xref: /openbmc/linux/drivers/tty/serial/jsm/jsm_neo.c (revision 7fe2f639)
1 /************************************************************************
2  * Copyright 2003 Digi International (www.digi.com)
3  *
4  * Copyright (C) 2004 IBM Corporation. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2, or (at your option)
9  * any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED; without even the
13  * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
14  * PURPOSE.  See the GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 * Temple Place - Suite 330, Boston,
19  * MA  02111-1307, USA.
20  *
21  * Contact Information:
22  * Scott H Kilau <Scott_Kilau@digi.com>
23  * Wendy Xiong   <wendyx@us.ibm.com>
24  *
25  ***********************************************************************/
26 #include <linux/delay.h>	/* For udelay */
27 #include <linux/serial_reg.h>	/* For the various UART offsets */
28 #include <linux/tty.h>
29 #include <linux/pci.h>
30 #include <asm/io.h>
31 
32 #include "jsm.h"		/* Driver main header file */
33 
34 static u32 jsm_offset_table[8] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 };
35 
36 /*
37  * This function allows calls to ensure that all outstanding
38  * PCI writes have been completed, by doing a PCI read against
39  * a non-destructive, read-only location on the Neo card.
40  *
41  * In this case, we are reading the DVID (Read-only Device Identification)
42  * value of the Neo card.
43  */
44 static inline void neo_pci_posting_flush(struct jsm_board *bd)
45 {
46       readb(bd->re_map_membase + 0x8D);
47 }
48 
49 static void neo_set_cts_flow_control(struct jsm_channel *ch)
50 {
51 	u8 ier, efr;
52 	ier = readb(&ch->ch_neo_uart->ier);
53 	efr = readb(&ch->ch_neo_uart->efr);
54 
55 	jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting CTSFLOW\n");
56 
57 	/* Turn on auto CTS flow control */
58 	ier |= (UART_17158_IER_CTSDSR);
59 	efr |= (UART_17158_EFR_ECB | UART_17158_EFR_CTSDSR);
60 
61 	/* Turn off auto Xon flow control */
62 	efr &= ~(UART_17158_EFR_IXON);
63 
64 	/* Why? Becuz Exar's spec says we have to zero it out before setting it */
65 	writeb(0, &ch->ch_neo_uart->efr);
66 
67 	/* Turn on UART enhanced bits */
68 	writeb(efr, &ch->ch_neo_uart->efr);
69 
70 	/* Turn on table D, with 8 char hi/low watermarks */
71 	writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY), &ch->ch_neo_uart->fctr);
72 
73 	/* Feed the UART our trigger levels */
74 	writeb(8, &ch->ch_neo_uart->tfifo);
75 	ch->ch_t_tlevel = 8;
76 
77 	writeb(ier, &ch->ch_neo_uart->ier);
78 }
79 
80 static void neo_set_rts_flow_control(struct jsm_channel *ch)
81 {
82 	u8 ier, efr;
83 	ier = readb(&ch->ch_neo_uart->ier);
84 	efr = readb(&ch->ch_neo_uart->efr);
85 
86 	jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting RTSFLOW\n");
87 
88 	/* Turn on auto RTS flow control */
89 	ier |= (UART_17158_IER_RTSDTR);
90 	efr |= (UART_17158_EFR_ECB | UART_17158_EFR_RTSDTR);
91 
92 	/* Turn off auto Xoff flow control */
93 	ier &= ~(UART_17158_IER_XOFF);
94 	efr &= ~(UART_17158_EFR_IXOFF);
95 
96 	/* Why? Becuz Exar's spec says we have to zero it out before setting it */
97 	writeb(0, &ch->ch_neo_uart->efr);
98 
99 	/* Turn on UART enhanced bits */
100 	writeb(efr, &ch->ch_neo_uart->efr);
101 
102 	writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY), &ch->ch_neo_uart->fctr);
103 	ch->ch_r_watermark = 4;
104 
105 	writeb(56, &ch->ch_neo_uart->rfifo);
106 	ch->ch_r_tlevel = 56;
107 
108 	writeb(ier, &ch->ch_neo_uart->ier);
109 
110 	/*
111 	 * From the Neo UART spec sheet:
112 	 * The auto RTS/DTR function must be started by asserting
113 	 * RTS/DTR# output pin (MCR bit-0 or 1 to logic 1 after
114 	 * it is enabled.
115 	 */
116 	ch->ch_mostat |= (UART_MCR_RTS);
117 }
118 
119 
120 static void neo_set_ixon_flow_control(struct jsm_channel *ch)
121 {
122 	u8 ier, efr;
123 	ier = readb(&ch->ch_neo_uart->ier);
124 	efr = readb(&ch->ch_neo_uart->efr);
125 
126 	jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting IXON FLOW\n");
127 
128 	/* Turn off auto CTS flow control */
129 	ier &= ~(UART_17158_IER_CTSDSR);
130 	efr &= ~(UART_17158_EFR_CTSDSR);
131 
132 	/* Turn on auto Xon flow control */
133 	efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXON);
134 
135 	/* Why? Becuz Exar's spec says we have to zero it out before setting it */
136 	writeb(0, &ch->ch_neo_uart->efr);
137 
138 	/* Turn on UART enhanced bits */
139 	writeb(efr, &ch->ch_neo_uart->efr);
140 
141 	writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
142 	ch->ch_r_watermark = 4;
143 
144 	writeb(32, &ch->ch_neo_uart->rfifo);
145 	ch->ch_r_tlevel = 32;
146 
147 	/* Tell UART what start/stop chars it should be looking for */
148 	writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
149 	writeb(0, &ch->ch_neo_uart->xonchar2);
150 
151 	writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
152 	writeb(0, &ch->ch_neo_uart->xoffchar2);
153 
154 	writeb(ier, &ch->ch_neo_uart->ier);
155 }
156 
157 static void neo_set_ixoff_flow_control(struct jsm_channel *ch)
158 {
159 	u8 ier, efr;
160 	ier = readb(&ch->ch_neo_uart->ier);
161 	efr = readb(&ch->ch_neo_uart->efr);
162 
163 	jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting IXOFF FLOW\n");
164 
165 	/* Turn off auto RTS flow control */
166 	ier &= ~(UART_17158_IER_RTSDTR);
167 	efr &= ~(UART_17158_EFR_RTSDTR);
168 
169 	/* Turn on auto Xoff flow control */
170 	ier |= (UART_17158_IER_XOFF);
171 	efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXOFF);
172 
173 	/* Why? Becuz Exar's spec says we have to zero it out before setting it */
174 	writeb(0, &ch->ch_neo_uart->efr);
175 
176 	/* Turn on UART enhanced bits */
177 	writeb(efr, &ch->ch_neo_uart->efr);
178 
179 	/* Turn on table D, with 8 char hi/low watermarks */
180 	writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
181 
182 	writeb(8, &ch->ch_neo_uart->tfifo);
183 	ch->ch_t_tlevel = 8;
184 
185 	/* Tell UART what start/stop chars it should be looking for */
186 	writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
187 	writeb(0, &ch->ch_neo_uart->xonchar2);
188 
189 	writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
190 	writeb(0, &ch->ch_neo_uart->xoffchar2);
191 
192 	writeb(ier, &ch->ch_neo_uart->ier);
193 }
194 
195 static void neo_set_no_input_flow_control(struct jsm_channel *ch)
196 {
197 	u8 ier, efr;
198 	ier = readb(&ch->ch_neo_uart->ier);
199 	efr = readb(&ch->ch_neo_uart->efr);
200 
201 	jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Unsetting Input FLOW\n");
202 
203 	/* Turn off auto RTS flow control */
204 	ier &= ~(UART_17158_IER_RTSDTR);
205 	efr &= ~(UART_17158_EFR_RTSDTR);
206 
207 	/* Turn off auto Xoff flow control */
208 	ier &= ~(UART_17158_IER_XOFF);
209 	if (ch->ch_c_iflag & IXON)
210 		efr &= ~(UART_17158_EFR_IXOFF);
211 	else
212 		efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXOFF);
213 
214 	/* Why? Becuz Exar's spec says we have to zero it out before setting it */
215 	writeb(0, &ch->ch_neo_uart->efr);
216 
217 	/* Turn on UART enhanced bits */
218 	writeb(efr, &ch->ch_neo_uart->efr);
219 
220 	/* Turn on table D, with 8 char hi/low watermarks */
221 	writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
222 
223 	ch->ch_r_watermark = 0;
224 
225 	writeb(16, &ch->ch_neo_uart->tfifo);
226 	ch->ch_t_tlevel = 16;
227 
228 	writeb(16, &ch->ch_neo_uart->rfifo);
229 	ch->ch_r_tlevel = 16;
230 
231 	writeb(ier, &ch->ch_neo_uart->ier);
232 }
233 
234 static void neo_set_no_output_flow_control(struct jsm_channel *ch)
235 {
236 	u8 ier, efr;
237 	ier = readb(&ch->ch_neo_uart->ier);
238 	efr = readb(&ch->ch_neo_uart->efr);
239 
240 	jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Unsetting Output FLOW\n");
241 
242 	/* Turn off auto CTS flow control */
243 	ier &= ~(UART_17158_IER_CTSDSR);
244 	efr &= ~(UART_17158_EFR_CTSDSR);
245 
246 	/* Turn off auto Xon flow control */
247 	if (ch->ch_c_iflag & IXOFF)
248 		efr &= ~(UART_17158_EFR_IXON);
249 	else
250 		efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXON);
251 
252 	/* Why? Becuz Exar's spec says we have to zero it out before setting it */
253 	writeb(0, &ch->ch_neo_uart->efr);
254 
255 	/* Turn on UART enhanced bits */
256 	writeb(efr, &ch->ch_neo_uart->efr);
257 
258 	/* Turn on table D, with 8 char hi/low watermarks */
259 	writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
260 
261 	ch->ch_r_watermark = 0;
262 
263 	writeb(16, &ch->ch_neo_uart->tfifo);
264 	ch->ch_t_tlevel = 16;
265 
266 	writeb(16, &ch->ch_neo_uart->rfifo);
267 	ch->ch_r_tlevel = 16;
268 
269 	writeb(ier, &ch->ch_neo_uart->ier);
270 }
271 
272 static inline void neo_set_new_start_stop_chars(struct jsm_channel *ch)
273 {
274 
275 	/* if hardware flow control is set, then skip this whole thing */
276 	if (ch->ch_c_cflag & CRTSCTS)
277 		return;
278 
279 	jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "start\n");
280 
281 	/* Tell UART what start/stop chars it should be looking for */
282 	writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
283 	writeb(0, &ch->ch_neo_uart->xonchar2);
284 
285 	writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
286 	writeb(0, &ch->ch_neo_uart->xoffchar2);
287 }
288 
289 static void neo_copy_data_from_uart_to_queue(struct jsm_channel *ch)
290 {
291 	int qleft = 0;
292 	u8 linestatus = 0;
293 	u8 error_mask = 0;
294 	int n = 0;
295 	int total = 0;
296 	u16 head;
297 	u16 tail;
298 
299 	if (!ch)
300 		return;
301 
302 	/* cache head and tail of queue */
303 	head = ch->ch_r_head & RQUEUEMASK;
304 	tail = ch->ch_r_tail & RQUEUEMASK;
305 
306 	/* Get our cached LSR */
307 	linestatus = ch->ch_cached_lsr;
308 	ch->ch_cached_lsr = 0;
309 
310 	/* Store how much space we have left in the queue */
311 	if ((qleft = tail - head - 1) < 0)
312 		qleft += RQUEUEMASK + 1;
313 
314 	/*
315 	 * If the UART is not in FIFO mode, force the FIFO copy to
316 	 * NOT be run, by setting total to 0.
317 	 *
318 	 * On the other hand, if the UART IS in FIFO mode, then ask
319 	 * the UART to give us an approximation of data it has RX'ed.
320 	 */
321 	if (!(ch->ch_flags & CH_FIFO_ENABLED))
322 		total = 0;
323 	else {
324 		total = readb(&ch->ch_neo_uart->rfifo);
325 
326 		/*
327 		 * EXAR chip bug - RX FIFO COUNT - Fudge factor.
328 		 *
329 		 * This resolves a problem/bug with the Exar chip that sometimes
330 		 * returns a bogus value in the rfifo register.
331 		 * The count can be any where from 0-3 bytes "off".
332 		 * Bizarre, but true.
333 		 */
334 		total -= 3;
335 	}
336 
337 	/*
338 	 * Finally, bound the copy to make sure we don't overflow
339 	 * our own queue...
340 	 * The byte by byte copy loop below this loop this will
341 	 * deal with the queue overflow possibility.
342 	 */
343 	total = min(total, qleft);
344 
345 	while (total > 0) {
346 		/*
347 		 * Grab the linestatus register, we need to check
348 		 * to see if there are any errors in the FIFO.
349 		 */
350 		linestatus = readb(&ch->ch_neo_uart->lsr);
351 
352 		/*
353 		 * Break out if there is a FIFO error somewhere.
354 		 * This will allow us to go byte by byte down below,
355 		 * finding the exact location of the error.
356 		 */
357 		if (linestatus & UART_17158_RX_FIFO_DATA_ERROR)
358 			break;
359 
360 		/* Make sure we don't go over the end of our queue */
361 		n = min(((u32) total), (RQUEUESIZE - (u32) head));
362 
363 		/*
364 		 * Cut down n even further if needed, this is to fix
365 		 * a problem with memcpy_fromio() with the Neo on the
366 		 * IBM pSeries platform.
367 		 * 15 bytes max appears to be the magic number.
368 		 */
369 		n = min((u32) n, (u32) 12);
370 
371 		/*
372 		 * Since we are grabbing the linestatus register, which
373 		 * will reset some bits after our read, we need to ensure
374 		 * we don't miss our TX FIFO emptys.
375 		 */
376 		if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR))
377 			ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
378 
379 		linestatus = 0;
380 
381 		/* Copy data from uart to the queue */
382 		memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, n);
383 		/*
384 		 * Since RX_FIFO_DATA_ERROR was 0, we are guaranteed
385 		 * that all the data currently in the FIFO is free of
386 		 * breaks and parity/frame/orun errors.
387 		 */
388 		memset(ch->ch_equeue + head, 0, n);
389 
390 		/* Add to and flip head if needed */
391 		head = (head + n) & RQUEUEMASK;
392 		total -= n;
393 		qleft -= n;
394 		ch->ch_rxcount += n;
395 	}
396 
397 	/*
398 	 * Create a mask to determine whether we should
399 	 * insert the character (if any) into our queue.
400 	 */
401 	if (ch->ch_c_iflag & IGNBRK)
402 		error_mask |= UART_LSR_BI;
403 
404 	/*
405 	 * Now cleanup any leftover bytes still in the UART.
406 	 * Also deal with any possible queue overflow here as well.
407 	 */
408 	while (1) {
409 
410 		/*
411 		 * Its possible we have a linestatus from the loop above
412 		 * this, so we "OR" on any extra bits.
413 		 */
414 		linestatus |= readb(&ch->ch_neo_uart->lsr);
415 
416 		/*
417 		 * If the chip tells us there is no more data pending to
418 		 * be read, we can then leave.
419 		 * But before we do, cache the linestatus, just in case.
420 		 */
421 		if (!(linestatus & UART_LSR_DR)) {
422 			ch->ch_cached_lsr = linestatus;
423 			break;
424 		}
425 
426 		/* No need to store this bit */
427 		linestatus &= ~UART_LSR_DR;
428 
429 		/*
430 		 * Since we are grabbing the linestatus register, which
431 		 * will reset some bits after our read, we need to ensure
432 		 * we don't miss our TX FIFO emptys.
433 		 */
434 		if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR)) {
435 			linestatus &= ~(UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR);
436 			ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
437 		}
438 
439 		/*
440 		 * Discard character if we are ignoring the error mask.
441 		 */
442 		if (linestatus & error_mask) {
443 			u8 discard;
444 			linestatus = 0;
445 			memcpy_fromio(&discard, &ch->ch_neo_uart->txrxburst, 1);
446 			continue;
447 		}
448 
449 		/*
450 		 * If our queue is full, we have no choice but to drop some data.
451 		 * The assumption is that HWFLOW or SWFLOW should have stopped
452 		 * things way way before we got to this point.
453 		 *
454 		 * I decided that I wanted to ditch the oldest data first,
455 		 * I hope thats okay with everyone? Yes? Good.
456 		 */
457 		while (qleft < 1) {
458 			jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
459 				"Queue full, dropping DATA:%x LSR:%x\n",
460 				ch->ch_rqueue[tail], ch->ch_equeue[tail]);
461 
462 			ch->ch_r_tail = tail = (tail + 1) & RQUEUEMASK;
463 			ch->ch_err_overrun++;
464 			qleft++;
465 		}
466 
467 		memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, 1);
468 		ch->ch_equeue[head] = (u8) linestatus;
469 
470 		jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
471 				"DATA/LSR pair: %x %x\n", ch->ch_rqueue[head], ch->ch_equeue[head]);
472 
473 		/* Ditch any remaining linestatus value. */
474 		linestatus = 0;
475 
476 		/* Add to and flip head if needed */
477 		head = (head + 1) & RQUEUEMASK;
478 
479 		qleft--;
480 		ch->ch_rxcount++;
481 	}
482 
483 	/*
484 	 * Write new final heads to channel structure.
485 	 */
486 	ch->ch_r_head = head & RQUEUEMASK;
487 	ch->ch_e_head = head & EQUEUEMASK;
488 	jsm_input(ch);
489 }
490 
491 static void neo_copy_data_from_queue_to_uart(struct jsm_channel *ch)
492 {
493 	u16 head;
494 	u16 tail;
495 	int n;
496 	int s;
497 	int qlen;
498 	u32 len_written = 0;
499 
500 	if (!ch)
501 		return;
502 
503 	/* No data to write to the UART */
504 	if (ch->ch_w_tail == ch->ch_w_head)
505 		return;
506 
507 	/* If port is "stopped", don't send any data to the UART */
508 	if ((ch->ch_flags & CH_STOP) || (ch->ch_flags & CH_BREAK_SENDING))
509 		return;
510 	/*
511 	 * If FIFOs are disabled. Send data directly to txrx register
512 	 */
513 	if (!(ch->ch_flags & CH_FIFO_ENABLED)) {
514 		u8 lsrbits = readb(&ch->ch_neo_uart->lsr);
515 
516 		ch->ch_cached_lsr |= lsrbits;
517 		if (ch->ch_cached_lsr & UART_LSR_THRE) {
518 			ch->ch_cached_lsr &= ~(UART_LSR_THRE);
519 
520 			writeb(ch->ch_wqueue[ch->ch_w_tail], &ch->ch_neo_uart->txrx);
521 			jsm_printk(WRITE, INFO, &ch->ch_bd->pci_dev,
522 					"Tx data: %x\n", ch->ch_wqueue[ch->ch_w_head]);
523 			ch->ch_w_tail++;
524 			ch->ch_w_tail &= WQUEUEMASK;
525 			ch->ch_txcount++;
526 		}
527 		return;
528 	}
529 
530 	/*
531 	 * We have to do it this way, because of the EXAR TXFIFO count bug.
532 	 */
533 	if (!(ch->ch_flags & (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM)))
534 		return;
535 
536 	n = UART_17158_TX_FIFOSIZE - ch->ch_t_tlevel;
537 
538 	/* cache head and tail of queue */
539 	head = ch->ch_w_head & WQUEUEMASK;
540 	tail = ch->ch_w_tail & WQUEUEMASK;
541 	qlen = (head - tail) & WQUEUEMASK;
542 
543 	/* Find minimum of the FIFO space, versus queue length */
544 	n = min(n, qlen);
545 
546 	while (n > 0) {
547 
548 		s = ((head >= tail) ? head : WQUEUESIZE) - tail;
549 		s = min(s, n);
550 
551 		if (s <= 0)
552 			break;
553 
554 		memcpy_toio(&ch->ch_neo_uart->txrxburst, ch->ch_wqueue + tail, s);
555 		/* Add and flip queue if needed */
556 		tail = (tail + s) & WQUEUEMASK;
557 		n -= s;
558 		ch->ch_txcount += s;
559 		len_written += s;
560 	}
561 
562 	/* Update the final tail */
563 	ch->ch_w_tail = tail & WQUEUEMASK;
564 
565 	if (len_written >= ch->ch_t_tlevel)
566 		ch->ch_flags &= ~(CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
567 
568 	if (!jsm_tty_write(&ch->uart_port))
569 		uart_write_wakeup(&ch->uart_port);
570 }
571 
572 static void neo_parse_modem(struct jsm_channel *ch, u8 signals)
573 {
574 	u8 msignals = signals;
575 
576 	jsm_printk(MSIGS, INFO, &ch->ch_bd->pci_dev,
577 			"neo_parse_modem: port: %d msignals: %x\n", ch->ch_portnum, msignals);
578 
579 	/* Scrub off lower bits. They signify delta's, which I don't care about */
580 	/* Keep DDCD and DDSR though */
581 	msignals &= 0xf8;
582 
583 	if (msignals & UART_MSR_DDCD)
584 		uart_handle_dcd_change(&ch->uart_port, msignals & UART_MSR_DCD);
585 	if (msignals & UART_MSR_DDSR)
586 		uart_handle_cts_change(&ch->uart_port, msignals & UART_MSR_CTS);
587 	if (msignals & UART_MSR_DCD)
588 		ch->ch_mistat |= UART_MSR_DCD;
589 	else
590 		ch->ch_mistat &= ~UART_MSR_DCD;
591 
592 	if (msignals & UART_MSR_DSR)
593 		ch->ch_mistat |= UART_MSR_DSR;
594 	else
595 		ch->ch_mistat &= ~UART_MSR_DSR;
596 
597 	if (msignals & UART_MSR_RI)
598 		ch->ch_mistat |= UART_MSR_RI;
599 	else
600 		ch->ch_mistat &= ~UART_MSR_RI;
601 
602 	if (msignals & UART_MSR_CTS)
603 		ch->ch_mistat |= UART_MSR_CTS;
604 	else
605 		ch->ch_mistat &= ~UART_MSR_CTS;
606 
607 	jsm_printk(MSIGS, INFO, &ch->ch_bd->pci_dev,
608 			"Port: %d DTR: %d RTS: %d CTS: %d DSR: %d " "RI: %d CD: %d\n",
609 		ch->ch_portnum,
610 		!!((ch->ch_mistat | ch->ch_mostat) & UART_MCR_DTR),
611 		!!((ch->ch_mistat | ch->ch_mostat) & UART_MCR_RTS),
612 		!!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_CTS),
613 		!!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_DSR),
614 		!!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_RI),
615 		!!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_DCD));
616 }
617 
618 /* Make the UART raise any of the output signals we want up */
619 static void neo_assert_modem_signals(struct jsm_channel *ch)
620 {
621 	if (!ch)
622 		return;
623 
624 	writeb(ch->ch_mostat, &ch->ch_neo_uart->mcr);
625 
626 	/* flush write operation */
627 	neo_pci_posting_flush(ch->ch_bd);
628 }
629 
630 /*
631  * Flush the WRITE FIFO on the Neo.
632  *
633  * NOTE: Channel lock MUST be held before calling this function!
634  */
635 static void neo_flush_uart_write(struct jsm_channel *ch)
636 {
637 	u8 tmp = 0;
638 	int i = 0;
639 
640 	if (!ch)
641 		return;
642 
643 	writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr);
644 
645 	for (i = 0; i < 10; i++) {
646 
647 		/* Check to see if the UART feels it completely flushed the FIFO. */
648 		tmp = readb(&ch->ch_neo_uart->isr_fcr);
649 		if (tmp & 4) {
650 			jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev,
651 					"Still flushing TX UART... i: %d\n", i);
652 			udelay(10);
653 		}
654 		else
655 			break;
656 	}
657 
658 	ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
659 }
660 
661 
662 /*
663  * Flush the READ FIFO on the Neo.
664  *
665  * NOTE: Channel lock MUST be held before calling this function!
666  */
667 static void neo_flush_uart_read(struct jsm_channel *ch)
668 {
669 	u8 tmp = 0;
670 	int i = 0;
671 
672 	if (!ch)
673 		return;
674 
675 	writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_RCVR), &ch->ch_neo_uart->isr_fcr);
676 
677 	for (i = 0; i < 10; i++) {
678 
679 		/* Check to see if the UART feels it completely flushed the FIFO. */
680 		tmp = readb(&ch->ch_neo_uart->isr_fcr);
681 		if (tmp & 2) {
682 			jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev,
683 					"Still flushing RX UART... i: %d\n", i);
684 			udelay(10);
685 		}
686 		else
687 			break;
688 	}
689 }
690 
691 /*
692  * No locks are assumed to be held when calling this function.
693  */
694 static void neo_clear_break(struct jsm_channel *ch, int force)
695 {
696 	unsigned long lock_flags;
697 
698 	spin_lock_irqsave(&ch->ch_lock, lock_flags);
699 
700 	/* Turn break off, and unset some variables */
701 	if (ch->ch_flags & CH_BREAK_SENDING) {
702 		u8 temp = readb(&ch->ch_neo_uart->lcr);
703 		writeb((temp & ~UART_LCR_SBC), &ch->ch_neo_uart->lcr);
704 
705 		ch->ch_flags &= ~(CH_BREAK_SENDING);
706 		jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev,
707 				"clear break Finishing UART_LCR_SBC! finished: %lx\n", jiffies);
708 
709 		/* flush write operation */
710 		neo_pci_posting_flush(ch->ch_bd);
711 	}
712 	spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
713 }
714 
715 /*
716  * Parse the ISR register.
717  */
718 static inline void neo_parse_isr(struct jsm_board *brd, u32 port)
719 {
720 	struct jsm_channel *ch;
721 	u8 isr;
722 	u8 cause;
723 	unsigned long lock_flags;
724 
725 	if (!brd)
726 		return;
727 
728 	if (port > brd->maxports)
729 		return;
730 
731 	ch = brd->channels[port];
732 	if (!ch)
733 		return;
734 
735 	/* Here we try to figure out what caused the interrupt to happen */
736 	while (1) {
737 
738 		isr = readb(&ch->ch_neo_uart->isr_fcr);
739 
740 		/* Bail if no pending interrupt */
741 		if (isr & UART_IIR_NO_INT)
742 			break;
743 
744 		/*
745 		 * Yank off the upper 2 bits, which just show that the FIFO's are enabled.
746 		 */
747 		isr &= ~(UART_17158_IIR_FIFO_ENABLED);
748 
749 		jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
750 				"%s:%d isr: %x\n", __FILE__, __LINE__, isr);
751 
752 		if (isr & (UART_17158_IIR_RDI_TIMEOUT | UART_IIR_RDI)) {
753 			/* Read data from uart -> queue */
754 			neo_copy_data_from_uart_to_queue(ch);
755 
756 			/* Call our tty layer to enforce queue flow control if needed. */
757 			spin_lock_irqsave(&ch->ch_lock, lock_flags);
758 			jsm_check_queue_flow_control(ch);
759 			spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
760 		}
761 
762 		if (isr & UART_IIR_THRI) {
763 			/* Transfer data (if any) from Write Queue -> UART. */
764 			spin_lock_irqsave(&ch->ch_lock, lock_flags);
765 			ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
766 			spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
767 			neo_copy_data_from_queue_to_uart(ch);
768 		}
769 
770 		if (isr & UART_17158_IIR_XONXOFF) {
771 			cause = readb(&ch->ch_neo_uart->xoffchar1);
772 
773 			jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
774 					"Port %d. Got ISR_XONXOFF: cause:%x\n", port, cause);
775 
776 			/*
777 			 * Since the UART detected either an XON or
778 			 * XOFF match, we need to figure out which
779 			 * one it was, so we can suspend or resume data flow.
780 			 */
781 			spin_lock_irqsave(&ch->ch_lock, lock_flags);
782 			if (cause == UART_17158_XON_DETECT) {
783 				/* Is output stopped right now, if so, resume it */
784 				if (brd->channels[port]->ch_flags & CH_STOP) {
785 					ch->ch_flags &= ~(CH_STOP);
786 				}
787 				jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
788 						"Port %d. XON detected in incoming data\n", port);
789 			}
790 			else if (cause == UART_17158_XOFF_DETECT) {
791 				if (!(brd->channels[port]->ch_flags & CH_STOP)) {
792 					ch->ch_flags |= CH_STOP;
793 					jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
794 							"Setting CH_STOP\n");
795 				}
796 				jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
797 						"Port: %d. XOFF detected in incoming data\n", port);
798 			}
799 			spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
800 		}
801 
802 		if (isr & UART_17158_IIR_HWFLOW_STATE_CHANGE) {
803 			/*
804 			 * If we get here, this means the hardware is doing auto flow control.
805 			 * Check to see whether RTS/DTR or CTS/DSR caused this interrupt.
806 			 */
807 			cause = readb(&ch->ch_neo_uart->mcr);
808 
809 			/* Which pin is doing auto flow? RTS or DTR? */
810 			spin_lock_irqsave(&ch->ch_lock, lock_flags);
811 			if ((cause & 0x4) == 0) {
812 				if (cause & UART_MCR_RTS)
813 					ch->ch_mostat |= UART_MCR_RTS;
814 				else
815 					ch->ch_mostat &= ~(UART_MCR_RTS);
816 			} else {
817 				if (cause & UART_MCR_DTR)
818 					ch->ch_mostat |= UART_MCR_DTR;
819 				else
820 					ch->ch_mostat &= ~(UART_MCR_DTR);
821 			}
822 			spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
823 		}
824 
825 		/* Parse any modem signal changes */
826 		jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
827 				"MOD_STAT: sending to parse_modem_sigs\n");
828 		neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr));
829 	}
830 }
831 
832 static inline void neo_parse_lsr(struct jsm_board *brd, u32 port)
833 {
834 	struct jsm_channel *ch;
835 	int linestatus;
836 	unsigned long lock_flags;
837 
838 	if (!brd)
839 		return;
840 
841 	if (port > brd->maxports)
842 		return;
843 
844 	ch = brd->channels[port];
845 	if (!ch)
846 		return;
847 
848 	linestatus = readb(&ch->ch_neo_uart->lsr);
849 
850 	jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
851 			"%s:%d port: %d linestatus: %x\n", __FILE__, __LINE__, port, linestatus);
852 
853 	ch->ch_cached_lsr |= linestatus;
854 
855 	if (ch->ch_cached_lsr & UART_LSR_DR) {
856 		/* Read data from uart -> queue */
857 		neo_copy_data_from_uart_to_queue(ch);
858 		spin_lock_irqsave(&ch->ch_lock, lock_flags);
859 		jsm_check_queue_flow_control(ch);
860 		spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
861 	}
862 
863 	/*
864 	 * This is a special flag. It indicates that at least 1
865 	 * RX error (parity, framing, or break) has happened.
866 	 * Mark this in our struct, which will tell me that I have
867 	 *to do the special RX+LSR read for this FIFO load.
868 	 */
869 	if (linestatus & UART_17158_RX_FIFO_DATA_ERROR)
870 		jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
871 			"%s:%d Port: %d Got an RX error, need to parse LSR\n",
872 			__FILE__, __LINE__, port);
873 
874 	/*
875 	 * The next 3 tests should *NOT* happen, as the above test
876 	 * should encapsulate all 3... At least, thats what Exar says.
877 	 */
878 
879 	if (linestatus & UART_LSR_PE) {
880 		ch->ch_err_parity++;
881 		jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
882 			"%s:%d Port: %d. PAR ERR!\n", __FILE__, __LINE__, port);
883 	}
884 
885 	if (linestatus & UART_LSR_FE) {
886 		ch->ch_err_frame++;
887 		jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
888 			"%s:%d Port: %d. FRM ERR!\n", __FILE__, __LINE__, port);
889 	}
890 
891 	if (linestatus & UART_LSR_BI) {
892 		ch->ch_err_break++;
893 		jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
894 			"%s:%d Port: %d. BRK INTR!\n", __FILE__, __LINE__, port);
895 	}
896 
897 	if (linestatus & UART_LSR_OE) {
898 		/*
899 		 * Rx Oruns. Exar says that an orun will NOT corrupt
900 		 * the FIFO. It will just replace the holding register
901 		 * with this new data byte. So basically just ignore this.
902 		 * Probably we should eventually have an orun stat in our driver...
903 		 */
904 		ch->ch_err_overrun++;
905 		jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
906 			"%s:%d Port: %d. Rx Overrun!\n", __FILE__, __LINE__, port);
907 	}
908 
909 	if (linestatus & UART_LSR_THRE) {
910 		spin_lock_irqsave(&ch->ch_lock, lock_flags);
911 		ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
912 		spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
913 
914 		/* Transfer data (if any) from Write Queue -> UART. */
915 		neo_copy_data_from_queue_to_uart(ch);
916 	}
917 	else if (linestatus & UART_17158_TX_AND_FIFO_CLR) {
918 		spin_lock_irqsave(&ch->ch_lock, lock_flags);
919 		ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
920 		spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
921 
922 		/* Transfer data (if any) from Write Queue -> UART. */
923 		neo_copy_data_from_queue_to_uart(ch);
924 	}
925 }
926 
927 /*
928  * neo_param()
929  * Send any/all changes to the line to the UART.
930  */
931 static void neo_param(struct jsm_channel *ch)
932 {
933 	u8 lcr = 0;
934 	u8 uart_lcr, ier;
935 	u32 baud;
936 	int quot;
937 	struct jsm_board *bd;
938 
939 	bd = ch->ch_bd;
940 	if (!bd)
941 		return;
942 
943 	/*
944 	 * If baud rate is zero, flush queues, and set mval to drop DTR.
945 	 */
946 	if ((ch->ch_c_cflag & (CBAUD)) == 0) {
947 		ch->ch_r_head = ch->ch_r_tail = 0;
948 		ch->ch_e_head = ch->ch_e_tail = 0;
949 		ch->ch_w_head = ch->ch_w_tail = 0;
950 
951 		neo_flush_uart_write(ch);
952 		neo_flush_uart_read(ch);
953 
954 		ch->ch_flags |= (CH_BAUD0);
955 		ch->ch_mostat &= ~(UART_MCR_RTS | UART_MCR_DTR);
956 		neo_assert_modem_signals(ch);
957 		return;
958 
959 	} else {
960 		int i;
961 		unsigned int cflag;
962 		static struct {
963 			unsigned int rate;
964 			unsigned int cflag;
965 		} baud_rates[] = {
966 			{ 921600, B921600 },
967 			{ 460800, B460800 },
968 			{ 230400, B230400 },
969 			{ 115200, B115200 },
970 			{  57600, B57600  },
971 			{  38400, B38400  },
972 			{  19200, B19200  },
973 			{   9600, B9600   },
974 			{   4800, B4800   },
975 			{   2400, B2400   },
976 			{   1200, B1200   },
977 			{    600, B600    },
978 			{    300, B300    },
979 			{    200, B200    },
980 			{    150, B150    },
981 			{    134, B134    },
982 			{    110, B110    },
983 			{     75, B75     },
984 			{     50, B50     },
985 		};
986 
987 		cflag = C_BAUD(ch->uart_port.state->port.tty);
988 		baud = 9600;
989 		for (i = 0; i < ARRAY_SIZE(baud_rates); i++) {
990 			if (baud_rates[i].cflag == cflag) {
991 				baud = baud_rates[i].rate;
992 				break;
993 			}
994 		}
995 
996 		if (ch->ch_flags & CH_BAUD0)
997 			ch->ch_flags &= ~(CH_BAUD0);
998 	}
999 
1000 	if (ch->ch_c_cflag & PARENB)
1001 		lcr |= UART_LCR_PARITY;
1002 
1003 	if (!(ch->ch_c_cflag & PARODD))
1004 		lcr |= UART_LCR_EPAR;
1005 
1006 	/*
1007 	 * Not all platforms support mark/space parity,
1008 	 * so this will hide behind an ifdef.
1009 	 */
1010 #ifdef CMSPAR
1011 	if (ch->ch_c_cflag & CMSPAR)
1012 		lcr |= UART_LCR_SPAR;
1013 #endif
1014 
1015 	if (ch->ch_c_cflag & CSTOPB)
1016 		lcr |= UART_LCR_STOP;
1017 
1018 	switch (ch->ch_c_cflag & CSIZE) {
1019 		case CS5:
1020 			lcr |= UART_LCR_WLEN5;
1021 			break;
1022 		case CS6:
1023 			lcr |= UART_LCR_WLEN6;
1024 			break;
1025 		case CS7:
1026 			lcr |= UART_LCR_WLEN7;
1027 			break;
1028 		case CS8:
1029 		default:
1030 			lcr |= UART_LCR_WLEN8;
1031 		break;
1032 	}
1033 
1034 	ier = readb(&ch->ch_neo_uart->ier);
1035 	uart_lcr = readb(&ch->ch_neo_uart->lcr);
1036 
1037 	if (baud == 0)
1038 		baud = 9600;
1039 
1040 	quot = ch->ch_bd->bd_dividend / baud;
1041 
1042 	if (quot != 0) {
1043 		writeb(UART_LCR_DLAB, &ch->ch_neo_uart->lcr);
1044 		writeb((quot & 0xff), &ch->ch_neo_uart->txrx);
1045 		writeb((quot >> 8), &ch->ch_neo_uart->ier);
1046 		writeb(lcr, &ch->ch_neo_uart->lcr);
1047 	}
1048 
1049 	if (uart_lcr != lcr)
1050 		writeb(lcr, &ch->ch_neo_uart->lcr);
1051 
1052 	if (ch->ch_c_cflag & CREAD)
1053 		ier |= (UART_IER_RDI | UART_IER_RLSI);
1054 
1055 	ier |= (UART_IER_THRI | UART_IER_MSI);
1056 
1057 	writeb(ier, &ch->ch_neo_uart->ier);
1058 
1059 	/* Set new start/stop chars */
1060 	neo_set_new_start_stop_chars(ch);
1061 
1062 	if (ch->ch_c_cflag & CRTSCTS)
1063 		neo_set_cts_flow_control(ch);
1064 	else if (ch->ch_c_iflag & IXON) {
1065 		/* If start/stop is set to disable, then we should disable flow control */
1066 		if ((ch->ch_startc == __DISABLED_CHAR) || (ch->ch_stopc == __DISABLED_CHAR))
1067 			neo_set_no_output_flow_control(ch);
1068 		else
1069 			neo_set_ixon_flow_control(ch);
1070 	}
1071 	else
1072 		neo_set_no_output_flow_control(ch);
1073 
1074 	if (ch->ch_c_cflag & CRTSCTS)
1075 		neo_set_rts_flow_control(ch);
1076 	else if (ch->ch_c_iflag & IXOFF) {
1077 		/* If start/stop is set to disable, then we should disable flow control */
1078 		if ((ch->ch_startc == __DISABLED_CHAR) || (ch->ch_stopc == __DISABLED_CHAR))
1079 			neo_set_no_input_flow_control(ch);
1080 		else
1081 			neo_set_ixoff_flow_control(ch);
1082 	}
1083 	else
1084 		neo_set_no_input_flow_control(ch);
1085 	/*
1086 	 * Adjust the RX FIFO Trigger level if baud is less than 9600.
1087 	 * Not exactly elegant, but this is needed because of the Exar chip's
1088 	 * delay on firing off the RX FIFO interrupt on slower baud rates.
1089 	 */
1090 	if (baud < 9600) {
1091 		writeb(1, &ch->ch_neo_uart->rfifo);
1092 		ch->ch_r_tlevel = 1;
1093 	}
1094 
1095 	neo_assert_modem_signals(ch);
1096 
1097 	/* Get current status of the modem signals now */
1098 	neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr));
1099 	return;
1100 }
1101 
1102 /*
1103  * jsm_neo_intr()
1104  *
1105  * Neo specific interrupt handler.
1106  */
1107 static irqreturn_t neo_intr(int irq, void *voidbrd)
1108 {
1109 	struct jsm_board *brd = voidbrd;
1110 	struct jsm_channel *ch;
1111 	int port = 0;
1112 	int type = 0;
1113 	int current_port;
1114 	u32 tmp;
1115 	u32 uart_poll;
1116 	unsigned long lock_flags;
1117 	unsigned long lock_flags2;
1118 	int outofloop_count = 0;
1119 
1120 	/* Lock out the slow poller from running on this board. */
1121 	spin_lock_irqsave(&brd->bd_intr_lock, lock_flags);
1122 
1123 	/*
1124 	 * Read in "extended" IRQ information from the 32bit Neo register.
1125 	 * Bits 0-7: What port triggered the interrupt.
1126 	 * Bits 8-31: Each 3bits indicate what type of interrupt occurred.
1127 	 */
1128 	uart_poll = readl(brd->re_map_membase + UART_17158_POLL_ADDR_OFFSET);
1129 
1130 	jsm_printk(INTR, INFO, &brd->pci_dev,
1131 		"%s:%d uart_poll: %x\n", __FILE__, __LINE__, uart_poll);
1132 
1133 	if (!uart_poll) {
1134 		jsm_printk(INTR, INFO, &brd->pci_dev,
1135 			"Kernel interrupted to me, but no pending interrupts...\n");
1136 		spin_unlock_irqrestore(&brd->bd_intr_lock, lock_flags);
1137 		return IRQ_NONE;
1138 	}
1139 
1140 	/* At this point, we have at least SOMETHING to service, dig further... */
1141 
1142 	current_port = 0;
1143 
1144 	/* Loop on each port */
1145 	while (((uart_poll & 0xff) != 0) && (outofloop_count < 0xff)){
1146 
1147 		tmp = uart_poll;
1148 		outofloop_count++;
1149 
1150 		/* Check current port to see if it has interrupt pending */
1151 		if ((tmp & jsm_offset_table[current_port]) != 0) {
1152 			port = current_port;
1153 			type = tmp >> (8 + (port * 3));
1154 			type &= 0x7;
1155 		} else {
1156 			current_port++;
1157 			continue;
1158 		}
1159 
1160 		jsm_printk(INTR, INFO, &brd->pci_dev,
1161 		"%s:%d port: %x type: %x\n", __FILE__, __LINE__, port, type);
1162 
1163 		/* Remove this port + type from uart_poll */
1164 		uart_poll &= ~(jsm_offset_table[port]);
1165 
1166 		if (!type) {
1167 			/* If no type, just ignore it, and move onto next port */
1168 			jsm_printk(INTR, ERR, &brd->pci_dev,
1169 				"Interrupt with no type! port: %d\n", port);
1170 			continue;
1171 		}
1172 
1173 		/* Switch on type of interrupt we have */
1174 		switch (type) {
1175 
1176 		case UART_17158_RXRDY_TIMEOUT:
1177 			/*
1178 			 * RXRDY Time-out is cleared by reading data in the
1179 			* RX FIFO until it falls below the trigger level.
1180 			 */
1181 
1182 			/* Verify the port is in range. */
1183 			if (port > brd->nasync)
1184 				continue;
1185 
1186 			ch = brd->channels[port];
1187 			neo_copy_data_from_uart_to_queue(ch);
1188 
1189 			/* Call our tty layer to enforce queue flow control if needed. */
1190 			spin_lock_irqsave(&ch->ch_lock, lock_flags2);
1191 			jsm_check_queue_flow_control(ch);
1192 			spin_unlock_irqrestore(&ch->ch_lock, lock_flags2);
1193 
1194 			continue;
1195 
1196 		case UART_17158_RX_LINE_STATUS:
1197 			/*
1198 			 * RXRDY and RX LINE Status (logic OR of LSR[4:1])
1199 			 */
1200 			neo_parse_lsr(brd, port);
1201 			continue;
1202 
1203 		case UART_17158_TXRDY:
1204 			/*
1205 			 * TXRDY interrupt clears after reading ISR register for the UART channel.
1206 			 */
1207 
1208 			/*
1209 			 * Yes, this is odd...
1210 			 * Why would I check EVERY possibility of type of
1211 			 * interrupt, when we know its TXRDY???
1212 			 * Becuz for some reason, even tho we got triggered for TXRDY,
1213 			 * it seems to be occasionally wrong. Instead of TX, which
1214 			 * it should be, I was getting things like RXDY too. Weird.
1215 			 */
1216 			neo_parse_isr(brd, port);
1217 			continue;
1218 
1219 		case UART_17158_MSR:
1220 			/*
1221 			 * MSR or flow control was seen.
1222 			 */
1223 			neo_parse_isr(brd, port);
1224 			continue;
1225 
1226 		default:
1227 			/*
1228 			 * The UART triggered us with a bogus interrupt type.
1229 			 * It appears the Exar chip, when REALLY bogged down, will throw
1230 			 * these once and awhile.
1231 			 * Its harmless, just ignore it and move on.
1232 			 */
1233 			jsm_printk(INTR, ERR, &brd->pci_dev,
1234 				"%s:%d Unknown Interrupt type: %x\n", __FILE__, __LINE__, type);
1235 			continue;
1236 		}
1237 	}
1238 
1239 	spin_unlock_irqrestore(&brd->bd_intr_lock, lock_flags);
1240 
1241 	jsm_printk(INTR, INFO, &brd->pci_dev, "finish.\n");
1242 	return IRQ_HANDLED;
1243 }
1244 
1245 /*
1246  * Neo specific way of turning off the receiver.
1247  * Used as a way to enforce queue flow control when in
1248  * hardware flow control mode.
1249  */
1250 static void neo_disable_receiver(struct jsm_channel *ch)
1251 {
1252 	u8 tmp = readb(&ch->ch_neo_uart->ier);
1253 	tmp &= ~(UART_IER_RDI);
1254 	writeb(tmp, &ch->ch_neo_uart->ier);
1255 
1256 	/* flush write operation */
1257 	neo_pci_posting_flush(ch->ch_bd);
1258 }
1259 
1260 
1261 /*
1262  * Neo specific way of turning on the receiver.
1263  * Used as a way to un-enforce queue flow control when in
1264  * hardware flow control mode.
1265  */
1266 static void neo_enable_receiver(struct jsm_channel *ch)
1267 {
1268 	u8 tmp = readb(&ch->ch_neo_uart->ier);
1269 	tmp |= (UART_IER_RDI);
1270 	writeb(tmp, &ch->ch_neo_uart->ier);
1271 
1272 	/* flush write operation */
1273 	neo_pci_posting_flush(ch->ch_bd);
1274 }
1275 
1276 static void neo_send_start_character(struct jsm_channel *ch)
1277 {
1278 	if (!ch)
1279 		return;
1280 
1281 	if (ch->ch_startc != __DISABLED_CHAR) {
1282 		ch->ch_xon_sends++;
1283 		writeb(ch->ch_startc, &ch->ch_neo_uart->txrx);
1284 
1285 		/* flush write operation */
1286 		neo_pci_posting_flush(ch->ch_bd);
1287 	}
1288 }
1289 
1290 static void neo_send_stop_character(struct jsm_channel *ch)
1291 {
1292 	if (!ch)
1293 		return;
1294 
1295 	if (ch->ch_stopc != __DISABLED_CHAR) {
1296 		ch->ch_xoff_sends++;
1297 		writeb(ch->ch_stopc, &ch->ch_neo_uart->txrx);
1298 
1299 		/* flush write operation */
1300 		neo_pci_posting_flush(ch->ch_bd);
1301 	}
1302 }
1303 
1304 /*
1305  * neo_uart_init
1306  */
1307 static void neo_uart_init(struct jsm_channel *ch)
1308 {
1309 	writeb(0, &ch->ch_neo_uart->ier);
1310 	writeb(0, &ch->ch_neo_uart->efr);
1311 	writeb(UART_EFR_ECB, &ch->ch_neo_uart->efr);
1312 
1313 	/* Clear out UART and FIFO */
1314 	readb(&ch->ch_neo_uart->txrx);
1315 	writeb((UART_FCR_ENABLE_FIFO|UART_FCR_CLEAR_RCVR|UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr);
1316 	readb(&ch->ch_neo_uart->lsr);
1317 	readb(&ch->ch_neo_uart->msr);
1318 
1319 	ch->ch_flags |= CH_FIFO_ENABLED;
1320 
1321 	/* Assert any signals we want up */
1322 	writeb(ch->ch_mostat, &ch->ch_neo_uart->mcr);
1323 }
1324 
1325 /*
1326  * Make the UART completely turn off.
1327  */
1328 static void neo_uart_off(struct jsm_channel *ch)
1329 {
1330 	/* Turn off UART enhanced bits */
1331 	writeb(0, &ch->ch_neo_uart->efr);
1332 
1333 	/* Stop all interrupts from occurring. */
1334 	writeb(0, &ch->ch_neo_uart->ier);
1335 }
1336 
1337 static u32 neo_get_uart_bytes_left(struct jsm_channel *ch)
1338 {
1339 	u8 left = 0;
1340 	u8 lsr = readb(&ch->ch_neo_uart->lsr);
1341 
1342 	/* We must cache the LSR as some of the bits get reset once read... */
1343 	ch->ch_cached_lsr |= lsr;
1344 
1345 	/* Determine whether the Transmitter is empty or not */
1346 	if (!(lsr & UART_LSR_TEMT))
1347 		left = 1;
1348 	else {
1349 		ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
1350 		left = 0;
1351 	}
1352 
1353 	return left;
1354 }
1355 
1356 /* Channel lock MUST be held by the calling function! */
1357 static void neo_send_break(struct jsm_channel *ch)
1358 {
1359 	/*
1360 	 * Set the time we should stop sending the break.
1361 	 * If we are already sending a break, toss away the existing
1362 	 * time to stop, and use this new value instead.
1363 	 */
1364 
1365 	/* Tell the UART to start sending the break */
1366 	if (!(ch->ch_flags & CH_BREAK_SENDING)) {
1367 		u8 temp = readb(&ch->ch_neo_uart->lcr);
1368 		writeb((temp | UART_LCR_SBC), &ch->ch_neo_uart->lcr);
1369 		ch->ch_flags |= (CH_BREAK_SENDING);
1370 
1371 		/* flush write operation */
1372 		neo_pci_posting_flush(ch->ch_bd);
1373 	}
1374 }
1375 
1376 /*
1377  * neo_send_immediate_char.
1378  *
1379  * Sends a specific character as soon as possible to the UART,
1380  * jumping over any bytes that might be in the write queue.
1381  *
1382  * The channel lock MUST be held by the calling function.
1383  */
1384 static void neo_send_immediate_char(struct jsm_channel *ch, unsigned char c)
1385 {
1386 	if (!ch)
1387 		return;
1388 
1389 	writeb(c, &ch->ch_neo_uart->txrx);
1390 
1391 	/* flush write operation */
1392 	neo_pci_posting_flush(ch->ch_bd);
1393 }
1394 
1395 struct board_ops jsm_neo_ops = {
1396 	.intr				= neo_intr,
1397 	.uart_init			= neo_uart_init,
1398 	.uart_off			= neo_uart_off,
1399 	.param				= neo_param,
1400 	.assert_modem_signals		= neo_assert_modem_signals,
1401 	.flush_uart_write		= neo_flush_uart_write,
1402 	.flush_uart_read		= neo_flush_uart_read,
1403 	.disable_receiver		= neo_disable_receiver,
1404 	.enable_receiver		= neo_enable_receiver,
1405 	.send_break			= neo_send_break,
1406 	.clear_break			= neo_clear_break,
1407 	.send_start_character		= neo_send_start_character,
1408 	.send_stop_character		= neo_send_stop_character,
1409 	.copy_data_from_queue_to_uart	= neo_copy_data_from_queue_to_uart,
1410 	.get_uart_bytes_left		= neo_get_uart_bytes_left,
1411 	.send_immediate_char		= neo_send_immediate_char
1412 };
1413