xref: /openbmc/linux/drivers/tty/serial/imx.c (revision f531d25bda553c71696bb5fc6bf90fb28c6fae36)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Driver for Motorola/Freescale IMX serial ports
4  *
5  * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6  *
7  * Author: Sascha Hauer <sascha@saschahauer.de>
8  * Copyright (C) 2004 Pengutronix
9  */
10 
11 #include <linux/module.h>
12 #include <linux/ioport.h>
13 #include <linux/init.h>
14 #include <linux/console.h>
15 #include <linux/sysrq.h>
16 #include <linux/platform_device.h>
17 #include <linux/tty.h>
18 #include <linux/tty_flip.h>
19 #include <linux/serial_core.h>
20 #include <linux/serial.h>
21 #include <linux/clk.h>
22 #include <linux/delay.h>
23 #include <linux/ktime.h>
24 #include <linux/pinctrl/consumer.h>
25 #include <linux/rational.h>
26 #include <linux/slab.h>
27 #include <linux/of.h>
28 #include <linux/of_device.h>
29 #include <linux/io.h>
30 #include <linux/dma-mapping.h>
31 
32 #include <asm/irq.h>
33 #include <linux/platform_data/dma-imx.h>
34 
35 #include "serial_mctrl_gpio.h"
36 
37 /* Register definitions */
38 #define URXD0 0x0  /* Receiver Register */
39 #define URTX0 0x40 /* Transmitter Register */
40 #define UCR1  0x80 /* Control Register 1 */
41 #define UCR2  0x84 /* Control Register 2 */
42 #define UCR3  0x88 /* Control Register 3 */
43 #define UCR4  0x8c /* Control Register 4 */
44 #define UFCR  0x90 /* FIFO Control Register */
45 #define USR1  0x94 /* Status Register 1 */
46 #define USR2  0x98 /* Status Register 2 */
47 #define UESC  0x9c /* Escape Character Register */
48 #define UTIM  0xa0 /* Escape Timer Register */
49 #define UBIR  0xa4 /* BRM Incremental Register */
50 #define UBMR  0xa8 /* BRM Modulator Register */
51 #define UBRC  0xac /* Baud Rate Count Register */
52 #define IMX21_ONEMS 0xb0 /* One Millisecond register */
53 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */
54 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/
55 
56 /* UART Control Register Bit Fields.*/
57 #define URXD_DUMMY_READ (1<<16)
58 #define URXD_CHARRDY	(1<<15)
59 #define URXD_ERR	(1<<14)
60 #define URXD_OVRRUN	(1<<13)
61 #define URXD_FRMERR	(1<<12)
62 #define URXD_BRK	(1<<11)
63 #define URXD_PRERR	(1<<10)
64 #define URXD_RX_DATA	(0xFF<<0)
65 #define UCR1_ADEN	(1<<15) /* Auto detect interrupt */
66 #define UCR1_ADBR	(1<<14) /* Auto detect baud rate */
67 #define UCR1_TRDYEN	(1<<13) /* Transmitter ready interrupt enable */
68 #define UCR1_IDEN	(1<<12) /* Idle condition interrupt */
69 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */
70 #define UCR1_RRDYEN	(1<<9)	/* Recv ready interrupt enable */
71 #define UCR1_RXDMAEN	(1<<8)	/* Recv ready DMA enable */
72 #define UCR1_IREN	(1<<7)	/* Infrared interface enable */
73 #define UCR1_TXMPTYEN	(1<<6)	/* Transimitter empty interrupt enable */
74 #define UCR1_RTSDEN	(1<<5)	/* RTS delta interrupt enable */
75 #define UCR1_SNDBRK	(1<<4)	/* Send break */
76 #define UCR1_TXDMAEN	(1<<3)	/* Transmitter ready DMA enable */
77 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */
78 #define UCR1_ATDMAEN    (1<<2)  /* Aging DMA Timer Enable */
79 #define UCR1_DOZE	(1<<1)	/* Doze */
80 #define UCR1_UARTEN	(1<<0)	/* UART enabled */
81 #define UCR2_ESCI	(1<<15)	/* Escape seq interrupt enable */
82 #define UCR2_IRTS	(1<<14)	/* Ignore RTS pin */
83 #define UCR2_CTSC	(1<<13)	/* CTS pin control */
84 #define UCR2_CTS	(1<<12)	/* Clear to send */
85 #define UCR2_ESCEN	(1<<11)	/* Escape enable */
86 #define UCR2_PREN	(1<<8)	/* Parity enable */
87 #define UCR2_PROE	(1<<7)	/* Parity odd/even */
88 #define UCR2_STPB	(1<<6)	/* Stop */
89 #define UCR2_WS		(1<<5)	/* Word size */
90 #define UCR2_RTSEN	(1<<4)	/* Request to send interrupt enable */
91 #define UCR2_ATEN	(1<<3)	/* Aging Timer Enable */
92 #define UCR2_TXEN	(1<<2)	/* Transmitter enabled */
93 #define UCR2_RXEN	(1<<1)	/* Receiver enabled */
94 #define UCR2_SRST	(1<<0)	/* SW reset */
95 #define UCR3_DTREN	(1<<13) /* DTR interrupt enable */
96 #define UCR3_PARERREN	(1<<12) /* Parity enable */
97 #define UCR3_FRAERREN	(1<<11) /* Frame error interrupt enable */
98 #define UCR3_DSR	(1<<10) /* Data set ready */
99 #define UCR3_DCD	(1<<9)	/* Data carrier detect */
100 #define UCR3_RI		(1<<8)	/* Ring indicator */
101 #define UCR3_ADNIMP	(1<<7)	/* Autobaud Detection Not Improved */
102 #define UCR3_RXDSEN	(1<<6)	/* Receive status interrupt enable */
103 #define UCR3_AIRINTEN	(1<<5)	/* Async IR wake interrupt enable */
104 #define UCR3_AWAKEN	(1<<4)	/* Async wake interrupt enable */
105 #define UCR3_DTRDEN	(1<<3)	/* Data Terminal Ready Delta Enable. */
106 #define IMX21_UCR3_RXDMUXSEL	(1<<2)	/* RXD Muxed Input Select */
107 #define UCR3_INVT	(1<<1)	/* Inverted Infrared transmission */
108 #define UCR3_BPEN	(1<<0)	/* Preset registers enable */
109 #define UCR4_CTSTL_SHF	10	/* CTS trigger level shift */
110 #define UCR4_CTSTL_MASK	0x3F	/* CTS trigger is 6 bits wide */
111 #define UCR4_INVR	(1<<9)	/* Inverted infrared reception */
112 #define UCR4_ENIRI	(1<<8)	/* Serial infrared interrupt enable */
113 #define UCR4_WKEN	(1<<7)	/* Wake interrupt enable */
114 #define UCR4_REF16	(1<<6)	/* Ref freq 16 MHz */
115 #define UCR4_IDDMAEN    (1<<6)  /* DMA IDLE Condition Detected */
116 #define UCR4_IRSC	(1<<5)	/* IR special case */
117 #define UCR4_TCEN	(1<<3)	/* Transmit complete interrupt enable */
118 #define UCR4_BKEN	(1<<2)	/* Break condition interrupt enable */
119 #define UCR4_OREN	(1<<1)	/* Receiver overrun interrupt enable */
120 #define UCR4_DREN	(1<<0)	/* Recv data ready interrupt enable */
121 #define UFCR_RXTL_SHF	0	/* Receiver trigger level shift */
122 #define UFCR_DCEDTE	(1<<6)	/* DCE/DTE mode select */
123 #define UFCR_RFDIV	(7<<7)	/* Reference freq divider mask */
124 #define UFCR_RFDIV_REG(x)	(((x) < 7 ? 6 - (x) : 6) << 7)
125 #define UFCR_TXTL_SHF	10	/* Transmitter trigger level shift */
126 #define USR1_PARITYERR	(1<<15) /* Parity error interrupt flag */
127 #define USR1_RTSS	(1<<14) /* RTS pin status */
128 #define USR1_TRDY	(1<<13) /* Transmitter ready interrupt/dma flag */
129 #define USR1_RTSD	(1<<12) /* RTS delta */
130 #define USR1_ESCF	(1<<11) /* Escape seq interrupt flag */
131 #define USR1_FRAMERR	(1<<10) /* Frame error interrupt flag */
132 #define USR1_RRDY	(1<<9)	 /* Receiver ready interrupt/dma flag */
133 #define USR1_AGTIM	(1<<8)	 /* Ageing timer interrupt flag */
134 #define USR1_DTRD	(1<<7)	 /* DTR Delta */
135 #define USR1_RXDS	 (1<<6)	 /* Receiver idle interrupt flag */
136 #define USR1_AIRINT	 (1<<5)	 /* Async IR wake interrupt flag */
137 #define USR1_AWAKE	 (1<<4)	 /* Aysnc wake interrupt flag */
138 #define USR2_ADET	 (1<<15) /* Auto baud rate detect complete */
139 #define USR2_TXFE	 (1<<14) /* Transmit buffer FIFO empty */
140 #define USR2_DTRF	 (1<<13) /* DTR edge interrupt flag */
141 #define USR2_IDLE	 (1<<12) /* Idle condition */
142 #define USR2_RIDELT	 (1<<10) /* Ring Interrupt Delta */
143 #define USR2_RIIN	 (1<<9)	 /* Ring Indicator Input */
144 #define USR2_IRINT	 (1<<8)	 /* Serial infrared interrupt flag */
145 #define USR2_WAKE	 (1<<7)	 /* Wake */
146 #define USR2_DCDIN	 (1<<5)	 /* Data Carrier Detect Input */
147 #define USR2_RTSF	 (1<<4)	 /* RTS edge interrupt flag */
148 #define USR2_TXDC	 (1<<3)	 /* Transmitter complete */
149 #define USR2_BRCD	 (1<<2)	 /* Break condition */
150 #define USR2_ORE	(1<<1)	 /* Overrun error */
151 #define USR2_RDR	(1<<0)	 /* Recv data ready */
152 #define UTS_FRCPERR	(1<<13) /* Force parity error */
153 #define UTS_LOOP	(1<<12)	 /* Loop tx and rx */
154 #define UTS_TXEMPTY	 (1<<6)	 /* TxFIFO empty */
155 #define UTS_RXEMPTY	 (1<<5)	 /* RxFIFO empty */
156 #define UTS_TXFULL	 (1<<4)	 /* TxFIFO full */
157 #define UTS_RXFULL	 (1<<3)	 /* RxFIFO full */
158 #define UTS_SOFTRST	 (1<<0)	 /* Software reset */
159 
160 /* We've been assigned a range on the "Low-density serial ports" major */
161 #define SERIAL_IMX_MAJOR	207
162 #define MINOR_START		16
163 #define DEV_NAME		"ttymxc"
164 
165 /*
166  * This determines how often we check the modem status signals
167  * for any change.  They generally aren't connected to an IRQ
168  * so we have to poll them.  We also check immediately before
169  * filling the TX fifo incase CTS has been dropped.
170  */
171 #define MCTRL_TIMEOUT	(250*HZ/1000)
172 
173 #define DRIVER_NAME "IMX-uart"
174 
175 #define UART_NR 8
176 
177 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */
178 enum imx_uart_type {
179 	IMX1_UART,
180 	IMX21_UART,
181 	IMX53_UART,
182 	IMX6Q_UART,
183 };
184 
185 /* device type dependent stuff */
186 struct imx_uart_data {
187 	unsigned uts_reg;
188 	enum imx_uart_type devtype;
189 };
190 
191 enum imx_tx_state {
192 	OFF,
193 	WAIT_AFTER_RTS,
194 	SEND,
195 	WAIT_AFTER_SEND,
196 };
197 
198 struct imx_port {
199 	struct uart_port	port;
200 	struct timer_list	timer;
201 	unsigned int		old_status;
202 	unsigned int		have_rtscts:1;
203 	unsigned int		have_rtsgpio:1;
204 	unsigned int		dte_mode:1;
205 	unsigned int		inverted_tx:1;
206 	unsigned int		inverted_rx:1;
207 	struct clk		*clk_ipg;
208 	struct clk		*clk_per;
209 	const struct imx_uart_data *devdata;
210 
211 	struct mctrl_gpios *gpios;
212 
213 	/* shadow registers */
214 	unsigned int ucr1;
215 	unsigned int ucr2;
216 	unsigned int ucr3;
217 	unsigned int ucr4;
218 	unsigned int ufcr;
219 
220 	/* DMA fields */
221 	unsigned int		dma_is_enabled:1;
222 	unsigned int		dma_is_rxing:1;
223 	unsigned int		dma_is_txing:1;
224 	struct dma_chan		*dma_chan_rx, *dma_chan_tx;
225 	struct scatterlist	rx_sgl, tx_sgl[2];
226 	void			*rx_buf;
227 	struct circ_buf		rx_ring;
228 	unsigned int		rx_periods;
229 	dma_cookie_t		rx_cookie;
230 	unsigned int		tx_bytes;
231 	unsigned int		dma_tx_nents;
232 	unsigned int            saved_reg[10];
233 	bool			context_saved;
234 
235 	enum imx_tx_state	tx_state;
236 	struct hrtimer		trigger_start_tx;
237 	struct hrtimer		trigger_stop_tx;
238 };
239 
240 struct imx_port_ucrs {
241 	unsigned int	ucr1;
242 	unsigned int	ucr2;
243 	unsigned int	ucr3;
244 };
245 
246 static struct imx_uart_data imx_uart_devdata[] = {
247 	[IMX1_UART] = {
248 		.uts_reg = IMX1_UTS,
249 		.devtype = IMX1_UART,
250 	},
251 	[IMX21_UART] = {
252 		.uts_reg = IMX21_UTS,
253 		.devtype = IMX21_UART,
254 	},
255 	[IMX53_UART] = {
256 		.uts_reg = IMX21_UTS,
257 		.devtype = IMX53_UART,
258 	},
259 	[IMX6Q_UART] = {
260 		.uts_reg = IMX21_UTS,
261 		.devtype = IMX6Q_UART,
262 	},
263 };
264 
265 static const struct of_device_id imx_uart_dt_ids[] = {
266 	{ .compatible = "fsl,imx6q-uart", .data = &imx_uart_devdata[IMX6Q_UART], },
267 	{ .compatible = "fsl,imx53-uart", .data = &imx_uart_devdata[IMX53_UART], },
268 	{ .compatible = "fsl,imx1-uart", .data = &imx_uart_devdata[IMX1_UART], },
269 	{ .compatible = "fsl,imx21-uart", .data = &imx_uart_devdata[IMX21_UART], },
270 	{ /* sentinel */ }
271 };
272 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids);
273 
274 static void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset)
275 {
276 	switch (offset) {
277 	case UCR1:
278 		sport->ucr1 = val;
279 		break;
280 	case UCR2:
281 		sport->ucr2 = val;
282 		break;
283 	case UCR3:
284 		sport->ucr3 = val;
285 		break;
286 	case UCR4:
287 		sport->ucr4 = val;
288 		break;
289 	case UFCR:
290 		sport->ufcr = val;
291 		break;
292 	default:
293 		break;
294 	}
295 	writel(val, sport->port.membase + offset);
296 }
297 
298 static u32 imx_uart_readl(struct imx_port *sport, u32 offset)
299 {
300 	switch (offset) {
301 	case UCR1:
302 		return sport->ucr1;
303 		break;
304 	case UCR2:
305 		/*
306 		 * UCR2_SRST is the only bit in the cached registers that might
307 		 * differ from the value that was last written. As it only
308 		 * automatically becomes one after being cleared, reread
309 		 * conditionally.
310 		 */
311 		if (!(sport->ucr2 & UCR2_SRST))
312 			sport->ucr2 = readl(sport->port.membase + offset);
313 		return sport->ucr2;
314 		break;
315 	case UCR3:
316 		return sport->ucr3;
317 		break;
318 	case UCR4:
319 		return sport->ucr4;
320 		break;
321 	case UFCR:
322 		return sport->ufcr;
323 		break;
324 	default:
325 		return readl(sport->port.membase + offset);
326 	}
327 }
328 
329 static inline unsigned imx_uart_uts_reg(struct imx_port *sport)
330 {
331 	return sport->devdata->uts_reg;
332 }
333 
334 static inline int imx_uart_is_imx1(struct imx_port *sport)
335 {
336 	return sport->devdata->devtype == IMX1_UART;
337 }
338 
339 static inline int imx_uart_is_imx21(struct imx_port *sport)
340 {
341 	return sport->devdata->devtype == IMX21_UART;
342 }
343 
344 static inline int imx_uart_is_imx53(struct imx_port *sport)
345 {
346 	return sport->devdata->devtype == IMX53_UART;
347 }
348 
349 static inline int imx_uart_is_imx6q(struct imx_port *sport)
350 {
351 	return sport->devdata->devtype == IMX6Q_UART;
352 }
353 /*
354  * Save and restore functions for UCR1, UCR2 and UCR3 registers
355  */
356 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE)
357 static void imx_uart_ucrs_save(struct imx_port *sport,
358 			       struct imx_port_ucrs *ucr)
359 {
360 	/* save control registers */
361 	ucr->ucr1 = imx_uart_readl(sport, UCR1);
362 	ucr->ucr2 = imx_uart_readl(sport, UCR2);
363 	ucr->ucr3 = imx_uart_readl(sport, UCR3);
364 }
365 
366 static void imx_uart_ucrs_restore(struct imx_port *sport,
367 				  struct imx_port_ucrs *ucr)
368 {
369 	/* restore control registers */
370 	imx_uart_writel(sport, ucr->ucr1, UCR1);
371 	imx_uart_writel(sport, ucr->ucr2, UCR2);
372 	imx_uart_writel(sport, ucr->ucr3, UCR3);
373 }
374 #endif
375 
376 /* called with port.lock taken and irqs caller dependent */
377 static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2)
378 {
379 	*ucr2 &= ~(UCR2_CTSC | UCR2_CTS);
380 
381 	sport->port.mctrl |= TIOCM_RTS;
382 	mctrl_gpio_set(sport->gpios, sport->port.mctrl);
383 }
384 
385 /* called with port.lock taken and irqs caller dependent */
386 static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2)
387 {
388 	*ucr2 &= ~UCR2_CTSC;
389 	*ucr2 |= UCR2_CTS;
390 
391 	sport->port.mctrl &= ~TIOCM_RTS;
392 	mctrl_gpio_set(sport->gpios, sport->port.mctrl);
393 }
394 
395 static void start_hrtimer_ms(struct hrtimer *hrt, unsigned long msec)
396 {
397        hrtimer_start(hrt, ms_to_ktime(msec), HRTIMER_MODE_REL);
398 }
399 
400 /* called with port.lock taken and irqs off */
401 static void imx_uart_start_rx(struct uart_port *port)
402 {
403 	struct imx_port *sport = (struct imx_port *)port;
404 	unsigned int ucr1, ucr2;
405 
406 	ucr1 = imx_uart_readl(sport, UCR1);
407 	ucr2 = imx_uart_readl(sport, UCR2);
408 
409 	ucr2 |= UCR2_RXEN;
410 
411 	if (sport->dma_is_enabled) {
412 		ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN;
413 	} else {
414 		ucr1 |= UCR1_RRDYEN;
415 		ucr2 |= UCR2_ATEN;
416 	}
417 
418 	/* Write UCR2 first as it includes RXEN */
419 	imx_uart_writel(sport, ucr2, UCR2);
420 	imx_uart_writel(sport, ucr1, UCR1);
421 }
422 
423 /* called with port.lock taken and irqs off */
424 static void imx_uart_stop_tx(struct uart_port *port)
425 {
426 	struct imx_port *sport = (struct imx_port *)port;
427 	u32 ucr1, ucr4, usr2;
428 
429 	if (sport->tx_state == OFF)
430 		return;
431 
432 	/*
433 	 * We are maybe in the SMP context, so if the DMA TX thread is running
434 	 * on other cpu, we have to wait for it to finish.
435 	 */
436 	if (sport->dma_is_txing)
437 		return;
438 
439 	ucr1 = imx_uart_readl(sport, UCR1);
440 	imx_uart_writel(sport, ucr1 & ~UCR1_TRDYEN, UCR1);
441 
442 	usr2 = imx_uart_readl(sport, USR2);
443 	if (!(usr2 & USR2_TXDC)) {
444 		/* The shifter is still busy, so retry once TC triggers */
445 		return;
446 	}
447 
448 	ucr4 = imx_uart_readl(sport, UCR4);
449 	ucr4 &= ~UCR4_TCEN;
450 	imx_uart_writel(sport, ucr4, UCR4);
451 
452 	/* in rs485 mode disable transmitter */
453 	if (port->rs485.flags & SER_RS485_ENABLED) {
454 		if (sport->tx_state == SEND) {
455 			sport->tx_state = WAIT_AFTER_SEND;
456 			start_hrtimer_ms(&sport->trigger_stop_tx,
457 					 port->rs485.delay_rts_after_send);
458 			return;
459 		}
460 
461 		if (sport->tx_state == WAIT_AFTER_RTS ||
462 		    sport->tx_state == WAIT_AFTER_SEND) {
463 			u32 ucr2;
464 
465 			hrtimer_try_to_cancel(&sport->trigger_start_tx);
466 
467 			ucr2 = imx_uart_readl(sport, UCR2);
468 			if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
469 				imx_uart_rts_active(sport, &ucr2);
470 			else
471 				imx_uart_rts_inactive(sport, &ucr2);
472 			imx_uart_writel(sport, ucr2, UCR2);
473 
474 			imx_uart_start_rx(port);
475 
476 			sport->tx_state = OFF;
477 		}
478 	} else {
479 		sport->tx_state = OFF;
480 	}
481 }
482 
483 /* called with port.lock taken and irqs off */
484 static void imx_uart_stop_rx(struct uart_port *port)
485 {
486 	struct imx_port *sport = (struct imx_port *)port;
487 	u32 ucr1, ucr2;
488 
489 	ucr1 = imx_uart_readl(sport, UCR1);
490 	ucr2 = imx_uart_readl(sport, UCR2);
491 
492 	if (sport->dma_is_enabled) {
493 		ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN);
494 	} else {
495 		ucr1 &= ~UCR1_RRDYEN;
496 		ucr2 &= ~UCR2_ATEN;
497 	}
498 	imx_uart_writel(sport, ucr1, UCR1);
499 
500 	ucr2 &= ~UCR2_RXEN;
501 	imx_uart_writel(sport, ucr2, UCR2);
502 }
503 
504 /* called with port.lock taken and irqs off */
505 static void imx_uart_enable_ms(struct uart_port *port)
506 {
507 	struct imx_port *sport = (struct imx_port *)port;
508 
509 	mod_timer(&sport->timer, jiffies);
510 
511 	mctrl_gpio_enable_ms(sport->gpios);
512 }
513 
514 static void imx_uart_dma_tx(struct imx_port *sport);
515 
516 /* called with port.lock taken and irqs off */
517 static inline void imx_uart_transmit_buffer(struct imx_port *sport)
518 {
519 	struct circ_buf *xmit = &sport->port.state->xmit;
520 
521 	if (sport->port.x_char) {
522 		/* Send next char */
523 		imx_uart_writel(sport, sport->port.x_char, URTX0);
524 		sport->port.icount.tx++;
525 		sport->port.x_char = 0;
526 		return;
527 	}
528 
529 	if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) {
530 		imx_uart_stop_tx(&sport->port);
531 		return;
532 	}
533 
534 	if (sport->dma_is_enabled) {
535 		u32 ucr1;
536 		/*
537 		 * We've just sent a X-char Ensure the TX DMA is enabled
538 		 * and the TX IRQ is disabled.
539 		 **/
540 		ucr1 = imx_uart_readl(sport, UCR1);
541 		ucr1 &= ~UCR1_TRDYEN;
542 		if (sport->dma_is_txing) {
543 			ucr1 |= UCR1_TXDMAEN;
544 			imx_uart_writel(sport, ucr1, UCR1);
545 		} else {
546 			imx_uart_writel(sport, ucr1, UCR1);
547 			imx_uart_dma_tx(sport);
548 		}
549 
550 		return;
551 	}
552 
553 	while (!uart_circ_empty(xmit) &&
554 	       !(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)) {
555 		/* send xmit->buf[xmit->tail]
556 		 * out the port here */
557 		imx_uart_writel(sport, xmit->buf[xmit->tail], URTX0);
558 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
559 		sport->port.icount.tx++;
560 	}
561 
562 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
563 		uart_write_wakeup(&sport->port);
564 
565 	if (uart_circ_empty(xmit))
566 		imx_uart_stop_tx(&sport->port);
567 }
568 
569 static void imx_uart_dma_tx_callback(void *data)
570 {
571 	struct imx_port *sport = data;
572 	struct scatterlist *sgl = &sport->tx_sgl[0];
573 	struct circ_buf *xmit = &sport->port.state->xmit;
574 	unsigned long flags;
575 	u32 ucr1;
576 
577 	spin_lock_irqsave(&sport->port.lock, flags);
578 
579 	dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
580 
581 	ucr1 = imx_uart_readl(sport, UCR1);
582 	ucr1 &= ~UCR1_TXDMAEN;
583 	imx_uart_writel(sport, ucr1, UCR1);
584 
585 	/* update the stat */
586 	xmit->tail = (xmit->tail + sport->tx_bytes) & (UART_XMIT_SIZE - 1);
587 	sport->port.icount.tx += sport->tx_bytes;
588 
589 	dev_dbg(sport->port.dev, "we finish the TX DMA.\n");
590 
591 	sport->dma_is_txing = 0;
592 
593 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
594 		uart_write_wakeup(&sport->port);
595 
596 	if (!uart_circ_empty(xmit) && !uart_tx_stopped(&sport->port))
597 		imx_uart_dma_tx(sport);
598 	else if (sport->port.rs485.flags & SER_RS485_ENABLED) {
599 		u32 ucr4 = imx_uart_readl(sport, UCR4);
600 		ucr4 |= UCR4_TCEN;
601 		imx_uart_writel(sport, ucr4, UCR4);
602 	}
603 
604 	spin_unlock_irqrestore(&sport->port.lock, flags);
605 }
606 
607 /* called with port.lock taken and irqs off */
608 static void imx_uart_dma_tx(struct imx_port *sport)
609 {
610 	struct circ_buf *xmit = &sport->port.state->xmit;
611 	struct scatterlist *sgl = sport->tx_sgl;
612 	struct dma_async_tx_descriptor *desc;
613 	struct dma_chan	*chan = sport->dma_chan_tx;
614 	struct device *dev = sport->port.dev;
615 	u32 ucr1, ucr4;
616 	int ret;
617 
618 	if (sport->dma_is_txing)
619 		return;
620 
621 	ucr4 = imx_uart_readl(sport, UCR4);
622 	ucr4 &= ~UCR4_TCEN;
623 	imx_uart_writel(sport, ucr4, UCR4);
624 
625 	sport->tx_bytes = uart_circ_chars_pending(xmit);
626 
627 	if (xmit->tail < xmit->head || xmit->head == 0) {
628 		sport->dma_tx_nents = 1;
629 		sg_init_one(sgl, xmit->buf + xmit->tail, sport->tx_bytes);
630 	} else {
631 		sport->dma_tx_nents = 2;
632 		sg_init_table(sgl, 2);
633 		sg_set_buf(sgl, xmit->buf + xmit->tail,
634 				UART_XMIT_SIZE - xmit->tail);
635 		sg_set_buf(sgl + 1, xmit->buf, xmit->head);
636 	}
637 
638 	ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
639 	if (ret == 0) {
640 		dev_err(dev, "DMA mapping error for TX.\n");
641 		return;
642 	}
643 	desc = dmaengine_prep_slave_sg(chan, sgl, ret,
644 					DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);
645 	if (!desc) {
646 		dma_unmap_sg(dev, sgl, sport->dma_tx_nents,
647 			     DMA_TO_DEVICE);
648 		dev_err(dev, "We cannot prepare for the TX slave dma!\n");
649 		return;
650 	}
651 	desc->callback = imx_uart_dma_tx_callback;
652 	desc->callback_param = sport;
653 
654 	dev_dbg(dev, "TX: prepare to send %lu bytes by DMA.\n",
655 			uart_circ_chars_pending(xmit));
656 
657 	ucr1 = imx_uart_readl(sport, UCR1);
658 	ucr1 |= UCR1_TXDMAEN;
659 	imx_uart_writel(sport, ucr1, UCR1);
660 
661 	/* fire it */
662 	sport->dma_is_txing = 1;
663 	dmaengine_submit(desc);
664 	dma_async_issue_pending(chan);
665 	return;
666 }
667 
668 /* called with port.lock taken and irqs off */
669 static void imx_uart_start_tx(struct uart_port *port)
670 {
671 	struct imx_port *sport = (struct imx_port *)port;
672 	u32 ucr1;
673 
674 	if (!sport->port.x_char && uart_circ_empty(&port->state->xmit))
675 		return;
676 
677 	/*
678 	 * We cannot simply do nothing here if sport->tx_state == SEND already
679 	 * because UCR1_TXMPTYEN might already have been cleared in
680 	 * imx_uart_stop_tx(), but tx_state is still SEND.
681 	 */
682 
683 	if (port->rs485.flags & SER_RS485_ENABLED) {
684 		if (sport->tx_state == OFF) {
685 			u32 ucr2 = imx_uart_readl(sport, UCR2);
686 			if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
687 				imx_uart_rts_active(sport, &ucr2);
688 			else
689 				imx_uart_rts_inactive(sport, &ucr2);
690 			imx_uart_writel(sport, ucr2, UCR2);
691 
692 			if (!(port->rs485.flags & SER_RS485_RX_DURING_TX))
693 				imx_uart_stop_rx(port);
694 
695 			sport->tx_state = WAIT_AFTER_RTS;
696 			start_hrtimer_ms(&sport->trigger_start_tx,
697 					 port->rs485.delay_rts_before_send);
698 			return;
699 		}
700 
701 		if (sport->tx_state == WAIT_AFTER_SEND
702 		    || sport->tx_state == WAIT_AFTER_RTS) {
703 
704 			hrtimer_try_to_cancel(&sport->trigger_stop_tx);
705 
706 			/*
707 			 * Enable transmitter and shifter empty irq only if DMA
708 			 * is off.  In the DMA case this is done in the
709 			 * tx-callback.
710 			 */
711 			if (!sport->dma_is_enabled) {
712 				u32 ucr4 = imx_uart_readl(sport, UCR4);
713 				ucr4 |= UCR4_TCEN;
714 				imx_uart_writel(sport, ucr4, UCR4);
715 			}
716 
717 			sport->tx_state = SEND;
718 		}
719 	} else {
720 		sport->tx_state = SEND;
721 	}
722 
723 	if (!sport->dma_is_enabled) {
724 		ucr1 = imx_uart_readl(sport, UCR1);
725 		imx_uart_writel(sport, ucr1 | UCR1_TRDYEN, UCR1);
726 	}
727 
728 	if (sport->dma_is_enabled) {
729 		if (sport->port.x_char) {
730 			/* We have X-char to send, so enable TX IRQ and
731 			 * disable TX DMA to let TX interrupt to send X-char */
732 			ucr1 = imx_uart_readl(sport, UCR1);
733 			ucr1 &= ~UCR1_TXDMAEN;
734 			ucr1 |= UCR1_TRDYEN;
735 			imx_uart_writel(sport, ucr1, UCR1);
736 			return;
737 		}
738 
739 		if (!uart_circ_empty(&port->state->xmit) &&
740 		    !uart_tx_stopped(port))
741 			imx_uart_dma_tx(sport);
742 		return;
743 	}
744 }
745 
746 static irqreturn_t __imx_uart_rtsint(int irq, void *dev_id)
747 {
748 	struct imx_port *sport = dev_id;
749 	u32 usr1;
750 
751 	imx_uart_writel(sport, USR1_RTSD, USR1);
752 	usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS;
753 	uart_handle_cts_change(&sport->port, !!usr1);
754 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
755 
756 	return IRQ_HANDLED;
757 }
758 
759 static irqreturn_t imx_uart_rtsint(int irq, void *dev_id)
760 {
761 	struct imx_port *sport = dev_id;
762 	irqreturn_t ret;
763 
764 	spin_lock(&sport->port.lock);
765 
766 	ret = __imx_uart_rtsint(irq, dev_id);
767 
768 	spin_unlock(&sport->port.lock);
769 
770 	return ret;
771 }
772 
773 static irqreturn_t imx_uart_txint(int irq, void *dev_id)
774 {
775 	struct imx_port *sport = dev_id;
776 
777 	spin_lock(&sport->port.lock);
778 	imx_uart_transmit_buffer(sport);
779 	spin_unlock(&sport->port.lock);
780 	return IRQ_HANDLED;
781 }
782 
783 static irqreturn_t __imx_uart_rxint(int irq, void *dev_id)
784 {
785 	struct imx_port *sport = dev_id;
786 	unsigned int rx, flg, ignored = 0;
787 	struct tty_port *port = &sport->port.state->port;
788 
789 	while (imx_uart_readl(sport, USR2) & USR2_RDR) {
790 		u32 usr2;
791 
792 		flg = TTY_NORMAL;
793 		sport->port.icount.rx++;
794 
795 		rx = imx_uart_readl(sport, URXD0);
796 
797 		usr2 = imx_uart_readl(sport, USR2);
798 		if (usr2 & USR2_BRCD) {
799 			imx_uart_writel(sport, USR2_BRCD, USR2);
800 			if (uart_handle_break(&sport->port))
801 				continue;
802 		}
803 
804 		if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx))
805 			continue;
806 
807 		if (unlikely(rx & URXD_ERR)) {
808 			if (rx & URXD_BRK)
809 				sport->port.icount.brk++;
810 			else if (rx & URXD_PRERR)
811 				sport->port.icount.parity++;
812 			else if (rx & URXD_FRMERR)
813 				sport->port.icount.frame++;
814 			if (rx & URXD_OVRRUN)
815 				sport->port.icount.overrun++;
816 
817 			if (rx & sport->port.ignore_status_mask) {
818 				if (++ignored > 100)
819 					goto out;
820 				continue;
821 			}
822 
823 			rx &= (sport->port.read_status_mask | 0xFF);
824 
825 			if (rx & URXD_BRK)
826 				flg = TTY_BREAK;
827 			else if (rx & URXD_PRERR)
828 				flg = TTY_PARITY;
829 			else if (rx & URXD_FRMERR)
830 				flg = TTY_FRAME;
831 			if (rx & URXD_OVRRUN)
832 				flg = TTY_OVERRUN;
833 
834 			sport->port.sysrq = 0;
835 		}
836 
837 		if (sport->port.ignore_status_mask & URXD_DUMMY_READ)
838 			goto out;
839 
840 		if (tty_insert_flip_char(port, rx, flg) == 0)
841 			sport->port.icount.buf_overrun++;
842 	}
843 
844 out:
845 	tty_flip_buffer_push(port);
846 
847 	return IRQ_HANDLED;
848 }
849 
850 static irqreturn_t imx_uart_rxint(int irq, void *dev_id)
851 {
852 	struct imx_port *sport = dev_id;
853 	irqreturn_t ret;
854 
855 	spin_lock(&sport->port.lock);
856 
857 	ret = __imx_uart_rxint(irq, dev_id);
858 
859 	spin_unlock(&sport->port.lock);
860 
861 	return ret;
862 }
863 
864 static void imx_uart_clear_rx_errors(struct imx_port *sport);
865 
866 /*
867  * We have a modem side uart, so the meanings of RTS and CTS are inverted.
868  */
869 static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport)
870 {
871 	unsigned int tmp = TIOCM_DSR;
872 	unsigned usr1 = imx_uart_readl(sport, USR1);
873 	unsigned usr2 = imx_uart_readl(sport, USR2);
874 
875 	if (usr1 & USR1_RTSS)
876 		tmp |= TIOCM_CTS;
877 
878 	/* in DCE mode DCDIN is always 0 */
879 	if (!(usr2 & USR2_DCDIN))
880 		tmp |= TIOCM_CAR;
881 
882 	if (sport->dte_mode)
883 		if (!(imx_uart_readl(sport, USR2) & USR2_RIIN))
884 			tmp |= TIOCM_RI;
885 
886 	return tmp;
887 }
888 
889 /*
890  * Handle any change of modem status signal since we were last called.
891  */
892 static void imx_uart_mctrl_check(struct imx_port *sport)
893 {
894 	unsigned int status, changed;
895 
896 	status = imx_uart_get_hwmctrl(sport);
897 	changed = status ^ sport->old_status;
898 
899 	if (changed == 0)
900 		return;
901 
902 	sport->old_status = status;
903 
904 	if (changed & TIOCM_RI && status & TIOCM_RI)
905 		sport->port.icount.rng++;
906 	if (changed & TIOCM_DSR)
907 		sport->port.icount.dsr++;
908 	if (changed & TIOCM_CAR)
909 		uart_handle_dcd_change(&sport->port, status & TIOCM_CAR);
910 	if (changed & TIOCM_CTS)
911 		uart_handle_cts_change(&sport->port, status & TIOCM_CTS);
912 
913 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
914 }
915 
916 static irqreturn_t imx_uart_int(int irq, void *dev_id)
917 {
918 	struct imx_port *sport = dev_id;
919 	unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4;
920 	irqreturn_t ret = IRQ_NONE;
921 	unsigned long flags = 0;
922 
923 	/*
924 	 * IRQs might not be disabled upon entering this interrupt handler,
925 	 * e.g. when interrupt handlers are forced to be threaded. To support
926 	 * this scenario as well, disable IRQs when acquiring the spinlock.
927 	 */
928 	spin_lock_irqsave(&sport->port.lock, flags);
929 
930 	usr1 = imx_uart_readl(sport, USR1);
931 	usr2 = imx_uart_readl(sport, USR2);
932 	ucr1 = imx_uart_readl(sport, UCR1);
933 	ucr2 = imx_uart_readl(sport, UCR2);
934 	ucr3 = imx_uart_readl(sport, UCR3);
935 	ucr4 = imx_uart_readl(sport, UCR4);
936 
937 	/*
938 	 * Even if a condition is true that can trigger an irq only handle it if
939 	 * the respective irq source is enabled. This prevents some undesired
940 	 * actions, for example if a character that sits in the RX FIFO and that
941 	 * should be fetched via DMA is tried to be fetched using PIO. Or the
942 	 * receiver is currently off and so reading from URXD0 results in an
943 	 * exception. So just mask the (raw) status bits for disabled irqs.
944 	 */
945 	if ((ucr1 & UCR1_RRDYEN) == 0)
946 		usr1 &= ~USR1_RRDY;
947 	if ((ucr2 & UCR2_ATEN) == 0)
948 		usr1 &= ~USR1_AGTIM;
949 	if ((ucr1 & UCR1_TRDYEN) == 0)
950 		usr1 &= ~USR1_TRDY;
951 	if ((ucr4 & UCR4_TCEN) == 0)
952 		usr2 &= ~USR2_TXDC;
953 	if ((ucr3 & UCR3_DTRDEN) == 0)
954 		usr1 &= ~USR1_DTRD;
955 	if ((ucr1 & UCR1_RTSDEN) == 0)
956 		usr1 &= ~USR1_RTSD;
957 	if ((ucr3 & UCR3_AWAKEN) == 0)
958 		usr1 &= ~USR1_AWAKE;
959 	if ((ucr4 & UCR4_OREN) == 0)
960 		usr2 &= ~USR2_ORE;
961 
962 	if (usr1 & (USR1_RRDY | USR1_AGTIM)) {
963 		imx_uart_writel(sport, USR1_AGTIM, USR1);
964 
965 		__imx_uart_rxint(irq, dev_id);
966 		ret = IRQ_HANDLED;
967 	}
968 
969 	if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) {
970 		imx_uart_transmit_buffer(sport);
971 		ret = IRQ_HANDLED;
972 	}
973 
974 	if (usr1 & USR1_DTRD) {
975 		imx_uart_writel(sport, USR1_DTRD, USR1);
976 
977 		imx_uart_mctrl_check(sport);
978 
979 		ret = IRQ_HANDLED;
980 	}
981 
982 	if (usr1 & USR1_RTSD) {
983 		__imx_uart_rtsint(irq, dev_id);
984 		ret = IRQ_HANDLED;
985 	}
986 
987 	if (usr1 & USR1_AWAKE) {
988 		imx_uart_writel(sport, USR1_AWAKE, USR1);
989 		ret = IRQ_HANDLED;
990 	}
991 
992 	if (usr2 & USR2_ORE) {
993 		sport->port.icount.overrun++;
994 		imx_uart_writel(sport, USR2_ORE, USR2);
995 		ret = IRQ_HANDLED;
996 	}
997 
998 	spin_unlock_irqrestore(&sport->port.lock, flags);
999 
1000 	return ret;
1001 }
1002 
1003 /*
1004  * Return TIOCSER_TEMT when transmitter is not busy.
1005  */
1006 static unsigned int imx_uart_tx_empty(struct uart_port *port)
1007 {
1008 	struct imx_port *sport = (struct imx_port *)port;
1009 	unsigned int ret;
1010 
1011 	ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ?  TIOCSER_TEMT : 0;
1012 
1013 	/* If the TX DMA is working, return 0. */
1014 	if (sport->dma_is_txing)
1015 		ret = 0;
1016 
1017 	return ret;
1018 }
1019 
1020 /* called with port.lock taken and irqs off */
1021 static unsigned int imx_uart_get_mctrl(struct uart_port *port)
1022 {
1023 	struct imx_port *sport = (struct imx_port *)port;
1024 	unsigned int ret = imx_uart_get_hwmctrl(sport);
1025 
1026 	mctrl_gpio_get(sport->gpios, &ret);
1027 
1028 	return ret;
1029 }
1030 
1031 /* called with port.lock taken and irqs off */
1032 static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
1033 {
1034 	struct imx_port *sport = (struct imx_port *)port;
1035 	u32 ucr3, uts;
1036 
1037 	if (!(port->rs485.flags & SER_RS485_ENABLED)) {
1038 		u32 ucr2;
1039 
1040 		/*
1041 		 * Turn off autoRTS if RTS is lowered and restore autoRTS
1042 		 * setting if RTS is raised.
1043 		 */
1044 		ucr2 = imx_uart_readl(sport, UCR2);
1045 		ucr2 &= ~(UCR2_CTS | UCR2_CTSC);
1046 		if (mctrl & TIOCM_RTS) {
1047 			ucr2 |= UCR2_CTS;
1048 			/*
1049 			 * UCR2_IRTS is unset if and only if the port is
1050 			 * configured for CRTSCTS, so we use inverted UCR2_IRTS
1051 			 * to get the state to restore to.
1052 			 */
1053 			if (!(ucr2 & UCR2_IRTS))
1054 				ucr2 |= UCR2_CTSC;
1055 		}
1056 		imx_uart_writel(sport, ucr2, UCR2);
1057 	}
1058 
1059 	ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR;
1060 	if (!(mctrl & TIOCM_DTR))
1061 		ucr3 |= UCR3_DSR;
1062 	imx_uart_writel(sport, ucr3, UCR3);
1063 
1064 	uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP;
1065 	if (mctrl & TIOCM_LOOP)
1066 		uts |= UTS_LOOP;
1067 	imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
1068 
1069 	mctrl_gpio_set(sport->gpios, mctrl);
1070 }
1071 
1072 /*
1073  * Interrupts always disabled.
1074  */
1075 static void imx_uart_break_ctl(struct uart_port *port, int break_state)
1076 {
1077 	struct imx_port *sport = (struct imx_port *)port;
1078 	unsigned long flags;
1079 	u32 ucr1;
1080 
1081 	spin_lock_irqsave(&sport->port.lock, flags);
1082 
1083 	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK;
1084 
1085 	if (break_state != 0)
1086 		ucr1 |= UCR1_SNDBRK;
1087 
1088 	imx_uart_writel(sport, ucr1, UCR1);
1089 
1090 	spin_unlock_irqrestore(&sport->port.lock, flags);
1091 }
1092 
1093 /*
1094  * This is our per-port timeout handler, for checking the
1095  * modem status signals.
1096  */
1097 static void imx_uart_timeout(struct timer_list *t)
1098 {
1099 	struct imx_port *sport = from_timer(sport, t, timer);
1100 	unsigned long flags;
1101 
1102 	if (sport->port.state) {
1103 		spin_lock_irqsave(&sport->port.lock, flags);
1104 		imx_uart_mctrl_check(sport);
1105 		spin_unlock_irqrestore(&sport->port.lock, flags);
1106 
1107 		mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT);
1108 	}
1109 }
1110 
1111 /*
1112  * There are two kinds of RX DMA interrupts(such as in the MX6Q):
1113  *   [1] the RX DMA buffer is full.
1114  *   [2] the aging timer expires
1115  *
1116  * Condition [2] is triggered when a character has been sitting in the FIFO
1117  * for at least 8 byte durations.
1118  */
1119 static void imx_uart_dma_rx_callback(void *data)
1120 {
1121 	struct imx_port *sport = data;
1122 	struct dma_chan	*chan = sport->dma_chan_rx;
1123 	struct scatterlist *sgl = &sport->rx_sgl;
1124 	struct tty_port *port = &sport->port.state->port;
1125 	struct dma_tx_state state;
1126 	struct circ_buf *rx_ring = &sport->rx_ring;
1127 	enum dma_status status;
1128 	unsigned int w_bytes = 0;
1129 	unsigned int r_bytes;
1130 	unsigned int bd_size;
1131 
1132 	status = dmaengine_tx_status(chan, sport->rx_cookie, &state);
1133 
1134 	if (status == DMA_ERROR) {
1135 		imx_uart_clear_rx_errors(sport);
1136 		return;
1137 	}
1138 
1139 	if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) {
1140 
1141 		/*
1142 		 * The state-residue variable represents the empty space
1143 		 * relative to the entire buffer. Taking this in consideration
1144 		 * the head is always calculated base on the buffer total
1145 		 * length - DMA transaction residue. The UART script from the
1146 		 * SDMA firmware will jump to the next buffer descriptor,
1147 		 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4).
1148 		 * Taking this in consideration the tail is always at the
1149 		 * beginning of the buffer descriptor that contains the head.
1150 		 */
1151 
1152 		/* Calculate the head */
1153 		rx_ring->head = sg_dma_len(sgl) - state.residue;
1154 
1155 		/* Calculate the tail. */
1156 		bd_size = sg_dma_len(sgl) / sport->rx_periods;
1157 		rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size;
1158 
1159 		if (rx_ring->head <= sg_dma_len(sgl) &&
1160 		    rx_ring->head > rx_ring->tail) {
1161 
1162 			/* Move data from tail to head */
1163 			r_bytes = rx_ring->head - rx_ring->tail;
1164 
1165 			/* CPU claims ownership of RX DMA buffer */
1166 			dma_sync_sg_for_cpu(sport->port.dev, sgl, 1,
1167 				DMA_FROM_DEVICE);
1168 
1169 			w_bytes = tty_insert_flip_string(port,
1170 				sport->rx_buf + rx_ring->tail, r_bytes);
1171 
1172 			/* UART retrieves ownership of RX DMA buffer */
1173 			dma_sync_sg_for_device(sport->port.dev, sgl, 1,
1174 				DMA_FROM_DEVICE);
1175 
1176 			if (w_bytes != r_bytes)
1177 				sport->port.icount.buf_overrun++;
1178 
1179 			sport->port.icount.rx += w_bytes;
1180 		} else	{
1181 			WARN_ON(rx_ring->head > sg_dma_len(sgl));
1182 			WARN_ON(rx_ring->head <= rx_ring->tail);
1183 		}
1184 	}
1185 
1186 	if (w_bytes) {
1187 		tty_flip_buffer_push(port);
1188 		dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes);
1189 	}
1190 }
1191 
1192 /* RX DMA buffer periods */
1193 #define RX_DMA_PERIODS	16
1194 #define RX_BUF_SIZE	(RX_DMA_PERIODS * PAGE_SIZE / 4)
1195 
1196 static int imx_uart_start_rx_dma(struct imx_port *sport)
1197 {
1198 	struct scatterlist *sgl = &sport->rx_sgl;
1199 	struct dma_chan	*chan = sport->dma_chan_rx;
1200 	struct device *dev = sport->port.dev;
1201 	struct dma_async_tx_descriptor *desc;
1202 	int ret;
1203 
1204 	sport->rx_ring.head = 0;
1205 	sport->rx_ring.tail = 0;
1206 	sport->rx_periods = RX_DMA_PERIODS;
1207 
1208 	sg_init_one(sgl, sport->rx_buf, RX_BUF_SIZE);
1209 	ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1210 	if (ret == 0) {
1211 		dev_err(dev, "DMA mapping error for RX.\n");
1212 		return -EINVAL;
1213 	}
1214 
1215 	desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl),
1216 		sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods,
1217 		DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
1218 
1219 	if (!desc) {
1220 		dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1221 		dev_err(dev, "We cannot prepare for the RX slave dma!\n");
1222 		return -EINVAL;
1223 	}
1224 	desc->callback = imx_uart_dma_rx_callback;
1225 	desc->callback_param = sport;
1226 
1227 	dev_dbg(dev, "RX: prepare for the DMA.\n");
1228 	sport->dma_is_rxing = 1;
1229 	sport->rx_cookie = dmaengine_submit(desc);
1230 	dma_async_issue_pending(chan);
1231 	return 0;
1232 }
1233 
1234 static void imx_uart_clear_rx_errors(struct imx_port *sport)
1235 {
1236 	struct tty_port *port = &sport->port.state->port;
1237 	u32 usr1, usr2;
1238 
1239 	usr1 = imx_uart_readl(sport, USR1);
1240 	usr2 = imx_uart_readl(sport, USR2);
1241 
1242 	if (usr2 & USR2_BRCD) {
1243 		sport->port.icount.brk++;
1244 		imx_uart_writel(sport, USR2_BRCD, USR2);
1245 		uart_handle_break(&sport->port);
1246 		if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0)
1247 			sport->port.icount.buf_overrun++;
1248 		tty_flip_buffer_push(port);
1249 	} else {
1250 		if (usr1 & USR1_FRAMERR) {
1251 			sport->port.icount.frame++;
1252 			imx_uart_writel(sport, USR1_FRAMERR, USR1);
1253 		} else if (usr1 & USR1_PARITYERR) {
1254 			sport->port.icount.parity++;
1255 			imx_uart_writel(sport, USR1_PARITYERR, USR1);
1256 		}
1257 	}
1258 
1259 	if (usr2 & USR2_ORE) {
1260 		sport->port.icount.overrun++;
1261 		imx_uart_writel(sport, USR2_ORE, USR2);
1262 	}
1263 
1264 }
1265 
1266 #define TXTL_DEFAULT 2 /* reset default */
1267 #define RXTL_DEFAULT 1 /* reset default */
1268 #define TXTL_DMA 8 /* DMA burst setting */
1269 #define RXTL_DMA 9 /* DMA burst setting */
1270 
1271 static void imx_uart_setup_ufcr(struct imx_port *sport,
1272 				unsigned char txwl, unsigned char rxwl)
1273 {
1274 	unsigned int val;
1275 
1276 	/* set receiver / transmitter trigger level */
1277 	val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE);
1278 	val |= txwl << UFCR_TXTL_SHF | rxwl;
1279 	imx_uart_writel(sport, val, UFCR);
1280 }
1281 
1282 static void imx_uart_dma_exit(struct imx_port *sport)
1283 {
1284 	if (sport->dma_chan_rx) {
1285 		dmaengine_terminate_sync(sport->dma_chan_rx);
1286 		dma_release_channel(sport->dma_chan_rx);
1287 		sport->dma_chan_rx = NULL;
1288 		sport->rx_cookie = -EINVAL;
1289 		kfree(sport->rx_buf);
1290 		sport->rx_buf = NULL;
1291 	}
1292 
1293 	if (sport->dma_chan_tx) {
1294 		dmaengine_terminate_sync(sport->dma_chan_tx);
1295 		dma_release_channel(sport->dma_chan_tx);
1296 		sport->dma_chan_tx = NULL;
1297 	}
1298 }
1299 
1300 static int imx_uart_dma_init(struct imx_port *sport)
1301 {
1302 	struct dma_slave_config slave_config = {};
1303 	struct device *dev = sport->port.dev;
1304 	int ret;
1305 
1306 	/* Prepare for RX : */
1307 	sport->dma_chan_rx = dma_request_slave_channel(dev, "rx");
1308 	if (!sport->dma_chan_rx) {
1309 		dev_dbg(dev, "cannot get the DMA channel.\n");
1310 		ret = -EINVAL;
1311 		goto err;
1312 	}
1313 
1314 	slave_config.direction = DMA_DEV_TO_MEM;
1315 	slave_config.src_addr = sport->port.mapbase + URXD0;
1316 	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1317 	/* one byte less than the watermark level to enable the aging timer */
1318 	slave_config.src_maxburst = RXTL_DMA - 1;
1319 	ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config);
1320 	if (ret) {
1321 		dev_err(dev, "error in RX dma configuration.\n");
1322 		goto err;
1323 	}
1324 
1325 	sport->rx_buf = kzalloc(RX_BUF_SIZE, GFP_KERNEL);
1326 	if (!sport->rx_buf) {
1327 		ret = -ENOMEM;
1328 		goto err;
1329 	}
1330 	sport->rx_ring.buf = sport->rx_buf;
1331 
1332 	/* Prepare for TX : */
1333 	sport->dma_chan_tx = dma_request_slave_channel(dev, "tx");
1334 	if (!sport->dma_chan_tx) {
1335 		dev_err(dev, "cannot get the TX DMA channel!\n");
1336 		ret = -EINVAL;
1337 		goto err;
1338 	}
1339 
1340 	slave_config.direction = DMA_MEM_TO_DEV;
1341 	slave_config.dst_addr = sport->port.mapbase + URTX0;
1342 	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1343 	slave_config.dst_maxburst = TXTL_DMA;
1344 	ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config);
1345 	if (ret) {
1346 		dev_err(dev, "error in TX dma configuration.");
1347 		goto err;
1348 	}
1349 
1350 	return 0;
1351 err:
1352 	imx_uart_dma_exit(sport);
1353 	return ret;
1354 }
1355 
1356 static void imx_uart_enable_dma(struct imx_port *sport)
1357 {
1358 	u32 ucr1;
1359 
1360 	imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA);
1361 
1362 	/* set UCR1 */
1363 	ucr1 = imx_uart_readl(sport, UCR1);
1364 	ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN;
1365 	imx_uart_writel(sport, ucr1, UCR1);
1366 
1367 	sport->dma_is_enabled = 1;
1368 }
1369 
1370 static void imx_uart_disable_dma(struct imx_port *sport)
1371 {
1372 	u32 ucr1;
1373 
1374 	/* clear UCR1 */
1375 	ucr1 = imx_uart_readl(sport, UCR1);
1376 	ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN);
1377 	imx_uart_writel(sport, ucr1, UCR1);
1378 
1379 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1380 
1381 	sport->dma_is_enabled = 0;
1382 }
1383 
1384 /* half the RX buffer size */
1385 #define CTSTL 16
1386 
1387 static int imx_uart_startup(struct uart_port *port)
1388 {
1389 	struct imx_port *sport = (struct imx_port *)port;
1390 	int retval, i;
1391 	unsigned long flags;
1392 	int dma_is_inited = 0;
1393 	u32 ucr1, ucr2, ucr3, ucr4;
1394 
1395 	retval = clk_prepare_enable(sport->clk_per);
1396 	if (retval)
1397 		return retval;
1398 	retval = clk_prepare_enable(sport->clk_ipg);
1399 	if (retval) {
1400 		clk_disable_unprepare(sport->clk_per);
1401 		return retval;
1402 	}
1403 
1404 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1405 
1406 	/* disable the DREN bit (Data Ready interrupt enable) before
1407 	 * requesting IRQs
1408 	 */
1409 	ucr4 = imx_uart_readl(sport, UCR4);
1410 
1411 	/* set the trigger level for CTS */
1412 	ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF);
1413 	ucr4 |= CTSTL << UCR4_CTSTL_SHF;
1414 
1415 	imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4);
1416 
1417 	/* Can we enable the DMA support? */
1418 	if (!uart_console(port) && imx_uart_dma_init(sport) == 0)
1419 		dma_is_inited = 1;
1420 
1421 	spin_lock_irqsave(&sport->port.lock, flags);
1422 	/* Reset fifo's and state machines */
1423 	i = 100;
1424 
1425 	ucr2 = imx_uart_readl(sport, UCR2);
1426 	ucr2 &= ~UCR2_SRST;
1427 	imx_uart_writel(sport, ucr2, UCR2);
1428 
1429 	while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0))
1430 		udelay(1);
1431 
1432 	/*
1433 	 * Finally, clear and enable interrupts
1434 	 */
1435 	imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1);
1436 	imx_uart_writel(sport, USR2_ORE, USR2);
1437 
1438 	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN;
1439 	ucr1 |= UCR1_UARTEN;
1440 	if (sport->have_rtscts)
1441 		ucr1 |= UCR1_RTSDEN;
1442 
1443 	imx_uart_writel(sport, ucr1, UCR1);
1444 
1445 	ucr4 = imx_uart_readl(sport, UCR4) & ~(UCR4_OREN | UCR4_INVR);
1446 	if (!sport->dma_is_enabled)
1447 		ucr4 |= UCR4_OREN;
1448 	if (sport->inverted_rx)
1449 		ucr4 |= UCR4_INVR;
1450 	imx_uart_writel(sport, ucr4, UCR4);
1451 
1452 	ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_INVT;
1453 	/*
1454 	 * configure tx polarity before enabling tx
1455 	 */
1456 	if (sport->inverted_tx)
1457 		ucr3 |= UCR3_INVT;
1458 
1459 	if (!imx_uart_is_imx1(sport)) {
1460 		ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD;
1461 
1462 		if (sport->dte_mode)
1463 			/* disable broken interrupts */
1464 			ucr3 &= ~(UCR3_RI | UCR3_DCD);
1465 	}
1466 	imx_uart_writel(sport, ucr3, UCR3);
1467 
1468 	ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN;
1469 	ucr2 |= (UCR2_RXEN | UCR2_TXEN);
1470 	if (!sport->have_rtscts)
1471 		ucr2 |= UCR2_IRTS;
1472 	/*
1473 	 * make sure the edge sensitive RTS-irq is disabled,
1474 	 * we're using RTSD instead.
1475 	 */
1476 	if (!imx_uart_is_imx1(sport))
1477 		ucr2 &= ~UCR2_RTSEN;
1478 	imx_uart_writel(sport, ucr2, UCR2);
1479 
1480 	/*
1481 	 * Enable modem status interrupts
1482 	 */
1483 	imx_uart_enable_ms(&sport->port);
1484 
1485 	if (dma_is_inited) {
1486 		imx_uart_enable_dma(sport);
1487 		imx_uart_start_rx_dma(sport);
1488 	} else {
1489 		ucr1 = imx_uart_readl(sport, UCR1);
1490 		ucr1 |= UCR1_RRDYEN;
1491 		imx_uart_writel(sport, ucr1, UCR1);
1492 
1493 		ucr2 = imx_uart_readl(sport, UCR2);
1494 		ucr2 |= UCR2_ATEN;
1495 		imx_uart_writel(sport, ucr2, UCR2);
1496 	}
1497 
1498 	spin_unlock_irqrestore(&sport->port.lock, flags);
1499 
1500 	return 0;
1501 }
1502 
1503 static void imx_uart_shutdown(struct uart_port *port)
1504 {
1505 	struct imx_port *sport = (struct imx_port *)port;
1506 	unsigned long flags;
1507 	u32 ucr1, ucr2, ucr4;
1508 
1509 	if (sport->dma_is_enabled) {
1510 		dmaengine_terminate_sync(sport->dma_chan_tx);
1511 		if (sport->dma_is_txing) {
1512 			dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0],
1513 				     sport->dma_tx_nents, DMA_TO_DEVICE);
1514 			sport->dma_is_txing = 0;
1515 		}
1516 		dmaengine_terminate_sync(sport->dma_chan_rx);
1517 		if (sport->dma_is_rxing) {
1518 			dma_unmap_sg(sport->port.dev, &sport->rx_sgl,
1519 				     1, DMA_FROM_DEVICE);
1520 			sport->dma_is_rxing = 0;
1521 		}
1522 
1523 		spin_lock_irqsave(&sport->port.lock, flags);
1524 		imx_uart_stop_tx(port);
1525 		imx_uart_stop_rx(port);
1526 		imx_uart_disable_dma(sport);
1527 		spin_unlock_irqrestore(&sport->port.lock, flags);
1528 		imx_uart_dma_exit(sport);
1529 	}
1530 
1531 	mctrl_gpio_disable_ms(sport->gpios);
1532 
1533 	spin_lock_irqsave(&sport->port.lock, flags);
1534 	ucr2 = imx_uart_readl(sport, UCR2);
1535 	ucr2 &= ~(UCR2_TXEN | UCR2_ATEN);
1536 	imx_uart_writel(sport, ucr2, UCR2);
1537 	spin_unlock_irqrestore(&sport->port.lock, flags);
1538 
1539 	/*
1540 	 * Stop our timer.
1541 	 */
1542 	del_timer_sync(&sport->timer);
1543 
1544 	/*
1545 	 * Disable all interrupts, port and break condition.
1546 	 */
1547 
1548 	spin_lock_irqsave(&sport->port.lock, flags);
1549 
1550 	ucr1 = imx_uart_readl(sport, UCR1);
1551 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_UARTEN | UCR1_RXDMAEN | UCR1_ATDMAEN);
1552 	imx_uart_writel(sport, ucr1, UCR1);
1553 
1554 	ucr4 = imx_uart_readl(sport, UCR4);
1555 	ucr4 &= ~(UCR4_OREN | UCR4_TCEN);
1556 	imx_uart_writel(sport, ucr4, UCR4);
1557 
1558 	spin_unlock_irqrestore(&sport->port.lock, flags);
1559 
1560 	clk_disable_unprepare(sport->clk_per);
1561 	clk_disable_unprepare(sport->clk_ipg);
1562 }
1563 
1564 /* called with port.lock taken and irqs off */
1565 static void imx_uart_flush_buffer(struct uart_port *port)
1566 {
1567 	struct imx_port *sport = (struct imx_port *)port;
1568 	struct scatterlist *sgl = &sport->tx_sgl[0];
1569 	u32 ucr2;
1570 	int i = 100, ubir, ubmr, uts;
1571 
1572 	if (!sport->dma_chan_tx)
1573 		return;
1574 
1575 	sport->tx_bytes = 0;
1576 	dmaengine_terminate_all(sport->dma_chan_tx);
1577 	if (sport->dma_is_txing) {
1578 		u32 ucr1;
1579 
1580 		dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents,
1581 			     DMA_TO_DEVICE);
1582 		ucr1 = imx_uart_readl(sport, UCR1);
1583 		ucr1 &= ~UCR1_TXDMAEN;
1584 		imx_uart_writel(sport, ucr1, UCR1);
1585 		sport->dma_is_txing = 0;
1586 	}
1587 
1588 	/*
1589 	 * According to the Reference Manual description of the UART SRST bit:
1590 	 *
1591 	 * "Reset the transmit and receive state machines,
1592 	 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD
1593 	 * and UTS[6-3]".
1594 	 *
1595 	 * We don't need to restore the old values from USR1, USR2, URXD and
1596 	 * UTXD. UBRC is read only, so only save/restore the other three
1597 	 * registers.
1598 	 */
1599 	ubir = imx_uart_readl(sport, UBIR);
1600 	ubmr = imx_uart_readl(sport, UBMR);
1601 	uts = imx_uart_readl(sport, IMX21_UTS);
1602 
1603 	ucr2 = imx_uart_readl(sport, UCR2);
1604 	ucr2 &= ~UCR2_SRST;
1605 	imx_uart_writel(sport, ucr2, UCR2);
1606 
1607 	while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0))
1608 		udelay(1);
1609 
1610 	/* Restore the registers */
1611 	imx_uart_writel(sport, ubir, UBIR);
1612 	imx_uart_writel(sport, ubmr, UBMR);
1613 	imx_uart_writel(sport, uts, IMX21_UTS);
1614 }
1615 
1616 static void
1617 imx_uart_set_termios(struct uart_port *port, struct ktermios *termios,
1618 		     struct ktermios *old)
1619 {
1620 	struct imx_port *sport = (struct imx_port *)port;
1621 	unsigned long flags;
1622 	u32 ucr2, old_ucr2, ufcr;
1623 	unsigned int baud, quot;
1624 	unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8;
1625 	unsigned long div;
1626 	unsigned long num, denom, old_ubir, old_ubmr;
1627 	uint64_t tdiv64;
1628 
1629 	/*
1630 	 * We only support CS7 and CS8.
1631 	 */
1632 	while ((termios->c_cflag & CSIZE) != CS7 &&
1633 	       (termios->c_cflag & CSIZE) != CS8) {
1634 		termios->c_cflag &= ~CSIZE;
1635 		termios->c_cflag |= old_csize;
1636 		old_csize = CS8;
1637 	}
1638 
1639 	del_timer_sync(&sport->timer);
1640 
1641 	/*
1642 	 * Ask the core to calculate the divisor for us.
1643 	 */
1644 	baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16);
1645 	quot = uart_get_divisor(port, baud);
1646 
1647 	spin_lock_irqsave(&sport->port.lock, flags);
1648 
1649 	/*
1650 	 * Read current UCR2 and save it for future use, then clear all the bits
1651 	 * except those we will or may need to preserve.
1652 	 */
1653 	old_ucr2 = imx_uart_readl(sport, UCR2);
1654 	ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS);
1655 
1656 	ucr2 |= UCR2_SRST | UCR2_IRTS;
1657 	if ((termios->c_cflag & CSIZE) == CS8)
1658 		ucr2 |= UCR2_WS;
1659 
1660 	if (!sport->have_rtscts)
1661 		termios->c_cflag &= ~CRTSCTS;
1662 
1663 	if (port->rs485.flags & SER_RS485_ENABLED) {
1664 		/*
1665 		 * RTS is mandatory for rs485 operation, so keep
1666 		 * it under manual control and keep transmitter
1667 		 * disabled.
1668 		 */
1669 		if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1670 			imx_uart_rts_active(sport, &ucr2);
1671 		else
1672 			imx_uart_rts_inactive(sport, &ucr2);
1673 
1674 	} else if (termios->c_cflag & CRTSCTS) {
1675 		/*
1676 		 * Only let receiver control RTS output if we were not requested
1677 		 * to have RTS inactive (which then should take precedence).
1678 		 */
1679 		if (ucr2 & UCR2_CTS)
1680 			ucr2 |= UCR2_CTSC;
1681 	}
1682 
1683 	if (termios->c_cflag & CRTSCTS)
1684 		ucr2 &= ~UCR2_IRTS;
1685 	if (termios->c_cflag & CSTOPB)
1686 		ucr2 |= UCR2_STPB;
1687 	if (termios->c_cflag & PARENB) {
1688 		ucr2 |= UCR2_PREN;
1689 		if (termios->c_cflag & PARODD)
1690 			ucr2 |= UCR2_PROE;
1691 	}
1692 
1693 	sport->port.read_status_mask = 0;
1694 	if (termios->c_iflag & INPCK)
1695 		sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR);
1696 	if (termios->c_iflag & (BRKINT | PARMRK))
1697 		sport->port.read_status_mask |= URXD_BRK;
1698 
1699 	/*
1700 	 * Characters to ignore
1701 	 */
1702 	sport->port.ignore_status_mask = 0;
1703 	if (termios->c_iflag & IGNPAR)
1704 		sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR;
1705 	if (termios->c_iflag & IGNBRK) {
1706 		sport->port.ignore_status_mask |= URXD_BRK;
1707 		/*
1708 		 * If we're ignoring parity and break indicators,
1709 		 * ignore overruns too (for real raw support).
1710 		 */
1711 		if (termios->c_iflag & IGNPAR)
1712 			sport->port.ignore_status_mask |= URXD_OVRRUN;
1713 	}
1714 
1715 	if ((termios->c_cflag & CREAD) == 0)
1716 		sport->port.ignore_status_mask |= URXD_DUMMY_READ;
1717 
1718 	/*
1719 	 * Update the per-port timeout.
1720 	 */
1721 	uart_update_timeout(port, termios->c_cflag, baud);
1722 
1723 	/* custom-baudrate handling */
1724 	div = sport->port.uartclk / (baud * 16);
1725 	if (baud == 38400 && quot != div)
1726 		baud = sport->port.uartclk / (quot * 16);
1727 
1728 	div = sport->port.uartclk / (baud * 16);
1729 	if (div > 7)
1730 		div = 7;
1731 	if (!div)
1732 		div = 1;
1733 
1734 	rational_best_approximation(16 * div * baud, sport->port.uartclk,
1735 		1 << 16, 1 << 16, &num, &denom);
1736 
1737 	tdiv64 = sport->port.uartclk;
1738 	tdiv64 *= num;
1739 	do_div(tdiv64, denom * 16 * div);
1740 	tty_termios_encode_baud_rate(termios,
1741 				(speed_t)tdiv64, (speed_t)tdiv64);
1742 
1743 	num -= 1;
1744 	denom -= 1;
1745 
1746 	ufcr = imx_uart_readl(sport, UFCR);
1747 	ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div);
1748 	imx_uart_writel(sport, ufcr, UFCR);
1749 
1750 	/*
1751 	 *  Two registers below should always be written both and in this
1752 	 *  particular order. One consequence is that we need to check if any of
1753 	 *  them changes and then update both. We do need the check for change
1754 	 *  as even writing the same values seem to "restart"
1755 	 *  transmission/receiving logic in the hardware, that leads to data
1756 	 *  breakage even when rate doesn't in fact change. E.g., user switches
1757 	 *  RTS/CTS handshake and suddenly gets broken bytes.
1758 	 */
1759 	old_ubir = imx_uart_readl(sport, UBIR);
1760 	old_ubmr = imx_uart_readl(sport, UBMR);
1761 	if (old_ubir != num || old_ubmr != denom) {
1762 		imx_uart_writel(sport, num, UBIR);
1763 		imx_uart_writel(sport, denom, UBMR);
1764 	}
1765 
1766 	if (!imx_uart_is_imx1(sport))
1767 		imx_uart_writel(sport, sport->port.uartclk / div / 1000,
1768 				IMX21_ONEMS);
1769 
1770 	imx_uart_writel(sport, ucr2, UCR2);
1771 
1772 	if (UART_ENABLE_MS(&sport->port, termios->c_cflag))
1773 		imx_uart_enable_ms(&sport->port);
1774 
1775 	spin_unlock_irqrestore(&sport->port.lock, flags);
1776 }
1777 
1778 static const char *imx_uart_type(struct uart_port *port)
1779 {
1780 	struct imx_port *sport = (struct imx_port *)port;
1781 
1782 	return sport->port.type == PORT_IMX ? "IMX" : NULL;
1783 }
1784 
1785 /*
1786  * Configure/autoconfigure the port.
1787  */
1788 static void imx_uart_config_port(struct uart_port *port, int flags)
1789 {
1790 	struct imx_port *sport = (struct imx_port *)port;
1791 
1792 	if (flags & UART_CONFIG_TYPE)
1793 		sport->port.type = PORT_IMX;
1794 }
1795 
1796 /*
1797  * Verify the new serial_struct (for TIOCSSERIAL).
1798  * The only change we allow are to the flags and type, and
1799  * even then only between PORT_IMX and PORT_UNKNOWN
1800  */
1801 static int
1802 imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser)
1803 {
1804 	struct imx_port *sport = (struct imx_port *)port;
1805 	int ret = 0;
1806 
1807 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX)
1808 		ret = -EINVAL;
1809 	if (sport->port.irq != ser->irq)
1810 		ret = -EINVAL;
1811 	if (ser->io_type != UPIO_MEM)
1812 		ret = -EINVAL;
1813 	if (sport->port.uartclk / 16 != ser->baud_base)
1814 		ret = -EINVAL;
1815 	if (sport->port.mapbase != (unsigned long)ser->iomem_base)
1816 		ret = -EINVAL;
1817 	if (sport->port.iobase != ser->port)
1818 		ret = -EINVAL;
1819 	if (ser->hub6 != 0)
1820 		ret = -EINVAL;
1821 	return ret;
1822 }
1823 
1824 #if defined(CONFIG_CONSOLE_POLL)
1825 
1826 static int imx_uart_poll_init(struct uart_port *port)
1827 {
1828 	struct imx_port *sport = (struct imx_port *)port;
1829 	unsigned long flags;
1830 	u32 ucr1, ucr2;
1831 	int retval;
1832 
1833 	retval = clk_prepare_enable(sport->clk_ipg);
1834 	if (retval)
1835 		return retval;
1836 	retval = clk_prepare_enable(sport->clk_per);
1837 	if (retval)
1838 		clk_disable_unprepare(sport->clk_ipg);
1839 
1840 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1841 
1842 	spin_lock_irqsave(&sport->port.lock, flags);
1843 
1844 	/*
1845 	 * Be careful about the order of enabling bits here. First enable the
1846 	 * receiver (UARTEN + RXEN) and only then the corresponding irqs.
1847 	 * This prevents that a character that already sits in the RX fifo is
1848 	 * triggering an irq but the try to fetch it from there results in an
1849 	 * exception because UARTEN or RXEN is still off.
1850 	 */
1851 	ucr1 = imx_uart_readl(sport, UCR1);
1852 	ucr2 = imx_uart_readl(sport, UCR2);
1853 
1854 	if (imx_uart_is_imx1(sport))
1855 		ucr1 |= IMX1_UCR1_UARTCLKEN;
1856 
1857 	ucr1 |= UCR1_UARTEN;
1858 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RTSDEN | UCR1_RRDYEN);
1859 
1860 	ucr2 |= UCR2_RXEN | UCR2_TXEN;
1861 	ucr2 &= ~UCR2_ATEN;
1862 
1863 	imx_uart_writel(sport, ucr1, UCR1);
1864 	imx_uart_writel(sport, ucr2, UCR2);
1865 
1866 	/* now enable irqs */
1867 	imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1);
1868 	imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2);
1869 
1870 	spin_unlock_irqrestore(&sport->port.lock, flags);
1871 
1872 	return 0;
1873 }
1874 
1875 static int imx_uart_poll_get_char(struct uart_port *port)
1876 {
1877 	struct imx_port *sport = (struct imx_port *)port;
1878 	if (!(imx_uart_readl(sport, USR2) & USR2_RDR))
1879 		return NO_POLL_CHAR;
1880 
1881 	return imx_uart_readl(sport, URXD0) & URXD_RX_DATA;
1882 }
1883 
1884 static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c)
1885 {
1886 	struct imx_port *sport = (struct imx_port *)port;
1887 	unsigned int status;
1888 
1889 	/* drain */
1890 	do {
1891 		status = imx_uart_readl(sport, USR1);
1892 	} while (~status & USR1_TRDY);
1893 
1894 	/* write */
1895 	imx_uart_writel(sport, c, URTX0);
1896 
1897 	/* flush */
1898 	do {
1899 		status = imx_uart_readl(sport, USR2);
1900 	} while (~status & USR2_TXDC);
1901 }
1902 #endif
1903 
1904 /* called with port.lock taken and irqs off or from .probe without locking */
1905 static int imx_uart_rs485_config(struct uart_port *port,
1906 				 struct serial_rs485 *rs485conf)
1907 {
1908 	struct imx_port *sport = (struct imx_port *)port;
1909 	u32 ucr2;
1910 
1911 	/* RTS is required to control the transmitter */
1912 	if (!sport->have_rtscts && !sport->have_rtsgpio)
1913 		rs485conf->flags &= ~SER_RS485_ENABLED;
1914 
1915 	if (rs485conf->flags & SER_RS485_ENABLED) {
1916 		/* Enable receiver if low-active RTS signal is requested */
1917 		if (sport->have_rtscts &&  !sport->have_rtsgpio &&
1918 		    !(rs485conf->flags & SER_RS485_RTS_ON_SEND))
1919 			rs485conf->flags |= SER_RS485_RX_DURING_TX;
1920 
1921 		/* disable transmitter */
1922 		ucr2 = imx_uart_readl(sport, UCR2);
1923 		if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND)
1924 			imx_uart_rts_active(sport, &ucr2);
1925 		else
1926 			imx_uart_rts_inactive(sport, &ucr2);
1927 		imx_uart_writel(sport, ucr2, UCR2);
1928 	}
1929 
1930 	/* Make sure Rx is enabled in case Tx is active with Rx disabled */
1931 	if (!(rs485conf->flags & SER_RS485_ENABLED) ||
1932 	    rs485conf->flags & SER_RS485_RX_DURING_TX)
1933 		imx_uart_start_rx(port);
1934 
1935 	port->rs485 = *rs485conf;
1936 
1937 	return 0;
1938 }
1939 
1940 static const struct uart_ops imx_uart_pops = {
1941 	.tx_empty	= imx_uart_tx_empty,
1942 	.set_mctrl	= imx_uart_set_mctrl,
1943 	.get_mctrl	= imx_uart_get_mctrl,
1944 	.stop_tx	= imx_uart_stop_tx,
1945 	.start_tx	= imx_uart_start_tx,
1946 	.stop_rx	= imx_uart_stop_rx,
1947 	.enable_ms	= imx_uart_enable_ms,
1948 	.break_ctl	= imx_uart_break_ctl,
1949 	.startup	= imx_uart_startup,
1950 	.shutdown	= imx_uart_shutdown,
1951 	.flush_buffer	= imx_uart_flush_buffer,
1952 	.set_termios	= imx_uart_set_termios,
1953 	.type		= imx_uart_type,
1954 	.config_port	= imx_uart_config_port,
1955 	.verify_port	= imx_uart_verify_port,
1956 #if defined(CONFIG_CONSOLE_POLL)
1957 	.poll_init      = imx_uart_poll_init,
1958 	.poll_get_char  = imx_uart_poll_get_char,
1959 	.poll_put_char  = imx_uart_poll_put_char,
1960 #endif
1961 };
1962 
1963 static struct imx_port *imx_uart_ports[UART_NR];
1964 
1965 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE)
1966 static void imx_uart_console_putchar(struct uart_port *port, int ch)
1967 {
1968 	struct imx_port *sport = (struct imx_port *)port;
1969 
1970 	while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)
1971 		barrier();
1972 
1973 	imx_uart_writel(sport, ch, URTX0);
1974 }
1975 
1976 /*
1977  * Interrupts are disabled on entering
1978  */
1979 static void
1980 imx_uart_console_write(struct console *co, const char *s, unsigned int count)
1981 {
1982 	struct imx_port *sport = imx_uart_ports[co->index];
1983 	struct imx_port_ucrs old_ucr;
1984 	unsigned int ucr1;
1985 	unsigned long flags = 0;
1986 	int locked = 1;
1987 
1988 	if (sport->port.sysrq)
1989 		locked = 0;
1990 	else if (oops_in_progress)
1991 		locked = spin_trylock_irqsave(&sport->port.lock, flags);
1992 	else
1993 		spin_lock_irqsave(&sport->port.lock, flags);
1994 
1995 	/*
1996 	 *	First, save UCR1/2/3 and then disable interrupts
1997 	 */
1998 	imx_uart_ucrs_save(sport, &old_ucr);
1999 	ucr1 = old_ucr.ucr1;
2000 
2001 	if (imx_uart_is_imx1(sport))
2002 		ucr1 |= IMX1_UCR1_UARTCLKEN;
2003 	ucr1 |= UCR1_UARTEN;
2004 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN);
2005 
2006 	imx_uart_writel(sport, ucr1, UCR1);
2007 
2008 	imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2);
2009 
2010 	uart_console_write(&sport->port, s, count, imx_uart_console_putchar);
2011 
2012 	/*
2013 	 *	Finally, wait for transmitter to become empty
2014 	 *	and restore UCR1/2/3
2015 	 */
2016 	while (!(imx_uart_readl(sport, USR2) & USR2_TXDC));
2017 
2018 	imx_uart_ucrs_restore(sport, &old_ucr);
2019 
2020 	if (locked)
2021 		spin_unlock_irqrestore(&sport->port.lock, flags);
2022 }
2023 
2024 /*
2025  * If the port was already initialised (eg, by a boot loader),
2026  * try to determine the current setup.
2027  */
2028 static void __init
2029 imx_uart_console_get_options(struct imx_port *sport, int *baud,
2030 			     int *parity, int *bits)
2031 {
2032 
2033 	if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) {
2034 		/* ok, the port was enabled */
2035 		unsigned int ucr2, ubir, ubmr, uartclk;
2036 		unsigned int baud_raw;
2037 		unsigned int ucfr_rfdiv;
2038 
2039 		ucr2 = imx_uart_readl(sport, UCR2);
2040 
2041 		*parity = 'n';
2042 		if (ucr2 & UCR2_PREN) {
2043 			if (ucr2 & UCR2_PROE)
2044 				*parity = 'o';
2045 			else
2046 				*parity = 'e';
2047 		}
2048 
2049 		if (ucr2 & UCR2_WS)
2050 			*bits = 8;
2051 		else
2052 			*bits = 7;
2053 
2054 		ubir = imx_uart_readl(sport, UBIR) & 0xffff;
2055 		ubmr = imx_uart_readl(sport, UBMR) & 0xffff;
2056 
2057 		ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7;
2058 		if (ucfr_rfdiv == 6)
2059 			ucfr_rfdiv = 7;
2060 		else
2061 			ucfr_rfdiv = 6 - ucfr_rfdiv;
2062 
2063 		uartclk = clk_get_rate(sport->clk_per);
2064 		uartclk /= ucfr_rfdiv;
2065 
2066 		{	/*
2067 			 * The next code provides exact computation of
2068 			 *   baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1))
2069 			 * without need of float support or long long division,
2070 			 * which would be required to prevent 32bit arithmetic overflow
2071 			 */
2072 			unsigned int mul = ubir + 1;
2073 			unsigned int div = 16 * (ubmr + 1);
2074 			unsigned int rem = uartclk % div;
2075 
2076 			baud_raw = (uartclk / div) * mul;
2077 			baud_raw += (rem * mul + div / 2) / div;
2078 			*baud = (baud_raw + 50) / 100 * 100;
2079 		}
2080 
2081 		if (*baud != baud_raw)
2082 			dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n",
2083 				baud_raw, *baud);
2084 	}
2085 }
2086 
2087 static int __init
2088 imx_uart_console_setup(struct console *co, char *options)
2089 {
2090 	struct imx_port *sport;
2091 	int baud = 9600;
2092 	int bits = 8;
2093 	int parity = 'n';
2094 	int flow = 'n';
2095 	int retval;
2096 
2097 	/*
2098 	 * Check whether an invalid uart number has been specified, and
2099 	 * if so, search for the first available port that does have
2100 	 * console support.
2101 	 */
2102 	if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports))
2103 		co->index = 0;
2104 	sport = imx_uart_ports[co->index];
2105 	if (sport == NULL)
2106 		return -ENODEV;
2107 
2108 	/* For setting the registers, we only need to enable the ipg clock. */
2109 	retval = clk_prepare_enable(sport->clk_ipg);
2110 	if (retval)
2111 		goto error_console;
2112 
2113 	if (options)
2114 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2115 	else
2116 		imx_uart_console_get_options(sport, &baud, &parity, &bits);
2117 
2118 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
2119 
2120 	retval = uart_set_options(&sport->port, co, baud, parity, bits, flow);
2121 
2122 	if (retval) {
2123 		clk_disable_unprepare(sport->clk_ipg);
2124 		goto error_console;
2125 	}
2126 
2127 	retval = clk_prepare_enable(sport->clk_per);
2128 	if (retval)
2129 		clk_disable_unprepare(sport->clk_ipg);
2130 
2131 error_console:
2132 	return retval;
2133 }
2134 
2135 static struct uart_driver imx_uart_uart_driver;
2136 static struct console imx_uart_console = {
2137 	.name		= DEV_NAME,
2138 	.write		= imx_uart_console_write,
2139 	.device		= uart_console_device,
2140 	.setup		= imx_uart_console_setup,
2141 	.flags		= CON_PRINTBUFFER,
2142 	.index		= -1,
2143 	.data		= &imx_uart_uart_driver,
2144 };
2145 
2146 #define IMX_CONSOLE	&imx_uart_console
2147 
2148 #else
2149 #define IMX_CONSOLE	NULL
2150 #endif
2151 
2152 static struct uart_driver imx_uart_uart_driver = {
2153 	.owner          = THIS_MODULE,
2154 	.driver_name    = DRIVER_NAME,
2155 	.dev_name       = DEV_NAME,
2156 	.major          = SERIAL_IMX_MAJOR,
2157 	.minor          = MINOR_START,
2158 	.nr             = ARRAY_SIZE(imx_uart_ports),
2159 	.cons           = IMX_CONSOLE,
2160 };
2161 
2162 static enum hrtimer_restart imx_trigger_start_tx(struct hrtimer *t)
2163 {
2164 	struct imx_port *sport = container_of(t, struct imx_port, trigger_start_tx);
2165 	unsigned long flags;
2166 
2167 	spin_lock_irqsave(&sport->port.lock, flags);
2168 	if (sport->tx_state == WAIT_AFTER_RTS)
2169 		imx_uart_start_tx(&sport->port);
2170 	spin_unlock_irqrestore(&sport->port.lock, flags);
2171 
2172 	return HRTIMER_NORESTART;
2173 }
2174 
2175 static enum hrtimer_restart imx_trigger_stop_tx(struct hrtimer *t)
2176 {
2177 	struct imx_port *sport = container_of(t, struct imx_port, trigger_stop_tx);
2178 	unsigned long flags;
2179 
2180 	spin_lock_irqsave(&sport->port.lock, flags);
2181 	if (sport->tx_state == WAIT_AFTER_SEND)
2182 		imx_uart_stop_tx(&sport->port);
2183 	spin_unlock_irqrestore(&sport->port.lock, flags);
2184 
2185 	return HRTIMER_NORESTART;
2186 }
2187 
2188 static int imx_uart_probe(struct platform_device *pdev)
2189 {
2190 	struct device_node *np = pdev->dev.of_node;
2191 	struct imx_port *sport;
2192 	void __iomem *base;
2193 	int ret = 0;
2194 	u32 ucr1;
2195 	struct resource *res;
2196 	int txirq, rxirq, rtsirq;
2197 
2198 	sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL);
2199 	if (!sport)
2200 		return -ENOMEM;
2201 
2202 	sport->devdata = of_device_get_match_data(&pdev->dev);
2203 
2204 	ret = of_alias_get_id(np, "serial");
2205 	if (ret < 0) {
2206 		dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret);
2207 		return ret;
2208 	}
2209 	sport->port.line = ret;
2210 
2211 	if (of_get_property(np, "uart-has-rtscts", NULL) ||
2212 	    of_get_property(np, "fsl,uart-has-rtscts", NULL) /* deprecated */)
2213 		sport->have_rtscts = 1;
2214 
2215 	if (of_get_property(np, "fsl,dte-mode", NULL))
2216 		sport->dte_mode = 1;
2217 
2218 	if (of_get_property(np, "rts-gpios", NULL))
2219 		sport->have_rtsgpio = 1;
2220 
2221 	if (of_get_property(np, "fsl,inverted-tx", NULL))
2222 		sport->inverted_tx = 1;
2223 
2224 	if (of_get_property(np, "fsl,inverted-rx", NULL))
2225 		sport->inverted_rx = 1;
2226 
2227 	if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) {
2228 		dev_err(&pdev->dev, "serial%d out of range\n",
2229 			sport->port.line);
2230 		return -EINVAL;
2231 	}
2232 
2233 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2234 	base = devm_ioremap_resource(&pdev->dev, res);
2235 	if (IS_ERR(base))
2236 		return PTR_ERR(base);
2237 
2238 	rxirq = platform_get_irq(pdev, 0);
2239 	if (rxirq < 0)
2240 		return rxirq;
2241 	txirq = platform_get_irq_optional(pdev, 1);
2242 	rtsirq = platform_get_irq_optional(pdev, 2);
2243 
2244 	sport->port.dev = &pdev->dev;
2245 	sport->port.mapbase = res->start;
2246 	sport->port.membase = base;
2247 	sport->port.type = PORT_IMX;
2248 	sport->port.iotype = UPIO_MEM;
2249 	sport->port.irq = rxirq;
2250 	sport->port.fifosize = 32;
2251 	sport->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE);
2252 	sport->port.ops = &imx_uart_pops;
2253 	sport->port.rs485_config = imx_uart_rs485_config;
2254 	sport->port.flags = UPF_BOOT_AUTOCONF;
2255 	timer_setup(&sport->timer, imx_uart_timeout, 0);
2256 
2257 	sport->gpios = mctrl_gpio_init(&sport->port, 0);
2258 	if (IS_ERR(sport->gpios))
2259 		return PTR_ERR(sport->gpios);
2260 
2261 	sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2262 	if (IS_ERR(sport->clk_ipg)) {
2263 		ret = PTR_ERR(sport->clk_ipg);
2264 		dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret);
2265 		return ret;
2266 	}
2267 
2268 	sport->clk_per = devm_clk_get(&pdev->dev, "per");
2269 	if (IS_ERR(sport->clk_per)) {
2270 		ret = PTR_ERR(sport->clk_per);
2271 		dev_err(&pdev->dev, "failed to get per clk: %d\n", ret);
2272 		return ret;
2273 	}
2274 
2275 	sport->port.uartclk = clk_get_rate(sport->clk_per);
2276 
2277 	/* For register access, we only need to enable the ipg clock. */
2278 	ret = clk_prepare_enable(sport->clk_ipg);
2279 	if (ret) {
2280 		dev_err(&pdev->dev, "failed to enable per clk: %d\n", ret);
2281 		return ret;
2282 	}
2283 
2284 	/* initialize shadow register values */
2285 	sport->ucr1 = readl(sport->port.membase + UCR1);
2286 	sport->ucr2 = readl(sport->port.membase + UCR2);
2287 	sport->ucr3 = readl(sport->port.membase + UCR3);
2288 	sport->ucr4 = readl(sport->port.membase + UCR4);
2289 	sport->ufcr = readl(sport->port.membase + UFCR);
2290 
2291 	ret = uart_get_rs485_mode(&sport->port);
2292 	if (ret) {
2293 		clk_disable_unprepare(sport->clk_ipg);
2294 		return ret;
2295 	}
2296 
2297 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2298 	    (!sport->have_rtscts && !sport->have_rtsgpio))
2299 		dev_err(&pdev->dev, "no RTS control, disabling rs485\n");
2300 
2301 	/*
2302 	 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B)
2303 	 * signal cannot be set low during transmission in case the
2304 	 * receiver is off (limitation of the i.MX UART IP).
2305 	 */
2306 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2307 	    sport->have_rtscts && !sport->have_rtsgpio &&
2308 	    (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) &&
2309 	     !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX)))
2310 		dev_err(&pdev->dev,
2311 			"low-active RTS not possible when receiver is off, enabling receiver\n");
2312 
2313 	imx_uart_rs485_config(&sport->port, &sport->port.rs485);
2314 
2315 	/* Disable interrupts before requesting them */
2316 	ucr1 = imx_uart_readl(sport, UCR1);
2317 	ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN | UCR1_RTSDEN);
2318 	imx_uart_writel(sport, ucr1, UCR1);
2319 
2320 	if (!imx_uart_is_imx1(sport) && sport->dte_mode) {
2321 		/*
2322 		 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI
2323 		 * and influences if UCR3_RI and UCR3_DCD changes the level of RI
2324 		 * and DCD (when they are outputs) or enables the respective
2325 		 * irqs. So set this bit early, i.e. before requesting irqs.
2326 		 */
2327 		u32 ufcr = imx_uart_readl(sport, UFCR);
2328 		if (!(ufcr & UFCR_DCEDTE))
2329 			imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR);
2330 
2331 		/*
2332 		 * Disable UCR3_RI and UCR3_DCD irqs. They are also not
2333 		 * enabled later because they cannot be cleared
2334 		 * (confirmed on i.MX25) which makes them unusable.
2335 		 */
2336 		imx_uart_writel(sport,
2337 				IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR,
2338 				UCR3);
2339 
2340 	} else {
2341 		u32 ucr3 = UCR3_DSR;
2342 		u32 ufcr = imx_uart_readl(sport, UFCR);
2343 		if (ufcr & UFCR_DCEDTE)
2344 			imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR);
2345 
2346 		if (!imx_uart_is_imx1(sport))
2347 			ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP;
2348 		imx_uart_writel(sport, ucr3, UCR3);
2349 	}
2350 
2351 	clk_disable_unprepare(sport->clk_ipg);
2352 
2353 	hrtimer_init(&sport->trigger_start_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2354 	hrtimer_init(&sport->trigger_stop_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2355 	sport->trigger_start_tx.function = imx_trigger_start_tx;
2356 	sport->trigger_stop_tx.function = imx_trigger_stop_tx;
2357 
2358 	/*
2359 	 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later
2360 	 * chips only have one interrupt.
2361 	 */
2362 	if (txirq > 0) {
2363 		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0,
2364 				       dev_name(&pdev->dev), sport);
2365 		if (ret) {
2366 			dev_err(&pdev->dev, "failed to request rx irq: %d\n",
2367 				ret);
2368 			return ret;
2369 		}
2370 
2371 		ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0,
2372 				       dev_name(&pdev->dev), sport);
2373 		if (ret) {
2374 			dev_err(&pdev->dev, "failed to request tx irq: %d\n",
2375 				ret);
2376 			return ret;
2377 		}
2378 
2379 		ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0,
2380 				       dev_name(&pdev->dev), sport);
2381 		if (ret) {
2382 			dev_err(&pdev->dev, "failed to request rts irq: %d\n",
2383 				ret);
2384 			return ret;
2385 		}
2386 	} else {
2387 		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0,
2388 				       dev_name(&pdev->dev), sport);
2389 		if (ret) {
2390 			dev_err(&pdev->dev, "failed to request irq: %d\n", ret);
2391 			return ret;
2392 		}
2393 	}
2394 
2395 	imx_uart_ports[sport->port.line] = sport;
2396 
2397 	platform_set_drvdata(pdev, sport);
2398 
2399 	return uart_add_one_port(&imx_uart_uart_driver, &sport->port);
2400 }
2401 
2402 static int imx_uart_remove(struct platform_device *pdev)
2403 {
2404 	struct imx_port *sport = platform_get_drvdata(pdev);
2405 
2406 	return uart_remove_one_port(&imx_uart_uart_driver, &sport->port);
2407 }
2408 
2409 static void imx_uart_restore_context(struct imx_port *sport)
2410 {
2411 	unsigned long flags;
2412 
2413 	spin_lock_irqsave(&sport->port.lock, flags);
2414 	if (!sport->context_saved) {
2415 		spin_unlock_irqrestore(&sport->port.lock, flags);
2416 		return;
2417 	}
2418 
2419 	imx_uart_writel(sport, sport->saved_reg[4], UFCR);
2420 	imx_uart_writel(sport, sport->saved_reg[5], UESC);
2421 	imx_uart_writel(sport, sport->saved_reg[6], UTIM);
2422 	imx_uart_writel(sport, sport->saved_reg[7], UBIR);
2423 	imx_uart_writel(sport, sport->saved_reg[8], UBMR);
2424 	imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS);
2425 	imx_uart_writel(sport, sport->saved_reg[0], UCR1);
2426 	imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2);
2427 	imx_uart_writel(sport, sport->saved_reg[2], UCR3);
2428 	imx_uart_writel(sport, sport->saved_reg[3], UCR4);
2429 	sport->context_saved = false;
2430 	spin_unlock_irqrestore(&sport->port.lock, flags);
2431 }
2432 
2433 static void imx_uart_save_context(struct imx_port *sport)
2434 {
2435 	unsigned long flags;
2436 
2437 	/* Save necessary regs */
2438 	spin_lock_irqsave(&sport->port.lock, flags);
2439 	sport->saved_reg[0] = imx_uart_readl(sport, UCR1);
2440 	sport->saved_reg[1] = imx_uart_readl(sport, UCR2);
2441 	sport->saved_reg[2] = imx_uart_readl(sport, UCR3);
2442 	sport->saved_reg[3] = imx_uart_readl(sport, UCR4);
2443 	sport->saved_reg[4] = imx_uart_readl(sport, UFCR);
2444 	sport->saved_reg[5] = imx_uart_readl(sport, UESC);
2445 	sport->saved_reg[6] = imx_uart_readl(sport, UTIM);
2446 	sport->saved_reg[7] = imx_uart_readl(sport, UBIR);
2447 	sport->saved_reg[8] = imx_uart_readl(sport, UBMR);
2448 	sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS);
2449 	sport->context_saved = true;
2450 	spin_unlock_irqrestore(&sport->port.lock, flags);
2451 }
2452 
2453 static void imx_uart_enable_wakeup(struct imx_port *sport, bool on)
2454 {
2455 	u32 ucr3;
2456 
2457 	ucr3 = imx_uart_readl(sport, UCR3);
2458 	if (on) {
2459 		imx_uart_writel(sport, USR1_AWAKE, USR1);
2460 		ucr3 |= UCR3_AWAKEN;
2461 	} else {
2462 		ucr3 &= ~UCR3_AWAKEN;
2463 	}
2464 	imx_uart_writel(sport, ucr3, UCR3);
2465 
2466 	if (sport->have_rtscts) {
2467 		u32 ucr1 = imx_uart_readl(sport, UCR1);
2468 		if (on)
2469 			ucr1 |= UCR1_RTSDEN;
2470 		else
2471 			ucr1 &= ~UCR1_RTSDEN;
2472 		imx_uart_writel(sport, ucr1, UCR1);
2473 	}
2474 }
2475 
2476 static int imx_uart_suspend_noirq(struct device *dev)
2477 {
2478 	struct imx_port *sport = dev_get_drvdata(dev);
2479 
2480 	imx_uart_save_context(sport);
2481 
2482 	clk_disable(sport->clk_ipg);
2483 
2484 	pinctrl_pm_select_sleep_state(dev);
2485 
2486 	return 0;
2487 }
2488 
2489 static int imx_uart_resume_noirq(struct device *dev)
2490 {
2491 	struct imx_port *sport = dev_get_drvdata(dev);
2492 	int ret;
2493 
2494 	pinctrl_pm_select_default_state(dev);
2495 
2496 	ret = clk_enable(sport->clk_ipg);
2497 	if (ret)
2498 		return ret;
2499 
2500 	imx_uart_restore_context(sport);
2501 
2502 	return 0;
2503 }
2504 
2505 static int imx_uart_suspend(struct device *dev)
2506 {
2507 	struct imx_port *sport = dev_get_drvdata(dev);
2508 	int ret;
2509 
2510 	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2511 	disable_irq(sport->port.irq);
2512 
2513 	ret = clk_prepare_enable(sport->clk_ipg);
2514 	if (ret)
2515 		return ret;
2516 
2517 	/* enable wakeup from i.MX UART */
2518 	imx_uart_enable_wakeup(sport, true);
2519 
2520 	return 0;
2521 }
2522 
2523 static int imx_uart_resume(struct device *dev)
2524 {
2525 	struct imx_port *sport = dev_get_drvdata(dev);
2526 
2527 	/* disable wakeup from i.MX UART */
2528 	imx_uart_enable_wakeup(sport, false);
2529 
2530 	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2531 	enable_irq(sport->port.irq);
2532 
2533 	clk_disable_unprepare(sport->clk_ipg);
2534 
2535 	return 0;
2536 }
2537 
2538 static int imx_uart_freeze(struct device *dev)
2539 {
2540 	struct imx_port *sport = dev_get_drvdata(dev);
2541 
2542 	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2543 
2544 	return clk_prepare_enable(sport->clk_ipg);
2545 }
2546 
2547 static int imx_uart_thaw(struct device *dev)
2548 {
2549 	struct imx_port *sport = dev_get_drvdata(dev);
2550 
2551 	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2552 
2553 	clk_disable_unprepare(sport->clk_ipg);
2554 
2555 	return 0;
2556 }
2557 
2558 static const struct dev_pm_ops imx_uart_pm_ops = {
2559 	.suspend_noirq = imx_uart_suspend_noirq,
2560 	.resume_noirq = imx_uart_resume_noirq,
2561 	.freeze_noirq = imx_uart_suspend_noirq,
2562 	.restore_noirq = imx_uart_resume_noirq,
2563 	.suspend = imx_uart_suspend,
2564 	.resume = imx_uart_resume,
2565 	.freeze = imx_uart_freeze,
2566 	.thaw = imx_uart_thaw,
2567 	.restore = imx_uart_thaw,
2568 };
2569 
2570 static struct platform_driver imx_uart_platform_driver = {
2571 	.probe = imx_uart_probe,
2572 	.remove = imx_uart_remove,
2573 
2574 	.driver = {
2575 		.name = "imx-uart",
2576 		.of_match_table = imx_uart_dt_ids,
2577 		.pm = &imx_uart_pm_ops,
2578 	},
2579 };
2580 
2581 static int __init imx_uart_init(void)
2582 {
2583 	int ret = uart_register_driver(&imx_uart_uart_driver);
2584 
2585 	if (ret)
2586 		return ret;
2587 
2588 	ret = platform_driver_register(&imx_uart_platform_driver);
2589 	if (ret != 0)
2590 		uart_unregister_driver(&imx_uart_uart_driver);
2591 
2592 	return ret;
2593 }
2594 
2595 static void __exit imx_uart_exit(void)
2596 {
2597 	platform_driver_unregister(&imx_uart_platform_driver);
2598 	uart_unregister_driver(&imx_uart_uart_driver);
2599 }
2600 
2601 module_init(imx_uart_init);
2602 module_exit(imx_uart_exit);
2603 
2604 MODULE_AUTHOR("Sascha Hauer");
2605 MODULE_DESCRIPTION("IMX generic serial port driver");
2606 MODULE_LICENSE("GPL");
2607 MODULE_ALIAS("platform:imx-uart");
2608