1 // SPDX-License-Identifier: GPL-2.0+ 2 /************************************************************************ 3 * Copyright 2003 Digi International (www.digi.com) 4 * 5 * Copyright (C) 2004 IBM Corporation. All rights reserved. 6 * 7 * Contact Information: 8 * Scott H Kilau <Scott_Kilau@digi.com> 9 * Wendy Xiong <wendyx@us.ibm.com> 10 * 11 ***********************************************************************/ 12 #include <linux/delay.h> /* For udelay */ 13 #include <linux/serial_reg.h> /* For the various UART offsets */ 14 #include <linux/tty.h> 15 #include <linux/pci.h> 16 #include <asm/io.h> 17 18 #include "jsm.h" /* Driver main header file */ 19 20 static u32 jsm_offset_table[8] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 }; 21 22 /* 23 * This function allows calls to ensure that all outstanding 24 * PCI writes have been completed, by doing a PCI read against 25 * a non-destructive, read-only location on the Neo card. 26 * 27 * In this case, we are reading the DVID (Read-only Device Identification) 28 * value of the Neo card. 29 */ 30 static inline void neo_pci_posting_flush(struct jsm_board *bd) 31 { 32 readb(bd->re_map_membase + 0x8D); 33 } 34 35 static void neo_set_cts_flow_control(struct jsm_channel *ch) 36 { 37 u8 ier, efr; 38 ier = readb(&ch->ch_neo_uart->ier); 39 efr = readb(&ch->ch_neo_uart->efr); 40 41 jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "Setting CTSFLOW\n"); 42 43 /* Turn on auto CTS flow control */ 44 ier |= (UART_17158_IER_CTSDSR); 45 efr |= (UART_17158_EFR_ECB | UART_17158_EFR_CTSDSR); 46 47 /* Turn off auto Xon flow control */ 48 efr &= ~(UART_17158_EFR_IXON); 49 50 /* Why? Becuz Exar's spec says we have to zero it out before setting it */ 51 writeb(0, &ch->ch_neo_uart->efr); 52 53 /* Turn on UART enhanced bits */ 54 writeb(efr, &ch->ch_neo_uart->efr); 55 56 /* Turn on table D, with 8 char hi/low watermarks */ 57 writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY), &ch->ch_neo_uart->fctr); 58 59 /* Feed the UART our trigger levels */ 60 writeb(8, &ch->ch_neo_uart->tfifo); 61 ch->ch_t_tlevel = 8; 62 63 writeb(ier, &ch->ch_neo_uart->ier); 64 } 65 66 static void neo_set_rts_flow_control(struct jsm_channel *ch) 67 { 68 u8 ier, efr; 69 ier = readb(&ch->ch_neo_uart->ier); 70 efr = readb(&ch->ch_neo_uart->efr); 71 72 jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "Setting RTSFLOW\n"); 73 74 /* Turn on auto RTS flow control */ 75 ier |= (UART_17158_IER_RTSDTR); 76 efr |= (UART_17158_EFR_ECB | UART_17158_EFR_RTSDTR); 77 78 /* Turn off auto Xoff flow control */ 79 ier &= ~(UART_17158_IER_XOFF); 80 efr &= ~(UART_17158_EFR_IXOFF); 81 82 /* Why? Becuz Exar's spec says we have to zero it out before setting it */ 83 writeb(0, &ch->ch_neo_uart->efr); 84 85 /* Turn on UART enhanced bits */ 86 writeb(efr, &ch->ch_neo_uart->efr); 87 88 writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY), &ch->ch_neo_uart->fctr); 89 ch->ch_r_watermark = 4; 90 91 writeb(56, &ch->ch_neo_uart->rfifo); 92 ch->ch_r_tlevel = 56; 93 94 writeb(ier, &ch->ch_neo_uart->ier); 95 96 /* 97 * From the Neo UART spec sheet: 98 * The auto RTS/DTR function must be started by asserting 99 * RTS/DTR# output pin (MCR bit-0 or 1 to logic 1 after 100 * it is enabled. 101 */ 102 ch->ch_mostat |= (UART_MCR_RTS); 103 } 104 105 106 static void neo_set_ixon_flow_control(struct jsm_channel *ch) 107 { 108 u8 ier, efr; 109 ier = readb(&ch->ch_neo_uart->ier); 110 efr = readb(&ch->ch_neo_uart->efr); 111 112 jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "Setting IXON FLOW\n"); 113 114 /* Turn off auto CTS flow control */ 115 ier &= ~(UART_17158_IER_CTSDSR); 116 efr &= ~(UART_17158_EFR_CTSDSR); 117 118 /* Turn on auto Xon flow control */ 119 efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXON); 120 121 /* Why? Becuz Exar's spec says we have to zero it out before setting it */ 122 writeb(0, &ch->ch_neo_uart->efr); 123 124 /* Turn on UART enhanced bits */ 125 writeb(efr, &ch->ch_neo_uart->efr); 126 127 writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr); 128 ch->ch_r_watermark = 4; 129 130 writeb(32, &ch->ch_neo_uart->rfifo); 131 ch->ch_r_tlevel = 32; 132 133 /* Tell UART what start/stop chars it should be looking for */ 134 writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1); 135 writeb(0, &ch->ch_neo_uart->xonchar2); 136 137 writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1); 138 writeb(0, &ch->ch_neo_uart->xoffchar2); 139 140 writeb(ier, &ch->ch_neo_uart->ier); 141 } 142 143 static void neo_set_ixoff_flow_control(struct jsm_channel *ch) 144 { 145 u8 ier, efr; 146 ier = readb(&ch->ch_neo_uart->ier); 147 efr = readb(&ch->ch_neo_uart->efr); 148 149 jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "Setting IXOFF FLOW\n"); 150 151 /* Turn off auto RTS flow control */ 152 ier &= ~(UART_17158_IER_RTSDTR); 153 efr &= ~(UART_17158_EFR_RTSDTR); 154 155 /* Turn on auto Xoff flow control */ 156 ier |= (UART_17158_IER_XOFF); 157 efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXOFF); 158 159 /* Why? Becuz Exar's spec says we have to zero it out before setting it */ 160 writeb(0, &ch->ch_neo_uart->efr); 161 162 /* Turn on UART enhanced bits */ 163 writeb(efr, &ch->ch_neo_uart->efr); 164 165 /* Turn on table D, with 8 char hi/low watermarks */ 166 writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr); 167 168 writeb(8, &ch->ch_neo_uart->tfifo); 169 ch->ch_t_tlevel = 8; 170 171 /* Tell UART what start/stop chars it should be looking for */ 172 writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1); 173 writeb(0, &ch->ch_neo_uart->xonchar2); 174 175 writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1); 176 writeb(0, &ch->ch_neo_uart->xoffchar2); 177 178 writeb(ier, &ch->ch_neo_uart->ier); 179 } 180 181 static void neo_set_no_input_flow_control(struct jsm_channel *ch) 182 { 183 u8 ier, efr; 184 ier = readb(&ch->ch_neo_uart->ier); 185 efr = readb(&ch->ch_neo_uart->efr); 186 187 jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "Unsetting Input FLOW\n"); 188 189 /* Turn off auto RTS flow control */ 190 ier &= ~(UART_17158_IER_RTSDTR); 191 efr &= ~(UART_17158_EFR_RTSDTR); 192 193 /* Turn off auto Xoff flow control */ 194 ier &= ~(UART_17158_IER_XOFF); 195 if (ch->ch_c_iflag & IXON) 196 efr &= ~(UART_17158_EFR_IXOFF); 197 else 198 efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXOFF); 199 200 /* Why? Becuz Exar's spec says we have to zero it out before setting it */ 201 writeb(0, &ch->ch_neo_uart->efr); 202 203 /* Turn on UART enhanced bits */ 204 writeb(efr, &ch->ch_neo_uart->efr); 205 206 /* Turn on table D, with 8 char hi/low watermarks */ 207 writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr); 208 209 ch->ch_r_watermark = 0; 210 211 writeb(16, &ch->ch_neo_uart->tfifo); 212 ch->ch_t_tlevel = 16; 213 214 writeb(16, &ch->ch_neo_uart->rfifo); 215 ch->ch_r_tlevel = 16; 216 217 writeb(ier, &ch->ch_neo_uart->ier); 218 } 219 220 static void neo_set_no_output_flow_control(struct jsm_channel *ch) 221 { 222 u8 ier, efr; 223 ier = readb(&ch->ch_neo_uart->ier); 224 efr = readb(&ch->ch_neo_uart->efr); 225 226 jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "Unsetting Output FLOW\n"); 227 228 /* Turn off auto CTS flow control */ 229 ier &= ~(UART_17158_IER_CTSDSR); 230 efr &= ~(UART_17158_EFR_CTSDSR); 231 232 /* Turn off auto Xon flow control */ 233 if (ch->ch_c_iflag & IXOFF) 234 efr &= ~(UART_17158_EFR_IXON); 235 else 236 efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXON); 237 238 /* Why? Becuz Exar's spec says we have to zero it out before setting it */ 239 writeb(0, &ch->ch_neo_uart->efr); 240 241 /* Turn on UART enhanced bits */ 242 writeb(efr, &ch->ch_neo_uart->efr); 243 244 /* Turn on table D, with 8 char hi/low watermarks */ 245 writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr); 246 247 ch->ch_r_watermark = 0; 248 249 writeb(16, &ch->ch_neo_uart->tfifo); 250 ch->ch_t_tlevel = 16; 251 252 writeb(16, &ch->ch_neo_uart->rfifo); 253 ch->ch_r_tlevel = 16; 254 255 writeb(ier, &ch->ch_neo_uart->ier); 256 } 257 258 static inline void neo_set_new_start_stop_chars(struct jsm_channel *ch) 259 { 260 261 /* if hardware flow control is set, then skip this whole thing */ 262 if (ch->ch_c_cflag & CRTSCTS) 263 return; 264 265 jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "start\n"); 266 267 /* Tell UART what start/stop chars it should be looking for */ 268 writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1); 269 writeb(0, &ch->ch_neo_uart->xonchar2); 270 271 writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1); 272 writeb(0, &ch->ch_neo_uart->xoffchar2); 273 } 274 275 static void neo_copy_data_from_uart_to_queue(struct jsm_channel *ch) 276 { 277 int qleft = 0; 278 u8 linestatus = 0; 279 u8 error_mask = 0; 280 int n = 0; 281 int total = 0; 282 u16 head; 283 u16 tail; 284 285 /* cache head and tail of queue */ 286 head = ch->ch_r_head & RQUEUEMASK; 287 tail = ch->ch_r_tail & RQUEUEMASK; 288 289 /* Get our cached LSR */ 290 linestatus = ch->ch_cached_lsr; 291 ch->ch_cached_lsr = 0; 292 293 /* Store how much space we have left in the queue */ 294 if ((qleft = tail - head - 1) < 0) 295 qleft += RQUEUEMASK + 1; 296 297 /* 298 * If the UART is not in FIFO mode, force the FIFO copy to 299 * NOT be run, by setting total to 0. 300 * 301 * On the other hand, if the UART IS in FIFO mode, then ask 302 * the UART to give us an approximation of data it has RX'ed. 303 */ 304 if (!(ch->ch_flags & CH_FIFO_ENABLED)) 305 total = 0; 306 else { 307 total = readb(&ch->ch_neo_uart->rfifo); 308 309 /* 310 * EXAR chip bug - RX FIFO COUNT - Fudge factor. 311 * 312 * This resolves a problem/bug with the Exar chip that sometimes 313 * returns a bogus value in the rfifo register. 314 * The count can be any where from 0-3 bytes "off". 315 * Bizarre, but true. 316 */ 317 total -= 3; 318 } 319 320 /* 321 * Finally, bound the copy to make sure we don't overflow 322 * our own queue... 323 * The byte by byte copy loop below this loop this will 324 * deal with the queue overflow possibility. 325 */ 326 total = min(total, qleft); 327 328 while (total > 0) { 329 /* 330 * Grab the linestatus register, we need to check 331 * to see if there are any errors in the FIFO. 332 */ 333 linestatus = readb(&ch->ch_neo_uart->lsr); 334 335 /* 336 * Break out if there is a FIFO error somewhere. 337 * This will allow us to go byte by byte down below, 338 * finding the exact location of the error. 339 */ 340 if (linestatus & UART_17158_RX_FIFO_DATA_ERROR) 341 break; 342 343 /* Make sure we don't go over the end of our queue */ 344 n = min(((u32) total), (RQUEUESIZE - (u32) head)); 345 346 /* 347 * Cut down n even further if needed, this is to fix 348 * a problem with memcpy_fromio() with the Neo on the 349 * IBM pSeries platform. 350 * 15 bytes max appears to be the magic number. 351 */ 352 n = min((u32) n, (u32) 12); 353 354 /* 355 * Since we are grabbing the linestatus register, which 356 * will reset some bits after our read, we need to ensure 357 * we don't miss our TX FIFO emptys. 358 */ 359 if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR)) 360 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); 361 362 linestatus = 0; 363 364 /* Copy data from uart to the queue */ 365 memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, n); 366 /* 367 * Since RX_FIFO_DATA_ERROR was 0, we are guaranteed 368 * that all the data currently in the FIFO is free of 369 * breaks and parity/frame/orun errors. 370 */ 371 memset(ch->ch_equeue + head, 0, n); 372 373 /* Add to and flip head if needed */ 374 head = (head + n) & RQUEUEMASK; 375 total -= n; 376 qleft -= n; 377 ch->ch_rxcount += n; 378 } 379 380 /* 381 * Create a mask to determine whether we should 382 * insert the character (if any) into our queue. 383 */ 384 if (ch->ch_c_iflag & IGNBRK) 385 error_mask |= UART_LSR_BI; 386 387 /* 388 * Now cleanup any leftover bytes still in the UART. 389 * Also deal with any possible queue overflow here as well. 390 */ 391 while (1) { 392 393 /* 394 * Its possible we have a linestatus from the loop above 395 * this, so we "OR" on any extra bits. 396 */ 397 linestatus |= readb(&ch->ch_neo_uart->lsr); 398 399 /* 400 * If the chip tells us there is no more data pending to 401 * be read, we can then leave. 402 * But before we do, cache the linestatus, just in case. 403 */ 404 if (!(linestatus & UART_LSR_DR)) { 405 ch->ch_cached_lsr = linestatus; 406 break; 407 } 408 409 /* No need to store this bit */ 410 linestatus &= ~UART_LSR_DR; 411 412 /* 413 * Since we are grabbing the linestatus register, which 414 * will reset some bits after our read, we need to ensure 415 * we don't miss our TX FIFO emptys. 416 */ 417 if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR)) { 418 linestatus &= ~(UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR); 419 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); 420 } 421 422 /* 423 * Discard character if we are ignoring the error mask. 424 */ 425 if (linestatus & error_mask) { 426 u8 discard; 427 linestatus = 0; 428 memcpy_fromio(&discard, &ch->ch_neo_uart->txrxburst, 1); 429 continue; 430 } 431 432 /* 433 * If our queue is full, we have no choice but to drop some data. 434 * The assumption is that HWFLOW or SWFLOW should have stopped 435 * things way way before we got to this point. 436 * 437 * I decided that I wanted to ditch the oldest data first, 438 * I hope thats okay with everyone? Yes? Good. 439 */ 440 while (qleft < 1) { 441 jsm_dbg(READ, &ch->ch_bd->pci_dev, 442 "Queue full, dropping DATA:%x LSR:%x\n", 443 ch->ch_rqueue[tail], ch->ch_equeue[tail]); 444 445 ch->ch_r_tail = tail = (tail + 1) & RQUEUEMASK; 446 ch->ch_err_overrun++; 447 qleft++; 448 } 449 450 memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, 1); 451 ch->ch_equeue[head] = (u8) linestatus; 452 453 jsm_dbg(READ, &ch->ch_bd->pci_dev, "DATA/LSR pair: %x %x\n", 454 ch->ch_rqueue[head], ch->ch_equeue[head]); 455 456 /* Ditch any remaining linestatus value. */ 457 linestatus = 0; 458 459 /* Add to and flip head if needed */ 460 head = (head + 1) & RQUEUEMASK; 461 462 qleft--; 463 ch->ch_rxcount++; 464 } 465 466 /* 467 * Write new final heads to channel structure. 468 */ 469 ch->ch_r_head = head & RQUEUEMASK; 470 ch->ch_e_head = head & EQUEUEMASK; 471 jsm_input(ch); 472 } 473 474 static void neo_copy_data_from_queue_to_uart(struct jsm_channel *ch) 475 { 476 u16 head; 477 u16 tail; 478 int n; 479 int s; 480 int qlen; 481 u32 len_written = 0; 482 struct circ_buf *circ; 483 484 if (!ch) 485 return; 486 487 circ = &ch->uart_port.state->xmit; 488 489 /* No data to write to the UART */ 490 if (uart_circ_empty(circ)) 491 return; 492 493 /* If port is "stopped", don't send any data to the UART */ 494 if ((ch->ch_flags & CH_STOP) || (ch->ch_flags & CH_BREAK_SENDING)) 495 return; 496 /* 497 * If FIFOs are disabled. Send data directly to txrx register 498 */ 499 if (!(ch->ch_flags & CH_FIFO_ENABLED)) { 500 u8 lsrbits = readb(&ch->ch_neo_uart->lsr); 501 502 ch->ch_cached_lsr |= lsrbits; 503 if (ch->ch_cached_lsr & UART_LSR_THRE) { 504 ch->ch_cached_lsr &= ~(UART_LSR_THRE); 505 506 writeb(circ->buf[circ->tail], &ch->ch_neo_uart->txrx); 507 jsm_dbg(WRITE, &ch->ch_bd->pci_dev, 508 "Tx data: %x\n", circ->buf[circ->tail]); 509 circ->tail = (circ->tail + 1) & (UART_XMIT_SIZE - 1); 510 ch->ch_txcount++; 511 } 512 return; 513 } 514 515 /* 516 * We have to do it this way, because of the EXAR TXFIFO count bug. 517 */ 518 if (!(ch->ch_flags & (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM))) 519 return; 520 521 n = UART_17158_TX_FIFOSIZE - ch->ch_t_tlevel; 522 523 /* cache head and tail of queue */ 524 head = circ->head & (UART_XMIT_SIZE - 1); 525 tail = circ->tail & (UART_XMIT_SIZE - 1); 526 qlen = uart_circ_chars_pending(circ); 527 528 /* Find minimum of the FIFO space, versus queue length */ 529 n = min(n, qlen); 530 531 while (n > 0) { 532 533 s = ((head >= tail) ? head : UART_XMIT_SIZE) - tail; 534 s = min(s, n); 535 536 if (s <= 0) 537 break; 538 539 memcpy_toio(&ch->ch_neo_uart->txrxburst, circ->buf + tail, s); 540 /* Add and flip queue if needed */ 541 tail = (tail + s) & (UART_XMIT_SIZE - 1); 542 n -= s; 543 ch->ch_txcount += s; 544 len_written += s; 545 } 546 547 /* Update the final tail */ 548 circ->tail = tail & (UART_XMIT_SIZE - 1); 549 550 if (len_written >= ch->ch_t_tlevel) 551 ch->ch_flags &= ~(CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); 552 553 if (uart_circ_empty(circ)) 554 uart_write_wakeup(&ch->uart_port); 555 } 556 557 static void neo_parse_modem(struct jsm_channel *ch, u8 signals) 558 { 559 u8 msignals = signals; 560 561 jsm_dbg(MSIGS, &ch->ch_bd->pci_dev, 562 "neo_parse_modem: port: %d msignals: %x\n", 563 ch->ch_portnum, msignals); 564 565 /* Scrub off lower bits. They signify delta's, which I don't care about */ 566 /* Keep DDCD and DDSR though */ 567 msignals &= 0xf8; 568 569 if (msignals & UART_MSR_DDCD) 570 uart_handle_dcd_change(&ch->uart_port, msignals & UART_MSR_DCD); 571 if (msignals & UART_MSR_DDSR) 572 uart_handle_cts_change(&ch->uart_port, msignals & UART_MSR_CTS); 573 if (msignals & UART_MSR_DCD) 574 ch->ch_mistat |= UART_MSR_DCD; 575 else 576 ch->ch_mistat &= ~UART_MSR_DCD; 577 578 if (msignals & UART_MSR_DSR) 579 ch->ch_mistat |= UART_MSR_DSR; 580 else 581 ch->ch_mistat &= ~UART_MSR_DSR; 582 583 if (msignals & UART_MSR_RI) 584 ch->ch_mistat |= UART_MSR_RI; 585 else 586 ch->ch_mistat &= ~UART_MSR_RI; 587 588 if (msignals & UART_MSR_CTS) 589 ch->ch_mistat |= UART_MSR_CTS; 590 else 591 ch->ch_mistat &= ~UART_MSR_CTS; 592 593 jsm_dbg(MSIGS, &ch->ch_bd->pci_dev, 594 "Port: %d DTR: %d RTS: %d CTS: %d DSR: %d " "RI: %d CD: %d\n", 595 ch->ch_portnum, 596 !!((ch->ch_mistat | ch->ch_mostat) & UART_MCR_DTR), 597 !!((ch->ch_mistat | ch->ch_mostat) & UART_MCR_RTS), 598 !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_CTS), 599 !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_DSR), 600 !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_RI), 601 !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_DCD)); 602 } 603 604 /* Make the UART raise any of the output signals we want up */ 605 static void neo_assert_modem_signals(struct jsm_channel *ch) 606 { 607 if (!ch) 608 return; 609 610 writeb(ch->ch_mostat, &ch->ch_neo_uart->mcr); 611 612 /* flush write operation */ 613 neo_pci_posting_flush(ch->ch_bd); 614 } 615 616 /* 617 * Flush the WRITE FIFO on the Neo. 618 * 619 * NOTE: Channel lock MUST be held before calling this function! 620 */ 621 static void neo_flush_uart_write(struct jsm_channel *ch) 622 { 623 u8 tmp = 0; 624 int i = 0; 625 626 if (!ch) 627 return; 628 629 writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr); 630 631 for (i = 0; i < 10; i++) { 632 633 /* Check to see if the UART feels it completely flushed the FIFO. */ 634 tmp = readb(&ch->ch_neo_uart->isr_fcr); 635 if (tmp & UART_FCR_CLEAR_XMIT) { 636 jsm_dbg(IOCTL, &ch->ch_bd->pci_dev, 637 "Still flushing TX UART... i: %d\n", i); 638 udelay(10); 639 } 640 else 641 break; 642 } 643 644 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); 645 } 646 647 648 /* 649 * Flush the READ FIFO on the Neo. 650 * 651 * NOTE: Channel lock MUST be held before calling this function! 652 */ 653 static void neo_flush_uart_read(struct jsm_channel *ch) 654 { 655 u8 tmp = 0; 656 int i = 0; 657 658 if (!ch) 659 return; 660 661 writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_RCVR), &ch->ch_neo_uart->isr_fcr); 662 663 for (i = 0; i < 10; i++) { 664 665 /* Check to see if the UART feels it completely flushed the FIFO. */ 666 tmp = readb(&ch->ch_neo_uart->isr_fcr); 667 if (tmp & 2) { 668 jsm_dbg(IOCTL, &ch->ch_bd->pci_dev, 669 "Still flushing RX UART... i: %d\n", i); 670 udelay(10); 671 } 672 else 673 break; 674 } 675 } 676 677 /* 678 * No locks are assumed to be held when calling this function. 679 */ 680 static void neo_clear_break(struct jsm_channel *ch) 681 { 682 unsigned long lock_flags; 683 684 spin_lock_irqsave(&ch->ch_lock, lock_flags); 685 686 /* Turn break off, and unset some variables */ 687 if (ch->ch_flags & CH_BREAK_SENDING) { 688 u8 temp = readb(&ch->ch_neo_uart->lcr); 689 writeb((temp & ~UART_LCR_SBC), &ch->ch_neo_uart->lcr); 690 691 ch->ch_flags &= ~(CH_BREAK_SENDING); 692 jsm_dbg(IOCTL, &ch->ch_bd->pci_dev, 693 "clear break Finishing UART_LCR_SBC! finished: %lx\n", 694 jiffies); 695 696 /* flush write operation */ 697 neo_pci_posting_flush(ch->ch_bd); 698 } 699 spin_unlock_irqrestore(&ch->ch_lock, lock_flags); 700 } 701 702 /* 703 * Parse the ISR register. 704 */ 705 static void neo_parse_isr(struct jsm_board *brd, u32 port) 706 { 707 struct jsm_channel *ch; 708 u8 isr; 709 u8 cause; 710 unsigned long lock_flags; 711 712 if (!brd) 713 return; 714 715 if (port >= brd->maxports) 716 return; 717 718 ch = brd->channels[port]; 719 if (!ch) 720 return; 721 722 /* Here we try to figure out what caused the interrupt to happen */ 723 while (1) { 724 725 isr = readb(&ch->ch_neo_uart->isr_fcr); 726 727 /* Bail if no pending interrupt */ 728 if (isr & UART_IIR_NO_INT) 729 break; 730 731 /* 732 * Yank off the upper 2 bits, which just show that the FIFO's are enabled. 733 */ 734 isr &= ~(UART_17158_IIR_FIFO_ENABLED); 735 736 jsm_dbg(INTR, &ch->ch_bd->pci_dev, "%s:%d isr: %x\n", 737 __FILE__, __LINE__, isr); 738 739 if (isr & (UART_17158_IIR_RDI_TIMEOUT | UART_IIR_RDI)) { 740 /* Read data from uart -> queue */ 741 neo_copy_data_from_uart_to_queue(ch); 742 743 /* Call our tty layer to enforce queue flow control if needed. */ 744 spin_lock_irqsave(&ch->ch_lock, lock_flags); 745 jsm_check_queue_flow_control(ch); 746 spin_unlock_irqrestore(&ch->ch_lock, lock_flags); 747 } 748 749 if (isr & UART_IIR_THRI) { 750 /* Transfer data (if any) from Write Queue -> UART. */ 751 spin_lock_irqsave(&ch->ch_lock, lock_flags); 752 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); 753 spin_unlock_irqrestore(&ch->ch_lock, lock_flags); 754 neo_copy_data_from_queue_to_uart(ch); 755 } 756 757 if (isr & UART_17158_IIR_XONXOFF) { 758 cause = readb(&ch->ch_neo_uart->xoffchar1); 759 760 jsm_dbg(INTR, &ch->ch_bd->pci_dev, 761 "Port %d. Got ISR_XONXOFF: cause:%x\n", 762 port, cause); 763 764 /* 765 * Since the UART detected either an XON or 766 * XOFF match, we need to figure out which 767 * one it was, so we can suspend or resume data flow. 768 */ 769 spin_lock_irqsave(&ch->ch_lock, lock_flags); 770 if (cause == UART_17158_XON_DETECT) { 771 /* Is output stopped right now, if so, resume it */ 772 if (brd->channels[port]->ch_flags & CH_STOP) { 773 ch->ch_flags &= ~(CH_STOP); 774 } 775 jsm_dbg(INTR, &ch->ch_bd->pci_dev, 776 "Port %d. XON detected in incoming data\n", 777 port); 778 } 779 else if (cause == UART_17158_XOFF_DETECT) { 780 if (!(brd->channels[port]->ch_flags & CH_STOP)) { 781 ch->ch_flags |= CH_STOP; 782 jsm_dbg(INTR, &ch->ch_bd->pci_dev, 783 "Setting CH_STOP\n"); 784 } 785 jsm_dbg(INTR, &ch->ch_bd->pci_dev, 786 "Port: %d. XOFF detected in incoming data\n", 787 port); 788 } 789 spin_unlock_irqrestore(&ch->ch_lock, lock_flags); 790 } 791 792 if (isr & UART_17158_IIR_HWFLOW_STATE_CHANGE) { 793 /* 794 * If we get here, this means the hardware is doing auto flow control. 795 * Check to see whether RTS/DTR or CTS/DSR caused this interrupt. 796 */ 797 cause = readb(&ch->ch_neo_uart->mcr); 798 799 /* Which pin is doing auto flow? RTS or DTR? */ 800 spin_lock_irqsave(&ch->ch_lock, lock_flags); 801 if ((cause & 0x4) == 0) { 802 if (cause & UART_MCR_RTS) 803 ch->ch_mostat |= UART_MCR_RTS; 804 else 805 ch->ch_mostat &= ~(UART_MCR_RTS); 806 } else { 807 if (cause & UART_MCR_DTR) 808 ch->ch_mostat |= UART_MCR_DTR; 809 else 810 ch->ch_mostat &= ~(UART_MCR_DTR); 811 } 812 spin_unlock_irqrestore(&ch->ch_lock, lock_flags); 813 } 814 815 /* Parse any modem signal changes */ 816 jsm_dbg(INTR, &ch->ch_bd->pci_dev, 817 "MOD_STAT: sending to parse_modem_sigs\n"); 818 spin_lock_irqsave(&ch->uart_port.lock, lock_flags); 819 neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr)); 820 spin_unlock_irqrestore(&ch->uart_port.lock, lock_flags); 821 } 822 } 823 824 static inline void neo_parse_lsr(struct jsm_board *brd, u32 port) 825 { 826 struct jsm_channel *ch; 827 int linestatus; 828 unsigned long lock_flags; 829 830 if (!brd) 831 return; 832 833 if (port >= brd->maxports) 834 return; 835 836 ch = brd->channels[port]; 837 if (!ch) 838 return; 839 840 linestatus = readb(&ch->ch_neo_uart->lsr); 841 842 jsm_dbg(INTR, &ch->ch_bd->pci_dev, "%s:%d port: %d linestatus: %x\n", 843 __FILE__, __LINE__, port, linestatus); 844 845 ch->ch_cached_lsr |= linestatus; 846 847 if (ch->ch_cached_lsr & UART_LSR_DR) { 848 /* Read data from uart -> queue */ 849 neo_copy_data_from_uart_to_queue(ch); 850 spin_lock_irqsave(&ch->ch_lock, lock_flags); 851 jsm_check_queue_flow_control(ch); 852 spin_unlock_irqrestore(&ch->ch_lock, lock_flags); 853 } 854 855 /* 856 * This is a special flag. It indicates that at least 1 857 * RX error (parity, framing, or break) has happened. 858 * Mark this in our struct, which will tell me that I have 859 *to do the special RX+LSR read for this FIFO load. 860 */ 861 if (linestatus & UART_17158_RX_FIFO_DATA_ERROR) 862 jsm_dbg(INTR, &ch->ch_bd->pci_dev, 863 "%s:%d Port: %d Got an RX error, need to parse LSR\n", 864 __FILE__, __LINE__, port); 865 866 /* 867 * The next 3 tests should *NOT* happen, as the above test 868 * should encapsulate all 3... At least, thats what Exar says. 869 */ 870 871 if (linestatus & UART_LSR_PE) { 872 ch->ch_err_parity++; 873 jsm_dbg(INTR, &ch->ch_bd->pci_dev, "%s:%d Port: %d. PAR ERR!\n", 874 __FILE__, __LINE__, port); 875 } 876 877 if (linestatus & UART_LSR_FE) { 878 ch->ch_err_frame++; 879 jsm_dbg(INTR, &ch->ch_bd->pci_dev, "%s:%d Port: %d. FRM ERR!\n", 880 __FILE__, __LINE__, port); 881 } 882 883 if (linestatus & UART_LSR_BI) { 884 ch->ch_err_break++; 885 jsm_dbg(INTR, &ch->ch_bd->pci_dev, 886 "%s:%d Port: %d. BRK INTR!\n", 887 __FILE__, __LINE__, port); 888 } 889 890 if (linestatus & UART_LSR_OE) { 891 /* 892 * Rx Oruns. Exar says that an orun will NOT corrupt 893 * the FIFO. It will just replace the holding register 894 * with this new data byte. So basically just ignore this. 895 * Probably we should eventually have an orun stat in our driver... 896 */ 897 ch->ch_err_overrun++; 898 jsm_dbg(INTR, &ch->ch_bd->pci_dev, 899 "%s:%d Port: %d. Rx Overrun!\n", 900 __FILE__, __LINE__, port); 901 } 902 903 if (linestatus & UART_LSR_THRE) { 904 spin_lock_irqsave(&ch->ch_lock, lock_flags); 905 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); 906 spin_unlock_irqrestore(&ch->ch_lock, lock_flags); 907 908 /* Transfer data (if any) from Write Queue -> UART. */ 909 neo_copy_data_from_queue_to_uart(ch); 910 } 911 else if (linestatus & UART_17158_TX_AND_FIFO_CLR) { 912 spin_lock_irqsave(&ch->ch_lock, lock_flags); 913 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); 914 spin_unlock_irqrestore(&ch->ch_lock, lock_flags); 915 916 /* Transfer data (if any) from Write Queue -> UART. */ 917 neo_copy_data_from_queue_to_uart(ch); 918 } 919 } 920 921 /* 922 * neo_param() 923 * Send any/all changes to the line to the UART. 924 */ 925 static void neo_param(struct jsm_channel *ch) 926 { 927 u8 lcr = 0; 928 u8 uart_lcr, ier; 929 u32 baud; 930 int quot; 931 struct jsm_board *bd; 932 933 bd = ch->ch_bd; 934 if (!bd) 935 return; 936 937 /* 938 * If baud rate is zero, flush queues, and set mval to drop DTR. 939 */ 940 if ((ch->ch_c_cflag & (CBAUD)) == 0) { 941 ch->ch_r_head = ch->ch_r_tail = 0; 942 ch->ch_e_head = ch->ch_e_tail = 0; 943 944 neo_flush_uart_write(ch); 945 neo_flush_uart_read(ch); 946 947 ch->ch_flags |= (CH_BAUD0); 948 ch->ch_mostat &= ~(UART_MCR_RTS | UART_MCR_DTR); 949 neo_assert_modem_signals(ch); 950 return; 951 952 } else { 953 int i; 954 unsigned int cflag; 955 static struct { 956 unsigned int rate; 957 unsigned int cflag; 958 } baud_rates[] = { 959 { 921600, B921600 }, 960 { 460800, B460800 }, 961 { 230400, B230400 }, 962 { 115200, B115200 }, 963 { 57600, B57600 }, 964 { 38400, B38400 }, 965 { 19200, B19200 }, 966 { 9600, B9600 }, 967 { 4800, B4800 }, 968 { 2400, B2400 }, 969 { 1200, B1200 }, 970 { 600, B600 }, 971 { 300, B300 }, 972 { 200, B200 }, 973 { 150, B150 }, 974 { 134, B134 }, 975 { 110, B110 }, 976 { 75, B75 }, 977 { 50, B50 }, 978 }; 979 980 cflag = C_BAUD(ch->uart_port.state->port.tty); 981 baud = 9600; 982 for (i = 0; i < ARRAY_SIZE(baud_rates); i++) { 983 if (baud_rates[i].cflag == cflag) { 984 baud = baud_rates[i].rate; 985 break; 986 } 987 } 988 989 if (ch->ch_flags & CH_BAUD0) 990 ch->ch_flags &= ~(CH_BAUD0); 991 } 992 993 if (ch->ch_c_cflag & PARENB) 994 lcr |= UART_LCR_PARITY; 995 996 if (!(ch->ch_c_cflag & PARODD)) 997 lcr |= UART_LCR_EPAR; 998 999 /* 1000 * Not all platforms support mark/space parity, 1001 * so this will hide behind an ifdef. 1002 */ 1003 #ifdef CMSPAR 1004 if (ch->ch_c_cflag & CMSPAR) 1005 lcr |= UART_LCR_SPAR; 1006 #endif 1007 1008 if (ch->ch_c_cflag & CSTOPB) 1009 lcr |= UART_LCR_STOP; 1010 1011 switch (ch->ch_c_cflag & CSIZE) { 1012 case CS5: 1013 lcr |= UART_LCR_WLEN5; 1014 break; 1015 case CS6: 1016 lcr |= UART_LCR_WLEN6; 1017 break; 1018 case CS7: 1019 lcr |= UART_LCR_WLEN7; 1020 break; 1021 case CS8: 1022 default: 1023 lcr |= UART_LCR_WLEN8; 1024 break; 1025 } 1026 1027 ier = readb(&ch->ch_neo_uart->ier); 1028 uart_lcr = readb(&ch->ch_neo_uart->lcr); 1029 1030 quot = ch->ch_bd->bd_dividend / baud; 1031 1032 if (quot != 0) { 1033 writeb(UART_LCR_DLAB, &ch->ch_neo_uart->lcr); 1034 writeb((quot & 0xff), &ch->ch_neo_uart->txrx); 1035 writeb((quot >> 8), &ch->ch_neo_uart->ier); 1036 writeb(lcr, &ch->ch_neo_uart->lcr); 1037 } 1038 1039 if (uart_lcr != lcr) 1040 writeb(lcr, &ch->ch_neo_uart->lcr); 1041 1042 if (ch->ch_c_cflag & CREAD) 1043 ier |= (UART_IER_RDI | UART_IER_RLSI); 1044 1045 ier |= (UART_IER_THRI | UART_IER_MSI); 1046 1047 writeb(ier, &ch->ch_neo_uart->ier); 1048 1049 /* Set new start/stop chars */ 1050 neo_set_new_start_stop_chars(ch); 1051 1052 if (ch->ch_c_cflag & CRTSCTS) 1053 neo_set_cts_flow_control(ch); 1054 else if (ch->ch_c_iflag & IXON) { 1055 /* If start/stop is set to disable, then we should disable flow control */ 1056 if ((ch->ch_startc == __DISABLED_CHAR) || (ch->ch_stopc == __DISABLED_CHAR)) 1057 neo_set_no_output_flow_control(ch); 1058 else 1059 neo_set_ixon_flow_control(ch); 1060 } 1061 else 1062 neo_set_no_output_flow_control(ch); 1063 1064 if (ch->ch_c_cflag & CRTSCTS) 1065 neo_set_rts_flow_control(ch); 1066 else if (ch->ch_c_iflag & IXOFF) { 1067 /* If start/stop is set to disable, then we should disable flow control */ 1068 if ((ch->ch_startc == __DISABLED_CHAR) || (ch->ch_stopc == __DISABLED_CHAR)) 1069 neo_set_no_input_flow_control(ch); 1070 else 1071 neo_set_ixoff_flow_control(ch); 1072 } 1073 else 1074 neo_set_no_input_flow_control(ch); 1075 /* 1076 * Adjust the RX FIFO Trigger level if baud is less than 9600. 1077 * Not exactly elegant, but this is needed because of the Exar chip's 1078 * delay on firing off the RX FIFO interrupt on slower baud rates. 1079 */ 1080 if (baud < 9600) { 1081 writeb(1, &ch->ch_neo_uart->rfifo); 1082 ch->ch_r_tlevel = 1; 1083 } 1084 1085 neo_assert_modem_signals(ch); 1086 1087 /* Get current status of the modem signals now */ 1088 neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr)); 1089 return; 1090 } 1091 1092 /* 1093 * jsm_neo_intr() 1094 * 1095 * Neo specific interrupt handler. 1096 */ 1097 static irqreturn_t neo_intr(int irq, void *voidbrd) 1098 { 1099 struct jsm_board *brd = voidbrd; 1100 struct jsm_channel *ch; 1101 int port = 0; 1102 int type = 0; 1103 int current_port; 1104 u32 tmp; 1105 u32 uart_poll; 1106 unsigned long lock_flags; 1107 unsigned long lock_flags2; 1108 int outofloop_count = 0; 1109 1110 /* Lock out the slow poller from running on this board. */ 1111 spin_lock_irqsave(&brd->bd_intr_lock, lock_flags); 1112 1113 /* 1114 * Read in "extended" IRQ information from the 32bit Neo register. 1115 * Bits 0-7: What port triggered the interrupt. 1116 * Bits 8-31: Each 3bits indicate what type of interrupt occurred. 1117 */ 1118 uart_poll = readl(brd->re_map_membase + UART_17158_POLL_ADDR_OFFSET); 1119 1120 jsm_dbg(INTR, &brd->pci_dev, "%s:%d uart_poll: %x\n", 1121 __FILE__, __LINE__, uart_poll); 1122 1123 if (!uart_poll) { 1124 jsm_dbg(INTR, &brd->pci_dev, 1125 "Kernel interrupted to me, but no pending interrupts...\n"); 1126 spin_unlock_irqrestore(&brd->bd_intr_lock, lock_flags); 1127 return IRQ_NONE; 1128 } 1129 1130 /* At this point, we have at least SOMETHING to service, dig further... */ 1131 1132 current_port = 0; 1133 1134 /* Loop on each port */ 1135 while (((uart_poll & 0xff) != 0) && (outofloop_count < 0xff)){ 1136 1137 tmp = uart_poll; 1138 outofloop_count++; 1139 1140 /* Check current port to see if it has interrupt pending */ 1141 if ((tmp & jsm_offset_table[current_port]) != 0) { 1142 port = current_port; 1143 type = tmp >> (8 + (port * 3)); 1144 type &= 0x7; 1145 } else { 1146 current_port++; 1147 continue; 1148 } 1149 1150 jsm_dbg(INTR, &brd->pci_dev, "%s:%d port: %x type: %x\n", 1151 __FILE__, __LINE__, port, type); 1152 1153 /* Remove this port + type from uart_poll */ 1154 uart_poll &= ~(jsm_offset_table[port]); 1155 1156 if (!type) { 1157 /* If no type, just ignore it, and move onto next port */ 1158 jsm_dbg(INTR, &brd->pci_dev, 1159 "Interrupt with no type! port: %d\n", port); 1160 continue; 1161 } 1162 1163 /* Switch on type of interrupt we have */ 1164 switch (type) { 1165 1166 case UART_17158_RXRDY_TIMEOUT: 1167 /* 1168 * RXRDY Time-out is cleared by reading data in the 1169 * RX FIFO until it falls below the trigger level. 1170 */ 1171 1172 /* Verify the port is in range. */ 1173 if (port >= brd->nasync) 1174 continue; 1175 1176 ch = brd->channels[port]; 1177 if (!ch) 1178 continue; 1179 1180 neo_copy_data_from_uart_to_queue(ch); 1181 1182 /* Call our tty layer to enforce queue flow control if needed. */ 1183 spin_lock_irqsave(&ch->ch_lock, lock_flags2); 1184 jsm_check_queue_flow_control(ch); 1185 spin_unlock_irqrestore(&ch->ch_lock, lock_flags2); 1186 1187 continue; 1188 1189 case UART_17158_RX_LINE_STATUS: 1190 /* 1191 * RXRDY and RX LINE Status (logic OR of LSR[4:1]) 1192 */ 1193 neo_parse_lsr(brd, port); 1194 continue; 1195 1196 case UART_17158_TXRDY: 1197 /* 1198 * TXRDY interrupt clears after reading ISR register for the UART channel. 1199 */ 1200 1201 /* 1202 * Yes, this is odd... 1203 * Why would I check EVERY possibility of type of 1204 * interrupt, when we know its TXRDY??? 1205 * Becuz for some reason, even tho we got triggered for TXRDY, 1206 * it seems to be occasionally wrong. Instead of TX, which 1207 * it should be, I was getting things like RXDY too. Weird. 1208 */ 1209 neo_parse_isr(brd, port); 1210 continue; 1211 1212 case UART_17158_MSR: 1213 /* 1214 * MSR or flow control was seen. 1215 */ 1216 neo_parse_isr(brd, port); 1217 continue; 1218 1219 default: 1220 /* 1221 * The UART triggered us with a bogus interrupt type. 1222 * It appears the Exar chip, when REALLY bogged down, will throw 1223 * these once and awhile. 1224 * Its harmless, just ignore it and move on. 1225 */ 1226 jsm_dbg(INTR, &brd->pci_dev, 1227 "%s:%d Unknown Interrupt type: %x\n", 1228 __FILE__, __LINE__, type); 1229 continue; 1230 } 1231 } 1232 1233 spin_unlock_irqrestore(&brd->bd_intr_lock, lock_flags); 1234 1235 jsm_dbg(INTR, &brd->pci_dev, "finish\n"); 1236 return IRQ_HANDLED; 1237 } 1238 1239 /* 1240 * Neo specific way of turning off the receiver. 1241 * Used as a way to enforce queue flow control when in 1242 * hardware flow control mode. 1243 */ 1244 static void neo_disable_receiver(struct jsm_channel *ch) 1245 { 1246 u8 tmp = readb(&ch->ch_neo_uart->ier); 1247 tmp &= ~(UART_IER_RDI); 1248 writeb(tmp, &ch->ch_neo_uart->ier); 1249 1250 /* flush write operation */ 1251 neo_pci_posting_flush(ch->ch_bd); 1252 } 1253 1254 1255 /* 1256 * Neo specific way of turning on the receiver. 1257 * Used as a way to un-enforce queue flow control when in 1258 * hardware flow control mode. 1259 */ 1260 static void neo_enable_receiver(struct jsm_channel *ch) 1261 { 1262 u8 tmp = readb(&ch->ch_neo_uart->ier); 1263 tmp |= (UART_IER_RDI); 1264 writeb(tmp, &ch->ch_neo_uart->ier); 1265 1266 /* flush write operation */ 1267 neo_pci_posting_flush(ch->ch_bd); 1268 } 1269 1270 static void neo_send_start_character(struct jsm_channel *ch) 1271 { 1272 if (!ch) 1273 return; 1274 1275 if (ch->ch_startc != __DISABLED_CHAR) { 1276 ch->ch_xon_sends++; 1277 writeb(ch->ch_startc, &ch->ch_neo_uart->txrx); 1278 1279 /* flush write operation */ 1280 neo_pci_posting_flush(ch->ch_bd); 1281 } 1282 } 1283 1284 static void neo_send_stop_character(struct jsm_channel *ch) 1285 { 1286 if (!ch) 1287 return; 1288 1289 if (ch->ch_stopc != __DISABLED_CHAR) { 1290 ch->ch_xoff_sends++; 1291 writeb(ch->ch_stopc, &ch->ch_neo_uart->txrx); 1292 1293 /* flush write operation */ 1294 neo_pci_posting_flush(ch->ch_bd); 1295 } 1296 } 1297 1298 /* 1299 * neo_uart_init 1300 */ 1301 static void neo_uart_init(struct jsm_channel *ch) 1302 { 1303 writeb(0, &ch->ch_neo_uart->ier); 1304 writeb(0, &ch->ch_neo_uart->efr); 1305 writeb(UART_EFR_ECB, &ch->ch_neo_uart->efr); 1306 1307 /* Clear out UART and FIFO */ 1308 readb(&ch->ch_neo_uart->txrx); 1309 writeb((UART_FCR_ENABLE_FIFO|UART_FCR_CLEAR_RCVR|UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr); 1310 readb(&ch->ch_neo_uart->lsr); 1311 readb(&ch->ch_neo_uart->msr); 1312 1313 ch->ch_flags |= CH_FIFO_ENABLED; 1314 1315 /* Assert any signals we want up */ 1316 writeb(ch->ch_mostat, &ch->ch_neo_uart->mcr); 1317 } 1318 1319 /* 1320 * Make the UART completely turn off. 1321 */ 1322 static void neo_uart_off(struct jsm_channel *ch) 1323 { 1324 /* Turn off UART enhanced bits */ 1325 writeb(0, &ch->ch_neo_uart->efr); 1326 1327 /* Stop all interrupts from occurring. */ 1328 writeb(0, &ch->ch_neo_uart->ier); 1329 } 1330 1331 static u32 neo_get_uart_bytes_left(struct jsm_channel *ch) 1332 { 1333 u8 left = 0; 1334 u8 lsr = readb(&ch->ch_neo_uart->lsr); 1335 1336 /* We must cache the LSR as some of the bits get reset once read... */ 1337 ch->ch_cached_lsr |= lsr; 1338 1339 /* Determine whether the Transmitter is empty or not */ 1340 if (!(lsr & UART_LSR_TEMT)) 1341 left = 1; 1342 else { 1343 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); 1344 left = 0; 1345 } 1346 1347 return left; 1348 } 1349 1350 /* Channel lock MUST be held by the calling function! */ 1351 static void neo_send_break(struct jsm_channel *ch) 1352 { 1353 /* 1354 * Set the time we should stop sending the break. 1355 * If we are already sending a break, toss away the existing 1356 * time to stop, and use this new value instead. 1357 */ 1358 1359 /* Tell the UART to start sending the break */ 1360 if (!(ch->ch_flags & CH_BREAK_SENDING)) { 1361 u8 temp = readb(&ch->ch_neo_uart->lcr); 1362 writeb((temp | UART_LCR_SBC), &ch->ch_neo_uart->lcr); 1363 ch->ch_flags |= (CH_BREAK_SENDING); 1364 1365 /* flush write operation */ 1366 neo_pci_posting_flush(ch->ch_bd); 1367 } 1368 } 1369 1370 /* 1371 * neo_send_immediate_char. 1372 * 1373 * Sends a specific character as soon as possible to the UART, 1374 * jumping over any bytes that might be in the write queue. 1375 * 1376 * The channel lock MUST be held by the calling function. 1377 */ 1378 static void neo_send_immediate_char(struct jsm_channel *ch, unsigned char c) 1379 { 1380 if (!ch) 1381 return; 1382 1383 writeb(c, &ch->ch_neo_uart->txrx); 1384 1385 /* flush write operation */ 1386 neo_pci_posting_flush(ch->ch_bd); 1387 } 1388 1389 struct board_ops jsm_neo_ops = { 1390 .intr = neo_intr, 1391 .uart_init = neo_uart_init, 1392 .uart_off = neo_uart_off, 1393 .param = neo_param, 1394 .assert_modem_signals = neo_assert_modem_signals, 1395 .flush_uart_write = neo_flush_uart_write, 1396 .flush_uart_read = neo_flush_uart_read, 1397 .disable_receiver = neo_disable_receiver, 1398 .enable_receiver = neo_enable_receiver, 1399 .send_break = neo_send_break, 1400 .clear_break = neo_clear_break, 1401 .send_start_character = neo_send_start_character, 1402 .send_stop_character = neo_send_stop_character, 1403 .copy_data_from_queue_to_uart = neo_copy_data_from_queue_to_uart, 1404 .get_uart_bytes_left = neo_get_uart_bytes_left, 1405 .send_immediate_char = neo_send_immediate_char 1406 }; 1407