xref: /openbmc/linux/drivers/tty/serial/jsm/jsm_tty.c (revision 6774def6)
1 /************************************************************************
2  * Copyright 2003 Digi International (www.digi.com)
3  *
4  * Copyright (C) 2004 IBM Corporation. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2, or (at your option)
9  * any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED; without even the
13  * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
14  * PURPOSE.  See the GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 * Temple Place - Suite 330, Boston,
19  * MA  02111-1307, USA.
20  *
21  * Contact Information:
22  * Scott H Kilau <Scott_Kilau@digi.com>
23  * Ananda Venkatarman <mansarov@us.ibm.com>
24  * Modifications:
25  * 01/19/06:	changed jsm_input routine to use the dynamically allocated
26  *		tty_buffer changes. Contributors: Scott Kilau and Ananda V.
27  ***********************************************************************/
28 #include <linux/tty.h>
29 #include <linux/tty_flip.h>
30 #include <linux/serial_reg.h>
31 #include <linux/delay.h>	/* For udelay */
32 #include <linux/pci.h>
33 #include <linux/slab.h>
34 
35 #include "jsm.h"
36 
37 static DECLARE_BITMAP(linemap, MAXLINES);
38 
39 static void jsm_carrier(struct jsm_channel *ch);
40 
41 static inline int jsm_get_mstat(struct jsm_channel *ch)
42 {
43 	unsigned char mstat;
44 	unsigned result;
45 
46 	jsm_dbg(IOCTL, &ch->ch_bd->pci_dev, "start\n");
47 
48 	mstat = (ch->ch_mostat | ch->ch_mistat);
49 
50 	result = 0;
51 
52 	if (mstat & UART_MCR_DTR)
53 		result |= TIOCM_DTR;
54 	if (mstat & UART_MCR_RTS)
55 		result |= TIOCM_RTS;
56 	if (mstat & UART_MSR_CTS)
57 		result |= TIOCM_CTS;
58 	if (mstat & UART_MSR_DSR)
59 		result |= TIOCM_DSR;
60 	if (mstat & UART_MSR_RI)
61 		result |= TIOCM_RI;
62 	if (mstat & UART_MSR_DCD)
63 		result |= TIOCM_CD;
64 
65 	jsm_dbg(IOCTL, &ch->ch_bd->pci_dev, "finish\n");
66 	return result;
67 }
68 
69 static unsigned int jsm_tty_tx_empty(struct uart_port *port)
70 {
71 	return TIOCSER_TEMT;
72 }
73 
74 /*
75  * Return modem signals to ld.
76  */
77 static unsigned int jsm_tty_get_mctrl(struct uart_port *port)
78 {
79 	int result;
80 	struct jsm_channel *channel = (struct jsm_channel *)port;
81 
82 	jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "start\n");
83 
84 	result = jsm_get_mstat(channel);
85 
86 	if (result < 0)
87 		return -ENXIO;
88 
89 	jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "finish\n");
90 
91 	return result;
92 }
93 
94 /*
95  * jsm_set_modem_info()
96  *
97  * Set modem signals, called by ld.
98  */
99 static void jsm_tty_set_mctrl(struct uart_port *port, unsigned int mctrl)
100 {
101 	struct jsm_channel *channel = (struct jsm_channel *)port;
102 
103 	jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "start\n");
104 
105 	if (mctrl & TIOCM_RTS)
106 		channel->ch_mostat |= UART_MCR_RTS;
107 	else
108 		channel->ch_mostat &= ~UART_MCR_RTS;
109 
110 	if (mctrl & TIOCM_DTR)
111 		channel->ch_mostat |= UART_MCR_DTR;
112 	else
113 		channel->ch_mostat &= ~UART_MCR_DTR;
114 
115 	channel->ch_bd->bd_ops->assert_modem_signals(channel);
116 
117 	jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "finish\n");
118 	udelay(10);
119 }
120 
121 /*
122  * jsm_tty_write()
123  *
124  * Take data from the user or kernel and send it out to the FEP.
125  * In here exists all the Transparent Print magic as well.
126  */
127 static void jsm_tty_write(struct uart_port *port)
128 {
129 	struct jsm_channel *channel;
130 	channel = container_of(port, struct jsm_channel, uart_port);
131 	channel->ch_bd->bd_ops->copy_data_from_queue_to_uart(channel);
132 }
133 
134 static void jsm_tty_start_tx(struct uart_port *port)
135 {
136 	struct jsm_channel *channel = (struct jsm_channel *)port;
137 
138 	jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "start\n");
139 
140 	channel->ch_flags &= ~(CH_STOP);
141 	jsm_tty_write(port);
142 
143 	jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "finish\n");
144 }
145 
146 static void jsm_tty_stop_tx(struct uart_port *port)
147 {
148 	struct jsm_channel *channel = (struct jsm_channel *)port;
149 
150 	jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "start\n");
151 
152 	channel->ch_flags |= (CH_STOP);
153 
154 	jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "finish\n");
155 }
156 
157 static void jsm_tty_send_xchar(struct uart_port *port, char ch)
158 {
159 	unsigned long lock_flags;
160 	struct jsm_channel *channel = (struct jsm_channel *)port;
161 	struct ktermios *termios;
162 
163 	spin_lock_irqsave(&port->lock, lock_flags);
164 	termios = &port->state->port.tty->termios;
165 	if (ch == termios->c_cc[VSTART])
166 		channel->ch_bd->bd_ops->send_start_character(channel);
167 
168 	if (ch == termios->c_cc[VSTOP])
169 		channel->ch_bd->bd_ops->send_stop_character(channel);
170 	spin_unlock_irqrestore(&port->lock, lock_flags);
171 }
172 
173 static void jsm_tty_stop_rx(struct uart_port *port)
174 {
175 	struct jsm_channel *channel = (struct jsm_channel *)port;
176 
177 	channel->ch_bd->bd_ops->disable_receiver(channel);
178 }
179 
180 static void jsm_tty_break(struct uart_port *port, int break_state)
181 {
182 	unsigned long lock_flags;
183 	struct jsm_channel *channel = (struct jsm_channel *)port;
184 
185 	spin_lock_irqsave(&port->lock, lock_flags);
186 	if (break_state == -1)
187 		channel->ch_bd->bd_ops->send_break(channel);
188 	else
189 		channel->ch_bd->bd_ops->clear_break(channel, 0);
190 
191 	spin_unlock_irqrestore(&port->lock, lock_flags);
192 }
193 
194 static int jsm_tty_open(struct uart_port *port)
195 {
196 	struct jsm_board *brd;
197 	struct jsm_channel *channel = (struct jsm_channel *)port;
198 	struct ktermios *termios;
199 
200 	/* Get board pointer from our array of majors we have allocated */
201 	brd = channel->ch_bd;
202 
203 	/*
204 	 * Allocate channel buffers for read/write/error.
205 	 * Set flag, so we don't get trounced on.
206 	 */
207 	channel->ch_flags |= (CH_OPENING);
208 
209 	/* Drop locks, as malloc with GFP_KERNEL can sleep */
210 
211 	if (!channel->ch_rqueue) {
212 		channel->ch_rqueue = kzalloc(RQUEUESIZE, GFP_KERNEL);
213 		if (!channel->ch_rqueue) {
214 			jsm_dbg(INIT, &channel->ch_bd->pci_dev,
215 				"unable to allocate read queue buf\n");
216 			return -ENOMEM;
217 		}
218 	}
219 	if (!channel->ch_equeue) {
220 		channel->ch_equeue = kzalloc(EQUEUESIZE, GFP_KERNEL);
221 		if (!channel->ch_equeue) {
222 			jsm_dbg(INIT, &channel->ch_bd->pci_dev,
223 				"unable to allocate error queue buf\n");
224 			return -ENOMEM;
225 		}
226 	}
227 
228 	channel->ch_flags &= ~(CH_OPENING);
229 	/*
230 	 * Initialize if neither terminal is open.
231 	 */
232 	jsm_dbg(OPEN, &channel->ch_bd->pci_dev,
233 		"jsm_open: initializing channel in open...\n");
234 
235 	/*
236 	 * Flush input queues.
237 	 */
238 	channel->ch_r_head = channel->ch_r_tail = 0;
239 	channel->ch_e_head = channel->ch_e_tail = 0;
240 
241 	brd->bd_ops->flush_uart_write(channel);
242 	brd->bd_ops->flush_uart_read(channel);
243 
244 	channel->ch_flags = 0;
245 	channel->ch_cached_lsr = 0;
246 	channel->ch_stops_sent = 0;
247 
248 	termios = &port->state->port.tty->termios;
249 	channel->ch_c_cflag	= termios->c_cflag;
250 	channel->ch_c_iflag	= termios->c_iflag;
251 	channel->ch_c_oflag	= termios->c_oflag;
252 	channel->ch_c_lflag	= termios->c_lflag;
253 	channel->ch_startc	= termios->c_cc[VSTART];
254 	channel->ch_stopc	= termios->c_cc[VSTOP];
255 
256 	/* Tell UART to init itself */
257 	brd->bd_ops->uart_init(channel);
258 
259 	/*
260 	 * Run param in case we changed anything
261 	 */
262 	brd->bd_ops->param(channel);
263 
264 	jsm_carrier(channel);
265 
266 	channel->ch_open_count++;
267 
268 	jsm_dbg(OPEN, &channel->ch_bd->pci_dev, "finish\n");
269 	return 0;
270 }
271 
272 static void jsm_tty_close(struct uart_port *port)
273 {
274 	struct jsm_board *bd;
275 	struct ktermios *ts;
276 	struct jsm_channel *channel = (struct jsm_channel *)port;
277 
278 	jsm_dbg(CLOSE, &channel->ch_bd->pci_dev, "start\n");
279 
280 	bd = channel->ch_bd;
281 	ts = &port->state->port.tty->termios;
282 
283 	channel->ch_flags &= ~(CH_STOPI);
284 
285 	channel->ch_open_count--;
286 
287 	/*
288 	 * If we have HUPCL set, lower DTR and RTS
289 	 */
290 	if (channel->ch_c_cflag & HUPCL) {
291 		jsm_dbg(CLOSE, &channel->ch_bd->pci_dev,
292 			"Close. HUPCL set, dropping DTR/RTS\n");
293 
294 		/* Drop RTS/DTR */
295 		channel->ch_mostat &= ~(UART_MCR_DTR | UART_MCR_RTS);
296 		bd->bd_ops->assert_modem_signals(channel);
297 	}
298 
299 	/* Turn off UART interrupts for this port */
300 	channel->ch_bd->bd_ops->uart_off(channel);
301 
302 	jsm_dbg(CLOSE, &channel->ch_bd->pci_dev, "finish\n");
303 }
304 
305 static void jsm_tty_set_termios(struct uart_port *port,
306 				 struct ktermios *termios,
307 				 struct ktermios *old_termios)
308 {
309 	unsigned long lock_flags;
310 	struct jsm_channel *channel = (struct jsm_channel *)port;
311 
312 	spin_lock_irqsave(&port->lock, lock_flags);
313 	channel->ch_c_cflag	= termios->c_cflag;
314 	channel->ch_c_iflag	= termios->c_iflag;
315 	channel->ch_c_oflag	= termios->c_oflag;
316 	channel->ch_c_lflag	= termios->c_lflag;
317 	channel->ch_startc	= termios->c_cc[VSTART];
318 	channel->ch_stopc	= termios->c_cc[VSTOP];
319 
320 	channel->ch_bd->bd_ops->param(channel);
321 	jsm_carrier(channel);
322 	spin_unlock_irqrestore(&port->lock, lock_flags);
323 }
324 
325 static const char *jsm_tty_type(struct uart_port *port)
326 {
327 	return "jsm";
328 }
329 
330 static void jsm_tty_release_port(struct uart_port *port)
331 {
332 }
333 
334 static int jsm_tty_request_port(struct uart_port *port)
335 {
336 	return 0;
337 }
338 
339 static void jsm_config_port(struct uart_port *port, int flags)
340 {
341 	port->type = PORT_JSM;
342 }
343 
344 static struct uart_ops jsm_ops = {
345 	.tx_empty	= jsm_tty_tx_empty,
346 	.set_mctrl	= jsm_tty_set_mctrl,
347 	.get_mctrl	= jsm_tty_get_mctrl,
348 	.stop_tx	= jsm_tty_stop_tx,
349 	.start_tx	= jsm_tty_start_tx,
350 	.send_xchar	= jsm_tty_send_xchar,
351 	.stop_rx	= jsm_tty_stop_rx,
352 	.break_ctl	= jsm_tty_break,
353 	.startup	= jsm_tty_open,
354 	.shutdown	= jsm_tty_close,
355 	.set_termios	= jsm_tty_set_termios,
356 	.type		= jsm_tty_type,
357 	.release_port	= jsm_tty_release_port,
358 	.request_port	= jsm_tty_request_port,
359 	.config_port	= jsm_config_port,
360 };
361 
362 /*
363  * jsm_tty_init()
364  *
365  * Init the tty subsystem.  Called once per board after board has been
366  * downloaded and init'ed.
367  */
368 int jsm_tty_init(struct jsm_board *brd)
369 {
370 	int i;
371 	void __iomem *vaddr;
372 	struct jsm_channel *ch;
373 
374 	if (!brd)
375 		return -ENXIO;
376 
377 	jsm_dbg(INIT, &brd->pci_dev, "start\n");
378 
379 	/*
380 	 * Initialize board structure elements.
381 	 */
382 
383 	brd->nasync = brd->maxports;
384 
385 	/*
386 	 * Allocate channel memory that might not have been allocated
387 	 * when the driver was first loaded.
388 	 */
389 	for (i = 0; i < brd->nasync; i++) {
390 		if (!brd->channels[i]) {
391 
392 			/*
393 			 * Okay to malloc with GFP_KERNEL, we are not at
394 			 * interrupt context, and there are no locks held.
395 			 */
396 			brd->channels[i] = kzalloc(sizeof(struct jsm_channel), GFP_KERNEL);
397 			if (!brd->channels[i]) {
398 				jsm_dbg(CORE, &brd->pci_dev,
399 					"%s:%d Unable to allocate memory for channel struct\n",
400 					__FILE__, __LINE__);
401 			}
402 		}
403 	}
404 
405 	ch = brd->channels[0];
406 	vaddr = brd->re_map_membase;
407 
408 	/* Set up channel variables */
409 	for (i = 0; i < brd->nasync; i++, ch = brd->channels[i]) {
410 
411 		if (!brd->channels[i])
412 			continue;
413 
414 		spin_lock_init(&ch->ch_lock);
415 
416 		if (brd->bd_uart_offset == 0x200)
417 			ch->ch_neo_uart =  vaddr + (brd->bd_uart_offset * i);
418 
419 		ch->ch_bd = brd;
420 		ch->ch_portnum = i;
421 
422 		/* .25 second delay */
423 		ch->ch_close_delay = 250;
424 
425 		init_waitqueue_head(&ch->ch_flags_wait);
426 	}
427 
428 	jsm_dbg(INIT, &brd->pci_dev, "finish\n");
429 	return 0;
430 }
431 
432 int jsm_uart_port_init(struct jsm_board *brd)
433 {
434 	int i, rc;
435 	unsigned int line;
436 	struct jsm_channel *ch;
437 
438 	if (!brd)
439 		return -ENXIO;
440 
441 	jsm_dbg(INIT, &brd->pci_dev, "start\n");
442 
443 	/*
444 	 * Initialize board structure elements.
445 	 */
446 
447 	brd->nasync = brd->maxports;
448 
449 	/* Set up channel variables */
450 	for (i = 0; i < brd->nasync; i++, ch = brd->channels[i]) {
451 
452 		if (!brd->channels[i])
453 			continue;
454 
455 		brd->channels[i]->uart_port.irq = brd->irq;
456 		brd->channels[i]->uart_port.uartclk = 14745600;
457 		brd->channels[i]->uart_port.type = PORT_JSM;
458 		brd->channels[i]->uart_port.iotype = UPIO_MEM;
459 		brd->channels[i]->uart_port.membase = brd->re_map_membase;
460 		brd->channels[i]->uart_port.fifosize = 16;
461 		brd->channels[i]->uart_port.ops = &jsm_ops;
462 		line = find_first_zero_bit(linemap, MAXLINES);
463 		if (line >= MAXLINES) {
464 			printk(KERN_INFO "jsm: linemap is full, added device failed\n");
465 			continue;
466 		} else
467 			set_bit(line, linemap);
468 		brd->channels[i]->uart_port.line = line;
469 		rc = uart_add_one_port (&jsm_uart_driver, &brd->channels[i]->uart_port);
470 		if (rc){
471 			printk(KERN_INFO "jsm: Port %d failed. Aborting...\n", i);
472 			return rc;
473 		}
474 		else
475 			printk(KERN_INFO "jsm: Port %d added\n", i);
476 	}
477 
478 	jsm_dbg(INIT, &brd->pci_dev, "finish\n");
479 	return 0;
480 }
481 
482 int jsm_remove_uart_port(struct jsm_board *brd)
483 {
484 	int i;
485 	struct jsm_channel *ch;
486 
487 	if (!brd)
488 		return -ENXIO;
489 
490 	jsm_dbg(INIT, &brd->pci_dev, "start\n");
491 
492 	/*
493 	 * Initialize board structure elements.
494 	 */
495 
496 	brd->nasync = brd->maxports;
497 
498 	/* Set up channel variables */
499 	for (i = 0; i < brd->nasync; i++) {
500 
501 		if (!brd->channels[i])
502 			continue;
503 
504 		ch = brd->channels[i];
505 
506 		clear_bit(ch->uart_port.line, linemap);
507 		uart_remove_one_port(&jsm_uart_driver, &brd->channels[i]->uart_port);
508 	}
509 
510 	jsm_dbg(INIT, &brd->pci_dev, "finish\n");
511 	return 0;
512 }
513 
514 void jsm_input(struct jsm_channel *ch)
515 {
516 	struct jsm_board *bd;
517 	struct tty_struct *tp;
518 	struct tty_port *port;
519 	u32 rmask;
520 	u16 head;
521 	u16 tail;
522 	int data_len;
523 	unsigned long lock_flags;
524 	int len = 0;
525 	int n = 0;
526 	int s = 0;
527 	int i = 0;
528 
529 	jsm_dbg(READ, &ch->ch_bd->pci_dev, "start\n");
530 
531 	if (!ch)
532 		return;
533 
534 	port = &ch->uart_port.state->port;
535 	tp = port->tty;
536 
537 	bd = ch->ch_bd;
538 	if(!bd)
539 		return;
540 
541 	spin_lock_irqsave(&ch->ch_lock, lock_flags);
542 
543 	/*
544 	 *Figure the number of characters in the buffer.
545 	 *Exit immediately if none.
546 	 */
547 
548 	rmask = RQUEUEMASK;
549 
550 	head = ch->ch_r_head & rmask;
551 	tail = ch->ch_r_tail & rmask;
552 
553 	data_len = (head - tail) & rmask;
554 	if (data_len == 0) {
555 		spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
556 		return;
557 	}
558 
559 	jsm_dbg(READ, &ch->ch_bd->pci_dev, "start\n");
560 
561 	/*
562 	 *If the device is not open, or CREAD is off, flush
563 	 *input data and return immediately.
564 	 */
565 	if (!tp ||
566 		!(tp->termios.c_cflag & CREAD) ) {
567 
568 		jsm_dbg(READ, &ch->ch_bd->pci_dev,
569 			"input. dropping %d bytes on port %d...\n",
570 			data_len, ch->ch_portnum);
571 		ch->ch_r_head = tail;
572 
573 		/* Force queue flow control to be released, if needed */
574 		jsm_check_queue_flow_control(ch);
575 
576 		spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
577 		return;
578 	}
579 
580 	/*
581 	 * If we are throttled, simply don't read any data.
582 	 */
583 	if (ch->ch_flags & CH_STOPI) {
584 		spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
585 		jsm_dbg(READ, &ch->ch_bd->pci_dev,
586 			"Port %d throttled, not reading any data. head: %x tail: %x\n",
587 			ch->ch_portnum, head, tail);
588 		return;
589 	}
590 
591 	jsm_dbg(READ, &ch->ch_bd->pci_dev, "start 2\n");
592 
593 	len = tty_buffer_request_room(port, data_len);
594 	n = len;
595 
596 	/*
597 	 * n now contains the most amount of data we can copy,
598 	 * bounded either by the flip buffer size or the amount
599 	 * of data the card actually has pending...
600 	 */
601 	while (n) {
602 		s = ((head >= tail) ? head : RQUEUESIZE) - tail;
603 		s = min(s, n);
604 
605 		if (s <= 0)
606 			break;
607 
608 			/*
609 			 * If conditions are such that ld needs to see all
610 			 * UART errors, we will have to walk each character
611 			 * and error byte and send them to the buffer one at
612 			 * a time.
613 			 */
614 
615 		if (I_PARMRK(tp) || I_BRKINT(tp) || I_INPCK(tp)) {
616 			for (i = 0; i < s; i++) {
617 				/*
618 				 * Give the Linux ld the flags in the
619 				 * format it likes.
620 				 */
621 				if (*(ch->ch_equeue +tail +i) & UART_LSR_BI)
622 					tty_insert_flip_char(port, *(ch->ch_rqueue +tail +i),  TTY_BREAK);
623 				else if (*(ch->ch_equeue +tail +i) & UART_LSR_PE)
624 					tty_insert_flip_char(port, *(ch->ch_rqueue +tail +i), TTY_PARITY);
625 				else if (*(ch->ch_equeue +tail +i) & UART_LSR_FE)
626 					tty_insert_flip_char(port, *(ch->ch_rqueue +tail +i), TTY_FRAME);
627 				else
628 					tty_insert_flip_char(port, *(ch->ch_rqueue +tail +i), TTY_NORMAL);
629 			}
630 		} else {
631 			tty_insert_flip_string(port, ch->ch_rqueue + tail, s);
632 		}
633 		tail += s;
634 		n -= s;
635 		/* Flip queue if needed */
636 		tail &= rmask;
637 	}
638 
639 	ch->ch_r_tail = tail & rmask;
640 	ch->ch_e_tail = tail & rmask;
641 	jsm_check_queue_flow_control(ch);
642 	spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
643 
644 	/* Tell the tty layer its okay to "eat" the data now */
645 	tty_flip_buffer_push(port);
646 
647 	jsm_dbg(IOCTL, &ch->ch_bd->pci_dev, "finish\n");
648 }
649 
650 static void jsm_carrier(struct jsm_channel *ch)
651 {
652 	struct jsm_board *bd;
653 
654 	int virt_carrier = 0;
655 	int phys_carrier = 0;
656 
657 	jsm_dbg(CARR, &ch->ch_bd->pci_dev, "start\n");
658 	if (!ch)
659 		return;
660 
661 	bd = ch->ch_bd;
662 
663 	if (!bd)
664 		return;
665 
666 	if (ch->ch_mistat & UART_MSR_DCD) {
667 		jsm_dbg(CARR, &ch->ch_bd->pci_dev, "mistat: %x D_CD: %x\n",
668 			ch->ch_mistat, ch->ch_mistat & UART_MSR_DCD);
669 		phys_carrier = 1;
670 	}
671 
672 	if (ch->ch_c_cflag & CLOCAL)
673 		virt_carrier = 1;
674 
675 	jsm_dbg(CARR, &ch->ch_bd->pci_dev, "DCD: physical: %d virt: %d\n",
676 		phys_carrier, virt_carrier);
677 
678 	/*
679 	 * Test for a VIRTUAL carrier transition to HIGH.
680 	 */
681 	if (((ch->ch_flags & CH_FCAR) == 0) && (virt_carrier == 1)) {
682 
683 		/*
684 		 * When carrier rises, wake any threads waiting
685 		 * for carrier in the open routine.
686 		 */
687 
688 		jsm_dbg(CARR, &ch->ch_bd->pci_dev, "carrier: virt DCD rose\n");
689 
690 		if (waitqueue_active(&(ch->ch_flags_wait)))
691 			wake_up_interruptible(&ch->ch_flags_wait);
692 	}
693 
694 	/*
695 	 * Test for a PHYSICAL carrier transition to HIGH.
696 	 */
697 	if (((ch->ch_flags & CH_CD) == 0) && (phys_carrier == 1)) {
698 
699 		/*
700 		 * When carrier rises, wake any threads waiting
701 		 * for carrier in the open routine.
702 		 */
703 
704 		jsm_dbg(CARR, &ch->ch_bd->pci_dev,
705 			"carrier: physical DCD rose\n");
706 
707 		if (waitqueue_active(&(ch->ch_flags_wait)))
708 			wake_up_interruptible(&ch->ch_flags_wait);
709 	}
710 
711 	/*
712 	 *  Test for a PHYSICAL transition to low, so long as we aren't
713 	 *  currently ignoring physical transitions (which is what "virtual
714 	 *  carrier" indicates).
715 	 *
716 	 *  The transition of the virtual carrier to low really doesn't
717 	 *  matter... it really only means "ignore carrier state", not
718 	 *  "make pretend that carrier is there".
719 	 */
720 	if ((virt_carrier == 0) && ((ch->ch_flags & CH_CD) != 0)
721 			&& (phys_carrier == 0)) {
722 		/*
723 		 *	When carrier drops:
724 		 *
725 		 *	Drop carrier on all open units.
726 		 *
727 		 *	Flush queues, waking up any task waiting in the
728 		 *	line discipline.
729 		 *
730 		 *	Send a hangup to the control terminal.
731 		 *
732 		 *	Enable all select calls.
733 		 */
734 		if (waitqueue_active(&(ch->ch_flags_wait)))
735 			wake_up_interruptible(&ch->ch_flags_wait);
736 	}
737 
738 	/*
739 	 *  Make sure that our cached values reflect the current reality.
740 	 */
741 	if (virt_carrier == 1)
742 		ch->ch_flags |= CH_FCAR;
743 	else
744 		ch->ch_flags &= ~CH_FCAR;
745 
746 	if (phys_carrier == 1)
747 		ch->ch_flags |= CH_CD;
748 	else
749 		ch->ch_flags &= ~CH_CD;
750 }
751 
752 
753 void jsm_check_queue_flow_control(struct jsm_channel *ch)
754 {
755 	struct board_ops *bd_ops = ch->ch_bd->bd_ops;
756 	int qleft;
757 
758 	/* Store how much space we have left in the queue */
759 	if ((qleft = ch->ch_r_tail - ch->ch_r_head - 1) < 0)
760 		qleft += RQUEUEMASK + 1;
761 
762 	/*
763 	 * Check to see if we should enforce flow control on our queue because
764 	 * the ld (or user) isn't reading data out of our queue fast enuf.
765 	 *
766 	 * NOTE: This is done based on what the current flow control of the
767 	 * port is set for.
768 	 *
769 	 * 1) HWFLOW (RTS) - Turn off the UART's Receive interrupt.
770 	 *	This will cause the UART's FIFO to back up, and force
771 	 *	the RTS signal to be dropped.
772 	 * 2) SWFLOW (IXOFF) - Keep trying to send a stop character to
773 	 *	the other side, in hopes it will stop sending data to us.
774 	 * 3) NONE - Nothing we can do.  We will simply drop any extra data
775 	 *	that gets sent into us when the queue fills up.
776 	 */
777 	if (qleft < 256) {
778 		/* HWFLOW */
779 		if (ch->ch_c_cflag & CRTSCTS) {
780 			if(!(ch->ch_flags & CH_RECEIVER_OFF)) {
781 				bd_ops->disable_receiver(ch);
782 				ch->ch_flags |= (CH_RECEIVER_OFF);
783 				jsm_dbg(READ, &ch->ch_bd->pci_dev,
784 					"Internal queue hit hilevel mark (%d)! Turning off interrupts\n",
785 					qleft);
786 			}
787 		}
788 		/* SWFLOW */
789 		else if (ch->ch_c_iflag & IXOFF) {
790 			if (ch->ch_stops_sent <= MAX_STOPS_SENT) {
791 				bd_ops->send_stop_character(ch);
792 				ch->ch_stops_sent++;
793 				jsm_dbg(READ, &ch->ch_bd->pci_dev,
794 					"Sending stop char! Times sent: %x\n",
795 					ch->ch_stops_sent);
796 			}
797 		}
798 	}
799 
800 	/*
801 	 * Check to see if we should unenforce flow control because
802 	 * ld (or user) finally read enuf data out of our queue.
803 	 *
804 	 * NOTE: This is done based on what the current flow control of the
805 	 * port is set for.
806 	 *
807 	 * 1) HWFLOW (RTS) - Turn back on the UART's Receive interrupt.
808 	 *	This will cause the UART's FIFO to raise RTS back up,
809 	 *	which will allow the other side to start sending data again.
810 	 * 2) SWFLOW (IXOFF) - Send a start character to
811 	 *	the other side, so it will start sending data to us again.
812 	 * 3) NONE - Do nothing. Since we didn't do anything to turn off the
813 	 *	other side, we don't need to do anything now.
814 	 */
815 	if (qleft > (RQUEUESIZE / 2)) {
816 		/* HWFLOW */
817 		if (ch->ch_c_cflag & CRTSCTS) {
818 			if (ch->ch_flags & CH_RECEIVER_OFF) {
819 				bd_ops->enable_receiver(ch);
820 				ch->ch_flags &= ~(CH_RECEIVER_OFF);
821 				jsm_dbg(READ, &ch->ch_bd->pci_dev,
822 					"Internal queue hit lowlevel mark (%d)! Turning on interrupts\n",
823 					qleft);
824 			}
825 		}
826 		/* SWFLOW */
827 		else if (ch->ch_c_iflag & IXOFF && ch->ch_stops_sent) {
828 			ch->ch_stops_sent = 0;
829 			bd_ops->send_start_character(ch);
830 			jsm_dbg(READ, &ch->ch_bd->pci_dev,
831 				"Sending start char!\n");
832 		}
833 	}
834 }
835