1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Driver for Motorola/Freescale IMX serial ports 4 * 5 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. 6 * 7 * Author: Sascha Hauer <sascha@saschahauer.de> 8 * Copyright (C) 2004 Pengutronix 9 */ 10 11 #include <linux/module.h> 12 #include <linux/ioport.h> 13 #include <linux/init.h> 14 #include <linux/console.h> 15 #include <linux/sysrq.h> 16 #include <linux/platform_device.h> 17 #include <linux/tty.h> 18 #include <linux/tty_flip.h> 19 #include <linux/serial_core.h> 20 #include <linux/serial.h> 21 #include <linux/clk.h> 22 #include <linux/delay.h> 23 #include <linux/ktime.h> 24 #include <linux/pinctrl/consumer.h> 25 #include <linux/rational.h> 26 #include <linux/slab.h> 27 #include <linux/of.h> 28 #include <linux/of_device.h> 29 #include <linux/io.h> 30 #include <linux/dma-mapping.h> 31 32 #include <asm/irq.h> 33 #include <linux/platform_data/dma-imx.h> 34 35 #include "serial_mctrl_gpio.h" 36 37 /* Register definitions */ 38 #define URXD0 0x0 /* Receiver Register */ 39 #define URTX0 0x40 /* Transmitter Register */ 40 #define UCR1 0x80 /* Control Register 1 */ 41 #define UCR2 0x84 /* Control Register 2 */ 42 #define UCR3 0x88 /* Control Register 3 */ 43 #define UCR4 0x8c /* Control Register 4 */ 44 #define UFCR 0x90 /* FIFO Control Register */ 45 #define USR1 0x94 /* Status Register 1 */ 46 #define USR2 0x98 /* Status Register 2 */ 47 #define UESC 0x9c /* Escape Character Register */ 48 #define UTIM 0xa0 /* Escape Timer Register */ 49 #define UBIR 0xa4 /* BRM Incremental Register */ 50 #define UBMR 0xa8 /* BRM Modulator Register */ 51 #define UBRC 0xac /* Baud Rate Count Register */ 52 #define IMX21_ONEMS 0xb0 /* One Millisecond register */ 53 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */ 54 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/ 55 56 /* UART Control Register Bit Fields.*/ 57 #define URXD_DUMMY_READ (1<<16) 58 #define URXD_CHARRDY (1<<15) 59 #define URXD_ERR (1<<14) 60 #define URXD_OVRRUN (1<<13) 61 #define URXD_FRMERR (1<<12) 62 #define URXD_BRK (1<<11) 63 #define URXD_PRERR (1<<10) 64 #define URXD_RX_DATA (0xFF<<0) 65 #define UCR1_ADEN (1<<15) /* Auto detect interrupt */ 66 #define UCR1_ADBR (1<<14) /* Auto detect baud rate */ 67 #define UCR1_TRDYEN (1<<13) /* Transmitter ready interrupt enable */ 68 #define UCR1_IDEN (1<<12) /* Idle condition interrupt */ 69 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */ 70 #define UCR1_RRDYEN (1<<9) /* Recv ready interrupt enable */ 71 #define UCR1_RXDMAEN (1<<8) /* Recv ready DMA enable */ 72 #define UCR1_IREN (1<<7) /* Infrared interface enable */ 73 #define UCR1_TXMPTYEN (1<<6) /* Transimitter empty interrupt enable */ 74 #define UCR1_RTSDEN (1<<5) /* RTS delta interrupt enable */ 75 #define UCR1_SNDBRK (1<<4) /* Send break */ 76 #define UCR1_TXDMAEN (1<<3) /* Transmitter ready DMA enable */ 77 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */ 78 #define UCR1_ATDMAEN (1<<2) /* Aging DMA Timer Enable */ 79 #define UCR1_DOZE (1<<1) /* Doze */ 80 #define UCR1_UARTEN (1<<0) /* UART enabled */ 81 #define UCR2_ESCI (1<<15) /* Escape seq interrupt enable */ 82 #define UCR2_IRTS (1<<14) /* Ignore RTS pin */ 83 #define UCR2_CTSC (1<<13) /* CTS pin control */ 84 #define UCR2_CTS (1<<12) /* Clear to send */ 85 #define UCR2_ESCEN (1<<11) /* Escape enable */ 86 #define UCR2_PREN (1<<8) /* Parity enable */ 87 #define UCR2_PROE (1<<7) /* Parity odd/even */ 88 #define UCR2_STPB (1<<6) /* Stop */ 89 #define UCR2_WS (1<<5) /* Word size */ 90 #define UCR2_RTSEN (1<<4) /* Request to send interrupt enable */ 91 #define UCR2_ATEN (1<<3) /* Aging Timer Enable */ 92 #define UCR2_TXEN (1<<2) /* Transmitter enabled */ 93 #define UCR2_RXEN (1<<1) /* Receiver enabled */ 94 #define UCR2_SRST (1<<0) /* SW reset */ 95 #define UCR3_DTREN (1<<13) /* DTR interrupt enable */ 96 #define UCR3_PARERREN (1<<12) /* Parity enable */ 97 #define UCR3_FRAERREN (1<<11) /* Frame error interrupt enable */ 98 #define UCR3_DSR (1<<10) /* Data set ready */ 99 #define UCR3_DCD (1<<9) /* Data carrier detect */ 100 #define UCR3_RI (1<<8) /* Ring indicator */ 101 #define UCR3_ADNIMP (1<<7) /* Autobaud Detection Not Improved */ 102 #define UCR3_RXDSEN (1<<6) /* Receive status interrupt enable */ 103 #define UCR3_AIRINTEN (1<<5) /* Async IR wake interrupt enable */ 104 #define UCR3_AWAKEN (1<<4) /* Async wake interrupt enable */ 105 #define UCR3_DTRDEN (1<<3) /* Data Terminal Ready Delta Enable. */ 106 #define IMX21_UCR3_RXDMUXSEL (1<<2) /* RXD Muxed Input Select */ 107 #define UCR3_INVT (1<<1) /* Inverted Infrared transmission */ 108 #define UCR3_BPEN (1<<0) /* Preset registers enable */ 109 #define UCR4_CTSTL_SHF 10 /* CTS trigger level shift */ 110 #define UCR4_CTSTL_MASK 0x3F /* CTS trigger is 6 bits wide */ 111 #define UCR4_INVR (1<<9) /* Inverted infrared reception */ 112 #define UCR4_ENIRI (1<<8) /* Serial infrared interrupt enable */ 113 #define UCR4_WKEN (1<<7) /* Wake interrupt enable */ 114 #define UCR4_REF16 (1<<6) /* Ref freq 16 MHz */ 115 #define UCR4_IDDMAEN (1<<6) /* DMA IDLE Condition Detected */ 116 #define UCR4_IRSC (1<<5) /* IR special case */ 117 #define UCR4_TCEN (1<<3) /* Transmit complete interrupt enable */ 118 #define UCR4_BKEN (1<<2) /* Break condition interrupt enable */ 119 #define UCR4_OREN (1<<1) /* Receiver overrun interrupt enable */ 120 #define UCR4_DREN (1<<0) /* Recv data ready interrupt enable */ 121 #define UFCR_RXTL_SHF 0 /* Receiver trigger level shift */ 122 #define UFCR_DCEDTE (1<<6) /* DCE/DTE mode select */ 123 #define UFCR_RFDIV (7<<7) /* Reference freq divider mask */ 124 #define UFCR_RFDIV_REG(x) (((x) < 7 ? 6 - (x) : 6) << 7) 125 #define UFCR_TXTL_SHF 10 /* Transmitter trigger level shift */ 126 #define USR1_PARITYERR (1<<15) /* Parity error interrupt flag */ 127 #define USR1_RTSS (1<<14) /* RTS pin status */ 128 #define USR1_TRDY (1<<13) /* Transmitter ready interrupt/dma flag */ 129 #define USR1_RTSD (1<<12) /* RTS delta */ 130 #define USR1_ESCF (1<<11) /* Escape seq interrupt flag */ 131 #define USR1_FRAMERR (1<<10) /* Frame error interrupt flag */ 132 #define USR1_RRDY (1<<9) /* Receiver ready interrupt/dma flag */ 133 #define USR1_AGTIM (1<<8) /* Ageing timer interrupt flag */ 134 #define USR1_DTRD (1<<7) /* DTR Delta */ 135 #define USR1_RXDS (1<<6) /* Receiver idle interrupt flag */ 136 #define USR1_AIRINT (1<<5) /* Async IR wake interrupt flag */ 137 #define USR1_AWAKE (1<<4) /* Aysnc wake interrupt flag */ 138 #define USR2_ADET (1<<15) /* Auto baud rate detect complete */ 139 #define USR2_TXFE (1<<14) /* Transmit buffer FIFO empty */ 140 #define USR2_DTRF (1<<13) /* DTR edge interrupt flag */ 141 #define USR2_IDLE (1<<12) /* Idle condition */ 142 #define USR2_RIDELT (1<<10) /* Ring Interrupt Delta */ 143 #define USR2_RIIN (1<<9) /* Ring Indicator Input */ 144 #define USR2_IRINT (1<<8) /* Serial infrared interrupt flag */ 145 #define USR2_WAKE (1<<7) /* Wake */ 146 #define USR2_DCDIN (1<<5) /* Data Carrier Detect Input */ 147 #define USR2_RTSF (1<<4) /* RTS edge interrupt flag */ 148 #define USR2_TXDC (1<<3) /* Transmitter complete */ 149 #define USR2_BRCD (1<<2) /* Break condition */ 150 #define USR2_ORE (1<<1) /* Overrun error */ 151 #define USR2_RDR (1<<0) /* Recv data ready */ 152 #define UTS_FRCPERR (1<<13) /* Force parity error */ 153 #define UTS_LOOP (1<<12) /* Loop tx and rx */ 154 #define UTS_TXEMPTY (1<<6) /* TxFIFO empty */ 155 #define UTS_RXEMPTY (1<<5) /* RxFIFO empty */ 156 #define UTS_TXFULL (1<<4) /* TxFIFO full */ 157 #define UTS_RXFULL (1<<3) /* RxFIFO full */ 158 #define UTS_SOFTRST (1<<0) /* Software reset */ 159 160 /* We've been assigned a range on the "Low-density serial ports" major */ 161 #define SERIAL_IMX_MAJOR 207 162 #define MINOR_START 16 163 #define DEV_NAME "ttymxc" 164 165 /* 166 * This determines how often we check the modem status signals 167 * for any change. They generally aren't connected to an IRQ 168 * so we have to poll them. We also check immediately before 169 * filling the TX fifo incase CTS has been dropped. 170 */ 171 #define MCTRL_TIMEOUT (250*HZ/1000) 172 173 #define DRIVER_NAME "IMX-uart" 174 175 #define UART_NR 8 176 177 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */ 178 enum imx_uart_type { 179 IMX1_UART, 180 IMX21_UART, 181 IMX53_UART, 182 IMX6Q_UART, 183 }; 184 185 /* device type dependent stuff */ 186 struct imx_uart_data { 187 unsigned uts_reg; 188 enum imx_uart_type devtype; 189 }; 190 191 enum imx_tx_state { 192 OFF, 193 WAIT_AFTER_RTS, 194 SEND, 195 WAIT_AFTER_SEND, 196 }; 197 198 struct imx_port { 199 struct uart_port port; 200 struct timer_list timer; 201 unsigned int old_status; 202 unsigned int have_rtscts:1; 203 unsigned int have_rtsgpio:1; 204 unsigned int dte_mode:1; 205 unsigned int inverted_tx:1; 206 unsigned int inverted_rx:1; 207 struct clk *clk_ipg; 208 struct clk *clk_per; 209 const struct imx_uart_data *devdata; 210 211 struct mctrl_gpios *gpios; 212 213 /* shadow registers */ 214 unsigned int ucr1; 215 unsigned int ucr2; 216 unsigned int ucr3; 217 unsigned int ucr4; 218 unsigned int ufcr; 219 220 /* DMA fields */ 221 unsigned int dma_is_enabled:1; 222 unsigned int dma_is_rxing:1; 223 unsigned int dma_is_txing:1; 224 struct dma_chan *dma_chan_rx, *dma_chan_tx; 225 struct scatterlist rx_sgl, tx_sgl[2]; 226 void *rx_buf; 227 struct circ_buf rx_ring; 228 unsigned int rx_periods; 229 dma_cookie_t rx_cookie; 230 unsigned int tx_bytes; 231 unsigned int dma_tx_nents; 232 unsigned int saved_reg[10]; 233 bool context_saved; 234 235 enum imx_tx_state tx_state; 236 struct hrtimer trigger_start_tx; 237 struct hrtimer trigger_stop_tx; 238 }; 239 240 struct imx_port_ucrs { 241 unsigned int ucr1; 242 unsigned int ucr2; 243 unsigned int ucr3; 244 }; 245 246 static struct imx_uart_data imx_uart_devdata[] = { 247 [IMX1_UART] = { 248 .uts_reg = IMX1_UTS, 249 .devtype = IMX1_UART, 250 }, 251 [IMX21_UART] = { 252 .uts_reg = IMX21_UTS, 253 .devtype = IMX21_UART, 254 }, 255 [IMX53_UART] = { 256 .uts_reg = IMX21_UTS, 257 .devtype = IMX53_UART, 258 }, 259 [IMX6Q_UART] = { 260 .uts_reg = IMX21_UTS, 261 .devtype = IMX6Q_UART, 262 }, 263 }; 264 265 static const struct of_device_id imx_uart_dt_ids[] = { 266 { .compatible = "fsl,imx6q-uart", .data = &imx_uart_devdata[IMX6Q_UART], }, 267 { .compatible = "fsl,imx53-uart", .data = &imx_uart_devdata[IMX53_UART], }, 268 { .compatible = "fsl,imx1-uart", .data = &imx_uart_devdata[IMX1_UART], }, 269 { .compatible = "fsl,imx21-uart", .data = &imx_uart_devdata[IMX21_UART], }, 270 { /* sentinel */ } 271 }; 272 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids); 273 274 static void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset) 275 { 276 switch (offset) { 277 case UCR1: 278 sport->ucr1 = val; 279 break; 280 case UCR2: 281 sport->ucr2 = val; 282 break; 283 case UCR3: 284 sport->ucr3 = val; 285 break; 286 case UCR4: 287 sport->ucr4 = val; 288 break; 289 case UFCR: 290 sport->ufcr = val; 291 break; 292 default: 293 break; 294 } 295 writel(val, sport->port.membase + offset); 296 } 297 298 static u32 imx_uart_readl(struct imx_port *sport, u32 offset) 299 { 300 switch (offset) { 301 case UCR1: 302 return sport->ucr1; 303 break; 304 case UCR2: 305 /* 306 * UCR2_SRST is the only bit in the cached registers that might 307 * differ from the value that was last written. As it only 308 * automatically becomes one after being cleared, reread 309 * conditionally. 310 */ 311 if (!(sport->ucr2 & UCR2_SRST)) 312 sport->ucr2 = readl(sport->port.membase + offset); 313 return sport->ucr2; 314 break; 315 case UCR3: 316 return sport->ucr3; 317 break; 318 case UCR4: 319 return sport->ucr4; 320 break; 321 case UFCR: 322 return sport->ufcr; 323 break; 324 default: 325 return readl(sport->port.membase + offset); 326 } 327 } 328 329 static inline unsigned imx_uart_uts_reg(struct imx_port *sport) 330 { 331 return sport->devdata->uts_reg; 332 } 333 334 static inline int imx_uart_is_imx1(struct imx_port *sport) 335 { 336 return sport->devdata->devtype == IMX1_UART; 337 } 338 339 static inline int imx_uart_is_imx21(struct imx_port *sport) 340 { 341 return sport->devdata->devtype == IMX21_UART; 342 } 343 344 static inline int imx_uart_is_imx53(struct imx_port *sport) 345 { 346 return sport->devdata->devtype == IMX53_UART; 347 } 348 349 static inline int imx_uart_is_imx6q(struct imx_port *sport) 350 { 351 return sport->devdata->devtype == IMX6Q_UART; 352 } 353 /* 354 * Save and restore functions for UCR1, UCR2 and UCR3 registers 355 */ 356 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE) 357 static void imx_uart_ucrs_save(struct imx_port *sport, 358 struct imx_port_ucrs *ucr) 359 { 360 /* save control registers */ 361 ucr->ucr1 = imx_uart_readl(sport, UCR1); 362 ucr->ucr2 = imx_uart_readl(sport, UCR2); 363 ucr->ucr3 = imx_uart_readl(sport, UCR3); 364 } 365 366 static void imx_uart_ucrs_restore(struct imx_port *sport, 367 struct imx_port_ucrs *ucr) 368 { 369 /* restore control registers */ 370 imx_uart_writel(sport, ucr->ucr1, UCR1); 371 imx_uart_writel(sport, ucr->ucr2, UCR2); 372 imx_uart_writel(sport, ucr->ucr3, UCR3); 373 } 374 #endif 375 376 /* called with port.lock taken and irqs caller dependent */ 377 static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2) 378 { 379 *ucr2 &= ~(UCR2_CTSC | UCR2_CTS); 380 381 sport->port.mctrl |= TIOCM_RTS; 382 mctrl_gpio_set(sport->gpios, sport->port.mctrl); 383 } 384 385 /* called with port.lock taken and irqs caller dependent */ 386 static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2) 387 { 388 *ucr2 &= ~UCR2_CTSC; 389 *ucr2 |= UCR2_CTS; 390 391 sport->port.mctrl &= ~TIOCM_RTS; 392 mctrl_gpio_set(sport->gpios, sport->port.mctrl); 393 } 394 395 static void start_hrtimer_ms(struct hrtimer *hrt, unsigned long msec) 396 { 397 hrtimer_start(hrt, ms_to_ktime(msec), HRTIMER_MODE_REL); 398 } 399 400 /* called with port.lock taken and irqs off */ 401 static void imx_uart_start_rx(struct uart_port *port) 402 { 403 struct imx_port *sport = (struct imx_port *)port; 404 unsigned int ucr1, ucr2; 405 406 ucr1 = imx_uart_readl(sport, UCR1); 407 ucr2 = imx_uart_readl(sport, UCR2); 408 409 ucr2 |= UCR2_RXEN; 410 411 if (sport->dma_is_enabled) { 412 ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN; 413 } else { 414 ucr1 |= UCR1_RRDYEN; 415 ucr2 |= UCR2_ATEN; 416 } 417 418 /* Write UCR2 first as it includes RXEN */ 419 imx_uart_writel(sport, ucr2, UCR2); 420 imx_uart_writel(sport, ucr1, UCR1); 421 } 422 423 /* called with port.lock taken and irqs off */ 424 static void imx_uart_stop_tx(struct uart_port *port) 425 { 426 struct imx_port *sport = (struct imx_port *)port; 427 u32 ucr1, ucr4, usr2; 428 429 if (sport->tx_state == OFF) 430 return; 431 432 /* 433 * We are maybe in the SMP context, so if the DMA TX thread is running 434 * on other cpu, we have to wait for it to finish. 435 */ 436 if (sport->dma_is_txing) 437 return; 438 439 ucr1 = imx_uart_readl(sport, UCR1); 440 imx_uart_writel(sport, ucr1 & ~UCR1_TRDYEN, UCR1); 441 442 usr2 = imx_uart_readl(sport, USR2); 443 if (!(usr2 & USR2_TXDC)) { 444 /* The shifter is still busy, so retry once TC triggers */ 445 return; 446 } 447 448 ucr4 = imx_uart_readl(sport, UCR4); 449 ucr4 &= ~UCR4_TCEN; 450 imx_uart_writel(sport, ucr4, UCR4); 451 452 /* in rs485 mode disable transmitter */ 453 if (port->rs485.flags & SER_RS485_ENABLED) { 454 if (sport->tx_state == SEND) { 455 sport->tx_state = WAIT_AFTER_SEND; 456 start_hrtimer_ms(&sport->trigger_stop_tx, 457 port->rs485.delay_rts_after_send); 458 return; 459 } 460 461 if (sport->tx_state == WAIT_AFTER_RTS || 462 sport->tx_state == WAIT_AFTER_SEND) { 463 u32 ucr2; 464 465 hrtimer_try_to_cancel(&sport->trigger_start_tx); 466 467 ucr2 = imx_uart_readl(sport, UCR2); 468 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 469 imx_uart_rts_active(sport, &ucr2); 470 else 471 imx_uart_rts_inactive(sport, &ucr2); 472 imx_uart_writel(sport, ucr2, UCR2); 473 474 imx_uart_start_rx(port); 475 476 sport->tx_state = OFF; 477 } 478 } else { 479 sport->tx_state = OFF; 480 } 481 } 482 483 /* called with port.lock taken and irqs off */ 484 static void imx_uart_stop_rx(struct uart_port *port) 485 { 486 struct imx_port *sport = (struct imx_port *)port; 487 u32 ucr1, ucr2; 488 489 ucr1 = imx_uart_readl(sport, UCR1); 490 ucr2 = imx_uart_readl(sport, UCR2); 491 492 if (sport->dma_is_enabled) { 493 ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN); 494 } else { 495 ucr1 &= ~UCR1_RRDYEN; 496 ucr2 &= ~UCR2_ATEN; 497 } 498 imx_uart_writel(sport, ucr1, UCR1); 499 500 ucr2 &= ~UCR2_RXEN; 501 imx_uart_writel(sport, ucr2, UCR2); 502 } 503 504 /* called with port.lock taken and irqs off */ 505 static void imx_uart_enable_ms(struct uart_port *port) 506 { 507 struct imx_port *sport = (struct imx_port *)port; 508 509 mod_timer(&sport->timer, jiffies); 510 511 mctrl_gpio_enable_ms(sport->gpios); 512 } 513 514 static void imx_uart_dma_tx(struct imx_port *sport); 515 516 /* called with port.lock taken and irqs off */ 517 static inline void imx_uart_transmit_buffer(struct imx_port *sport) 518 { 519 struct circ_buf *xmit = &sport->port.state->xmit; 520 521 if (sport->port.x_char) { 522 /* Send next char */ 523 imx_uart_writel(sport, sport->port.x_char, URTX0); 524 sport->port.icount.tx++; 525 sport->port.x_char = 0; 526 return; 527 } 528 529 if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) { 530 imx_uart_stop_tx(&sport->port); 531 return; 532 } 533 534 if (sport->dma_is_enabled) { 535 u32 ucr1; 536 /* 537 * We've just sent a X-char Ensure the TX DMA is enabled 538 * and the TX IRQ is disabled. 539 **/ 540 ucr1 = imx_uart_readl(sport, UCR1); 541 ucr1 &= ~UCR1_TRDYEN; 542 if (sport->dma_is_txing) { 543 ucr1 |= UCR1_TXDMAEN; 544 imx_uart_writel(sport, ucr1, UCR1); 545 } else { 546 imx_uart_writel(sport, ucr1, UCR1); 547 imx_uart_dma_tx(sport); 548 } 549 550 return; 551 } 552 553 while (!uart_circ_empty(xmit) && 554 !(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)) { 555 /* send xmit->buf[xmit->tail] 556 * out the port here */ 557 imx_uart_writel(sport, xmit->buf[xmit->tail], URTX0); 558 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); 559 sport->port.icount.tx++; 560 } 561 562 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 563 uart_write_wakeup(&sport->port); 564 565 if (uart_circ_empty(xmit)) 566 imx_uart_stop_tx(&sport->port); 567 } 568 569 static void imx_uart_dma_tx_callback(void *data) 570 { 571 struct imx_port *sport = data; 572 struct scatterlist *sgl = &sport->tx_sgl[0]; 573 struct circ_buf *xmit = &sport->port.state->xmit; 574 unsigned long flags; 575 u32 ucr1; 576 577 spin_lock_irqsave(&sport->port.lock, flags); 578 579 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); 580 581 ucr1 = imx_uart_readl(sport, UCR1); 582 ucr1 &= ~UCR1_TXDMAEN; 583 imx_uart_writel(sport, ucr1, UCR1); 584 585 /* update the stat */ 586 xmit->tail = (xmit->tail + sport->tx_bytes) & (UART_XMIT_SIZE - 1); 587 sport->port.icount.tx += sport->tx_bytes; 588 589 dev_dbg(sport->port.dev, "we finish the TX DMA.\n"); 590 591 sport->dma_is_txing = 0; 592 593 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 594 uart_write_wakeup(&sport->port); 595 596 if (!uart_circ_empty(xmit) && !uart_tx_stopped(&sport->port)) 597 imx_uart_dma_tx(sport); 598 else if (sport->port.rs485.flags & SER_RS485_ENABLED) { 599 u32 ucr4 = imx_uart_readl(sport, UCR4); 600 ucr4 |= UCR4_TCEN; 601 imx_uart_writel(sport, ucr4, UCR4); 602 } 603 604 spin_unlock_irqrestore(&sport->port.lock, flags); 605 } 606 607 /* called with port.lock taken and irqs off */ 608 static void imx_uart_dma_tx(struct imx_port *sport) 609 { 610 struct circ_buf *xmit = &sport->port.state->xmit; 611 struct scatterlist *sgl = sport->tx_sgl; 612 struct dma_async_tx_descriptor *desc; 613 struct dma_chan *chan = sport->dma_chan_tx; 614 struct device *dev = sport->port.dev; 615 u32 ucr1, ucr4; 616 int ret; 617 618 if (sport->dma_is_txing) 619 return; 620 621 ucr4 = imx_uart_readl(sport, UCR4); 622 ucr4 &= ~UCR4_TCEN; 623 imx_uart_writel(sport, ucr4, UCR4); 624 625 sport->tx_bytes = uart_circ_chars_pending(xmit); 626 627 if (xmit->tail < xmit->head || xmit->head == 0) { 628 sport->dma_tx_nents = 1; 629 sg_init_one(sgl, xmit->buf + xmit->tail, sport->tx_bytes); 630 } else { 631 sport->dma_tx_nents = 2; 632 sg_init_table(sgl, 2); 633 sg_set_buf(sgl, xmit->buf + xmit->tail, 634 UART_XMIT_SIZE - xmit->tail); 635 sg_set_buf(sgl + 1, xmit->buf, xmit->head); 636 } 637 638 ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); 639 if (ret == 0) { 640 dev_err(dev, "DMA mapping error for TX.\n"); 641 return; 642 } 643 desc = dmaengine_prep_slave_sg(chan, sgl, ret, 644 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT); 645 if (!desc) { 646 dma_unmap_sg(dev, sgl, sport->dma_tx_nents, 647 DMA_TO_DEVICE); 648 dev_err(dev, "We cannot prepare for the TX slave dma!\n"); 649 return; 650 } 651 desc->callback = imx_uart_dma_tx_callback; 652 desc->callback_param = sport; 653 654 dev_dbg(dev, "TX: prepare to send %lu bytes by DMA.\n", 655 uart_circ_chars_pending(xmit)); 656 657 ucr1 = imx_uart_readl(sport, UCR1); 658 ucr1 |= UCR1_TXDMAEN; 659 imx_uart_writel(sport, ucr1, UCR1); 660 661 /* fire it */ 662 sport->dma_is_txing = 1; 663 dmaengine_submit(desc); 664 dma_async_issue_pending(chan); 665 return; 666 } 667 668 /* called with port.lock taken and irqs off */ 669 static void imx_uart_start_tx(struct uart_port *port) 670 { 671 struct imx_port *sport = (struct imx_port *)port; 672 u32 ucr1; 673 674 if (!sport->port.x_char && uart_circ_empty(&port->state->xmit)) 675 return; 676 677 /* 678 * We cannot simply do nothing here if sport->tx_state == SEND already 679 * because UCR1_TXMPTYEN might already have been cleared in 680 * imx_uart_stop_tx(), but tx_state is still SEND. 681 */ 682 683 if (port->rs485.flags & SER_RS485_ENABLED) { 684 if (sport->tx_state == OFF) { 685 u32 ucr2 = imx_uart_readl(sport, UCR2); 686 if (port->rs485.flags & SER_RS485_RTS_ON_SEND) 687 imx_uart_rts_active(sport, &ucr2); 688 else 689 imx_uart_rts_inactive(sport, &ucr2); 690 imx_uart_writel(sport, ucr2, UCR2); 691 692 if (!(port->rs485.flags & SER_RS485_RX_DURING_TX)) 693 imx_uart_stop_rx(port); 694 695 sport->tx_state = WAIT_AFTER_RTS; 696 start_hrtimer_ms(&sport->trigger_start_tx, 697 port->rs485.delay_rts_before_send); 698 return; 699 } 700 701 if (sport->tx_state == WAIT_AFTER_SEND 702 || sport->tx_state == WAIT_AFTER_RTS) { 703 704 hrtimer_try_to_cancel(&sport->trigger_stop_tx); 705 706 /* 707 * Enable transmitter and shifter empty irq only if DMA 708 * is off. In the DMA case this is done in the 709 * tx-callback. 710 */ 711 if (!sport->dma_is_enabled) { 712 u32 ucr4 = imx_uart_readl(sport, UCR4); 713 ucr4 |= UCR4_TCEN; 714 imx_uart_writel(sport, ucr4, UCR4); 715 } 716 717 sport->tx_state = SEND; 718 } 719 } else { 720 sport->tx_state = SEND; 721 } 722 723 if (!sport->dma_is_enabled) { 724 ucr1 = imx_uart_readl(sport, UCR1); 725 imx_uart_writel(sport, ucr1 | UCR1_TRDYEN, UCR1); 726 } 727 728 if (sport->dma_is_enabled) { 729 if (sport->port.x_char) { 730 /* We have X-char to send, so enable TX IRQ and 731 * disable TX DMA to let TX interrupt to send X-char */ 732 ucr1 = imx_uart_readl(sport, UCR1); 733 ucr1 &= ~UCR1_TXDMAEN; 734 ucr1 |= UCR1_TRDYEN; 735 imx_uart_writel(sport, ucr1, UCR1); 736 return; 737 } 738 739 if (!uart_circ_empty(&port->state->xmit) && 740 !uart_tx_stopped(port)) 741 imx_uart_dma_tx(sport); 742 return; 743 } 744 } 745 746 static irqreturn_t __imx_uart_rtsint(int irq, void *dev_id) 747 { 748 struct imx_port *sport = dev_id; 749 u32 usr1; 750 751 imx_uart_writel(sport, USR1_RTSD, USR1); 752 usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS; 753 uart_handle_cts_change(&sport->port, !!usr1); 754 wake_up_interruptible(&sport->port.state->port.delta_msr_wait); 755 756 return IRQ_HANDLED; 757 } 758 759 static irqreturn_t imx_uart_rtsint(int irq, void *dev_id) 760 { 761 struct imx_port *sport = dev_id; 762 irqreturn_t ret; 763 764 spin_lock(&sport->port.lock); 765 766 ret = __imx_uart_rtsint(irq, dev_id); 767 768 spin_unlock(&sport->port.lock); 769 770 return ret; 771 } 772 773 static irqreturn_t imx_uart_txint(int irq, void *dev_id) 774 { 775 struct imx_port *sport = dev_id; 776 777 spin_lock(&sport->port.lock); 778 imx_uart_transmit_buffer(sport); 779 spin_unlock(&sport->port.lock); 780 return IRQ_HANDLED; 781 } 782 783 static irqreturn_t __imx_uart_rxint(int irq, void *dev_id) 784 { 785 struct imx_port *sport = dev_id; 786 unsigned int rx, flg, ignored = 0; 787 struct tty_port *port = &sport->port.state->port; 788 789 while (imx_uart_readl(sport, USR2) & USR2_RDR) { 790 u32 usr2; 791 792 flg = TTY_NORMAL; 793 sport->port.icount.rx++; 794 795 rx = imx_uart_readl(sport, URXD0); 796 797 usr2 = imx_uart_readl(sport, USR2); 798 if (usr2 & USR2_BRCD) { 799 imx_uart_writel(sport, USR2_BRCD, USR2); 800 if (uart_handle_break(&sport->port)) 801 continue; 802 } 803 804 if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx)) 805 continue; 806 807 if (unlikely(rx & URXD_ERR)) { 808 if (rx & URXD_BRK) 809 sport->port.icount.brk++; 810 else if (rx & URXD_PRERR) 811 sport->port.icount.parity++; 812 else if (rx & URXD_FRMERR) 813 sport->port.icount.frame++; 814 if (rx & URXD_OVRRUN) 815 sport->port.icount.overrun++; 816 817 if (rx & sport->port.ignore_status_mask) { 818 if (++ignored > 100) 819 goto out; 820 continue; 821 } 822 823 rx &= (sport->port.read_status_mask | 0xFF); 824 825 if (rx & URXD_BRK) 826 flg = TTY_BREAK; 827 else if (rx & URXD_PRERR) 828 flg = TTY_PARITY; 829 else if (rx & URXD_FRMERR) 830 flg = TTY_FRAME; 831 if (rx & URXD_OVRRUN) 832 flg = TTY_OVERRUN; 833 834 sport->port.sysrq = 0; 835 } 836 837 if (sport->port.ignore_status_mask & URXD_DUMMY_READ) 838 goto out; 839 840 if (tty_insert_flip_char(port, rx, flg) == 0) 841 sport->port.icount.buf_overrun++; 842 } 843 844 out: 845 tty_flip_buffer_push(port); 846 847 return IRQ_HANDLED; 848 } 849 850 static irqreturn_t imx_uart_rxint(int irq, void *dev_id) 851 { 852 struct imx_port *sport = dev_id; 853 irqreturn_t ret; 854 855 spin_lock(&sport->port.lock); 856 857 ret = __imx_uart_rxint(irq, dev_id); 858 859 spin_unlock(&sport->port.lock); 860 861 return ret; 862 } 863 864 static void imx_uart_clear_rx_errors(struct imx_port *sport); 865 866 /* 867 * We have a modem side uart, so the meanings of RTS and CTS are inverted. 868 */ 869 static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport) 870 { 871 unsigned int tmp = TIOCM_DSR; 872 unsigned usr1 = imx_uart_readl(sport, USR1); 873 unsigned usr2 = imx_uart_readl(sport, USR2); 874 875 if (usr1 & USR1_RTSS) 876 tmp |= TIOCM_CTS; 877 878 /* in DCE mode DCDIN is always 0 */ 879 if (!(usr2 & USR2_DCDIN)) 880 tmp |= TIOCM_CAR; 881 882 if (sport->dte_mode) 883 if (!(imx_uart_readl(sport, USR2) & USR2_RIIN)) 884 tmp |= TIOCM_RI; 885 886 return tmp; 887 } 888 889 /* 890 * Handle any change of modem status signal since we were last called. 891 */ 892 static void imx_uart_mctrl_check(struct imx_port *sport) 893 { 894 unsigned int status, changed; 895 896 status = imx_uart_get_hwmctrl(sport); 897 changed = status ^ sport->old_status; 898 899 if (changed == 0) 900 return; 901 902 sport->old_status = status; 903 904 if (changed & TIOCM_RI && status & TIOCM_RI) 905 sport->port.icount.rng++; 906 if (changed & TIOCM_DSR) 907 sport->port.icount.dsr++; 908 if (changed & TIOCM_CAR) 909 uart_handle_dcd_change(&sport->port, status & TIOCM_CAR); 910 if (changed & TIOCM_CTS) 911 uart_handle_cts_change(&sport->port, status & TIOCM_CTS); 912 913 wake_up_interruptible(&sport->port.state->port.delta_msr_wait); 914 } 915 916 static irqreturn_t imx_uart_int(int irq, void *dev_id) 917 { 918 struct imx_port *sport = dev_id; 919 unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4; 920 irqreturn_t ret = IRQ_NONE; 921 unsigned long flags = 0; 922 923 /* 924 * IRQs might not be disabled upon entering this interrupt handler, 925 * e.g. when interrupt handlers are forced to be threaded. To support 926 * this scenario as well, disable IRQs when acquiring the spinlock. 927 */ 928 spin_lock_irqsave(&sport->port.lock, flags); 929 930 usr1 = imx_uart_readl(sport, USR1); 931 usr2 = imx_uart_readl(sport, USR2); 932 ucr1 = imx_uart_readl(sport, UCR1); 933 ucr2 = imx_uart_readl(sport, UCR2); 934 ucr3 = imx_uart_readl(sport, UCR3); 935 ucr4 = imx_uart_readl(sport, UCR4); 936 937 /* 938 * Even if a condition is true that can trigger an irq only handle it if 939 * the respective irq source is enabled. This prevents some undesired 940 * actions, for example if a character that sits in the RX FIFO and that 941 * should be fetched via DMA is tried to be fetched using PIO. Or the 942 * receiver is currently off and so reading from URXD0 results in an 943 * exception. So just mask the (raw) status bits for disabled irqs. 944 */ 945 if ((ucr1 & UCR1_RRDYEN) == 0) 946 usr1 &= ~USR1_RRDY; 947 if ((ucr2 & UCR2_ATEN) == 0) 948 usr1 &= ~USR1_AGTIM; 949 if ((ucr1 & UCR1_TRDYEN) == 0) 950 usr1 &= ~USR1_TRDY; 951 if ((ucr4 & UCR4_TCEN) == 0) 952 usr2 &= ~USR2_TXDC; 953 if ((ucr3 & UCR3_DTRDEN) == 0) 954 usr1 &= ~USR1_DTRD; 955 if ((ucr1 & UCR1_RTSDEN) == 0) 956 usr1 &= ~USR1_RTSD; 957 if ((ucr3 & UCR3_AWAKEN) == 0) 958 usr1 &= ~USR1_AWAKE; 959 if ((ucr4 & UCR4_OREN) == 0) 960 usr2 &= ~USR2_ORE; 961 962 if (usr1 & (USR1_RRDY | USR1_AGTIM)) { 963 imx_uart_writel(sport, USR1_AGTIM, USR1); 964 965 __imx_uart_rxint(irq, dev_id); 966 ret = IRQ_HANDLED; 967 } 968 969 if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) { 970 imx_uart_transmit_buffer(sport); 971 ret = IRQ_HANDLED; 972 } 973 974 if (usr1 & USR1_DTRD) { 975 imx_uart_writel(sport, USR1_DTRD, USR1); 976 977 imx_uart_mctrl_check(sport); 978 979 ret = IRQ_HANDLED; 980 } 981 982 if (usr1 & USR1_RTSD) { 983 __imx_uart_rtsint(irq, dev_id); 984 ret = IRQ_HANDLED; 985 } 986 987 if (usr1 & USR1_AWAKE) { 988 imx_uart_writel(sport, USR1_AWAKE, USR1); 989 ret = IRQ_HANDLED; 990 } 991 992 if (usr2 & USR2_ORE) { 993 sport->port.icount.overrun++; 994 imx_uart_writel(sport, USR2_ORE, USR2); 995 ret = IRQ_HANDLED; 996 } 997 998 spin_unlock_irqrestore(&sport->port.lock, flags); 999 1000 return ret; 1001 } 1002 1003 /* 1004 * Return TIOCSER_TEMT when transmitter is not busy. 1005 */ 1006 static unsigned int imx_uart_tx_empty(struct uart_port *port) 1007 { 1008 struct imx_port *sport = (struct imx_port *)port; 1009 unsigned int ret; 1010 1011 ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ? TIOCSER_TEMT : 0; 1012 1013 /* If the TX DMA is working, return 0. */ 1014 if (sport->dma_is_txing) 1015 ret = 0; 1016 1017 return ret; 1018 } 1019 1020 /* called with port.lock taken and irqs off */ 1021 static unsigned int imx_uart_get_mctrl(struct uart_port *port) 1022 { 1023 struct imx_port *sport = (struct imx_port *)port; 1024 unsigned int ret = imx_uart_get_hwmctrl(sport); 1025 1026 mctrl_gpio_get(sport->gpios, &ret); 1027 1028 return ret; 1029 } 1030 1031 /* called with port.lock taken and irqs off */ 1032 static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl) 1033 { 1034 struct imx_port *sport = (struct imx_port *)port; 1035 u32 ucr3, uts; 1036 1037 if (!(port->rs485.flags & SER_RS485_ENABLED)) { 1038 u32 ucr2; 1039 1040 /* 1041 * Turn off autoRTS if RTS is lowered and restore autoRTS 1042 * setting if RTS is raised. 1043 */ 1044 ucr2 = imx_uart_readl(sport, UCR2); 1045 ucr2 &= ~(UCR2_CTS | UCR2_CTSC); 1046 if (mctrl & TIOCM_RTS) { 1047 ucr2 |= UCR2_CTS; 1048 /* 1049 * UCR2_IRTS is unset if and only if the port is 1050 * configured for CRTSCTS, so we use inverted UCR2_IRTS 1051 * to get the state to restore to. 1052 */ 1053 if (!(ucr2 & UCR2_IRTS)) 1054 ucr2 |= UCR2_CTSC; 1055 } 1056 imx_uart_writel(sport, ucr2, UCR2); 1057 } 1058 1059 ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR; 1060 if (!(mctrl & TIOCM_DTR)) 1061 ucr3 |= UCR3_DSR; 1062 imx_uart_writel(sport, ucr3, UCR3); 1063 1064 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP; 1065 if (mctrl & TIOCM_LOOP) 1066 uts |= UTS_LOOP; 1067 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 1068 1069 mctrl_gpio_set(sport->gpios, mctrl); 1070 } 1071 1072 /* 1073 * Interrupts always disabled. 1074 */ 1075 static void imx_uart_break_ctl(struct uart_port *port, int break_state) 1076 { 1077 struct imx_port *sport = (struct imx_port *)port; 1078 unsigned long flags; 1079 u32 ucr1; 1080 1081 spin_lock_irqsave(&sport->port.lock, flags); 1082 1083 ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK; 1084 1085 if (break_state != 0) 1086 ucr1 |= UCR1_SNDBRK; 1087 1088 imx_uart_writel(sport, ucr1, UCR1); 1089 1090 spin_unlock_irqrestore(&sport->port.lock, flags); 1091 } 1092 1093 /* 1094 * This is our per-port timeout handler, for checking the 1095 * modem status signals. 1096 */ 1097 static void imx_uart_timeout(struct timer_list *t) 1098 { 1099 struct imx_port *sport = from_timer(sport, t, timer); 1100 unsigned long flags; 1101 1102 if (sport->port.state) { 1103 spin_lock_irqsave(&sport->port.lock, flags); 1104 imx_uart_mctrl_check(sport); 1105 spin_unlock_irqrestore(&sport->port.lock, flags); 1106 1107 mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT); 1108 } 1109 } 1110 1111 /* 1112 * There are two kinds of RX DMA interrupts(such as in the MX6Q): 1113 * [1] the RX DMA buffer is full. 1114 * [2] the aging timer expires 1115 * 1116 * Condition [2] is triggered when a character has been sitting in the FIFO 1117 * for at least 8 byte durations. 1118 */ 1119 static void imx_uart_dma_rx_callback(void *data) 1120 { 1121 struct imx_port *sport = data; 1122 struct dma_chan *chan = sport->dma_chan_rx; 1123 struct scatterlist *sgl = &sport->rx_sgl; 1124 struct tty_port *port = &sport->port.state->port; 1125 struct dma_tx_state state; 1126 struct circ_buf *rx_ring = &sport->rx_ring; 1127 enum dma_status status; 1128 unsigned int w_bytes = 0; 1129 unsigned int r_bytes; 1130 unsigned int bd_size; 1131 1132 status = dmaengine_tx_status(chan, sport->rx_cookie, &state); 1133 1134 if (status == DMA_ERROR) { 1135 imx_uart_clear_rx_errors(sport); 1136 return; 1137 } 1138 1139 if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) { 1140 1141 /* 1142 * The state-residue variable represents the empty space 1143 * relative to the entire buffer. Taking this in consideration 1144 * the head is always calculated base on the buffer total 1145 * length - DMA transaction residue. The UART script from the 1146 * SDMA firmware will jump to the next buffer descriptor, 1147 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4). 1148 * Taking this in consideration the tail is always at the 1149 * beginning of the buffer descriptor that contains the head. 1150 */ 1151 1152 /* Calculate the head */ 1153 rx_ring->head = sg_dma_len(sgl) - state.residue; 1154 1155 /* Calculate the tail. */ 1156 bd_size = sg_dma_len(sgl) / sport->rx_periods; 1157 rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size; 1158 1159 if (rx_ring->head <= sg_dma_len(sgl) && 1160 rx_ring->head > rx_ring->tail) { 1161 1162 /* Move data from tail to head */ 1163 r_bytes = rx_ring->head - rx_ring->tail; 1164 1165 /* CPU claims ownership of RX DMA buffer */ 1166 dma_sync_sg_for_cpu(sport->port.dev, sgl, 1, 1167 DMA_FROM_DEVICE); 1168 1169 w_bytes = tty_insert_flip_string(port, 1170 sport->rx_buf + rx_ring->tail, r_bytes); 1171 1172 /* UART retrieves ownership of RX DMA buffer */ 1173 dma_sync_sg_for_device(sport->port.dev, sgl, 1, 1174 DMA_FROM_DEVICE); 1175 1176 if (w_bytes != r_bytes) 1177 sport->port.icount.buf_overrun++; 1178 1179 sport->port.icount.rx += w_bytes; 1180 } else { 1181 WARN_ON(rx_ring->head > sg_dma_len(sgl)); 1182 WARN_ON(rx_ring->head <= rx_ring->tail); 1183 } 1184 } 1185 1186 if (w_bytes) { 1187 tty_flip_buffer_push(port); 1188 dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes); 1189 } 1190 } 1191 1192 /* RX DMA buffer periods */ 1193 #define RX_DMA_PERIODS 16 1194 #define RX_BUF_SIZE (RX_DMA_PERIODS * PAGE_SIZE / 4) 1195 1196 static int imx_uart_start_rx_dma(struct imx_port *sport) 1197 { 1198 struct scatterlist *sgl = &sport->rx_sgl; 1199 struct dma_chan *chan = sport->dma_chan_rx; 1200 struct device *dev = sport->port.dev; 1201 struct dma_async_tx_descriptor *desc; 1202 int ret; 1203 1204 sport->rx_ring.head = 0; 1205 sport->rx_ring.tail = 0; 1206 sport->rx_periods = RX_DMA_PERIODS; 1207 1208 sg_init_one(sgl, sport->rx_buf, RX_BUF_SIZE); 1209 ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE); 1210 if (ret == 0) { 1211 dev_err(dev, "DMA mapping error for RX.\n"); 1212 return -EINVAL; 1213 } 1214 1215 desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl), 1216 sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods, 1217 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT); 1218 1219 if (!desc) { 1220 dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE); 1221 dev_err(dev, "We cannot prepare for the RX slave dma!\n"); 1222 return -EINVAL; 1223 } 1224 desc->callback = imx_uart_dma_rx_callback; 1225 desc->callback_param = sport; 1226 1227 dev_dbg(dev, "RX: prepare for the DMA.\n"); 1228 sport->dma_is_rxing = 1; 1229 sport->rx_cookie = dmaengine_submit(desc); 1230 dma_async_issue_pending(chan); 1231 return 0; 1232 } 1233 1234 static void imx_uart_clear_rx_errors(struct imx_port *sport) 1235 { 1236 struct tty_port *port = &sport->port.state->port; 1237 u32 usr1, usr2; 1238 1239 usr1 = imx_uart_readl(sport, USR1); 1240 usr2 = imx_uart_readl(sport, USR2); 1241 1242 if (usr2 & USR2_BRCD) { 1243 sport->port.icount.brk++; 1244 imx_uart_writel(sport, USR2_BRCD, USR2); 1245 uart_handle_break(&sport->port); 1246 if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0) 1247 sport->port.icount.buf_overrun++; 1248 tty_flip_buffer_push(port); 1249 } else { 1250 if (usr1 & USR1_FRAMERR) { 1251 sport->port.icount.frame++; 1252 imx_uart_writel(sport, USR1_FRAMERR, USR1); 1253 } else if (usr1 & USR1_PARITYERR) { 1254 sport->port.icount.parity++; 1255 imx_uart_writel(sport, USR1_PARITYERR, USR1); 1256 } 1257 } 1258 1259 if (usr2 & USR2_ORE) { 1260 sport->port.icount.overrun++; 1261 imx_uart_writel(sport, USR2_ORE, USR2); 1262 } 1263 1264 } 1265 1266 #define TXTL_DEFAULT 2 /* reset default */ 1267 #define RXTL_DEFAULT 1 /* reset default */ 1268 #define TXTL_DMA 8 /* DMA burst setting */ 1269 #define RXTL_DMA 9 /* DMA burst setting */ 1270 1271 static void imx_uart_setup_ufcr(struct imx_port *sport, 1272 unsigned char txwl, unsigned char rxwl) 1273 { 1274 unsigned int val; 1275 1276 /* set receiver / transmitter trigger level */ 1277 val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE); 1278 val |= txwl << UFCR_TXTL_SHF | rxwl; 1279 imx_uart_writel(sport, val, UFCR); 1280 } 1281 1282 static void imx_uart_dma_exit(struct imx_port *sport) 1283 { 1284 if (sport->dma_chan_rx) { 1285 dmaengine_terminate_sync(sport->dma_chan_rx); 1286 dma_release_channel(sport->dma_chan_rx); 1287 sport->dma_chan_rx = NULL; 1288 sport->rx_cookie = -EINVAL; 1289 kfree(sport->rx_buf); 1290 sport->rx_buf = NULL; 1291 } 1292 1293 if (sport->dma_chan_tx) { 1294 dmaengine_terminate_sync(sport->dma_chan_tx); 1295 dma_release_channel(sport->dma_chan_tx); 1296 sport->dma_chan_tx = NULL; 1297 } 1298 } 1299 1300 static int imx_uart_dma_init(struct imx_port *sport) 1301 { 1302 struct dma_slave_config slave_config = {}; 1303 struct device *dev = sport->port.dev; 1304 int ret; 1305 1306 /* Prepare for RX : */ 1307 sport->dma_chan_rx = dma_request_slave_channel(dev, "rx"); 1308 if (!sport->dma_chan_rx) { 1309 dev_dbg(dev, "cannot get the DMA channel.\n"); 1310 ret = -EINVAL; 1311 goto err; 1312 } 1313 1314 slave_config.direction = DMA_DEV_TO_MEM; 1315 slave_config.src_addr = sport->port.mapbase + URXD0; 1316 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1317 /* one byte less than the watermark level to enable the aging timer */ 1318 slave_config.src_maxburst = RXTL_DMA - 1; 1319 ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config); 1320 if (ret) { 1321 dev_err(dev, "error in RX dma configuration.\n"); 1322 goto err; 1323 } 1324 1325 sport->rx_buf = kzalloc(RX_BUF_SIZE, GFP_KERNEL); 1326 if (!sport->rx_buf) { 1327 ret = -ENOMEM; 1328 goto err; 1329 } 1330 sport->rx_ring.buf = sport->rx_buf; 1331 1332 /* Prepare for TX : */ 1333 sport->dma_chan_tx = dma_request_slave_channel(dev, "tx"); 1334 if (!sport->dma_chan_tx) { 1335 dev_err(dev, "cannot get the TX DMA channel!\n"); 1336 ret = -EINVAL; 1337 goto err; 1338 } 1339 1340 slave_config.direction = DMA_MEM_TO_DEV; 1341 slave_config.dst_addr = sport->port.mapbase + URTX0; 1342 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1343 slave_config.dst_maxburst = TXTL_DMA; 1344 ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config); 1345 if (ret) { 1346 dev_err(dev, "error in TX dma configuration."); 1347 goto err; 1348 } 1349 1350 return 0; 1351 err: 1352 imx_uart_dma_exit(sport); 1353 return ret; 1354 } 1355 1356 static void imx_uart_enable_dma(struct imx_port *sport) 1357 { 1358 u32 ucr1; 1359 1360 imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA); 1361 1362 /* set UCR1 */ 1363 ucr1 = imx_uart_readl(sport, UCR1); 1364 ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN; 1365 imx_uart_writel(sport, ucr1, UCR1); 1366 1367 sport->dma_is_enabled = 1; 1368 } 1369 1370 static void imx_uart_disable_dma(struct imx_port *sport) 1371 { 1372 u32 ucr1; 1373 1374 /* clear UCR1 */ 1375 ucr1 = imx_uart_readl(sport, UCR1); 1376 ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN); 1377 imx_uart_writel(sport, ucr1, UCR1); 1378 1379 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1380 1381 sport->dma_is_enabled = 0; 1382 } 1383 1384 /* half the RX buffer size */ 1385 #define CTSTL 16 1386 1387 static int imx_uart_startup(struct uart_port *port) 1388 { 1389 struct imx_port *sport = (struct imx_port *)port; 1390 int retval, i; 1391 unsigned long flags; 1392 int dma_is_inited = 0; 1393 u32 ucr1, ucr2, ucr3, ucr4; 1394 1395 retval = clk_prepare_enable(sport->clk_per); 1396 if (retval) 1397 return retval; 1398 retval = clk_prepare_enable(sport->clk_ipg); 1399 if (retval) { 1400 clk_disable_unprepare(sport->clk_per); 1401 return retval; 1402 } 1403 1404 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1405 1406 /* disable the DREN bit (Data Ready interrupt enable) before 1407 * requesting IRQs 1408 */ 1409 ucr4 = imx_uart_readl(sport, UCR4); 1410 1411 /* set the trigger level for CTS */ 1412 ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF); 1413 ucr4 |= CTSTL << UCR4_CTSTL_SHF; 1414 1415 imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4); 1416 1417 /* Can we enable the DMA support? */ 1418 if (!uart_console(port) && imx_uart_dma_init(sport) == 0) 1419 dma_is_inited = 1; 1420 1421 spin_lock_irqsave(&sport->port.lock, flags); 1422 /* Reset fifo's and state machines */ 1423 i = 100; 1424 1425 ucr2 = imx_uart_readl(sport, UCR2); 1426 ucr2 &= ~UCR2_SRST; 1427 imx_uart_writel(sport, ucr2, UCR2); 1428 1429 while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0)) 1430 udelay(1); 1431 1432 /* 1433 * Finally, clear and enable interrupts 1434 */ 1435 imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1); 1436 imx_uart_writel(sport, USR2_ORE, USR2); 1437 1438 ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN; 1439 ucr1 |= UCR1_UARTEN; 1440 if (sport->have_rtscts) 1441 ucr1 |= UCR1_RTSDEN; 1442 1443 imx_uart_writel(sport, ucr1, UCR1); 1444 1445 ucr4 = imx_uart_readl(sport, UCR4) & ~(UCR4_OREN | UCR4_INVR); 1446 if (!sport->dma_is_enabled) 1447 ucr4 |= UCR4_OREN; 1448 if (sport->inverted_rx) 1449 ucr4 |= UCR4_INVR; 1450 imx_uart_writel(sport, ucr4, UCR4); 1451 1452 ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_INVT; 1453 /* 1454 * configure tx polarity before enabling tx 1455 */ 1456 if (sport->inverted_tx) 1457 ucr3 |= UCR3_INVT; 1458 1459 if (!imx_uart_is_imx1(sport)) { 1460 ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD; 1461 1462 if (sport->dte_mode) 1463 /* disable broken interrupts */ 1464 ucr3 &= ~(UCR3_RI | UCR3_DCD); 1465 } 1466 imx_uart_writel(sport, ucr3, UCR3); 1467 1468 ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN; 1469 ucr2 |= (UCR2_RXEN | UCR2_TXEN); 1470 if (!sport->have_rtscts) 1471 ucr2 |= UCR2_IRTS; 1472 /* 1473 * make sure the edge sensitive RTS-irq is disabled, 1474 * we're using RTSD instead. 1475 */ 1476 if (!imx_uart_is_imx1(sport)) 1477 ucr2 &= ~UCR2_RTSEN; 1478 imx_uart_writel(sport, ucr2, UCR2); 1479 1480 /* 1481 * Enable modem status interrupts 1482 */ 1483 imx_uart_enable_ms(&sport->port); 1484 1485 if (dma_is_inited) { 1486 imx_uart_enable_dma(sport); 1487 imx_uart_start_rx_dma(sport); 1488 } else { 1489 ucr1 = imx_uart_readl(sport, UCR1); 1490 ucr1 |= UCR1_RRDYEN; 1491 imx_uart_writel(sport, ucr1, UCR1); 1492 1493 ucr2 = imx_uart_readl(sport, UCR2); 1494 ucr2 |= UCR2_ATEN; 1495 imx_uart_writel(sport, ucr2, UCR2); 1496 } 1497 1498 spin_unlock_irqrestore(&sport->port.lock, flags); 1499 1500 return 0; 1501 } 1502 1503 static void imx_uart_shutdown(struct uart_port *port) 1504 { 1505 struct imx_port *sport = (struct imx_port *)port; 1506 unsigned long flags; 1507 u32 ucr1, ucr2, ucr4; 1508 1509 if (sport->dma_is_enabled) { 1510 dmaengine_terminate_sync(sport->dma_chan_tx); 1511 if (sport->dma_is_txing) { 1512 dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0], 1513 sport->dma_tx_nents, DMA_TO_DEVICE); 1514 sport->dma_is_txing = 0; 1515 } 1516 dmaengine_terminate_sync(sport->dma_chan_rx); 1517 if (sport->dma_is_rxing) { 1518 dma_unmap_sg(sport->port.dev, &sport->rx_sgl, 1519 1, DMA_FROM_DEVICE); 1520 sport->dma_is_rxing = 0; 1521 } 1522 1523 spin_lock_irqsave(&sport->port.lock, flags); 1524 imx_uart_stop_tx(port); 1525 imx_uart_stop_rx(port); 1526 imx_uart_disable_dma(sport); 1527 spin_unlock_irqrestore(&sport->port.lock, flags); 1528 imx_uart_dma_exit(sport); 1529 } 1530 1531 mctrl_gpio_disable_ms(sport->gpios); 1532 1533 spin_lock_irqsave(&sport->port.lock, flags); 1534 ucr2 = imx_uart_readl(sport, UCR2); 1535 ucr2 &= ~(UCR2_TXEN | UCR2_ATEN); 1536 imx_uart_writel(sport, ucr2, UCR2); 1537 spin_unlock_irqrestore(&sport->port.lock, flags); 1538 1539 /* 1540 * Stop our timer. 1541 */ 1542 del_timer_sync(&sport->timer); 1543 1544 /* 1545 * Disable all interrupts, port and break condition. 1546 */ 1547 1548 spin_lock_irqsave(&sport->port.lock, flags); 1549 1550 ucr1 = imx_uart_readl(sport, UCR1); 1551 ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_UARTEN | UCR1_RXDMAEN | UCR1_ATDMAEN); 1552 imx_uart_writel(sport, ucr1, UCR1); 1553 1554 ucr4 = imx_uart_readl(sport, UCR4); 1555 ucr4 &= ~(UCR4_OREN | UCR4_TCEN); 1556 imx_uart_writel(sport, ucr4, UCR4); 1557 1558 spin_unlock_irqrestore(&sport->port.lock, flags); 1559 1560 clk_disable_unprepare(sport->clk_per); 1561 clk_disable_unprepare(sport->clk_ipg); 1562 } 1563 1564 /* called with port.lock taken and irqs off */ 1565 static void imx_uart_flush_buffer(struct uart_port *port) 1566 { 1567 struct imx_port *sport = (struct imx_port *)port; 1568 struct scatterlist *sgl = &sport->tx_sgl[0]; 1569 u32 ucr2; 1570 int i = 100, ubir, ubmr, uts; 1571 1572 if (!sport->dma_chan_tx) 1573 return; 1574 1575 sport->tx_bytes = 0; 1576 dmaengine_terminate_all(sport->dma_chan_tx); 1577 if (sport->dma_is_txing) { 1578 u32 ucr1; 1579 1580 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, 1581 DMA_TO_DEVICE); 1582 ucr1 = imx_uart_readl(sport, UCR1); 1583 ucr1 &= ~UCR1_TXDMAEN; 1584 imx_uart_writel(sport, ucr1, UCR1); 1585 sport->dma_is_txing = 0; 1586 } 1587 1588 /* 1589 * According to the Reference Manual description of the UART SRST bit: 1590 * 1591 * "Reset the transmit and receive state machines, 1592 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD 1593 * and UTS[6-3]". 1594 * 1595 * We don't need to restore the old values from USR1, USR2, URXD and 1596 * UTXD. UBRC is read only, so only save/restore the other three 1597 * registers. 1598 */ 1599 ubir = imx_uart_readl(sport, UBIR); 1600 ubmr = imx_uart_readl(sport, UBMR); 1601 uts = imx_uart_readl(sport, IMX21_UTS); 1602 1603 ucr2 = imx_uart_readl(sport, UCR2); 1604 ucr2 &= ~UCR2_SRST; 1605 imx_uart_writel(sport, ucr2, UCR2); 1606 1607 while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0)) 1608 udelay(1); 1609 1610 /* Restore the registers */ 1611 imx_uart_writel(sport, ubir, UBIR); 1612 imx_uart_writel(sport, ubmr, UBMR); 1613 imx_uart_writel(sport, uts, IMX21_UTS); 1614 } 1615 1616 static void 1617 imx_uart_set_termios(struct uart_port *port, struct ktermios *termios, 1618 struct ktermios *old) 1619 { 1620 struct imx_port *sport = (struct imx_port *)port; 1621 unsigned long flags; 1622 u32 ucr2, old_ucr2, ufcr; 1623 unsigned int baud, quot; 1624 unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8; 1625 unsigned long div; 1626 unsigned long num, denom, old_ubir, old_ubmr; 1627 uint64_t tdiv64; 1628 1629 /* 1630 * We only support CS7 and CS8. 1631 */ 1632 while ((termios->c_cflag & CSIZE) != CS7 && 1633 (termios->c_cflag & CSIZE) != CS8) { 1634 termios->c_cflag &= ~CSIZE; 1635 termios->c_cflag |= old_csize; 1636 old_csize = CS8; 1637 } 1638 1639 del_timer_sync(&sport->timer); 1640 1641 /* 1642 * Ask the core to calculate the divisor for us. 1643 */ 1644 baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16); 1645 quot = uart_get_divisor(port, baud); 1646 1647 spin_lock_irqsave(&sport->port.lock, flags); 1648 1649 /* 1650 * Read current UCR2 and save it for future use, then clear all the bits 1651 * except those we will or may need to preserve. 1652 */ 1653 old_ucr2 = imx_uart_readl(sport, UCR2); 1654 ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS); 1655 1656 ucr2 |= UCR2_SRST | UCR2_IRTS; 1657 if ((termios->c_cflag & CSIZE) == CS8) 1658 ucr2 |= UCR2_WS; 1659 1660 if (!sport->have_rtscts) 1661 termios->c_cflag &= ~CRTSCTS; 1662 1663 if (port->rs485.flags & SER_RS485_ENABLED) { 1664 /* 1665 * RTS is mandatory for rs485 operation, so keep 1666 * it under manual control and keep transmitter 1667 * disabled. 1668 */ 1669 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 1670 imx_uart_rts_active(sport, &ucr2); 1671 else 1672 imx_uart_rts_inactive(sport, &ucr2); 1673 1674 } else if (termios->c_cflag & CRTSCTS) { 1675 /* 1676 * Only let receiver control RTS output if we were not requested 1677 * to have RTS inactive (which then should take precedence). 1678 */ 1679 if (ucr2 & UCR2_CTS) 1680 ucr2 |= UCR2_CTSC; 1681 } 1682 1683 if (termios->c_cflag & CRTSCTS) 1684 ucr2 &= ~UCR2_IRTS; 1685 if (termios->c_cflag & CSTOPB) 1686 ucr2 |= UCR2_STPB; 1687 if (termios->c_cflag & PARENB) { 1688 ucr2 |= UCR2_PREN; 1689 if (termios->c_cflag & PARODD) 1690 ucr2 |= UCR2_PROE; 1691 } 1692 1693 sport->port.read_status_mask = 0; 1694 if (termios->c_iflag & INPCK) 1695 sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR); 1696 if (termios->c_iflag & (BRKINT | PARMRK)) 1697 sport->port.read_status_mask |= URXD_BRK; 1698 1699 /* 1700 * Characters to ignore 1701 */ 1702 sport->port.ignore_status_mask = 0; 1703 if (termios->c_iflag & IGNPAR) 1704 sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR; 1705 if (termios->c_iflag & IGNBRK) { 1706 sport->port.ignore_status_mask |= URXD_BRK; 1707 /* 1708 * If we're ignoring parity and break indicators, 1709 * ignore overruns too (for real raw support). 1710 */ 1711 if (termios->c_iflag & IGNPAR) 1712 sport->port.ignore_status_mask |= URXD_OVRRUN; 1713 } 1714 1715 if ((termios->c_cflag & CREAD) == 0) 1716 sport->port.ignore_status_mask |= URXD_DUMMY_READ; 1717 1718 /* 1719 * Update the per-port timeout. 1720 */ 1721 uart_update_timeout(port, termios->c_cflag, baud); 1722 1723 /* custom-baudrate handling */ 1724 div = sport->port.uartclk / (baud * 16); 1725 if (baud == 38400 && quot != div) 1726 baud = sport->port.uartclk / (quot * 16); 1727 1728 div = sport->port.uartclk / (baud * 16); 1729 if (div > 7) 1730 div = 7; 1731 if (!div) 1732 div = 1; 1733 1734 rational_best_approximation(16 * div * baud, sport->port.uartclk, 1735 1 << 16, 1 << 16, &num, &denom); 1736 1737 tdiv64 = sport->port.uartclk; 1738 tdiv64 *= num; 1739 do_div(tdiv64, denom * 16 * div); 1740 tty_termios_encode_baud_rate(termios, 1741 (speed_t)tdiv64, (speed_t)tdiv64); 1742 1743 num -= 1; 1744 denom -= 1; 1745 1746 ufcr = imx_uart_readl(sport, UFCR); 1747 ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div); 1748 imx_uart_writel(sport, ufcr, UFCR); 1749 1750 /* 1751 * Two registers below should always be written both and in this 1752 * particular order. One consequence is that we need to check if any of 1753 * them changes and then update both. We do need the check for change 1754 * as even writing the same values seem to "restart" 1755 * transmission/receiving logic in the hardware, that leads to data 1756 * breakage even when rate doesn't in fact change. E.g., user switches 1757 * RTS/CTS handshake and suddenly gets broken bytes. 1758 */ 1759 old_ubir = imx_uart_readl(sport, UBIR); 1760 old_ubmr = imx_uart_readl(sport, UBMR); 1761 if (old_ubir != num || old_ubmr != denom) { 1762 imx_uart_writel(sport, num, UBIR); 1763 imx_uart_writel(sport, denom, UBMR); 1764 } 1765 1766 if (!imx_uart_is_imx1(sport)) 1767 imx_uart_writel(sport, sport->port.uartclk / div / 1000, 1768 IMX21_ONEMS); 1769 1770 imx_uart_writel(sport, ucr2, UCR2); 1771 1772 if (UART_ENABLE_MS(&sport->port, termios->c_cflag)) 1773 imx_uart_enable_ms(&sport->port); 1774 1775 spin_unlock_irqrestore(&sport->port.lock, flags); 1776 } 1777 1778 static const char *imx_uart_type(struct uart_port *port) 1779 { 1780 struct imx_port *sport = (struct imx_port *)port; 1781 1782 return sport->port.type == PORT_IMX ? "IMX" : NULL; 1783 } 1784 1785 /* 1786 * Configure/autoconfigure the port. 1787 */ 1788 static void imx_uart_config_port(struct uart_port *port, int flags) 1789 { 1790 struct imx_port *sport = (struct imx_port *)port; 1791 1792 if (flags & UART_CONFIG_TYPE) 1793 sport->port.type = PORT_IMX; 1794 } 1795 1796 /* 1797 * Verify the new serial_struct (for TIOCSSERIAL). 1798 * The only change we allow are to the flags and type, and 1799 * even then only between PORT_IMX and PORT_UNKNOWN 1800 */ 1801 static int 1802 imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser) 1803 { 1804 struct imx_port *sport = (struct imx_port *)port; 1805 int ret = 0; 1806 1807 if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX) 1808 ret = -EINVAL; 1809 if (sport->port.irq != ser->irq) 1810 ret = -EINVAL; 1811 if (ser->io_type != UPIO_MEM) 1812 ret = -EINVAL; 1813 if (sport->port.uartclk / 16 != ser->baud_base) 1814 ret = -EINVAL; 1815 if (sport->port.mapbase != (unsigned long)ser->iomem_base) 1816 ret = -EINVAL; 1817 if (sport->port.iobase != ser->port) 1818 ret = -EINVAL; 1819 if (ser->hub6 != 0) 1820 ret = -EINVAL; 1821 return ret; 1822 } 1823 1824 #if defined(CONFIG_CONSOLE_POLL) 1825 1826 static int imx_uart_poll_init(struct uart_port *port) 1827 { 1828 struct imx_port *sport = (struct imx_port *)port; 1829 unsigned long flags; 1830 u32 ucr1, ucr2; 1831 int retval; 1832 1833 retval = clk_prepare_enable(sport->clk_ipg); 1834 if (retval) 1835 return retval; 1836 retval = clk_prepare_enable(sport->clk_per); 1837 if (retval) 1838 clk_disable_unprepare(sport->clk_ipg); 1839 1840 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1841 1842 spin_lock_irqsave(&sport->port.lock, flags); 1843 1844 /* 1845 * Be careful about the order of enabling bits here. First enable the 1846 * receiver (UARTEN + RXEN) and only then the corresponding irqs. 1847 * This prevents that a character that already sits in the RX fifo is 1848 * triggering an irq but the try to fetch it from there results in an 1849 * exception because UARTEN or RXEN is still off. 1850 */ 1851 ucr1 = imx_uart_readl(sport, UCR1); 1852 ucr2 = imx_uart_readl(sport, UCR2); 1853 1854 if (imx_uart_is_imx1(sport)) 1855 ucr1 |= IMX1_UCR1_UARTCLKEN; 1856 1857 ucr1 |= UCR1_UARTEN; 1858 ucr1 &= ~(UCR1_TRDYEN | UCR1_RTSDEN | UCR1_RRDYEN); 1859 1860 ucr2 |= UCR2_RXEN | UCR2_TXEN; 1861 ucr2 &= ~UCR2_ATEN; 1862 1863 imx_uart_writel(sport, ucr1, UCR1); 1864 imx_uart_writel(sport, ucr2, UCR2); 1865 1866 /* now enable irqs */ 1867 imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1); 1868 imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2); 1869 1870 spin_unlock_irqrestore(&sport->port.lock, flags); 1871 1872 return 0; 1873 } 1874 1875 static int imx_uart_poll_get_char(struct uart_port *port) 1876 { 1877 struct imx_port *sport = (struct imx_port *)port; 1878 if (!(imx_uart_readl(sport, USR2) & USR2_RDR)) 1879 return NO_POLL_CHAR; 1880 1881 return imx_uart_readl(sport, URXD0) & URXD_RX_DATA; 1882 } 1883 1884 static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c) 1885 { 1886 struct imx_port *sport = (struct imx_port *)port; 1887 unsigned int status; 1888 1889 /* drain */ 1890 do { 1891 status = imx_uart_readl(sport, USR1); 1892 } while (~status & USR1_TRDY); 1893 1894 /* write */ 1895 imx_uart_writel(sport, c, URTX0); 1896 1897 /* flush */ 1898 do { 1899 status = imx_uart_readl(sport, USR2); 1900 } while (~status & USR2_TXDC); 1901 } 1902 #endif 1903 1904 /* called with port.lock taken and irqs off or from .probe without locking */ 1905 static int imx_uart_rs485_config(struct uart_port *port, 1906 struct serial_rs485 *rs485conf) 1907 { 1908 struct imx_port *sport = (struct imx_port *)port; 1909 u32 ucr2; 1910 1911 /* RTS is required to control the transmitter */ 1912 if (!sport->have_rtscts && !sport->have_rtsgpio) 1913 rs485conf->flags &= ~SER_RS485_ENABLED; 1914 1915 if (rs485conf->flags & SER_RS485_ENABLED) { 1916 /* Enable receiver if low-active RTS signal is requested */ 1917 if (sport->have_rtscts && !sport->have_rtsgpio && 1918 !(rs485conf->flags & SER_RS485_RTS_ON_SEND)) 1919 rs485conf->flags |= SER_RS485_RX_DURING_TX; 1920 1921 /* disable transmitter */ 1922 ucr2 = imx_uart_readl(sport, UCR2); 1923 if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND) 1924 imx_uart_rts_active(sport, &ucr2); 1925 else 1926 imx_uart_rts_inactive(sport, &ucr2); 1927 imx_uart_writel(sport, ucr2, UCR2); 1928 } 1929 1930 /* Make sure Rx is enabled in case Tx is active with Rx disabled */ 1931 if (!(rs485conf->flags & SER_RS485_ENABLED) || 1932 rs485conf->flags & SER_RS485_RX_DURING_TX) 1933 imx_uart_start_rx(port); 1934 1935 port->rs485 = *rs485conf; 1936 1937 return 0; 1938 } 1939 1940 static const struct uart_ops imx_uart_pops = { 1941 .tx_empty = imx_uart_tx_empty, 1942 .set_mctrl = imx_uart_set_mctrl, 1943 .get_mctrl = imx_uart_get_mctrl, 1944 .stop_tx = imx_uart_stop_tx, 1945 .start_tx = imx_uart_start_tx, 1946 .stop_rx = imx_uart_stop_rx, 1947 .enable_ms = imx_uart_enable_ms, 1948 .break_ctl = imx_uart_break_ctl, 1949 .startup = imx_uart_startup, 1950 .shutdown = imx_uart_shutdown, 1951 .flush_buffer = imx_uart_flush_buffer, 1952 .set_termios = imx_uart_set_termios, 1953 .type = imx_uart_type, 1954 .config_port = imx_uart_config_port, 1955 .verify_port = imx_uart_verify_port, 1956 #if defined(CONFIG_CONSOLE_POLL) 1957 .poll_init = imx_uart_poll_init, 1958 .poll_get_char = imx_uart_poll_get_char, 1959 .poll_put_char = imx_uart_poll_put_char, 1960 #endif 1961 }; 1962 1963 static struct imx_port *imx_uart_ports[UART_NR]; 1964 1965 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE) 1966 static void imx_uart_console_putchar(struct uart_port *port, int ch) 1967 { 1968 struct imx_port *sport = (struct imx_port *)port; 1969 1970 while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL) 1971 barrier(); 1972 1973 imx_uart_writel(sport, ch, URTX0); 1974 } 1975 1976 /* 1977 * Interrupts are disabled on entering 1978 */ 1979 static void 1980 imx_uart_console_write(struct console *co, const char *s, unsigned int count) 1981 { 1982 struct imx_port *sport = imx_uart_ports[co->index]; 1983 struct imx_port_ucrs old_ucr; 1984 unsigned int ucr1; 1985 unsigned long flags = 0; 1986 int locked = 1; 1987 1988 if (sport->port.sysrq) 1989 locked = 0; 1990 else if (oops_in_progress) 1991 locked = spin_trylock_irqsave(&sport->port.lock, flags); 1992 else 1993 spin_lock_irqsave(&sport->port.lock, flags); 1994 1995 /* 1996 * First, save UCR1/2/3 and then disable interrupts 1997 */ 1998 imx_uart_ucrs_save(sport, &old_ucr); 1999 ucr1 = old_ucr.ucr1; 2000 2001 if (imx_uart_is_imx1(sport)) 2002 ucr1 |= IMX1_UCR1_UARTCLKEN; 2003 ucr1 |= UCR1_UARTEN; 2004 ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN); 2005 2006 imx_uart_writel(sport, ucr1, UCR1); 2007 2008 imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2); 2009 2010 uart_console_write(&sport->port, s, count, imx_uart_console_putchar); 2011 2012 /* 2013 * Finally, wait for transmitter to become empty 2014 * and restore UCR1/2/3 2015 */ 2016 while (!(imx_uart_readl(sport, USR2) & USR2_TXDC)); 2017 2018 imx_uart_ucrs_restore(sport, &old_ucr); 2019 2020 if (locked) 2021 spin_unlock_irqrestore(&sport->port.lock, flags); 2022 } 2023 2024 /* 2025 * If the port was already initialised (eg, by a boot loader), 2026 * try to determine the current setup. 2027 */ 2028 static void __init 2029 imx_uart_console_get_options(struct imx_port *sport, int *baud, 2030 int *parity, int *bits) 2031 { 2032 2033 if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) { 2034 /* ok, the port was enabled */ 2035 unsigned int ucr2, ubir, ubmr, uartclk; 2036 unsigned int baud_raw; 2037 unsigned int ucfr_rfdiv; 2038 2039 ucr2 = imx_uart_readl(sport, UCR2); 2040 2041 *parity = 'n'; 2042 if (ucr2 & UCR2_PREN) { 2043 if (ucr2 & UCR2_PROE) 2044 *parity = 'o'; 2045 else 2046 *parity = 'e'; 2047 } 2048 2049 if (ucr2 & UCR2_WS) 2050 *bits = 8; 2051 else 2052 *bits = 7; 2053 2054 ubir = imx_uart_readl(sport, UBIR) & 0xffff; 2055 ubmr = imx_uart_readl(sport, UBMR) & 0xffff; 2056 2057 ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7; 2058 if (ucfr_rfdiv == 6) 2059 ucfr_rfdiv = 7; 2060 else 2061 ucfr_rfdiv = 6 - ucfr_rfdiv; 2062 2063 uartclk = clk_get_rate(sport->clk_per); 2064 uartclk /= ucfr_rfdiv; 2065 2066 { /* 2067 * The next code provides exact computation of 2068 * baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1)) 2069 * without need of float support or long long division, 2070 * which would be required to prevent 32bit arithmetic overflow 2071 */ 2072 unsigned int mul = ubir + 1; 2073 unsigned int div = 16 * (ubmr + 1); 2074 unsigned int rem = uartclk % div; 2075 2076 baud_raw = (uartclk / div) * mul; 2077 baud_raw += (rem * mul + div / 2) / div; 2078 *baud = (baud_raw + 50) / 100 * 100; 2079 } 2080 2081 if (*baud != baud_raw) 2082 dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n", 2083 baud_raw, *baud); 2084 } 2085 } 2086 2087 static int __init 2088 imx_uart_console_setup(struct console *co, char *options) 2089 { 2090 struct imx_port *sport; 2091 int baud = 9600; 2092 int bits = 8; 2093 int parity = 'n'; 2094 int flow = 'n'; 2095 int retval; 2096 2097 /* 2098 * Check whether an invalid uart number has been specified, and 2099 * if so, search for the first available port that does have 2100 * console support. 2101 */ 2102 if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports)) 2103 co->index = 0; 2104 sport = imx_uart_ports[co->index]; 2105 if (sport == NULL) 2106 return -ENODEV; 2107 2108 /* For setting the registers, we only need to enable the ipg clock. */ 2109 retval = clk_prepare_enable(sport->clk_ipg); 2110 if (retval) 2111 goto error_console; 2112 2113 if (options) 2114 uart_parse_options(options, &baud, &parity, &bits, &flow); 2115 else 2116 imx_uart_console_get_options(sport, &baud, &parity, &bits); 2117 2118 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 2119 2120 retval = uart_set_options(&sport->port, co, baud, parity, bits, flow); 2121 2122 if (retval) { 2123 clk_disable_unprepare(sport->clk_ipg); 2124 goto error_console; 2125 } 2126 2127 retval = clk_prepare_enable(sport->clk_per); 2128 if (retval) 2129 clk_disable_unprepare(sport->clk_ipg); 2130 2131 error_console: 2132 return retval; 2133 } 2134 2135 static struct uart_driver imx_uart_uart_driver; 2136 static struct console imx_uart_console = { 2137 .name = DEV_NAME, 2138 .write = imx_uart_console_write, 2139 .device = uart_console_device, 2140 .setup = imx_uart_console_setup, 2141 .flags = CON_PRINTBUFFER, 2142 .index = -1, 2143 .data = &imx_uart_uart_driver, 2144 }; 2145 2146 #define IMX_CONSOLE &imx_uart_console 2147 2148 #else 2149 #define IMX_CONSOLE NULL 2150 #endif 2151 2152 static struct uart_driver imx_uart_uart_driver = { 2153 .owner = THIS_MODULE, 2154 .driver_name = DRIVER_NAME, 2155 .dev_name = DEV_NAME, 2156 .major = SERIAL_IMX_MAJOR, 2157 .minor = MINOR_START, 2158 .nr = ARRAY_SIZE(imx_uart_ports), 2159 .cons = IMX_CONSOLE, 2160 }; 2161 2162 static enum hrtimer_restart imx_trigger_start_tx(struct hrtimer *t) 2163 { 2164 struct imx_port *sport = container_of(t, struct imx_port, trigger_start_tx); 2165 unsigned long flags; 2166 2167 spin_lock_irqsave(&sport->port.lock, flags); 2168 if (sport->tx_state == WAIT_AFTER_RTS) 2169 imx_uart_start_tx(&sport->port); 2170 spin_unlock_irqrestore(&sport->port.lock, flags); 2171 2172 return HRTIMER_NORESTART; 2173 } 2174 2175 static enum hrtimer_restart imx_trigger_stop_tx(struct hrtimer *t) 2176 { 2177 struct imx_port *sport = container_of(t, struct imx_port, trigger_stop_tx); 2178 unsigned long flags; 2179 2180 spin_lock_irqsave(&sport->port.lock, flags); 2181 if (sport->tx_state == WAIT_AFTER_SEND) 2182 imx_uart_stop_tx(&sport->port); 2183 spin_unlock_irqrestore(&sport->port.lock, flags); 2184 2185 return HRTIMER_NORESTART; 2186 } 2187 2188 static int imx_uart_probe(struct platform_device *pdev) 2189 { 2190 struct device_node *np = pdev->dev.of_node; 2191 struct imx_port *sport; 2192 void __iomem *base; 2193 int ret = 0; 2194 u32 ucr1; 2195 struct resource *res; 2196 int txirq, rxirq, rtsirq; 2197 2198 sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL); 2199 if (!sport) 2200 return -ENOMEM; 2201 2202 sport->devdata = of_device_get_match_data(&pdev->dev); 2203 2204 ret = of_alias_get_id(np, "serial"); 2205 if (ret < 0) { 2206 dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret); 2207 return ret; 2208 } 2209 sport->port.line = ret; 2210 2211 if (of_get_property(np, "uart-has-rtscts", NULL) || 2212 of_get_property(np, "fsl,uart-has-rtscts", NULL) /* deprecated */) 2213 sport->have_rtscts = 1; 2214 2215 if (of_get_property(np, "fsl,dte-mode", NULL)) 2216 sport->dte_mode = 1; 2217 2218 if (of_get_property(np, "rts-gpios", NULL)) 2219 sport->have_rtsgpio = 1; 2220 2221 if (of_get_property(np, "fsl,inverted-tx", NULL)) 2222 sport->inverted_tx = 1; 2223 2224 if (of_get_property(np, "fsl,inverted-rx", NULL)) 2225 sport->inverted_rx = 1; 2226 2227 if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) { 2228 dev_err(&pdev->dev, "serial%d out of range\n", 2229 sport->port.line); 2230 return -EINVAL; 2231 } 2232 2233 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2234 base = devm_ioremap_resource(&pdev->dev, res); 2235 if (IS_ERR(base)) 2236 return PTR_ERR(base); 2237 2238 rxirq = platform_get_irq(pdev, 0); 2239 if (rxirq < 0) 2240 return rxirq; 2241 txirq = platform_get_irq_optional(pdev, 1); 2242 rtsirq = platform_get_irq_optional(pdev, 2); 2243 2244 sport->port.dev = &pdev->dev; 2245 sport->port.mapbase = res->start; 2246 sport->port.membase = base; 2247 sport->port.type = PORT_IMX; 2248 sport->port.iotype = UPIO_MEM; 2249 sport->port.irq = rxirq; 2250 sport->port.fifosize = 32; 2251 sport->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE); 2252 sport->port.ops = &imx_uart_pops; 2253 sport->port.rs485_config = imx_uart_rs485_config; 2254 sport->port.flags = UPF_BOOT_AUTOCONF; 2255 timer_setup(&sport->timer, imx_uart_timeout, 0); 2256 2257 sport->gpios = mctrl_gpio_init(&sport->port, 0); 2258 if (IS_ERR(sport->gpios)) 2259 return PTR_ERR(sport->gpios); 2260 2261 sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 2262 if (IS_ERR(sport->clk_ipg)) { 2263 ret = PTR_ERR(sport->clk_ipg); 2264 dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret); 2265 return ret; 2266 } 2267 2268 sport->clk_per = devm_clk_get(&pdev->dev, "per"); 2269 if (IS_ERR(sport->clk_per)) { 2270 ret = PTR_ERR(sport->clk_per); 2271 dev_err(&pdev->dev, "failed to get per clk: %d\n", ret); 2272 return ret; 2273 } 2274 2275 sport->port.uartclk = clk_get_rate(sport->clk_per); 2276 2277 /* For register access, we only need to enable the ipg clock. */ 2278 ret = clk_prepare_enable(sport->clk_ipg); 2279 if (ret) { 2280 dev_err(&pdev->dev, "failed to enable per clk: %d\n", ret); 2281 return ret; 2282 } 2283 2284 /* initialize shadow register values */ 2285 sport->ucr1 = readl(sport->port.membase + UCR1); 2286 sport->ucr2 = readl(sport->port.membase + UCR2); 2287 sport->ucr3 = readl(sport->port.membase + UCR3); 2288 sport->ucr4 = readl(sport->port.membase + UCR4); 2289 sport->ufcr = readl(sport->port.membase + UFCR); 2290 2291 ret = uart_get_rs485_mode(&sport->port); 2292 if (ret) { 2293 clk_disable_unprepare(sport->clk_ipg); 2294 return ret; 2295 } 2296 2297 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2298 (!sport->have_rtscts && !sport->have_rtsgpio)) 2299 dev_err(&pdev->dev, "no RTS control, disabling rs485\n"); 2300 2301 /* 2302 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B) 2303 * signal cannot be set low during transmission in case the 2304 * receiver is off (limitation of the i.MX UART IP). 2305 */ 2306 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2307 sport->have_rtscts && !sport->have_rtsgpio && 2308 (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) && 2309 !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX))) 2310 dev_err(&pdev->dev, 2311 "low-active RTS not possible when receiver is off, enabling receiver\n"); 2312 2313 imx_uart_rs485_config(&sport->port, &sport->port.rs485); 2314 2315 /* Disable interrupts before requesting them */ 2316 ucr1 = imx_uart_readl(sport, UCR1); 2317 ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN | UCR1_RTSDEN); 2318 imx_uart_writel(sport, ucr1, UCR1); 2319 2320 if (!imx_uart_is_imx1(sport) && sport->dte_mode) { 2321 /* 2322 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI 2323 * and influences if UCR3_RI and UCR3_DCD changes the level of RI 2324 * and DCD (when they are outputs) or enables the respective 2325 * irqs. So set this bit early, i.e. before requesting irqs. 2326 */ 2327 u32 ufcr = imx_uart_readl(sport, UFCR); 2328 if (!(ufcr & UFCR_DCEDTE)) 2329 imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR); 2330 2331 /* 2332 * Disable UCR3_RI and UCR3_DCD irqs. They are also not 2333 * enabled later because they cannot be cleared 2334 * (confirmed on i.MX25) which makes them unusable. 2335 */ 2336 imx_uart_writel(sport, 2337 IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR, 2338 UCR3); 2339 2340 } else { 2341 u32 ucr3 = UCR3_DSR; 2342 u32 ufcr = imx_uart_readl(sport, UFCR); 2343 if (ufcr & UFCR_DCEDTE) 2344 imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR); 2345 2346 if (!imx_uart_is_imx1(sport)) 2347 ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP; 2348 imx_uart_writel(sport, ucr3, UCR3); 2349 } 2350 2351 clk_disable_unprepare(sport->clk_ipg); 2352 2353 hrtimer_init(&sport->trigger_start_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2354 hrtimer_init(&sport->trigger_stop_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2355 sport->trigger_start_tx.function = imx_trigger_start_tx; 2356 sport->trigger_stop_tx.function = imx_trigger_stop_tx; 2357 2358 /* 2359 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later 2360 * chips only have one interrupt. 2361 */ 2362 if (txirq > 0) { 2363 ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0, 2364 dev_name(&pdev->dev), sport); 2365 if (ret) { 2366 dev_err(&pdev->dev, "failed to request rx irq: %d\n", 2367 ret); 2368 return ret; 2369 } 2370 2371 ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0, 2372 dev_name(&pdev->dev), sport); 2373 if (ret) { 2374 dev_err(&pdev->dev, "failed to request tx irq: %d\n", 2375 ret); 2376 return ret; 2377 } 2378 2379 ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0, 2380 dev_name(&pdev->dev), sport); 2381 if (ret) { 2382 dev_err(&pdev->dev, "failed to request rts irq: %d\n", 2383 ret); 2384 return ret; 2385 } 2386 } else { 2387 ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0, 2388 dev_name(&pdev->dev), sport); 2389 if (ret) { 2390 dev_err(&pdev->dev, "failed to request irq: %d\n", ret); 2391 return ret; 2392 } 2393 } 2394 2395 imx_uart_ports[sport->port.line] = sport; 2396 2397 platform_set_drvdata(pdev, sport); 2398 2399 return uart_add_one_port(&imx_uart_uart_driver, &sport->port); 2400 } 2401 2402 static int imx_uart_remove(struct platform_device *pdev) 2403 { 2404 struct imx_port *sport = platform_get_drvdata(pdev); 2405 2406 return uart_remove_one_port(&imx_uart_uart_driver, &sport->port); 2407 } 2408 2409 static void imx_uart_restore_context(struct imx_port *sport) 2410 { 2411 unsigned long flags; 2412 2413 spin_lock_irqsave(&sport->port.lock, flags); 2414 if (!sport->context_saved) { 2415 spin_unlock_irqrestore(&sport->port.lock, flags); 2416 return; 2417 } 2418 2419 imx_uart_writel(sport, sport->saved_reg[4], UFCR); 2420 imx_uart_writel(sport, sport->saved_reg[5], UESC); 2421 imx_uart_writel(sport, sport->saved_reg[6], UTIM); 2422 imx_uart_writel(sport, sport->saved_reg[7], UBIR); 2423 imx_uart_writel(sport, sport->saved_reg[8], UBMR); 2424 imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS); 2425 imx_uart_writel(sport, sport->saved_reg[0], UCR1); 2426 imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2); 2427 imx_uart_writel(sport, sport->saved_reg[2], UCR3); 2428 imx_uart_writel(sport, sport->saved_reg[3], UCR4); 2429 sport->context_saved = false; 2430 spin_unlock_irqrestore(&sport->port.lock, flags); 2431 } 2432 2433 static void imx_uart_save_context(struct imx_port *sport) 2434 { 2435 unsigned long flags; 2436 2437 /* Save necessary regs */ 2438 spin_lock_irqsave(&sport->port.lock, flags); 2439 sport->saved_reg[0] = imx_uart_readl(sport, UCR1); 2440 sport->saved_reg[1] = imx_uart_readl(sport, UCR2); 2441 sport->saved_reg[2] = imx_uart_readl(sport, UCR3); 2442 sport->saved_reg[3] = imx_uart_readl(sport, UCR4); 2443 sport->saved_reg[4] = imx_uart_readl(sport, UFCR); 2444 sport->saved_reg[5] = imx_uart_readl(sport, UESC); 2445 sport->saved_reg[6] = imx_uart_readl(sport, UTIM); 2446 sport->saved_reg[7] = imx_uart_readl(sport, UBIR); 2447 sport->saved_reg[8] = imx_uart_readl(sport, UBMR); 2448 sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS); 2449 sport->context_saved = true; 2450 spin_unlock_irqrestore(&sport->port.lock, flags); 2451 } 2452 2453 static void imx_uart_enable_wakeup(struct imx_port *sport, bool on) 2454 { 2455 u32 ucr3; 2456 2457 ucr3 = imx_uart_readl(sport, UCR3); 2458 if (on) { 2459 imx_uart_writel(sport, USR1_AWAKE, USR1); 2460 ucr3 |= UCR3_AWAKEN; 2461 } else { 2462 ucr3 &= ~UCR3_AWAKEN; 2463 } 2464 imx_uart_writel(sport, ucr3, UCR3); 2465 2466 if (sport->have_rtscts) { 2467 u32 ucr1 = imx_uart_readl(sport, UCR1); 2468 if (on) 2469 ucr1 |= UCR1_RTSDEN; 2470 else 2471 ucr1 &= ~UCR1_RTSDEN; 2472 imx_uart_writel(sport, ucr1, UCR1); 2473 } 2474 } 2475 2476 static int imx_uart_suspend_noirq(struct device *dev) 2477 { 2478 struct imx_port *sport = dev_get_drvdata(dev); 2479 2480 imx_uart_save_context(sport); 2481 2482 clk_disable(sport->clk_ipg); 2483 2484 pinctrl_pm_select_sleep_state(dev); 2485 2486 return 0; 2487 } 2488 2489 static int imx_uart_resume_noirq(struct device *dev) 2490 { 2491 struct imx_port *sport = dev_get_drvdata(dev); 2492 int ret; 2493 2494 pinctrl_pm_select_default_state(dev); 2495 2496 ret = clk_enable(sport->clk_ipg); 2497 if (ret) 2498 return ret; 2499 2500 imx_uart_restore_context(sport); 2501 2502 return 0; 2503 } 2504 2505 static int imx_uart_suspend(struct device *dev) 2506 { 2507 struct imx_port *sport = dev_get_drvdata(dev); 2508 int ret; 2509 2510 uart_suspend_port(&imx_uart_uart_driver, &sport->port); 2511 disable_irq(sport->port.irq); 2512 2513 ret = clk_prepare_enable(sport->clk_ipg); 2514 if (ret) 2515 return ret; 2516 2517 /* enable wakeup from i.MX UART */ 2518 imx_uart_enable_wakeup(sport, true); 2519 2520 return 0; 2521 } 2522 2523 static int imx_uart_resume(struct device *dev) 2524 { 2525 struct imx_port *sport = dev_get_drvdata(dev); 2526 2527 /* disable wakeup from i.MX UART */ 2528 imx_uart_enable_wakeup(sport, false); 2529 2530 uart_resume_port(&imx_uart_uart_driver, &sport->port); 2531 enable_irq(sport->port.irq); 2532 2533 clk_disable_unprepare(sport->clk_ipg); 2534 2535 return 0; 2536 } 2537 2538 static int imx_uart_freeze(struct device *dev) 2539 { 2540 struct imx_port *sport = dev_get_drvdata(dev); 2541 2542 uart_suspend_port(&imx_uart_uart_driver, &sport->port); 2543 2544 return clk_prepare_enable(sport->clk_ipg); 2545 } 2546 2547 static int imx_uart_thaw(struct device *dev) 2548 { 2549 struct imx_port *sport = dev_get_drvdata(dev); 2550 2551 uart_resume_port(&imx_uart_uart_driver, &sport->port); 2552 2553 clk_disable_unprepare(sport->clk_ipg); 2554 2555 return 0; 2556 } 2557 2558 static const struct dev_pm_ops imx_uart_pm_ops = { 2559 .suspend_noirq = imx_uart_suspend_noirq, 2560 .resume_noirq = imx_uart_resume_noirq, 2561 .freeze_noirq = imx_uart_suspend_noirq, 2562 .restore_noirq = imx_uart_resume_noirq, 2563 .suspend = imx_uart_suspend, 2564 .resume = imx_uart_resume, 2565 .freeze = imx_uart_freeze, 2566 .thaw = imx_uart_thaw, 2567 .restore = imx_uart_thaw, 2568 }; 2569 2570 static struct platform_driver imx_uart_platform_driver = { 2571 .probe = imx_uart_probe, 2572 .remove = imx_uart_remove, 2573 2574 .driver = { 2575 .name = "imx-uart", 2576 .of_match_table = imx_uart_dt_ids, 2577 .pm = &imx_uart_pm_ops, 2578 }, 2579 }; 2580 2581 static int __init imx_uart_init(void) 2582 { 2583 int ret = uart_register_driver(&imx_uart_uart_driver); 2584 2585 if (ret) 2586 return ret; 2587 2588 ret = platform_driver_register(&imx_uart_platform_driver); 2589 if (ret != 0) 2590 uart_unregister_driver(&imx_uart_uart_driver); 2591 2592 return ret; 2593 } 2594 2595 static void __exit imx_uart_exit(void) 2596 { 2597 platform_driver_unregister(&imx_uart_platform_driver); 2598 uart_unregister_driver(&imx_uart_uart_driver); 2599 } 2600 2601 module_init(imx_uart_init); 2602 module_exit(imx_uart_exit); 2603 2604 MODULE_AUTHOR("Sascha Hauer"); 2605 MODULE_DESCRIPTION("IMX generic serial port driver"); 2606 MODULE_LICENSE("GPL"); 2607 MODULE_ALIAS("platform:imx-uart"); 2608