xref: /openbmc/linux/drivers/tty/serial/jsm/jsm_neo.c (revision 9dae47aba0a055f761176d9297371d5bb24289ec)
1 // SPDX-License-Identifier: GPL-2.0+
2 /************************************************************************
3  * Copyright 2003 Digi International (www.digi.com)
4  *
5  * Copyright (C) 2004 IBM Corporation. All rights reserved.
6  *
7  * Contact Information:
8  * Scott H Kilau <Scott_Kilau@digi.com>
9  * Wendy Xiong   <wendyx@us.ibm.com>
10  *
11  ***********************************************************************/
12 #include <linux/delay.h>	/* For udelay */
13 #include <linux/serial_reg.h>	/* For the various UART offsets */
14 #include <linux/tty.h>
15 #include <linux/pci.h>
16 #include <asm/io.h>
17 
18 #include "jsm.h"		/* Driver main header file */
19 
20 static u32 jsm_offset_table[8] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 };
21 
22 /*
23  * This function allows calls to ensure that all outstanding
24  * PCI writes have been completed, by doing a PCI read against
25  * a non-destructive, read-only location on the Neo card.
26  *
27  * In this case, we are reading the DVID (Read-only Device Identification)
28  * value of the Neo card.
29  */
30 static inline void neo_pci_posting_flush(struct jsm_board *bd)
31 {
32       readb(bd->re_map_membase + 0x8D);
33 }
34 
35 static void neo_set_cts_flow_control(struct jsm_channel *ch)
36 {
37 	u8 ier, efr;
38 	ier = readb(&ch->ch_neo_uart->ier);
39 	efr = readb(&ch->ch_neo_uart->efr);
40 
41 	jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "Setting CTSFLOW\n");
42 
43 	/* Turn on auto CTS flow control */
44 	ier |= (UART_17158_IER_CTSDSR);
45 	efr |= (UART_17158_EFR_ECB | UART_17158_EFR_CTSDSR);
46 
47 	/* Turn off auto Xon flow control */
48 	efr &= ~(UART_17158_EFR_IXON);
49 
50 	/* Why? Becuz Exar's spec says we have to zero it out before setting it */
51 	writeb(0, &ch->ch_neo_uart->efr);
52 
53 	/* Turn on UART enhanced bits */
54 	writeb(efr, &ch->ch_neo_uart->efr);
55 
56 	/* Turn on table D, with 8 char hi/low watermarks */
57 	writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY), &ch->ch_neo_uart->fctr);
58 
59 	/* Feed the UART our trigger levels */
60 	writeb(8, &ch->ch_neo_uart->tfifo);
61 	ch->ch_t_tlevel = 8;
62 
63 	writeb(ier, &ch->ch_neo_uart->ier);
64 }
65 
66 static void neo_set_rts_flow_control(struct jsm_channel *ch)
67 {
68 	u8 ier, efr;
69 	ier = readb(&ch->ch_neo_uart->ier);
70 	efr = readb(&ch->ch_neo_uart->efr);
71 
72 	jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "Setting RTSFLOW\n");
73 
74 	/* Turn on auto RTS flow control */
75 	ier |= (UART_17158_IER_RTSDTR);
76 	efr |= (UART_17158_EFR_ECB | UART_17158_EFR_RTSDTR);
77 
78 	/* Turn off auto Xoff flow control */
79 	ier &= ~(UART_17158_IER_XOFF);
80 	efr &= ~(UART_17158_EFR_IXOFF);
81 
82 	/* Why? Becuz Exar's spec says we have to zero it out before setting it */
83 	writeb(0, &ch->ch_neo_uart->efr);
84 
85 	/* Turn on UART enhanced bits */
86 	writeb(efr, &ch->ch_neo_uart->efr);
87 
88 	writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY), &ch->ch_neo_uart->fctr);
89 	ch->ch_r_watermark = 4;
90 
91 	writeb(56, &ch->ch_neo_uart->rfifo);
92 	ch->ch_r_tlevel = 56;
93 
94 	writeb(ier, &ch->ch_neo_uart->ier);
95 
96 	/*
97 	 * From the Neo UART spec sheet:
98 	 * The auto RTS/DTR function must be started by asserting
99 	 * RTS/DTR# output pin (MCR bit-0 or 1 to logic 1 after
100 	 * it is enabled.
101 	 */
102 	ch->ch_mostat |= (UART_MCR_RTS);
103 }
104 
105 
106 static void neo_set_ixon_flow_control(struct jsm_channel *ch)
107 {
108 	u8 ier, efr;
109 	ier = readb(&ch->ch_neo_uart->ier);
110 	efr = readb(&ch->ch_neo_uart->efr);
111 
112 	jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "Setting IXON FLOW\n");
113 
114 	/* Turn off auto CTS flow control */
115 	ier &= ~(UART_17158_IER_CTSDSR);
116 	efr &= ~(UART_17158_EFR_CTSDSR);
117 
118 	/* Turn on auto Xon flow control */
119 	efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXON);
120 
121 	/* Why? Becuz Exar's spec says we have to zero it out before setting it */
122 	writeb(0, &ch->ch_neo_uart->efr);
123 
124 	/* Turn on UART enhanced bits */
125 	writeb(efr, &ch->ch_neo_uart->efr);
126 
127 	writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
128 	ch->ch_r_watermark = 4;
129 
130 	writeb(32, &ch->ch_neo_uart->rfifo);
131 	ch->ch_r_tlevel = 32;
132 
133 	/* Tell UART what start/stop chars it should be looking for */
134 	writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
135 	writeb(0, &ch->ch_neo_uart->xonchar2);
136 
137 	writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
138 	writeb(0, &ch->ch_neo_uart->xoffchar2);
139 
140 	writeb(ier, &ch->ch_neo_uart->ier);
141 }
142 
143 static void neo_set_ixoff_flow_control(struct jsm_channel *ch)
144 {
145 	u8 ier, efr;
146 	ier = readb(&ch->ch_neo_uart->ier);
147 	efr = readb(&ch->ch_neo_uart->efr);
148 
149 	jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "Setting IXOFF FLOW\n");
150 
151 	/* Turn off auto RTS flow control */
152 	ier &= ~(UART_17158_IER_RTSDTR);
153 	efr &= ~(UART_17158_EFR_RTSDTR);
154 
155 	/* Turn on auto Xoff flow control */
156 	ier |= (UART_17158_IER_XOFF);
157 	efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXOFF);
158 
159 	/* Why? Becuz Exar's spec says we have to zero it out before setting it */
160 	writeb(0, &ch->ch_neo_uart->efr);
161 
162 	/* Turn on UART enhanced bits */
163 	writeb(efr, &ch->ch_neo_uart->efr);
164 
165 	/* Turn on table D, with 8 char hi/low watermarks */
166 	writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
167 
168 	writeb(8, &ch->ch_neo_uart->tfifo);
169 	ch->ch_t_tlevel = 8;
170 
171 	/* Tell UART what start/stop chars it should be looking for */
172 	writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
173 	writeb(0, &ch->ch_neo_uart->xonchar2);
174 
175 	writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
176 	writeb(0, &ch->ch_neo_uart->xoffchar2);
177 
178 	writeb(ier, &ch->ch_neo_uart->ier);
179 }
180 
181 static void neo_set_no_input_flow_control(struct jsm_channel *ch)
182 {
183 	u8 ier, efr;
184 	ier = readb(&ch->ch_neo_uart->ier);
185 	efr = readb(&ch->ch_neo_uart->efr);
186 
187 	jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "Unsetting Input FLOW\n");
188 
189 	/* Turn off auto RTS flow control */
190 	ier &= ~(UART_17158_IER_RTSDTR);
191 	efr &= ~(UART_17158_EFR_RTSDTR);
192 
193 	/* Turn off auto Xoff flow control */
194 	ier &= ~(UART_17158_IER_XOFF);
195 	if (ch->ch_c_iflag & IXON)
196 		efr &= ~(UART_17158_EFR_IXOFF);
197 	else
198 		efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXOFF);
199 
200 	/* Why? Becuz Exar's spec says we have to zero it out before setting it */
201 	writeb(0, &ch->ch_neo_uart->efr);
202 
203 	/* Turn on UART enhanced bits */
204 	writeb(efr, &ch->ch_neo_uart->efr);
205 
206 	/* Turn on table D, with 8 char hi/low watermarks */
207 	writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
208 
209 	ch->ch_r_watermark = 0;
210 
211 	writeb(16, &ch->ch_neo_uart->tfifo);
212 	ch->ch_t_tlevel = 16;
213 
214 	writeb(16, &ch->ch_neo_uart->rfifo);
215 	ch->ch_r_tlevel = 16;
216 
217 	writeb(ier, &ch->ch_neo_uart->ier);
218 }
219 
220 static void neo_set_no_output_flow_control(struct jsm_channel *ch)
221 {
222 	u8 ier, efr;
223 	ier = readb(&ch->ch_neo_uart->ier);
224 	efr = readb(&ch->ch_neo_uart->efr);
225 
226 	jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "Unsetting Output FLOW\n");
227 
228 	/* Turn off auto CTS flow control */
229 	ier &= ~(UART_17158_IER_CTSDSR);
230 	efr &= ~(UART_17158_EFR_CTSDSR);
231 
232 	/* Turn off auto Xon flow control */
233 	if (ch->ch_c_iflag & IXOFF)
234 		efr &= ~(UART_17158_EFR_IXON);
235 	else
236 		efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXON);
237 
238 	/* Why? Becuz Exar's spec says we have to zero it out before setting it */
239 	writeb(0, &ch->ch_neo_uart->efr);
240 
241 	/* Turn on UART enhanced bits */
242 	writeb(efr, &ch->ch_neo_uart->efr);
243 
244 	/* Turn on table D, with 8 char hi/low watermarks */
245 	writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
246 
247 	ch->ch_r_watermark = 0;
248 
249 	writeb(16, &ch->ch_neo_uart->tfifo);
250 	ch->ch_t_tlevel = 16;
251 
252 	writeb(16, &ch->ch_neo_uart->rfifo);
253 	ch->ch_r_tlevel = 16;
254 
255 	writeb(ier, &ch->ch_neo_uart->ier);
256 }
257 
258 static inline void neo_set_new_start_stop_chars(struct jsm_channel *ch)
259 {
260 
261 	/* if hardware flow control is set, then skip this whole thing */
262 	if (ch->ch_c_cflag & CRTSCTS)
263 		return;
264 
265 	jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "start\n");
266 
267 	/* Tell UART what start/stop chars it should be looking for */
268 	writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
269 	writeb(0, &ch->ch_neo_uart->xonchar2);
270 
271 	writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
272 	writeb(0, &ch->ch_neo_uart->xoffchar2);
273 }
274 
275 static void neo_copy_data_from_uart_to_queue(struct jsm_channel *ch)
276 {
277 	int qleft = 0;
278 	u8 linestatus = 0;
279 	u8 error_mask = 0;
280 	int n = 0;
281 	int total = 0;
282 	u16 head;
283 	u16 tail;
284 
285 	if (!ch)
286 		return;
287 
288 	/* cache head and tail of queue */
289 	head = ch->ch_r_head & RQUEUEMASK;
290 	tail = ch->ch_r_tail & RQUEUEMASK;
291 
292 	/* Get our cached LSR */
293 	linestatus = ch->ch_cached_lsr;
294 	ch->ch_cached_lsr = 0;
295 
296 	/* Store how much space we have left in the queue */
297 	if ((qleft = tail - head - 1) < 0)
298 		qleft += RQUEUEMASK + 1;
299 
300 	/*
301 	 * If the UART is not in FIFO mode, force the FIFO copy to
302 	 * NOT be run, by setting total to 0.
303 	 *
304 	 * On the other hand, if the UART IS in FIFO mode, then ask
305 	 * the UART to give us an approximation of data it has RX'ed.
306 	 */
307 	if (!(ch->ch_flags & CH_FIFO_ENABLED))
308 		total = 0;
309 	else {
310 		total = readb(&ch->ch_neo_uart->rfifo);
311 
312 		/*
313 		 * EXAR chip bug - RX FIFO COUNT - Fudge factor.
314 		 *
315 		 * This resolves a problem/bug with the Exar chip that sometimes
316 		 * returns a bogus value in the rfifo register.
317 		 * The count can be any where from 0-3 bytes "off".
318 		 * Bizarre, but true.
319 		 */
320 		total -= 3;
321 	}
322 
323 	/*
324 	 * Finally, bound the copy to make sure we don't overflow
325 	 * our own queue...
326 	 * The byte by byte copy loop below this loop this will
327 	 * deal with the queue overflow possibility.
328 	 */
329 	total = min(total, qleft);
330 
331 	while (total > 0) {
332 		/*
333 		 * Grab the linestatus register, we need to check
334 		 * to see if there are any errors in the FIFO.
335 		 */
336 		linestatus = readb(&ch->ch_neo_uart->lsr);
337 
338 		/*
339 		 * Break out if there is a FIFO error somewhere.
340 		 * This will allow us to go byte by byte down below,
341 		 * finding the exact location of the error.
342 		 */
343 		if (linestatus & UART_17158_RX_FIFO_DATA_ERROR)
344 			break;
345 
346 		/* Make sure we don't go over the end of our queue */
347 		n = min(((u32) total), (RQUEUESIZE - (u32) head));
348 
349 		/*
350 		 * Cut down n even further if needed, this is to fix
351 		 * a problem with memcpy_fromio() with the Neo on the
352 		 * IBM pSeries platform.
353 		 * 15 bytes max appears to be the magic number.
354 		 */
355 		n = min((u32) n, (u32) 12);
356 
357 		/*
358 		 * Since we are grabbing the linestatus register, which
359 		 * will reset some bits after our read, we need to ensure
360 		 * we don't miss our TX FIFO emptys.
361 		 */
362 		if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR))
363 			ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
364 
365 		linestatus = 0;
366 
367 		/* Copy data from uart to the queue */
368 		memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, n);
369 		/*
370 		 * Since RX_FIFO_DATA_ERROR was 0, we are guaranteed
371 		 * that all the data currently in the FIFO is free of
372 		 * breaks and parity/frame/orun errors.
373 		 */
374 		memset(ch->ch_equeue + head, 0, n);
375 
376 		/* Add to and flip head if needed */
377 		head = (head + n) & RQUEUEMASK;
378 		total -= n;
379 		qleft -= n;
380 		ch->ch_rxcount += n;
381 	}
382 
383 	/*
384 	 * Create a mask to determine whether we should
385 	 * insert the character (if any) into our queue.
386 	 */
387 	if (ch->ch_c_iflag & IGNBRK)
388 		error_mask |= UART_LSR_BI;
389 
390 	/*
391 	 * Now cleanup any leftover bytes still in the UART.
392 	 * Also deal with any possible queue overflow here as well.
393 	 */
394 	while (1) {
395 
396 		/*
397 		 * Its possible we have a linestatus from the loop above
398 		 * this, so we "OR" on any extra bits.
399 		 */
400 		linestatus |= readb(&ch->ch_neo_uart->lsr);
401 
402 		/*
403 		 * If the chip tells us there is no more data pending to
404 		 * be read, we can then leave.
405 		 * But before we do, cache the linestatus, just in case.
406 		 */
407 		if (!(linestatus & UART_LSR_DR)) {
408 			ch->ch_cached_lsr = linestatus;
409 			break;
410 		}
411 
412 		/* No need to store this bit */
413 		linestatus &= ~UART_LSR_DR;
414 
415 		/*
416 		 * Since we are grabbing the linestatus register, which
417 		 * will reset some bits after our read, we need to ensure
418 		 * we don't miss our TX FIFO emptys.
419 		 */
420 		if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR)) {
421 			linestatus &= ~(UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR);
422 			ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
423 		}
424 
425 		/*
426 		 * Discard character if we are ignoring the error mask.
427 		 */
428 		if (linestatus & error_mask) {
429 			u8 discard;
430 			linestatus = 0;
431 			memcpy_fromio(&discard, &ch->ch_neo_uart->txrxburst, 1);
432 			continue;
433 		}
434 
435 		/*
436 		 * If our queue is full, we have no choice but to drop some data.
437 		 * The assumption is that HWFLOW or SWFLOW should have stopped
438 		 * things way way before we got to this point.
439 		 *
440 		 * I decided that I wanted to ditch the oldest data first,
441 		 * I hope thats okay with everyone? Yes? Good.
442 		 */
443 		while (qleft < 1) {
444 			jsm_dbg(READ, &ch->ch_bd->pci_dev,
445 				"Queue full, dropping DATA:%x LSR:%x\n",
446 				ch->ch_rqueue[tail], ch->ch_equeue[tail]);
447 
448 			ch->ch_r_tail = tail = (tail + 1) & RQUEUEMASK;
449 			ch->ch_err_overrun++;
450 			qleft++;
451 		}
452 
453 		memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, 1);
454 		ch->ch_equeue[head] = (u8) linestatus;
455 
456 		jsm_dbg(READ, &ch->ch_bd->pci_dev, "DATA/LSR pair: %x %x\n",
457 			ch->ch_rqueue[head], ch->ch_equeue[head]);
458 
459 		/* Ditch any remaining linestatus value. */
460 		linestatus = 0;
461 
462 		/* Add to and flip head if needed */
463 		head = (head + 1) & RQUEUEMASK;
464 
465 		qleft--;
466 		ch->ch_rxcount++;
467 	}
468 
469 	/*
470 	 * Write new final heads to channel structure.
471 	 */
472 	ch->ch_r_head = head & RQUEUEMASK;
473 	ch->ch_e_head = head & EQUEUEMASK;
474 	jsm_input(ch);
475 }
476 
477 static void neo_copy_data_from_queue_to_uart(struct jsm_channel *ch)
478 {
479 	u16 head;
480 	u16 tail;
481 	int n;
482 	int s;
483 	int qlen;
484 	u32 len_written = 0;
485 	struct circ_buf *circ;
486 
487 	if (!ch)
488 		return;
489 
490 	circ = &ch->uart_port.state->xmit;
491 
492 	/* No data to write to the UART */
493 	if (uart_circ_empty(circ))
494 		return;
495 
496 	/* If port is "stopped", don't send any data to the UART */
497 	if ((ch->ch_flags & CH_STOP) || (ch->ch_flags & CH_BREAK_SENDING))
498 		return;
499 	/*
500 	 * If FIFOs are disabled. Send data directly to txrx register
501 	 */
502 	if (!(ch->ch_flags & CH_FIFO_ENABLED)) {
503 		u8 lsrbits = readb(&ch->ch_neo_uart->lsr);
504 
505 		ch->ch_cached_lsr |= lsrbits;
506 		if (ch->ch_cached_lsr & UART_LSR_THRE) {
507 			ch->ch_cached_lsr &= ~(UART_LSR_THRE);
508 
509 			writeb(circ->buf[circ->tail], &ch->ch_neo_uart->txrx);
510 			jsm_dbg(WRITE, &ch->ch_bd->pci_dev,
511 				"Tx data: %x\n", circ->buf[circ->tail]);
512 			circ->tail = (circ->tail + 1) & (UART_XMIT_SIZE - 1);
513 			ch->ch_txcount++;
514 		}
515 		return;
516 	}
517 
518 	/*
519 	 * We have to do it this way, because of the EXAR TXFIFO count bug.
520 	 */
521 	if (!(ch->ch_flags & (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM)))
522 		return;
523 
524 	n = UART_17158_TX_FIFOSIZE - ch->ch_t_tlevel;
525 
526 	/* cache head and tail of queue */
527 	head = circ->head & (UART_XMIT_SIZE - 1);
528 	tail = circ->tail & (UART_XMIT_SIZE - 1);
529 	qlen = uart_circ_chars_pending(circ);
530 
531 	/* Find minimum of the FIFO space, versus queue length */
532 	n = min(n, qlen);
533 
534 	while (n > 0) {
535 
536 		s = ((head >= tail) ? head : UART_XMIT_SIZE) - tail;
537 		s = min(s, n);
538 
539 		if (s <= 0)
540 			break;
541 
542 		memcpy_toio(&ch->ch_neo_uart->txrxburst, circ->buf + tail, s);
543 		/* Add and flip queue if needed */
544 		tail = (tail + s) & (UART_XMIT_SIZE - 1);
545 		n -= s;
546 		ch->ch_txcount += s;
547 		len_written += s;
548 	}
549 
550 	/* Update the final tail */
551 	circ->tail = tail & (UART_XMIT_SIZE - 1);
552 
553 	if (len_written >= ch->ch_t_tlevel)
554 		ch->ch_flags &= ~(CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
555 
556 	if (uart_circ_empty(circ))
557 		uart_write_wakeup(&ch->uart_port);
558 }
559 
560 static void neo_parse_modem(struct jsm_channel *ch, u8 signals)
561 {
562 	u8 msignals = signals;
563 
564 	jsm_dbg(MSIGS, &ch->ch_bd->pci_dev,
565 		"neo_parse_modem: port: %d msignals: %x\n",
566 		ch->ch_portnum, msignals);
567 
568 	/* Scrub off lower bits. They signify delta's, which I don't care about */
569 	/* Keep DDCD and DDSR though */
570 	msignals &= 0xf8;
571 
572 	if (msignals & UART_MSR_DDCD)
573 		uart_handle_dcd_change(&ch->uart_port, msignals & UART_MSR_DCD);
574 	if (msignals & UART_MSR_DDSR)
575 		uart_handle_cts_change(&ch->uart_port, msignals & UART_MSR_CTS);
576 	if (msignals & UART_MSR_DCD)
577 		ch->ch_mistat |= UART_MSR_DCD;
578 	else
579 		ch->ch_mistat &= ~UART_MSR_DCD;
580 
581 	if (msignals & UART_MSR_DSR)
582 		ch->ch_mistat |= UART_MSR_DSR;
583 	else
584 		ch->ch_mistat &= ~UART_MSR_DSR;
585 
586 	if (msignals & UART_MSR_RI)
587 		ch->ch_mistat |= UART_MSR_RI;
588 	else
589 		ch->ch_mistat &= ~UART_MSR_RI;
590 
591 	if (msignals & UART_MSR_CTS)
592 		ch->ch_mistat |= UART_MSR_CTS;
593 	else
594 		ch->ch_mistat &= ~UART_MSR_CTS;
595 
596 	jsm_dbg(MSIGS, &ch->ch_bd->pci_dev,
597 		"Port: %d DTR: %d RTS: %d CTS: %d DSR: %d " "RI: %d CD: %d\n",
598 		ch->ch_portnum,
599 		!!((ch->ch_mistat | ch->ch_mostat) & UART_MCR_DTR),
600 		!!((ch->ch_mistat | ch->ch_mostat) & UART_MCR_RTS),
601 		!!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_CTS),
602 		!!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_DSR),
603 		!!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_RI),
604 		!!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_DCD));
605 }
606 
607 /* Make the UART raise any of the output signals we want up */
608 static void neo_assert_modem_signals(struct jsm_channel *ch)
609 {
610 	if (!ch)
611 		return;
612 
613 	writeb(ch->ch_mostat, &ch->ch_neo_uart->mcr);
614 
615 	/* flush write operation */
616 	neo_pci_posting_flush(ch->ch_bd);
617 }
618 
619 /*
620  * Flush the WRITE FIFO on the Neo.
621  *
622  * NOTE: Channel lock MUST be held before calling this function!
623  */
624 static void neo_flush_uart_write(struct jsm_channel *ch)
625 {
626 	u8 tmp = 0;
627 	int i = 0;
628 
629 	if (!ch)
630 		return;
631 
632 	writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr);
633 
634 	for (i = 0; i < 10; i++) {
635 
636 		/* Check to see if the UART feels it completely flushed the FIFO. */
637 		tmp = readb(&ch->ch_neo_uart->isr_fcr);
638 		if (tmp & UART_FCR_CLEAR_XMIT) {
639 			jsm_dbg(IOCTL, &ch->ch_bd->pci_dev,
640 				"Still flushing TX UART... i: %d\n", i);
641 			udelay(10);
642 		}
643 		else
644 			break;
645 	}
646 
647 	ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
648 }
649 
650 
651 /*
652  * Flush the READ FIFO on the Neo.
653  *
654  * NOTE: Channel lock MUST be held before calling this function!
655  */
656 static void neo_flush_uart_read(struct jsm_channel *ch)
657 {
658 	u8 tmp = 0;
659 	int i = 0;
660 
661 	if (!ch)
662 		return;
663 
664 	writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_RCVR), &ch->ch_neo_uart->isr_fcr);
665 
666 	for (i = 0; i < 10; i++) {
667 
668 		/* Check to see if the UART feels it completely flushed the FIFO. */
669 		tmp = readb(&ch->ch_neo_uart->isr_fcr);
670 		if (tmp & 2) {
671 			jsm_dbg(IOCTL, &ch->ch_bd->pci_dev,
672 				"Still flushing RX UART... i: %d\n", i);
673 			udelay(10);
674 		}
675 		else
676 			break;
677 	}
678 }
679 
680 /*
681  * No locks are assumed to be held when calling this function.
682  */
683 static void neo_clear_break(struct jsm_channel *ch)
684 {
685 	unsigned long lock_flags;
686 
687 	spin_lock_irqsave(&ch->ch_lock, lock_flags);
688 
689 	/* Turn break off, and unset some variables */
690 	if (ch->ch_flags & CH_BREAK_SENDING) {
691 		u8 temp = readb(&ch->ch_neo_uart->lcr);
692 		writeb((temp & ~UART_LCR_SBC), &ch->ch_neo_uart->lcr);
693 
694 		ch->ch_flags &= ~(CH_BREAK_SENDING);
695 		jsm_dbg(IOCTL, &ch->ch_bd->pci_dev,
696 			"clear break Finishing UART_LCR_SBC! finished: %lx\n",
697 			jiffies);
698 
699 		/* flush write operation */
700 		neo_pci_posting_flush(ch->ch_bd);
701 	}
702 	spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
703 }
704 
705 /*
706  * Parse the ISR register.
707  */
708 static void neo_parse_isr(struct jsm_board *brd, u32 port)
709 {
710 	struct jsm_channel *ch;
711 	u8 isr;
712 	u8 cause;
713 	unsigned long lock_flags;
714 
715 	if (!brd)
716 		return;
717 
718 	if (port >= brd->maxports)
719 		return;
720 
721 	ch = brd->channels[port];
722 	if (!ch)
723 		return;
724 
725 	/* Here we try to figure out what caused the interrupt to happen */
726 	while (1) {
727 
728 		isr = readb(&ch->ch_neo_uart->isr_fcr);
729 
730 		/* Bail if no pending interrupt */
731 		if (isr & UART_IIR_NO_INT)
732 			break;
733 
734 		/*
735 		 * Yank off the upper 2 bits, which just show that the FIFO's are enabled.
736 		 */
737 		isr &= ~(UART_17158_IIR_FIFO_ENABLED);
738 
739 		jsm_dbg(INTR, &ch->ch_bd->pci_dev, "%s:%d isr: %x\n",
740 			__FILE__, __LINE__, isr);
741 
742 		if (isr & (UART_17158_IIR_RDI_TIMEOUT | UART_IIR_RDI)) {
743 			/* Read data from uart -> queue */
744 			neo_copy_data_from_uart_to_queue(ch);
745 
746 			/* Call our tty layer to enforce queue flow control if needed. */
747 			spin_lock_irqsave(&ch->ch_lock, lock_flags);
748 			jsm_check_queue_flow_control(ch);
749 			spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
750 		}
751 
752 		if (isr & UART_IIR_THRI) {
753 			/* Transfer data (if any) from Write Queue -> UART. */
754 			spin_lock_irqsave(&ch->ch_lock, lock_flags);
755 			ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
756 			spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
757 			neo_copy_data_from_queue_to_uart(ch);
758 		}
759 
760 		if (isr & UART_17158_IIR_XONXOFF) {
761 			cause = readb(&ch->ch_neo_uart->xoffchar1);
762 
763 			jsm_dbg(INTR, &ch->ch_bd->pci_dev,
764 				"Port %d. Got ISR_XONXOFF: cause:%x\n",
765 				port, cause);
766 
767 			/*
768 			 * Since the UART detected either an XON or
769 			 * XOFF match, we need to figure out which
770 			 * one it was, so we can suspend or resume data flow.
771 			 */
772 			spin_lock_irqsave(&ch->ch_lock, lock_flags);
773 			if (cause == UART_17158_XON_DETECT) {
774 				/* Is output stopped right now, if so, resume it */
775 				if (brd->channels[port]->ch_flags & CH_STOP) {
776 					ch->ch_flags &= ~(CH_STOP);
777 				}
778 				jsm_dbg(INTR, &ch->ch_bd->pci_dev,
779 					"Port %d. XON detected in incoming data\n",
780 					port);
781 			}
782 			else if (cause == UART_17158_XOFF_DETECT) {
783 				if (!(brd->channels[port]->ch_flags & CH_STOP)) {
784 					ch->ch_flags |= CH_STOP;
785 					jsm_dbg(INTR, &ch->ch_bd->pci_dev,
786 						"Setting CH_STOP\n");
787 				}
788 				jsm_dbg(INTR, &ch->ch_bd->pci_dev,
789 					"Port: %d. XOFF detected in incoming data\n",
790 					port);
791 			}
792 			spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
793 		}
794 
795 		if (isr & UART_17158_IIR_HWFLOW_STATE_CHANGE) {
796 			/*
797 			 * If we get here, this means the hardware is doing auto flow control.
798 			 * Check to see whether RTS/DTR or CTS/DSR caused this interrupt.
799 			 */
800 			cause = readb(&ch->ch_neo_uart->mcr);
801 
802 			/* Which pin is doing auto flow? RTS or DTR? */
803 			spin_lock_irqsave(&ch->ch_lock, lock_flags);
804 			if ((cause & 0x4) == 0) {
805 				if (cause & UART_MCR_RTS)
806 					ch->ch_mostat |= UART_MCR_RTS;
807 				else
808 					ch->ch_mostat &= ~(UART_MCR_RTS);
809 			} else {
810 				if (cause & UART_MCR_DTR)
811 					ch->ch_mostat |= UART_MCR_DTR;
812 				else
813 					ch->ch_mostat &= ~(UART_MCR_DTR);
814 			}
815 			spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
816 		}
817 
818 		/* Parse any modem signal changes */
819 		jsm_dbg(INTR, &ch->ch_bd->pci_dev,
820 			"MOD_STAT: sending to parse_modem_sigs\n");
821 		neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr));
822 	}
823 }
824 
825 static inline void neo_parse_lsr(struct jsm_board *brd, u32 port)
826 {
827 	struct jsm_channel *ch;
828 	int linestatus;
829 	unsigned long lock_flags;
830 
831 	if (!brd)
832 		return;
833 
834 	if (port >= brd->maxports)
835 		return;
836 
837 	ch = brd->channels[port];
838 	if (!ch)
839 		return;
840 
841 	linestatus = readb(&ch->ch_neo_uart->lsr);
842 
843 	jsm_dbg(INTR, &ch->ch_bd->pci_dev, "%s:%d port: %d linestatus: %x\n",
844 		__FILE__, __LINE__, port, linestatus);
845 
846 	ch->ch_cached_lsr |= linestatus;
847 
848 	if (ch->ch_cached_lsr & UART_LSR_DR) {
849 		/* Read data from uart -> queue */
850 		neo_copy_data_from_uart_to_queue(ch);
851 		spin_lock_irqsave(&ch->ch_lock, lock_flags);
852 		jsm_check_queue_flow_control(ch);
853 		spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
854 	}
855 
856 	/*
857 	 * This is a special flag. It indicates that at least 1
858 	 * RX error (parity, framing, or break) has happened.
859 	 * Mark this in our struct, which will tell me that I have
860 	 *to do the special RX+LSR read for this FIFO load.
861 	 */
862 	if (linestatus & UART_17158_RX_FIFO_DATA_ERROR)
863 		jsm_dbg(INTR, &ch->ch_bd->pci_dev,
864 			"%s:%d Port: %d Got an RX error, need to parse LSR\n",
865 			__FILE__, __LINE__, port);
866 
867 	/*
868 	 * The next 3 tests should *NOT* happen, as the above test
869 	 * should encapsulate all 3... At least, thats what Exar says.
870 	 */
871 
872 	if (linestatus & UART_LSR_PE) {
873 		ch->ch_err_parity++;
874 		jsm_dbg(INTR, &ch->ch_bd->pci_dev, "%s:%d Port: %d. PAR ERR!\n",
875 			__FILE__, __LINE__, port);
876 	}
877 
878 	if (linestatus & UART_LSR_FE) {
879 		ch->ch_err_frame++;
880 		jsm_dbg(INTR, &ch->ch_bd->pci_dev, "%s:%d Port: %d. FRM ERR!\n",
881 			__FILE__, __LINE__, port);
882 	}
883 
884 	if (linestatus & UART_LSR_BI) {
885 		ch->ch_err_break++;
886 		jsm_dbg(INTR, &ch->ch_bd->pci_dev,
887 			"%s:%d Port: %d. BRK INTR!\n",
888 			__FILE__, __LINE__, port);
889 	}
890 
891 	if (linestatus & UART_LSR_OE) {
892 		/*
893 		 * Rx Oruns. Exar says that an orun will NOT corrupt
894 		 * the FIFO. It will just replace the holding register
895 		 * with this new data byte. So basically just ignore this.
896 		 * Probably we should eventually have an orun stat in our driver...
897 		 */
898 		ch->ch_err_overrun++;
899 		jsm_dbg(INTR, &ch->ch_bd->pci_dev,
900 			"%s:%d Port: %d. Rx Overrun!\n",
901 			__FILE__, __LINE__, port);
902 	}
903 
904 	if (linestatus & UART_LSR_THRE) {
905 		spin_lock_irqsave(&ch->ch_lock, lock_flags);
906 		ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
907 		spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
908 
909 		/* Transfer data (if any) from Write Queue -> UART. */
910 		neo_copy_data_from_queue_to_uart(ch);
911 	}
912 	else if (linestatus & UART_17158_TX_AND_FIFO_CLR) {
913 		spin_lock_irqsave(&ch->ch_lock, lock_flags);
914 		ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
915 		spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
916 
917 		/* Transfer data (if any) from Write Queue -> UART. */
918 		neo_copy_data_from_queue_to_uart(ch);
919 	}
920 }
921 
922 /*
923  * neo_param()
924  * Send any/all changes to the line to the UART.
925  */
926 static void neo_param(struct jsm_channel *ch)
927 {
928 	u8 lcr = 0;
929 	u8 uart_lcr, ier;
930 	u32 baud;
931 	int quot;
932 	struct jsm_board *bd;
933 
934 	bd = ch->ch_bd;
935 	if (!bd)
936 		return;
937 
938 	/*
939 	 * If baud rate is zero, flush queues, and set mval to drop DTR.
940 	 */
941 	if ((ch->ch_c_cflag & (CBAUD)) == 0) {
942 		ch->ch_r_head = ch->ch_r_tail = 0;
943 		ch->ch_e_head = ch->ch_e_tail = 0;
944 
945 		neo_flush_uart_write(ch);
946 		neo_flush_uart_read(ch);
947 
948 		ch->ch_flags |= (CH_BAUD0);
949 		ch->ch_mostat &= ~(UART_MCR_RTS | UART_MCR_DTR);
950 		neo_assert_modem_signals(ch);
951 		return;
952 
953 	} else {
954 		int i;
955 		unsigned int cflag;
956 		static struct {
957 			unsigned int rate;
958 			unsigned int cflag;
959 		} baud_rates[] = {
960 			{ 921600, B921600 },
961 			{ 460800, B460800 },
962 			{ 230400, B230400 },
963 			{ 115200, B115200 },
964 			{  57600, B57600  },
965 			{  38400, B38400  },
966 			{  19200, B19200  },
967 			{   9600, B9600   },
968 			{   4800, B4800   },
969 			{   2400, B2400   },
970 			{   1200, B1200   },
971 			{    600, B600    },
972 			{    300, B300    },
973 			{    200, B200    },
974 			{    150, B150    },
975 			{    134, B134    },
976 			{    110, B110    },
977 			{     75, B75     },
978 			{     50, B50     },
979 		};
980 
981 		cflag = C_BAUD(ch->uart_port.state->port.tty);
982 		baud = 9600;
983 		for (i = 0; i < ARRAY_SIZE(baud_rates); i++) {
984 			if (baud_rates[i].cflag == cflag) {
985 				baud = baud_rates[i].rate;
986 				break;
987 			}
988 		}
989 
990 		if (ch->ch_flags & CH_BAUD0)
991 			ch->ch_flags &= ~(CH_BAUD0);
992 	}
993 
994 	if (ch->ch_c_cflag & PARENB)
995 		lcr |= UART_LCR_PARITY;
996 
997 	if (!(ch->ch_c_cflag & PARODD))
998 		lcr |= UART_LCR_EPAR;
999 
1000 	/*
1001 	 * Not all platforms support mark/space parity,
1002 	 * so this will hide behind an ifdef.
1003 	 */
1004 #ifdef CMSPAR
1005 	if (ch->ch_c_cflag & CMSPAR)
1006 		lcr |= UART_LCR_SPAR;
1007 #endif
1008 
1009 	if (ch->ch_c_cflag & CSTOPB)
1010 		lcr |= UART_LCR_STOP;
1011 
1012 	switch (ch->ch_c_cflag & CSIZE) {
1013 	case CS5:
1014 		lcr |= UART_LCR_WLEN5;
1015 		break;
1016 	case CS6:
1017 		lcr |= UART_LCR_WLEN6;
1018 		break;
1019 	case CS7:
1020 		lcr |= UART_LCR_WLEN7;
1021 		break;
1022 	case CS8:
1023 	default:
1024 		lcr |= UART_LCR_WLEN8;
1025 	break;
1026 	}
1027 
1028 	ier = readb(&ch->ch_neo_uart->ier);
1029 	uart_lcr = readb(&ch->ch_neo_uart->lcr);
1030 
1031 	quot = ch->ch_bd->bd_dividend / baud;
1032 
1033 	if (quot != 0) {
1034 		writeb(UART_LCR_DLAB, &ch->ch_neo_uart->lcr);
1035 		writeb((quot & 0xff), &ch->ch_neo_uart->txrx);
1036 		writeb((quot >> 8), &ch->ch_neo_uart->ier);
1037 		writeb(lcr, &ch->ch_neo_uart->lcr);
1038 	}
1039 
1040 	if (uart_lcr != lcr)
1041 		writeb(lcr, &ch->ch_neo_uart->lcr);
1042 
1043 	if (ch->ch_c_cflag & CREAD)
1044 		ier |= (UART_IER_RDI | UART_IER_RLSI);
1045 
1046 	ier |= (UART_IER_THRI | UART_IER_MSI);
1047 
1048 	writeb(ier, &ch->ch_neo_uart->ier);
1049 
1050 	/* Set new start/stop chars */
1051 	neo_set_new_start_stop_chars(ch);
1052 
1053 	if (ch->ch_c_cflag & CRTSCTS)
1054 		neo_set_cts_flow_control(ch);
1055 	else if (ch->ch_c_iflag & IXON) {
1056 		/* If start/stop is set to disable, then we should disable flow control */
1057 		if ((ch->ch_startc == __DISABLED_CHAR) || (ch->ch_stopc == __DISABLED_CHAR))
1058 			neo_set_no_output_flow_control(ch);
1059 		else
1060 			neo_set_ixon_flow_control(ch);
1061 	}
1062 	else
1063 		neo_set_no_output_flow_control(ch);
1064 
1065 	if (ch->ch_c_cflag & CRTSCTS)
1066 		neo_set_rts_flow_control(ch);
1067 	else if (ch->ch_c_iflag & IXOFF) {
1068 		/* If start/stop is set to disable, then we should disable flow control */
1069 		if ((ch->ch_startc == __DISABLED_CHAR) || (ch->ch_stopc == __DISABLED_CHAR))
1070 			neo_set_no_input_flow_control(ch);
1071 		else
1072 			neo_set_ixoff_flow_control(ch);
1073 	}
1074 	else
1075 		neo_set_no_input_flow_control(ch);
1076 	/*
1077 	 * Adjust the RX FIFO Trigger level if baud is less than 9600.
1078 	 * Not exactly elegant, but this is needed because of the Exar chip's
1079 	 * delay on firing off the RX FIFO interrupt on slower baud rates.
1080 	 */
1081 	if (baud < 9600) {
1082 		writeb(1, &ch->ch_neo_uart->rfifo);
1083 		ch->ch_r_tlevel = 1;
1084 	}
1085 
1086 	neo_assert_modem_signals(ch);
1087 
1088 	/* Get current status of the modem signals now */
1089 	neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr));
1090 	return;
1091 }
1092 
1093 /*
1094  * jsm_neo_intr()
1095  *
1096  * Neo specific interrupt handler.
1097  */
1098 static irqreturn_t neo_intr(int irq, void *voidbrd)
1099 {
1100 	struct jsm_board *brd = voidbrd;
1101 	struct jsm_channel *ch;
1102 	int port = 0;
1103 	int type = 0;
1104 	int current_port;
1105 	u32 tmp;
1106 	u32 uart_poll;
1107 	unsigned long lock_flags;
1108 	unsigned long lock_flags2;
1109 	int outofloop_count = 0;
1110 
1111 	/* Lock out the slow poller from running on this board. */
1112 	spin_lock_irqsave(&brd->bd_intr_lock, lock_flags);
1113 
1114 	/*
1115 	 * Read in "extended" IRQ information from the 32bit Neo register.
1116 	 * Bits 0-7: What port triggered the interrupt.
1117 	 * Bits 8-31: Each 3bits indicate what type of interrupt occurred.
1118 	 */
1119 	uart_poll = readl(brd->re_map_membase + UART_17158_POLL_ADDR_OFFSET);
1120 
1121 	jsm_dbg(INTR, &brd->pci_dev, "%s:%d uart_poll: %x\n",
1122 		__FILE__, __LINE__, uart_poll);
1123 
1124 	if (!uart_poll) {
1125 		jsm_dbg(INTR, &brd->pci_dev,
1126 			"Kernel interrupted to me, but no pending interrupts...\n");
1127 		spin_unlock_irqrestore(&brd->bd_intr_lock, lock_flags);
1128 		return IRQ_NONE;
1129 	}
1130 
1131 	/* At this point, we have at least SOMETHING to service, dig further... */
1132 
1133 	current_port = 0;
1134 
1135 	/* Loop on each port */
1136 	while (((uart_poll & 0xff) != 0) && (outofloop_count < 0xff)){
1137 
1138 		tmp = uart_poll;
1139 		outofloop_count++;
1140 
1141 		/* Check current port to see if it has interrupt pending */
1142 		if ((tmp & jsm_offset_table[current_port]) != 0) {
1143 			port = current_port;
1144 			type = tmp >> (8 + (port * 3));
1145 			type &= 0x7;
1146 		} else {
1147 			current_port++;
1148 			continue;
1149 		}
1150 
1151 		jsm_dbg(INTR, &brd->pci_dev, "%s:%d port: %x type: %x\n",
1152 			__FILE__, __LINE__, port, type);
1153 
1154 		/* Remove this port + type from uart_poll */
1155 		uart_poll &= ~(jsm_offset_table[port]);
1156 
1157 		if (!type) {
1158 			/* If no type, just ignore it, and move onto next port */
1159 			jsm_dbg(INTR, &brd->pci_dev,
1160 				"Interrupt with no type! port: %d\n", port);
1161 			continue;
1162 		}
1163 
1164 		/* Switch on type of interrupt we have */
1165 		switch (type) {
1166 
1167 		case UART_17158_RXRDY_TIMEOUT:
1168 			/*
1169 			 * RXRDY Time-out is cleared by reading data in the
1170 			* RX FIFO until it falls below the trigger level.
1171 			 */
1172 
1173 			/* Verify the port is in range. */
1174 			if (port >= brd->nasync)
1175 				continue;
1176 
1177 			ch = brd->channels[port];
1178 			neo_copy_data_from_uart_to_queue(ch);
1179 
1180 			/* Call our tty layer to enforce queue flow control if needed. */
1181 			spin_lock_irqsave(&ch->ch_lock, lock_flags2);
1182 			jsm_check_queue_flow_control(ch);
1183 			spin_unlock_irqrestore(&ch->ch_lock, lock_flags2);
1184 
1185 			continue;
1186 
1187 		case UART_17158_RX_LINE_STATUS:
1188 			/*
1189 			 * RXRDY and RX LINE Status (logic OR of LSR[4:1])
1190 			 */
1191 			neo_parse_lsr(brd, port);
1192 			continue;
1193 
1194 		case UART_17158_TXRDY:
1195 			/*
1196 			 * TXRDY interrupt clears after reading ISR register for the UART channel.
1197 			 */
1198 
1199 			/*
1200 			 * Yes, this is odd...
1201 			 * Why would I check EVERY possibility of type of
1202 			 * interrupt, when we know its TXRDY???
1203 			 * Becuz for some reason, even tho we got triggered for TXRDY,
1204 			 * it seems to be occasionally wrong. Instead of TX, which
1205 			 * it should be, I was getting things like RXDY too. Weird.
1206 			 */
1207 			neo_parse_isr(brd, port);
1208 			continue;
1209 
1210 		case UART_17158_MSR:
1211 			/*
1212 			 * MSR or flow control was seen.
1213 			 */
1214 			neo_parse_isr(brd, port);
1215 			continue;
1216 
1217 		default:
1218 			/*
1219 			 * The UART triggered us with a bogus interrupt type.
1220 			 * It appears the Exar chip, when REALLY bogged down, will throw
1221 			 * these once and awhile.
1222 			 * Its harmless, just ignore it and move on.
1223 			 */
1224 			jsm_dbg(INTR, &brd->pci_dev,
1225 				"%s:%d Unknown Interrupt type: %x\n",
1226 				__FILE__, __LINE__, type);
1227 			continue;
1228 		}
1229 	}
1230 
1231 	spin_unlock_irqrestore(&brd->bd_intr_lock, lock_flags);
1232 
1233 	jsm_dbg(INTR, &brd->pci_dev, "finish\n");
1234 	return IRQ_HANDLED;
1235 }
1236 
1237 /*
1238  * Neo specific way of turning off the receiver.
1239  * Used as a way to enforce queue flow control when in
1240  * hardware flow control mode.
1241  */
1242 static void neo_disable_receiver(struct jsm_channel *ch)
1243 {
1244 	u8 tmp = readb(&ch->ch_neo_uart->ier);
1245 	tmp &= ~(UART_IER_RDI);
1246 	writeb(tmp, &ch->ch_neo_uart->ier);
1247 
1248 	/* flush write operation */
1249 	neo_pci_posting_flush(ch->ch_bd);
1250 }
1251 
1252 
1253 /*
1254  * Neo specific way of turning on the receiver.
1255  * Used as a way to un-enforce queue flow control when in
1256  * hardware flow control mode.
1257  */
1258 static void neo_enable_receiver(struct jsm_channel *ch)
1259 {
1260 	u8 tmp = readb(&ch->ch_neo_uart->ier);
1261 	tmp |= (UART_IER_RDI);
1262 	writeb(tmp, &ch->ch_neo_uart->ier);
1263 
1264 	/* flush write operation */
1265 	neo_pci_posting_flush(ch->ch_bd);
1266 }
1267 
1268 static void neo_send_start_character(struct jsm_channel *ch)
1269 {
1270 	if (!ch)
1271 		return;
1272 
1273 	if (ch->ch_startc != __DISABLED_CHAR) {
1274 		ch->ch_xon_sends++;
1275 		writeb(ch->ch_startc, &ch->ch_neo_uart->txrx);
1276 
1277 		/* flush write operation */
1278 		neo_pci_posting_flush(ch->ch_bd);
1279 	}
1280 }
1281 
1282 static void neo_send_stop_character(struct jsm_channel *ch)
1283 {
1284 	if (!ch)
1285 		return;
1286 
1287 	if (ch->ch_stopc != __DISABLED_CHAR) {
1288 		ch->ch_xoff_sends++;
1289 		writeb(ch->ch_stopc, &ch->ch_neo_uart->txrx);
1290 
1291 		/* flush write operation */
1292 		neo_pci_posting_flush(ch->ch_bd);
1293 	}
1294 }
1295 
1296 /*
1297  * neo_uart_init
1298  */
1299 static void neo_uart_init(struct jsm_channel *ch)
1300 {
1301 	writeb(0, &ch->ch_neo_uart->ier);
1302 	writeb(0, &ch->ch_neo_uart->efr);
1303 	writeb(UART_EFR_ECB, &ch->ch_neo_uart->efr);
1304 
1305 	/* Clear out UART and FIFO */
1306 	readb(&ch->ch_neo_uart->txrx);
1307 	writeb((UART_FCR_ENABLE_FIFO|UART_FCR_CLEAR_RCVR|UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr);
1308 	readb(&ch->ch_neo_uart->lsr);
1309 	readb(&ch->ch_neo_uart->msr);
1310 
1311 	ch->ch_flags |= CH_FIFO_ENABLED;
1312 
1313 	/* Assert any signals we want up */
1314 	writeb(ch->ch_mostat, &ch->ch_neo_uart->mcr);
1315 }
1316 
1317 /*
1318  * Make the UART completely turn off.
1319  */
1320 static void neo_uart_off(struct jsm_channel *ch)
1321 {
1322 	/* Turn off UART enhanced bits */
1323 	writeb(0, &ch->ch_neo_uart->efr);
1324 
1325 	/* Stop all interrupts from occurring. */
1326 	writeb(0, &ch->ch_neo_uart->ier);
1327 }
1328 
1329 static u32 neo_get_uart_bytes_left(struct jsm_channel *ch)
1330 {
1331 	u8 left = 0;
1332 	u8 lsr = readb(&ch->ch_neo_uart->lsr);
1333 
1334 	/* We must cache the LSR as some of the bits get reset once read... */
1335 	ch->ch_cached_lsr |= lsr;
1336 
1337 	/* Determine whether the Transmitter is empty or not */
1338 	if (!(lsr & UART_LSR_TEMT))
1339 		left = 1;
1340 	else {
1341 		ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
1342 		left = 0;
1343 	}
1344 
1345 	return left;
1346 }
1347 
1348 /* Channel lock MUST be held by the calling function! */
1349 static void neo_send_break(struct jsm_channel *ch)
1350 {
1351 	/*
1352 	 * Set the time we should stop sending the break.
1353 	 * If we are already sending a break, toss away the existing
1354 	 * time to stop, and use this new value instead.
1355 	 */
1356 
1357 	/* Tell the UART to start sending the break */
1358 	if (!(ch->ch_flags & CH_BREAK_SENDING)) {
1359 		u8 temp = readb(&ch->ch_neo_uart->lcr);
1360 		writeb((temp | UART_LCR_SBC), &ch->ch_neo_uart->lcr);
1361 		ch->ch_flags |= (CH_BREAK_SENDING);
1362 
1363 		/* flush write operation */
1364 		neo_pci_posting_flush(ch->ch_bd);
1365 	}
1366 }
1367 
1368 /*
1369  * neo_send_immediate_char.
1370  *
1371  * Sends a specific character as soon as possible to the UART,
1372  * jumping over any bytes that might be in the write queue.
1373  *
1374  * The channel lock MUST be held by the calling function.
1375  */
1376 static void neo_send_immediate_char(struct jsm_channel *ch, unsigned char c)
1377 {
1378 	if (!ch)
1379 		return;
1380 
1381 	writeb(c, &ch->ch_neo_uart->txrx);
1382 
1383 	/* flush write operation */
1384 	neo_pci_posting_flush(ch->ch_bd);
1385 }
1386 
1387 struct board_ops jsm_neo_ops = {
1388 	.intr				= neo_intr,
1389 	.uart_init			= neo_uart_init,
1390 	.uart_off			= neo_uart_off,
1391 	.param				= neo_param,
1392 	.assert_modem_signals		= neo_assert_modem_signals,
1393 	.flush_uart_write		= neo_flush_uart_write,
1394 	.flush_uart_read		= neo_flush_uart_read,
1395 	.disable_receiver		= neo_disable_receiver,
1396 	.enable_receiver		= neo_enable_receiver,
1397 	.send_break			= neo_send_break,
1398 	.clear_break			= neo_clear_break,
1399 	.send_start_character		= neo_send_start_character,
1400 	.send_stop_character		= neo_send_stop_character,
1401 	.copy_data_from_queue_to_uart	= neo_copy_data_from_queue_to_uart,
1402 	.get_uart_bytes_left		= neo_get_uart_bytes_left,
1403 	.send_immediate_char		= neo_send_immediate_char
1404 };
1405