xref: /openbmc/linux/drivers/tty/serial/imx.c (revision f220d3eb)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Driver for Motorola/Freescale IMX serial ports
4  *
5  * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6  *
7  * Author: Sascha Hauer <sascha@saschahauer.de>
8  * Copyright (C) 2004 Pengutronix
9  */
10 
11 #if defined(CONFIG_SERIAL_IMX_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
12 #define SUPPORT_SYSRQ
13 #endif
14 
15 #include <linux/module.h>
16 #include <linux/ioport.h>
17 #include <linux/init.h>
18 #include <linux/console.h>
19 #include <linux/sysrq.h>
20 #include <linux/platform_device.h>
21 #include <linux/tty.h>
22 #include <linux/tty_flip.h>
23 #include <linux/serial_core.h>
24 #include <linux/serial.h>
25 #include <linux/clk.h>
26 #include <linux/delay.h>
27 #include <linux/rational.h>
28 #include <linux/slab.h>
29 #include <linux/of.h>
30 #include <linux/of_device.h>
31 #include <linux/io.h>
32 #include <linux/dma-mapping.h>
33 
34 #include <asm/irq.h>
35 #include <linux/platform_data/serial-imx.h>
36 #include <linux/platform_data/dma-imx.h>
37 
38 #include "serial_mctrl_gpio.h"
39 
40 /* Register definitions */
41 #define URXD0 0x0  /* Receiver Register */
42 #define URTX0 0x40 /* Transmitter Register */
43 #define UCR1  0x80 /* Control Register 1 */
44 #define UCR2  0x84 /* Control Register 2 */
45 #define UCR3  0x88 /* Control Register 3 */
46 #define UCR4  0x8c /* Control Register 4 */
47 #define UFCR  0x90 /* FIFO Control Register */
48 #define USR1  0x94 /* Status Register 1 */
49 #define USR2  0x98 /* Status Register 2 */
50 #define UESC  0x9c /* Escape Character Register */
51 #define UTIM  0xa0 /* Escape Timer Register */
52 #define UBIR  0xa4 /* BRM Incremental Register */
53 #define UBMR  0xa8 /* BRM Modulator Register */
54 #define UBRC  0xac /* Baud Rate Count Register */
55 #define IMX21_ONEMS 0xb0 /* One Millisecond register */
56 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */
57 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/
58 
59 /* UART Control Register Bit Fields.*/
60 #define URXD_DUMMY_READ (1<<16)
61 #define URXD_CHARRDY	(1<<15)
62 #define URXD_ERR	(1<<14)
63 #define URXD_OVRRUN	(1<<13)
64 #define URXD_FRMERR	(1<<12)
65 #define URXD_BRK	(1<<11)
66 #define URXD_PRERR	(1<<10)
67 #define URXD_RX_DATA	(0xFF<<0)
68 #define UCR1_ADEN	(1<<15) /* Auto detect interrupt */
69 #define UCR1_ADBR	(1<<14) /* Auto detect baud rate */
70 #define UCR1_TRDYEN	(1<<13) /* Transmitter ready interrupt enable */
71 #define UCR1_IDEN	(1<<12) /* Idle condition interrupt */
72 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */
73 #define UCR1_RRDYEN	(1<<9)	/* Recv ready interrupt enable */
74 #define UCR1_RXDMAEN	(1<<8)	/* Recv ready DMA enable */
75 #define UCR1_IREN	(1<<7)	/* Infrared interface enable */
76 #define UCR1_TXMPTYEN	(1<<6)	/* Transimitter empty interrupt enable */
77 #define UCR1_RTSDEN	(1<<5)	/* RTS delta interrupt enable */
78 #define UCR1_SNDBRK	(1<<4)	/* Send break */
79 #define UCR1_TXDMAEN	(1<<3)	/* Transmitter ready DMA enable */
80 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */
81 #define UCR1_ATDMAEN    (1<<2)  /* Aging DMA Timer Enable */
82 #define UCR1_DOZE	(1<<1)	/* Doze */
83 #define UCR1_UARTEN	(1<<0)	/* UART enabled */
84 #define UCR2_ESCI	(1<<15)	/* Escape seq interrupt enable */
85 #define UCR2_IRTS	(1<<14)	/* Ignore RTS pin */
86 #define UCR2_CTSC	(1<<13)	/* CTS pin control */
87 #define UCR2_CTS	(1<<12)	/* Clear to send */
88 #define UCR2_ESCEN	(1<<11)	/* Escape enable */
89 #define UCR2_PREN	(1<<8)	/* Parity enable */
90 #define UCR2_PROE	(1<<7)	/* Parity odd/even */
91 #define UCR2_STPB	(1<<6)	/* Stop */
92 #define UCR2_WS		(1<<5)	/* Word size */
93 #define UCR2_RTSEN	(1<<4)	/* Request to send interrupt enable */
94 #define UCR2_ATEN	(1<<3)	/* Aging Timer Enable */
95 #define UCR2_TXEN	(1<<2)	/* Transmitter enabled */
96 #define UCR2_RXEN	(1<<1)	/* Receiver enabled */
97 #define UCR2_SRST	(1<<0)	/* SW reset */
98 #define UCR3_DTREN	(1<<13) /* DTR interrupt enable */
99 #define UCR3_PARERREN	(1<<12) /* Parity enable */
100 #define UCR3_FRAERREN	(1<<11) /* Frame error interrupt enable */
101 #define UCR3_DSR	(1<<10) /* Data set ready */
102 #define UCR3_DCD	(1<<9)	/* Data carrier detect */
103 #define UCR3_RI		(1<<8)	/* Ring indicator */
104 #define UCR3_ADNIMP	(1<<7)	/* Autobaud Detection Not Improved */
105 #define UCR3_RXDSEN	(1<<6)	/* Receive status interrupt enable */
106 #define UCR3_AIRINTEN	(1<<5)	/* Async IR wake interrupt enable */
107 #define UCR3_AWAKEN	(1<<4)	/* Async wake interrupt enable */
108 #define UCR3_DTRDEN	(1<<3)	/* Data Terminal Ready Delta Enable. */
109 #define IMX21_UCR3_RXDMUXSEL	(1<<2)	/* RXD Muxed Input Select */
110 #define UCR3_INVT	(1<<1)	/* Inverted Infrared transmission */
111 #define UCR3_BPEN	(1<<0)	/* Preset registers enable */
112 #define UCR4_CTSTL_SHF	10	/* CTS trigger level shift */
113 #define UCR4_CTSTL_MASK	0x3F	/* CTS trigger is 6 bits wide */
114 #define UCR4_INVR	(1<<9)	/* Inverted infrared reception */
115 #define UCR4_ENIRI	(1<<8)	/* Serial infrared interrupt enable */
116 #define UCR4_WKEN	(1<<7)	/* Wake interrupt enable */
117 #define UCR4_REF16	(1<<6)	/* Ref freq 16 MHz */
118 #define UCR4_IDDMAEN    (1<<6)  /* DMA IDLE Condition Detected */
119 #define UCR4_IRSC	(1<<5)	/* IR special case */
120 #define UCR4_TCEN	(1<<3)	/* Transmit complete interrupt enable */
121 #define UCR4_BKEN	(1<<2)	/* Break condition interrupt enable */
122 #define UCR4_OREN	(1<<1)	/* Receiver overrun interrupt enable */
123 #define UCR4_DREN	(1<<0)	/* Recv data ready interrupt enable */
124 #define UFCR_RXTL_SHF	0	/* Receiver trigger level shift */
125 #define UFCR_DCEDTE	(1<<6)	/* DCE/DTE mode select */
126 #define UFCR_RFDIV	(7<<7)	/* Reference freq divider mask */
127 #define UFCR_RFDIV_REG(x)	(((x) < 7 ? 6 - (x) : 6) << 7)
128 #define UFCR_TXTL_SHF	10	/* Transmitter trigger level shift */
129 #define USR1_PARITYERR	(1<<15) /* Parity error interrupt flag */
130 #define USR1_RTSS	(1<<14) /* RTS pin status */
131 #define USR1_TRDY	(1<<13) /* Transmitter ready interrupt/dma flag */
132 #define USR1_RTSD	(1<<12) /* RTS delta */
133 #define USR1_ESCF	(1<<11) /* Escape seq interrupt flag */
134 #define USR1_FRAMERR	(1<<10) /* Frame error interrupt flag */
135 #define USR1_RRDY	(1<<9)	 /* Receiver ready interrupt/dma flag */
136 #define USR1_AGTIM	(1<<8)	 /* Ageing timer interrupt flag */
137 #define USR1_DTRD	(1<<7)	 /* DTR Delta */
138 #define USR1_RXDS	 (1<<6)	 /* Receiver idle interrupt flag */
139 #define USR1_AIRINT	 (1<<5)	 /* Async IR wake interrupt flag */
140 #define USR1_AWAKE	 (1<<4)	 /* Aysnc wake interrupt flag */
141 #define USR2_ADET	 (1<<15) /* Auto baud rate detect complete */
142 #define USR2_TXFE	 (1<<14) /* Transmit buffer FIFO empty */
143 #define USR2_DTRF	 (1<<13) /* DTR edge interrupt flag */
144 #define USR2_IDLE	 (1<<12) /* Idle condition */
145 #define USR2_RIDELT	 (1<<10) /* Ring Interrupt Delta */
146 #define USR2_RIIN	 (1<<9)	 /* Ring Indicator Input */
147 #define USR2_IRINT	 (1<<8)	 /* Serial infrared interrupt flag */
148 #define USR2_WAKE	 (1<<7)	 /* Wake */
149 #define USR2_DCDIN	 (1<<5)	 /* Data Carrier Detect Input */
150 #define USR2_RTSF	 (1<<4)	 /* RTS edge interrupt flag */
151 #define USR2_TXDC	 (1<<3)	 /* Transmitter complete */
152 #define USR2_BRCD	 (1<<2)	 /* Break condition */
153 #define USR2_ORE	(1<<1)	 /* Overrun error */
154 #define USR2_RDR	(1<<0)	 /* Recv data ready */
155 #define UTS_FRCPERR	(1<<13) /* Force parity error */
156 #define UTS_LOOP	(1<<12)	 /* Loop tx and rx */
157 #define UTS_TXEMPTY	 (1<<6)	 /* TxFIFO empty */
158 #define UTS_RXEMPTY	 (1<<5)	 /* RxFIFO empty */
159 #define UTS_TXFULL	 (1<<4)	 /* TxFIFO full */
160 #define UTS_RXFULL	 (1<<3)	 /* RxFIFO full */
161 #define UTS_SOFTRST	 (1<<0)	 /* Software reset */
162 
163 /* We've been assigned a range on the "Low-density serial ports" major */
164 #define SERIAL_IMX_MAJOR	207
165 #define MINOR_START		16
166 #define DEV_NAME		"ttymxc"
167 
168 /*
169  * This determines how often we check the modem status signals
170  * for any change.  They generally aren't connected to an IRQ
171  * so we have to poll them.  We also check immediately before
172  * filling the TX fifo incase CTS has been dropped.
173  */
174 #define MCTRL_TIMEOUT	(250*HZ/1000)
175 
176 #define DRIVER_NAME "IMX-uart"
177 
178 #define UART_NR 8
179 
180 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */
181 enum imx_uart_type {
182 	IMX1_UART,
183 	IMX21_UART,
184 	IMX53_UART,
185 	IMX6Q_UART,
186 };
187 
188 /* device type dependent stuff */
189 struct imx_uart_data {
190 	unsigned uts_reg;
191 	enum imx_uart_type devtype;
192 };
193 
194 struct imx_port {
195 	struct uart_port	port;
196 	struct timer_list	timer;
197 	unsigned int		old_status;
198 	unsigned int		have_rtscts:1;
199 	unsigned int		have_rtsgpio:1;
200 	unsigned int		dte_mode:1;
201 	struct clk		*clk_ipg;
202 	struct clk		*clk_per;
203 	const struct imx_uart_data *devdata;
204 
205 	struct mctrl_gpios *gpios;
206 
207 	/* shadow registers */
208 	unsigned int ucr1;
209 	unsigned int ucr2;
210 	unsigned int ucr3;
211 	unsigned int ucr4;
212 	unsigned int ufcr;
213 
214 	/* DMA fields */
215 	unsigned int		dma_is_enabled:1;
216 	unsigned int		dma_is_rxing:1;
217 	unsigned int		dma_is_txing:1;
218 	struct dma_chan		*dma_chan_rx, *dma_chan_tx;
219 	struct scatterlist	rx_sgl, tx_sgl[2];
220 	void			*rx_buf;
221 	struct circ_buf		rx_ring;
222 	unsigned int		rx_periods;
223 	dma_cookie_t		rx_cookie;
224 	unsigned int		tx_bytes;
225 	unsigned int		dma_tx_nents;
226 	unsigned int            saved_reg[10];
227 	bool			context_saved;
228 };
229 
230 struct imx_port_ucrs {
231 	unsigned int	ucr1;
232 	unsigned int	ucr2;
233 	unsigned int	ucr3;
234 };
235 
236 static struct imx_uart_data imx_uart_devdata[] = {
237 	[IMX1_UART] = {
238 		.uts_reg = IMX1_UTS,
239 		.devtype = IMX1_UART,
240 	},
241 	[IMX21_UART] = {
242 		.uts_reg = IMX21_UTS,
243 		.devtype = IMX21_UART,
244 	},
245 	[IMX53_UART] = {
246 		.uts_reg = IMX21_UTS,
247 		.devtype = IMX53_UART,
248 	},
249 	[IMX6Q_UART] = {
250 		.uts_reg = IMX21_UTS,
251 		.devtype = IMX6Q_UART,
252 	},
253 };
254 
255 static const struct platform_device_id imx_uart_devtype[] = {
256 	{
257 		.name = "imx1-uart",
258 		.driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX1_UART],
259 	}, {
260 		.name = "imx21-uart",
261 		.driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX21_UART],
262 	}, {
263 		.name = "imx53-uart",
264 		.driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX53_UART],
265 	}, {
266 		.name = "imx6q-uart",
267 		.driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX6Q_UART],
268 	}, {
269 		/* sentinel */
270 	}
271 };
272 MODULE_DEVICE_TABLE(platform, imx_uart_devtype);
273 
274 static const struct of_device_id imx_uart_dt_ids[] = {
275 	{ .compatible = "fsl,imx6q-uart", .data = &imx_uart_devdata[IMX6Q_UART], },
276 	{ .compatible = "fsl,imx53-uart", .data = &imx_uart_devdata[IMX53_UART], },
277 	{ .compatible = "fsl,imx1-uart", .data = &imx_uart_devdata[IMX1_UART], },
278 	{ .compatible = "fsl,imx21-uart", .data = &imx_uart_devdata[IMX21_UART], },
279 	{ /* sentinel */ }
280 };
281 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids);
282 
283 static void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset)
284 {
285 	switch (offset) {
286 	case UCR1:
287 		sport->ucr1 = val;
288 		break;
289 	case UCR2:
290 		sport->ucr2 = val;
291 		break;
292 	case UCR3:
293 		sport->ucr3 = val;
294 		break;
295 	case UCR4:
296 		sport->ucr4 = val;
297 		break;
298 	case UFCR:
299 		sport->ufcr = val;
300 		break;
301 	default:
302 		break;
303 	}
304 	writel(val, sport->port.membase + offset);
305 }
306 
307 static u32 imx_uart_readl(struct imx_port *sport, u32 offset)
308 {
309 	switch (offset) {
310 	case UCR1:
311 		return sport->ucr1;
312 		break;
313 	case UCR2:
314 		/*
315 		 * UCR2_SRST is the only bit in the cached registers that might
316 		 * differ from the value that was last written. As it only
317 		 * automatically becomes one after being cleared, reread
318 		 * conditionally.
319 		 */
320 		if (!(sport->ucr2 & UCR2_SRST))
321 			sport->ucr2 = readl(sport->port.membase + offset);
322 		return sport->ucr2;
323 		break;
324 	case UCR3:
325 		return sport->ucr3;
326 		break;
327 	case UCR4:
328 		return sport->ucr4;
329 		break;
330 	case UFCR:
331 		return sport->ufcr;
332 		break;
333 	default:
334 		return readl(sport->port.membase + offset);
335 	}
336 }
337 
338 static inline unsigned imx_uart_uts_reg(struct imx_port *sport)
339 {
340 	return sport->devdata->uts_reg;
341 }
342 
343 static inline int imx_uart_is_imx1(struct imx_port *sport)
344 {
345 	return sport->devdata->devtype == IMX1_UART;
346 }
347 
348 static inline int imx_uart_is_imx21(struct imx_port *sport)
349 {
350 	return sport->devdata->devtype == IMX21_UART;
351 }
352 
353 static inline int imx_uart_is_imx53(struct imx_port *sport)
354 {
355 	return sport->devdata->devtype == IMX53_UART;
356 }
357 
358 static inline int imx_uart_is_imx6q(struct imx_port *sport)
359 {
360 	return sport->devdata->devtype == IMX6Q_UART;
361 }
362 /*
363  * Save and restore functions for UCR1, UCR2 and UCR3 registers
364  */
365 #if defined(CONFIG_SERIAL_IMX_CONSOLE)
366 static void imx_uart_ucrs_save(struct imx_port *sport,
367 			       struct imx_port_ucrs *ucr)
368 {
369 	/* save control registers */
370 	ucr->ucr1 = imx_uart_readl(sport, UCR1);
371 	ucr->ucr2 = imx_uart_readl(sport, UCR2);
372 	ucr->ucr3 = imx_uart_readl(sport, UCR3);
373 }
374 
375 static void imx_uart_ucrs_restore(struct imx_port *sport,
376 				  struct imx_port_ucrs *ucr)
377 {
378 	/* restore control registers */
379 	imx_uart_writel(sport, ucr->ucr1, UCR1);
380 	imx_uart_writel(sport, ucr->ucr2, UCR2);
381 	imx_uart_writel(sport, ucr->ucr3, UCR3);
382 }
383 #endif
384 
385 static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2)
386 {
387 	*ucr2 &= ~(UCR2_CTSC | UCR2_CTS);
388 
389 	sport->port.mctrl |= TIOCM_RTS;
390 	mctrl_gpio_set(sport->gpios, sport->port.mctrl);
391 }
392 
393 static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2)
394 {
395 	*ucr2 &= ~UCR2_CTSC;
396 	*ucr2 |= UCR2_CTS;
397 
398 	sport->port.mctrl &= ~TIOCM_RTS;
399 	mctrl_gpio_set(sport->gpios, sport->port.mctrl);
400 }
401 
402 static void imx_uart_rts_auto(struct imx_port *sport, u32 *ucr2)
403 {
404 	*ucr2 |= UCR2_CTSC;
405 }
406 
407 /* called with port.lock taken and irqs off */
408 static void imx_uart_start_rx(struct uart_port *port)
409 {
410 	struct imx_port *sport = (struct imx_port *)port;
411 	unsigned int ucr1, ucr2;
412 
413 	ucr1 = imx_uart_readl(sport, UCR1);
414 	ucr2 = imx_uart_readl(sport, UCR2);
415 
416 	ucr2 |= UCR2_RXEN;
417 
418 	if (sport->dma_is_enabled) {
419 		ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN;
420 	} else {
421 		ucr1 |= UCR1_RRDYEN;
422 		ucr2 |= UCR2_ATEN;
423 	}
424 
425 	/* Write UCR2 first as it includes RXEN */
426 	imx_uart_writel(sport, ucr2, UCR2);
427 	imx_uart_writel(sport, ucr1, UCR1);
428 }
429 
430 /* called with port.lock taken and irqs off */
431 static void imx_uart_stop_tx(struct uart_port *port)
432 {
433 	struct imx_port *sport = (struct imx_port *)port;
434 	u32 ucr1;
435 
436 	/*
437 	 * We are maybe in the SMP context, so if the DMA TX thread is running
438 	 * on other cpu, we have to wait for it to finish.
439 	 */
440 	if (sport->dma_is_txing)
441 		return;
442 
443 	ucr1 = imx_uart_readl(sport, UCR1);
444 	imx_uart_writel(sport, ucr1 & ~UCR1_TXMPTYEN, UCR1);
445 
446 	/* in rs485 mode disable transmitter if shifter is empty */
447 	if (port->rs485.flags & SER_RS485_ENABLED &&
448 	    imx_uart_readl(sport, USR2) & USR2_TXDC) {
449 		u32 ucr2 = imx_uart_readl(sport, UCR2), ucr4;
450 		if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
451 			imx_uart_rts_active(sport, &ucr2);
452 		else
453 			imx_uart_rts_inactive(sport, &ucr2);
454 		imx_uart_writel(sport, ucr2, UCR2);
455 
456 		imx_uart_start_rx(port);
457 
458 		ucr4 = imx_uart_readl(sport, UCR4);
459 		ucr4 &= ~UCR4_TCEN;
460 		imx_uart_writel(sport, ucr4, UCR4);
461 	}
462 }
463 
464 /* called with port.lock taken and irqs off */
465 static void imx_uart_stop_rx(struct uart_port *port)
466 {
467 	struct imx_port *sport = (struct imx_port *)port;
468 	u32 ucr1, ucr2;
469 
470 	ucr1 = imx_uart_readl(sport, UCR1);
471 	ucr2 = imx_uart_readl(sport, UCR2);
472 
473 	if (sport->dma_is_enabled) {
474 		ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN);
475 	} else {
476 		ucr1 &= ~UCR1_RRDYEN;
477 		ucr2 &= ~UCR2_ATEN;
478 	}
479 	imx_uart_writel(sport, ucr1, UCR1);
480 
481 	ucr2 &= ~UCR2_RXEN;
482 	imx_uart_writel(sport, ucr2, UCR2);
483 }
484 
485 /* called with port.lock taken and irqs off */
486 static void imx_uart_enable_ms(struct uart_port *port)
487 {
488 	struct imx_port *sport = (struct imx_port *)port;
489 
490 	mod_timer(&sport->timer, jiffies);
491 
492 	mctrl_gpio_enable_ms(sport->gpios);
493 }
494 
495 static void imx_uart_dma_tx(struct imx_port *sport);
496 
497 /* called with port.lock taken and irqs off */
498 static inline void imx_uart_transmit_buffer(struct imx_port *sport)
499 {
500 	struct circ_buf *xmit = &sport->port.state->xmit;
501 
502 	if (sport->port.x_char) {
503 		/* Send next char */
504 		imx_uart_writel(sport, sport->port.x_char, URTX0);
505 		sport->port.icount.tx++;
506 		sport->port.x_char = 0;
507 		return;
508 	}
509 
510 	if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) {
511 		imx_uart_stop_tx(&sport->port);
512 		return;
513 	}
514 
515 	if (sport->dma_is_enabled) {
516 		u32 ucr1;
517 		/*
518 		 * We've just sent a X-char Ensure the TX DMA is enabled
519 		 * and the TX IRQ is disabled.
520 		 **/
521 		ucr1 = imx_uart_readl(sport, UCR1);
522 		ucr1 &= ~UCR1_TXMPTYEN;
523 		if (sport->dma_is_txing) {
524 			ucr1 |= UCR1_TXDMAEN;
525 			imx_uart_writel(sport, ucr1, UCR1);
526 		} else {
527 			imx_uart_writel(sport, ucr1, UCR1);
528 			imx_uart_dma_tx(sport);
529 		}
530 
531 		return;
532 	}
533 
534 	while (!uart_circ_empty(xmit) &&
535 	       !(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)) {
536 		/* send xmit->buf[xmit->tail]
537 		 * out the port here */
538 		imx_uart_writel(sport, xmit->buf[xmit->tail], URTX0);
539 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
540 		sport->port.icount.tx++;
541 	}
542 
543 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
544 		uart_write_wakeup(&sport->port);
545 
546 	if (uart_circ_empty(xmit))
547 		imx_uart_stop_tx(&sport->port);
548 }
549 
550 static void imx_uart_dma_tx_callback(void *data)
551 {
552 	struct imx_port *sport = data;
553 	struct scatterlist *sgl = &sport->tx_sgl[0];
554 	struct circ_buf *xmit = &sport->port.state->xmit;
555 	unsigned long flags;
556 	u32 ucr1;
557 
558 	spin_lock_irqsave(&sport->port.lock, flags);
559 
560 	dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
561 
562 	ucr1 = imx_uart_readl(sport, UCR1);
563 	ucr1 &= ~UCR1_TXDMAEN;
564 	imx_uart_writel(sport, ucr1, UCR1);
565 
566 	/* update the stat */
567 	xmit->tail = (xmit->tail + sport->tx_bytes) & (UART_XMIT_SIZE - 1);
568 	sport->port.icount.tx += sport->tx_bytes;
569 
570 	dev_dbg(sport->port.dev, "we finish the TX DMA.\n");
571 
572 	sport->dma_is_txing = 0;
573 
574 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
575 		uart_write_wakeup(&sport->port);
576 
577 	if (!uart_circ_empty(xmit) && !uart_tx_stopped(&sport->port))
578 		imx_uart_dma_tx(sport);
579 	else if (sport->port.rs485.flags & SER_RS485_ENABLED) {
580 		u32 ucr4 = imx_uart_readl(sport, UCR4);
581 		ucr4 |= UCR4_TCEN;
582 		imx_uart_writel(sport, ucr4, UCR4);
583 	}
584 
585 	spin_unlock_irqrestore(&sport->port.lock, flags);
586 }
587 
588 /* called with port.lock taken and irqs off */
589 static void imx_uart_dma_tx(struct imx_port *sport)
590 {
591 	struct circ_buf *xmit = &sport->port.state->xmit;
592 	struct scatterlist *sgl = sport->tx_sgl;
593 	struct dma_async_tx_descriptor *desc;
594 	struct dma_chan	*chan = sport->dma_chan_tx;
595 	struct device *dev = sport->port.dev;
596 	u32 ucr1, ucr4;
597 	int ret;
598 
599 	if (sport->dma_is_txing)
600 		return;
601 
602 	ucr4 = imx_uart_readl(sport, UCR4);
603 	ucr4 &= ~UCR4_TCEN;
604 	imx_uart_writel(sport, ucr4, UCR4);
605 
606 	sport->tx_bytes = uart_circ_chars_pending(xmit);
607 
608 	if (xmit->tail < xmit->head) {
609 		sport->dma_tx_nents = 1;
610 		sg_init_one(sgl, xmit->buf + xmit->tail, sport->tx_bytes);
611 	} else {
612 		sport->dma_tx_nents = 2;
613 		sg_init_table(sgl, 2);
614 		sg_set_buf(sgl, xmit->buf + xmit->tail,
615 				UART_XMIT_SIZE - xmit->tail);
616 		sg_set_buf(sgl + 1, xmit->buf, xmit->head);
617 	}
618 
619 	ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
620 	if (ret == 0) {
621 		dev_err(dev, "DMA mapping error for TX.\n");
622 		return;
623 	}
624 	desc = dmaengine_prep_slave_sg(chan, sgl, sport->dma_tx_nents,
625 					DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);
626 	if (!desc) {
627 		dma_unmap_sg(dev, sgl, sport->dma_tx_nents,
628 			     DMA_TO_DEVICE);
629 		dev_err(dev, "We cannot prepare for the TX slave dma!\n");
630 		return;
631 	}
632 	desc->callback = imx_uart_dma_tx_callback;
633 	desc->callback_param = sport;
634 
635 	dev_dbg(dev, "TX: prepare to send %lu bytes by DMA.\n",
636 			uart_circ_chars_pending(xmit));
637 
638 	ucr1 = imx_uart_readl(sport, UCR1);
639 	ucr1 |= UCR1_TXDMAEN;
640 	imx_uart_writel(sport, ucr1, UCR1);
641 
642 	/* fire it */
643 	sport->dma_is_txing = 1;
644 	dmaengine_submit(desc);
645 	dma_async_issue_pending(chan);
646 	return;
647 }
648 
649 /* called with port.lock taken and irqs off */
650 static void imx_uart_start_tx(struct uart_port *port)
651 {
652 	struct imx_port *sport = (struct imx_port *)port;
653 	u32 ucr1;
654 
655 	if (!sport->port.x_char && uart_circ_empty(&port->state->xmit))
656 		return;
657 
658 	if (port->rs485.flags & SER_RS485_ENABLED) {
659 		u32 ucr2;
660 
661 		ucr2 = imx_uart_readl(sport, UCR2);
662 		if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
663 			imx_uart_rts_active(sport, &ucr2);
664 		else
665 			imx_uart_rts_inactive(sport, &ucr2);
666 		imx_uart_writel(sport, ucr2, UCR2);
667 
668 		if (!(port->rs485.flags & SER_RS485_RX_DURING_TX))
669 			imx_uart_stop_rx(port);
670 
671 		/*
672 		 * Enable transmitter and shifter empty irq only if DMA is off.
673 		 * In the DMA case this is done in the tx-callback.
674 		 */
675 		if (!sport->dma_is_enabled) {
676 			u32 ucr4 = imx_uart_readl(sport, UCR4);
677 			ucr4 |= UCR4_TCEN;
678 			imx_uart_writel(sport, ucr4, UCR4);
679 		}
680 	}
681 
682 	if (!sport->dma_is_enabled) {
683 		ucr1 = imx_uart_readl(sport, UCR1);
684 		imx_uart_writel(sport, ucr1 | UCR1_TXMPTYEN, UCR1);
685 	}
686 
687 	if (sport->dma_is_enabled) {
688 		if (sport->port.x_char) {
689 			/* We have X-char to send, so enable TX IRQ and
690 			 * disable TX DMA to let TX interrupt to send X-char */
691 			ucr1 = imx_uart_readl(sport, UCR1);
692 			ucr1 &= ~UCR1_TXDMAEN;
693 			ucr1 |= UCR1_TXMPTYEN;
694 			imx_uart_writel(sport, ucr1, UCR1);
695 			return;
696 		}
697 
698 		if (!uart_circ_empty(&port->state->xmit) &&
699 		    !uart_tx_stopped(port))
700 			imx_uart_dma_tx(sport);
701 		return;
702 	}
703 }
704 
705 static irqreturn_t imx_uart_rtsint(int irq, void *dev_id)
706 {
707 	struct imx_port *sport = dev_id;
708 	u32 usr1;
709 	unsigned long flags;
710 
711 	spin_lock_irqsave(&sport->port.lock, flags);
712 
713 	imx_uart_writel(sport, USR1_RTSD, USR1);
714 	usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS;
715 	uart_handle_cts_change(&sport->port, !!usr1);
716 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
717 
718 	spin_unlock_irqrestore(&sport->port.lock, flags);
719 	return IRQ_HANDLED;
720 }
721 
722 static irqreturn_t imx_uart_txint(int irq, void *dev_id)
723 {
724 	struct imx_port *sport = dev_id;
725 	unsigned long flags;
726 
727 	spin_lock_irqsave(&sport->port.lock, flags);
728 	imx_uart_transmit_buffer(sport);
729 	spin_unlock_irqrestore(&sport->port.lock, flags);
730 	return IRQ_HANDLED;
731 }
732 
733 static irqreturn_t imx_uart_rxint(int irq, void *dev_id)
734 {
735 	struct imx_port *sport = dev_id;
736 	unsigned int rx, flg, ignored = 0;
737 	struct tty_port *port = &sport->port.state->port;
738 	unsigned long flags;
739 
740 	spin_lock_irqsave(&sport->port.lock, flags);
741 
742 	while (imx_uart_readl(sport, USR2) & USR2_RDR) {
743 		u32 usr2;
744 
745 		flg = TTY_NORMAL;
746 		sport->port.icount.rx++;
747 
748 		rx = imx_uart_readl(sport, URXD0);
749 
750 		usr2 = imx_uart_readl(sport, USR2);
751 		if (usr2 & USR2_BRCD) {
752 			imx_uart_writel(sport, USR2_BRCD, USR2);
753 			if (uart_handle_break(&sport->port))
754 				continue;
755 		}
756 
757 		if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx))
758 			continue;
759 
760 		if (unlikely(rx & URXD_ERR)) {
761 			if (rx & URXD_BRK)
762 				sport->port.icount.brk++;
763 			else if (rx & URXD_PRERR)
764 				sport->port.icount.parity++;
765 			else if (rx & URXD_FRMERR)
766 				sport->port.icount.frame++;
767 			if (rx & URXD_OVRRUN)
768 				sport->port.icount.overrun++;
769 
770 			if (rx & sport->port.ignore_status_mask) {
771 				if (++ignored > 100)
772 					goto out;
773 				continue;
774 			}
775 
776 			rx &= (sport->port.read_status_mask | 0xFF);
777 
778 			if (rx & URXD_BRK)
779 				flg = TTY_BREAK;
780 			else if (rx & URXD_PRERR)
781 				flg = TTY_PARITY;
782 			else if (rx & URXD_FRMERR)
783 				flg = TTY_FRAME;
784 			if (rx & URXD_OVRRUN)
785 				flg = TTY_OVERRUN;
786 
787 #ifdef SUPPORT_SYSRQ
788 			sport->port.sysrq = 0;
789 #endif
790 		}
791 
792 		if (sport->port.ignore_status_mask & URXD_DUMMY_READ)
793 			goto out;
794 
795 		if (tty_insert_flip_char(port, rx, flg) == 0)
796 			sport->port.icount.buf_overrun++;
797 	}
798 
799 out:
800 	spin_unlock_irqrestore(&sport->port.lock, flags);
801 	tty_flip_buffer_push(port);
802 	return IRQ_HANDLED;
803 }
804 
805 static void imx_uart_clear_rx_errors(struct imx_port *sport);
806 
807 /*
808  * We have a modem side uart, so the meanings of RTS and CTS are inverted.
809  */
810 static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport)
811 {
812 	unsigned int tmp = TIOCM_DSR;
813 	unsigned usr1 = imx_uart_readl(sport, USR1);
814 	unsigned usr2 = imx_uart_readl(sport, USR2);
815 
816 	if (usr1 & USR1_RTSS)
817 		tmp |= TIOCM_CTS;
818 
819 	/* in DCE mode DCDIN is always 0 */
820 	if (!(usr2 & USR2_DCDIN))
821 		tmp |= TIOCM_CAR;
822 
823 	if (sport->dte_mode)
824 		if (!(imx_uart_readl(sport, USR2) & USR2_RIIN))
825 			tmp |= TIOCM_RI;
826 
827 	return tmp;
828 }
829 
830 /*
831  * Handle any change of modem status signal since we were last called.
832  */
833 static void imx_uart_mctrl_check(struct imx_port *sport)
834 {
835 	unsigned int status, changed;
836 
837 	status = imx_uart_get_hwmctrl(sport);
838 	changed = status ^ sport->old_status;
839 
840 	if (changed == 0)
841 		return;
842 
843 	sport->old_status = status;
844 
845 	if (changed & TIOCM_RI && status & TIOCM_RI)
846 		sport->port.icount.rng++;
847 	if (changed & TIOCM_DSR)
848 		sport->port.icount.dsr++;
849 	if (changed & TIOCM_CAR)
850 		uart_handle_dcd_change(&sport->port, status & TIOCM_CAR);
851 	if (changed & TIOCM_CTS)
852 		uart_handle_cts_change(&sport->port, status & TIOCM_CTS);
853 
854 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
855 }
856 
857 static irqreturn_t imx_uart_int(int irq, void *dev_id)
858 {
859 	struct imx_port *sport = dev_id;
860 	unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4;
861 	irqreturn_t ret = IRQ_NONE;
862 
863 	usr1 = imx_uart_readl(sport, USR1);
864 	usr2 = imx_uart_readl(sport, USR2);
865 	ucr1 = imx_uart_readl(sport, UCR1);
866 	ucr2 = imx_uart_readl(sport, UCR2);
867 	ucr3 = imx_uart_readl(sport, UCR3);
868 	ucr4 = imx_uart_readl(sport, UCR4);
869 
870 	/*
871 	 * Even if a condition is true that can trigger an irq only handle it if
872 	 * the respective irq source is enabled. This prevents some undesired
873 	 * actions, for example if a character that sits in the RX FIFO and that
874 	 * should be fetched via DMA is tried to be fetched using PIO. Or the
875 	 * receiver is currently off and so reading from URXD0 results in an
876 	 * exception. So just mask the (raw) status bits for disabled irqs.
877 	 */
878 	if ((ucr1 & UCR1_RRDYEN) == 0)
879 		usr1 &= ~USR1_RRDY;
880 	if ((ucr2 & UCR2_ATEN) == 0)
881 		usr1 &= ~USR1_AGTIM;
882 	if ((ucr1 & UCR1_TXMPTYEN) == 0)
883 		usr1 &= ~USR1_TRDY;
884 	if ((ucr4 & UCR4_TCEN) == 0)
885 		usr2 &= ~USR2_TXDC;
886 	if ((ucr3 & UCR3_DTRDEN) == 0)
887 		usr1 &= ~USR1_DTRD;
888 	if ((ucr1 & UCR1_RTSDEN) == 0)
889 		usr1 &= ~USR1_RTSD;
890 	if ((ucr3 & UCR3_AWAKEN) == 0)
891 		usr1 &= ~USR1_AWAKE;
892 	if ((ucr4 & UCR4_OREN) == 0)
893 		usr2 &= ~USR2_ORE;
894 
895 	if (usr1 & (USR1_RRDY | USR1_AGTIM)) {
896 		imx_uart_rxint(irq, dev_id);
897 		ret = IRQ_HANDLED;
898 	}
899 
900 	if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) {
901 		imx_uart_txint(irq, dev_id);
902 		ret = IRQ_HANDLED;
903 	}
904 
905 	if (usr1 & USR1_DTRD) {
906 		unsigned long flags;
907 
908 		imx_uart_writel(sport, USR1_DTRD, USR1);
909 
910 		spin_lock_irqsave(&sport->port.lock, flags);
911 		imx_uart_mctrl_check(sport);
912 		spin_unlock_irqrestore(&sport->port.lock, flags);
913 
914 		ret = IRQ_HANDLED;
915 	}
916 
917 	if (usr1 & USR1_RTSD) {
918 		imx_uart_rtsint(irq, dev_id);
919 		ret = IRQ_HANDLED;
920 	}
921 
922 	if (usr1 & USR1_AWAKE) {
923 		imx_uart_writel(sport, USR1_AWAKE, USR1);
924 		ret = IRQ_HANDLED;
925 	}
926 
927 	if (usr2 & USR2_ORE) {
928 		sport->port.icount.overrun++;
929 		imx_uart_writel(sport, USR2_ORE, USR2);
930 		ret = IRQ_HANDLED;
931 	}
932 
933 	return ret;
934 }
935 
936 /*
937  * Return TIOCSER_TEMT when transmitter is not busy.
938  */
939 static unsigned int imx_uart_tx_empty(struct uart_port *port)
940 {
941 	struct imx_port *sport = (struct imx_port *)port;
942 	unsigned int ret;
943 
944 	ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ?  TIOCSER_TEMT : 0;
945 
946 	/* If the TX DMA is working, return 0. */
947 	if (sport->dma_is_txing)
948 		ret = 0;
949 
950 	return ret;
951 }
952 
953 /* called with port.lock taken and irqs off */
954 static unsigned int imx_uart_get_mctrl(struct uart_port *port)
955 {
956 	struct imx_port *sport = (struct imx_port *)port;
957 	unsigned int ret = imx_uart_get_hwmctrl(sport);
958 
959 	mctrl_gpio_get(sport->gpios, &ret);
960 
961 	return ret;
962 }
963 
964 /* called with port.lock taken and irqs off */
965 static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
966 {
967 	struct imx_port *sport = (struct imx_port *)port;
968 	u32 ucr3, uts;
969 
970 	if (!(port->rs485.flags & SER_RS485_ENABLED)) {
971 		u32 ucr2;
972 
973 		ucr2 = imx_uart_readl(sport, UCR2);
974 		ucr2 &= ~(UCR2_CTS | UCR2_CTSC);
975 		if (mctrl & TIOCM_RTS)
976 			ucr2 |= UCR2_CTS | UCR2_CTSC;
977 		imx_uart_writel(sport, ucr2, UCR2);
978 	}
979 
980 	ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR;
981 	if (!(mctrl & TIOCM_DTR))
982 		ucr3 |= UCR3_DSR;
983 	imx_uart_writel(sport, ucr3, UCR3);
984 
985 	uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP;
986 	if (mctrl & TIOCM_LOOP)
987 		uts |= UTS_LOOP;
988 	imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
989 
990 	mctrl_gpio_set(sport->gpios, mctrl);
991 }
992 
993 /*
994  * Interrupts always disabled.
995  */
996 static void imx_uart_break_ctl(struct uart_port *port, int break_state)
997 {
998 	struct imx_port *sport = (struct imx_port *)port;
999 	unsigned long flags;
1000 	u32 ucr1;
1001 
1002 	spin_lock_irqsave(&sport->port.lock, flags);
1003 
1004 	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK;
1005 
1006 	if (break_state != 0)
1007 		ucr1 |= UCR1_SNDBRK;
1008 
1009 	imx_uart_writel(sport, ucr1, UCR1);
1010 
1011 	spin_unlock_irqrestore(&sport->port.lock, flags);
1012 }
1013 
1014 /*
1015  * This is our per-port timeout handler, for checking the
1016  * modem status signals.
1017  */
1018 static void imx_uart_timeout(struct timer_list *t)
1019 {
1020 	struct imx_port *sport = from_timer(sport, t, timer);
1021 	unsigned long flags;
1022 
1023 	if (sport->port.state) {
1024 		spin_lock_irqsave(&sport->port.lock, flags);
1025 		imx_uart_mctrl_check(sport);
1026 		spin_unlock_irqrestore(&sport->port.lock, flags);
1027 
1028 		mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT);
1029 	}
1030 }
1031 
1032 #define RX_BUF_SIZE	(PAGE_SIZE)
1033 
1034 /*
1035  * There are two kinds of RX DMA interrupts(such as in the MX6Q):
1036  *   [1] the RX DMA buffer is full.
1037  *   [2] the aging timer expires
1038  *
1039  * Condition [2] is triggered when a character has been sitting in the FIFO
1040  * for at least 8 byte durations.
1041  */
1042 static void imx_uart_dma_rx_callback(void *data)
1043 {
1044 	struct imx_port *sport = data;
1045 	struct dma_chan	*chan = sport->dma_chan_rx;
1046 	struct scatterlist *sgl = &sport->rx_sgl;
1047 	struct tty_port *port = &sport->port.state->port;
1048 	struct dma_tx_state state;
1049 	struct circ_buf *rx_ring = &sport->rx_ring;
1050 	enum dma_status status;
1051 	unsigned int w_bytes = 0;
1052 	unsigned int r_bytes;
1053 	unsigned int bd_size;
1054 
1055 	status = dmaengine_tx_status(chan, sport->rx_cookie, &state);
1056 
1057 	if (status == DMA_ERROR) {
1058 		imx_uart_clear_rx_errors(sport);
1059 		return;
1060 	}
1061 
1062 	if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) {
1063 
1064 		/*
1065 		 * The state-residue variable represents the empty space
1066 		 * relative to the entire buffer. Taking this in consideration
1067 		 * the head is always calculated base on the buffer total
1068 		 * length - DMA transaction residue. The UART script from the
1069 		 * SDMA firmware will jump to the next buffer descriptor,
1070 		 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4).
1071 		 * Taking this in consideration the tail is always at the
1072 		 * beginning of the buffer descriptor that contains the head.
1073 		 */
1074 
1075 		/* Calculate the head */
1076 		rx_ring->head = sg_dma_len(sgl) - state.residue;
1077 
1078 		/* Calculate the tail. */
1079 		bd_size = sg_dma_len(sgl) / sport->rx_periods;
1080 		rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size;
1081 
1082 		if (rx_ring->head <= sg_dma_len(sgl) &&
1083 		    rx_ring->head > rx_ring->tail) {
1084 
1085 			/* Move data from tail to head */
1086 			r_bytes = rx_ring->head - rx_ring->tail;
1087 
1088 			/* CPU claims ownership of RX DMA buffer */
1089 			dma_sync_sg_for_cpu(sport->port.dev, sgl, 1,
1090 				DMA_FROM_DEVICE);
1091 
1092 			w_bytes = tty_insert_flip_string(port,
1093 				sport->rx_buf + rx_ring->tail, r_bytes);
1094 
1095 			/* UART retrieves ownership of RX DMA buffer */
1096 			dma_sync_sg_for_device(sport->port.dev, sgl, 1,
1097 				DMA_FROM_DEVICE);
1098 
1099 			if (w_bytes != r_bytes)
1100 				sport->port.icount.buf_overrun++;
1101 
1102 			sport->port.icount.rx += w_bytes;
1103 		} else	{
1104 			WARN_ON(rx_ring->head > sg_dma_len(sgl));
1105 			WARN_ON(rx_ring->head <= rx_ring->tail);
1106 		}
1107 	}
1108 
1109 	if (w_bytes) {
1110 		tty_flip_buffer_push(port);
1111 		dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes);
1112 	}
1113 }
1114 
1115 /* RX DMA buffer periods */
1116 #define RX_DMA_PERIODS 4
1117 
1118 static int imx_uart_start_rx_dma(struct imx_port *sport)
1119 {
1120 	struct scatterlist *sgl = &sport->rx_sgl;
1121 	struct dma_chan	*chan = sport->dma_chan_rx;
1122 	struct device *dev = sport->port.dev;
1123 	struct dma_async_tx_descriptor *desc;
1124 	int ret;
1125 
1126 	sport->rx_ring.head = 0;
1127 	sport->rx_ring.tail = 0;
1128 	sport->rx_periods = RX_DMA_PERIODS;
1129 
1130 	sg_init_one(sgl, sport->rx_buf, RX_BUF_SIZE);
1131 	ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1132 	if (ret == 0) {
1133 		dev_err(dev, "DMA mapping error for RX.\n");
1134 		return -EINVAL;
1135 	}
1136 
1137 	desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl),
1138 		sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods,
1139 		DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
1140 
1141 	if (!desc) {
1142 		dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1143 		dev_err(dev, "We cannot prepare for the RX slave dma!\n");
1144 		return -EINVAL;
1145 	}
1146 	desc->callback = imx_uart_dma_rx_callback;
1147 	desc->callback_param = sport;
1148 
1149 	dev_dbg(dev, "RX: prepare for the DMA.\n");
1150 	sport->dma_is_rxing = 1;
1151 	sport->rx_cookie = dmaengine_submit(desc);
1152 	dma_async_issue_pending(chan);
1153 	return 0;
1154 }
1155 
1156 static void imx_uart_clear_rx_errors(struct imx_port *sport)
1157 {
1158 	struct tty_port *port = &sport->port.state->port;
1159 	u32 usr1, usr2;
1160 
1161 	usr1 = imx_uart_readl(sport, USR1);
1162 	usr2 = imx_uart_readl(sport, USR2);
1163 
1164 	if (usr2 & USR2_BRCD) {
1165 		sport->port.icount.brk++;
1166 		imx_uart_writel(sport, USR2_BRCD, USR2);
1167 		uart_handle_break(&sport->port);
1168 		if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0)
1169 			sport->port.icount.buf_overrun++;
1170 		tty_flip_buffer_push(port);
1171 	} else {
1172 		dev_err(sport->port.dev, "DMA transaction error.\n");
1173 		if (usr1 & USR1_FRAMERR) {
1174 			sport->port.icount.frame++;
1175 			imx_uart_writel(sport, USR1_FRAMERR, USR1);
1176 		} else if (usr1 & USR1_PARITYERR) {
1177 			sport->port.icount.parity++;
1178 			imx_uart_writel(sport, USR1_PARITYERR, USR1);
1179 		}
1180 	}
1181 
1182 	if (usr2 & USR2_ORE) {
1183 		sport->port.icount.overrun++;
1184 		imx_uart_writel(sport, USR2_ORE, USR2);
1185 	}
1186 
1187 }
1188 
1189 #define TXTL_DEFAULT 2 /* reset default */
1190 #define RXTL_DEFAULT 1 /* reset default */
1191 #define TXTL_DMA 8 /* DMA burst setting */
1192 #define RXTL_DMA 9 /* DMA burst setting */
1193 
1194 static void imx_uart_setup_ufcr(struct imx_port *sport,
1195 				unsigned char txwl, unsigned char rxwl)
1196 {
1197 	unsigned int val;
1198 
1199 	/* set receiver / transmitter trigger level */
1200 	val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE);
1201 	val |= txwl << UFCR_TXTL_SHF | rxwl;
1202 	imx_uart_writel(sport, val, UFCR);
1203 }
1204 
1205 static void imx_uart_dma_exit(struct imx_port *sport)
1206 {
1207 	if (sport->dma_chan_rx) {
1208 		dmaengine_terminate_sync(sport->dma_chan_rx);
1209 		dma_release_channel(sport->dma_chan_rx);
1210 		sport->dma_chan_rx = NULL;
1211 		sport->rx_cookie = -EINVAL;
1212 		kfree(sport->rx_buf);
1213 		sport->rx_buf = NULL;
1214 	}
1215 
1216 	if (sport->dma_chan_tx) {
1217 		dmaengine_terminate_sync(sport->dma_chan_tx);
1218 		dma_release_channel(sport->dma_chan_tx);
1219 		sport->dma_chan_tx = NULL;
1220 	}
1221 }
1222 
1223 static int imx_uart_dma_init(struct imx_port *sport)
1224 {
1225 	struct dma_slave_config slave_config = {};
1226 	struct device *dev = sport->port.dev;
1227 	int ret;
1228 
1229 	/* Prepare for RX : */
1230 	sport->dma_chan_rx = dma_request_slave_channel(dev, "rx");
1231 	if (!sport->dma_chan_rx) {
1232 		dev_dbg(dev, "cannot get the DMA channel.\n");
1233 		ret = -EINVAL;
1234 		goto err;
1235 	}
1236 
1237 	slave_config.direction = DMA_DEV_TO_MEM;
1238 	slave_config.src_addr = sport->port.mapbase + URXD0;
1239 	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1240 	/* one byte less than the watermark level to enable the aging timer */
1241 	slave_config.src_maxburst = RXTL_DMA - 1;
1242 	ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config);
1243 	if (ret) {
1244 		dev_err(dev, "error in RX dma configuration.\n");
1245 		goto err;
1246 	}
1247 
1248 	sport->rx_buf = kzalloc(RX_BUF_SIZE, GFP_KERNEL);
1249 	if (!sport->rx_buf) {
1250 		ret = -ENOMEM;
1251 		goto err;
1252 	}
1253 	sport->rx_ring.buf = sport->rx_buf;
1254 
1255 	/* Prepare for TX : */
1256 	sport->dma_chan_tx = dma_request_slave_channel(dev, "tx");
1257 	if (!sport->dma_chan_tx) {
1258 		dev_err(dev, "cannot get the TX DMA channel!\n");
1259 		ret = -EINVAL;
1260 		goto err;
1261 	}
1262 
1263 	slave_config.direction = DMA_MEM_TO_DEV;
1264 	slave_config.dst_addr = sport->port.mapbase + URTX0;
1265 	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1266 	slave_config.dst_maxburst = TXTL_DMA;
1267 	ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config);
1268 	if (ret) {
1269 		dev_err(dev, "error in TX dma configuration.");
1270 		goto err;
1271 	}
1272 
1273 	return 0;
1274 err:
1275 	imx_uart_dma_exit(sport);
1276 	return ret;
1277 }
1278 
1279 static void imx_uart_enable_dma(struct imx_port *sport)
1280 {
1281 	u32 ucr1;
1282 
1283 	imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA);
1284 
1285 	/* set UCR1 */
1286 	ucr1 = imx_uart_readl(sport, UCR1);
1287 	ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN;
1288 	imx_uart_writel(sport, ucr1, UCR1);
1289 
1290 	sport->dma_is_enabled = 1;
1291 }
1292 
1293 static void imx_uart_disable_dma(struct imx_port *sport)
1294 {
1295 	u32 ucr1;
1296 
1297 	/* clear UCR1 */
1298 	ucr1 = imx_uart_readl(sport, UCR1);
1299 	ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN);
1300 	imx_uart_writel(sport, ucr1, UCR1);
1301 
1302 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1303 
1304 	sport->dma_is_enabled = 0;
1305 }
1306 
1307 /* half the RX buffer size */
1308 #define CTSTL 16
1309 
1310 static int imx_uart_startup(struct uart_port *port)
1311 {
1312 	struct imx_port *sport = (struct imx_port *)port;
1313 	int retval, i;
1314 	unsigned long flags;
1315 	int dma_is_inited = 0;
1316 	u32 ucr1, ucr2, ucr4;
1317 
1318 	retval = clk_prepare_enable(sport->clk_per);
1319 	if (retval)
1320 		return retval;
1321 	retval = clk_prepare_enable(sport->clk_ipg);
1322 	if (retval) {
1323 		clk_disable_unprepare(sport->clk_per);
1324 		return retval;
1325 	}
1326 
1327 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1328 
1329 	/* disable the DREN bit (Data Ready interrupt enable) before
1330 	 * requesting IRQs
1331 	 */
1332 	ucr4 = imx_uart_readl(sport, UCR4);
1333 
1334 	/* set the trigger level for CTS */
1335 	ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF);
1336 	ucr4 |= CTSTL << UCR4_CTSTL_SHF;
1337 
1338 	imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4);
1339 
1340 	/* Can we enable the DMA support? */
1341 	if (!uart_console(port) && imx_uart_dma_init(sport) == 0)
1342 		dma_is_inited = 1;
1343 
1344 	spin_lock_irqsave(&sport->port.lock, flags);
1345 	/* Reset fifo's and state machines */
1346 	i = 100;
1347 
1348 	ucr2 = imx_uart_readl(sport, UCR2);
1349 	ucr2 &= ~UCR2_SRST;
1350 	imx_uart_writel(sport, ucr2, UCR2);
1351 
1352 	while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0))
1353 		udelay(1);
1354 
1355 	/*
1356 	 * Finally, clear and enable interrupts
1357 	 */
1358 	imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1);
1359 	imx_uart_writel(sport, USR2_ORE, USR2);
1360 
1361 	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN;
1362 	ucr1 |= UCR1_UARTEN;
1363 	if (sport->have_rtscts)
1364 		ucr1 |= UCR1_RTSDEN;
1365 
1366 	imx_uart_writel(sport, ucr1, UCR1);
1367 
1368 	ucr4 = imx_uart_readl(sport, UCR4) & ~UCR4_OREN;
1369 	if (!sport->dma_is_enabled)
1370 		ucr4 |= UCR4_OREN;
1371 	imx_uart_writel(sport, ucr4, UCR4);
1372 
1373 	ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN;
1374 	ucr2 |= (UCR2_RXEN | UCR2_TXEN);
1375 	if (!sport->have_rtscts)
1376 		ucr2 |= UCR2_IRTS;
1377 	/*
1378 	 * make sure the edge sensitive RTS-irq is disabled,
1379 	 * we're using RTSD instead.
1380 	 */
1381 	if (!imx_uart_is_imx1(sport))
1382 		ucr2 &= ~UCR2_RTSEN;
1383 	imx_uart_writel(sport, ucr2, UCR2);
1384 
1385 	if (!imx_uart_is_imx1(sport)) {
1386 		u32 ucr3;
1387 
1388 		ucr3 = imx_uart_readl(sport, UCR3);
1389 
1390 		ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD;
1391 
1392 		if (sport->dte_mode)
1393 			/* disable broken interrupts */
1394 			ucr3 &= ~(UCR3_RI | UCR3_DCD);
1395 
1396 		imx_uart_writel(sport, ucr3, UCR3);
1397 	}
1398 
1399 	/*
1400 	 * Enable modem status interrupts
1401 	 */
1402 	imx_uart_enable_ms(&sport->port);
1403 
1404 	if (dma_is_inited) {
1405 		imx_uart_enable_dma(sport);
1406 		imx_uart_start_rx_dma(sport);
1407 	} else {
1408 		ucr1 = imx_uart_readl(sport, UCR1);
1409 		ucr1 |= UCR1_RRDYEN;
1410 		imx_uart_writel(sport, ucr1, UCR1);
1411 
1412 		ucr2 = imx_uart_readl(sport, UCR2);
1413 		ucr2 |= UCR2_ATEN;
1414 		imx_uart_writel(sport, ucr2, UCR2);
1415 	}
1416 
1417 	spin_unlock_irqrestore(&sport->port.lock, flags);
1418 
1419 	return 0;
1420 }
1421 
1422 static void imx_uart_shutdown(struct uart_port *port)
1423 {
1424 	struct imx_port *sport = (struct imx_port *)port;
1425 	unsigned long flags;
1426 	u32 ucr1, ucr2, ucr4;
1427 
1428 	if (sport->dma_is_enabled) {
1429 		dmaengine_terminate_sync(sport->dma_chan_tx);
1430 		if (sport->dma_is_txing) {
1431 			dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0],
1432 				     sport->dma_tx_nents, DMA_TO_DEVICE);
1433 			sport->dma_is_txing = 0;
1434 		}
1435 		dmaengine_terminate_sync(sport->dma_chan_rx);
1436 		if (sport->dma_is_rxing) {
1437 			dma_unmap_sg(sport->port.dev, &sport->rx_sgl,
1438 				     1, DMA_FROM_DEVICE);
1439 			sport->dma_is_rxing = 0;
1440 		}
1441 
1442 		spin_lock_irqsave(&sport->port.lock, flags);
1443 		imx_uart_stop_tx(port);
1444 		imx_uart_stop_rx(port);
1445 		imx_uart_disable_dma(sport);
1446 		spin_unlock_irqrestore(&sport->port.lock, flags);
1447 		imx_uart_dma_exit(sport);
1448 	}
1449 
1450 	mctrl_gpio_disable_ms(sport->gpios);
1451 
1452 	spin_lock_irqsave(&sport->port.lock, flags);
1453 	ucr2 = imx_uart_readl(sport, UCR2);
1454 	ucr2 &= ~(UCR2_TXEN | UCR2_ATEN);
1455 	imx_uart_writel(sport, ucr2, UCR2);
1456 
1457 	ucr4 = imx_uart_readl(sport, UCR4);
1458 	ucr4 &= ~UCR4_OREN;
1459 	imx_uart_writel(sport, ucr4, UCR4);
1460 	spin_unlock_irqrestore(&sport->port.lock, flags);
1461 
1462 	/*
1463 	 * Stop our timer.
1464 	 */
1465 	del_timer_sync(&sport->timer);
1466 
1467 	/*
1468 	 * Disable all interrupts, port and break condition.
1469 	 */
1470 
1471 	spin_lock_irqsave(&sport->port.lock, flags);
1472 	ucr1 = imx_uart_readl(sport, UCR1);
1473 	ucr1 &= ~(UCR1_TXMPTYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_UARTEN | UCR1_RXDMAEN | UCR1_ATDMAEN);
1474 
1475 	imx_uart_writel(sport, ucr1, UCR1);
1476 	spin_unlock_irqrestore(&sport->port.lock, flags);
1477 
1478 	clk_disable_unprepare(sport->clk_per);
1479 	clk_disable_unprepare(sport->clk_ipg);
1480 }
1481 
1482 /* called with port.lock taken and irqs off */
1483 static void imx_uart_flush_buffer(struct uart_port *port)
1484 {
1485 	struct imx_port *sport = (struct imx_port *)port;
1486 	struct scatterlist *sgl = &sport->tx_sgl[0];
1487 	u32 ucr2;
1488 	int i = 100, ubir, ubmr, uts;
1489 
1490 	if (!sport->dma_chan_tx)
1491 		return;
1492 
1493 	sport->tx_bytes = 0;
1494 	dmaengine_terminate_all(sport->dma_chan_tx);
1495 	if (sport->dma_is_txing) {
1496 		u32 ucr1;
1497 
1498 		dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents,
1499 			     DMA_TO_DEVICE);
1500 		ucr1 = imx_uart_readl(sport, UCR1);
1501 		ucr1 &= ~UCR1_TXDMAEN;
1502 		imx_uart_writel(sport, ucr1, UCR1);
1503 		sport->dma_is_txing = 0;
1504 	}
1505 
1506 	/*
1507 	 * According to the Reference Manual description of the UART SRST bit:
1508 	 *
1509 	 * "Reset the transmit and receive state machines,
1510 	 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD
1511 	 * and UTS[6-3]".
1512 	 *
1513 	 * We don't need to restore the old values from USR1, USR2, URXD and
1514 	 * UTXD. UBRC is read only, so only save/restore the other three
1515 	 * registers.
1516 	 */
1517 	ubir = imx_uart_readl(sport, UBIR);
1518 	ubmr = imx_uart_readl(sport, UBMR);
1519 	uts = imx_uart_readl(sport, IMX21_UTS);
1520 
1521 	ucr2 = imx_uart_readl(sport, UCR2);
1522 	ucr2 &= ~UCR2_SRST;
1523 	imx_uart_writel(sport, ucr2, UCR2);
1524 
1525 	while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0))
1526 		udelay(1);
1527 
1528 	/* Restore the registers */
1529 	imx_uart_writel(sport, ubir, UBIR);
1530 	imx_uart_writel(sport, ubmr, UBMR);
1531 	imx_uart_writel(sport, uts, IMX21_UTS);
1532 }
1533 
1534 static void
1535 imx_uart_set_termios(struct uart_port *port, struct ktermios *termios,
1536 		     struct ktermios *old)
1537 {
1538 	struct imx_port *sport = (struct imx_port *)port;
1539 	unsigned long flags;
1540 	u32 ucr2, old_ucr1, old_ucr2, ufcr;
1541 	unsigned int baud, quot;
1542 	unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8;
1543 	unsigned long div;
1544 	unsigned long num, denom;
1545 	uint64_t tdiv64;
1546 
1547 	/*
1548 	 * We only support CS7 and CS8.
1549 	 */
1550 	while ((termios->c_cflag & CSIZE) != CS7 &&
1551 	       (termios->c_cflag & CSIZE) != CS8) {
1552 		termios->c_cflag &= ~CSIZE;
1553 		termios->c_cflag |= old_csize;
1554 		old_csize = CS8;
1555 	}
1556 
1557 	if ((termios->c_cflag & CSIZE) == CS8)
1558 		ucr2 = UCR2_WS | UCR2_SRST | UCR2_IRTS;
1559 	else
1560 		ucr2 = UCR2_SRST | UCR2_IRTS;
1561 
1562 	if (termios->c_cflag & CRTSCTS) {
1563 		if (sport->have_rtscts) {
1564 			ucr2 &= ~UCR2_IRTS;
1565 
1566 			if (port->rs485.flags & SER_RS485_ENABLED) {
1567 				/*
1568 				 * RTS is mandatory for rs485 operation, so keep
1569 				 * it under manual control and keep transmitter
1570 				 * disabled.
1571 				 */
1572 				if (port->rs485.flags &
1573 				    SER_RS485_RTS_AFTER_SEND)
1574 					imx_uart_rts_active(sport, &ucr2);
1575 				else
1576 					imx_uart_rts_inactive(sport, &ucr2);
1577 			} else {
1578 				imx_uart_rts_auto(sport, &ucr2);
1579 			}
1580 		} else {
1581 			termios->c_cflag &= ~CRTSCTS;
1582 		}
1583 	} else if (port->rs485.flags & SER_RS485_ENABLED) {
1584 		/* disable transmitter */
1585 		if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1586 			imx_uart_rts_active(sport, &ucr2);
1587 		else
1588 			imx_uart_rts_inactive(sport, &ucr2);
1589 	}
1590 
1591 
1592 	if (termios->c_cflag & CSTOPB)
1593 		ucr2 |= UCR2_STPB;
1594 	if (termios->c_cflag & PARENB) {
1595 		ucr2 |= UCR2_PREN;
1596 		if (termios->c_cflag & PARODD)
1597 			ucr2 |= UCR2_PROE;
1598 	}
1599 
1600 	del_timer_sync(&sport->timer);
1601 
1602 	/*
1603 	 * Ask the core to calculate the divisor for us.
1604 	 */
1605 	baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16);
1606 	quot = uart_get_divisor(port, baud);
1607 
1608 	spin_lock_irqsave(&sport->port.lock, flags);
1609 
1610 	sport->port.read_status_mask = 0;
1611 	if (termios->c_iflag & INPCK)
1612 		sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR);
1613 	if (termios->c_iflag & (BRKINT | PARMRK))
1614 		sport->port.read_status_mask |= URXD_BRK;
1615 
1616 	/*
1617 	 * Characters to ignore
1618 	 */
1619 	sport->port.ignore_status_mask = 0;
1620 	if (termios->c_iflag & IGNPAR)
1621 		sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR;
1622 	if (termios->c_iflag & IGNBRK) {
1623 		sport->port.ignore_status_mask |= URXD_BRK;
1624 		/*
1625 		 * If we're ignoring parity and break indicators,
1626 		 * ignore overruns too (for real raw support).
1627 		 */
1628 		if (termios->c_iflag & IGNPAR)
1629 			sport->port.ignore_status_mask |= URXD_OVRRUN;
1630 	}
1631 
1632 	if ((termios->c_cflag & CREAD) == 0)
1633 		sport->port.ignore_status_mask |= URXD_DUMMY_READ;
1634 
1635 	/*
1636 	 * Update the per-port timeout.
1637 	 */
1638 	uart_update_timeout(port, termios->c_cflag, baud);
1639 
1640 	/*
1641 	 * disable interrupts and drain transmitter
1642 	 */
1643 	old_ucr1 = imx_uart_readl(sport, UCR1);
1644 	imx_uart_writel(sport,
1645 			old_ucr1 & ~(UCR1_TXMPTYEN | UCR1_RRDYEN | UCR1_RTSDEN),
1646 			UCR1);
1647 	old_ucr2 = imx_uart_readl(sport, UCR2);
1648 	imx_uart_writel(sport, old_ucr2 & ~UCR2_ATEN, UCR2);
1649 
1650 	while (!(imx_uart_readl(sport, USR2) & USR2_TXDC))
1651 		barrier();
1652 
1653 	/* then, disable everything */
1654 	imx_uart_writel(sport, old_ucr2 & ~(UCR2_TXEN | UCR2_RXEN | UCR2_ATEN), UCR2);
1655 	old_ucr2 &= (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN);
1656 
1657 	/* custom-baudrate handling */
1658 	div = sport->port.uartclk / (baud * 16);
1659 	if (baud == 38400 && quot != div)
1660 		baud = sport->port.uartclk / (quot * 16);
1661 
1662 	div = sport->port.uartclk / (baud * 16);
1663 	if (div > 7)
1664 		div = 7;
1665 	if (!div)
1666 		div = 1;
1667 
1668 	rational_best_approximation(16 * div * baud, sport->port.uartclk,
1669 		1 << 16, 1 << 16, &num, &denom);
1670 
1671 	tdiv64 = sport->port.uartclk;
1672 	tdiv64 *= num;
1673 	do_div(tdiv64, denom * 16 * div);
1674 	tty_termios_encode_baud_rate(termios,
1675 				(speed_t)tdiv64, (speed_t)tdiv64);
1676 
1677 	num -= 1;
1678 	denom -= 1;
1679 
1680 	ufcr = imx_uart_readl(sport, UFCR);
1681 	ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div);
1682 	imx_uart_writel(sport, ufcr, UFCR);
1683 
1684 	imx_uart_writel(sport, num, UBIR);
1685 	imx_uart_writel(sport, denom, UBMR);
1686 
1687 	if (!imx_uart_is_imx1(sport))
1688 		imx_uart_writel(sport, sport->port.uartclk / div / 1000,
1689 				IMX21_ONEMS);
1690 
1691 	imx_uart_writel(sport, old_ucr1, UCR1);
1692 
1693 	/* set the parity, stop bits and data size */
1694 	imx_uart_writel(sport, ucr2 | old_ucr2, UCR2);
1695 
1696 	if (UART_ENABLE_MS(&sport->port, termios->c_cflag))
1697 		imx_uart_enable_ms(&sport->port);
1698 
1699 	spin_unlock_irqrestore(&sport->port.lock, flags);
1700 }
1701 
1702 static const char *imx_uart_type(struct uart_port *port)
1703 {
1704 	struct imx_port *sport = (struct imx_port *)port;
1705 
1706 	return sport->port.type == PORT_IMX ? "IMX" : NULL;
1707 }
1708 
1709 /*
1710  * Configure/autoconfigure the port.
1711  */
1712 static void imx_uart_config_port(struct uart_port *port, int flags)
1713 {
1714 	struct imx_port *sport = (struct imx_port *)port;
1715 
1716 	if (flags & UART_CONFIG_TYPE)
1717 		sport->port.type = PORT_IMX;
1718 }
1719 
1720 /*
1721  * Verify the new serial_struct (for TIOCSSERIAL).
1722  * The only change we allow are to the flags and type, and
1723  * even then only between PORT_IMX and PORT_UNKNOWN
1724  */
1725 static int
1726 imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser)
1727 {
1728 	struct imx_port *sport = (struct imx_port *)port;
1729 	int ret = 0;
1730 
1731 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX)
1732 		ret = -EINVAL;
1733 	if (sport->port.irq != ser->irq)
1734 		ret = -EINVAL;
1735 	if (ser->io_type != UPIO_MEM)
1736 		ret = -EINVAL;
1737 	if (sport->port.uartclk / 16 != ser->baud_base)
1738 		ret = -EINVAL;
1739 	if (sport->port.mapbase != (unsigned long)ser->iomem_base)
1740 		ret = -EINVAL;
1741 	if (sport->port.iobase != ser->port)
1742 		ret = -EINVAL;
1743 	if (ser->hub6 != 0)
1744 		ret = -EINVAL;
1745 	return ret;
1746 }
1747 
1748 #if defined(CONFIG_CONSOLE_POLL)
1749 
1750 static int imx_uart_poll_init(struct uart_port *port)
1751 {
1752 	struct imx_port *sport = (struct imx_port *)port;
1753 	unsigned long flags;
1754 	u32 ucr1, ucr2;
1755 	int retval;
1756 
1757 	retval = clk_prepare_enable(sport->clk_ipg);
1758 	if (retval)
1759 		return retval;
1760 	retval = clk_prepare_enable(sport->clk_per);
1761 	if (retval)
1762 		clk_disable_unprepare(sport->clk_ipg);
1763 
1764 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1765 
1766 	spin_lock_irqsave(&sport->port.lock, flags);
1767 
1768 	/*
1769 	 * Be careful about the order of enabling bits here. First enable the
1770 	 * receiver (UARTEN + RXEN) and only then the corresponding irqs.
1771 	 * This prevents that a character that already sits in the RX fifo is
1772 	 * triggering an irq but the try to fetch it from there results in an
1773 	 * exception because UARTEN or RXEN is still off.
1774 	 */
1775 	ucr1 = imx_uart_readl(sport, UCR1);
1776 	ucr2 = imx_uart_readl(sport, UCR2);
1777 
1778 	if (imx_uart_is_imx1(sport))
1779 		ucr1 |= IMX1_UCR1_UARTCLKEN;
1780 
1781 	ucr1 |= UCR1_UARTEN;
1782 	ucr1 &= ~(UCR1_TXMPTYEN | UCR1_RTSDEN | UCR1_RRDYEN);
1783 
1784 	ucr2 |= UCR2_RXEN;
1785 	ucr2 &= ~UCR2_ATEN;
1786 
1787 	imx_uart_writel(sport, ucr1, UCR1);
1788 	imx_uart_writel(sport, ucr2, UCR2);
1789 
1790 	/* now enable irqs */
1791 	imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1);
1792 	imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2);
1793 
1794 	spin_unlock_irqrestore(&sport->port.lock, flags);
1795 
1796 	return 0;
1797 }
1798 
1799 static int imx_uart_poll_get_char(struct uart_port *port)
1800 {
1801 	struct imx_port *sport = (struct imx_port *)port;
1802 	if (!(imx_uart_readl(sport, USR2) & USR2_RDR))
1803 		return NO_POLL_CHAR;
1804 
1805 	return imx_uart_readl(sport, URXD0) & URXD_RX_DATA;
1806 }
1807 
1808 static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c)
1809 {
1810 	struct imx_port *sport = (struct imx_port *)port;
1811 	unsigned int status;
1812 
1813 	/* drain */
1814 	do {
1815 		status = imx_uart_readl(sport, USR1);
1816 	} while (~status & USR1_TRDY);
1817 
1818 	/* write */
1819 	imx_uart_writel(sport, c, URTX0);
1820 
1821 	/* flush */
1822 	do {
1823 		status = imx_uart_readl(sport, USR2);
1824 	} while (~status & USR2_TXDC);
1825 }
1826 #endif
1827 
1828 /* called with port.lock taken and irqs off or from .probe without locking */
1829 static int imx_uart_rs485_config(struct uart_port *port,
1830 				 struct serial_rs485 *rs485conf)
1831 {
1832 	struct imx_port *sport = (struct imx_port *)port;
1833 	u32 ucr2;
1834 
1835 	/* unimplemented */
1836 	rs485conf->delay_rts_before_send = 0;
1837 	rs485conf->delay_rts_after_send = 0;
1838 
1839 	/* RTS is required to control the transmitter */
1840 	if (!sport->have_rtscts && !sport->have_rtsgpio)
1841 		rs485conf->flags &= ~SER_RS485_ENABLED;
1842 
1843 	if (rs485conf->flags & SER_RS485_ENABLED) {
1844 		/* Enable receiver if low-active RTS signal is requested */
1845 		if (sport->have_rtscts &&  !sport->have_rtsgpio &&
1846 		    !(rs485conf->flags & SER_RS485_RTS_ON_SEND))
1847 			rs485conf->flags |= SER_RS485_RX_DURING_TX;
1848 
1849 		/* disable transmitter */
1850 		ucr2 = imx_uart_readl(sport, UCR2);
1851 		if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND)
1852 			imx_uart_rts_active(sport, &ucr2);
1853 		else
1854 			imx_uart_rts_inactive(sport, &ucr2);
1855 		imx_uart_writel(sport, ucr2, UCR2);
1856 	}
1857 
1858 	/* Make sure Rx is enabled in case Tx is active with Rx disabled */
1859 	if (!(rs485conf->flags & SER_RS485_ENABLED) ||
1860 	    rs485conf->flags & SER_RS485_RX_DURING_TX)
1861 		imx_uart_start_rx(port);
1862 
1863 	port->rs485 = *rs485conf;
1864 
1865 	return 0;
1866 }
1867 
1868 static const struct uart_ops imx_uart_pops = {
1869 	.tx_empty	= imx_uart_tx_empty,
1870 	.set_mctrl	= imx_uart_set_mctrl,
1871 	.get_mctrl	= imx_uart_get_mctrl,
1872 	.stop_tx	= imx_uart_stop_tx,
1873 	.start_tx	= imx_uart_start_tx,
1874 	.stop_rx	= imx_uart_stop_rx,
1875 	.enable_ms	= imx_uart_enable_ms,
1876 	.break_ctl	= imx_uart_break_ctl,
1877 	.startup	= imx_uart_startup,
1878 	.shutdown	= imx_uart_shutdown,
1879 	.flush_buffer	= imx_uart_flush_buffer,
1880 	.set_termios	= imx_uart_set_termios,
1881 	.type		= imx_uart_type,
1882 	.config_port	= imx_uart_config_port,
1883 	.verify_port	= imx_uart_verify_port,
1884 #if defined(CONFIG_CONSOLE_POLL)
1885 	.poll_init      = imx_uart_poll_init,
1886 	.poll_get_char  = imx_uart_poll_get_char,
1887 	.poll_put_char  = imx_uart_poll_put_char,
1888 #endif
1889 };
1890 
1891 static struct imx_port *imx_uart_ports[UART_NR];
1892 
1893 #ifdef CONFIG_SERIAL_IMX_CONSOLE
1894 static void imx_uart_console_putchar(struct uart_port *port, int ch)
1895 {
1896 	struct imx_port *sport = (struct imx_port *)port;
1897 
1898 	while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)
1899 		barrier();
1900 
1901 	imx_uart_writel(sport, ch, URTX0);
1902 }
1903 
1904 /*
1905  * Interrupts are disabled on entering
1906  */
1907 static void
1908 imx_uart_console_write(struct console *co, const char *s, unsigned int count)
1909 {
1910 	struct imx_port *sport = imx_uart_ports[co->index];
1911 	struct imx_port_ucrs old_ucr;
1912 	unsigned int ucr1;
1913 	unsigned long flags = 0;
1914 	int locked = 1;
1915 	int retval;
1916 
1917 	retval = clk_enable(sport->clk_per);
1918 	if (retval)
1919 		return;
1920 	retval = clk_enable(sport->clk_ipg);
1921 	if (retval) {
1922 		clk_disable(sport->clk_per);
1923 		return;
1924 	}
1925 
1926 	if (sport->port.sysrq)
1927 		locked = 0;
1928 	else if (oops_in_progress)
1929 		locked = spin_trylock_irqsave(&sport->port.lock, flags);
1930 	else
1931 		spin_lock_irqsave(&sport->port.lock, flags);
1932 
1933 	/*
1934 	 *	First, save UCR1/2/3 and then disable interrupts
1935 	 */
1936 	imx_uart_ucrs_save(sport, &old_ucr);
1937 	ucr1 = old_ucr.ucr1;
1938 
1939 	if (imx_uart_is_imx1(sport))
1940 		ucr1 |= IMX1_UCR1_UARTCLKEN;
1941 	ucr1 |= UCR1_UARTEN;
1942 	ucr1 &= ~(UCR1_TXMPTYEN | UCR1_RRDYEN | UCR1_RTSDEN);
1943 
1944 	imx_uart_writel(sport, ucr1, UCR1);
1945 
1946 	imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2);
1947 
1948 	uart_console_write(&sport->port, s, count, imx_uart_console_putchar);
1949 
1950 	/*
1951 	 *	Finally, wait for transmitter to become empty
1952 	 *	and restore UCR1/2/3
1953 	 */
1954 	while (!(imx_uart_readl(sport, USR2) & USR2_TXDC));
1955 
1956 	imx_uart_ucrs_restore(sport, &old_ucr);
1957 
1958 	if (locked)
1959 		spin_unlock_irqrestore(&sport->port.lock, flags);
1960 
1961 	clk_disable(sport->clk_ipg);
1962 	clk_disable(sport->clk_per);
1963 }
1964 
1965 /*
1966  * If the port was already initialised (eg, by a boot loader),
1967  * try to determine the current setup.
1968  */
1969 static void __init
1970 imx_uart_console_get_options(struct imx_port *sport, int *baud,
1971 			     int *parity, int *bits)
1972 {
1973 
1974 	if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) {
1975 		/* ok, the port was enabled */
1976 		unsigned int ucr2, ubir, ubmr, uartclk;
1977 		unsigned int baud_raw;
1978 		unsigned int ucfr_rfdiv;
1979 
1980 		ucr2 = imx_uart_readl(sport, UCR2);
1981 
1982 		*parity = 'n';
1983 		if (ucr2 & UCR2_PREN) {
1984 			if (ucr2 & UCR2_PROE)
1985 				*parity = 'o';
1986 			else
1987 				*parity = 'e';
1988 		}
1989 
1990 		if (ucr2 & UCR2_WS)
1991 			*bits = 8;
1992 		else
1993 			*bits = 7;
1994 
1995 		ubir = imx_uart_readl(sport, UBIR) & 0xffff;
1996 		ubmr = imx_uart_readl(sport, UBMR) & 0xffff;
1997 
1998 		ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7;
1999 		if (ucfr_rfdiv == 6)
2000 			ucfr_rfdiv = 7;
2001 		else
2002 			ucfr_rfdiv = 6 - ucfr_rfdiv;
2003 
2004 		uartclk = clk_get_rate(sport->clk_per);
2005 		uartclk /= ucfr_rfdiv;
2006 
2007 		{	/*
2008 			 * The next code provides exact computation of
2009 			 *   baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1))
2010 			 * without need of float support or long long division,
2011 			 * which would be required to prevent 32bit arithmetic overflow
2012 			 */
2013 			unsigned int mul = ubir + 1;
2014 			unsigned int div = 16 * (ubmr + 1);
2015 			unsigned int rem = uartclk % div;
2016 
2017 			baud_raw = (uartclk / div) * mul;
2018 			baud_raw += (rem * mul + div / 2) / div;
2019 			*baud = (baud_raw + 50) / 100 * 100;
2020 		}
2021 
2022 		if (*baud != baud_raw)
2023 			pr_info("Console IMX rounded baud rate from %d to %d\n",
2024 				baud_raw, *baud);
2025 	}
2026 }
2027 
2028 static int __init
2029 imx_uart_console_setup(struct console *co, char *options)
2030 {
2031 	struct imx_port *sport;
2032 	int baud = 9600;
2033 	int bits = 8;
2034 	int parity = 'n';
2035 	int flow = 'n';
2036 	int retval;
2037 
2038 	/*
2039 	 * Check whether an invalid uart number has been specified, and
2040 	 * if so, search for the first available port that does have
2041 	 * console support.
2042 	 */
2043 	if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports))
2044 		co->index = 0;
2045 	sport = imx_uart_ports[co->index];
2046 	if (sport == NULL)
2047 		return -ENODEV;
2048 
2049 	/* For setting the registers, we only need to enable the ipg clock. */
2050 	retval = clk_prepare_enable(sport->clk_ipg);
2051 	if (retval)
2052 		goto error_console;
2053 
2054 	if (options)
2055 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2056 	else
2057 		imx_uart_console_get_options(sport, &baud, &parity, &bits);
2058 
2059 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
2060 
2061 	retval = uart_set_options(&sport->port, co, baud, parity, bits, flow);
2062 
2063 	clk_disable(sport->clk_ipg);
2064 	if (retval) {
2065 		clk_unprepare(sport->clk_ipg);
2066 		goto error_console;
2067 	}
2068 
2069 	retval = clk_prepare(sport->clk_per);
2070 	if (retval)
2071 		clk_disable_unprepare(sport->clk_ipg);
2072 
2073 error_console:
2074 	return retval;
2075 }
2076 
2077 static struct uart_driver imx_uart_uart_driver;
2078 static struct console imx_uart_console = {
2079 	.name		= DEV_NAME,
2080 	.write		= imx_uart_console_write,
2081 	.device		= uart_console_device,
2082 	.setup		= imx_uart_console_setup,
2083 	.flags		= CON_PRINTBUFFER,
2084 	.index		= -1,
2085 	.data		= &imx_uart_uart_driver,
2086 };
2087 
2088 #define IMX_CONSOLE	&imx_uart_console
2089 
2090 #ifdef CONFIG_OF
2091 static void imx_uart_console_early_putchar(struct uart_port *port, int ch)
2092 {
2093 	struct imx_port *sport = (struct imx_port *)port;
2094 
2095 	while (imx_uart_readl(sport, IMX21_UTS) & UTS_TXFULL)
2096 		cpu_relax();
2097 
2098 	imx_uart_writel(sport, ch, URTX0);
2099 }
2100 
2101 static void imx_uart_console_early_write(struct console *con, const char *s,
2102 					 unsigned count)
2103 {
2104 	struct earlycon_device *dev = con->data;
2105 
2106 	uart_console_write(&dev->port, s, count, imx_uart_console_early_putchar);
2107 }
2108 
2109 static int __init
2110 imx_console_early_setup(struct earlycon_device *dev, const char *opt)
2111 {
2112 	if (!dev->port.membase)
2113 		return -ENODEV;
2114 
2115 	dev->con->write = imx_uart_console_early_write;
2116 
2117 	return 0;
2118 }
2119 OF_EARLYCON_DECLARE(ec_imx6q, "fsl,imx6q-uart", imx_console_early_setup);
2120 OF_EARLYCON_DECLARE(ec_imx21, "fsl,imx21-uart", imx_console_early_setup);
2121 #endif
2122 
2123 #else
2124 #define IMX_CONSOLE	NULL
2125 #endif
2126 
2127 static struct uart_driver imx_uart_uart_driver = {
2128 	.owner          = THIS_MODULE,
2129 	.driver_name    = DRIVER_NAME,
2130 	.dev_name       = DEV_NAME,
2131 	.major          = SERIAL_IMX_MAJOR,
2132 	.minor          = MINOR_START,
2133 	.nr             = ARRAY_SIZE(imx_uart_ports),
2134 	.cons           = IMX_CONSOLE,
2135 };
2136 
2137 #ifdef CONFIG_OF
2138 /*
2139  * This function returns 1 iff pdev isn't a device instatiated by dt, 0 iff it
2140  * could successfully get all information from dt or a negative errno.
2141  */
2142 static int imx_uart_probe_dt(struct imx_port *sport,
2143 			     struct platform_device *pdev)
2144 {
2145 	struct device_node *np = pdev->dev.of_node;
2146 	int ret;
2147 
2148 	sport->devdata = of_device_get_match_data(&pdev->dev);
2149 	if (!sport->devdata)
2150 		/* no device tree device */
2151 		return 1;
2152 
2153 	ret = of_alias_get_id(np, "serial");
2154 	if (ret < 0) {
2155 		dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret);
2156 		return ret;
2157 	}
2158 	sport->port.line = ret;
2159 
2160 	if (of_get_property(np, "uart-has-rtscts", NULL) ||
2161 	    of_get_property(np, "fsl,uart-has-rtscts", NULL) /* deprecated */)
2162 		sport->have_rtscts = 1;
2163 
2164 	if (of_get_property(np, "fsl,dte-mode", NULL))
2165 		sport->dte_mode = 1;
2166 
2167 	if (of_get_property(np, "rts-gpios", NULL))
2168 		sport->have_rtsgpio = 1;
2169 
2170 	return 0;
2171 }
2172 #else
2173 static inline int imx_uart_probe_dt(struct imx_port *sport,
2174 				    struct platform_device *pdev)
2175 {
2176 	return 1;
2177 }
2178 #endif
2179 
2180 static void imx_uart_probe_pdata(struct imx_port *sport,
2181 				 struct platform_device *pdev)
2182 {
2183 	struct imxuart_platform_data *pdata = dev_get_platdata(&pdev->dev);
2184 
2185 	sport->port.line = pdev->id;
2186 	sport->devdata = (struct imx_uart_data	*) pdev->id_entry->driver_data;
2187 
2188 	if (!pdata)
2189 		return;
2190 
2191 	if (pdata->flags & IMXUART_HAVE_RTSCTS)
2192 		sport->have_rtscts = 1;
2193 }
2194 
2195 static int imx_uart_probe(struct platform_device *pdev)
2196 {
2197 	struct imx_port *sport;
2198 	void __iomem *base;
2199 	int ret = 0;
2200 	u32 ucr1;
2201 	struct resource *res;
2202 	int txirq, rxirq, rtsirq;
2203 
2204 	sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL);
2205 	if (!sport)
2206 		return -ENOMEM;
2207 
2208 	ret = imx_uart_probe_dt(sport, pdev);
2209 	if (ret > 0)
2210 		imx_uart_probe_pdata(sport, pdev);
2211 	else if (ret < 0)
2212 		return ret;
2213 
2214 	if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) {
2215 		dev_err(&pdev->dev, "serial%d out of range\n",
2216 			sport->port.line);
2217 		return -EINVAL;
2218 	}
2219 
2220 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2221 	base = devm_ioremap_resource(&pdev->dev, res);
2222 	if (IS_ERR(base))
2223 		return PTR_ERR(base);
2224 
2225 	rxirq = platform_get_irq(pdev, 0);
2226 	txirq = platform_get_irq(pdev, 1);
2227 	rtsirq = platform_get_irq(pdev, 2);
2228 
2229 	sport->port.dev = &pdev->dev;
2230 	sport->port.mapbase = res->start;
2231 	sport->port.membase = base;
2232 	sport->port.type = PORT_IMX,
2233 	sport->port.iotype = UPIO_MEM;
2234 	sport->port.irq = rxirq;
2235 	sport->port.fifosize = 32;
2236 	sport->port.ops = &imx_uart_pops;
2237 	sport->port.rs485_config = imx_uart_rs485_config;
2238 	sport->port.flags = UPF_BOOT_AUTOCONF;
2239 	timer_setup(&sport->timer, imx_uart_timeout, 0);
2240 
2241 	sport->gpios = mctrl_gpio_init(&sport->port, 0);
2242 	if (IS_ERR(sport->gpios))
2243 		return PTR_ERR(sport->gpios);
2244 
2245 	sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2246 	if (IS_ERR(sport->clk_ipg)) {
2247 		ret = PTR_ERR(sport->clk_ipg);
2248 		dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret);
2249 		return ret;
2250 	}
2251 
2252 	sport->clk_per = devm_clk_get(&pdev->dev, "per");
2253 	if (IS_ERR(sport->clk_per)) {
2254 		ret = PTR_ERR(sport->clk_per);
2255 		dev_err(&pdev->dev, "failed to get per clk: %d\n", ret);
2256 		return ret;
2257 	}
2258 
2259 	sport->port.uartclk = clk_get_rate(sport->clk_per);
2260 
2261 	/* For register access, we only need to enable the ipg clock. */
2262 	ret = clk_prepare_enable(sport->clk_ipg);
2263 	if (ret) {
2264 		dev_err(&pdev->dev, "failed to enable per clk: %d\n", ret);
2265 		return ret;
2266 	}
2267 
2268 	/* initialize shadow register values */
2269 	sport->ucr1 = readl(sport->port.membase + UCR1);
2270 	sport->ucr2 = readl(sport->port.membase + UCR2);
2271 	sport->ucr3 = readl(sport->port.membase + UCR3);
2272 	sport->ucr4 = readl(sport->port.membase + UCR4);
2273 	sport->ufcr = readl(sport->port.membase + UFCR);
2274 
2275 	uart_get_rs485_mode(&pdev->dev, &sport->port.rs485);
2276 
2277 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2278 	    (!sport->have_rtscts && !sport->have_rtsgpio))
2279 		dev_err(&pdev->dev, "no RTS control, disabling rs485\n");
2280 
2281 	/*
2282 	 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B)
2283 	 * signal cannot be set low during transmission in case the
2284 	 * receiver is off (limitation of the i.MX UART IP).
2285 	 */
2286 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2287 	    sport->have_rtscts && !sport->have_rtsgpio &&
2288 	    (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) &&
2289 	     !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX)))
2290 		dev_err(&pdev->dev,
2291 			"low-active RTS not possible when receiver is off, enabling receiver\n");
2292 
2293 	imx_uart_rs485_config(&sport->port, &sport->port.rs485);
2294 
2295 	/* Disable interrupts before requesting them */
2296 	ucr1 = imx_uart_readl(sport, UCR1);
2297 	ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN |
2298 		 UCR1_TXMPTYEN | UCR1_RTSDEN);
2299 	imx_uart_writel(sport, ucr1, UCR1);
2300 
2301 	if (!imx_uart_is_imx1(sport) && sport->dte_mode) {
2302 		/*
2303 		 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI
2304 		 * and influences if UCR3_RI and UCR3_DCD changes the level of RI
2305 		 * and DCD (when they are outputs) or enables the respective
2306 		 * irqs. So set this bit early, i.e. before requesting irqs.
2307 		 */
2308 		u32 ufcr = imx_uart_readl(sport, UFCR);
2309 		if (!(ufcr & UFCR_DCEDTE))
2310 			imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR);
2311 
2312 		/*
2313 		 * Disable UCR3_RI and UCR3_DCD irqs. They are also not
2314 		 * enabled later because they cannot be cleared
2315 		 * (confirmed on i.MX25) which makes them unusable.
2316 		 */
2317 		imx_uart_writel(sport,
2318 				IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR,
2319 				UCR3);
2320 
2321 	} else {
2322 		u32 ucr3 = UCR3_DSR;
2323 		u32 ufcr = imx_uart_readl(sport, UFCR);
2324 		if (ufcr & UFCR_DCEDTE)
2325 			imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR);
2326 
2327 		if (!imx_uart_is_imx1(sport))
2328 			ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP;
2329 		imx_uart_writel(sport, ucr3, UCR3);
2330 	}
2331 
2332 	clk_disable_unprepare(sport->clk_ipg);
2333 
2334 	/*
2335 	 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later
2336 	 * chips only have one interrupt.
2337 	 */
2338 	if (txirq > 0) {
2339 		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0,
2340 				       dev_name(&pdev->dev), sport);
2341 		if (ret) {
2342 			dev_err(&pdev->dev, "failed to request rx irq: %d\n",
2343 				ret);
2344 			return ret;
2345 		}
2346 
2347 		ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0,
2348 				       dev_name(&pdev->dev), sport);
2349 		if (ret) {
2350 			dev_err(&pdev->dev, "failed to request tx irq: %d\n",
2351 				ret);
2352 			return ret;
2353 		}
2354 	} else {
2355 		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0,
2356 				       dev_name(&pdev->dev), sport);
2357 		if (ret) {
2358 			dev_err(&pdev->dev, "failed to request irq: %d\n", ret);
2359 			return ret;
2360 		}
2361 	}
2362 
2363 	imx_uart_ports[sport->port.line] = sport;
2364 
2365 	platform_set_drvdata(pdev, sport);
2366 
2367 	return uart_add_one_port(&imx_uart_uart_driver, &sport->port);
2368 }
2369 
2370 static int imx_uart_remove(struct platform_device *pdev)
2371 {
2372 	struct imx_port *sport = platform_get_drvdata(pdev);
2373 
2374 	return uart_remove_one_port(&imx_uart_uart_driver, &sport->port);
2375 }
2376 
2377 static void imx_uart_restore_context(struct imx_port *sport)
2378 {
2379 	if (!sport->context_saved)
2380 		return;
2381 
2382 	imx_uart_writel(sport, sport->saved_reg[4], UFCR);
2383 	imx_uart_writel(sport, sport->saved_reg[5], UESC);
2384 	imx_uart_writel(sport, sport->saved_reg[6], UTIM);
2385 	imx_uart_writel(sport, sport->saved_reg[7], UBIR);
2386 	imx_uart_writel(sport, sport->saved_reg[8], UBMR);
2387 	imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS);
2388 	imx_uart_writel(sport, sport->saved_reg[0], UCR1);
2389 	imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2);
2390 	imx_uart_writel(sport, sport->saved_reg[2], UCR3);
2391 	imx_uart_writel(sport, sport->saved_reg[3], UCR4);
2392 	sport->context_saved = false;
2393 }
2394 
2395 static void imx_uart_save_context(struct imx_port *sport)
2396 {
2397 	/* Save necessary regs */
2398 	sport->saved_reg[0] = imx_uart_readl(sport, UCR1);
2399 	sport->saved_reg[1] = imx_uart_readl(sport, UCR2);
2400 	sport->saved_reg[2] = imx_uart_readl(sport, UCR3);
2401 	sport->saved_reg[3] = imx_uart_readl(sport, UCR4);
2402 	sport->saved_reg[4] = imx_uart_readl(sport, UFCR);
2403 	sport->saved_reg[5] = imx_uart_readl(sport, UESC);
2404 	sport->saved_reg[6] = imx_uart_readl(sport, UTIM);
2405 	sport->saved_reg[7] = imx_uart_readl(sport, UBIR);
2406 	sport->saved_reg[8] = imx_uart_readl(sport, UBMR);
2407 	sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS);
2408 	sport->context_saved = true;
2409 }
2410 
2411 static void imx_uart_enable_wakeup(struct imx_port *sport, bool on)
2412 {
2413 	u32 ucr3;
2414 
2415 	ucr3 = imx_uart_readl(sport, UCR3);
2416 	if (on) {
2417 		imx_uart_writel(sport, USR1_AWAKE, USR1);
2418 		ucr3 |= UCR3_AWAKEN;
2419 	} else {
2420 		ucr3 &= ~UCR3_AWAKEN;
2421 	}
2422 	imx_uart_writel(sport, ucr3, UCR3);
2423 
2424 	if (sport->have_rtscts) {
2425 		u32 ucr1 = imx_uart_readl(sport, UCR1);
2426 		if (on)
2427 			ucr1 |= UCR1_RTSDEN;
2428 		else
2429 			ucr1 &= ~UCR1_RTSDEN;
2430 		imx_uart_writel(sport, ucr1, UCR1);
2431 	}
2432 }
2433 
2434 static int imx_uart_suspend_noirq(struct device *dev)
2435 {
2436 	struct imx_port *sport = dev_get_drvdata(dev);
2437 
2438 	imx_uart_save_context(sport);
2439 
2440 	clk_disable(sport->clk_ipg);
2441 
2442 	return 0;
2443 }
2444 
2445 static int imx_uart_resume_noirq(struct device *dev)
2446 {
2447 	struct imx_port *sport = dev_get_drvdata(dev);
2448 	int ret;
2449 
2450 	ret = clk_enable(sport->clk_ipg);
2451 	if (ret)
2452 		return ret;
2453 
2454 	imx_uart_restore_context(sport);
2455 
2456 	return 0;
2457 }
2458 
2459 static int imx_uart_suspend(struct device *dev)
2460 {
2461 	struct imx_port *sport = dev_get_drvdata(dev);
2462 	int ret;
2463 
2464 	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2465 	disable_irq(sport->port.irq);
2466 
2467 	ret = clk_prepare_enable(sport->clk_ipg);
2468 	if (ret)
2469 		return ret;
2470 
2471 	/* enable wakeup from i.MX UART */
2472 	imx_uart_enable_wakeup(sport, true);
2473 
2474 	return 0;
2475 }
2476 
2477 static int imx_uart_resume(struct device *dev)
2478 {
2479 	struct imx_port *sport = dev_get_drvdata(dev);
2480 
2481 	/* disable wakeup from i.MX UART */
2482 	imx_uart_enable_wakeup(sport, false);
2483 
2484 	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2485 	enable_irq(sport->port.irq);
2486 
2487 	clk_disable_unprepare(sport->clk_ipg);
2488 
2489 	return 0;
2490 }
2491 
2492 static int imx_uart_freeze(struct device *dev)
2493 {
2494 	struct imx_port *sport = dev_get_drvdata(dev);
2495 
2496 	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2497 
2498 	return clk_prepare_enable(sport->clk_ipg);
2499 }
2500 
2501 static int imx_uart_thaw(struct device *dev)
2502 {
2503 	struct imx_port *sport = dev_get_drvdata(dev);
2504 
2505 	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2506 
2507 	clk_disable_unprepare(sport->clk_ipg);
2508 
2509 	return 0;
2510 }
2511 
2512 static const struct dev_pm_ops imx_uart_pm_ops = {
2513 	.suspend_noirq = imx_uart_suspend_noirq,
2514 	.resume_noirq = imx_uart_resume_noirq,
2515 	.freeze_noirq = imx_uart_suspend_noirq,
2516 	.restore_noirq = imx_uart_resume_noirq,
2517 	.suspend = imx_uart_suspend,
2518 	.resume = imx_uart_resume,
2519 	.freeze = imx_uart_freeze,
2520 	.thaw = imx_uart_thaw,
2521 	.restore = imx_uart_thaw,
2522 };
2523 
2524 static struct platform_driver imx_uart_platform_driver = {
2525 	.probe = imx_uart_probe,
2526 	.remove = imx_uart_remove,
2527 
2528 	.id_table = imx_uart_devtype,
2529 	.driver = {
2530 		.name = "imx-uart",
2531 		.of_match_table = imx_uart_dt_ids,
2532 		.pm = &imx_uart_pm_ops,
2533 	},
2534 };
2535 
2536 static int __init imx_uart_init(void)
2537 {
2538 	int ret = uart_register_driver(&imx_uart_uart_driver);
2539 
2540 	if (ret)
2541 		return ret;
2542 
2543 	ret = platform_driver_register(&imx_uart_platform_driver);
2544 	if (ret != 0)
2545 		uart_unregister_driver(&imx_uart_uart_driver);
2546 
2547 	return ret;
2548 }
2549 
2550 static void __exit imx_uart_exit(void)
2551 {
2552 	platform_driver_unregister(&imx_uart_platform_driver);
2553 	uart_unregister_driver(&imx_uart_uart_driver);
2554 }
2555 
2556 module_init(imx_uart_init);
2557 module_exit(imx_uart_exit);
2558 
2559 MODULE_AUTHOR("Sascha Hauer");
2560 MODULE_DESCRIPTION("IMX generic serial port driver");
2561 MODULE_LICENSE("GPL");
2562 MODULE_ALIAS("platform:imx-uart");
2563