xref: /openbmc/linux/drivers/tty/serial/jsm/jsm_tty.c (revision 4800cd83)
1 /************************************************************************
2  * Copyright 2003 Digi International (www.digi.com)
3  *
4  * Copyright (C) 2004 IBM Corporation. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2, or (at your option)
9  * any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED; without even the
13  * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
14  * PURPOSE.  See the GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 * Temple Place - Suite 330, Boston,
19  * MA  02111-1307, USA.
20  *
21  * Contact Information:
22  * Scott H Kilau <Scott_Kilau@digi.com>
23  * Ananda Venkatarman <mansarov@us.ibm.com>
24  * Modifications:
25  * 01/19/06:	changed jsm_input routine to use the dynamically allocated
26  *		tty_buffer changes. Contributors: Scott Kilau and Ananda V.
27  ***********************************************************************/
28 #include <linux/tty.h>
29 #include <linux/tty_flip.h>
30 #include <linux/serial_reg.h>
31 #include <linux/delay.h>	/* For udelay */
32 #include <linux/pci.h>
33 #include <linux/slab.h>
34 
35 #include "jsm.h"
36 
37 static DECLARE_BITMAP(linemap, MAXLINES);
38 
39 static void jsm_carrier(struct jsm_channel *ch);
40 
41 static inline int jsm_get_mstat(struct jsm_channel *ch)
42 {
43 	unsigned char mstat;
44 	unsigned result;
45 
46 	jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, "start\n");
47 
48 	mstat = (ch->ch_mostat | ch->ch_mistat);
49 
50 	result = 0;
51 
52 	if (mstat & UART_MCR_DTR)
53 		result |= TIOCM_DTR;
54 	if (mstat & UART_MCR_RTS)
55 		result |= TIOCM_RTS;
56 	if (mstat & UART_MSR_CTS)
57 		result |= TIOCM_CTS;
58 	if (mstat & UART_MSR_DSR)
59 		result |= TIOCM_DSR;
60 	if (mstat & UART_MSR_RI)
61 		result |= TIOCM_RI;
62 	if (mstat & UART_MSR_DCD)
63 		result |= TIOCM_CD;
64 
65 	jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, "finish\n");
66 	return result;
67 }
68 
69 static unsigned int jsm_tty_tx_empty(struct uart_port *port)
70 {
71 	return TIOCSER_TEMT;
72 }
73 
74 /*
75  * Return modem signals to ld.
76  */
77 static unsigned int jsm_tty_get_mctrl(struct uart_port *port)
78 {
79 	int result;
80 	struct jsm_channel *channel = (struct jsm_channel *)port;
81 
82 	jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n");
83 
84 	result = jsm_get_mstat(channel);
85 
86 	if (result < 0)
87 		return -ENXIO;
88 
89 	jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n");
90 
91 	return result;
92 }
93 
94 /*
95  * jsm_set_modem_info()
96  *
97  * Set modem signals, called by ld.
98  */
99 static void jsm_tty_set_mctrl(struct uart_port *port, unsigned int mctrl)
100 {
101 	struct jsm_channel *channel = (struct jsm_channel *)port;
102 
103 	jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n");
104 
105 	if (mctrl & TIOCM_RTS)
106 		channel->ch_mostat |= UART_MCR_RTS;
107 	else
108 		channel->ch_mostat &= ~UART_MCR_RTS;
109 
110 	if (mctrl & TIOCM_DTR)
111 		channel->ch_mostat |= UART_MCR_DTR;
112 	else
113 		channel->ch_mostat &= ~UART_MCR_DTR;
114 
115 	channel->ch_bd->bd_ops->assert_modem_signals(channel);
116 
117 	jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n");
118 	udelay(10);
119 }
120 
121 static void jsm_tty_start_tx(struct uart_port *port)
122 {
123 	struct jsm_channel *channel = (struct jsm_channel *)port;
124 
125 	jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n");
126 
127 	channel->ch_flags &= ~(CH_STOP);
128 	jsm_tty_write(port);
129 
130 	jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n");
131 }
132 
133 static void jsm_tty_stop_tx(struct uart_port *port)
134 {
135 	struct jsm_channel *channel = (struct jsm_channel *)port;
136 
137 	jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n");
138 
139 	channel->ch_flags |= (CH_STOP);
140 
141 	jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n");
142 }
143 
144 static void jsm_tty_send_xchar(struct uart_port *port, char ch)
145 {
146 	unsigned long lock_flags;
147 	struct jsm_channel *channel = (struct jsm_channel *)port;
148 	struct ktermios *termios;
149 
150 	spin_lock_irqsave(&port->lock, lock_flags);
151 	termios = port->state->port.tty->termios;
152 	if (ch == termios->c_cc[VSTART])
153 		channel->ch_bd->bd_ops->send_start_character(channel);
154 
155 	if (ch == termios->c_cc[VSTOP])
156 		channel->ch_bd->bd_ops->send_stop_character(channel);
157 	spin_unlock_irqrestore(&port->lock, lock_flags);
158 }
159 
160 static void jsm_tty_stop_rx(struct uart_port *port)
161 {
162 	struct jsm_channel *channel = (struct jsm_channel *)port;
163 
164 	channel->ch_bd->bd_ops->disable_receiver(channel);
165 }
166 
167 static void jsm_tty_enable_ms(struct uart_port *port)
168 {
169 	/* Nothing needed */
170 }
171 
172 static void jsm_tty_break(struct uart_port *port, int break_state)
173 {
174 	unsigned long lock_flags;
175 	struct jsm_channel *channel = (struct jsm_channel *)port;
176 
177 	spin_lock_irqsave(&port->lock, lock_flags);
178 	if (break_state == -1)
179 		channel->ch_bd->bd_ops->send_break(channel);
180 	else
181 		channel->ch_bd->bd_ops->clear_break(channel, 0);
182 
183 	spin_unlock_irqrestore(&port->lock, lock_flags);
184 }
185 
186 static int jsm_tty_open(struct uart_port *port)
187 {
188 	struct jsm_board *brd;
189 	struct jsm_channel *channel = (struct jsm_channel *)port;
190 	struct ktermios *termios;
191 
192 	/* Get board pointer from our array of majors we have allocated */
193 	brd = channel->ch_bd;
194 
195 	/*
196 	 * Allocate channel buffers for read/write/error.
197 	 * Set flag, so we don't get trounced on.
198 	 */
199 	channel->ch_flags |= (CH_OPENING);
200 
201 	/* Drop locks, as malloc with GFP_KERNEL can sleep */
202 
203 	if (!channel->ch_rqueue) {
204 		channel->ch_rqueue = kzalloc(RQUEUESIZE, GFP_KERNEL);
205 		if (!channel->ch_rqueue) {
206 			jsm_printk(INIT, ERR, &channel->ch_bd->pci_dev,
207 				"unable to allocate read queue buf");
208 			return -ENOMEM;
209 		}
210 	}
211 	if (!channel->ch_equeue) {
212 		channel->ch_equeue = kzalloc(EQUEUESIZE, GFP_KERNEL);
213 		if (!channel->ch_equeue) {
214 			jsm_printk(INIT, ERR, &channel->ch_bd->pci_dev,
215 				"unable to allocate error queue buf");
216 			return -ENOMEM;
217 		}
218 	}
219 	if (!channel->ch_wqueue) {
220 		channel->ch_wqueue = kzalloc(WQUEUESIZE, GFP_KERNEL);
221 		if (!channel->ch_wqueue) {
222 			jsm_printk(INIT, ERR, &channel->ch_bd->pci_dev,
223 				"unable to allocate write queue buf");
224 			return -ENOMEM;
225 		}
226 	}
227 
228 	channel->ch_flags &= ~(CH_OPENING);
229 	/*
230 	 * Initialize if neither terminal is open.
231 	 */
232 	jsm_printk(OPEN, INFO, &channel->ch_bd->pci_dev,
233 		"jsm_open: initializing channel in open...\n");
234 
235 	/*
236 	 * Flush input queues.
237 	 */
238 	channel->ch_r_head = channel->ch_r_tail = 0;
239 	channel->ch_e_head = channel->ch_e_tail = 0;
240 	channel->ch_w_head = channel->ch_w_tail = 0;
241 
242 	brd->bd_ops->flush_uart_write(channel);
243 	brd->bd_ops->flush_uart_read(channel);
244 
245 	channel->ch_flags = 0;
246 	channel->ch_cached_lsr = 0;
247 	channel->ch_stops_sent = 0;
248 
249 	termios = port->state->port.tty->termios;
250 	channel->ch_c_cflag	= termios->c_cflag;
251 	channel->ch_c_iflag	= termios->c_iflag;
252 	channel->ch_c_oflag	= termios->c_oflag;
253 	channel->ch_c_lflag	= termios->c_lflag;
254 	channel->ch_startc	= termios->c_cc[VSTART];
255 	channel->ch_stopc	= termios->c_cc[VSTOP];
256 
257 	/* Tell UART to init itself */
258 	brd->bd_ops->uart_init(channel);
259 
260 	/*
261 	 * Run param in case we changed anything
262 	 */
263 	brd->bd_ops->param(channel);
264 
265 	jsm_carrier(channel);
266 
267 	channel->ch_open_count++;
268 
269 	jsm_printk(OPEN, INFO, &channel->ch_bd->pci_dev, "finish\n");
270 	return 0;
271 }
272 
273 static void jsm_tty_close(struct uart_port *port)
274 {
275 	struct jsm_board *bd;
276 	struct ktermios *ts;
277 	struct jsm_channel *channel = (struct jsm_channel *)port;
278 
279 	jsm_printk(CLOSE, INFO, &channel->ch_bd->pci_dev, "start\n");
280 
281 	bd = channel->ch_bd;
282 	ts = port->state->port.tty->termios;
283 
284 	channel->ch_flags &= ~(CH_STOPI);
285 
286 	channel->ch_open_count--;
287 
288 	/*
289 	 * If we have HUPCL set, lower DTR and RTS
290 	 */
291 	if (channel->ch_c_cflag & HUPCL) {
292 		jsm_printk(CLOSE, INFO, &channel->ch_bd->pci_dev,
293 			"Close. HUPCL set, dropping DTR/RTS\n");
294 
295 		/* Drop RTS/DTR */
296 		channel->ch_mostat &= ~(UART_MCR_DTR | UART_MCR_RTS);
297 		bd->bd_ops->assert_modem_signals(channel);
298 	}
299 
300 	/* Turn off UART interrupts for this port */
301 	channel->ch_bd->bd_ops->uart_off(channel);
302 
303 	jsm_printk(CLOSE, INFO, &channel->ch_bd->pci_dev, "finish\n");
304 }
305 
306 static void jsm_tty_set_termios(struct uart_port *port,
307 				 struct ktermios *termios,
308 				 struct ktermios *old_termios)
309 {
310 	unsigned long lock_flags;
311 	struct jsm_channel *channel = (struct jsm_channel *)port;
312 
313 	spin_lock_irqsave(&port->lock, lock_flags);
314 	channel->ch_c_cflag	= termios->c_cflag;
315 	channel->ch_c_iflag	= termios->c_iflag;
316 	channel->ch_c_oflag	= termios->c_oflag;
317 	channel->ch_c_lflag	= termios->c_lflag;
318 	channel->ch_startc	= termios->c_cc[VSTART];
319 	channel->ch_stopc	= termios->c_cc[VSTOP];
320 
321 	channel->ch_bd->bd_ops->param(channel);
322 	jsm_carrier(channel);
323 	spin_unlock_irqrestore(&port->lock, lock_flags);
324 }
325 
326 static const char *jsm_tty_type(struct uart_port *port)
327 {
328 	return "jsm";
329 }
330 
331 static void jsm_tty_release_port(struct uart_port *port)
332 {
333 }
334 
335 static int jsm_tty_request_port(struct uart_port *port)
336 {
337 	return 0;
338 }
339 
340 static void jsm_config_port(struct uart_port *port, int flags)
341 {
342 	port->type = PORT_JSM;
343 }
344 
345 static struct uart_ops jsm_ops = {
346 	.tx_empty	= jsm_tty_tx_empty,
347 	.set_mctrl	= jsm_tty_set_mctrl,
348 	.get_mctrl	= jsm_tty_get_mctrl,
349 	.stop_tx	= jsm_tty_stop_tx,
350 	.start_tx	= jsm_tty_start_tx,
351 	.send_xchar	= jsm_tty_send_xchar,
352 	.stop_rx	= jsm_tty_stop_rx,
353 	.enable_ms	= jsm_tty_enable_ms,
354 	.break_ctl	= jsm_tty_break,
355 	.startup	= jsm_tty_open,
356 	.shutdown	= jsm_tty_close,
357 	.set_termios	= jsm_tty_set_termios,
358 	.type		= jsm_tty_type,
359 	.release_port	= jsm_tty_release_port,
360 	.request_port	= jsm_tty_request_port,
361 	.config_port	= jsm_config_port,
362 };
363 
364 /*
365  * jsm_tty_init()
366  *
367  * Init the tty subsystem.  Called once per board after board has been
368  * downloaded and init'ed.
369  */
370 int __devinit jsm_tty_init(struct jsm_board *brd)
371 {
372 	int i;
373 	void __iomem *vaddr;
374 	struct jsm_channel *ch;
375 
376 	if (!brd)
377 		return -ENXIO;
378 
379 	jsm_printk(INIT, INFO, &brd->pci_dev, "start\n");
380 
381 	/*
382 	 * Initialize board structure elements.
383 	 */
384 
385 	brd->nasync = brd->maxports;
386 
387 	/*
388 	 * Allocate channel memory that might not have been allocated
389 	 * when the driver was first loaded.
390 	 */
391 	for (i = 0; i < brd->nasync; i++) {
392 		if (!brd->channels[i]) {
393 
394 			/*
395 			 * Okay to malloc with GFP_KERNEL, we are not at
396 			 * interrupt context, and there are no locks held.
397 			 */
398 			brd->channels[i] = kzalloc(sizeof(struct jsm_channel), GFP_KERNEL);
399 			if (!brd->channels[i]) {
400 				jsm_printk(CORE, ERR, &brd->pci_dev,
401 					"%s:%d Unable to allocate memory for channel struct\n",
402 							 __FILE__, __LINE__);
403 			}
404 		}
405 	}
406 
407 	ch = brd->channels[0];
408 	vaddr = brd->re_map_membase;
409 
410 	/* Set up channel variables */
411 	for (i = 0; i < brd->nasync; i++, ch = brd->channels[i]) {
412 
413 		if (!brd->channels[i])
414 			continue;
415 
416 		spin_lock_init(&ch->ch_lock);
417 
418 		if (brd->bd_uart_offset == 0x200)
419 			ch->ch_neo_uart =  vaddr + (brd->bd_uart_offset * i);
420 
421 		ch->ch_bd = brd;
422 		ch->ch_portnum = i;
423 
424 		/* .25 second delay */
425 		ch->ch_close_delay = 250;
426 
427 		init_waitqueue_head(&ch->ch_flags_wait);
428 	}
429 
430 	jsm_printk(INIT, INFO, &brd->pci_dev, "finish\n");
431 	return 0;
432 }
433 
434 int jsm_uart_port_init(struct jsm_board *brd)
435 {
436 	int i, rc;
437 	unsigned int line;
438 	struct jsm_channel *ch;
439 
440 	if (!brd)
441 		return -ENXIO;
442 
443 	jsm_printk(INIT, INFO, &brd->pci_dev, "start\n");
444 
445 	/*
446 	 * Initialize board structure elements.
447 	 */
448 
449 	brd->nasync = brd->maxports;
450 
451 	/* Set up channel variables */
452 	for (i = 0; i < brd->nasync; i++, ch = brd->channels[i]) {
453 
454 		if (!brd->channels[i])
455 			continue;
456 
457 		brd->channels[i]->uart_port.irq = brd->irq;
458 		brd->channels[i]->uart_port.uartclk = 14745600;
459 		brd->channels[i]->uart_port.type = PORT_JSM;
460 		brd->channels[i]->uart_port.iotype = UPIO_MEM;
461 		brd->channels[i]->uart_port.membase = brd->re_map_membase;
462 		brd->channels[i]->uart_port.fifosize = 16;
463 		brd->channels[i]->uart_port.ops = &jsm_ops;
464 		line = find_first_zero_bit(linemap, MAXLINES);
465 		if (line >= MAXLINES) {
466 			printk(KERN_INFO "jsm: linemap is full, added device failed\n");
467 			continue;
468 		} else
469 			set_bit(line, linemap);
470 		brd->channels[i]->uart_port.line = line;
471 		rc = uart_add_one_port (&jsm_uart_driver, &brd->channels[i]->uart_port);
472 		if (rc){
473 			printk(KERN_INFO "jsm: Port %d failed. Aborting...\n", i);
474 			return rc;
475 		}
476 		else
477 			printk(KERN_INFO "jsm: Port %d added\n", i);
478 	}
479 
480 	jsm_printk(INIT, INFO, &brd->pci_dev, "finish\n");
481 	return 0;
482 }
483 
484 int jsm_remove_uart_port(struct jsm_board *brd)
485 {
486 	int i;
487 	struct jsm_channel *ch;
488 
489 	if (!brd)
490 		return -ENXIO;
491 
492 	jsm_printk(INIT, INFO, &brd->pci_dev, "start\n");
493 
494 	/*
495 	 * Initialize board structure elements.
496 	 */
497 
498 	brd->nasync = brd->maxports;
499 
500 	/* Set up channel variables */
501 	for (i = 0; i < brd->nasync; i++) {
502 
503 		if (!brd->channels[i])
504 			continue;
505 
506 		ch = brd->channels[i];
507 
508 		clear_bit(ch->uart_port.line, linemap);
509 		uart_remove_one_port(&jsm_uart_driver, &brd->channels[i]->uart_port);
510 	}
511 
512 	jsm_printk(INIT, INFO, &brd->pci_dev, "finish\n");
513 	return 0;
514 }
515 
516 void jsm_input(struct jsm_channel *ch)
517 {
518 	struct jsm_board *bd;
519 	struct tty_struct *tp;
520 	u32 rmask;
521 	u16 head;
522 	u16 tail;
523 	int data_len;
524 	unsigned long lock_flags;
525 	int len = 0;
526 	int n = 0;
527 	int s = 0;
528 	int i = 0;
529 
530 	jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "start\n");
531 
532 	if (!ch)
533 		return;
534 
535 	tp = ch->uart_port.state->port.tty;
536 
537 	bd = ch->ch_bd;
538 	if(!bd)
539 		return;
540 
541 	spin_lock_irqsave(&ch->ch_lock, lock_flags);
542 
543 	/*
544 	 *Figure the number of characters in the buffer.
545 	 *Exit immediately if none.
546 	 */
547 
548 	rmask = RQUEUEMASK;
549 
550 	head = ch->ch_r_head & rmask;
551 	tail = ch->ch_r_tail & rmask;
552 
553 	data_len = (head - tail) & rmask;
554 	if (data_len == 0) {
555 		spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
556 		return;
557 	}
558 
559 	jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "start\n");
560 
561 	/*
562 	 *If the device is not open, or CREAD is off, flush
563 	 *input data and return immediately.
564 	 */
565 	if (!tp ||
566 		!(tp->termios->c_cflag & CREAD) ) {
567 
568 		jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
569 			"input. dropping %d bytes on port %d...\n", data_len, ch->ch_portnum);
570 		ch->ch_r_head = tail;
571 
572 		/* Force queue flow control to be released, if needed */
573 		jsm_check_queue_flow_control(ch);
574 
575 		spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
576 		return;
577 	}
578 
579 	/*
580 	 * If we are throttled, simply don't read any data.
581 	 */
582 	if (ch->ch_flags & CH_STOPI) {
583 		spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
584 		jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
585 			"Port %d throttled, not reading any data. head: %x tail: %x\n",
586 			ch->ch_portnum, head, tail);
587 		return;
588 	}
589 
590 	jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "start 2\n");
591 
592 	if (data_len <= 0) {
593 		spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
594 		jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "jsm_input 1\n");
595 		return;
596 	}
597 
598 	len = tty_buffer_request_room(tp, data_len);
599 	n = len;
600 
601 	/*
602 	 * n now contains the most amount of data we can copy,
603 	 * bounded either by the flip buffer size or the amount
604 	 * of data the card actually has pending...
605 	 */
606 	while (n) {
607 		s = ((head >= tail) ? head : RQUEUESIZE) - tail;
608 		s = min(s, n);
609 
610 		if (s <= 0)
611 			break;
612 
613 			/*
614 			 * If conditions are such that ld needs to see all
615 			 * UART errors, we will have to walk each character
616 			 * and error byte and send them to the buffer one at
617 			 * a time.
618 			 */
619 
620 		if (I_PARMRK(tp) || I_BRKINT(tp) || I_INPCK(tp)) {
621 			for (i = 0; i < s; i++) {
622 				/*
623 				 * Give the Linux ld the flags in the
624 				 * format it likes.
625 				 */
626 				if (*(ch->ch_equeue +tail +i) & UART_LSR_BI)
627 					tty_insert_flip_char(tp, *(ch->ch_rqueue +tail +i),  TTY_BREAK);
628 				else if (*(ch->ch_equeue +tail +i) & UART_LSR_PE)
629 					tty_insert_flip_char(tp, *(ch->ch_rqueue +tail +i), TTY_PARITY);
630 				else if (*(ch->ch_equeue +tail +i) & UART_LSR_FE)
631 					tty_insert_flip_char(tp, *(ch->ch_rqueue +tail +i), TTY_FRAME);
632 				else
633 					tty_insert_flip_char(tp, *(ch->ch_rqueue +tail +i), TTY_NORMAL);
634 			}
635 		} else {
636 			tty_insert_flip_string(tp, ch->ch_rqueue + tail, s) ;
637 		}
638 		tail += s;
639 		n -= s;
640 		/* Flip queue if needed */
641 		tail &= rmask;
642 	}
643 
644 	ch->ch_r_tail = tail & rmask;
645 	ch->ch_e_tail = tail & rmask;
646 	jsm_check_queue_flow_control(ch);
647 	spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
648 
649 	/* Tell the tty layer its okay to "eat" the data now */
650 	tty_flip_buffer_push(tp);
651 
652 	jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, "finish\n");
653 }
654 
655 static void jsm_carrier(struct jsm_channel *ch)
656 {
657 	struct jsm_board *bd;
658 
659 	int virt_carrier = 0;
660 	int phys_carrier = 0;
661 
662 	jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev, "start\n");
663 	if (!ch)
664 		return;
665 
666 	bd = ch->ch_bd;
667 
668 	if (!bd)
669 		return;
670 
671 	if (ch->ch_mistat & UART_MSR_DCD) {
672 		jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev,
673 			"mistat: %x D_CD: %x\n", ch->ch_mistat, ch->ch_mistat & UART_MSR_DCD);
674 		phys_carrier = 1;
675 	}
676 
677 	if (ch->ch_c_cflag & CLOCAL)
678 		virt_carrier = 1;
679 
680 	jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev,
681 		"DCD: physical: %d virt: %d\n", phys_carrier, virt_carrier);
682 
683 	/*
684 	 * Test for a VIRTUAL carrier transition to HIGH.
685 	 */
686 	if (((ch->ch_flags & CH_FCAR) == 0) && (virt_carrier == 1)) {
687 
688 		/*
689 		 * When carrier rises, wake any threads waiting
690 		 * for carrier in the open routine.
691 		 */
692 
693 		jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev,
694 			"carrier: virt DCD rose\n");
695 
696 		if (waitqueue_active(&(ch->ch_flags_wait)))
697 			wake_up_interruptible(&ch->ch_flags_wait);
698 	}
699 
700 	/*
701 	 * Test for a PHYSICAL carrier transition to HIGH.
702 	 */
703 	if (((ch->ch_flags & CH_CD) == 0) && (phys_carrier == 1)) {
704 
705 		/*
706 		 * When carrier rises, wake any threads waiting
707 		 * for carrier in the open routine.
708 		 */
709 
710 		jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev,
711 			"carrier: physical DCD rose\n");
712 
713 		if (waitqueue_active(&(ch->ch_flags_wait)))
714 			wake_up_interruptible(&ch->ch_flags_wait);
715 	}
716 
717 	/*
718 	 *  Test for a PHYSICAL transition to low, so long as we aren't
719 	 *  currently ignoring physical transitions (which is what "virtual
720 	 *  carrier" indicates).
721 	 *
722 	 *  The transition of the virtual carrier to low really doesn't
723 	 *  matter... it really only means "ignore carrier state", not
724 	 *  "make pretend that carrier is there".
725 	 */
726 	if ((virt_carrier == 0) && ((ch->ch_flags & CH_CD) != 0)
727 			&& (phys_carrier == 0)) {
728 		/*
729 		 *	When carrier drops:
730 		 *
731 		 *	Drop carrier on all open units.
732 		 *
733 		 *	Flush queues, waking up any task waiting in the
734 		 *	line discipline.
735 		 *
736 		 *	Send a hangup to the control terminal.
737 		 *
738 		 *	Enable all select calls.
739 		 */
740 		if (waitqueue_active(&(ch->ch_flags_wait)))
741 			wake_up_interruptible(&ch->ch_flags_wait);
742 	}
743 
744 	/*
745 	 *  Make sure that our cached values reflect the current reality.
746 	 */
747 	if (virt_carrier == 1)
748 		ch->ch_flags |= CH_FCAR;
749 	else
750 		ch->ch_flags &= ~CH_FCAR;
751 
752 	if (phys_carrier == 1)
753 		ch->ch_flags |= CH_CD;
754 	else
755 		ch->ch_flags &= ~CH_CD;
756 }
757 
758 
759 void jsm_check_queue_flow_control(struct jsm_channel *ch)
760 {
761 	struct board_ops *bd_ops = ch->ch_bd->bd_ops;
762 	int qleft;
763 
764 	/* Store how much space we have left in the queue */
765 	if ((qleft = ch->ch_r_tail - ch->ch_r_head - 1) < 0)
766 		qleft += RQUEUEMASK + 1;
767 
768 	/*
769 	 * Check to see if we should enforce flow control on our queue because
770 	 * the ld (or user) isn't reading data out of our queue fast enuf.
771 	 *
772 	 * NOTE: This is done based on what the current flow control of the
773 	 * port is set for.
774 	 *
775 	 * 1) HWFLOW (RTS) - Turn off the UART's Receive interrupt.
776 	 *	This will cause the UART's FIFO to back up, and force
777 	 *	the RTS signal to be dropped.
778 	 * 2) SWFLOW (IXOFF) - Keep trying to send a stop character to
779 	 *	the other side, in hopes it will stop sending data to us.
780 	 * 3) NONE - Nothing we can do.  We will simply drop any extra data
781 	 *	that gets sent into us when the queue fills up.
782 	 */
783 	if (qleft < 256) {
784 		/* HWFLOW */
785 		if (ch->ch_c_cflag & CRTSCTS) {
786 			if(!(ch->ch_flags & CH_RECEIVER_OFF)) {
787 				bd_ops->disable_receiver(ch);
788 				ch->ch_flags |= (CH_RECEIVER_OFF);
789 				jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
790 					"Internal queue hit hilevel mark (%d)! Turning off interrupts.\n",
791 					qleft);
792 			}
793 		}
794 		/* SWFLOW */
795 		else if (ch->ch_c_iflag & IXOFF) {
796 			if (ch->ch_stops_sent <= MAX_STOPS_SENT) {
797 				bd_ops->send_stop_character(ch);
798 				ch->ch_stops_sent++;
799 				jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
800 					"Sending stop char! Times sent: %x\n", ch->ch_stops_sent);
801 			}
802 		}
803 	}
804 
805 	/*
806 	 * Check to see if we should unenforce flow control because
807 	 * ld (or user) finally read enuf data out of our queue.
808 	 *
809 	 * NOTE: This is done based on what the current flow control of the
810 	 * port is set for.
811 	 *
812 	 * 1) HWFLOW (RTS) - Turn back on the UART's Receive interrupt.
813 	 *	This will cause the UART's FIFO to raise RTS back up,
814 	 *	which will allow the other side to start sending data again.
815 	 * 2) SWFLOW (IXOFF) - Send a start character to
816 	 *	the other side, so it will start sending data to us again.
817 	 * 3) NONE - Do nothing. Since we didn't do anything to turn off the
818 	 *	other side, we don't need to do anything now.
819 	 */
820 	if (qleft > (RQUEUESIZE / 2)) {
821 		/* HWFLOW */
822 		if (ch->ch_c_cflag & CRTSCTS) {
823 			if (ch->ch_flags & CH_RECEIVER_OFF) {
824 				bd_ops->enable_receiver(ch);
825 				ch->ch_flags &= ~(CH_RECEIVER_OFF);
826 				jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
827 					"Internal queue hit lowlevel mark (%d)! Turning on interrupts.\n",
828 					qleft);
829 			}
830 		}
831 		/* SWFLOW */
832 		else if (ch->ch_c_iflag & IXOFF && ch->ch_stops_sent) {
833 			ch->ch_stops_sent = 0;
834 			bd_ops->send_start_character(ch);
835 			jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "Sending start char!\n");
836 		}
837 	}
838 }
839 
840 /*
841  * jsm_tty_write()
842  *
843  * Take data from the user or kernel and send it out to the FEP.
844  * In here exists all the Transparent Print magic as well.
845  */
846 int jsm_tty_write(struct uart_port *port)
847 {
848 	int bufcount;
849 	int data_count = 0,data_count1 =0;
850 	u16 head;
851 	u16 tail;
852 	u16 tmask;
853 	u32 remain;
854 	int temp_tail = port->state->xmit.tail;
855 	struct jsm_channel *channel = (struct jsm_channel *)port;
856 
857 	tmask = WQUEUEMASK;
858 	head = (channel->ch_w_head) & tmask;
859 	tail = (channel->ch_w_tail) & tmask;
860 
861 	if ((bufcount = tail - head - 1) < 0)
862 		bufcount += WQUEUESIZE;
863 
864 	bufcount = min(bufcount, 56);
865 	remain = WQUEUESIZE - head;
866 
867 	data_count = 0;
868 	if (bufcount >= remain) {
869 		bufcount -= remain;
870 		while ((port->state->xmit.head != temp_tail) &&
871 		(data_count < remain)) {
872 			channel->ch_wqueue[head++] =
873 			port->state->xmit.buf[temp_tail];
874 
875 			temp_tail++;
876 			temp_tail &= (UART_XMIT_SIZE - 1);
877 			data_count++;
878 		}
879 		if (data_count == remain) head = 0;
880 	}
881 
882 	data_count1 = 0;
883 	if (bufcount > 0) {
884 		remain = bufcount;
885 		while ((port->state->xmit.head != temp_tail) &&
886 			(data_count1 < remain)) {
887 			channel->ch_wqueue[head++] =
888 				port->state->xmit.buf[temp_tail];
889 
890 			temp_tail++;
891 			temp_tail &= (UART_XMIT_SIZE - 1);
892 			data_count1++;
893 
894 		}
895 	}
896 
897 	port->state->xmit.tail = temp_tail;
898 
899 	data_count += data_count1;
900 	if (data_count) {
901 		head &= tmask;
902 		channel->ch_w_head = head;
903 	}
904 
905 	if (data_count) {
906 		channel->ch_bd->bd_ops->copy_data_from_queue_to_uart(channel);
907 	}
908 
909 	return data_count;
910 }
911