx(struct uart_port *port); 243 static void msm_start_rx_dma(struct msm_port *msm_port); 244 245 static void msm_stop_dma(struct uart_port *port, struct msm_dma *dma) 246 { 247 struct device *dev = port->dev; 248 unsigned int mapped; 249 u32 val; 250 251 mapped = dma->count; 252 dma->count = 0; 253 254 dmaengine_terminate_all(dma->chan); 255 256 /* 257 * DMA Stall happens if enqueue and flush command happens concurrently. 258 * For example before changing the baud rate/protocol configuration and 259 * sending flush command to ADM, disable the channel of UARTDM. 260 * Note: should not reset the receiver here immediately as it is not 261 * suggested to do disable/reset or reset/disable at the same time. 262 */ 263 val = msm_read(port, UARTDM_DMEN); 264 val &= ~dma->enable_bit; 265 msm_write(port, val, UARTDM_DMEN); 266 267 if (mapped) 268 dma_unmap_single(dev, dma->phys, mapped, dma->dir); 269 } 270 271 static void msm_release_dma(struct msm_port *msm_port) 272 { 273 struct msm_dma *dma; 274 275 dma = &msm_port->tx_dma; 276 if (dma->chan) { 277 msm_stop_dma(&msm_port->uart, dma); 278 dma_release_channel(dma->chan); 279 } 280 281 memset(dma, 0, sizeof(*dma)); 282 283 dma = &msm_port->rx_dma; 284 if (dma->chan) { 285 msm_stop_dma(&msm_port->uart, dma); 286 dma_release_channel(dma->chan); 287 kfree(dma->virt); 288 } 289 290 memset(dma, 0, sizeof(*dma)); 291 } 292 293 static void msm_request_tx_dma(struct msm_port *msm_port, resource_size_t base) 294 { 295 struct device *dev = msm_port->uart.dev; 296 struct dma_slave_config conf; 297 struct msm_dma *dma; 298 u32 crci = 0; 299 int ret; 300 301 dma = &msm_port->tx_dma; 302 303 /* allocate DMA resources, if available */ 304 dma->chan = dma_request_chan(dev, "tx"); 305 if (IS_ERR(dma->chan)) 306 goto no_tx; 307 308 of_property_read_u32(dev->of_node, "qcom,tx-crci", &crci); 309 310 memset(&conf, 0, sizeof(conf)); 311 conf.direction = DMA_MEM_TO_DEV; 312 conf.device_fc = true; 313 conf.dst_addr = base + UARTDM_TF; 314 conf.dst_maxburst = UARTDM_BURST_SIZE; 315 conf.slave_id = crci; 316 317 ret = dmaengine_slave_config(dma->chan, &conf); 318 if (ret) 319 goto rel_tx; 320 321 dma->dir = DMA_TO_DEVICE; 322 323 if (msm_port->is_uartdm < UARTDM_1P4) 324 dma->enable_bit = UARTDM_DMEN_TX_DM_ENABLE; 325 else 326 dma->enable_bit = UARTDM_DMEN_TX_BAM_ENABLE; 327 328 return; 329 330 rel_tx: 331 dma_release_channel(dma->chan); 332 no_tx: 333 memset(dma, 0, sizeof(*dma)); 334 } 335 336 static void msm_request_rx_dma(struct msm_port *msm_port, resource_size_t base) 337 { 338 struct device *dev = msm_port->uart.dev; 339 struct dma_slave_config conf; 340 struct msm_dma *dma; 341 u32 crci = 0; 342 int ret; 343 344 dma = &msm_port->rx_dma; 345 346 /* allocate DMA resources, if available */ 347 dma->chan = dma_request_chan(dev, "rx"); 348 if (IS_ERR(dma->chan)) 349 goto no_rx; 350 351 of_property_read_u32(dev->of_node, "qcom,rx-crci", &crci); 352 353 dma->virt = kzalloc(UARTDM_RX_SIZE, GFP_KERNEL); 354 if (!dma->virt) 355 goto rel_rx; 356 357 memset(&conf, 0, sizeof(conf)); 358 conf.direction = DMA_DEV_TO_MEM; 359 conf.device_fc = true; 360 conf.src_addr = base + UARTDM_RF; 361 conf.src_maxburst = UARTDM_BURST_SIZE; 362 conf.slave_id = crci; 363 364 ret = dmaengine_slave_config(dma->chan, &conf); 365 if (ret) 366 goto err; 367 368 dma->dir = DMA_FROM_DEVICE; 369 370 if (msm_port->is_uartdm < UARTDM_1P4) 371 dma->enable_bit = UARTDM_DMEN_RX_DM_ENABLE; 372 else 373 dma->enable_bit = UARTDM_DMEN_RX_BAM_ENABLE; 374 375 return; 376 err: 377 kfree(dma->virt); 378 rel_rx: 379 dma_release_channel(dma->chan); 380 no_rx: 381 memset(dma, 0, sizeof(*dma)); 382 } 383 384 static inline void msm_wait_for_xmitr(struct uart_port *port) 385 { 386 unsigned int timeout = 500000; 387 388 while (!(msm_read(port, UART_SR) & UART_SR_TX_EMPTY)) { 389 if (msm_read(port, UART_ISR) & UART_ISR_TX_READY) 390 break; 391 udelay(1); 392 if (!timeout--) 393 break; 394 } 395 msm_write(port, UART_CR_CMD_RESET_TX_READY, UART_CR); 396 } 397 398 static void msm_stop_tx(struct uart_port *port) 399 { 400 struct msm_port *msm_port = UART_TO_MSM(port); 401 402 msm_port->imr &= ~UART_IMR_TXLEV; 403 msm_write(port, msm_port->imr, UART_IMR); 404 } 405 406 static void msm_start_tx(struct uart_port *port) 407 { 408 struct msm_port *msm_port = UART_TO_MSM(port); 409 struct msm_dma *dma = &msm_port->tx_dma; 410 411 /* Already started in DMA mode */ 412 if (dma->count) 413 return; 414 415 msm_port->imr |= UART_IMR_TXLEV; 416 msm_write(port, msm_port->imr, UART_IMR); 417 } 418 419 static void msm_reset_dm_count(struct uart_port *port, int count) 420 { 421 msm_wait_for_xmitr(port); 422 msm_write(port, count, UARTDM_NCF_TX); 423 msm_read(port, UARTDM_NCF_TX); 424 } 425 426 static void msm_complete_tx_dma(void *args) 427 { 428 struct msm_port *msm_port = args; 429 struct uart_port *port = &msm_port->uart; 430 struct circ_buf *xmit = &port->state->xmit; 431 struct msm_dma *dma = &msm_port->tx_dma; 432 struct dma_tx_state state; 433 enum dma_status status; 434 unsigned long flags; 435 unsigned int count; 436 u32 val; 437 438 spin_lock_irqsave(&port->lock, flags); 439 440 /* Already stopped */ 441 if (!dma->count) 442 goto done; 443 444 status = dmaengine_tx_status(dma->chan, dma->cookie, &state); 445 446 dma_unmap_single(port->dev, dma->phys, dma->count, dma->dir); 447 448 val = msm_read(port, UARTDM_DMEN); 449 val &= ~dma->enable_bit; 450 msm_write(port, val, UARTDM_DMEN); 451 452 if (msm_port->is_uartdm > UARTDM_1P3) { 453 msm_write(port, UART_CR_CMD_RESET_TX, UART_CR); 454 msm_write(port, UART_CR_TX_ENABLE, UART_CR); 455 } 456 457 count = dma->count - state.residue; 458 port->icount.tx += count; 459 dma->count = 0; 460 461 xmit->tail += count; 462 xmit->tail &= UART_XMIT_SIZE - 1; 463 464 /* Restore "Tx FIFO below watermark" interrupt */ 465 msm_port->imr |= UART_IMR_TXLEV; 466 msm_write(port, msm_port->imr, UART_IMR); 467 468 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 469 uart_write_wakeup(port); 470 471 msm_handle_tx(port); 472 done: 473 spin_unlock_irqrestore(&port->lock, flags); 474 } 475 476 static int msm_handle_tx_dma(struct msm_port *msm_port, unsigned int count) 477 { 478 struct circ_buf *xmit = &msm_port->uart.state->xmit; 479 struct uart_port *port = &msm_port->uart; 480 struct msm_dma *dma = &msm_port->tx_dma; 481 void *cpu_addr; 482 int ret; 483 u32 val; 484 485 cpu_addr = &xmit->buf[xmit->tail]; 486 487 dma->phys = dma_map_single(port->dev, cpu_addr, count, dma->dir); 488 ret = dma_mapping_error(port->dev, dma->phys); 489 if (ret) 490 return ret; 491 492 dma->desc = dmaengine_prep_slave_single(dma->chan, dma->phys, 493 count, DMA_MEM_TO_DEV, 494 DMA_PREP_INTERRUPT | 495 DMA_PREP_FENCE); 496 if (!dma->desc) { 497 ret = -EIO; 498 goto unmap; 499 } 500 501 dma->desc->callback = msm_complete_tx_dma; 502 dma->desc->callback_param = msm_port; 503 504 dma->cookie = dmaengine_submit(dma->desc); 505 ret = dma_submit_error(dma->cookie); 506 if (ret) 507 goto unmap; 508 509 /* 510 * Using DMA complete for Tx FIFO reload, no need for 511 * "Tx FIFO below watermark" one, disable it 512 */ 513 msm_port->imr &= ~UART_IMR_TXLEV; 514 msm_write(port, msm_port->imr, UART_IMR); 515 516 dma->count = count; 517 518 val = msm_read(port, UARTDM_DMEN); 519 val |= dma->enable_bit; 520 521 if (msm_port->is_uartdm < UARTDM_1P4) 522 msm_write(port, val, UARTDM_DMEN); 523 524 msm_reset_dm_count(port, count); 525 526 if (msm_port->is_uartdm > UARTDM_1P3) 527 msm_write(port, val, UARTDM_DMEN); 528 529 dma_async_issue_pending(dma->chan); 530 return 0; 531 unmap: 532 dma_unmap_single(port->dev, dma->phys, count, dma->dir); 533 return ret; 534 } 535 536 static void msm_complete_rx_dma(void *args) 537 { 538 struct msm_port *msm_port = args; 539 struct uart_port *port = &msm_port->uart; 540 struct tty_port *tport = &port->state->port; 541 struct msm_dma *dma = &msm_port->rx_dma; 542 int count = 0, i, sysrq; 543 unsigned long flags; 544 u32 val; 545 546 spin_lock_irqsave(&port->lock, flags); 547 548 /* Already stopped */ 549 if (!dma->count) 550 goto done; 551 552 val = msm_read(port, UARTDM_DMEN); 553 val &= ~dma->enable_bit; 554 msm_write(port, val, UARTDM_DMEN); 555 556 if (msm_read(port, UART_SR) & UART_SR_OVERRUN) { 557 port->icount.overrun++; 558 tty_insert_flip_char(tport, 0, TTY_OVERRUN); 559 msm_write(port, UART_CR_CMD_RESET_ERR, UART_CR); 560 } 561 562 count = msm_read(port, UARTDM_RX_TOTAL_SNAP); 563 564 port->icount.rx += count; 565 566 dma->count = 0; 567 568 dma_unmap_single(port->dev, dma->phys, UARTDM_RX_SIZE, dma->dir); 569 570 for (i = 0; i < count; i++) { 571 char flag = TTY_NORMAL; 572 573 if (msm_port->break_detected && dma->virt[i] == 0) { 574 port->icount.brk++; 575 flag = TTY_BREAK; 576 msm_port->break_detected = false; 577 if (uart_handle_break(port)) 578 continue; 579 } 580 581 if (!(port->read_status_mask & UART_SR_RX_BREAK)) 582 flag = TTY_NORMAL; 583 584 spin_unlock_irqrestore(&port->lock, flags); 585 sysrq = uart_handle_sysrq_char(port, dma->virt[i]); 586 spin_lock_irqsave(&port->lock, flags); 587 if (!sysrq) 588 tty_insert_flip_char(tport, dma->virt[i], flag); 589 } 590 591 msm_start_rx_dma(msm_port); 592 done: 593 spin_unlock_irqrestore(&port->lock, flags); 594 595 if (count) 596 tty_flip_buffer_push(tport); 597 } 598 599 static void msm_start_rx_dma(struct msm_port *msm_port) 600 { 601 struct msm_dma *dma = &msm_port->rx_dma; 602 struct uart_port *uart = &msm_port->uart; 603 u32 val; 604 int ret; 605 606 if (!dma->chan) 607 return; 608 609 dma->phys = dma_map_single(uart->dev, dma->virt, 610 UARTDM_RX_SIZE, dma->dir); 611 ret = dma_mapping_error(uart->dev, dma->phys); 612 if (ret) 613 return; 614 615 dma->desc = dmaengine_prep_slave_single(dma->chan, dma->phys, 616 UARTDM_RX_SIZE, DMA_DEV_TO_MEM, 617 DMA_PREP_INTERRUPT); 618 if (!dma->desc) 619 goto unmap; 620 621 dma->desc->callback = msm_complete_rx_dma; 622 dma->desc->callback_param = msm_port; 623 624 dma->cookie = dmaengine_submit(dma->desc); 625 ret = dma_submit_error(dma->cookie); 626 if (ret) 627 goto unmap; 628 /* 629 * Using DMA for FIFO off-load, no need for "Rx FIFO over 630 * watermark" or "stale" interrupts, disable them 631 */ 632 msm_port->imr &= ~(UART_IMR_RXLEV | UART_IMR_RXSTALE); 633 634 /* 635 * Well, when DMA is ADM3 engine(implied by <= UARTDM v1.3), 636 * we need RXSTALE to flush input DMA fifo to memory 637 */ 638 if (msm_port->is_uartdm < UARTDM_1P4) 639 msm_port->imr |= UART_IMR_RXSTALE; 640 641 msm_write(uart, msm_port->imr, UART_IMR); 642 643 dma->count = UARTDM_RX_SIZE; 644 645 dma_async_issue_pending(dma->chan); 646 647 msm_write(uart, UART_CR_CMD_RESET_STALE_INT, UART_CR); 648 msm_write(uart, UART_CR_CMD_STALE_EVENT_ENABLE, UART_CR); 649 650 val = msm_read(uart, UARTDM_DMEN); 651 val |= dma->enable_bit; 652 653 if (msm_port->is_uartdm < UARTDM_1P4) 654 msm_write(uart, val, UARTDM_DMEN); 655 656 msm_write(uart, UARTDM_RX_SIZE, UARTDM_DMRX); 657 658 if (msm_port->is_uartdm > UARTDM_1P3) 659 msm_write(uart, val, UARTDM_DMEN); 660 661 return; 662 unmap: 663 dma_unmap_single(uart->dev, dma->phys, UARTDM_RX_SIZE, dma->dir); 664 } 665 666 static void msm_stop_rx(struct uart_port *port) 667 { 668 struct msm_port *msm_port = UART_TO_MSM(port); 669 struct msm_dma *dma = &msm_port->rx_dma; 670 671 msm_port->imr &= ~(UART_IMR_RXLEV | UART_IMR_RXSTALE); 672 msm_write(port, msm_port->imr, UART_IMR); 673 674 if (dma->chan) 675 msm_stop_dma(port, dma); 676 } 677 678 static void msm_enable_ms(struct uart_port *port) 679 { 680 struct msm_port *msm_port = UART_TO_MSM(port); 681 682 msm_port->imr |= UART_IMR_DELTA_CTS; 683 msm_write(port, msm_port->imr, UART_IMR); 684 } 685 686 static void msm_handle_rx_dm(struct uart_port *port, unsigned int misr) 687 { 688 struct tty_port *tport = &port->state->port; 689 unsigned int sr; 690 int count = 0; 691 struct msm_port *msm_port = UART_TO_MSM(port); 692 693 if ((msm_read(port, UART_SR) & UART_SR_OVERRUN)) { 694 port->icount.overrun++; 695 tty_insert_flip_char(tport, 0, TTY_OVERRUN); 696 msm_write(port, UART_CR_CMD_RESET_ERR, UART_CR); 697 } 698 699 if (misr & UART_IMR_RXSTALE) { 700 count = msm_read(port, UARTDM_RX_TOTAL_SNAP) - 701 msm_port->old_snap_state; 702 msm_port->old_snap_state = 0; 703 } else { 704 count = 4 * (msm_read(port, UART_RFWR)); 705 msm_port->old_snap_state += count; 706 } 707 708 /* TODO: Precise error reporting */ 709 710 port->icount.rx += count; 711 712 while (count > 0) { 713 unsigned char buf[4]; 714 int sysrq, r_count, i; 715 716 sr = msm_read(port, UART_SR); 717 if ((sr & UART_SR_RX_READY) == 0) { 718 msm_port->old_snap_state -= count; 719 break; 720 } 721 722 ioread32_rep(port->membase + UARTDM_RF, buf, 1); 723 r_count = min_t(int, count, sizeof(buf)); 724 725 for (i = 0; i < r_count; i++) { 726 char flag = TTY_NORMAL; 727 728 if (msm_port->break_detected && buf[i] == 0) { 729 port->icount.brk++; 730 flag = TTY_BREAK; 731 msm_port->break_detected = false; 732 if (uart_handle_break(port)) 733 continue; 734 } 735 736 if (!(port->read_status_mask & UART_SR_RX_BREAK)) 737 flag = TTY_NORMAL; 738 739 spin_unlock(&port->lock); 740 sysrq = uart_handle_sysrq_char(port, buf[i]); 741 spin_lock(&port->lock); 742 if (!sysrq) 743 tty_insert_flip_char(tport, buf[i], flag); 744 } 745 count -= r_count; 746 } 747 748 spin_unlock(&port->lock); 749 tty_flip_buffer_push(tport); 750 spin_lock(&port->lock); 751 752 if (misr & (UART_IMR_RXSTALE)) 753 msm_write(port, UART_CR_CMD_RESET_STALE_INT, UART_CR); 754 msm_write(port, 0xFFFFFF, UARTDM_DMRX); 755 msm_write(port, UART_CR_CMD_STALE_EVENT_ENABLE, UART_CR); 756 757 /* Try to use DMA */ 758 msm_start_rx_dma(msm_port); 759 } 760 761 static void msm_handle_rx(struct uart_port *port) 762 { 763 struct tty_port *tport = &port->state->port; 764 unsigned int sr; 765 766 /* 767 * Handle overrun. My understanding of the hardware is that overrun 768 * is not tied to the RX buffer, so we handle the case out of band. 769 */ 770 if ((msm_read(port, UART_SR) & UART_SR_OVERRUN)) { 771 port->icount.overrun++; 772 tty_insert_flip_char(tport, 0, TTY_OVERRUN); 773 msm_write(port, UART_CR_CMD_RESET_ERR, UART_CR); 774 } 775 776 /* and now the main RX loop */ 777 while ((sr = msm_read(port, UART_SR)) & UART_SR_RX_READY) { 778 unsigned int c; 779 char flag = TTY_NORMAL; 780 int sysrq; 781 782 c = msm_read(port, UART_RF); 783 784 if (sr & UART_SR_RX_BREAK) { 785 port->icount.brk++; 786 if (uart_handle_break(port)) 787 continue; 788 } else if (sr & UART_SR_PAR_FRAME_ERR) { 789 port->icount.frame++; 790 } else { 791 port->icount.rx++; 792 } 793 794 /* Mask conditions we're ignorning. */ 795 sr &= port->read_status_mask; 796 797 if (sr & UART_SR_RX_BREAK) 798 flag = TTY_BREAK; 799 else if (sr & UART_SR_PAR_FRAME_ERR) 800 flag = TTY_FRAME; 801 802 spin_unlock(&port->lock); 803 sysrq = uart_handle_sysrq_char(port, c); 804 spin_lock(&port->lock); 805 if (!sysrq) 806 tty_insert_flip_char(tport, c, flag); 807 } 808 809 spin_unlock(&port->lock); 810 tty_flip_buffer_push(tport); 811 spin_lock(&port->lock); 812 } 813 814 static void msm_handle_tx_pio(struct uart_port *port, unsigned int tx_count) 815 { 816 struct circ_buf *xmit = &port->state->xmit; 817 struct msm_port *msm_port = UART_TO_MSM(port); 818 unsigned int num_chars; 819 unsigned int tf_pointer = 0; 820 void __iomem *tf; 821 822 if (msm_port->is_uartdm) 823 tf = port->membase + UARTDM_TF; 824 else 825 tf = port->membase + UART_TF; 826 827 if (tx_count && msm_port->is_uartdm) 828 msm_reset_dm_count(port, tx_count); 829 830 while (tf_pointer < tx_count) { 831 int i; 832 char buf[4] = { 0 }; 833 834 if (!(msm_read(port, UART_SR) & UART_SR_TX_READY)) 835 break; 836 837 if (msm_port->is_uartdm) 838 num_chars = min(tx_count - tf_pointer, 839 (unsigned int)sizeof(buf)); 840 else 841 num_chars = 1; 842 843 for (i = 0; i < num_chars; i++) { 844 buf[i] = xmit->buf[xmit->tail + i]; 845 port->icount.tx++; 846 } 847 848 iowrite32_rep(tf, buf, 1); 849 xmit->tail = (xmit->tail + num_chars) & (UART_XMIT_SIZE - 1); 850 tf_pointer += num_chars; 851 } 852 853 /* disable tx interrupts if nothing more to send */ 854 if (uart_circ_empty(xmit)) 855 msm_stop_tx(port); 856 857 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 858 uart_write_wakeup(port); 859 } 860 861 static void msm_handle_tx(struct uart_port *port) 862 { 863 struct msm_port *msm_port = UART_TO_MSM(port); 864 struct circ_buf *xmit = &msm_port->uart.state->xmit; 865 struct msm_dma *dma = &msm_port->tx_dma; 866 unsigned int pio_count, dma_count, dma_min; 867 char buf[4] = { 0 }; 868 void __iomem *tf; 869 int err = 0; 870 871 if (port->x_char) { 872 if (msm_port->is_uartdm) 873 tf = port->membase + UARTDM_TF; 874 else 875 tf = port->membase + UART_TF; 876 877 buf[0] = port->x_char; 878 879 if (msm_port->is_uartdm) 880 msm_reset_dm_count(port, 1); 881 882 iowrite32_rep(tf, buf, 1); 883 port->icount.tx++; 884 port->x_char = 0; 885 return; 886 } 887 888 if (uart_circ_empty(xmit) || uart_tx_stopped(port)) { 889 msm_stop_tx(port); 890 return; 891 } 892 893 pio_count = CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE); 894 dma_count = CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE); 895 896 dma_min = 1; /* Always DMA */ 897 if (msm_port->is_uartdm > UARTDM_1P3) { 898 dma_count = UARTDM_TX_AIGN(dma_count); 899 dma_min = UARTDM_BURST_SIZE; 900 } else { 901 if (dma_count > UARTDM_TX_MAX) 902 dma_count = UARTDM_TX_MAX; 903 } 904 905 if (pio_count > port->fifosize) 906 pio_count = port->fifosize; 907 908 if (!dma->chan || dma_count < dma_min) 909 msm_handle_tx_pio(port, pio_count); 910 else 911 err = msm_handle_tx_dma(msm_port, dma_count); 912 913 if (err) /* fall back to PIO mode */ 914 msm_handle_tx_pio(port, pio_count); 915 } 916 917 static void msm_handle_delta_cts(struct uart_port *port) 918 { 919 msm_write(port, UART_CR_CMD_RESET_CTS, UART_CR); 920 port->icount.cts++; 921 wake_up_interruptible(&port->state->port.delta_msr_wait); 922 } 923 924 static irqreturn_t msm_uart_irq(int irq, void *dev_id) 925 { 926 struct uart_port *port = dev_id; 927 struct msm_port *msm_port = UART_TO_MSM(port); 928 struct msm_dma *dma = &msm_port->rx_dma; 929 unsigned long flags; 930 unsigned int misr; 931 u32 val; 932 933 spin_lock_irqsave(&port->lock, flags); 934 misr = msm_read(port, UART_MISR); 935 msm_write(port, 0, UART_IMR); /* disable interrupt */ 936 937 if (misr & UART_IMR_RXBREAK_START) { 938 msm_port->break_detected = true; 939 msm_write(port, UART_CR_CMD_RESET_RXBREAK_START, UART_CR); 940 } 941 942 if (misr & (UART_IMR_RXLEV | UART_IMR_RXSTALE)) { 943 if (dma->count) { 944 val = UART_CR_CMD_STALE_EVENT_DISABLE; 945 msm_write(port, val, UART_CR); 946 val = UART_CR_CMD_RESET_STALE_INT; 947 msm_write(port, val, UART_CR); 948 /* 949 * Flush DMA input fifo to memory, this will also 950 * trigger DMA RX completion 951 */ 952 dmaengine_terminate_all(dma->chan); 953 } else if (msm_port->is_uartdm) { 954 msm_handle_rx_dm(port, misr); 955 } else { 956 msm_handle_rx(port); 957 } 958 } 959 if (misr & UART_IMR_TXLEV) 960 msm_handle_tx(port); 961 if (misr & UART_IMR_DELTA_CTS) 962 msm_handle_delta_cts(port); 963 964 msm_write(port, msm_port->imr, UART_IMR); /* restore interrupt */ 965 spin_unlock_irqrestore(&port->lock, flags); 966 967 return IRQ_HANDLED; 968 } 969 970 static unsigned int msm_tx_empty(struct uart_port *port) 971 { 972 return (msm_read(port, UART_SR) & UART_SR_TX_EMPTY) ? TIOCSER_TEMT : 0; 973 } 974 975 static unsigned int msm_get_mctrl(struct uart_port *port) 976 { 977 return TIOCM_CAR | TIOCM_CTS | TIOCM_DSR | TIOCM_RTS; 978 } 979 980 static void msm_reset(struct uart_port *port) 981 { 982 struct msm_port *msm_port = UART_TO_MSM(port); 983 unsigned int mr; 984 985 /* reset everything */ 986 msm_write(port, UART_CR_CMD_RESET_RX, UART_CR); 987 msm_write(port, UART_CR_CMD_RESET_TX, UART_CR); 988 msm_write(port, UART_CR_CMD_RESET_ERR, UART_CR); 989 msm_write(port, UART_CR_CMD_RESET_BREAK_INT, UART_CR); 990 msm_write(port, UART_CR_CMD_RESET_CTS, UART_CR); 991 msm_write(port, UART_CR_CMD_RESET_RFR, UART_CR); 992 mr = msm_read(port, UART_MR1); 993 mr &= ~UART_MR1_RX_RDY_CTL; 994 msm_write(port, mr, UART_MR1); 995 996 /* Disable DM modes */ 997 if (msm_port->is_uartdm) 998 msm_write(port, 0, UARTDM_DMEN); 999 } 1000 1001 static void msm_set_mctrl(struct uart_port *port, unsigned int mctrl) 1002 { 1003 unsigned int mr; 1004 1005 mr = msm_read(port, UART_MR1); 1006 1007 if (!(mctrl & TIOCM_RTS)) { 1008 mr &= ~UART_MR1_RX_RDY_CTL; 1009 msm_write(port, mr, UART_MR1); 1010 msm_write(port, UART_CR_CMD_RESET_RFR, UART_CR); 1011 } else { 1012 mr |= UART_MR1_RX_RDY_CTL; 1013 msm_write(port, mr, UART_MR1); 1014 } 1015 } 1016 1017 static void msm_break_ctl(struct uart_port *port, int break_ctl) 1018 { 1019 if (break_ctl) 1020 msm_write(port, UART_CR_CMD_START_BREAK, UART_CR); 1021 else 1022 msm_write(port, UART_CR_CMD_STOP_BREAK, UART_CR); 1023 } 1024 1025 struct msm_baud_map { 1026 u16 divisor; 1027 u8 code; 1028 u8 rxstale; 1029 }; 1030 1031 static const struct msm_baud_map * 1032 msm_find_best_baud(struct uart_port *port, unsigned int baud, 1033 unsigned long *rate) 1034 { 1035 struct msm_port *msm_port = UART_TO_MSM(port); 1036 unsigned int divisor, result; 1037 unsigned long target, old, best_rate = 0, diff, best_diff = ULONG_MAX; 1038 const struct msm_baud_map *entry, *end, *best; 1039 static const struct msm_baud_map table[] = { 1040 { 1, 0xff, 31 }, 1041 { 2, 0xee, 16 }, 1042 { 3, 0xdd, 8 }, 1043 { 4, 0xcc, 6 }, 1044 { 6, 0xbb, 6 }, 1045 { 8, 0xaa, 6 }, 1046 { 12, 0x99, 6 }, 1047 { 16, 0x88, 1 }, 1048 { 24, 0x77, 1 }, 1049 { 32, 0x66, 1 }, 1050 { 48, 0x55, 1 }, 1051 { 96, 0x44, 1 }, 1052 { 192, 0x33, 1 }, 1053 { 384, 0x22, 1 }, 1054 { 768, 0x11, 1 }, 1055 { 1536, 0x00, 1 }, 1056 }; 1057 1058 best = table; /* Default to smallest divider */ 1059 target = clk_round_rate(msm_port->clk, 16 * baud); 1060 divisor = DIV_ROUND_CLOSEST(target, 16 * baud); 1061 1062 end = table + ARRAY_SIZE(table); 1063 entry = table; 1064 while (entry < end) { 1065 if (entry->divisor <= divisor) { 1066 result = target / entry->divisor / 16; 1067 diff = abs(result - baud); 1068 1069 /* Keep track of best entry */ 1070 if (diff < best_diff) { 1071 best_diff = diff; 1072 best = entry; 1073 best_rate = target; 1074 } 1075 1076 if (result == baud) 1077 break; 1078 } else if (entry->divisor > divisor) { 1079 old = target; 1080 target = clk_round_rate(msm_port->clk, old + 1); 1081 /* 1082 * The rate didn't get any faster so we can't do 1083 * better at dividing it down 1084 */ 1085 if (target == old) 1086 break; 1087 1088 /* Start the divisor search over at this new rate */ 1089 entry = table; 1090 divisor = DIV_ROUND_CLOSEST(target, 16 * baud); 1091 continue; 1092 } 1093 entry++; 1094 } 1095 1096 *rate = best_rate; 1097 return best; 1098 } 1099 1100 static int msm_set_baud_rate(struct uart_port *port, unsigned int baud, 1101 unsigned long *saved_flags) 1102 { 1103 unsigned int rxstale, watermark, mask; 1104 struct msm_port *msm_port = UART_TO_MSM(port); 1105 const struct msm_baud_map *entry; 1106 unsigned long flags, rate; 1107 1108 flags = *saved_flags; 1109 spin_unlock_irqrestore(&port->lock, flags); 1110 1111 entry = msm_find_best_baud(port, baud, &rate); 1112 clk_set_rate(msm_port->clk, rate); 1113 baud = rate / 16 / entry->divisor; 1114 1115 spin_lock_irqsave(&port->lock, flags); 1116 *saved_flags = flags; 1117 port->uartclk = rate; 1118 1119 msm_write(port, entry->code, UART_CSR); 1120 1121 /* RX stale watermark */ 1122 rxstale = entry->rxstale; 1123 watermark = UART_IPR_STALE_LSB & rxstale; 1124 if (msm_port->is_uartdm) { 1125 mask = UART_DM_IPR_STALE_TIMEOUT_MSB; 1126 } else { 1127 watermark |= UART_IPR_RXSTALE_LAST; 1128 mask = UART_IPR_STALE_TIMEOUT_MSB; 1129 } 1130 1131 watermark |= mask & (rxstale << 2); 1132 1133 msm_write(port, watermark, UART_IPR); 1134 1135 /* set RX watermark */ 1136 watermark = (port->fifosize * 3) / 4; 1137 msm_write(port, watermark, UART_RFWR); 1138 1139 /* set TX watermark */ 1140 msm_write(port, 10, UART_TFWR); 1141 1142 msm_write(port, UART_CR_CMD_PROTECTION_EN, UART_CR); 1143 msm_reset(port); 1144 1145 /* Enable RX and TX */ 1146 msm_write(port, UART_CR_TX_ENABLE | UART_CR_RX_ENABLE, UART_CR); 1147 1148 /* turn on RX and CTS interrupts */ 1149 msm_port->imr = UART_IMR_RXLEV | UART_IMR_RXSTALE | 1150 UART_IMR_CURRENT_CTS | UART_IMR_RXBREAK_START; 1151 1152 msm_write(port, msm_port->imr, UART_IMR); 1153 1154 if (msm_port->is_uartdm) { 1155 msm_write(port, UART_CR_CMD_RESET_STALE_INT, UART_CR); 1156 msm_write(port, 0xFFFFFF, UARTDM_DMRX); 1157 msm_write(port, UART_CR_CMD_STALE_EVENT_ENABLE, UART_CR); 1158 } 1159 1160 return baud; 1161 } 1162 1163 static void msm_init_clock(struct uart_port *port) 1164 { 1165 struct msm_port *msm_port = UART_TO_MSM(port); 1166 1167 clk_prepare_enable(msm_port->clk); 1168 clk_prepare_enable(msm_port->pclk); 1169 msm_serial_set_mnd_regs(port); 1170 } 1171 1172 static int msm_startup(struct uart_port *port) 1173 { 1174 struct msm_port *msm_port = UART_TO_MSM(port); 1175 unsigned int data, rfr_level, mask; 1176 int ret; 1177 1178 snprintf(msm_port->name, sizeof(msm_port->name), 1179 "msm_serial%d", port->line); 1180 1181 msm_init_clock(port); 1182 1183 if (likely(port->fifosize > 12)) 1184 rfr_level = port->fifosize - 12; 1185 else 1186 rfr_level = port->fifosize; 1187 1188 /* set automatic RFR level */ 1189 data = msm_read(port, UART_MR1); 1190 1191 if (msm_port->is_uartdm) 1192 mask = UART_DM_MR1_AUTO_RFR_LEVEL1; 1193 else 1194 mask = UART_MR1_AUTO_RFR_LEVEL1; 1195 1196 data &= ~mask; 1197 data &= ~UART_MR1_AUTO_RFR_LEVEL0; 1198 data |= mask & (rfr_level << 2); 1199 data |= UART_MR1_AUTO_RFR_LEVEL0 & rfr_level; 1200 msm_write(port, data, UART_MR1); 1201 1202 if (msm_port->is_uartdm) { 1203 msm_request_tx_dma(msm_port, msm_port->uart.mapbase); 1204 msm_request_rx_dma(msm_port, msm_port->uart.mapbase); 1205 } 1206 1207 ret = request_irq(port->irq, msm_uart_irq, IRQF_TRIGGER_HIGH, 1208 msm_port->name, port); 1209 if (unlikely(ret)) 1210 goto err_irq; 1211 1212 return 0; 1213 1214 err_irq: 1215 if (msm_port->is_uartdm) 1216 msm_release_dma(msm_port); 1217 1218 clk_disable_unprepare(msm_port->pclk); 1219 clk_disable_unprepare(msm_port->clk); 1220 1221 return ret; 1222 } 1223 1224 static void msm_shutdown(struct uart_port *port) 1225 { 1226 struct msm_port *msm_port = UART_TO_MSM(port); 1227 1228 msm_port->imr = 0; 1229 msm_write(port, 0, UART_IMR); /* disable interrupts */ 1230 1231 if (msm_port->is_uartdm) 1232 msm_release_dma(msm_port); 1233 1234 clk_disable_unprepare(msm_port->clk); 1235 1236 free_irq(port->irq, port); 1237 } 1238 1239 static void msm_set_termios(struct uart_port *port, struct ktermios *termios, 1240 struct ktermios *old) 1241 { 1242 struct msm_port *msm_port = UART_TO_MSM(port); 1243 struct msm_dma *dma = &msm_port->rx_dma; 1244 unsigned long flags; 1245 unsigned int baud, mr; 1246 1247 spin_lock_irqsave(&port->lock, flags); 1248 1249 if (dma->chan) /* Terminate if any */ 1250 msm_stop_dma(port, dma); 1251 1252 /* calculate and set baud rate */ 1253 baud = uart_get_baud_rate(port, termios, old, 300, 4000000); 1254 baud = msm_set_baud_rate(port, baud, &flags); 1255 if (tty_termios_baud_rate(termios)) 1256 tty_termios_encode_baud_rate(termios, baud, baud); 1257 1258 /* calculate parity */ 1259 mr = msm_read(port, UART_MR2); 1260 mr &= ~UART_MR2_PARITY_MODE; 1261 if (termios->c_cflag & PARENB) { 1262 if (termios->c_cflag & PARODD) 1263 mr |= UART_MR2_PARITY_MODE_ODD; 1264 else if (termios->c_cflag & CMSPAR) 1265 mr |= UART_MR2_PARITY_MODE_SPACE; 1266 else 1267 mr |= UART_MR2_PARITY_MODE_EVEN; 1268 } 1269 1270 /* calculate bits per char */ 1271 mr &= ~UART_MR2_BITS_PER_CHAR; 1272 switch (termios->c_cflag & CSIZE) { 1273 case CS5: 1274 mr |= UART_MR2_BITS_PER_CHAR_5; 1275 break; 1276 case CS6: 1277 mr |= UART_MR2_BITS_PER_CHAR_6; 1278 break; 1279 case CS7: 1280 mr |= UART_MR2_BITS_PER_CHAR_7; 1281 break; 1282 case CS8: 1283 default: 1284 mr |= UART_MR2_BITS_PER_CHAR_8; 1285 break; 1286 } 1287 1288 /* calculate stop bits */ 1289 mr &= ~(UART_MR2_STOP_BIT_LEN_ONE | UART_MR2_STOP_BIT_LEN_TWO); 1290 if (termios->c_cflag & CSTOPB) 1291 mr |= UART_MR2_STOP_BIT_LEN_TWO; 1292 else 1293 mr |= UART_MR2_STOP_BIT_LEN_ONE; 1294 1295 /* set parity, bits per char, and stop bit */ 1296 msm_write(port, mr, UART_MR2); 1297 1298 /* calculate and set hardware flow control */ 1299 mr = msm_read(port, UART_MR1); 1300 mr &= ~(UART_MR1_CTS_CTL | UART_MR1_RX_RDY_CTL); 1301 if (termios->c_cflag & CRTSCTS) { 1302 mr |= UART_MR1_CTS_CTL; 1303 mr |= UART_MR1_RX_RDY_CTL; 1304 } 1305 msm_write(port, mr, UART_MR1); 1306 1307 /* Configure status bits to ignore based on termio flags. */ 1308 port->read_status_mask = 0; 1309 if (termios->c_iflag & INPCK) 1310 port->read_status_mask |= UART_SR_PAR_FRAME_ERR; 1311 if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK)) 1312 port->read_status_mask |= UART_SR_RX_BREAK; 1313 1314 uart_update_timeout(port, termios->c_cflag, baud); 1315 1316 /* Try to use DMA */ 1317 msm_start_rx_dma(msm_port); 1318 1319 spin_unlock_irqrestore(&port->lock, flags); 1320 } 1321 1322 static const char *msm_type(struct uart_port *port) 1323 { 1324 return "MSM"; 1325 } 1326 1327 static void msm_release_port(struct uart_port *port) 1328 { 1329 struct platform_device *pdev = to_platform_device(port->dev); 1330 struct resource *uart_resource; 1331 resource_size_t size; 1332 1333 uart_resource = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1334 if (unlikely(!uart_resource)) 1335 return; 1336 size = resource_size(uart_resource); 1337 1338 release_mem_region(port->mapbase, size); 1339 iounmap(port->membase); 1340 port->membase = NULL; 1341 } 1342 1343 static int msm_request_port(struct uart_port *port) 1344 { 1345 struct platform_device *pdev = to_platform_device(port->dev); 1346 struct resource *uart_resource; 1347 resource_size_t size; 1348 int ret; 1349 1350 uart_resource = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1351 if (unlikely(!uart_resource)) 1352 return -ENXIO; 1353 1354 size = resource_size(uart_resource); 1355 1356 if (!request_mem_region(port->mapbase, size, "msm_serial")) 1357 return -EBUSY; 1358 1359 port->membase = ioremap(port->mapbase, size); 1360 if (!port->membase) { 1361 ret = -EBUSY; 1362 goto fail_release_port; 1363 } 1364 1365 return 0; 1366 1367 fail_release_port: 1368 release_mem_region(port->mapbase, size); 1369 return ret; 1370 } 1371 1372 static void msm_config_port(struct uart_port *port, int flags) 1373 { 1374 int ret; 1375 1376 if (flags & UART_CONFIG_TYPE) { 1377 port->type = PORT_MSM; 1378 ret = msm_request_port(port); 1379 if (ret) 1380 return; 1381 } 1382 } 1383 1384 static int msm_verify_port(struct uart_port *port, struct serial_struct *ser) 1385 { 1386 if (unlikely(ser->type != PORT_UNKNOWN && ser->type != PORT_MSM)) 1387 return -EINVAL; 1388 if (unlikely(port->irq != ser->irq)) 1389 return -EINVAL; 1390 return 0; 1391 } 1392 1393 static void msm_power(struct uart_port *port, unsigned int state, 1394 unsigned int oldstate) 1395 { 1396 struct msm_port *msm_port = UART_TO_MSM(port); 1397 1398 switch (state) { 1399 case 0: 1400 clk_prepare_enable(msm_port->clk); 1401 clk_prepare_enable(msm_port->pclk); 1402 break; 1403 case 3: 1404 clk_disable_unprepare(msm_port->clk); 1405 clk_disable_unprepare(msm_port->pclk); 1406 break; 1407 default: 1408 pr_err("msm_serial: Unknown PM state %d\n", state); 1409 } 1410 } 1411 1412 #ifdef CONFIG_CONSOLE_POLL 1413 static int msm_poll_get_char_single(struct uart_port *port) 1414 { 1415 struct msm_port *msm_port = UART_TO_MSM(port); 1416 unsigned int rf_reg = msm_port->is_uartdm ? UARTDM_RF : UART_RF; 1417 1418 if (!(msm_read(port, UART_SR) & UART_SR_RX_READY)) 1419 return NO_POLL_CHAR; 1420 1421 return msm_read(port, rf_reg) & 0xff; 1422 } 1423 1424 static int msm_poll_get_char_dm(struct uart_port *port) 1425 { 1426 int c; 1427 static u32 slop; 1428 static int count; 1429 unsigned char *sp = (unsigned char *)&slop; 1430 1431 /* Check if a previous read had more than one char */ 1432 if (count) { 1433 c = sp[sizeof(slop) - count]; 1434 count--; 1435 /* Or if FIFO is empty */ 1436 } else if (!(msm_read(port, UART_SR) & UART_SR_RX_READY)) { 1437 /* 1438 * If RX packing buffer has less than a word, force stale to 1439 * push contents into RX FIFO 1440 */ 1441 count = msm_read(port, UARTDM_RXFS); 1442 count = (count >> UARTDM_RXFS_BUF_SHIFT) & UARTDM_RXFS_BUF_MASK; 1443 if (count) { 1444 msm_write(port, UART_CR_CMD_FORCE_STALE, UART_CR); 1445 slop = msm_read(port, UARTDM_RF); 1446 c = sp[0]; 1447 count--; 1448 msm_write(port, UART_CR_CMD_RESET_STALE_INT, UART_CR); 1449 msm_write(port, 0xFFFFFF, UARTDM_DMRX); 1450 msm_write(port, UART_CR_CMD_STALE_EVENT_ENABLE, 1451 UART_CR); 1452 } else { 1453 c = NO_POLL_CHAR; 1454 } 1455 /* FIFO has a word */ 1456 } else { 1457 slop = msm_read(port, UARTDM_RF); 1458 c = sp[0]; 1459 count = sizeof(slop) - 1; 1460 } 1461 1462 return c; 1463 } 1464 1465 static int msm_poll_get_char(struct uart_port *port) 1466 { 1467 u32 imr; 1468 int c; 1469 struct msm_port *msm_port = UART_TO_MSM(port); 1470 1471 /* Disable all interrupts */ 1472 imr = msm_read(port, UART_IMR); 1473 msm_write(port, 0, UART_IMR); 1474 1475 if (msm_port->is_uartdm) 1476 c = msm_poll_get_char_dm(port); 1477 else 1478 c = msm_poll_get_char_single(port); 1479 1480 /* Enable interrupts */ 1481 msm_write(port, imr, UART_IMR); 1482 1483 return c; 1484 } 1485 1486 static void msm_poll_put_char(struct uart_port *port, unsigned char c) 1487 { 1488 u32 imr; 1489 struct msm_port *msm_port = UART_TO_MSM(port); 1490 1491 /* Disable all interrupts */ 1492 imr = msm_read(port, UART_IMR); 1493 msm_write(port, 0, UART_IMR); 1494 1495 if (msm_port->is_uartdm) 1496 msm_reset_dm_count(port, 1); 1497 1498 /* Wait until FIFO is empty */ 1499 while (!(msm_read(port, UART_SR) & UART_SR_TX_READY)) 1500 cpu_relax(); 1501 1502 /* Write a character */ 1503 msm_write(port, c, msm_port->is_uartdm ? UARTDM_TF : UART_TF); 1504 1505 /* Wait until FIFO is empty */ 1506 while (!(msm_read(port, UART_SR) & UART_SR_TX_READY)) 1507 cpu_relax(); 1508 1509 /* Enable interrupts */ 1510 msm_write(port, imr, UART_IMR); 1511 } 1512 #endif 1513 1514 static struct uart_ops msm_uart_pops = { 1515 .tx_empty = msm_tx_empty, 1516 .set_mctrl = msm_set_mctrl, 1517 .get_mctrl = msm_get_mctrl, 1518 .stop_tx = msm_stop_tx, 1519 .start_tx = msm_start_tx, 1520 .stop_rx = msm_stop_rx, 1521 .enable_ms = msm_enable_ms, 1522 .break_ctl = msm_break_ctl, 1523 .startup = msm_startup, 1524 .shutdown = msm_shutdown, 1525 .set_termios = msm_set_termios, 1526 .type = msm_type, 1527 .release_port = msm_release_port, 1528 .request_port = msm_request_port, 1529 .config_port = msm_config_port, 1530 .verify_port = msm_verify_port, 1531 .pm = msm_power, 1532 #ifdef CONFIG_CONSOLE_POLL 1533 .poll_get_char = msm_poll_get_char, 1534 .poll_put_char = msm_poll_put_char, 1535 #endif 1536 }; 1537 1538 static struct msm_port msm_uart_ports[] = { 1539 { 1540 .uart = { 1541 .iotype = UPIO_MEM, 1542 .ops = &msm_uart_pops, 1543 .flags = UPF_BOOT_AUTOCONF, 1544 .fifosize = 64, 1545 .line = 0, 1546 }, 1547 }, 1548 { 1549 .uart = { 1550 .iotype = UPIO_MEM, 1551 .ops = &msm_uart_pops, 1552 .flags = UPF_BOOT_AUTOCONF, 1553 .fifosize = 64, 1554 .line = 1, 1555 }, 1556 }, 1557 { 1558 .uart = { 1559 .iotype = UPIO_MEM, 1560 .ops = &msm_uart_pops, 1561 .flags = UPF_BOOT_AUTOCONF, 1562 .fifosize = 64, 1563 .line = 2, 1564 }, 1565 }, 1566 }; 1567 1568 #define UART_NR ARRAY_SIZE(msm_uart_ports) 1569 1570 static inline struct uart_port *msm_get_port_from_line(unsigned int line) 1571 { 1572 return &msm_uart_ports[line].uart; 1573 } 1574 1575 #ifdef CONFIG_SERIAL_MSM_CONSOLE 1576 static void __msm_console_write(struct uart_port *port, const char *s, 1577 unsigned int count, bool is_uartdm) 1578 { 1579 int i; 1580 int num_newlines = 0; 1581 bool replaced = false; 1582 void __iomem *tf; 1583 1584 if (is_uartdm) 1585 tf = port->membase + UARTDM_TF; 1586 else 1587 tf = port->membase + UART_TF; 1588 1589 /* Account for newlines that will get a carriage return added */ 1590 for (i = 0; i < count; i++) 1591 if (s[i] == '\n') 1592 num_newlines++; 1593 count += num_newlines; 1594 1595 spin_lock(&port->lock); 1596 if (is_uartdm) 1597 msm_reset_dm_count(port, count); 1598 1599 i = 0; 1600 while (i < count) { 1601 int j; 1602 unsigned int num_chars; 1603 char buf[4] = { 0 }; 1604 1605 if (is_uartdm) 1606 num_chars = min(count - i, (unsigned int)sizeof(buf)); 1607 else 1608 num_chars = 1; 1609 1610 for (j = 0; j < num_chars; j++) { 1611 char c = *s; 1612 1613 if (c == '\n' && !replaced) { 1614 buf[j] = '\r'; 1615 j++; 1616 replaced = true; 1617 } 1618 if (j < num_chars) { 1619 buf[j] = c; 1620 s++; 1621 replaced = false; 1622 } 1623 } 1624 1625 while (!(msm_read(port, UART_SR) & UART_SR_TX_READY)) 1626 cpu_relax(); 1627 1628 iowrite32_rep(tf, buf, 1); 1629 i += num_chars; 1630 } 1631 spin_unlock(&port->lock); 1632 } 1633 1634 static void msm_console_write(struct console *co, const char *s, 1635 unsigned int count) 1636 { 1637 struct uart_port *port; 1638 struct msm_port *msm_port; 1639 1640 BUG_ON(co->index < 0 || co->index >= UART_NR); 1641 1642 port = msm_get_port_from_line(co->index); 1643 msm_port = UART_TO_MSM(port); 1644 1645 __msm_console_write(port, s, count, msm_port->is_uartdm); 1646 } 1647 1648 static int msm_console_setup(struct console *co, char *options) 1649 { 1650 struct uart_port *port; 1651 int baud = 115200; 1652 int bits = 8; 1653 int parity = 'n'; 1654 int flow = 'n'; 1655 1656 if (unlikely(co->index >= UART_NR || co->index < 0)) 1657 return -ENXIO; 1658 1659 port = msm_get_port_from_line(co->index); 1660 1661 if (unlikely(!port->membase)) 1662 return -ENXIO; 1663 1664 msm_init_clock(port); 1665 1666 if (options) 1667 uart_parse_options(options, &baud, &parity, &bits, &flow); 1668 1669 pr_info("msm_serial: console setup on port #%d\n", port->line); 1670 1671 return uart_set_options(port, co, baud, parity, bits, flow); 1672 } 1673 1674 static void 1675 msm_serial_early_write(struct console *con, const char *s, unsigned n) 1676 { 1677 struct earlycon_device *dev = con->data; 1678 1679 __msm_console_write(&dev->port, s, n, false); 1680 } 1681 1682 static int __init 1683 msm_serial_early_console_setup(struct earlycon_device *device, const char *opt) 1684 { 1685 if (!device->port.membase) 1686 return -ENODEV; 1687 1688 device->con->write = msm_serial_early_write; 1689 return 0; 1690 } 1691 OF_EARLYCON_DECLARE(msm_serial, "qcom,msm-uart", 1692 msm_serial_early_console_setup); 1693 1694 static void 1695 msm_serial_early_write_dm(struct console *con, const char *s, unsigned n) 1696 { 1697 struct earlycon_device *dev = con->data; 1698 1699 __msm_console_write(&dev->port, s, n, true); 1700 } 1701 1702 static int __init 1703 msm_serial_early_console_setup_dm(struct earlycon_device *device, 1704 const char *opt) 1705 { 1706 if (!device->port.membase) 1707 return -ENODEV; 1708 1709 device->con->write = msm_serial_early_write_dm; 1710 return 0; 1711 } 1712 OF_EARLYCON_DECLARE(msm_serial_dm, "qcom,msm-uartdm", 1713 msm_serial_early_console_setup_dm); 1714 1715 static struct uart_driver msm_uart_driver; 1716 1717 static struct console msm_console = { 1718 .name = "ttyMSM", 1719 .write = msm_console_write, 1720 .device = uart_console_device, 1721 .setup = msm_console_setup, 1722 .flags = CON_PRINTBUFFER, 1723 .index = -1, 1724 .data = &msm_uart_driver, 1725 }; 1726 1727 #define MSM_CONSOLE (&msm_console) 1728 1729 #else 1730 #define MSM_CONSOLE NULL 1731 #endif 1732 1733 static struct uart_driver msm_uart_driver = { 1734 .owner = THIS_MODULE, 1735 .driver_name = "msm_serial", 1736 .dev_name = "ttyMSM", 1737 .nr = UART_NR, 1738 .cons = MSM_CONSOLE, 1739 }; 1740 1741 static atomic_t msm_uart_next_id = ATOMIC_INIT(0); 1742 1743 static const struct of_device_id msm_uartdm_table[] = { 1744 { .compatible = "qcom,msm-uartdm-v1.1", .data = (void *)UARTDM_1P1 }, 1745 { .compatible = "qcom,msm-uartdm-v1.2", .data = (void *)UARTDM_1P2 }, 1746 { .compatible = "qcom,msm-uartdm-v1.3", .data = (void *)UARTDM_1P3 }, 1747 { .compatible = "qcom,msm-uartdm-v1.4", .data = (void *)UARTDM_1P4 }, 1748 { } 1749 }; 1750 1751 static int msm_serial_probe(struct platform_device *pdev) 1752 { 1753 struct msm_port *msm_port; 1754 struct resource *resource; 1755 struct uart_port *port; 1756 const struct of_device_id *id; 1757 int irq, line; 1758 1759 if (pdev->dev.of_node) 1760 line = of_alias_get_id(pdev->dev.of_node, "serial"); 1761 else 1762 line = pdev->id; 1763 1764 if (line < 0) 1765 line = atomic_inc_return(&msm_uart_next_id) - 1; 1766 1767 if (unlikely(line < 0 || line >= UART_NR)) 1768 return -ENXIO; 1769 1770 dev_info(&pdev->dev, "msm_serial: detected port #%d\n", line); 1771 1772 port = msm_get_port_from_line(line); 1773 port->dev = &pdev->dev; 1774 msm_port = UART_TO_MSM(port); 1775 1776 id = of_match_device(msm_uartdm_table, &pdev->dev); 1777 if (id) 1778 msm_port->is_uartdm = (unsigned long)id->data; 1779 else 1780 msm_port->is_uartdm = 0; 1781 1782 msm_port->clk = devm_clk_get(&pdev->dev, "core"); 1783 if (IS_ERR(msm_port->clk)) 1784 return PTR_ERR(msm_port->clk); 1785 1786 if (msm_port->is_uartdm) { 1787 msm_port->pclk = devm_clk_get(&pdev->dev, "iface"); 1788 if (IS_ERR(msm_port->pclk)) 1789 return PTR_ERR(msm_port->pclk); 1790 } 1791 1792 port->uartclk = clk_get_rate(msm_port->clk); 1793 dev_info(&pdev->dev, "uartclk = %d\n", port->uartclk); 1794 1795 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1796 if (unlikely(!resource)) 1797 return -ENXIO; 1798 port->mapbase = resource->start; 1799 1800 irq = platform_get_irq(pdev, 0); 1801 if (unlikely(irq < 0)) 1802 return -ENXIO; 1803 port->irq = irq; 1804 1805 platform_set_drvdata(pdev, port); 1806 1807 return uart_add_one_port(&msm_uart_driver, port); 1808 } 1809 1810 static int msm_serial_remove(struct platform_device *pdev) 1811 { 1812 struct uart_port *port = platform_get_drvdata(pdev); 1813 1814 uart_remove_one_port(&msm_uart_driver, port); 1815 1816 return 0; 1817 } 1818 1819 static const struct of_device_id msm_match_table[] = { 1820 { .compatible = "qcom,msm-uart" }, 1821 { .compatible = "qcom,msm-uartdm" }, 1822 {} 1823 }; 1824 MODULE_DEVICE_TABLE(of, msm_match_table); 1825 1826 static int __maybe_unused msm_serial_suspend(struct device *dev) 1827 { 1828 struct msm_port *port = dev_get_drvdata(dev); 1829 1830 uart_suspend_port(&msm_uart_driver, &port->uart); 1831 1832 return 0; 1833 } 1834 1835 static int __maybe_unused msm_serial_resume(struct device *dev) 1836 { 1837 struct msm_port *port = dev_get_drvdata(dev); 1838 1839 uart_resume_port(&msm_uart_driver, &port->uart); 1840 1841 return 0; 1842 } 1843 1844 static const struct dev_pm_ops msm_serial_dev_pm_ops = { 1845 SET_SYSTEM_SLEEP_PM_OPS(msm_serial_suspend, msm_serial_resume) 1846 }; 1847 1848 static struct platform_driver msm_platform_driver = { 1849 .remove = msm_serial_remove, 1850 .probe = msm_serial_probe, 1851 .driver = { 1852 .name = "msm_serial", 1853 .pm = &msm_serial_dev_pm_ops, 1854 .of_match_table = msm_match_table, 1855 }, 1856 }; 1857 1858 static int __init msm_serial_init(void) 1859 { 1860 int ret; 1861 1862 ret = uart_register_driver(&msm_uart_driver); 1863 if (unlikely(ret)) 1864 return ret; 1865 1866 ret = platform_driver_register(&msm_platform_driver); 1867 if (unlikely(ret)) 1868 uart_unregister_driver(&msm_uart_driver); 1869 1870 pr_info("msm_serial: driver initialized\n"); 1871 1872 return ret; 1873 } 1874 1875 static void __exit msm_serial_exit(void) 1876 { 1877 platform_driver_unregister(&msm_platform_driver); 1878 uart_unregister_driver(&msm_uart_driver); 1879 } 1880 1881 module_init(msm_serial_init); 1882 module_exit(msm_serial_exit); 1883 1884 MODULE_AUTHOR("Robert Love <rlove@google.com>"); 1885 MODULE_DESCRIPTION("Driver for msm7x serial device"); 1886 MODULE_LICENSE("GPL"); 1887