1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Driver for Motorola/Freescale IMX serial ports 4 * 5 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. 6 * 7 * Author: Sascha Hauer <sascha@saschahauer.de> 8 * Copyright (C) 2004 Pengutronix 9 */ 10 11 #include <linux/module.h> 12 #include <linux/ioport.h> 13 #include <linux/init.h> 14 #include <linux/console.h> 15 #include <linux/sysrq.h> 16 #include <linux/platform_device.h> 17 #include <linux/tty.h> 18 #include <linux/tty_flip.h> 19 #include <linux/serial_core.h> 20 #include <linux/serial.h> 21 #include <linux/clk.h> 22 #include <linux/delay.h> 23 #include <linux/ktime.h> 24 #include <linux/pinctrl/consumer.h> 25 #include <linux/rational.h> 26 #include <linux/slab.h> 27 #include <linux/of.h> 28 #include <linux/of_device.h> 29 #include <linux/io.h> 30 #include <linux/dma-mapping.h> 31 32 #include <asm/irq.h> 33 #include <linux/platform_data/dma-imx.h> 34 35 #include "serial_mctrl_gpio.h" 36 37 /* Register definitions */ 38 #define URXD0 0x0 /* Receiver Register */ 39 #define URTX0 0x40 /* Transmitter Register */ 40 #define UCR1 0x80 /* Control Register 1 */ 41 #define UCR2 0x84 /* Control Register 2 */ 42 #define UCR3 0x88 /* Control Register 3 */ 43 #define UCR4 0x8c /* Control Register 4 */ 44 #define UFCR 0x90 /* FIFO Control Register */ 45 #define USR1 0x94 /* Status Register 1 */ 46 #define USR2 0x98 /* Status Register 2 */ 47 #define UESC 0x9c /* Escape Character Register */ 48 #define UTIM 0xa0 /* Escape Timer Register */ 49 #define UBIR 0xa4 /* BRM Incremental Register */ 50 #define UBMR 0xa8 /* BRM Modulator Register */ 51 #define UBRC 0xac /* Baud Rate Count Register */ 52 #define IMX21_ONEMS 0xb0 /* One Millisecond register */ 53 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */ 54 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/ 55 56 /* UART Control Register Bit Fields.*/ 57 #define URXD_DUMMY_READ (1<<16) 58 #define URXD_CHARRDY (1<<15) 59 #define URXD_ERR (1<<14) 60 #define URXD_OVRRUN (1<<13) 61 #define URXD_FRMERR (1<<12) 62 #define URXD_BRK (1<<11) 63 #define URXD_PRERR (1<<10) 64 #define URXD_RX_DATA (0xFF<<0) 65 #define UCR1_ADEN (1<<15) /* Auto detect interrupt */ 66 #define UCR1_ADBR (1<<14) /* Auto detect baud rate */ 67 #define UCR1_TRDYEN (1<<13) /* Transmitter ready interrupt enable */ 68 #define UCR1_IDEN (1<<12) /* Idle condition interrupt */ 69 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */ 70 #define UCR1_RRDYEN (1<<9) /* Recv ready interrupt enable */ 71 #define UCR1_RXDMAEN (1<<8) /* Recv ready DMA enable */ 72 #define UCR1_IREN (1<<7) /* Infrared interface enable */ 73 #define UCR1_TXMPTYEN (1<<6) /* Transimitter empty interrupt enable */ 74 #define UCR1_RTSDEN (1<<5) /* RTS delta interrupt enable */ 75 #define UCR1_SNDBRK (1<<4) /* Send break */ 76 #define UCR1_TXDMAEN (1<<3) /* Transmitter ready DMA enable */ 77 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */ 78 #define UCR1_ATDMAEN (1<<2) /* Aging DMA Timer Enable */ 79 #define UCR1_DOZE (1<<1) /* Doze */ 80 #define UCR1_UARTEN (1<<0) /* UART enabled */ 81 #define UCR2_ESCI (1<<15) /* Escape seq interrupt enable */ 82 #define UCR2_IRTS (1<<14) /* Ignore RTS pin */ 83 #define UCR2_CTSC (1<<13) /* CTS pin control */ 84 #define UCR2_CTS (1<<12) /* Clear to send */ 85 #define UCR2_ESCEN (1<<11) /* Escape enable */ 86 #define UCR2_PREN (1<<8) /* Parity enable */ 87 #define UCR2_PROE (1<<7) /* Parity odd/even */ 88 #define UCR2_STPB (1<<6) /* Stop */ 89 #define UCR2_WS (1<<5) /* Word size */ 90 #define UCR2_RTSEN (1<<4) /* Request to send interrupt enable */ 91 #define UCR2_ATEN (1<<3) /* Aging Timer Enable */ 92 #define UCR2_TXEN (1<<2) /* Transmitter enabled */ 93 #define UCR2_RXEN (1<<1) /* Receiver enabled */ 94 #define UCR2_SRST (1<<0) /* SW reset */ 95 #define UCR3_DTREN (1<<13) /* DTR interrupt enable */ 96 #define UCR3_PARERREN (1<<12) /* Parity enable */ 97 #define UCR3_FRAERREN (1<<11) /* Frame error interrupt enable */ 98 #define UCR3_DSR (1<<10) /* Data set ready */ 99 #define UCR3_DCD (1<<9) /* Data carrier detect */ 100 #define UCR3_RI (1<<8) /* Ring indicator */ 101 #define UCR3_ADNIMP (1<<7) /* Autobaud Detection Not Improved */ 102 #define UCR3_RXDSEN (1<<6) /* Receive status interrupt enable */ 103 #define UCR3_AIRINTEN (1<<5) /* Async IR wake interrupt enable */ 104 #define UCR3_AWAKEN (1<<4) /* Async wake interrupt enable */ 105 #define UCR3_DTRDEN (1<<3) /* Data Terminal Ready Delta Enable. */ 106 #define IMX21_UCR3_RXDMUXSEL (1<<2) /* RXD Muxed Input Select */ 107 #define UCR3_INVT (1<<1) /* Inverted Infrared transmission */ 108 #define UCR3_BPEN (1<<0) /* Preset registers enable */ 109 #define UCR4_CTSTL_SHF 10 /* CTS trigger level shift */ 110 #define UCR4_CTSTL_MASK 0x3F /* CTS trigger is 6 bits wide */ 111 #define UCR4_INVR (1<<9) /* Inverted infrared reception */ 112 #define UCR4_ENIRI (1<<8) /* Serial infrared interrupt enable */ 113 #define UCR4_WKEN (1<<7) /* Wake interrupt enable */ 114 #define UCR4_REF16 (1<<6) /* Ref freq 16 MHz */ 115 #define UCR4_IDDMAEN (1<<6) /* DMA IDLE Condition Detected */ 116 #define UCR4_IRSC (1<<5) /* IR special case */ 117 #define UCR4_TCEN (1<<3) /* Transmit complete interrupt enable */ 118 #define UCR4_BKEN (1<<2) /* Break condition interrupt enable */ 119 #define UCR4_OREN (1<<1) /* Receiver overrun interrupt enable */ 120 #define UCR4_DREN (1<<0) /* Recv data ready interrupt enable */ 121 #define UFCR_RXTL_SHF 0 /* Receiver trigger level shift */ 122 #define UFCR_DCEDTE (1<<6) /* DCE/DTE mode select */ 123 #define UFCR_RFDIV (7<<7) /* Reference freq divider mask */ 124 #define UFCR_RFDIV_REG(x) (((x) < 7 ? 6 - (x) : 6) << 7) 125 #define UFCR_TXTL_SHF 10 /* Transmitter trigger level shift */ 126 #define USR1_PARITYERR (1<<15) /* Parity error interrupt flag */ 127 #define USR1_RTSS (1<<14) /* RTS pin status */ 128 #define USR1_TRDY (1<<13) /* Transmitter ready interrupt/dma flag */ 129 #define USR1_RTSD (1<<12) /* RTS delta */ 130 #define USR1_ESCF (1<<11) /* Escape seq interrupt flag */ 131 #define USR1_FRAMERR (1<<10) /* Frame error interrupt flag */ 132 #define USR1_RRDY (1<<9) /* Receiver ready interrupt/dma flag */ 133 #define USR1_AGTIM (1<<8) /* Ageing timer interrupt flag */ 134 #define USR1_DTRD (1<<7) /* DTR Delta */ 135 #define USR1_RXDS (1<<6) /* Receiver idle interrupt flag */ 136 #define USR1_AIRINT (1<<5) /* Async IR wake interrupt flag */ 137 #define USR1_AWAKE (1<<4) /* Aysnc wake interrupt flag */ 138 #define USR2_ADET (1<<15) /* Auto baud rate detect complete */ 139 #define USR2_TXFE (1<<14) /* Transmit buffer FIFO empty */ 140 #define USR2_DTRF (1<<13) /* DTR edge interrupt flag */ 141 #define USR2_IDLE (1<<12) /* Idle condition */ 142 #define USR2_RIDELT (1<<10) /* Ring Interrupt Delta */ 143 #define USR2_RIIN (1<<9) /* Ring Indicator Input */ 144 #define USR2_IRINT (1<<8) /* Serial infrared interrupt flag */ 145 #define USR2_WAKE (1<<7) /* Wake */ 146 #define USR2_DCDIN (1<<5) /* Data Carrier Detect Input */ 147 #define USR2_RTSF (1<<4) /* RTS edge interrupt flag */ 148 #define USR2_TXDC (1<<3) /* Transmitter complete */ 149 #define USR2_BRCD (1<<2) /* Break condition */ 150 #define USR2_ORE (1<<1) /* Overrun error */ 151 #define USR2_RDR (1<<0) /* Recv data ready */ 152 #define UTS_FRCPERR (1<<13) /* Force parity error */ 153 #define UTS_LOOP (1<<12) /* Loop tx and rx */ 154 #define UTS_TXEMPTY (1<<6) /* TxFIFO empty */ 155 #define UTS_RXEMPTY (1<<5) /* RxFIFO empty */ 156 #define UTS_TXFULL (1<<4) /* TxFIFO full */ 157 #define UTS_RXFULL (1<<3) /* RxFIFO full */ 158 #define UTS_SOFTRST (1<<0) /* Software reset */ 159 160 /* We've been assigned a range on the "Low-density serial ports" major */ 161 #define SERIAL_IMX_MAJOR 207 162 #define MINOR_START 16 163 #define DEV_NAME "ttymxc" 164 165 /* 166 * This determines how often we check the modem status signals 167 * for any change. They generally aren't connected to an IRQ 168 * so we have to poll them. We also check immediately before 169 * filling the TX fifo incase CTS has been dropped. 170 */ 171 #define MCTRL_TIMEOUT (250*HZ/1000) 172 173 #define DRIVER_NAME "IMX-uart" 174 175 #define UART_NR 8 176 177 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */ 178 enum imx_uart_type { 179 IMX1_UART, 180 IMX21_UART, 181 IMX53_UART, 182 IMX6Q_UART, 183 }; 184 185 /* device type dependent stuff */ 186 struct imx_uart_data { 187 unsigned uts_reg; 188 enum imx_uart_type devtype; 189 }; 190 191 enum imx_tx_state { 192 OFF, 193 WAIT_AFTER_RTS, 194 SEND, 195 WAIT_AFTER_SEND, 196 }; 197 198 struct imx_port { 199 struct uart_port port; 200 struct timer_list timer; 201 unsigned int old_status; 202 unsigned int have_rtscts:1; 203 unsigned int have_rtsgpio:1; 204 unsigned int dte_mode:1; 205 unsigned int inverted_tx:1; 206 unsigned int inverted_rx:1; 207 struct clk *clk_ipg; 208 struct clk *clk_per; 209 const struct imx_uart_data *devdata; 210 211 struct mctrl_gpios *gpios; 212 213 /* shadow registers */ 214 unsigned int ucr1; 215 unsigned int ucr2; 216 unsigned int ucr3; 217 unsigned int ucr4; 218 unsigned int ufcr; 219 220 /* DMA fields */ 221 unsigned int dma_is_enabled:1; 222 unsigned int dma_is_rxing:1; 223 unsigned int dma_is_txing:1; 224 struct dma_chan *dma_chan_rx, *dma_chan_tx; 225 struct scatterlist rx_sgl, tx_sgl[2]; 226 void *rx_buf; 227 struct circ_buf rx_ring; 228 unsigned int rx_buf_size; 229 unsigned int rx_period_length; 230 unsigned int rx_periods; 231 dma_cookie_t rx_cookie; 232 unsigned int tx_bytes; 233 unsigned int dma_tx_nents; 234 unsigned int saved_reg[10]; 235 bool context_saved; 236 237 enum imx_tx_state tx_state; 238 struct hrtimer trigger_start_tx; 239 struct hrtimer trigger_stop_tx; 240 }; 241 242 struct imx_port_ucrs { 243 unsigned int ucr1; 244 unsigned int ucr2; 245 unsigned int ucr3; 246 }; 247 248 static struct imx_uart_data imx_uart_devdata[] = { 249 [IMX1_UART] = { 250 .uts_reg = IMX1_UTS, 251 .devtype = IMX1_UART, 252 }, 253 [IMX21_UART] = { 254 .uts_reg = IMX21_UTS, 255 .devtype = IMX21_UART, 256 }, 257 [IMX53_UART] = { 258 .uts_reg = IMX21_UTS, 259 .devtype = IMX53_UART, 260 }, 261 [IMX6Q_UART] = { 262 .uts_reg = IMX21_UTS, 263 .devtype = IMX6Q_UART, 264 }, 265 }; 266 267 static const struct of_device_id imx_uart_dt_ids[] = { 268 { .compatible = "fsl,imx6q-uart", .data = &imx_uart_devdata[IMX6Q_UART], }, 269 { .compatible = "fsl,imx53-uart", .data = &imx_uart_devdata[IMX53_UART], }, 270 { .compatible = "fsl,imx1-uart", .data = &imx_uart_devdata[IMX1_UART], }, 271 { .compatible = "fsl,imx21-uart", .data = &imx_uart_devdata[IMX21_UART], }, 272 { /* sentinel */ } 273 }; 274 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids); 275 276 static void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset) 277 { 278 switch (offset) { 279 case UCR1: 280 sport->ucr1 = val; 281 break; 282 case UCR2: 283 sport->ucr2 = val; 284 break; 285 case UCR3: 286 sport->ucr3 = val; 287 break; 288 case UCR4: 289 sport->ucr4 = val; 290 break; 291 case UFCR: 292 sport->ufcr = val; 293 break; 294 default: 295 break; 296 } 297 writel(val, sport->port.membase + offset); 298 } 299 300 static u32 imx_uart_readl(struct imx_port *sport, u32 offset) 301 { 302 switch (offset) { 303 case UCR1: 304 return sport->ucr1; 305 break; 306 case UCR2: 307 /* 308 * UCR2_SRST is the only bit in the cached registers that might 309 * differ from the value that was last written. As it only 310 * automatically becomes one after being cleared, reread 311 * conditionally. 312 */ 313 if (!(sport->ucr2 & UCR2_SRST)) 314 sport->ucr2 = readl(sport->port.membase + offset); 315 return sport->ucr2; 316 break; 317 case UCR3: 318 return sport->ucr3; 319 break; 320 case UCR4: 321 return sport->ucr4; 322 break; 323 case UFCR: 324 return sport->ufcr; 325 break; 326 default: 327 return readl(sport->port.membase + offset); 328 } 329 } 330 331 static inline unsigned imx_uart_uts_reg(struct imx_port *sport) 332 { 333 return sport->devdata->uts_reg; 334 } 335 336 static inline int imx_uart_is_imx1(struct imx_port *sport) 337 { 338 return sport->devdata->devtype == IMX1_UART; 339 } 340 341 static inline int imx_uart_is_imx21(struct imx_port *sport) 342 { 343 return sport->devdata->devtype == IMX21_UART; 344 } 345 346 static inline int imx_uart_is_imx53(struct imx_port *sport) 347 { 348 return sport->devdata->devtype == IMX53_UART; 349 } 350 351 static inline int imx_uart_is_imx6q(struct imx_port *sport) 352 { 353 return sport->devdata->devtype == IMX6Q_UART; 354 } 355 /* 356 * Save and restore functions for UCR1, UCR2 and UCR3 registers 357 */ 358 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE) 359 static void imx_uart_ucrs_save(struct imx_port *sport, 360 struct imx_port_ucrs *ucr) 361 { 362 /* save control registers */ 363 ucr->ucr1 = imx_uart_readl(sport, UCR1); 364 ucr->ucr2 = imx_uart_readl(sport, UCR2); 365 ucr->ucr3 = imx_uart_readl(sport, UCR3); 366 } 367 368 static void imx_uart_ucrs_restore(struct imx_port *sport, 369 struct imx_port_ucrs *ucr) 370 { 371 /* restore control registers */ 372 imx_uart_writel(sport, ucr->ucr1, UCR1); 373 imx_uart_writel(sport, ucr->ucr2, UCR2); 374 imx_uart_writel(sport, ucr->ucr3, UCR3); 375 } 376 #endif 377 378 /* called with port.lock taken and irqs caller dependent */ 379 static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2) 380 { 381 *ucr2 &= ~(UCR2_CTSC | UCR2_CTS); 382 383 sport->port.mctrl |= TIOCM_RTS; 384 mctrl_gpio_set(sport->gpios, sport->port.mctrl); 385 } 386 387 /* called with port.lock taken and irqs caller dependent */ 388 static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2) 389 { 390 *ucr2 &= ~UCR2_CTSC; 391 *ucr2 |= UCR2_CTS; 392 393 sport->port.mctrl &= ~TIOCM_RTS; 394 mctrl_gpio_set(sport->gpios, sport->port.mctrl); 395 } 396 397 static void start_hrtimer_ms(struct hrtimer *hrt, unsigned long msec) 398 { 399 hrtimer_start(hrt, ms_to_ktime(msec), HRTIMER_MODE_REL); 400 } 401 402 /* called with port.lock taken and irqs off */ 403 static void imx_uart_start_rx(struct uart_port *port) 404 { 405 struct imx_port *sport = (struct imx_port *)port; 406 unsigned int ucr1, ucr2; 407 408 ucr1 = imx_uart_readl(sport, UCR1); 409 ucr2 = imx_uart_readl(sport, UCR2); 410 411 ucr2 |= UCR2_RXEN; 412 413 if (sport->dma_is_enabled) { 414 ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN; 415 } else { 416 ucr1 |= UCR1_RRDYEN; 417 ucr2 |= UCR2_ATEN; 418 } 419 420 /* Write UCR2 first as it includes RXEN */ 421 imx_uart_writel(sport, ucr2, UCR2); 422 imx_uart_writel(sport, ucr1, UCR1); 423 } 424 425 /* called with port.lock taken and irqs off */ 426 static void imx_uart_stop_tx(struct uart_port *port) 427 { 428 struct imx_port *sport = (struct imx_port *)port; 429 u32 ucr1, ucr4, usr2; 430 431 if (sport->tx_state == OFF) 432 return; 433 434 /* 435 * We are maybe in the SMP context, so if the DMA TX thread is running 436 * on other cpu, we have to wait for it to finish. 437 */ 438 if (sport->dma_is_txing) 439 return; 440 441 ucr1 = imx_uart_readl(sport, UCR1); 442 imx_uart_writel(sport, ucr1 & ~UCR1_TRDYEN, UCR1); 443 444 usr2 = imx_uart_readl(sport, USR2); 445 if (!(usr2 & USR2_TXDC)) { 446 /* The shifter is still busy, so retry once TC triggers */ 447 return; 448 } 449 450 ucr4 = imx_uart_readl(sport, UCR4); 451 ucr4 &= ~UCR4_TCEN; 452 imx_uart_writel(sport, ucr4, UCR4); 453 454 /* in rs485 mode disable transmitter */ 455 if (port->rs485.flags & SER_RS485_ENABLED) { 456 if (sport->tx_state == SEND) { 457 sport->tx_state = WAIT_AFTER_SEND; 458 459 if (port->rs485.delay_rts_after_send > 0) { 460 start_hrtimer_ms(&sport->trigger_stop_tx, 461 port->rs485.delay_rts_after_send); 462 return; 463 } 464 465 /* continue without any delay */ 466 } 467 468 if (sport->tx_state == WAIT_AFTER_RTS || 469 sport->tx_state == WAIT_AFTER_SEND) { 470 u32 ucr2; 471 472 hrtimer_try_to_cancel(&sport->trigger_start_tx); 473 474 ucr2 = imx_uart_readl(sport, UCR2); 475 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 476 imx_uart_rts_active(sport, &ucr2); 477 else 478 imx_uart_rts_inactive(sport, &ucr2); 479 imx_uart_writel(sport, ucr2, UCR2); 480 481 imx_uart_start_rx(port); 482 483 sport->tx_state = OFF; 484 } 485 } else { 486 sport->tx_state = OFF; 487 } 488 } 489 490 /* called with port.lock taken and irqs off */ 491 static void imx_uart_stop_rx(struct uart_port *port) 492 { 493 struct imx_port *sport = (struct imx_port *)port; 494 u32 ucr1, ucr2, ucr4; 495 496 ucr1 = imx_uart_readl(sport, UCR1); 497 ucr2 = imx_uart_readl(sport, UCR2); 498 ucr4 = imx_uart_readl(sport, UCR4); 499 500 if (sport->dma_is_enabled) { 501 ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN); 502 } else { 503 ucr1 &= ~UCR1_RRDYEN; 504 ucr2 &= ~UCR2_ATEN; 505 ucr4 &= ~UCR4_OREN; 506 } 507 imx_uart_writel(sport, ucr1, UCR1); 508 imx_uart_writel(sport, ucr4, UCR4); 509 510 ucr2 &= ~UCR2_RXEN; 511 imx_uart_writel(sport, ucr2, UCR2); 512 } 513 514 /* called with port.lock taken and irqs off */ 515 static void imx_uart_enable_ms(struct uart_port *port) 516 { 517 struct imx_port *sport = (struct imx_port *)port; 518 519 mod_timer(&sport->timer, jiffies); 520 521 mctrl_gpio_enable_ms(sport->gpios); 522 } 523 524 static void imx_uart_dma_tx(struct imx_port *sport); 525 526 /* called with port.lock taken and irqs off */ 527 static inline void imx_uart_transmit_buffer(struct imx_port *sport) 528 { 529 struct circ_buf *xmit = &sport->port.state->xmit; 530 531 if (sport->port.x_char) { 532 /* Send next char */ 533 imx_uart_writel(sport, sport->port.x_char, URTX0); 534 sport->port.icount.tx++; 535 sport->port.x_char = 0; 536 return; 537 } 538 539 if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) { 540 imx_uart_stop_tx(&sport->port); 541 return; 542 } 543 544 if (sport->dma_is_enabled) { 545 u32 ucr1; 546 /* 547 * We've just sent a X-char Ensure the TX DMA is enabled 548 * and the TX IRQ is disabled. 549 **/ 550 ucr1 = imx_uart_readl(sport, UCR1); 551 ucr1 &= ~UCR1_TRDYEN; 552 if (sport->dma_is_txing) { 553 ucr1 |= UCR1_TXDMAEN; 554 imx_uart_writel(sport, ucr1, UCR1); 555 } else { 556 imx_uart_writel(sport, ucr1, UCR1); 557 imx_uart_dma_tx(sport); 558 } 559 560 return; 561 } 562 563 while (!uart_circ_empty(xmit) && 564 !(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)) { 565 /* send xmit->buf[xmit->tail] 566 * out the port here */ 567 imx_uart_writel(sport, xmit->buf[xmit->tail], URTX0); 568 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); 569 sport->port.icount.tx++; 570 } 571 572 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 573 uart_write_wakeup(&sport->port); 574 575 if (uart_circ_empty(xmit)) 576 imx_uart_stop_tx(&sport->port); 577 } 578 579 static void imx_uart_dma_tx_callback(void *data) 580 { 581 struct imx_port *sport = data; 582 struct scatterlist *sgl = &sport->tx_sgl[0]; 583 struct circ_buf *xmit = &sport->port.state->xmit; 584 unsigned long flags; 585 u32 ucr1; 586 587 spin_lock_irqsave(&sport->port.lock, flags); 588 589 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); 590 591 ucr1 = imx_uart_readl(sport, UCR1); 592 ucr1 &= ~UCR1_TXDMAEN; 593 imx_uart_writel(sport, ucr1, UCR1); 594 595 /* update the stat */ 596 xmit->tail = (xmit->tail + sport->tx_bytes) & (UART_XMIT_SIZE - 1); 597 sport->port.icount.tx += sport->tx_bytes; 598 599 dev_dbg(sport->port.dev, "we finish the TX DMA.\n"); 600 601 sport->dma_is_txing = 0; 602 603 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 604 uart_write_wakeup(&sport->port); 605 606 if (!uart_circ_empty(xmit) && !uart_tx_stopped(&sport->port)) 607 imx_uart_dma_tx(sport); 608 else if (sport->port.rs485.flags & SER_RS485_ENABLED) { 609 u32 ucr4 = imx_uart_readl(sport, UCR4); 610 ucr4 |= UCR4_TCEN; 611 imx_uart_writel(sport, ucr4, UCR4); 612 } 613 614 spin_unlock_irqrestore(&sport->port.lock, flags); 615 } 616 617 /* called with port.lock taken and irqs off */ 618 static void imx_uart_dma_tx(struct imx_port *sport) 619 { 620 struct circ_buf *xmit = &sport->port.state->xmit; 621 struct scatterlist *sgl = sport->tx_sgl; 622 struct dma_async_tx_descriptor *desc; 623 struct dma_chan *chan = sport->dma_chan_tx; 624 struct device *dev = sport->port.dev; 625 u32 ucr1, ucr4; 626 int ret; 627 628 if (sport->dma_is_txing) 629 return; 630 631 ucr4 = imx_uart_readl(sport, UCR4); 632 ucr4 &= ~UCR4_TCEN; 633 imx_uart_writel(sport, ucr4, UCR4); 634 635 sport->tx_bytes = uart_circ_chars_pending(xmit); 636 637 if (xmit->tail < xmit->head || xmit->head == 0) { 638 sport->dma_tx_nents = 1; 639 sg_init_one(sgl, xmit->buf + xmit->tail, sport->tx_bytes); 640 } else { 641 sport->dma_tx_nents = 2; 642 sg_init_table(sgl, 2); 643 sg_set_buf(sgl, xmit->buf + xmit->tail, 644 UART_XMIT_SIZE - xmit->tail); 645 sg_set_buf(sgl + 1, xmit->buf, xmit->head); 646 } 647 648 ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); 649 if (ret == 0) { 650 dev_err(dev, "DMA mapping error for TX.\n"); 651 return; 652 } 653 desc = dmaengine_prep_slave_sg(chan, sgl, ret, 654 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT); 655 if (!desc) { 656 dma_unmap_sg(dev, sgl, sport->dma_tx_nents, 657 DMA_TO_DEVICE); 658 dev_err(dev, "We cannot prepare for the TX slave dma!\n"); 659 return; 660 } 661 desc->callback = imx_uart_dma_tx_callback; 662 desc->callback_param = sport; 663 664 dev_dbg(dev, "TX: prepare to send %lu bytes by DMA.\n", 665 uart_circ_chars_pending(xmit)); 666 667 ucr1 = imx_uart_readl(sport, UCR1); 668 ucr1 |= UCR1_TXDMAEN; 669 imx_uart_writel(sport, ucr1, UCR1); 670 671 /* fire it */ 672 sport->dma_is_txing = 1; 673 dmaengine_submit(desc); 674 dma_async_issue_pending(chan); 675 return; 676 } 677 678 /* called with port.lock taken and irqs off */ 679 static void imx_uart_start_tx(struct uart_port *port) 680 { 681 struct imx_port *sport = (struct imx_port *)port; 682 u32 ucr1; 683 684 if (!sport->port.x_char && uart_circ_empty(&port->state->xmit)) 685 return; 686 687 /* 688 * We cannot simply do nothing here if sport->tx_state == SEND already 689 * because UCR1_TXMPTYEN might already have been cleared in 690 * imx_uart_stop_tx(), but tx_state is still SEND. 691 */ 692 693 if (port->rs485.flags & SER_RS485_ENABLED) { 694 if (sport->tx_state == OFF) { 695 u32 ucr2 = imx_uart_readl(sport, UCR2); 696 if (port->rs485.flags & SER_RS485_RTS_ON_SEND) 697 imx_uart_rts_active(sport, &ucr2); 698 else 699 imx_uart_rts_inactive(sport, &ucr2); 700 imx_uart_writel(sport, ucr2, UCR2); 701 702 if (!(port->rs485.flags & SER_RS485_RX_DURING_TX)) 703 imx_uart_stop_rx(port); 704 705 sport->tx_state = WAIT_AFTER_RTS; 706 707 if (port->rs485.delay_rts_before_send > 0) { 708 start_hrtimer_ms(&sport->trigger_start_tx, 709 port->rs485.delay_rts_before_send); 710 return; 711 } 712 713 /* continue without any delay */ 714 } 715 716 if (sport->tx_state == WAIT_AFTER_SEND 717 || sport->tx_state == WAIT_AFTER_RTS) { 718 719 hrtimer_try_to_cancel(&sport->trigger_stop_tx); 720 721 /* 722 * Enable transmitter and shifter empty irq only if DMA 723 * is off. In the DMA case this is done in the 724 * tx-callback. 725 */ 726 if (!sport->dma_is_enabled) { 727 u32 ucr4 = imx_uart_readl(sport, UCR4); 728 ucr4 |= UCR4_TCEN; 729 imx_uart_writel(sport, ucr4, UCR4); 730 } 731 732 sport->tx_state = SEND; 733 } 734 } else { 735 sport->tx_state = SEND; 736 } 737 738 if (!sport->dma_is_enabled) { 739 ucr1 = imx_uart_readl(sport, UCR1); 740 imx_uart_writel(sport, ucr1 | UCR1_TRDYEN, UCR1); 741 } 742 743 if (sport->dma_is_enabled) { 744 if (sport->port.x_char) { 745 /* We have X-char to send, so enable TX IRQ and 746 * disable TX DMA to let TX interrupt to send X-char */ 747 ucr1 = imx_uart_readl(sport, UCR1); 748 ucr1 &= ~UCR1_TXDMAEN; 749 ucr1 |= UCR1_TRDYEN; 750 imx_uart_writel(sport, ucr1, UCR1); 751 return; 752 } 753 754 if (!uart_circ_empty(&port->state->xmit) && 755 !uart_tx_stopped(port)) 756 imx_uart_dma_tx(sport); 757 return; 758 } 759 } 760 761 static irqreturn_t __imx_uart_rtsint(int irq, void *dev_id) 762 { 763 struct imx_port *sport = dev_id; 764 u32 usr1; 765 766 imx_uart_writel(sport, USR1_RTSD, USR1); 767 usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS; 768 uart_handle_cts_change(&sport->port, !!usr1); 769 wake_up_interruptible(&sport->port.state->port.delta_msr_wait); 770 771 return IRQ_HANDLED; 772 } 773 774 static irqreturn_t imx_uart_rtsint(int irq, void *dev_id) 775 { 776 struct imx_port *sport = dev_id; 777 irqreturn_t ret; 778 779 spin_lock(&sport->port.lock); 780 781 ret = __imx_uart_rtsint(irq, dev_id); 782 783 spin_unlock(&sport->port.lock); 784 785 return ret; 786 } 787 788 static irqreturn_t imx_uart_txint(int irq, void *dev_id) 789 { 790 struct imx_port *sport = dev_id; 791 792 spin_lock(&sport->port.lock); 793 imx_uart_transmit_buffer(sport); 794 spin_unlock(&sport->port.lock); 795 return IRQ_HANDLED; 796 } 797 798 static irqreturn_t __imx_uart_rxint(int irq, void *dev_id) 799 { 800 struct imx_port *sport = dev_id; 801 unsigned int rx, flg, ignored = 0; 802 struct tty_port *port = &sport->port.state->port; 803 804 while (imx_uart_readl(sport, USR2) & USR2_RDR) { 805 u32 usr2; 806 807 flg = TTY_NORMAL; 808 sport->port.icount.rx++; 809 810 rx = imx_uart_readl(sport, URXD0); 811 812 usr2 = imx_uart_readl(sport, USR2); 813 if (usr2 & USR2_BRCD) { 814 imx_uart_writel(sport, USR2_BRCD, USR2); 815 if (uart_handle_break(&sport->port)) 816 continue; 817 } 818 819 if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx)) 820 continue; 821 822 if (unlikely(rx & URXD_ERR)) { 823 if (rx & URXD_BRK) 824 sport->port.icount.brk++; 825 else if (rx & URXD_PRERR) 826 sport->port.icount.parity++; 827 else if (rx & URXD_FRMERR) 828 sport->port.icount.frame++; 829 if (rx & URXD_OVRRUN) 830 sport->port.icount.overrun++; 831 832 if (rx & sport->port.ignore_status_mask) { 833 if (++ignored > 100) 834 goto out; 835 continue; 836 } 837 838 rx &= (sport->port.read_status_mask | 0xFF); 839 840 if (rx & URXD_BRK) 841 flg = TTY_BREAK; 842 else if (rx & URXD_PRERR) 843 flg = TTY_PARITY; 844 else if (rx & URXD_FRMERR) 845 flg = TTY_FRAME; 846 if (rx & URXD_OVRRUN) 847 flg = TTY_OVERRUN; 848 849 sport->port.sysrq = 0; 850 } 851 852 if (sport->port.ignore_status_mask & URXD_DUMMY_READ) 853 goto out; 854 855 if (tty_insert_flip_char(port, rx, flg) == 0) 856 sport->port.icount.buf_overrun++; 857 } 858 859 out: 860 tty_flip_buffer_push(port); 861 862 return IRQ_HANDLED; 863 } 864 865 static irqreturn_t imx_uart_rxint(int irq, void *dev_id) 866 { 867 struct imx_port *sport = dev_id; 868 irqreturn_t ret; 869 870 spin_lock(&sport->port.lock); 871 872 ret = __imx_uart_rxint(irq, dev_id); 873 874 spin_unlock(&sport->port.lock); 875 876 return ret; 877 } 878 879 static void imx_uart_clear_rx_errors(struct imx_port *sport); 880 881 /* 882 * We have a modem side uart, so the meanings of RTS and CTS are inverted. 883 */ 884 static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport) 885 { 886 unsigned int tmp = TIOCM_DSR; 887 unsigned usr1 = imx_uart_readl(sport, USR1); 888 unsigned usr2 = imx_uart_readl(sport, USR2); 889 890 if (usr1 & USR1_RTSS) 891 tmp |= TIOCM_CTS; 892 893 /* in DCE mode DCDIN is always 0 */ 894 if (!(usr2 & USR2_DCDIN)) 895 tmp |= TIOCM_CAR; 896 897 if (sport->dte_mode) 898 if (!(imx_uart_readl(sport, USR2) & USR2_RIIN)) 899 tmp |= TIOCM_RI; 900 901 return tmp; 902 } 903 904 /* 905 * Handle any change of modem status signal since we were last called. 906 */ 907 static void imx_uart_mctrl_check(struct imx_port *sport) 908 { 909 unsigned int status, changed; 910 911 status = imx_uart_get_hwmctrl(sport); 912 changed = status ^ sport->old_status; 913 914 if (changed == 0) 915 return; 916 917 sport->old_status = status; 918 919 if (changed & TIOCM_RI && status & TIOCM_RI) 920 sport->port.icount.rng++; 921 if (changed & TIOCM_DSR) 922 sport->port.icount.dsr++; 923 if (changed & TIOCM_CAR) 924 uart_handle_dcd_change(&sport->port, status & TIOCM_CAR); 925 if (changed & TIOCM_CTS) 926 uart_handle_cts_change(&sport->port, status & TIOCM_CTS); 927 928 wake_up_interruptible(&sport->port.state->port.delta_msr_wait); 929 } 930 931 static irqreturn_t imx_uart_int(int irq, void *dev_id) 932 { 933 struct imx_port *sport = dev_id; 934 unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4; 935 irqreturn_t ret = IRQ_NONE; 936 937 spin_lock(&sport->port.lock); 938 939 usr1 = imx_uart_readl(sport, USR1); 940 usr2 = imx_uart_readl(sport, USR2); 941 ucr1 = imx_uart_readl(sport, UCR1); 942 ucr2 = imx_uart_readl(sport, UCR2); 943 ucr3 = imx_uart_readl(sport, UCR3); 944 ucr4 = imx_uart_readl(sport, UCR4); 945 946 /* 947 * Even if a condition is true that can trigger an irq only handle it if 948 * the respective irq source is enabled. This prevents some undesired 949 * actions, for example if a character that sits in the RX FIFO and that 950 * should be fetched via DMA is tried to be fetched using PIO. Or the 951 * receiver is currently off and so reading from URXD0 results in an 952 * exception. So just mask the (raw) status bits for disabled irqs. 953 */ 954 if ((ucr1 & UCR1_RRDYEN) == 0) 955 usr1 &= ~USR1_RRDY; 956 if ((ucr2 & UCR2_ATEN) == 0) 957 usr1 &= ~USR1_AGTIM; 958 if ((ucr1 & UCR1_TRDYEN) == 0) 959 usr1 &= ~USR1_TRDY; 960 if ((ucr4 & UCR4_TCEN) == 0) 961 usr2 &= ~USR2_TXDC; 962 if ((ucr3 & UCR3_DTRDEN) == 0) 963 usr1 &= ~USR1_DTRD; 964 if ((ucr1 & UCR1_RTSDEN) == 0) 965 usr1 &= ~USR1_RTSD; 966 if ((ucr3 & UCR3_AWAKEN) == 0) 967 usr1 &= ~USR1_AWAKE; 968 if ((ucr4 & UCR4_OREN) == 0) 969 usr2 &= ~USR2_ORE; 970 971 if (usr1 & (USR1_RRDY | USR1_AGTIM)) { 972 imx_uart_writel(sport, USR1_AGTIM, USR1); 973 974 __imx_uart_rxint(irq, dev_id); 975 ret = IRQ_HANDLED; 976 } 977 978 if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) { 979 imx_uart_transmit_buffer(sport); 980 ret = IRQ_HANDLED; 981 } 982 983 if (usr1 & USR1_DTRD) { 984 imx_uart_writel(sport, USR1_DTRD, USR1); 985 986 imx_uart_mctrl_check(sport); 987 988 ret = IRQ_HANDLED; 989 } 990 991 if (usr1 & USR1_RTSD) { 992 __imx_uart_rtsint(irq, dev_id); 993 ret = IRQ_HANDLED; 994 } 995 996 if (usr1 & USR1_AWAKE) { 997 imx_uart_writel(sport, USR1_AWAKE, USR1); 998 ret = IRQ_HANDLED; 999 } 1000 1001 if (usr2 & USR2_ORE) { 1002 sport->port.icount.overrun++; 1003 imx_uart_writel(sport, USR2_ORE, USR2); 1004 ret = IRQ_HANDLED; 1005 } 1006 1007 spin_unlock(&sport->port.lock); 1008 1009 return ret; 1010 } 1011 1012 /* 1013 * Return TIOCSER_TEMT when transmitter is not busy. 1014 */ 1015 static unsigned int imx_uart_tx_empty(struct uart_port *port) 1016 { 1017 struct imx_port *sport = (struct imx_port *)port; 1018 unsigned int ret; 1019 1020 ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ? TIOCSER_TEMT : 0; 1021 1022 /* If the TX DMA is working, return 0. */ 1023 if (sport->dma_is_txing) 1024 ret = 0; 1025 1026 return ret; 1027 } 1028 1029 /* called with port.lock taken and irqs off */ 1030 static unsigned int imx_uart_get_mctrl(struct uart_port *port) 1031 { 1032 struct imx_port *sport = (struct imx_port *)port; 1033 unsigned int ret = imx_uart_get_hwmctrl(sport); 1034 1035 mctrl_gpio_get(sport->gpios, &ret); 1036 1037 return ret; 1038 } 1039 1040 /* called with port.lock taken and irqs off */ 1041 static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl) 1042 { 1043 struct imx_port *sport = (struct imx_port *)port; 1044 u32 ucr3, uts; 1045 1046 if (!(port->rs485.flags & SER_RS485_ENABLED)) { 1047 u32 ucr2; 1048 1049 /* 1050 * Turn off autoRTS if RTS is lowered and restore autoRTS 1051 * setting if RTS is raised. 1052 */ 1053 ucr2 = imx_uart_readl(sport, UCR2); 1054 ucr2 &= ~(UCR2_CTS | UCR2_CTSC); 1055 if (mctrl & TIOCM_RTS) { 1056 ucr2 |= UCR2_CTS; 1057 /* 1058 * UCR2_IRTS is unset if and only if the port is 1059 * configured for CRTSCTS, so we use inverted UCR2_IRTS 1060 * to get the state to restore to. 1061 */ 1062 if (!(ucr2 & UCR2_IRTS)) 1063 ucr2 |= UCR2_CTSC; 1064 } 1065 imx_uart_writel(sport, ucr2, UCR2); 1066 } 1067 1068 ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR; 1069 if (!(mctrl & TIOCM_DTR)) 1070 ucr3 |= UCR3_DSR; 1071 imx_uart_writel(sport, ucr3, UCR3); 1072 1073 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP; 1074 if (mctrl & TIOCM_LOOP) 1075 uts |= UTS_LOOP; 1076 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 1077 1078 mctrl_gpio_set(sport->gpios, mctrl); 1079 } 1080 1081 /* 1082 * Interrupts always disabled. 1083 */ 1084 static void imx_uart_break_ctl(struct uart_port *port, int break_state) 1085 { 1086 struct imx_port *sport = (struct imx_port *)port; 1087 unsigned long flags; 1088 u32 ucr1; 1089 1090 spin_lock_irqsave(&sport->port.lock, flags); 1091 1092 ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK; 1093 1094 if (break_state != 0) 1095 ucr1 |= UCR1_SNDBRK; 1096 1097 imx_uart_writel(sport, ucr1, UCR1); 1098 1099 spin_unlock_irqrestore(&sport->port.lock, flags); 1100 } 1101 1102 /* 1103 * This is our per-port timeout handler, for checking the 1104 * modem status signals. 1105 */ 1106 static void imx_uart_timeout(struct timer_list *t) 1107 { 1108 struct imx_port *sport = from_timer(sport, t, timer); 1109 unsigned long flags; 1110 1111 if (sport->port.state) { 1112 spin_lock_irqsave(&sport->port.lock, flags); 1113 imx_uart_mctrl_check(sport); 1114 spin_unlock_irqrestore(&sport->port.lock, flags); 1115 1116 mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT); 1117 } 1118 } 1119 1120 /* 1121 * There are two kinds of RX DMA interrupts(such as in the MX6Q): 1122 * [1] the RX DMA buffer is full. 1123 * [2] the aging timer expires 1124 * 1125 * Condition [2] is triggered when a character has been sitting in the FIFO 1126 * for at least 8 byte durations. 1127 */ 1128 static void imx_uart_dma_rx_callback(void *data) 1129 { 1130 struct imx_port *sport = data; 1131 struct dma_chan *chan = sport->dma_chan_rx; 1132 struct scatterlist *sgl = &sport->rx_sgl; 1133 struct tty_port *port = &sport->port.state->port; 1134 struct dma_tx_state state; 1135 struct circ_buf *rx_ring = &sport->rx_ring; 1136 enum dma_status status; 1137 unsigned int w_bytes = 0; 1138 unsigned int r_bytes; 1139 unsigned int bd_size; 1140 1141 status = dmaengine_tx_status(chan, sport->rx_cookie, &state); 1142 1143 if (status == DMA_ERROR) { 1144 imx_uart_clear_rx_errors(sport); 1145 return; 1146 } 1147 1148 if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) { 1149 1150 /* 1151 * The state-residue variable represents the empty space 1152 * relative to the entire buffer. Taking this in consideration 1153 * the head is always calculated base on the buffer total 1154 * length - DMA transaction residue. The UART script from the 1155 * SDMA firmware will jump to the next buffer descriptor, 1156 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4). 1157 * Taking this in consideration the tail is always at the 1158 * beginning of the buffer descriptor that contains the head. 1159 */ 1160 1161 /* Calculate the head */ 1162 rx_ring->head = sg_dma_len(sgl) - state.residue; 1163 1164 /* Calculate the tail. */ 1165 bd_size = sg_dma_len(sgl) / sport->rx_periods; 1166 rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size; 1167 1168 if (rx_ring->head <= sg_dma_len(sgl) && 1169 rx_ring->head > rx_ring->tail) { 1170 1171 /* Move data from tail to head */ 1172 r_bytes = rx_ring->head - rx_ring->tail; 1173 1174 /* CPU claims ownership of RX DMA buffer */ 1175 dma_sync_sg_for_cpu(sport->port.dev, sgl, 1, 1176 DMA_FROM_DEVICE); 1177 1178 w_bytes = tty_insert_flip_string(port, 1179 sport->rx_buf + rx_ring->tail, r_bytes); 1180 1181 /* UART retrieves ownership of RX DMA buffer */ 1182 dma_sync_sg_for_device(sport->port.dev, sgl, 1, 1183 DMA_FROM_DEVICE); 1184 1185 if (w_bytes != r_bytes) 1186 sport->port.icount.buf_overrun++; 1187 1188 sport->port.icount.rx += w_bytes; 1189 } else { 1190 WARN_ON(rx_ring->head > sg_dma_len(sgl)); 1191 WARN_ON(rx_ring->head <= rx_ring->tail); 1192 } 1193 } 1194 1195 if (w_bytes) { 1196 tty_flip_buffer_push(port); 1197 dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes); 1198 } 1199 } 1200 1201 static int imx_uart_start_rx_dma(struct imx_port *sport) 1202 { 1203 struct scatterlist *sgl = &sport->rx_sgl; 1204 struct dma_chan *chan = sport->dma_chan_rx; 1205 struct device *dev = sport->port.dev; 1206 struct dma_async_tx_descriptor *desc; 1207 int ret; 1208 1209 sport->rx_ring.head = 0; 1210 sport->rx_ring.tail = 0; 1211 1212 sg_init_one(sgl, sport->rx_buf, sport->rx_buf_size); 1213 ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE); 1214 if (ret == 0) { 1215 dev_err(dev, "DMA mapping error for RX.\n"); 1216 return -EINVAL; 1217 } 1218 1219 desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl), 1220 sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods, 1221 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT); 1222 1223 if (!desc) { 1224 dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE); 1225 dev_err(dev, "We cannot prepare for the RX slave dma!\n"); 1226 return -EINVAL; 1227 } 1228 desc->callback = imx_uart_dma_rx_callback; 1229 desc->callback_param = sport; 1230 1231 dev_dbg(dev, "RX: prepare for the DMA.\n"); 1232 sport->dma_is_rxing = 1; 1233 sport->rx_cookie = dmaengine_submit(desc); 1234 dma_async_issue_pending(chan); 1235 return 0; 1236 } 1237 1238 static void imx_uart_clear_rx_errors(struct imx_port *sport) 1239 { 1240 struct tty_port *port = &sport->port.state->port; 1241 u32 usr1, usr2; 1242 1243 usr1 = imx_uart_readl(sport, USR1); 1244 usr2 = imx_uart_readl(sport, USR2); 1245 1246 if (usr2 & USR2_BRCD) { 1247 sport->port.icount.brk++; 1248 imx_uart_writel(sport, USR2_BRCD, USR2); 1249 uart_handle_break(&sport->port); 1250 if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0) 1251 sport->port.icount.buf_overrun++; 1252 tty_flip_buffer_push(port); 1253 } else { 1254 if (usr1 & USR1_FRAMERR) { 1255 sport->port.icount.frame++; 1256 imx_uart_writel(sport, USR1_FRAMERR, USR1); 1257 } else if (usr1 & USR1_PARITYERR) { 1258 sport->port.icount.parity++; 1259 imx_uart_writel(sport, USR1_PARITYERR, USR1); 1260 } 1261 } 1262 1263 if (usr2 & USR2_ORE) { 1264 sport->port.icount.overrun++; 1265 imx_uart_writel(sport, USR2_ORE, USR2); 1266 } 1267 1268 } 1269 1270 #define TXTL_DEFAULT 2 /* reset default */ 1271 #define RXTL_DEFAULT 8 /* 8 characters or aging timer */ 1272 #define TXTL_DMA 8 /* DMA burst setting */ 1273 #define RXTL_DMA 9 /* DMA burst setting */ 1274 1275 static void imx_uart_setup_ufcr(struct imx_port *sport, 1276 unsigned char txwl, unsigned char rxwl) 1277 { 1278 unsigned int val; 1279 1280 /* set receiver / transmitter trigger level */ 1281 val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE); 1282 val |= txwl << UFCR_TXTL_SHF | rxwl; 1283 imx_uart_writel(sport, val, UFCR); 1284 } 1285 1286 static void imx_uart_dma_exit(struct imx_port *sport) 1287 { 1288 if (sport->dma_chan_rx) { 1289 dmaengine_terminate_sync(sport->dma_chan_rx); 1290 dma_release_channel(sport->dma_chan_rx); 1291 sport->dma_chan_rx = NULL; 1292 sport->rx_cookie = -EINVAL; 1293 kfree(sport->rx_buf); 1294 sport->rx_buf = NULL; 1295 } 1296 1297 if (sport->dma_chan_tx) { 1298 dmaengine_terminate_sync(sport->dma_chan_tx); 1299 dma_release_channel(sport->dma_chan_tx); 1300 sport->dma_chan_tx = NULL; 1301 } 1302 } 1303 1304 static int imx_uart_dma_init(struct imx_port *sport) 1305 { 1306 struct dma_slave_config slave_config = {}; 1307 struct device *dev = sport->port.dev; 1308 int ret; 1309 1310 /* Prepare for RX : */ 1311 sport->dma_chan_rx = dma_request_slave_channel(dev, "rx"); 1312 if (!sport->dma_chan_rx) { 1313 dev_dbg(dev, "cannot get the DMA channel.\n"); 1314 ret = -EINVAL; 1315 goto err; 1316 } 1317 1318 slave_config.direction = DMA_DEV_TO_MEM; 1319 slave_config.src_addr = sport->port.mapbase + URXD0; 1320 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1321 /* one byte less than the watermark level to enable the aging timer */ 1322 slave_config.src_maxburst = RXTL_DMA - 1; 1323 ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config); 1324 if (ret) { 1325 dev_err(dev, "error in RX dma configuration.\n"); 1326 goto err; 1327 } 1328 1329 sport->rx_buf_size = sport->rx_period_length * sport->rx_periods; 1330 sport->rx_buf = kzalloc(sport->rx_buf_size, GFP_KERNEL); 1331 if (!sport->rx_buf) { 1332 ret = -ENOMEM; 1333 goto err; 1334 } 1335 sport->rx_ring.buf = sport->rx_buf; 1336 1337 /* Prepare for TX : */ 1338 sport->dma_chan_tx = dma_request_slave_channel(dev, "tx"); 1339 if (!sport->dma_chan_tx) { 1340 dev_err(dev, "cannot get the TX DMA channel!\n"); 1341 ret = -EINVAL; 1342 goto err; 1343 } 1344 1345 slave_config.direction = DMA_MEM_TO_DEV; 1346 slave_config.dst_addr = sport->port.mapbase + URTX0; 1347 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1348 slave_config.dst_maxburst = TXTL_DMA; 1349 ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config); 1350 if (ret) { 1351 dev_err(dev, "error in TX dma configuration."); 1352 goto err; 1353 } 1354 1355 return 0; 1356 err: 1357 imx_uart_dma_exit(sport); 1358 return ret; 1359 } 1360 1361 static void imx_uart_enable_dma(struct imx_port *sport) 1362 { 1363 u32 ucr1; 1364 1365 imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA); 1366 1367 /* set UCR1 */ 1368 ucr1 = imx_uart_readl(sport, UCR1); 1369 ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN; 1370 imx_uart_writel(sport, ucr1, UCR1); 1371 1372 sport->dma_is_enabled = 1; 1373 } 1374 1375 static void imx_uart_disable_dma(struct imx_port *sport) 1376 { 1377 u32 ucr1; 1378 1379 /* clear UCR1 */ 1380 ucr1 = imx_uart_readl(sport, UCR1); 1381 ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN); 1382 imx_uart_writel(sport, ucr1, UCR1); 1383 1384 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1385 1386 sport->dma_is_enabled = 0; 1387 } 1388 1389 /* half the RX buffer size */ 1390 #define CTSTL 16 1391 1392 static int imx_uart_startup(struct uart_port *port) 1393 { 1394 struct imx_port *sport = (struct imx_port *)port; 1395 int retval, i; 1396 unsigned long flags; 1397 int dma_is_inited = 0; 1398 u32 ucr1, ucr2, ucr3, ucr4; 1399 1400 retval = clk_prepare_enable(sport->clk_per); 1401 if (retval) 1402 return retval; 1403 retval = clk_prepare_enable(sport->clk_ipg); 1404 if (retval) { 1405 clk_disable_unprepare(sport->clk_per); 1406 return retval; 1407 } 1408 1409 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1410 1411 /* disable the DREN bit (Data Ready interrupt enable) before 1412 * requesting IRQs 1413 */ 1414 ucr4 = imx_uart_readl(sport, UCR4); 1415 1416 /* set the trigger level for CTS */ 1417 ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF); 1418 ucr4 |= CTSTL << UCR4_CTSTL_SHF; 1419 1420 imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4); 1421 1422 /* Can we enable the DMA support? */ 1423 if (!uart_console(port) && imx_uart_dma_init(sport) == 0) 1424 dma_is_inited = 1; 1425 1426 spin_lock_irqsave(&sport->port.lock, flags); 1427 /* Reset fifo's and state machines */ 1428 i = 100; 1429 1430 ucr2 = imx_uart_readl(sport, UCR2); 1431 ucr2 &= ~UCR2_SRST; 1432 imx_uart_writel(sport, ucr2, UCR2); 1433 1434 while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0)) 1435 udelay(1); 1436 1437 /* 1438 * Finally, clear and enable interrupts 1439 */ 1440 imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1); 1441 imx_uart_writel(sport, USR2_ORE, USR2); 1442 1443 ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN; 1444 ucr1 |= UCR1_UARTEN; 1445 if (sport->have_rtscts) 1446 ucr1 |= UCR1_RTSDEN; 1447 1448 imx_uart_writel(sport, ucr1, UCR1); 1449 1450 ucr4 = imx_uart_readl(sport, UCR4) & ~(UCR4_OREN | UCR4_INVR); 1451 if (!dma_is_inited) 1452 ucr4 |= UCR4_OREN; 1453 if (sport->inverted_rx) 1454 ucr4 |= UCR4_INVR; 1455 imx_uart_writel(sport, ucr4, UCR4); 1456 1457 ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_INVT; 1458 /* 1459 * configure tx polarity before enabling tx 1460 */ 1461 if (sport->inverted_tx) 1462 ucr3 |= UCR3_INVT; 1463 1464 if (!imx_uart_is_imx1(sport)) { 1465 ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD; 1466 1467 if (sport->dte_mode) 1468 /* disable broken interrupts */ 1469 ucr3 &= ~(UCR3_RI | UCR3_DCD); 1470 } 1471 imx_uart_writel(sport, ucr3, UCR3); 1472 1473 ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN; 1474 ucr2 |= (UCR2_RXEN | UCR2_TXEN); 1475 if (!sport->have_rtscts) 1476 ucr2 |= UCR2_IRTS; 1477 /* 1478 * make sure the edge sensitive RTS-irq is disabled, 1479 * we're using RTSD instead. 1480 */ 1481 if (!imx_uart_is_imx1(sport)) 1482 ucr2 &= ~UCR2_RTSEN; 1483 imx_uart_writel(sport, ucr2, UCR2); 1484 1485 /* 1486 * Enable modem status interrupts 1487 */ 1488 imx_uart_enable_ms(&sport->port); 1489 1490 if (dma_is_inited) { 1491 imx_uart_enable_dma(sport); 1492 imx_uart_start_rx_dma(sport); 1493 } else { 1494 ucr1 = imx_uart_readl(sport, UCR1); 1495 ucr1 |= UCR1_RRDYEN; 1496 imx_uart_writel(sport, ucr1, UCR1); 1497 1498 ucr2 = imx_uart_readl(sport, UCR2); 1499 ucr2 |= UCR2_ATEN; 1500 imx_uart_writel(sport, ucr2, UCR2); 1501 } 1502 1503 spin_unlock_irqrestore(&sport->port.lock, flags); 1504 1505 return 0; 1506 } 1507 1508 static void imx_uart_shutdown(struct uart_port *port) 1509 { 1510 struct imx_port *sport = (struct imx_port *)port; 1511 unsigned long flags; 1512 u32 ucr1, ucr2, ucr4; 1513 1514 if (sport->dma_is_enabled) { 1515 dmaengine_terminate_sync(sport->dma_chan_tx); 1516 if (sport->dma_is_txing) { 1517 dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0], 1518 sport->dma_tx_nents, DMA_TO_DEVICE); 1519 sport->dma_is_txing = 0; 1520 } 1521 dmaengine_terminate_sync(sport->dma_chan_rx); 1522 if (sport->dma_is_rxing) { 1523 dma_unmap_sg(sport->port.dev, &sport->rx_sgl, 1524 1, DMA_FROM_DEVICE); 1525 sport->dma_is_rxing = 0; 1526 } 1527 1528 spin_lock_irqsave(&sport->port.lock, flags); 1529 imx_uart_stop_tx(port); 1530 imx_uart_stop_rx(port); 1531 imx_uart_disable_dma(sport); 1532 spin_unlock_irqrestore(&sport->port.lock, flags); 1533 imx_uart_dma_exit(sport); 1534 } 1535 1536 mctrl_gpio_disable_ms(sport->gpios); 1537 1538 spin_lock_irqsave(&sport->port.lock, flags); 1539 ucr2 = imx_uart_readl(sport, UCR2); 1540 ucr2 &= ~(UCR2_TXEN | UCR2_ATEN); 1541 imx_uart_writel(sport, ucr2, UCR2); 1542 spin_unlock_irqrestore(&sport->port.lock, flags); 1543 1544 /* 1545 * Stop our timer. 1546 */ 1547 del_timer_sync(&sport->timer); 1548 1549 /* 1550 * Disable all interrupts, port and break condition. 1551 */ 1552 1553 spin_lock_irqsave(&sport->port.lock, flags); 1554 1555 ucr1 = imx_uart_readl(sport, UCR1); 1556 ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_UARTEN | UCR1_RXDMAEN | UCR1_ATDMAEN); 1557 imx_uart_writel(sport, ucr1, UCR1); 1558 1559 ucr4 = imx_uart_readl(sport, UCR4); 1560 ucr4 &= ~UCR4_TCEN; 1561 imx_uart_writel(sport, ucr4, UCR4); 1562 1563 spin_unlock_irqrestore(&sport->port.lock, flags); 1564 1565 clk_disable_unprepare(sport->clk_per); 1566 clk_disable_unprepare(sport->clk_ipg); 1567 } 1568 1569 /* called with port.lock taken and irqs off */ 1570 static void imx_uart_flush_buffer(struct uart_port *port) 1571 { 1572 struct imx_port *sport = (struct imx_port *)port; 1573 struct scatterlist *sgl = &sport->tx_sgl[0]; 1574 u32 ucr2; 1575 int i = 100, ubir, ubmr, uts; 1576 1577 if (!sport->dma_chan_tx) 1578 return; 1579 1580 sport->tx_bytes = 0; 1581 dmaengine_terminate_all(sport->dma_chan_tx); 1582 if (sport->dma_is_txing) { 1583 u32 ucr1; 1584 1585 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, 1586 DMA_TO_DEVICE); 1587 ucr1 = imx_uart_readl(sport, UCR1); 1588 ucr1 &= ~UCR1_TXDMAEN; 1589 imx_uart_writel(sport, ucr1, UCR1); 1590 sport->dma_is_txing = 0; 1591 } 1592 1593 /* 1594 * According to the Reference Manual description of the UART SRST bit: 1595 * 1596 * "Reset the transmit and receive state machines, 1597 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD 1598 * and UTS[6-3]". 1599 * 1600 * We don't need to restore the old values from USR1, USR2, URXD and 1601 * UTXD. UBRC is read only, so only save/restore the other three 1602 * registers. 1603 */ 1604 ubir = imx_uart_readl(sport, UBIR); 1605 ubmr = imx_uart_readl(sport, UBMR); 1606 uts = imx_uart_readl(sport, IMX21_UTS); 1607 1608 ucr2 = imx_uart_readl(sport, UCR2); 1609 ucr2 &= ~UCR2_SRST; 1610 imx_uart_writel(sport, ucr2, UCR2); 1611 1612 while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0)) 1613 udelay(1); 1614 1615 /* Restore the registers */ 1616 imx_uart_writel(sport, ubir, UBIR); 1617 imx_uart_writel(sport, ubmr, UBMR); 1618 imx_uart_writel(sport, uts, IMX21_UTS); 1619 } 1620 1621 static void 1622 imx_uart_set_termios(struct uart_port *port, struct ktermios *termios, 1623 struct ktermios *old) 1624 { 1625 struct imx_port *sport = (struct imx_port *)port; 1626 unsigned long flags; 1627 u32 ucr2, old_ucr2, ufcr; 1628 unsigned int baud, quot; 1629 unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8; 1630 unsigned long div; 1631 unsigned long num, denom, old_ubir, old_ubmr; 1632 uint64_t tdiv64; 1633 1634 /* 1635 * We only support CS7 and CS8. 1636 */ 1637 while ((termios->c_cflag & CSIZE) != CS7 && 1638 (termios->c_cflag & CSIZE) != CS8) { 1639 termios->c_cflag &= ~CSIZE; 1640 termios->c_cflag |= old_csize; 1641 old_csize = CS8; 1642 } 1643 1644 del_timer_sync(&sport->timer); 1645 1646 /* 1647 * Ask the core to calculate the divisor for us. 1648 */ 1649 baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16); 1650 quot = uart_get_divisor(port, baud); 1651 1652 spin_lock_irqsave(&sport->port.lock, flags); 1653 1654 /* 1655 * Read current UCR2 and save it for future use, then clear all the bits 1656 * except those we will or may need to preserve. 1657 */ 1658 old_ucr2 = imx_uart_readl(sport, UCR2); 1659 ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS); 1660 1661 ucr2 |= UCR2_SRST | UCR2_IRTS; 1662 if ((termios->c_cflag & CSIZE) == CS8) 1663 ucr2 |= UCR2_WS; 1664 1665 if (!sport->have_rtscts) 1666 termios->c_cflag &= ~CRTSCTS; 1667 1668 if (port->rs485.flags & SER_RS485_ENABLED) { 1669 /* 1670 * RTS is mandatory for rs485 operation, so keep 1671 * it under manual control and keep transmitter 1672 * disabled. 1673 */ 1674 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 1675 imx_uart_rts_active(sport, &ucr2); 1676 else 1677 imx_uart_rts_inactive(sport, &ucr2); 1678 1679 } else if (termios->c_cflag & CRTSCTS) { 1680 /* 1681 * Only let receiver control RTS output if we were not requested 1682 * to have RTS inactive (which then should take precedence). 1683 */ 1684 if (ucr2 & UCR2_CTS) 1685 ucr2 |= UCR2_CTSC; 1686 } 1687 1688 if (termios->c_cflag & CRTSCTS) 1689 ucr2 &= ~UCR2_IRTS; 1690 if (termios->c_cflag & CSTOPB) 1691 ucr2 |= UCR2_STPB; 1692 if (termios->c_cflag & PARENB) { 1693 ucr2 |= UCR2_PREN; 1694 if (termios->c_cflag & PARODD) 1695 ucr2 |= UCR2_PROE; 1696 } 1697 1698 sport->port.read_status_mask = 0; 1699 if (termios->c_iflag & INPCK) 1700 sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR); 1701 if (termios->c_iflag & (BRKINT | PARMRK)) 1702 sport->port.read_status_mask |= URXD_BRK; 1703 1704 /* 1705 * Characters to ignore 1706 */ 1707 sport->port.ignore_status_mask = 0; 1708 if (termios->c_iflag & IGNPAR) 1709 sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR; 1710 if (termios->c_iflag & IGNBRK) { 1711 sport->port.ignore_status_mask |= URXD_BRK; 1712 /* 1713 * If we're ignoring parity and break indicators, 1714 * ignore overruns too (for real raw support). 1715 */ 1716 if (termios->c_iflag & IGNPAR) 1717 sport->port.ignore_status_mask |= URXD_OVRRUN; 1718 } 1719 1720 if ((termios->c_cflag & CREAD) == 0) 1721 sport->port.ignore_status_mask |= URXD_DUMMY_READ; 1722 1723 /* 1724 * Update the per-port timeout. 1725 */ 1726 uart_update_timeout(port, termios->c_cflag, baud); 1727 1728 /* custom-baudrate handling */ 1729 div = sport->port.uartclk / (baud * 16); 1730 if (baud == 38400 && quot != div) 1731 baud = sport->port.uartclk / (quot * 16); 1732 1733 div = sport->port.uartclk / (baud * 16); 1734 if (div > 7) 1735 div = 7; 1736 if (!div) 1737 div = 1; 1738 1739 rational_best_approximation(16 * div * baud, sport->port.uartclk, 1740 1 << 16, 1 << 16, &num, &denom); 1741 1742 tdiv64 = sport->port.uartclk; 1743 tdiv64 *= num; 1744 do_div(tdiv64, denom * 16 * div); 1745 tty_termios_encode_baud_rate(termios, 1746 (speed_t)tdiv64, (speed_t)tdiv64); 1747 1748 num -= 1; 1749 denom -= 1; 1750 1751 ufcr = imx_uart_readl(sport, UFCR); 1752 ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div); 1753 imx_uart_writel(sport, ufcr, UFCR); 1754 1755 /* 1756 * Two registers below should always be written both and in this 1757 * particular order. One consequence is that we need to check if any of 1758 * them changes and then update both. We do need the check for change 1759 * as even writing the same values seem to "restart" 1760 * transmission/receiving logic in the hardware, that leads to data 1761 * breakage even when rate doesn't in fact change. E.g., user switches 1762 * RTS/CTS handshake and suddenly gets broken bytes. 1763 */ 1764 old_ubir = imx_uart_readl(sport, UBIR); 1765 old_ubmr = imx_uart_readl(sport, UBMR); 1766 if (old_ubir != num || old_ubmr != denom) { 1767 imx_uart_writel(sport, num, UBIR); 1768 imx_uart_writel(sport, denom, UBMR); 1769 } 1770 1771 if (!imx_uart_is_imx1(sport)) 1772 imx_uart_writel(sport, sport->port.uartclk / div / 1000, 1773 IMX21_ONEMS); 1774 1775 imx_uart_writel(sport, ucr2, UCR2); 1776 1777 if (UART_ENABLE_MS(&sport->port, termios->c_cflag)) 1778 imx_uart_enable_ms(&sport->port); 1779 1780 spin_unlock_irqrestore(&sport->port.lock, flags); 1781 } 1782 1783 static const char *imx_uart_type(struct uart_port *port) 1784 { 1785 struct imx_port *sport = (struct imx_port *)port; 1786 1787 return sport->port.type == PORT_IMX ? "IMX" : NULL; 1788 } 1789 1790 /* 1791 * Configure/autoconfigure the port. 1792 */ 1793 static void imx_uart_config_port(struct uart_port *port, int flags) 1794 { 1795 struct imx_port *sport = (struct imx_port *)port; 1796 1797 if (flags & UART_CONFIG_TYPE) 1798 sport->port.type = PORT_IMX; 1799 } 1800 1801 /* 1802 * Verify the new serial_struct (for TIOCSSERIAL). 1803 * The only change we allow are to the flags and type, and 1804 * even then only between PORT_IMX and PORT_UNKNOWN 1805 */ 1806 static int 1807 imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser) 1808 { 1809 struct imx_port *sport = (struct imx_port *)port; 1810 int ret = 0; 1811 1812 if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX) 1813 ret = -EINVAL; 1814 if (sport->port.irq != ser->irq) 1815 ret = -EINVAL; 1816 if (ser->io_type != UPIO_MEM) 1817 ret = -EINVAL; 1818 if (sport->port.uartclk / 16 != ser->baud_base) 1819 ret = -EINVAL; 1820 if (sport->port.mapbase != (unsigned long)ser->iomem_base) 1821 ret = -EINVAL; 1822 if (sport->port.iobase != ser->port) 1823 ret = -EINVAL; 1824 if (ser->hub6 != 0) 1825 ret = -EINVAL; 1826 return ret; 1827 } 1828 1829 #if defined(CONFIG_CONSOLE_POLL) 1830 1831 static int imx_uart_poll_init(struct uart_port *port) 1832 { 1833 struct imx_port *sport = (struct imx_port *)port; 1834 unsigned long flags; 1835 u32 ucr1, ucr2; 1836 int retval; 1837 1838 retval = clk_prepare_enable(sport->clk_ipg); 1839 if (retval) 1840 return retval; 1841 retval = clk_prepare_enable(sport->clk_per); 1842 if (retval) 1843 clk_disable_unprepare(sport->clk_ipg); 1844 1845 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1846 1847 spin_lock_irqsave(&sport->port.lock, flags); 1848 1849 /* 1850 * Be careful about the order of enabling bits here. First enable the 1851 * receiver (UARTEN + RXEN) and only then the corresponding irqs. 1852 * This prevents that a character that already sits in the RX fifo is 1853 * triggering an irq but the try to fetch it from there results in an 1854 * exception because UARTEN or RXEN is still off. 1855 */ 1856 ucr1 = imx_uart_readl(sport, UCR1); 1857 ucr2 = imx_uart_readl(sport, UCR2); 1858 1859 if (imx_uart_is_imx1(sport)) 1860 ucr1 |= IMX1_UCR1_UARTCLKEN; 1861 1862 ucr1 |= UCR1_UARTEN; 1863 ucr1 &= ~(UCR1_TRDYEN | UCR1_RTSDEN | UCR1_RRDYEN); 1864 1865 ucr2 |= UCR2_RXEN | UCR2_TXEN; 1866 ucr2 &= ~UCR2_ATEN; 1867 1868 imx_uart_writel(sport, ucr1, UCR1); 1869 imx_uart_writel(sport, ucr2, UCR2); 1870 1871 /* now enable irqs */ 1872 imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1); 1873 imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2); 1874 1875 spin_unlock_irqrestore(&sport->port.lock, flags); 1876 1877 return 0; 1878 } 1879 1880 static int imx_uart_poll_get_char(struct uart_port *port) 1881 { 1882 struct imx_port *sport = (struct imx_port *)port; 1883 if (!(imx_uart_readl(sport, USR2) & USR2_RDR)) 1884 return NO_POLL_CHAR; 1885 1886 return imx_uart_readl(sport, URXD0) & URXD_RX_DATA; 1887 } 1888 1889 static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c) 1890 { 1891 struct imx_port *sport = (struct imx_port *)port; 1892 unsigned int status; 1893 1894 /* drain */ 1895 do { 1896 status = imx_uart_readl(sport, USR1); 1897 } while (~status & USR1_TRDY); 1898 1899 /* write */ 1900 imx_uart_writel(sport, c, URTX0); 1901 1902 /* flush */ 1903 do { 1904 status = imx_uart_readl(sport, USR2); 1905 } while (~status & USR2_TXDC); 1906 } 1907 #endif 1908 1909 /* called with port.lock taken and irqs off or from .probe without locking */ 1910 static int imx_uart_rs485_config(struct uart_port *port, 1911 struct serial_rs485 *rs485conf) 1912 { 1913 struct imx_port *sport = (struct imx_port *)port; 1914 u32 ucr2; 1915 1916 /* RTS is required to control the transmitter */ 1917 if (!sport->have_rtscts && !sport->have_rtsgpio) 1918 rs485conf->flags &= ~SER_RS485_ENABLED; 1919 1920 if (rs485conf->flags & SER_RS485_ENABLED) { 1921 /* Enable receiver if low-active RTS signal is requested */ 1922 if (sport->have_rtscts && !sport->have_rtsgpio && 1923 !(rs485conf->flags & SER_RS485_RTS_ON_SEND)) 1924 rs485conf->flags |= SER_RS485_RX_DURING_TX; 1925 1926 /* disable transmitter */ 1927 ucr2 = imx_uart_readl(sport, UCR2); 1928 if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND) 1929 imx_uart_rts_active(sport, &ucr2); 1930 else 1931 imx_uart_rts_inactive(sport, &ucr2); 1932 imx_uart_writel(sport, ucr2, UCR2); 1933 } 1934 1935 /* Make sure Rx is enabled in case Tx is active with Rx disabled */ 1936 if (!(rs485conf->flags & SER_RS485_ENABLED) || 1937 rs485conf->flags & SER_RS485_RX_DURING_TX) 1938 imx_uart_start_rx(port); 1939 1940 port->rs485 = *rs485conf; 1941 1942 return 0; 1943 } 1944 1945 static const struct uart_ops imx_uart_pops = { 1946 .tx_empty = imx_uart_tx_empty, 1947 .set_mctrl = imx_uart_set_mctrl, 1948 .get_mctrl = imx_uart_get_mctrl, 1949 .stop_tx = imx_uart_stop_tx, 1950 .start_tx = imx_uart_start_tx, 1951 .stop_rx = imx_uart_stop_rx, 1952 .enable_ms = imx_uart_enable_ms, 1953 .break_ctl = imx_uart_break_ctl, 1954 .startup = imx_uart_startup, 1955 .shutdown = imx_uart_shutdown, 1956 .flush_buffer = imx_uart_flush_buffer, 1957 .set_termios = imx_uart_set_termios, 1958 .type = imx_uart_type, 1959 .config_port = imx_uart_config_port, 1960 .verify_port = imx_uart_verify_port, 1961 #if defined(CONFIG_CONSOLE_POLL) 1962 .poll_init = imx_uart_poll_init, 1963 .poll_get_char = imx_uart_poll_get_char, 1964 .poll_put_char = imx_uart_poll_put_char, 1965 #endif 1966 }; 1967 1968 static struct imx_port *imx_uart_ports[UART_NR]; 1969 1970 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE) 1971 static void imx_uart_console_putchar(struct uart_port *port, unsigned char ch) 1972 { 1973 struct imx_port *sport = (struct imx_port *)port; 1974 1975 while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL) 1976 barrier(); 1977 1978 imx_uart_writel(sport, ch, URTX0); 1979 } 1980 1981 /* 1982 * Interrupts are disabled on entering 1983 */ 1984 static void 1985 imx_uart_console_write(struct console *co, const char *s, unsigned int count) 1986 { 1987 struct imx_port *sport = imx_uart_ports[co->index]; 1988 struct imx_port_ucrs old_ucr; 1989 unsigned long flags; 1990 unsigned int ucr1; 1991 int locked = 1; 1992 1993 if (sport->port.sysrq) 1994 locked = 0; 1995 else if (oops_in_progress) 1996 locked = spin_trylock_irqsave(&sport->port.lock, flags); 1997 else 1998 spin_lock_irqsave(&sport->port.lock, flags); 1999 2000 /* 2001 * First, save UCR1/2/3 and then disable interrupts 2002 */ 2003 imx_uart_ucrs_save(sport, &old_ucr); 2004 ucr1 = old_ucr.ucr1; 2005 2006 if (imx_uart_is_imx1(sport)) 2007 ucr1 |= IMX1_UCR1_UARTCLKEN; 2008 ucr1 |= UCR1_UARTEN; 2009 ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN); 2010 2011 imx_uart_writel(sport, ucr1, UCR1); 2012 2013 imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2); 2014 2015 uart_console_write(&sport->port, s, count, imx_uart_console_putchar); 2016 2017 /* 2018 * Finally, wait for transmitter to become empty 2019 * and restore UCR1/2/3 2020 */ 2021 while (!(imx_uart_readl(sport, USR2) & USR2_TXDC)); 2022 2023 imx_uart_ucrs_restore(sport, &old_ucr); 2024 2025 if (locked) 2026 spin_unlock_irqrestore(&sport->port.lock, flags); 2027 } 2028 2029 /* 2030 * If the port was already initialised (eg, by a boot loader), 2031 * try to determine the current setup. 2032 */ 2033 static void 2034 imx_uart_console_get_options(struct imx_port *sport, int *baud, 2035 int *parity, int *bits) 2036 { 2037 2038 if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) { 2039 /* ok, the port was enabled */ 2040 unsigned int ucr2, ubir, ubmr, uartclk; 2041 unsigned int baud_raw; 2042 unsigned int ucfr_rfdiv; 2043 2044 ucr2 = imx_uart_readl(sport, UCR2); 2045 2046 *parity = 'n'; 2047 if (ucr2 & UCR2_PREN) { 2048 if (ucr2 & UCR2_PROE) 2049 *parity = 'o'; 2050 else 2051 *parity = 'e'; 2052 } 2053 2054 if (ucr2 & UCR2_WS) 2055 *bits = 8; 2056 else 2057 *bits = 7; 2058 2059 ubir = imx_uart_readl(sport, UBIR) & 0xffff; 2060 ubmr = imx_uart_readl(sport, UBMR) & 0xffff; 2061 2062 ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7; 2063 if (ucfr_rfdiv == 6) 2064 ucfr_rfdiv = 7; 2065 else 2066 ucfr_rfdiv = 6 - ucfr_rfdiv; 2067 2068 uartclk = clk_get_rate(sport->clk_per); 2069 uartclk /= ucfr_rfdiv; 2070 2071 { /* 2072 * The next code provides exact computation of 2073 * baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1)) 2074 * without need of float support or long long division, 2075 * which would be required to prevent 32bit arithmetic overflow 2076 */ 2077 unsigned int mul = ubir + 1; 2078 unsigned int div = 16 * (ubmr + 1); 2079 unsigned int rem = uartclk % div; 2080 2081 baud_raw = (uartclk / div) * mul; 2082 baud_raw += (rem * mul + div / 2) / div; 2083 *baud = (baud_raw + 50) / 100 * 100; 2084 } 2085 2086 if (*baud != baud_raw) 2087 dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n", 2088 baud_raw, *baud); 2089 } 2090 } 2091 2092 static int 2093 imx_uart_console_setup(struct console *co, char *options) 2094 { 2095 struct imx_port *sport; 2096 int baud = 9600; 2097 int bits = 8; 2098 int parity = 'n'; 2099 int flow = 'n'; 2100 int retval; 2101 2102 /* 2103 * Check whether an invalid uart number has been specified, and 2104 * if so, search for the first available port that does have 2105 * console support. 2106 */ 2107 if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports)) 2108 co->index = 0; 2109 sport = imx_uart_ports[co->index]; 2110 if (sport == NULL) 2111 return -ENODEV; 2112 2113 /* For setting the registers, we only need to enable the ipg clock. */ 2114 retval = clk_prepare_enable(sport->clk_ipg); 2115 if (retval) 2116 goto error_console; 2117 2118 if (options) 2119 uart_parse_options(options, &baud, &parity, &bits, &flow); 2120 else 2121 imx_uart_console_get_options(sport, &baud, &parity, &bits); 2122 2123 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 2124 2125 retval = uart_set_options(&sport->port, co, baud, parity, bits, flow); 2126 2127 if (retval) { 2128 clk_disable_unprepare(sport->clk_ipg); 2129 goto error_console; 2130 } 2131 2132 retval = clk_prepare_enable(sport->clk_per); 2133 if (retval) 2134 clk_disable_unprepare(sport->clk_ipg); 2135 2136 error_console: 2137 return retval; 2138 } 2139 2140 static int 2141 imx_uart_console_exit(struct console *co) 2142 { 2143 struct imx_port *sport = imx_uart_ports[co->index]; 2144 2145 clk_disable_unprepare(sport->clk_per); 2146 clk_disable_unprepare(sport->clk_ipg); 2147 2148 return 0; 2149 } 2150 2151 static struct uart_driver imx_uart_uart_driver; 2152 static struct console imx_uart_console = { 2153 .name = DEV_NAME, 2154 .write = imx_uart_console_write, 2155 .device = uart_console_device, 2156 .setup = imx_uart_console_setup, 2157 .exit = imx_uart_console_exit, 2158 .flags = CON_PRINTBUFFER, 2159 .index = -1, 2160 .data = &imx_uart_uart_driver, 2161 }; 2162 2163 #define IMX_CONSOLE &imx_uart_console 2164 2165 #else 2166 #define IMX_CONSOLE NULL 2167 #endif 2168 2169 static struct uart_driver imx_uart_uart_driver = { 2170 .owner = THIS_MODULE, 2171 .driver_name = DRIVER_NAME, 2172 .dev_name = DEV_NAME, 2173 .major = SERIAL_IMX_MAJOR, 2174 .minor = MINOR_START, 2175 .nr = ARRAY_SIZE(imx_uart_ports), 2176 .cons = IMX_CONSOLE, 2177 }; 2178 2179 static enum hrtimer_restart imx_trigger_start_tx(struct hrtimer *t) 2180 { 2181 struct imx_port *sport = container_of(t, struct imx_port, trigger_start_tx); 2182 unsigned long flags; 2183 2184 spin_lock_irqsave(&sport->port.lock, flags); 2185 if (sport->tx_state == WAIT_AFTER_RTS) 2186 imx_uart_start_tx(&sport->port); 2187 spin_unlock_irqrestore(&sport->port.lock, flags); 2188 2189 return HRTIMER_NORESTART; 2190 } 2191 2192 static enum hrtimer_restart imx_trigger_stop_tx(struct hrtimer *t) 2193 { 2194 struct imx_port *sport = container_of(t, struct imx_port, trigger_stop_tx); 2195 unsigned long flags; 2196 2197 spin_lock_irqsave(&sport->port.lock, flags); 2198 if (sport->tx_state == WAIT_AFTER_SEND) 2199 imx_uart_stop_tx(&sport->port); 2200 spin_unlock_irqrestore(&sport->port.lock, flags); 2201 2202 return HRTIMER_NORESTART; 2203 } 2204 2205 /* Default RX DMA buffer configuration */ 2206 #define RX_DMA_PERIODS 16 2207 #define RX_DMA_PERIOD_LEN (PAGE_SIZE / 4) 2208 2209 static int imx_uart_probe(struct platform_device *pdev) 2210 { 2211 struct device_node *np = pdev->dev.of_node; 2212 struct imx_port *sport; 2213 void __iomem *base; 2214 u32 dma_buf_conf[2]; 2215 int ret = 0; 2216 u32 ucr1; 2217 struct resource *res; 2218 int txirq, rxirq, rtsirq; 2219 2220 sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL); 2221 if (!sport) 2222 return -ENOMEM; 2223 2224 sport->devdata = of_device_get_match_data(&pdev->dev); 2225 2226 ret = of_alias_get_id(np, "serial"); 2227 if (ret < 0) { 2228 dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret); 2229 return ret; 2230 } 2231 sport->port.line = ret; 2232 2233 if (of_get_property(np, "uart-has-rtscts", NULL) || 2234 of_get_property(np, "fsl,uart-has-rtscts", NULL) /* deprecated */) 2235 sport->have_rtscts = 1; 2236 2237 if (of_get_property(np, "fsl,dte-mode", NULL)) 2238 sport->dte_mode = 1; 2239 2240 if (of_get_property(np, "rts-gpios", NULL)) 2241 sport->have_rtsgpio = 1; 2242 2243 if (of_get_property(np, "fsl,inverted-tx", NULL)) 2244 sport->inverted_tx = 1; 2245 2246 if (of_get_property(np, "fsl,inverted-rx", NULL)) 2247 sport->inverted_rx = 1; 2248 2249 if (!of_property_read_u32_array(np, "fsl,dma-info", dma_buf_conf, 2)) { 2250 sport->rx_period_length = dma_buf_conf[0]; 2251 sport->rx_periods = dma_buf_conf[1]; 2252 } else { 2253 sport->rx_period_length = RX_DMA_PERIOD_LEN; 2254 sport->rx_periods = RX_DMA_PERIODS; 2255 } 2256 2257 if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) { 2258 dev_err(&pdev->dev, "serial%d out of range\n", 2259 sport->port.line); 2260 return -EINVAL; 2261 } 2262 2263 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2264 base = devm_ioremap_resource(&pdev->dev, res); 2265 if (IS_ERR(base)) 2266 return PTR_ERR(base); 2267 2268 rxirq = platform_get_irq(pdev, 0); 2269 if (rxirq < 0) 2270 return rxirq; 2271 txirq = platform_get_irq_optional(pdev, 1); 2272 rtsirq = platform_get_irq_optional(pdev, 2); 2273 2274 sport->port.dev = &pdev->dev; 2275 sport->port.mapbase = res->start; 2276 sport->port.membase = base; 2277 sport->port.type = PORT_IMX; 2278 sport->port.iotype = UPIO_MEM; 2279 sport->port.irq = rxirq; 2280 sport->port.fifosize = 32; 2281 sport->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE); 2282 sport->port.ops = &imx_uart_pops; 2283 sport->port.rs485_config = imx_uart_rs485_config; 2284 sport->port.flags = UPF_BOOT_AUTOCONF; 2285 timer_setup(&sport->timer, imx_uart_timeout, 0); 2286 2287 sport->gpios = mctrl_gpio_init(&sport->port, 0); 2288 if (IS_ERR(sport->gpios)) 2289 return PTR_ERR(sport->gpios); 2290 2291 sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 2292 if (IS_ERR(sport->clk_ipg)) { 2293 ret = PTR_ERR(sport->clk_ipg); 2294 dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret); 2295 return ret; 2296 } 2297 2298 sport->clk_per = devm_clk_get(&pdev->dev, "per"); 2299 if (IS_ERR(sport->clk_per)) { 2300 ret = PTR_ERR(sport->clk_per); 2301 dev_err(&pdev->dev, "failed to get per clk: %d\n", ret); 2302 return ret; 2303 } 2304 2305 sport->port.uartclk = clk_get_rate(sport->clk_per); 2306 2307 /* For register access, we only need to enable the ipg clock. */ 2308 ret = clk_prepare_enable(sport->clk_ipg); 2309 if (ret) { 2310 dev_err(&pdev->dev, "failed to enable per clk: %d\n", ret); 2311 return ret; 2312 } 2313 2314 /* initialize shadow register values */ 2315 sport->ucr1 = readl(sport->port.membase + UCR1); 2316 sport->ucr2 = readl(sport->port.membase + UCR2); 2317 sport->ucr3 = readl(sport->port.membase + UCR3); 2318 sport->ucr4 = readl(sport->port.membase + UCR4); 2319 sport->ufcr = readl(sport->port.membase + UFCR); 2320 2321 ret = uart_get_rs485_mode(&sport->port); 2322 if (ret) { 2323 clk_disable_unprepare(sport->clk_ipg); 2324 return ret; 2325 } 2326 2327 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2328 (!sport->have_rtscts && !sport->have_rtsgpio)) 2329 dev_err(&pdev->dev, "no RTS control, disabling rs485\n"); 2330 2331 /* 2332 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B) 2333 * signal cannot be set low during transmission in case the 2334 * receiver is off (limitation of the i.MX UART IP). 2335 */ 2336 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2337 sport->have_rtscts && !sport->have_rtsgpio && 2338 (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) && 2339 !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX))) 2340 dev_err(&pdev->dev, 2341 "low-active RTS not possible when receiver is off, enabling receiver\n"); 2342 2343 imx_uart_rs485_config(&sport->port, &sport->port.rs485); 2344 2345 /* Disable interrupts before requesting them */ 2346 ucr1 = imx_uart_readl(sport, UCR1); 2347 ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN | UCR1_RTSDEN); 2348 imx_uart_writel(sport, ucr1, UCR1); 2349 2350 if (!imx_uart_is_imx1(sport) && sport->dte_mode) { 2351 /* 2352 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI 2353 * and influences if UCR3_RI and UCR3_DCD changes the level of RI 2354 * and DCD (when they are outputs) or enables the respective 2355 * irqs. So set this bit early, i.e. before requesting irqs. 2356 */ 2357 u32 ufcr = imx_uart_readl(sport, UFCR); 2358 if (!(ufcr & UFCR_DCEDTE)) 2359 imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR); 2360 2361 /* 2362 * Disable UCR3_RI and UCR3_DCD irqs. They are also not 2363 * enabled later because they cannot be cleared 2364 * (confirmed on i.MX25) which makes them unusable. 2365 */ 2366 imx_uart_writel(sport, 2367 IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR, 2368 UCR3); 2369 2370 } else { 2371 u32 ucr3 = UCR3_DSR; 2372 u32 ufcr = imx_uart_readl(sport, UFCR); 2373 if (ufcr & UFCR_DCEDTE) 2374 imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR); 2375 2376 if (!imx_uart_is_imx1(sport)) 2377 ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP; 2378 imx_uart_writel(sport, ucr3, UCR3); 2379 } 2380 2381 clk_disable_unprepare(sport->clk_ipg); 2382 2383 hrtimer_init(&sport->trigger_start_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2384 hrtimer_init(&sport->trigger_stop_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2385 sport->trigger_start_tx.function = imx_trigger_start_tx; 2386 sport->trigger_stop_tx.function = imx_trigger_stop_tx; 2387 2388 /* 2389 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later 2390 * chips only have one interrupt. 2391 */ 2392 if (txirq > 0) { 2393 ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0, 2394 dev_name(&pdev->dev), sport); 2395 if (ret) { 2396 dev_err(&pdev->dev, "failed to request rx irq: %d\n", 2397 ret); 2398 return ret; 2399 } 2400 2401 ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0, 2402 dev_name(&pdev->dev), sport); 2403 if (ret) { 2404 dev_err(&pdev->dev, "failed to request tx irq: %d\n", 2405 ret); 2406 return ret; 2407 } 2408 2409 ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0, 2410 dev_name(&pdev->dev), sport); 2411 if (ret) { 2412 dev_err(&pdev->dev, "failed to request rts irq: %d\n", 2413 ret); 2414 return ret; 2415 } 2416 } else { 2417 ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0, 2418 dev_name(&pdev->dev), sport); 2419 if (ret) { 2420 dev_err(&pdev->dev, "failed to request irq: %d\n", ret); 2421 return ret; 2422 } 2423 } 2424 2425 imx_uart_ports[sport->port.line] = sport; 2426 2427 platform_set_drvdata(pdev, sport); 2428 2429 return uart_add_one_port(&imx_uart_uart_driver, &sport->port); 2430 } 2431 2432 static int imx_uart_remove(struct platform_device *pdev) 2433 { 2434 struct imx_port *sport = platform_get_drvdata(pdev); 2435 2436 return uart_remove_one_port(&imx_uart_uart_driver, &sport->port); 2437 } 2438 2439 static void imx_uart_restore_context(struct imx_port *sport) 2440 { 2441 unsigned long flags; 2442 2443 spin_lock_irqsave(&sport->port.lock, flags); 2444 if (!sport->context_saved) { 2445 spin_unlock_irqrestore(&sport->port.lock, flags); 2446 return; 2447 } 2448 2449 imx_uart_writel(sport, sport->saved_reg[4], UFCR); 2450 imx_uart_writel(sport, sport->saved_reg[5], UESC); 2451 imx_uart_writel(sport, sport->saved_reg[6], UTIM); 2452 imx_uart_writel(sport, sport->saved_reg[7], UBIR); 2453 imx_uart_writel(sport, sport->saved_reg[8], UBMR); 2454 imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS); 2455 imx_uart_writel(sport, sport->saved_reg[0], UCR1); 2456 imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2); 2457 imx_uart_writel(sport, sport->saved_reg[2], UCR3); 2458 imx_uart_writel(sport, sport->saved_reg[3], UCR4); 2459 sport->context_saved = false; 2460 spin_unlock_irqrestore(&sport->port.lock, flags); 2461 } 2462 2463 static void imx_uart_save_context(struct imx_port *sport) 2464 { 2465 unsigned long flags; 2466 2467 /* Save necessary regs */ 2468 spin_lock_irqsave(&sport->port.lock, flags); 2469 sport->saved_reg[0] = imx_uart_readl(sport, UCR1); 2470 sport->saved_reg[1] = imx_uart_readl(sport, UCR2); 2471 sport->saved_reg[2] = imx_uart_readl(sport, UCR3); 2472 sport->saved_reg[3] = imx_uart_readl(sport, UCR4); 2473 sport->saved_reg[4] = imx_uart_readl(sport, UFCR); 2474 sport->saved_reg[5] = imx_uart_readl(sport, UESC); 2475 sport->saved_reg[6] = imx_uart_readl(sport, UTIM); 2476 sport->saved_reg[7] = imx_uart_readl(sport, UBIR); 2477 sport->saved_reg[8] = imx_uart_readl(sport, UBMR); 2478 sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS); 2479 sport->context_saved = true; 2480 spin_unlock_irqrestore(&sport->port.lock, flags); 2481 } 2482 2483 static void imx_uart_enable_wakeup(struct imx_port *sport, bool on) 2484 { 2485 u32 ucr3; 2486 2487 ucr3 = imx_uart_readl(sport, UCR3); 2488 if (on) { 2489 imx_uart_writel(sport, USR1_AWAKE, USR1); 2490 ucr3 |= UCR3_AWAKEN; 2491 } else { 2492 ucr3 &= ~UCR3_AWAKEN; 2493 } 2494 imx_uart_writel(sport, ucr3, UCR3); 2495 2496 if (sport->have_rtscts) { 2497 u32 ucr1 = imx_uart_readl(sport, UCR1); 2498 if (on) { 2499 imx_uart_writel(sport, USR1_RTSD, USR1); 2500 ucr1 |= UCR1_RTSDEN; 2501 } else { 2502 ucr1 &= ~UCR1_RTSDEN; 2503 } 2504 imx_uart_writel(sport, ucr1, UCR1); 2505 } 2506 } 2507 2508 static int imx_uart_suspend_noirq(struct device *dev) 2509 { 2510 struct imx_port *sport = dev_get_drvdata(dev); 2511 2512 imx_uart_save_context(sport); 2513 2514 clk_disable(sport->clk_ipg); 2515 2516 pinctrl_pm_select_sleep_state(dev); 2517 2518 return 0; 2519 } 2520 2521 static int imx_uart_resume_noirq(struct device *dev) 2522 { 2523 struct imx_port *sport = dev_get_drvdata(dev); 2524 int ret; 2525 2526 pinctrl_pm_select_default_state(dev); 2527 2528 ret = clk_enable(sport->clk_ipg); 2529 if (ret) 2530 return ret; 2531 2532 imx_uart_restore_context(sport); 2533 2534 return 0; 2535 } 2536 2537 static int imx_uart_suspend(struct device *dev) 2538 { 2539 struct imx_port *sport = dev_get_drvdata(dev); 2540 int ret; 2541 2542 uart_suspend_port(&imx_uart_uart_driver, &sport->port); 2543 disable_irq(sport->port.irq); 2544 2545 ret = clk_prepare_enable(sport->clk_ipg); 2546 if (ret) 2547 return ret; 2548 2549 /* enable wakeup from i.MX UART */ 2550 imx_uart_enable_wakeup(sport, true); 2551 2552 return 0; 2553 } 2554 2555 static int imx_uart_resume(struct device *dev) 2556 { 2557 struct imx_port *sport = dev_get_drvdata(dev); 2558 2559 /* disable wakeup from i.MX UART */ 2560 imx_uart_enable_wakeup(sport, false); 2561 2562 uart_resume_port(&imx_uart_uart_driver, &sport->port); 2563 enable_irq(sport->port.irq); 2564 2565 clk_disable_unprepare(sport->clk_ipg); 2566 2567 return 0; 2568 } 2569 2570 static int imx_uart_freeze(struct device *dev) 2571 { 2572 struct imx_port *sport = dev_get_drvdata(dev); 2573 2574 uart_suspend_port(&imx_uart_uart_driver, &sport->port); 2575 2576 return clk_prepare_enable(sport->clk_ipg); 2577 } 2578 2579 static int imx_uart_thaw(struct device *dev) 2580 { 2581 struct imx_port *sport = dev_get_drvdata(dev); 2582 2583 uart_resume_port(&imx_uart_uart_driver, &sport->port); 2584 2585 clk_disable_unprepare(sport->clk_ipg); 2586 2587 return 0; 2588 } 2589 2590 static const struct dev_pm_ops imx_uart_pm_ops = { 2591 .suspend_noirq = imx_uart_suspend_noirq, 2592 .resume_noirq = imx_uart_resume_noirq, 2593 .freeze_noirq = imx_uart_suspend_noirq, 2594 .restore_noirq = imx_uart_resume_noirq, 2595 .suspend = imx_uart_suspend, 2596 .resume = imx_uart_resume, 2597 .freeze = imx_uart_freeze, 2598 .thaw = imx_uart_thaw, 2599 .restore = imx_uart_thaw, 2600 }; 2601 2602 static struct platform_driver imx_uart_platform_driver = { 2603 .probe = imx_uart_probe, 2604 .remove = imx_uart_remove, 2605 2606 .driver = { 2607 .name = "imx-uart", 2608 .of_match_table = imx_uart_dt_ids, 2609 .pm = &imx_uart_pm_ops, 2610 }, 2611 }; 2612 2613 static int __init imx_uart_init(void) 2614 { 2615 int ret = uart_register_driver(&imx_uart_uart_driver); 2616 2617 if (ret) 2618 return ret; 2619 2620 ret = platform_driver_register(&imx_uart_platform_driver); 2621 if (ret != 0) 2622 uart_unregister_driver(&imx_uart_uart_driver); 2623 2624 return ret; 2625 } 2626 2627 static void __exit imx_uart_exit(void) 2628 { 2629 platform_driver_unregister(&imx_uart_platform_driver); 2630 uart_unregister_driver(&imx_uart_uart_driver); 2631 } 2632 2633 module_init(imx_uart_init); 2634 module_exit(imx_uart_exit); 2635 2636 MODULE_AUTHOR("Sascha Hauer"); 2637 MODULE_DESCRIPTION("IMX generic serial port driver"); 2638 MODULE_LICENSE("GPL"); 2639 MODULE_ALIAS("platform:imx-uart"); 2640