xref: /openbmc/linux/drivers/tty/serial/imx.c (revision e9b7b8b3)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Driver for Motorola/Freescale IMX serial ports
4  *
5  * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6  *
7  * Author: Sascha Hauer <sascha@saschahauer.de>
8  * Copyright (C) 2004 Pengutronix
9  */
10 
11 #include <linux/module.h>
12 #include <linux/ioport.h>
13 #include <linux/init.h>
14 #include <linux/console.h>
15 #include <linux/sysrq.h>
16 #include <linux/platform_device.h>
17 #include <linux/tty.h>
18 #include <linux/tty_flip.h>
19 #include <linux/serial_core.h>
20 #include <linux/serial.h>
21 #include <linux/clk.h>
22 #include <linux/delay.h>
23 #include <linux/ktime.h>
24 #include <linux/pinctrl/consumer.h>
25 #include <linux/rational.h>
26 #include <linux/slab.h>
27 #include <linux/of.h>
28 #include <linux/io.h>
29 #include <linux/dma-mapping.h>
30 
31 #include <asm/irq.h>
32 #include <linux/dma/imx-dma.h>
33 
34 #include "serial_mctrl_gpio.h"
35 
36 /* Register definitions */
37 #define URXD0 0x0  /* Receiver Register */
38 #define URTX0 0x40 /* Transmitter Register */
39 #define UCR1  0x80 /* Control Register 1 */
40 #define UCR2  0x84 /* Control Register 2 */
41 #define UCR3  0x88 /* Control Register 3 */
42 #define UCR4  0x8c /* Control Register 4 */
43 #define UFCR  0x90 /* FIFO Control Register */
44 #define USR1  0x94 /* Status Register 1 */
45 #define USR2  0x98 /* Status Register 2 */
46 #define UESC  0x9c /* Escape Character Register */
47 #define UTIM  0xa0 /* Escape Timer Register */
48 #define UBIR  0xa4 /* BRM Incremental Register */
49 #define UBMR  0xa8 /* BRM Modulator Register */
50 #define UBRC  0xac /* Baud Rate Count Register */
51 #define IMX21_ONEMS 0xb0 /* One Millisecond register */
52 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */
53 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/
54 
55 /* UART Control Register Bit Fields.*/
56 #define URXD_DUMMY_READ (1<<16)
57 #define URXD_CHARRDY	(1<<15)
58 #define URXD_ERR	(1<<14)
59 #define URXD_OVRRUN	(1<<13)
60 #define URXD_FRMERR	(1<<12)
61 #define URXD_BRK	(1<<11)
62 #define URXD_PRERR	(1<<10)
63 #define URXD_RX_DATA	(0xFF<<0)
64 #define UCR1_ADEN	(1<<15) /* Auto detect interrupt */
65 #define UCR1_ADBR	(1<<14) /* Auto detect baud rate */
66 #define UCR1_TRDYEN	(1<<13) /* Transmitter ready interrupt enable */
67 #define UCR1_IDEN	(1<<12) /* Idle condition interrupt */
68 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */
69 #define UCR1_RRDYEN	(1<<9)	/* Recv ready interrupt enable */
70 #define UCR1_RXDMAEN	(1<<8)	/* Recv ready DMA enable */
71 #define UCR1_IREN	(1<<7)	/* Infrared interface enable */
72 #define UCR1_TXMPTYEN	(1<<6)	/* Transimitter empty interrupt enable */
73 #define UCR1_RTSDEN	(1<<5)	/* RTS delta interrupt enable */
74 #define UCR1_SNDBRK	(1<<4)	/* Send break */
75 #define UCR1_TXDMAEN	(1<<3)	/* Transmitter ready DMA enable */
76 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */
77 #define UCR1_ATDMAEN    (1<<2)  /* Aging DMA Timer Enable */
78 #define UCR1_DOZE	(1<<1)	/* Doze */
79 #define UCR1_UARTEN	(1<<0)	/* UART enabled */
80 #define UCR2_ESCI	(1<<15)	/* Escape seq interrupt enable */
81 #define UCR2_IRTS	(1<<14)	/* Ignore RTS pin */
82 #define UCR2_CTSC	(1<<13)	/* CTS pin control */
83 #define UCR2_CTS	(1<<12)	/* Clear to send */
84 #define UCR2_ESCEN	(1<<11)	/* Escape enable */
85 #define UCR2_PREN	(1<<8)	/* Parity enable */
86 #define UCR2_PROE	(1<<7)	/* Parity odd/even */
87 #define UCR2_STPB	(1<<6)	/* Stop */
88 #define UCR2_WS		(1<<5)	/* Word size */
89 #define UCR2_RTSEN	(1<<4)	/* Request to send interrupt enable */
90 #define UCR2_ATEN	(1<<3)	/* Aging Timer Enable */
91 #define UCR2_TXEN	(1<<2)	/* Transmitter enabled */
92 #define UCR2_RXEN	(1<<1)	/* Receiver enabled */
93 #define UCR2_SRST	(1<<0)	/* SW reset */
94 #define UCR3_DTREN	(1<<13) /* DTR interrupt enable */
95 #define UCR3_PARERREN	(1<<12) /* Parity enable */
96 #define UCR3_FRAERREN	(1<<11) /* Frame error interrupt enable */
97 #define UCR3_DSR	(1<<10) /* Data set ready */
98 #define UCR3_DCD	(1<<9)	/* Data carrier detect */
99 #define UCR3_RI		(1<<8)	/* Ring indicator */
100 #define UCR3_ADNIMP	(1<<7)	/* Autobaud Detection Not Improved */
101 #define UCR3_RXDSEN	(1<<6)	/* Receive status interrupt enable */
102 #define UCR3_AIRINTEN	(1<<5)	/* Async IR wake interrupt enable */
103 #define UCR3_AWAKEN	(1<<4)	/* Async wake interrupt enable */
104 #define UCR3_DTRDEN	(1<<3)	/* Data Terminal Ready Delta Enable. */
105 #define IMX21_UCR3_RXDMUXSEL	(1<<2)	/* RXD Muxed Input Select */
106 #define UCR3_INVT	(1<<1)	/* Inverted Infrared transmission */
107 #define UCR3_BPEN	(1<<0)	/* Preset registers enable */
108 #define UCR4_CTSTL_SHF	10	/* CTS trigger level shift */
109 #define UCR4_CTSTL_MASK	0x3F	/* CTS trigger is 6 bits wide */
110 #define UCR4_INVR	(1<<9)	/* Inverted infrared reception */
111 #define UCR4_ENIRI	(1<<8)	/* Serial infrared interrupt enable */
112 #define UCR4_WKEN	(1<<7)	/* Wake interrupt enable */
113 #define UCR4_REF16	(1<<6)	/* Ref freq 16 MHz */
114 #define UCR4_IDDMAEN    (1<<6)  /* DMA IDLE Condition Detected */
115 #define UCR4_IRSC	(1<<5)	/* IR special case */
116 #define UCR4_TCEN	(1<<3)	/* Transmit complete interrupt enable */
117 #define UCR4_BKEN	(1<<2)	/* Break condition interrupt enable */
118 #define UCR4_OREN	(1<<1)	/* Receiver overrun interrupt enable */
119 #define UCR4_DREN	(1<<0)	/* Recv data ready interrupt enable */
120 #define UFCR_RXTL_SHF	0	/* Receiver trigger level shift */
121 #define UFCR_DCEDTE	(1<<6)	/* DCE/DTE mode select */
122 #define UFCR_RFDIV	(7<<7)	/* Reference freq divider mask */
123 #define UFCR_RFDIV_REG(x)	(((x) < 7 ? 6 - (x) : 6) << 7)
124 #define UFCR_TXTL_SHF	10	/* Transmitter trigger level shift */
125 #define USR1_PARITYERR	(1<<15) /* Parity error interrupt flag */
126 #define USR1_RTSS	(1<<14) /* RTS pin status */
127 #define USR1_TRDY	(1<<13) /* Transmitter ready interrupt/dma flag */
128 #define USR1_RTSD	(1<<12) /* RTS delta */
129 #define USR1_ESCF	(1<<11) /* Escape seq interrupt flag */
130 #define USR1_FRAMERR	(1<<10) /* Frame error interrupt flag */
131 #define USR1_RRDY	(1<<9)	 /* Receiver ready interrupt/dma flag */
132 #define USR1_AGTIM	(1<<8)	 /* Ageing timer interrupt flag */
133 #define USR1_DTRD	(1<<7)	 /* DTR Delta */
134 #define USR1_RXDS	 (1<<6)	 /* Receiver idle interrupt flag */
135 #define USR1_AIRINT	 (1<<5)	 /* Async IR wake interrupt flag */
136 #define USR1_AWAKE	 (1<<4)	 /* Aysnc wake interrupt flag */
137 #define USR2_ADET	 (1<<15) /* Auto baud rate detect complete */
138 #define USR2_TXFE	 (1<<14) /* Transmit buffer FIFO empty */
139 #define USR2_DTRF	 (1<<13) /* DTR edge interrupt flag */
140 #define USR2_IDLE	 (1<<12) /* Idle condition */
141 #define USR2_RIDELT	 (1<<10) /* Ring Interrupt Delta */
142 #define USR2_RIIN	 (1<<9)	 /* Ring Indicator Input */
143 #define USR2_IRINT	 (1<<8)	 /* Serial infrared interrupt flag */
144 #define USR2_WAKE	 (1<<7)	 /* Wake */
145 #define USR2_DCDIN	 (1<<5)	 /* Data Carrier Detect Input */
146 #define USR2_RTSF	 (1<<4)	 /* RTS edge interrupt flag */
147 #define USR2_TXDC	 (1<<3)	 /* Transmitter complete */
148 #define USR2_BRCD	 (1<<2)	 /* Break condition */
149 #define USR2_ORE	(1<<1)	 /* Overrun error */
150 #define USR2_RDR	(1<<0)	 /* Recv data ready */
151 #define UTS_FRCPERR	(1<<13) /* Force parity error */
152 #define UTS_LOOP	(1<<12)	 /* Loop tx and rx */
153 #define UTS_TXEMPTY	 (1<<6)	 /* TxFIFO empty */
154 #define UTS_RXEMPTY	 (1<<5)	 /* RxFIFO empty */
155 #define UTS_TXFULL	 (1<<4)	 /* TxFIFO full */
156 #define UTS_RXFULL	 (1<<3)	 /* RxFIFO full */
157 #define UTS_SOFTRST	 (1<<0)	 /* Software reset */
158 
159 /* We've been assigned a range on the "Low-density serial ports" major */
160 #define SERIAL_IMX_MAJOR	207
161 #define MINOR_START		16
162 #define DEV_NAME		"ttymxc"
163 
164 /*
165  * This determines how often we check the modem status signals
166  * for any change.  They generally aren't connected to an IRQ
167  * so we have to poll them.  We also check immediately before
168  * filling the TX fifo incase CTS has been dropped.
169  */
170 #define MCTRL_TIMEOUT	(250*HZ/1000)
171 
172 #define DRIVER_NAME "IMX-uart"
173 
174 #define UART_NR 8
175 
176 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */
177 enum imx_uart_type {
178 	IMX1_UART,
179 	IMX21_UART,
180 	IMX53_UART,
181 	IMX6Q_UART,
182 };
183 
184 /* device type dependent stuff */
185 struct imx_uart_data {
186 	unsigned uts_reg;
187 	enum imx_uart_type devtype;
188 };
189 
190 enum imx_tx_state {
191 	OFF,
192 	WAIT_AFTER_RTS,
193 	SEND,
194 	WAIT_AFTER_SEND,
195 };
196 
197 struct imx_port {
198 	struct uart_port	port;
199 	struct timer_list	timer;
200 	unsigned int		old_status;
201 	unsigned int		have_rtscts:1;
202 	unsigned int		have_rtsgpio:1;
203 	unsigned int		dte_mode:1;
204 	unsigned int		inverted_tx:1;
205 	unsigned int		inverted_rx:1;
206 	struct clk		*clk_ipg;
207 	struct clk		*clk_per;
208 	const struct imx_uart_data *devdata;
209 
210 	struct mctrl_gpios *gpios;
211 
212 	/* counter to stop 0xff flood */
213 	int idle_counter;
214 
215 	/* DMA fields */
216 	unsigned int		dma_is_enabled:1;
217 	unsigned int		dma_is_rxing:1;
218 	unsigned int		dma_is_txing:1;
219 	struct dma_chan		*dma_chan_rx, *dma_chan_tx;
220 	struct scatterlist	rx_sgl, tx_sgl[2];
221 	void			*rx_buf;
222 	struct circ_buf		rx_ring;
223 	unsigned int		rx_buf_size;
224 	unsigned int		rx_period_length;
225 	unsigned int		rx_periods;
226 	dma_cookie_t		rx_cookie;
227 	unsigned int		tx_bytes;
228 	unsigned int		dma_tx_nents;
229 	unsigned int            saved_reg[10];
230 	bool			context_saved;
231 
232 	enum imx_tx_state	tx_state;
233 	struct hrtimer		trigger_start_tx;
234 	struct hrtimer		trigger_stop_tx;
235 };
236 
237 struct imx_port_ucrs {
238 	unsigned int	ucr1;
239 	unsigned int	ucr2;
240 	unsigned int	ucr3;
241 };
242 
243 static struct imx_uart_data imx_uart_devdata[] = {
244 	[IMX1_UART] = {
245 		.uts_reg = IMX1_UTS,
246 		.devtype = IMX1_UART,
247 	},
248 	[IMX21_UART] = {
249 		.uts_reg = IMX21_UTS,
250 		.devtype = IMX21_UART,
251 	},
252 	[IMX53_UART] = {
253 		.uts_reg = IMX21_UTS,
254 		.devtype = IMX53_UART,
255 	},
256 	[IMX6Q_UART] = {
257 		.uts_reg = IMX21_UTS,
258 		.devtype = IMX6Q_UART,
259 	},
260 };
261 
262 static const struct of_device_id imx_uart_dt_ids[] = {
263 	{ .compatible = "fsl,imx6q-uart", .data = &imx_uart_devdata[IMX6Q_UART], },
264 	{ .compatible = "fsl,imx53-uart", .data = &imx_uart_devdata[IMX53_UART], },
265 	{ .compatible = "fsl,imx1-uart", .data = &imx_uart_devdata[IMX1_UART], },
266 	{ .compatible = "fsl,imx21-uart", .data = &imx_uart_devdata[IMX21_UART], },
267 	{ /* sentinel */ }
268 };
269 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids);
270 
271 static inline void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset)
272 {
273 	writel(val, sport->port.membase + offset);
274 }
275 
276 static inline u32 imx_uart_readl(struct imx_port *sport, u32 offset)
277 {
278 	return readl(sport->port.membase + offset);
279 }
280 
281 static inline unsigned imx_uart_uts_reg(struct imx_port *sport)
282 {
283 	return sport->devdata->uts_reg;
284 }
285 
286 static inline int imx_uart_is_imx1(struct imx_port *sport)
287 {
288 	return sport->devdata->devtype == IMX1_UART;
289 }
290 
291 /*
292  * Save and restore functions for UCR1, UCR2 and UCR3 registers
293  */
294 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE)
295 static void imx_uart_ucrs_save(struct imx_port *sport,
296 			       struct imx_port_ucrs *ucr)
297 {
298 	/* save control registers */
299 	ucr->ucr1 = imx_uart_readl(sport, UCR1);
300 	ucr->ucr2 = imx_uart_readl(sport, UCR2);
301 	ucr->ucr3 = imx_uart_readl(sport, UCR3);
302 }
303 
304 static void imx_uart_ucrs_restore(struct imx_port *sport,
305 				  struct imx_port_ucrs *ucr)
306 {
307 	/* restore control registers */
308 	imx_uart_writel(sport, ucr->ucr1, UCR1);
309 	imx_uart_writel(sport, ucr->ucr2, UCR2);
310 	imx_uart_writel(sport, ucr->ucr3, UCR3);
311 }
312 #endif
313 
314 /* called with port.lock taken and irqs caller dependent */
315 static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2)
316 {
317 	*ucr2 &= ~(UCR2_CTSC | UCR2_CTS);
318 
319 	mctrl_gpio_set(sport->gpios, sport->port.mctrl | TIOCM_RTS);
320 }
321 
322 /* called with port.lock taken and irqs caller dependent */
323 static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2)
324 {
325 	*ucr2 &= ~UCR2_CTSC;
326 	*ucr2 |= UCR2_CTS;
327 
328 	mctrl_gpio_set(sport->gpios, sport->port.mctrl & ~TIOCM_RTS);
329 }
330 
331 static void start_hrtimer_ms(struct hrtimer *hrt, unsigned long msec)
332 {
333        hrtimer_start(hrt, ms_to_ktime(msec), HRTIMER_MODE_REL);
334 }
335 
336 /* called with port.lock taken and irqs off */
337 static void imx_uart_soft_reset(struct imx_port *sport)
338 {
339 	int i = 10;
340 	u32 ucr2, ubir, ubmr, uts;
341 
342 	/*
343 	 * According to the Reference Manual description of the UART SRST bit:
344 	 *
345 	 * "Reset the transmit and receive state machines,
346 	 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD
347 	 * and UTS[6-3]".
348 	 *
349 	 * We don't need to restore the old values from USR1, USR2, URXD and
350 	 * UTXD. UBRC is read only, so only save/restore the other three
351 	 * registers.
352 	 */
353 	ubir = imx_uart_readl(sport, UBIR);
354 	ubmr = imx_uart_readl(sport, UBMR);
355 	uts = imx_uart_readl(sport, IMX21_UTS);
356 
357 	ucr2 = imx_uart_readl(sport, UCR2);
358 	imx_uart_writel(sport, ucr2 & ~UCR2_SRST, UCR2);
359 
360 	while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0))
361 		udelay(1);
362 
363 	/* Restore the registers */
364 	imx_uart_writel(sport, ubir, UBIR);
365 	imx_uart_writel(sport, ubmr, UBMR);
366 	imx_uart_writel(sport, uts, IMX21_UTS);
367 
368 	sport->idle_counter = 0;
369 }
370 
371 static void imx_uart_disable_loopback_rs485(struct imx_port *sport)
372 {
373 	unsigned int uts;
374 
375 	/* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */
376 	uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
377 	uts &= ~UTS_LOOP;
378 	imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
379 }
380 
381 /* called with port.lock taken and irqs off */
382 static void imx_uart_start_rx(struct uart_port *port)
383 {
384 	struct imx_port *sport = (struct imx_port *)port;
385 	unsigned int ucr1, ucr2;
386 
387 	ucr1 = imx_uart_readl(sport, UCR1);
388 	ucr2 = imx_uart_readl(sport, UCR2);
389 
390 	ucr2 |= UCR2_RXEN;
391 
392 	if (sport->dma_is_enabled) {
393 		ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN;
394 	} else {
395 		ucr1 |= UCR1_RRDYEN;
396 		ucr2 |= UCR2_ATEN;
397 	}
398 
399 	/* Write UCR2 first as it includes RXEN */
400 	imx_uart_writel(sport, ucr2, UCR2);
401 	imx_uart_writel(sport, ucr1, UCR1);
402 	imx_uart_disable_loopback_rs485(sport);
403 }
404 
405 /* called with port.lock taken and irqs off */
406 static void imx_uart_stop_tx(struct uart_port *port)
407 {
408 	struct imx_port *sport = (struct imx_port *)port;
409 	u32 ucr1, ucr4, usr2;
410 
411 	if (sport->tx_state == OFF)
412 		return;
413 
414 	/*
415 	 * We are maybe in the SMP context, so if the DMA TX thread is running
416 	 * on other cpu, we have to wait for it to finish.
417 	 */
418 	if (sport->dma_is_txing)
419 		return;
420 
421 	ucr1 = imx_uart_readl(sport, UCR1);
422 	imx_uart_writel(sport, ucr1 & ~UCR1_TRDYEN, UCR1);
423 
424 	usr2 = imx_uart_readl(sport, USR2);
425 	if (!(usr2 & USR2_TXDC)) {
426 		/* The shifter is still busy, so retry once TC triggers */
427 		return;
428 	}
429 
430 	ucr4 = imx_uart_readl(sport, UCR4);
431 	ucr4 &= ~UCR4_TCEN;
432 	imx_uart_writel(sport, ucr4, UCR4);
433 
434 	/* in rs485 mode disable transmitter */
435 	if (port->rs485.flags & SER_RS485_ENABLED) {
436 		if (sport->tx_state == SEND) {
437 			sport->tx_state = WAIT_AFTER_SEND;
438 
439 			if (port->rs485.delay_rts_after_send > 0) {
440 				start_hrtimer_ms(&sport->trigger_stop_tx,
441 					 port->rs485.delay_rts_after_send);
442 				return;
443 			}
444 
445 			/* continue without any delay */
446 		}
447 
448 		if (sport->tx_state == WAIT_AFTER_RTS ||
449 		    sport->tx_state == WAIT_AFTER_SEND) {
450 			u32 ucr2;
451 
452 			hrtimer_try_to_cancel(&sport->trigger_start_tx);
453 
454 			ucr2 = imx_uart_readl(sport, UCR2);
455 			if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
456 				imx_uart_rts_active(sport, &ucr2);
457 			else
458 				imx_uart_rts_inactive(sport, &ucr2);
459 			imx_uart_writel(sport, ucr2, UCR2);
460 
461 			if (!port->rs485_rx_during_tx_gpio)
462 				imx_uart_start_rx(port);
463 
464 			sport->tx_state = OFF;
465 		}
466 	} else {
467 		sport->tx_state = OFF;
468 	}
469 }
470 
471 /* called with port.lock taken and irqs off */
472 static void imx_uart_stop_rx(struct uart_port *port)
473 {
474 	struct imx_port *sport = (struct imx_port *)port;
475 	u32 ucr1, ucr2, ucr4, uts;
476 
477 	ucr1 = imx_uart_readl(sport, UCR1);
478 	ucr2 = imx_uart_readl(sport, UCR2);
479 	ucr4 = imx_uart_readl(sport, UCR4);
480 
481 	if (sport->dma_is_enabled) {
482 		ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN);
483 	} else {
484 		ucr1 &= ~UCR1_RRDYEN;
485 		ucr2 &= ~UCR2_ATEN;
486 		ucr4 &= ~UCR4_OREN;
487 	}
488 	imx_uart_writel(sport, ucr1, UCR1);
489 	imx_uart_writel(sport, ucr4, UCR4);
490 
491 	/* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */
492 	if (port->rs485.flags & SER_RS485_ENABLED &&
493 	    port->rs485.flags & SER_RS485_RTS_ON_SEND &&
494 	    sport->have_rtscts && !sport->have_rtsgpio) {
495 		uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
496 		uts |= UTS_LOOP;
497 		imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
498 		ucr2 |= UCR2_RXEN;
499 	} else {
500 		ucr2 &= ~UCR2_RXEN;
501 	}
502 
503 	imx_uart_writel(sport, ucr2, UCR2);
504 }
505 
506 /* called with port.lock taken and irqs off */
507 static void imx_uart_enable_ms(struct uart_port *port)
508 {
509 	struct imx_port *sport = (struct imx_port *)port;
510 
511 	mod_timer(&sport->timer, jiffies);
512 
513 	mctrl_gpio_enable_ms(sport->gpios);
514 }
515 
516 static void imx_uart_dma_tx(struct imx_port *sport);
517 
518 /* called with port.lock taken and irqs off */
519 static inline void imx_uart_transmit_buffer(struct imx_port *sport)
520 {
521 	struct circ_buf *xmit = &sport->port.state->xmit;
522 
523 	if (sport->port.x_char) {
524 		/* Send next char */
525 		imx_uart_writel(sport, sport->port.x_char, URTX0);
526 		sport->port.icount.tx++;
527 		sport->port.x_char = 0;
528 		return;
529 	}
530 
531 	if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) {
532 		imx_uart_stop_tx(&sport->port);
533 		return;
534 	}
535 
536 	if (sport->dma_is_enabled) {
537 		u32 ucr1;
538 		/*
539 		 * We've just sent a X-char Ensure the TX DMA is enabled
540 		 * and the TX IRQ is disabled.
541 		 **/
542 		ucr1 = imx_uart_readl(sport, UCR1);
543 		ucr1 &= ~UCR1_TRDYEN;
544 		if (sport->dma_is_txing) {
545 			ucr1 |= UCR1_TXDMAEN;
546 			imx_uart_writel(sport, ucr1, UCR1);
547 		} else {
548 			imx_uart_writel(sport, ucr1, UCR1);
549 			imx_uart_dma_tx(sport);
550 		}
551 
552 		return;
553 	}
554 
555 	while (!uart_circ_empty(xmit) &&
556 	       !(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)) {
557 		/* send xmit->buf[xmit->tail]
558 		 * out the port here */
559 		imx_uart_writel(sport, xmit->buf[xmit->tail], URTX0);
560 		uart_xmit_advance(&sport->port, 1);
561 	}
562 
563 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
564 		uart_write_wakeup(&sport->port);
565 
566 	if (uart_circ_empty(xmit))
567 		imx_uart_stop_tx(&sport->port);
568 }
569 
570 static void imx_uart_dma_tx_callback(void *data)
571 {
572 	struct imx_port *sport = data;
573 	struct scatterlist *sgl = &sport->tx_sgl[0];
574 	struct circ_buf *xmit = &sport->port.state->xmit;
575 	unsigned long flags;
576 	u32 ucr1;
577 
578 	spin_lock_irqsave(&sport->port.lock, flags);
579 
580 	dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
581 
582 	ucr1 = imx_uart_readl(sport, UCR1);
583 	ucr1 &= ~UCR1_TXDMAEN;
584 	imx_uart_writel(sport, ucr1, UCR1);
585 
586 	uart_xmit_advance(&sport->port, sport->tx_bytes);
587 
588 	dev_dbg(sport->port.dev, "we finish the TX DMA.\n");
589 
590 	sport->dma_is_txing = 0;
591 
592 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
593 		uart_write_wakeup(&sport->port);
594 
595 	if (!uart_circ_empty(xmit) && !uart_tx_stopped(&sport->port))
596 		imx_uart_dma_tx(sport);
597 	else if (sport->port.rs485.flags & SER_RS485_ENABLED) {
598 		u32 ucr4 = imx_uart_readl(sport, UCR4);
599 		ucr4 |= UCR4_TCEN;
600 		imx_uart_writel(sport, ucr4, UCR4);
601 	}
602 
603 	spin_unlock_irqrestore(&sport->port.lock, flags);
604 }
605 
606 /* called with port.lock taken and irqs off */
607 static void imx_uart_dma_tx(struct imx_port *sport)
608 {
609 	struct circ_buf *xmit = &sport->port.state->xmit;
610 	struct scatterlist *sgl = sport->tx_sgl;
611 	struct dma_async_tx_descriptor *desc;
612 	struct dma_chan	*chan = sport->dma_chan_tx;
613 	struct device *dev = sport->port.dev;
614 	u32 ucr1, ucr4;
615 	int ret;
616 
617 	if (sport->dma_is_txing)
618 		return;
619 
620 	ucr4 = imx_uart_readl(sport, UCR4);
621 	ucr4 &= ~UCR4_TCEN;
622 	imx_uart_writel(sport, ucr4, UCR4);
623 
624 	sport->tx_bytes = uart_circ_chars_pending(xmit);
625 
626 	if (xmit->tail < xmit->head || xmit->head == 0) {
627 		sport->dma_tx_nents = 1;
628 		sg_init_one(sgl, xmit->buf + xmit->tail, sport->tx_bytes);
629 	} else {
630 		sport->dma_tx_nents = 2;
631 		sg_init_table(sgl, 2);
632 		sg_set_buf(sgl, xmit->buf + xmit->tail,
633 				UART_XMIT_SIZE - xmit->tail);
634 		sg_set_buf(sgl + 1, xmit->buf, xmit->head);
635 	}
636 
637 	ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
638 	if (ret == 0) {
639 		dev_err(dev, "DMA mapping error for TX.\n");
640 		return;
641 	}
642 	desc = dmaengine_prep_slave_sg(chan, sgl, ret,
643 					DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);
644 	if (!desc) {
645 		dma_unmap_sg(dev, sgl, sport->dma_tx_nents,
646 			     DMA_TO_DEVICE);
647 		dev_err(dev, "We cannot prepare for the TX slave dma!\n");
648 		return;
649 	}
650 	desc->callback = imx_uart_dma_tx_callback;
651 	desc->callback_param = sport;
652 
653 	dev_dbg(dev, "TX: prepare to send %lu bytes by DMA.\n",
654 			uart_circ_chars_pending(xmit));
655 
656 	ucr1 = imx_uart_readl(sport, UCR1);
657 	ucr1 |= UCR1_TXDMAEN;
658 	imx_uart_writel(sport, ucr1, UCR1);
659 
660 	/* fire it */
661 	sport->dma_is_txing = 1;
662 	dmaengine_submit(desc);
663 	dma_async_issue_pending(chan);
664 	return;
665 }
666 
667 /* called with port.lock taken and irqs off */
668 static void imx_uart_start_tx(struct uart_port *port)
669 {
670 	struct imx_port *sport = (struct imx_port *)port;
671 	u32 ucr1;
672 
673 	if (!sport->port.x_char && uart_circ_empty(&port->state->xmit))
674 		return;
675 
676 	/*
677 	 * We cannot simply do nothing here if sport->tx_state == SEND already
678 	 * because UCR1_TXMPTYEN might already have been cleared in
679 	 * imx_uart_stop_tx(), but tx_state is still SEND.
680 	 */
681 
682 	if (port->rs485.flags & SER_RS485_ENABLED) {
683 		if (sport->tx_state == OFF) {
684 			u32 ucr2 = imx_uart_readl(sport, UCR2);
685 			if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
686 				imx_uart_rts_active(sport, &ucr2);
687 			else
688 				imx_uart_rts_inactive(sport, &ucr2);
689 			imx_uart_writel(sport, ucr2, UCR2);
690 
691 			if (!(port->rs485.flags & SER_RS485_RX_DURING_TX) &&
692 			    !port->rs485_rx_during_tx_gpio)
693 				imx_uart_stop_rx(port);
694 
695 			sport->tx_state = WAIT_AFTER_RTS;
696 
697 			if (port->rs485.delay_rts_before_send > 0) {
698 				start_hrtimer_ms(&sport->trigger_start_tx,
699 					 port->rs485.delay_rts_before_send);
700 				return;
701 			}
702 
703 			/* continue without any delay */
704 		}
705 
706 		if (sport->tx_state == WAIT_AFTER_SEND
707 		    || sport->tx_state == WAIT_AFTER_RTS) {
708 
709 			hrtimer_try_to_cancel(&sport->trigger_stop_tx);
710 
711 			/*
712 			 * Enable transmitter and shifter empty irq only if DMA
713 			 * is off.  In the DMA case this is done in the
714 			 * tx-callback.
715 			 */
716 			if (!sport->dma_is_enabled) {
717 				u32 ucr4 = imx_uart_readl(sport, UCR4);
718 				ucr4 |= UCR4_TCEN;
719 				imx_uart_writel(sport, ucr4, UCR4);
720 			}
721 
722 			sport->tx_state = SEND;
723 		}
724 	} else {
725 		sport->tx_state = SEND;
726 	}
727 
728 	if (!sport->dma_is_enabled) {
729 		ucr1 = imx_uart_readl(sport, UCR1);
730 		imx_uart_writel(sport, ucr1 | UCR1_TRDYEN, UCR1);
731 	}
732 
733 	if (sport->dma_is_enabled) {
734 		if (sport->port.x_char) {
735 			/* We have X-char to send, so enable TX IRQ and
736 			 * disable TX DMA to let TX interrupt to send X-char */
737 			ucr1 = imx_uart_readl(sport, UCR1);
738 			ucr1 &= ~UCR1_TXDMAEN;
739 			ucr1 |= UCR1_TRDYEN;
740 			imx_uart_writel(sport, ucr1, UCR1);
741 			return;
742 		}
743 
744 		if (!uart_circ_empty(&port->state->xmit) &&
745 		    !uart_tx_stopped(port))
746 			imx_uart_dma_tx(sport);
747 		return;
748 	}
749 }
750 
751 static irqreturn_t __imx_uart_rtsint(int irq, void *dev_id)
752 {
753 	struct imx_port *sport = dev_id;
754 	u32 usr1;
755 
756 	imx_uart_writel(sport, USR1_RTSD, USR1);
757 	usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS;
758 	uart_handle_cts_change(&sport->port, usr1);
759 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
760 
761 	return IRQ_HANDLED;
762 }
763 
764 static irqreturn_t imx_uart_rtsint(int irq, void *dev_id)
765 {
766 	struct imx_port *sport = dev_id;
767 	irqreturn_t ret;
768 
769 	spin_lock(&sport->port.lock);
770 
771 	ret = __imx_uart_rtsint(irq, dev_id);
772 
773 	spin_unlock(&sport->port.lock);
774 
775 	return ret;
776 }
777 
778 static irqreturn_t imx_uart_txint(int irq, void *dev_id)
779 {
780 	struct imx_port *sport = dev_id;
781 
782 	spin_lock(&sport->port.lock);
783 	imx_uart_transmit_buffer(sport);
784 	spin_unlock(&sport->port.lock);
785 	return IRQ_HANDLED;
786 }
787 
788 /* Check if hardware Rx flood is in progress, and issue soft reset to stop it.
789  * This is to be called from Rx ISRs only when some bytes were actually
790  * received.
791  *
792  * A way to reproduce the flood (checked on iMX6SX) is: open iMX UART at 9600
793  * 8N1, and from external source send 0xf0 char at 115200 8N1. In about 90% of
794  * cases this starts a flood of "receiving" of 0xff characters by the iMX6 UART
795  * that is terminated by any activity on RxD line, or could be stopped by
796  * issuing soft reset to the UART (just stop/start of RX does not help). Note
797  * that what we do here is sending isolated start bit about 2.4 times shorter
798  * than it is to be on UART configured baud rate.
799  */
800 static void imx_uart_check_flood(struct imx_port *sport, u32 usr2)
801 {
802 	/* To detect hardware 0xff flood we monitor RxD line between RX
803 	 * interrupts to isolate "receiving" of char(s) with no activity
804 	 * on RxD line, that'd never happen on actual data transfers.
805 	 *
806 	 * We use USR2_WAKE bit to check for activity on RxD line, but we have a
807 	 * race here if we clear USR2_WAKE when receiving of a char is in
808 	 * progress, so we might get RX interrupt later with USR2_WAKE bit
809 	 * cleared. Note though that as we don't try to clear USR2_WAKE when we
810 	 * detected no activity, this race may hide actual activity only once.
811 	 *
812 	 * Yet another case where receive interrupt may occur without RxD
813 	 * activity is expiration of aging timer, so we consider this as well.
814 	 *
815 	 * We use 'idle_counter' to ensure that we got at least so many RX
816 	 * interrupts without any detected activity on RxD line. 2 cases
817 	 * described plus 1 to be on the safe side gives us a margin of 3,
818 	 * below. In practice I was not able to produce a false positive to
819 	 * induce soft reset at regular data transfers even using 1 as the
820 	 * margin, so 3 is actually very strong.
821 	 *
822 	 * We count interrupts, not chars in 'idle-counter' for simplicity.
823 	 */
824 
825 	if (usr2 & USR2_WAKE) {
826 		imx_uart_writel(sport, USR2_WAKE, USR2);
827 		sport->idle_counter = 0;
828 	} else if (++sport->idle_counter > 3) {
829 		dev_warn(sport->port.dev, "RX flood detected: soft reset.");
830 		imx_uart_soft_reset(sport); /* also clears 'sport->idle_counter' */
831 	}
832 }
833 
834 static irqreturn_t __imx_uart_rxint(int irq, void *dev_id)
835 {
836 	struct imx_port *sport = dev_id;
837 	struct tty_port *port = &sport->port.state->port;
838 	u32 usr2, rx;
839 
840 	/* If we received something, check for 0xff flood */
841 	usr2 = imx_uart_readl(sport, USR2);
842 	if (usr2 & USR2_RDR)
843 		imx_uart_check_flood(sport, usr2);
844 
845 	while ((rx = imx_uart_readl(sport, URXD0)) & URXD_CHARRDY) {
846 		unsigned int flg = TTY_NORMAL;
847 		sport->port.icount.rx++;
848 
849 		if (unlikely(rx & URXD_ERR)) {
850 			if (rx & URXD_BRK) {
851 				sport->port.icount.brk++;
852 				if (uart_handle_break(&sport->port))
853 					continue;
854 			}
855 			else if (rx & URXD_PRERR)
856 				sport->port.icount.parity++;
857 			else if (rx & URXD_FRMERR)
858 				sport->port.icount.frame++;
859 			if (rx & URXD_OVRRUN)
860 				sport->port.icount.overrun++;
861 
862 			if (rx & sport->port.ignore_status_mask)
863 				continue;
864 
865 			rx &= (sport->port.read_status_mask | 0xFF);
866 
867 			if (rx & URXD_BRK)
868 				flg = TTY_BREAK;
869 			else if (rx & URXD_PRERR)
870 				flg = TTY_PARITY;
871 			else if (rx & URXD_FRMERR)
872 				flg = TTY_FRAME;
873 			if (rx & URXD_OVRRUN)
874 				flg = TTY_OVERRUN;
875 
876 			sport->port.sysrq = 0;
877 		} else if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx)) {
878 			continue;
879 		}
880 
881 		if (sport->port.ignore_status_mask & URXD_DUMMY_READ)
882 			continue;
883 
884 		if (tty_insert_flip_char(port, rx, flg) == 0)
885 			sport->port.icount.buf_overrun++;
886 	}
887 
888 	tty_flip_buffer_push(port);
889 
890 	return IRQ_HANDLED;
891 }
892 
893 static irqreturn_t imx_uart_rxint(int irq, void *dev_id)
894 {
895 	struct imx_port *sport = dev_id;
896 	irqreturn_t ret;
897 
898 	spin_lock(&sport->port.lock);
899 
900 	ret = __imx_uart_rxint(irq, dev_id);
901 
902 	spin_unlock(&sport->port.lock);
903 
904 	return ret;
905 }
906 
907 static void imx_uart_clear_rx_errors(struct imx_port *sport);
908 
909 /*
910  * We have a modem side uart, so the meanings of RTS and CTS are inverted.
911  */
912 static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport)
913 {
914 	unsigned int tmp = TIOCM_DSR;
915 	unsigned usr1 = imx_uart_readl(sport, USR1);
916 	unsigned usr2 = imx_uart_readl(sport, USR2);
917 
918 	if (usr1 & USR1_RTSS)
919 		tmp |= TIOCM_CTS;
920 
921 	/* in DCE mode DCDIN is always 0 */
922 	if (!(usr2 & USR2_DCDIN))
923 		tmp |= TIOCM_CAR;
924 
925 	if (sport->dte_mode)
926 		if (!(imx_uart_readl(sport, USR2) & USR2_RIIN))
927 			tmp |= TIOCM_RI;
928 
929 	return tmp;
930 }
931 
932 /*
933  * Handle any change of modem status signal since we were last called.
934  */
935 static void imx_uart_mctrl_check(struct imx_port *sport)
936 {
937 	unsigned int status, changed;
938 
939 	status = imx_uart_get_hwmctrl(sport);
940 	changed = status ^ sport->old_status;
941 
942 	if (changed == 0)
943 		return;
944 
945 	sport->old_status = status;
946 
947 	if (changed & TIOCM_RI && status & TIOCM_RI)
948 		sport->port.icount.rng++;
949 	if (changed & TIOCM_DSR)
950 		sport->port.icount.dsr++;
951 	if (changed & TIOCM_CAR)
952 		uart_handle_dcd_change(&sport->port, status & TIOCM_CAR);
953 	if (changed & TIOCM_CTS)
954 		uart_handle_cts_change(&sport->port, status & TIOCM_CTS);
955 
956 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
957 }
958 
959 static irqreturn_t imx_uart_int(int irq, void *dev_id)
960 {
961 	struct imx_port *sport = dev_id;
962 	unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4;
963 	irqreturn_t ret = IRQ_NONE;
964 
965 	spin_lock(&sport->port.lock);
966 
967 	usr1 = imx_uart_readl(sport, USR1);
968 	usr2 = imx_uart_readl(sport, USR2);
969 	ucr1 = imx_uart_readl(sport, UCR1);
970 	ucr2 = imx_uart_readl(sport, UCR2);
971 	ucr3 = imx_uart_readl(sport, UCR3);
972 	ucr4 = imx_uart_readl(sport, UCR4);
973 
974 	/*
975 	 * Even if a condition is true that can trigger an irq only handle it if
976 	 * the respective irq source is enabled. This prevents some undesired
977 	 * actions, for example if a character that sits in the RX FIFO and that
978 	 * should be fetched via DMA is tried to be fetched using PIO. Or the
979 	 * receiver is currently off and so reading from URXD0 results in an
980 	 * exception. So just mask the (raw) status bits for disabled irqs.
981 	 */
982 	if ((ucr1 & UCR1_RRDYEN) == 0)
983 		usr1 &= ~USR1_RRDY;
984 	if ((ucr2 & UCR2_ATEN) == 0)
985 		usr1 &= ~USR1_AGTIM;
986 	if ((ucr1 & UCR1_TRDYEN) == 0)
987 		usr1 &= ~USR1_TRDY;
988 	if ((ucr4 & UCR4_TCEN) == 0)
989 		usr2 &= ~USR2_TXDC;
990 	if ((ucr3 & UCR3_DTRDEN) == 0)
991 		usr1 &= ~USR1_DTRD;
992 	if ((ucr1 & UCR1_RTSDEN) == 0)
993 		usr1 &= ~USR1_RTSD;
994 	if ((ucr3 & UCR3_AWAKEN) == 0)
995 		usr1 &= ~USR1_AWAKE;
996 	if ((ucr4 & UCR4_OREN) == 0)
997 		usr2 &= ~USR2_ORE;
998 
999 	if (usr1 & (USR1_RRDY | USR1_AGTIM)) {
1000 		imx_uart_writel(sport, USR1_AGTIM, USR1);
1001 
1002 		__imx_uart_rxint(irq, dev_id);
1003 		ret = IRQ_HANDLED;
1004 	}
1005 
1006 	if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) {
1007 		imx_uart_transmit_buffer(sport);
1008 		ret = IRQ_HANDLED;
1009 	}
1010 
1011 	if (usr1 & USR1_DTRD) {
1012 		imx_uart_writel(sport, USR1_DTRD, USR1);
1013 
1014 		imx_uart_mctrl_check(sport);
1015 
1016 		ret = IRQ_HANDLED;
1017 	}
1018 
1019 	if (usr1 & USR1_RTSD) {
1020 		__imx_uart_rtsint(irq, dev_id);
1021 		ret = IRQ_HANDLED;
1022 	}
1023 
1024 	if (usr1 & USR1_AWAKE) {
1025 		imx_uart_writel(sport, USR1_AWAKE, USR1);
1026 		ret = IRQ_HANDLED;
1027 	}
1028 
1029 	if (usr2 & USR2_ORE) {
1030 		sport->port.icount.overrun++;
1031 		imx_uart_writel(sport, USR2_ORE, USR2);
1032 		ret = IRQ_HANDLED;
1033 	}
1034 
1035 	spin_unlock(&sport->port.lock);
1036 
1037 	return ret;
1038 }
1039 
1040 /*
1041  * Return TIOCSER_TEMT when transmitter is not busy.
1042  */
1043 static unsigned int imx_uart_tx_empty(struct uart_port *port)
1044 {
1045 	struct imx_port *sport = (struct imx_port *)port;
1046 	unsigned int ret;
1047 
1048 	ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ?  TIOCSER_TEMT : 0;
1049 
1050 	/* If the TX DMA is working, return 0. */
1051 	if (sport->dma_is_txing)
1052 		ret = 0;
1053 
1054 	return ret;
1055 }
1056 
1057 /* called with port.lock taken and irqs off */
1058 static unsigned int imx_uart_get_mctrl(struct uart_port *port)
1059 {
1060 	struct imx_port *sport = (struct imx_port *)port;
1061 	unsigned int ret = imx_uart_get_hwmctrl(sport);
1062 
1063 	mctrl_gpio_get(sport->gpios, &ret);
1064 
1065 	return ret;
1066 }
1067 
1068 /* called with port.lock taken and irqs off */
1069 static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
1070 {
1071 	struct imx_port *sport = (struct imx_port *)port;
1072 	u32 ucr3, uts;
1073 
1074 	if (!(port->rs485.flags & SER_RS485_ENABLED)) {
1075 		u32 ucr2;
1076 
1077 		/*
1078 		 * Turn off autoRTS if RTS is lowered and restore autoRTS
1079 		 * setting if RTS is raised.
1080 		 */
1081 		ucr2 = imx_uart_readl(sport, UCR2);
1082 		ucr2 &= ~(UCR2_CTS | UCR2_CTSC);
1083 		if (mctrl & TIOCM_RTS) {
1084 			ucr2 |= UCR2_CTS;
1085 			/*
1086 			 * UCR2_IRTS is unset if and only if the port is
1087 			 * configured for CRTSCTS, so we use inverted UCR2_IRTS
1088 			 * to get the state to restore to.
1089 			 */
1090 			if (!(ucr2 & UCR2_IRTS))
1091 				ucr2 |= UCR2_CTSC;
1092 		}
1093 		imx_uart_writel(sport, ucr2, UCR2);
1094 	}
1095 
1096 	ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR;
1097 	if (!(mctrl & TIOCM_DTR))
1098 		ucr3 |= UCR3_DSR;
1099 	imx_uart_writel(sport, ucr3, UCR3);
1100 
1101 	uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP;
1102 	if (mctrl & TIOCM_LOOP)
1103 		uts |= UTS_LOOP;
1104 	imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
1105 
1106 	mctrl_gpio_set(sport->gpios, mctrl);
1107 }
1108 
1109 /*
1110  * Interrupts always disabled.
1111  */
1112 static void imx_uart_break_ctl(struct uart_port *port, int break_state)
1113 {
1114 	struct imx_port *sport = (struct imx_port *)port;
1115 	unsigned long flags;
1116 	u32 ucr1;
1117 
1118 	spin_lock_irqsave(&sport->port.lock, flags);
1119 
1120 	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK;
1121 
1122 	if (break_state != 0)
1123 		ucr1 |= UCR1_SNDBRK;
1124 
1125 	imx_uart_writel(sport, ucr1, UCR1);
1126 
1127 	spin_unlock_irqrestore(&sport->port.lock, flags);
1128 }
1129 
1130 /*
1131  * This is our per-port timeout handler, for checking the
1132  * modem status signals.
1133  */
1134 static void imx_uart_timeout(struct timer_list *t)
1135 {
1136 	struct imx_port *sport = from_timer(sport, t, timer);
1137 	unsigned long flags;
1138 
1139 	if (sport->port.state) {
1140 		spin_lock_irqsave(&sport->port.lock, flags);
1141 		imx_uart_mctrl_check(sport);
1142 		spin_unlock_irqrestore(&sport->port.lock, flags);
1143 
1144 		mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT);
1145 	}
1146 }
1147 
1148 /*
1149  * There are two kinds of RX DMA interrupts(such as in the MX6Q):
1150  *   [1] the RX DMA buffer is full.
1151  *   [2] the aging timer expires
1152  *
1153  * Condition [2] is triggered when a character has been sitting in the FIFO
1154  * for at least 8 byte durations.
1155  */
1156 static void imx_uart_dma_rx_callback(void *data)
1157 {
1158 	struct imx_port *sport = data;
1159 	struct dma_chan	*chan = sport->dma_chan_rx;
1160 	struct scatterlist *sgl = &sport->rx_sgl;
1161 	struct tty_port *port = &sport->port.state->port;
1162 	struct dma_tx_state state;
1163 	struct circ_buf *rx_ring = &sport->rx_ring;
1164 	enum dma_status status;
1165 	unsigned int w_bytes = 0;
1166 	unsigned int r_bytes;
1167 	unsigned int bd_size;
1168 
1169 	status = dmaengine_tx_status(chan, sport->rx_cookie, &state);
1170 
1171 	if (status == DMA_ERROR) {
1172 		spin_lock(&sport->port.lock);
1173 		imx_uart_clear_rx_errors(sport);
1174 		spin_unlock(&sport->port.lock);
1175 		return;
1176 	}
1177 
1178 	/*
1179 	 * The state-residue variable represents the empty space
1180 	 * relative to the entire buffer. Taking this in consideration
1181 	 * the head is always calculated base on the buffer total
1182 	 * length - DMA transaction residue. The UART script from the
1183 	 * SDMA firmware will jump to the next buffer descriptor,
1184 	 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4).
1185 	 * Taking this in consideration the tail is always at the
1186 	 * beginning of the buffer descriptor that contains the head.
1187 	 */
1188 
1189 	/* Calculate the head */
1190 	rx_ring->head = sg_dma_len(sgl) - state.residue;
1191 
1192 	/* Calculate the tail. */
1193 	bd_size = sg_dma_len(sgl) / sport->rx_periods;
1194 	rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size;
1195 
1196 	if (rx_ring->head <= sg_dma_len(sgl) &&
1197 	    rx_ring->head > rx_ring->tail) {
1198 
1199 		/* Move data from tail to head */
1200 		r_bytes = rx_ring->head - rx_ring->tail;
1201 
1202 		/* If we received something, check for 0xff flood */
1203 		spin_lock(&sport->port.lock);
1204 		imx_uart_check_flood(sport, imx_uart_readl(sport, USR2));
1205 		spin_unlock(&sport->port.lock);
1206 
1207 		if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) {
1208 
1209 			/* CPU claims ownership of RX DMA buffer */
1210 			dma_sync_sg_for_cpu(sport->port.dev, sgl, 1,
1211 					    DMA_FROM_DEVICE);
1212 
1213 			w_bytes = tty_insert_flip_string(port,
1214 							 sport->rx_buf + rx_ring->tail, r_bytes);
1215 
1216 			/* UART retrieves ownership of RX DMA buffer */
1217 			dma_sync_sg_for_device(sport->port.dev, sgl, 1,
1218 					       DMA_FROM_DEVICE);
1219 
1220 			if (w_bytes != r_bytes)
1221 				sport->port.icount.buf_overrun++;
1222 
1223 			sport->port.icount.rx += w_bytes;
1224 		}
1225 	} else	{
1226 		WARN_ON(rx_ring->head > sg_dma_len(sgl));
1227 		WARN_ON(rx_ring->head <= rx_ring->tail);
1228 	}
1229 
1230 	if (w_bytes) {
1231 		tty_flip_buffer_push(port);
1232 		dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes);
1233 	}
1234 }
1235 
1236 static int imx_uart_start_rx_dma(struct imx_port *sport)
1237 {
1238 	struct scatterlist *sgl = &sport->rx_sgl;
1239 	struct dma_chan	*chan = sport->dma_chan_rx;
1240 	struct device *dev = sport->port.dev;
1241 	struct dma_async_tx_descriptor *desc;
1242 	int ret;
1243 
1244 	sport->rx_ring.head = 0;
1245 	sport->rx_ring.tail = 0;
1246 
1247 	sg_init_one(sgl, sport->rx_buf, sport->rx_buf_size);
1248 	ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1249 	if (ret == 0) {
1250 		dev_err(dev, "DMA mapping error for RX.\n");
1251 		return -EINVAL;
1252 	}
1253 
1254 	desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl),
1255 		sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods,
1256 		DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
1257 
1258 	if (!desc) {
1259 		dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1260 		dev_err(dev, "We cannot prepare for the RX slave dma!\n");
1261 		return -EINVAL;
1262 	}
1263 	desc->callback = imx_uart_dma_rx_callback;
1264 	desc->callback_param = sport;
1265 
1266 	dev_dbg(dev, "RX: prepare for the DMA.\n");
1267 	sport->dma_is_rxing = 1;
1268 	sport->rx_cookie = dmaengine_submit(desc);
1269 	dma_async_issue_pending(chan);
1270 	return 0;
1271 }
1272 
1273 static void imx_uart_clear_rx_errors(struct imx_port *sport)
1274 {
1275 	struct tty_port *port = &sport->port.state->port;
1276 	u32 usr1, usr2;
1277 
1278 	usr1 = imx_uart_readl(sport, USR1);
1279 	usr2 = imx_uart_readl(sport, USR2);
1280 
1281 	if (usr2 & USR2_BRCD) {
1282 		sport->port.icount.brk++;
1283 		imx_uart_writel(sport, USR2_BRCD, USR2);
1284 		uart_handle_break(&sport->port);
1285 		if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0)
1286 			sport->port.icount.buf_overrun++;
1287 		tty_flip_buffer_push(port);
1288 	} else {
1289 		if (usr1 & USR1_FRAMERR) {
1290 			sport->port.icount.frame++;
1291 			imx_uart_writel(sport, USR1_FRAMERR, USR1);
1292 		} else if (usr1 & USR1_PARITYERR) {
1293 			sport->port.icount.parity++;
1294 			imx_uart_writel(sport, USR1_PARITYERR, USR1);
1295 		}
1296 	}
1297 
1298 	if (usr2 & USR2_ORE) {
1299 		sport->port.icount.overrun++;
1300 		imx_uart_writel(sport, USR2_ORE, USR2);
1301 	}
1302 
1303 	sport->idle_counter = 0;
1304 
1305 }
1306 
1307 #define TXTL_DEFAULT 2 /* reset default */
1308 #define RXTL_DEFAULT 8 /* 8 characters or aging timer */
1309 #define TXTL_DMA 8 /* DMA burst setting */
1310 #define RXTL_DMA 9 /* DMA burst setting */
1311 
1312 static void imx_uart_setup_ufcr(struct imx_port *sport,
1313 				unsigned char txwl, unsigned char rxwl)
1314 {
1315 	unsigned int val;
1316 
1317 	/* set receiver / transmitter trigger level */
1318 	val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE);
1319 	val |= txwl << UFCR_TXTL_SHF | rxwl;
1320 	imx_uart_writel(sport, val, UFCR);
1321 }
1322 
1323 static void imx_uart_dma_exit(struct imx_port *sport)
1324 {
1325 	if (sport->dma_chan_rx) {
1326 		dmaengine_terminate_sync(sport->dma_chan_rx);
1327 		dma_release_channel(sport->dma_chan_rx);
1328 		sport->dma_chan_rx = NULL;
1329 		sport->rx_cookie = -EINVAL;
1330 		kfree(sport->rx_buf);
1331 		sport->rx_buf = NULL;
1332 	}
1333 
1334 	if (sport->dma_chan_tx) {
1335 		dmaengine_terminate_sync(sport->dma_chan_tx);
1336 		dma_release_channel(sport->dma_chan_tx);
1337 		sport->dma_chan_tx = NULL;
1338 	}
1339 }
1340 
1341 static int imx_uart_dma_init(struct imx_port *sport)
1342 {
1343 	struct dma_slave_config slave_config = {};
1344 	struct device *dev = sport->port.dev;
1345 	int ret;
1346 
1347 	/* Prepare for RX : */
1348 	sport->dma_chan_rx = dma_request_slave_channel(dev, "rx");
1349 	if (!sport->dma_chan_rx) {
1350 		dev_dbg(dev, "cannot get the DMA channel.\n");
1351 		ret = -EINVAL;
1352 		goto err;
1353 	}
1354 
1355 	slave_config.direction = DMA_DEV_TO_MEM;
1356 	slave_config.src_addr = sport->port.mapbase + URXD0;
1357 	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1358 	/* one byte less than the watermark level to enable the aging timer */
1359 	slave_config.src_maxburst = RXTL_DMA - 1;
1360 	ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config);
1361 	if (ret) {
1362 		dev_err(dev, "error in RX dma configuration.\n");
1363 		goto err;
1364 	}
1365 
1366 	sport->rx_buf_size = sport->rx_period_length * sport->rx_periods;
1367 	sport->rx_buf = kzalloc(sport->rx_buf_size, GFP_KERNEL);
1368 	if (!sport->rx_buf) {
1369 		ret = -ENOMEM;
1370 		goto err;
1371 	}
1372 	sport->rx_ring.buf = sport->rx_buf;
1373 
1374 	/* Prepare for TX : */
1375 	sport->dma_chan_tx = dma_request_slave_channel(dev, "tx");
1376 	if (!sport->dma_chan_tx) {
1377 		dev_err(dev, "cannot get the TX DMA channel!\n");
1378 		ret = -EINVAL;
1379 		goto err;
1380 	}
1381 
1382 	slave_config.direction = DMA_MEM_TO_DEV;
1383 	slave_config.dst_addr = sport->port.mapbase + URTX0;
1384 	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1385 	slave_config.dst_maxburst = TXTL_DMA;
1386 	ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config);
1387 	if (ret) {
1388 		dev_err(dev, "error in TX dma configuration.");
1389 		goto err;
1390 	}
1391 
1392 	return 0;
1393 err:
1394 	imx_uart_dma_exit(sport);
1395 	return ret;
1396 }
1397 
1398 static void imx_uart_enable_dma(struct imx_port *sport)
1399 {
1400 	u32 ucr1;
1401 
1402 	imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA);
1403 
1404 	/* set UCR1 */
1405 	ucr1 = imx_uart_readl(sport, UCR1);
1406 	ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN;
1407 	imx_uart_writel(sport, ucr1, UCR1);
1408 
1409 	sport->dma_is_enabled = 1;
1410 }
1411 
1412 static void imx_uart_disable_dma(struct imx_port *sport)
1413 {
1414 	u32 ucr1;
1415 
1416 	/* clear UCR1 */
1417 	ucr1 = imx_uart_readl(sport, UCR1);
1418 	ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN);
1419 	imx_uart_writel(sport, ucr1, UCR1);
1420 
1421 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1422 
1423 	sport->dma_is_enabled = 0;
1424 }
1425 
1426 /* half the RX buffer size */
1427 #define CTSTL 16
1428 
1429 static int imx_uart_startup(struct uart_port *port)
1430 {
1431 	struct imx_port *sport = (struct imx_port *)port;
1432 	int retval;
1433 	unsigned long flags;
1434 	int dma_is_inited = 0;
1435 	u32 ucr1, ucr2, ucr3, ucr4;
1436 
1437 	retval = clk_prepare_enable(sport->clk_per);
1438 	if (retval)
1439 		return retval;
1440 	retval = clk_prepare_enable(sport->clk_ipg);
1441 	if (retval) {
1442 		clk_disable_unprepare(sport->clk_per);
1443 		return retval;
1444 	}
1445 
1446 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1447 
1448 	/* disable the DREN bit (Data Ready interrupt enable) before
1449 	 * requesting IRQs
1450 	 */
1451 	ucr4 = imx_uart_readl(sport, UCR4);
1452 
1453 	/* set the trigger level for CTS */
1454 	ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF);
1455 	ucr4 |= CTSTL << UCR4_CTSTL_SHF;
1456 
1457 	imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4);
1458 
1459 	/* Can we enable the DMA support? */
1460 	if (!uart_console(port) && imx_uart_dma_init(sport) == 0)
1461 		dma_is_inited = 1;
1462 
1463 	spin_lock_irqsave(&sport->port.lock, flags);
1464 
1465 	/* Reset fifo's and state machines */
1466 	imx_uart_soft_reset(sport);
1467 
1468 	/*
1469 	 * Finally, clear and enable interrupts
1470 	 */
1471 	imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1);
1472 	imx_uart_writel(sport, USR2_ORE, USR2);
1473 
1474 	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN;
1475 	ucr1 |= UCR1_UARTEN;
1476 	if (sport->have_rtscts)
1477 		ucr1 |= UCR1_RTSDEN;
1478 
1479 	imx_uart_writel(sport, ucr1, UCR1);
1480 
1481 	ucr4 = imx_uart_readl(sport, UCR4) & ~(UCR4_OREN | UCR4_INVR);
1482 	if (!dma_is_inited)
1483 		ucr4 |= UCR4_OREN;
1484 	if (sport->inverted_rx)
1485 		ucr4 |= UCR4_INVR;
1486 	imx_uart_writel(sport, ucr4, UCR4);
1487 
1488 	ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_INVT;
1489 	/*
1490 	 * configure tx polarity before enabling tx
1491 	 */
1492 	if (sport->inverted_tx)
1493 		ucr3 |= UCR3_INVT;
1494 
1495 	if (!imx_uart_is_imx1(sport)) {
1496 		ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD;
1497 
1498 		if (sport->dte_mode)
1499 			/* disable broken interrupts */
1500 			ucr3 &= ~(UCR3_RI | UCR3_DCD);
1501 	}
1502 	imx_uart_writel(sport, ucr3, UCR3);
1503 
1504 	ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN;
1505 	ucr2 |= (UCR2_RXEN | UCR2_TXEN);
1506 	if (!sport->have_rtscts)
1507 		ucr2 |= UCR2_IRTS;
1508 	/*
1509 	 * make sure the edge sensitive RTS-irq is disabled,
1510 	 * we're using RTSD instead.
1511 	 */
1512 	if (!imx_uart_is_imx1(sport))
1513 		ucr2 &= ~UCR2_RTSEN;
1514 	imx_uart_writel(sport, ucr2, UCR2);
1515 
1516 	/*
1517 	 * Enable modem status interrupts
1518 	 */
1519 	imx_uart_enable_ms(&sport->port);
1520 
1521 	if (dma_is_inited) {
1522 		imx_uart_enable_dma(sport);
1523 		imx_uart_start_rx_dma(sport);
1524 	} else {
1525 		ucr1 = imx_uart_readl(sport, UCR1);
1526 		ucr1 |= UCR1_RRDYEN;
1527 		imx_uart_writel(sport, ucr1, UCR1);
1528 
1529 		ucr2 = imx_uart_readl(sport, UCR2);
1530 		ucr2 |= UCR2_ATEN;
1531 		imx_uart_writel(sport, ucr2, UCR2);
1532 	}
1533 
1534 	imx_uart_disable_loopback_rs485(sport);
1535 
1536 	spin_unlock_irqrestore(&sport->port.lock, flags);
1537 
1538 	return 0;
1539 }
1540 
1541 static void imx_uart_shutdown(struct uart_port *port)
1542 {
1543 	struct imx_port *sport = (struct imx_port *)port;
1544 	unsigned long flags;
1545 	u32 ucr1, ucr2, ucr4, uts;
1546 
1547 	if (sport->dma_is_enabled) {
1548 		dmaengine_terminate_sync(sport->dma_chan_tx);
1549 		if (sport->dma_is_txing) {
1550 			dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0],
1551 				     sport->dma_tx_nents, DMA_TO_DEVICE);
1552 			sport->dma_is_txing = 0;
1553 		}
1554 		dmaengine_terminate_sync(sport->dma_chan_rx);
1555 		if (sport->dma_is_rxing) {
1556 			dma_unmap_sg(sport->port.dev, &sport->rx_sgl,
1557 				     1, DMA_FROM_DEVICE);
1558 			sport->dma_is_rxing = 0;
1559 		}
1560 
1561 		spin_lock_irqsave(&sport->port.lock, flags);
1562 		imx_uart_stop_tx(port);
1563 		imx_uart_stop_rx(port);
1564 		imx_uart_disable_dma(sport);
1565 		spin_unlock_irqrestore(&sport->port.lock, flags);
1566 		imx_uart_dma_exit(sport);
1567 	}
1568 
1569 	mctrl_gpio_disable_ms(sport->gpios);
1570 
1571 	spin_lock_irqsave(&sport->port.lock, flags);
1572 	ucr2 = imx_uart_readl(sport, UCR2);
1573 	ucr2 &= ~(UCR2_TXEN | UCR2_ATEN);
1574 	imx_uart_writel(sport, ucr2, UCR2);
1575 	spin_unlock_irqrestore(&sport->port.lock, flags);
1576 
1577 	/*
1578 	 * Stop our timer.
1579 	 */
1580 	del_timer_sync(&sport->timer);
1581 
1582 	/*
1583 	 * Disable all interrupts, port and break condition.
1584 	 */
1585 
1586 	spin_lock_irqsave(&sport->port.lock, flags);
1587 
1588 	ucr1 = imx_uart_readl(sport, UCR1);
1589 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_RXDMAEN |
1590 		  UCR1_ATDMAEN | UCR1_SNDBRK);
1591 	/* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */
1592 	if (port->rs485.flags & SER_RS485_ENABLED &&
1593 	    port->rs485.flags & SER_RS485_RTS_ON_SEND &&
1594 	    sport->have_rtscts && !sport->have_rtsgpio) {
1595 		uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
1596 		uts |= UTS_LOOP;
1597 		imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
1598 		ucr1 |= UCR1_UARTEN;
1599 	} else {
1600 		ucr1 &= ~UCR1_UARTEN;
1601 	}
1602 	imx_uart_writel(sport, ucr1, UCR1);
1603 
1604 	ucr4 = imx_uart_readl(sport, UCR4);
1605 	ucr4 &= ~UCR4_TCEN;
1606 	imx_uart_writel(sport, ucr4, UCR4);
1607 
1608 	spin_unlock_irqrestore(&sport->port.lock, flags);
1609 
1610 	clk_disable_unprepare(sport->clk_per);
1611 	clk_disable_unprepare(sport->clk_ipg);
1612 }
1613 
1614 /* called with port.lock taken and irqs off */
1615 static void imx_uart_flush_buffer(struct uart_port *port)
1616 {
1617 	struct imx_port *sport = (struct imx_port *)port;
1618 	struct scatterlist *sgl = &sport->tx_sgl[0];
1619 
1620 	if (!sport->dma_chan_tx)
1621 		return;
1622 
1623 	sport->tx_bytes = 0;
1624 	dmaengine_terminate_all(sport->dma_chan_tx);
1625 	if (sport->dma_is_txing) {
1626 		u32 ucr1;
1627 
1628 		dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents,
1629 			     DMA_TO_DEVICE);
1630 		ucr1 = imx_uart_readl(sport, UCR1);
1631 		ucr1 &= ~UCR1_TXDMAEN;
1632 		imx_uart_writel(sport, ucr1, UCR1);
1633 		sport->dma_is_txing = 0;
1634 	}
1635 
1636 	imx_uart_soft_reset(sport);
1637 
1638 }
1639 
1640 static void
1641 imx_uart_set_termios(struct uart_port *port, struct ktermios *termios,
1642 		     const struct ktermios *old)
1643 {
1644 	struct imx_port *sport = (struct imx_port *)port;
1645 	unsigned long flags;
1646 	u32 ucr2, old_ucr2, ufcr;
1647 	unsigned int baud, quot;
1648 	unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8;
1649 	unsigned long div;
1650 	unsigned long num, denom, old_ubir, old_ubmr;
1651 	uint64_t tdiv64;
1652 
1653 	/*
1654 	 * We only support CS7 and CS8.
1655 	 */
1656 	while ((termios->c_cflag & CSIZE) != CS7 &&
1657 	       (termios->c_cflag & CSIZE) != CS8) {
1658 		termios->c_cflag &= ~CSIZE;
1659 		termios->c_cflag |= old_csize;
1660 		old_csize = CS8;
1661 	}
1662 
1663 	del_timer_sync(&sport->timer);
1664 
1665 	/*
1666 	 * Ask the core to calculate the divisor for us.
1667 	 */
1668 	baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16);
1669 	quot = uart_get_divisor(port, baud);
1670 
1671 	spin_lock_irqsave(&sport->port.lock, flags);
1672 
1673 	/*
1674 	 * Read current UCR2 and save it for future use, then clear all the bits
1675 	 * except those we will or may need to preserve.
1676 	 */
1677 	old_ucr2 = imx_uart_readl(sport, UCR2);
1678 	ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS);
1679 
1680 	ucr2 |= UCR2_SRST | UCR2_IRTS;
1681 	if ((termios->c_cflag & CSIZE) == CS8)
1682 		ucr2 |= UCR2_WS;
1683 
1684 	if (!sport->have_rtscts)
1685 		termios->c_cflag &= ~CRTSCTS;
1686 
1687 	if (port->rs485.flags & SER_RS485_ENABLED) {
1688 		/*
1689 		 * RTS is mandatory for rs485 operation, so keep
1690 		 * it under manual control and keep transmitter
1691 		 * disabled.
1692 		 */
1693 		if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1694 			imx_uart_rts_active(sport, &ucr2);
1695 		else
1696 			imx_uart_rts_inactive(sport, &ucr2);
1697 
1698 	} else if (termios->c_cflag & CRTSCTS) {
1699 		/*
1700 		 * Only let receiver control RTS output if we were not requested
1701 		 * to have RTS inactive (which then should take precedence).
1702 		 */
1703 		if (ucr2 & UCR2_CTS)
1704 			ucr2 |= UCR2_CTSC;
1705 	}
1706 
1707 	if (termios->c_cflag & CRTSCTS)
1708 		ucr2 &= ~UCR2_IRTS;
1709 	if (termios->c_cflag & CSTOPB)
1710 		ucr2 |= UCR2_STPB;
1711 	if (termios->c_cflag & PARENB) {
1712 		ucr2 |= UCR2_PREN;
1713 		if (termios->c_cflag & PARODD)
1714 			ucr2 |= UCR2_PROE;
1715 	}
1716 
1717 	sport->port.read_status_mask = 0;
1718 	if (termios->c_iflag & INPCK)
1719 		sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR);
1720 	if (termios->c_iflag & (BRKINT | PARMRK))
1721 		sport->port.read_status_mask |= URXD_BRK;
1722 
1723 	/*
1724 	 * Characters to ignore
1725 	 */
1726 	sport->port.ignore_status_mask = 0;
1727 	if (termios->c_iflag & IGNPAR)
1728 		sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR;
1729 	if (termios->c_iflag & IGNBRK) {
1730 		sport->port.ignore_status_mask |= URXD_BRK;
1731 		/*
1732 		 * If we're ignoring parity and break indicators,
1733 		 * ignore overruns too (for real raw support).
1734 		 */
1735 		if (termios->c_iflag & IGNPAR)
1736 			sport->port.ignore_status_mask |= URXD_OVRRUN;
1737 	}
1738 
1739 	if ((termios->c_cflag & CREAD) == 0)
1740 		sport->port.ignore_status_mask |= URXD_DUMMY_READ;
1741 
1742 	/*
1743 	 * Update the per-port timeout.
1744 	 */
1745 	uart_update_timeout(port, termios->c_cflag, baud);
1746 
1747 	/* custom-baudrate handling */
1748 	div = sport->port.uartclk / (baud * 16);
1749 	if (baud == 38400 && quot != div)
1750 		baud = sport->port.uartclk / (quot * 16);
1751 
1752 	div = sport->port.uartclk / (baud * 16);
1753 	if (div > 7)
1754 		div = 7;
1755 	if (!div)
1756 		div = 1;
1757 
1758 	rational_best_approximation(16 * div * baud, sport->port.uartclk,
1759 		1 << 16, 1 << 16, &num, &denom);
1760 
1761 	tdiv64 = sport->port.uartclk;
1762 	tdiv64 *= num;
1763 	do_div(tdiv64, denom * 16 * div);
1764 	tty_termios_encode_baud_rate(termios,
1765 				(speed_t)tdiv64, (speed_t)tdiv64);
1766 
1767 	num -= 1;
1768 	denom -= 1;
1769 
1770 	ufcr = imx_uart_readl(sport, UFCR);
1771 	ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div);
1772 	imx_uart_writel(sport, ufcr, UFCR);
1773 
1774 	/*
1775 	 *  Two registers below should always be written both and in this
1776 	 *  particular order. One consequence is that we need to check if any of
1777 	 *  them changes and then update both. We do need the check for change
1778 	 *  as even writing the same values seem to "restart"
1779 	 *  transmission/receiving logic in the hardware, that leads to data
1780 	 *  breakage even when rate doesn't in fact change. E.g., user switches
1781 	 *  RTS/CTS handshake and suddenly gets broken bytes.
1782 	 */
1783 	old_ubir = imx_uart_readl(sport, UBIR);
1784 	old_ubmr = imx_uart_readl(sport, UBMR);
1785 	if (old_ubir != num || old_ubmr != denom) {
1786 		imx_uart_writel(sport, num, UBIR);
1787 		imx_uart_writel(sport, denom, UBMR);
1788 	}
1789 
1790 	if (!imx_uart_is_imx1(sport))
1791 		imx_uart_writel(sport, sport->port.uartclk / div / 1000,
1792 				IMX21_ONEMS);
1793 
1794 	imx_uart_writel(sport, ucr2, UCR2);
1795 
1796 	if (UART_ENABLE_MS(&sport->port, termios->c_cflag))
1797 		imx_uart_enable_ms(&sport->port);
1798 
1799 	spin_unlock_irqrestore(&sport->port.lock, flags);
1800 }
1801 
1802 static const char *imx_uart_type(struct uart_port *port)
1803 {
1804 	return port->type == PORT_IMX ? "IMX" : NULL;
1805 }
1806 
1807 /*
1808  * Configure/autoconfigure the port.
1809  */
1810 static void imx_uart_config_port(struct uart_port *port, int flags)
1811 {
1812 	if (flags & UART_CONFIG_TYPE)
1813 		port->type = PORT_IMX;
1814 }
1815 
1816 /*
1817  * Verify the new serial_struct (for TIOCSSERIAL).
1818  * The only change we allow are to the flags and type, and
1819  * even then only between PORT_IMX and PORT_UNKNOWN
1820  */
1821 static int
1822 imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser)
1823 {
1824 	int ret = 0;
1825 
1826 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX)
1827 		ret = -EINVAL;
1828 	if (port->irq != ser->irq)
1829 		ret = -EINVAL;
1830 	if (ser->io_type != UPIO_MEM)
1831 		ret = -EINVAL;
1832 	if (port->uartclk / 16 != ser->baud_base)
1833 		ret = -EINVAL;
1834 	if (port->mapbase != (unsigned long)ser->iomem_base)
1835 		ret = -EINVAL;
1836 	if (port->iobase != ser->port)
1837 		ret = -EINVAL;
1838 	if (ser->hub6 != 0)
1839 		ret = -EINVAL;
1840 	return ret;
1841 }
1842 
1843 #if defined(CONFIG_CONSOLE_POLL)
1844 
1845 static int imx_uart_poll_init(struct uart_port *port)
1846 {
1847 	struct imx_port *sport = (struct imx_port *)port;
1848 	unsigned long flags;
1849 	u32 ucr1, ucr2;
1850 	int retval;
1851 
1852 	retval = clk_prepare_enable(sport->clk_ipg);
1853 	if (retval)
1854 		return retval;
1855 	retval = clk_prepare_enable(sport->clk_per);
1856 	if (retval)
1857 		clk_disable_unprepare(sport->clk_ipg);
1858 
1859 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1860 
1861 	spin_lock_irqsave(&sport->port.lock, flags);
1862 
1863 	/*
1864 	 * Be careful about the order of enabling bits here. First enable the
1865 	 * receiver (UARTEN + RXEN) and only then the corresponding irqs.
1866 	 * This prevents that a character that already sits in the RX fifo is
1867 	 * triggering an irq but the try to fetch it from there results in an
1868 	 * exception because UARTEN or RXEN is still off.
1869 	 */
1870 	ucr1 = imx_uart_readl(sport, UCR1);
1871 	ucr2 = imx_uart_readl(sport, UCR2);
1872 
1873 	if (imx_uart_is_imx1(sport))
1874 		ucr1 |= IMX1_UCR1_UARTCLKEN;
1875 
1876 	ucr1 |= UCR1_UARTEN;
1877 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RTSDEN | UCR1_RRDYEN);
1878 
1879 	ucr2 |= UCR2_RXEN | UCR2_TXEN;
1880 	ucr2 &= ~UCR2_ATEN;
1881 
1882 	imx_uart_writel(sport, ucr1, UCR1);
1883 	imx_uart_writel(sport, ucr2, UCR2);
1884 
1885 	/* now enable irqs */
1886 	imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1);
1887 	imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2);
1888 
1889 	spin_unlock_irqrestore(&sport->port.lock, flags);
1890 
1891 	return 0;
1892 }
1893 
1894 static int imx_uart_poll_get_char(struct uart_port *port)
1895 {
1896 	struct imx_port *sport = (struct imx_port *)port;
1897 	if (!(imx_uart_readl(sport, USR2) & USR2_RDR))
1898 		return NO_POLL_CHAR;
1899 
1900 	return imx_uart_readl(sport, URXD0) & URXD_RX_DATA;
1901 }
1902 
1903 static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c)
1904 {
1905 	struct imx_port *sport = (struct imx_port *)port;
1906 	unsigned int status;
1907 
1908 	/* drain */
1909 	do {
1910 		status = imx_uart_readl(sport, USR1);
1911 	} while (~status & USR1_TRDY);
1912 
1913 	/* write */
1914 	imx_uart_writel(sport, c, URTX0);
1915 
1916 	/* flush */
1917 	do {
1918 		status = imx_uart_readl(sport, USR2);
1919 	} while (~status & USR2_TXDC);
1920 }
1921 #endif
1922 
1923 /* called with port.lock taken and irqs off or from .probe without locking */
1924 static int imx_uart_rs485_config(struct uart_port *port, struct ktermios *termios,
1925 				 struct serial_rs485 *rs485conf)
1926 {
1927 	struct imx_port *sport = (struct imx_port *)port;
1928 	u32 ucr2;
1929 
1930 	if (rs485conf->flags & SER_RS485_ENABLED) {
1931 		/* Enable receiver if low-active RTS signal is requested */
1932 		if (sport->have_rtscts &&  !sport->have_rtsgpio &&
1933 		    !(rs485conf->flags & SER_RS485_RTS_ON_SEND))
1934 			rs485conf->flags |= SER_RS485_RX_DURING_TX;
1935 
1936 		/* disable transmitter */
1937 		ucr2 = imx_uart_readl(sport, UCR2);
1938 		if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND)
1939 			imx_uart_rts_active(sport, &ucr2);
1940 		else
1941 			imx_uart_rts_inactive(sport, &ucr2);
1942 		imx_uart_writel(sport, ucr2, UCR2);
1943 	}
1944 
1945 	/* Make sure Rx is enabled in case Tx is active with Rx disabled */
1946 	if (!(rs485conf->flags & SER_RS485_ENABLED) ||
1947 	    rs485conf->flags & SER_RS485_RX_DURING_TX)
1948 		imx_uart_start_rx(port);
1949 
1950 	if (port->rs485_rx_during_tx_gpio)
1951 		gpiod_set_value_cansleep(port->rs485_rx_during_tx_gpio,
1952 					 !!(rs485conf->flags & SER_RS485_RX_DURING_TX));
1953 
1954 	return 0;
1955 }
1956 
1957 static const struct uart_ops imx_uart_pops = {
1958 	.tx_empty	= imx_uart_tx_empty,
1959 	.set_mctrl	= imx_uart_set_mctrl,
1960 	.get_mctrl	= imx_uart_get_mctrl,
1961 	.stop_tx	= imx_uart_stop_tx,
1962 	.start_tx	= imx_uart_start_tx,
1963 	.stop_rx	= imx_uart_stop_rx,
1964 	.enable_ms	= imx_uart_enable_ms,
1965 	.break_ctl	= imx_uart_break_ctl,
1966 	.startup	= imx_uart_startup,
1967 	.shutdown	= imx_uart_shutdown,
1968 	.flush_buffer	= imx_uart_flush_buffer,
1969 	.set_termios	= imx_uart_set_termios,
1970 	.type		= imx_uart_type,
1971 	.config_port	= imx_uart_config_port,
1972 	.verify_port	= imx_uart_verify_port,
1973 #if defined(CONFIG_CONSOLE_POLL)
1974 	.poll_init      = imx_uart_poll_init,
1975 	.poll_get_char  = imx_uart_poll_get_char,
1976 	.poll_put_char  = imx_uart_poll_put_char,
1977 #endif
1978 };
1979 
1980 static struct imx_port *imx_uart_ports[UART_NR];
1981 
1982 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE)
1983 static void imx_uart_console_putchar(struct uart_port *port, unsigned char ch)
1984 {
1985 	struct imx_port *sport = (struct imx_port *)port;
1986 
1987 	while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)
1988 		barrier();
1989 
1990 	imx_uart_writel(sport, ch, URTX0);
1991 }
1992 
1993 /*
1994  * Interrupts are disabled on entering
1995  */
1996 static void
1997 imx_uart_console_write(struct console *co, const char *s, unsigned int count)
1998 {
1999 	struct imx_port *sport = imx_uart_ports[co->index];
2000 	struct imx_port_ucrs old_ucr;
2001 	unsigned long flags;
2002 	unsigned int ucr1;
2003 	int locked = 1;
2004 
2005 	if (sport->port.sysrq)
2006 		locked = 0;
2007 	else if (oops_in_progress)
2008 		locked = spin_trylock_irqsave(&sport->port.lock, flags);
2009 	else
2010 		spin_lock_irqsave(&sport->port.lock, flags);
2011 
2012 	/*
2013 	 *	First, save UCR1/2/3 and then disable interrupts
2014 	 */
2015 	imx_uart_ucrs_save(sport, &old_ucr);
2016 	ucr1 = old_ucr.ucr1;
2017 
2018 	if (imx_uart_is_imx1(sport))
2019 		ucr1 |= IMX1_UCR1_UARTCLKEN;
2020 	ucr1 |= UCR1_UARTEN;
2021 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN);
2022 
2023 	imx_uart_writel(sport, ucr1, UCR1);
2024 
2025 	imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2);
2026 
2027 	uart_console_write(&sport->port, s, count, imx_uart_console_putchar);
2028 
2029 	/*
2030 	 *	Finally, wait for transmitter to become empty
2031 	 *	and restore UCR1/2/3
2032 	 */
2033 	while (!(imx_uart_readl(sport, USR2) & USR2_TXDC));
2034 
2035 	imx_uart_ucrs_restore(sport, &old_ucr);
2036 
2037 	if (locked)
2038 		spin_unlock_irqrestore(&sport->port.lock, flags);
2039 }
2040 
2041 /*
2042  * If the port was already initialised (eg, by a boot loader),
2043  * try to determine the current setup.
2044  */
2045 static void
2046 imx_uart_console_get_options(struct imx_port *sport, int *baud,
2047 			     int *parity, int *bits)
2048 {
2049 
2050 	if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) {
2051 		/* ok, the port was enabled */
2052 		unsigned int ucr2, ubir, ubmr, uartclk;
2053 		unsigned int baud_raw;
2054 		unsigned int ucfr_rfdiv;
2055 
2056 		ucr2 = imx_uart_readl(sport, UCR2);
2057 
2058 		*parity = 'n';
2059 		if (ucr2 & UCR2_PREN) {
2060 			if (ucr2 & UCR2_PROE)
2061 				*parity = 'o';
2062 			else
2063 				*parity = 'e';
2064 		}
2065 
2066 		if (ucr2 & UCR2_WS)
2067 			*bits = 8;
2068 		else
2069 			*bits = 7;
2070 
2071 		ubir = imx_uart_readl(sport, UBIR) & 0xffff;
2072 		ubmr = imx_uart_readl(sport, UBMR) & 0xffff;
2073 
2074 		ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7;
2075 		if (ucfr_rfdiv == 6)
2076 			ucfr_rfdiv = 7;
2077 		else
2078 			ucfr_rfdiv = 6 - ucfr_rfdiv;
2079 
2080 		uartclk = clk_get_rate(sport->clk_per);
2081 		uartclk /= ucfr_rfdiv;
2082 
2083 		{	/*
2084 			 * The next code provides exact computation of
2085 			 *   baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1))
2086 			 * without need of float support or long long division,
2087 			 * which would be required to prevent 32bit arithmetic overflow
2088 			 */
2089 			unsigned int mul = ubir + 1;
2090 			unsigned int div = 16 * (ubmr + 1);
2091 			unsigned int rem = uartclk % div;
2092 
2093 			baud_raw = (uartclk / div) * mul;
2094 			baud_raw += (rem * mul + div / 2) / div;
2095 			*baud = (baud_raw + 50) / 100 * 100;
2096 		}
2097 
2098 		if (*baud != baud_raw)
2099 			dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n",
2100 				baud_raw, *baud);
2101 	}
2102 }
2103 
2104 static int
2105 imx_uart_console_setup(struct console *co, char *options)
2106 {
2107 	struct imx_port *sport;
2108 	int baud = 9600;
2109 	int bits = 8;
2110 	int parity = 'n';
2111 	int flow = 'n';
2112 	int retval;
2113 
2114 	/*
2115 	 * Check whether an invalid uart number has been specified, and
2116 	 * if so, search for the first available port that does have
2117 	 * console support.
2118 	 */
2119 	if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports))
2120 		co->index = 0;
2121 	sport = imx_uart_ports[co->index];
2122 	if (sport == NULL)
2123 		return -ENODEV;
2124 
2125 	/* For setting the registers, we only need to enable the ipg clock. */
2126 	retval = clk_prepare_enable(sport->clk_ipg);
2127 	if (retval)
2128 		goto error_console;
2129 
2130 	if (options)
2131 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2132 	else
2133 		imx_uart_console_get_options(sport, &baud, &parity, &bits);
2134 
2135 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
2136 
2137 	retval = uart_set_options(&sport->port, co, baud, parity, bits, flow);
2138 
2139 	if (retval) {
2140 		clk_disable_unprepare(sport->clk_ipg);
2141 		goto error_console;
2142 	}
2143 
2144 	retval = clk_prepare_enable(sport->clk_per);
2145 	if (retval)
2146 		clk_disable_unprepare(sport->clk_ipg);
2147 
2148 error_console:
2149 	return retval;
2150 }
2151 
2152 static int
2153 imx_uart_console_exit(struct console *co)
2154 {
2155 	struct imx_port *sport = imx_uart_ports[co->index];
2156 
2157 	clk_disable_unprepare(sport->clk_per);
2158 	clk_disable_unprepare(sport->clk_ipg);
2159 
2160 	return 0;
2161 }
2162 
2163 static struct uart_driver imx_uart_uart_driver;
2164 static struct console imx_uart_console = {
2165 	.name		= DEV_NAME,
2166 	.write		= imx_uart_console_write,
2167 	.device		= uart_console_device,
2168 	.setup		= imx_uart_console_setup,
2169 	.exit		= imx_uart_console_exit,
2170 	.flags		= CON_PRINTBUFFER,
2171 	.index		= -1,
2172 	.data		= &imx_uart_uart_driver,
2173 };
2174 
2175 #define IMX_CONSOLE	&imx_uart_console
2176 
2177 #else
2178 #define IMX_CONSOLE	NULL
2179 #endif
2180 
2181 static struct uart_driver imx_uart_uart_driver = {
2182 	.owner          = THIS_MODULE,
2183 	.driver_name    = DRIVER_NAME,
2184 	.dev_name       = DEV_NAME,
2185 	.major          = SERIAL_IMX_MAJOR,
2186 	.minor          = MINOR_START,
2187 	.nr             = ARRAY_SIZE(imx_uart_ports),
2188 	.cons           = IMX_CONSOLE,
2189 };
2190 
2191 static enum hrtimer_restart imx_trigger_start_tx(struct hrtimer *t)
2192 {
2193 	struct imx_port *sport = container_of(t, struct imx_port, trigger_start_tx);
2194 	unsigned long flags;
2195 
2196 	spin_lock_irqsave(&sport->port.lock, flags);
2197 	if (sport->tx_state == WAIT_AFTER_RTS)
2198 		imx_uart_start_tx(&sport->port);
2199 	spin_unlock_irqrestore(&sport->port.lock, flags);
2200 
2201 	return HRTIMER_NORESTART;
2202 }
2203 
2204 static enum hrtimer_restart imx_trigger_stop_tx(struct hrtimer *t)
2205 {
2206 	struct imx_port *sport = container_of(t, struct imx_port, trigger_stop_tx);
2207 	unsigned long flags;
2208 
2209 	spin_lock_irqsave(&sport->port.lock, flags);
2210 	if (sport->tx_state == WAIT_AFTER_SEND)
2211 		imx_uart_stop_tx(&sport->port);
2212 	spin_unlock_irqrestore(&sport->port.lock, flags);
2213 
2214 	return HRTIMER_NORESTART;
2215 }
2216 
2217 static const struct serial_rs485 imx_rs485_supported = {
2218 	.flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND |
2219 		 SER_RS485_RX_DURING_TX,
2220 	.delay_rts_before_send = 1,
2221 	.delay_rts_after_send = 1,
2222 };
2223 
2224 /* Default RX DMA buffer configuration */
2225 #define RX_DMA_PERIODS		16
2226 #define RX_DMA_PERIOD_LEN	(PAGE_SIZE / 4)
2227 
2228 static int imx_uart_probe(struct platform_device *pdev)
2229 {
2230 	struct device_node *np = pdev->dev.of_node;
2231 	struct imx_port *sport;
2232 	void __iomem *base;
2233 	u32 dma_buf_conf[2];
2234 	int ret = 0;
2235 	u32 ucr1, ucr2, uts;
2236 	struct resource *res;
2237 	int txirq, rxirq, rtsirq;
2238 
2239 	sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL);
2240 	if (!sport)
2241 		return -ENOMEM;
2242 
2243 	sport->devdata = of_device_get_match_data(&pdev->dev);
2244 
2245 	ret = of_alias_get_id(np, "serial");
2246 	if (ret < 0) {
2247 		dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret);
2248 		return ret;
2249 	}
2250 	sport->port.line = ret;
2251 
2252 	sport->have_rtscts = of_property_read_bool(np, "uart-has-rtscts") ||
2253 		of_property_read_bool(np, "fsl,uart-has-rtscts"); /* deprecated */
2254 
2255 	sport->dte_mode = of_property_read_bool(np, "fsl,dte-mode");
2256 
2257 	sport->have_rtsgpio = of_property_present(np, "rts-gpios");
2258 
2259 	sport->inverted_tx = of_property_read_bool(np, "fsl,inverted-tx");
2260 
2261 	sport->inverted_rx = of_property_read_bool(np, "fsl,inverted-rx");
2262 
2263 	if (!of_property_read_u32_array(np, "fsl,dma-info", dma_buf_conf, 2)) {
2264 		sport->rx_period_length = dma_buf_conf[0];
2265 		sport->rx_periods = dma_buf_conf[1];
2266 	} else {
2267 		sport->rx_period_length = RX_DMA_PERIOD_LEN;
2268 		sport->rx_periods = RX_DMA_PERIODS;
2269 	}
2270 
2271 	if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) {
2272 		dev_err(&pdev->dev, "serial%d out of range\n",
2273 			sport->port.line);
2274 		return -EINVAL;
2275 	}
2276 
2277 	base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2278 	if (IS_ERR(base))
2279 		return PTR_ERR(base);
2280 
2281 	rxirq = platform_get_irq(pdev, 0);
2282 	if (rxirq < 0)
2283 		return rxirq;
2284 	txirq = platform_get_irq_optional(pdev, 1);
2285 	rtsirq = platform_get_irq_optional(pdev, 2);
2286 
2287 	sport->port.dev = &pdev->dev;
2288 	sport->port.mapbase = res->start;
2289 	sport->port.membase = base;
2290 	sport->port.type = PORT_IMX;
2291 	sport->port.iotype = UPIO_MEM;
2292 	sport->port.irq = rxirq;
2293 	sport->port.fifosize = 32;
2294 	sport->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE);
2295 	sport->port.ops = &imx_uart_pops;
2296 	sport->port.rs485_config = imx_uart_rs485_config;
2297 	/* RTS is required to control the RS485 transmitter */
2298 	if (sport->have_rtscts || sport->have_rtsgpio)
2299 		sport->port.rs485_supported = imx_rs485_supported;
2300 	sport->port.flags = UPF_BOOT_AUTOCONF;
2301 	timer_setup(&sport->timer, imx_uart_timeout, 0);
2302 
2303 	sport->gpios = mctrl_gpio_init(&sport->port, 0);
2304 	if (IS_ERR(sport->gpios))
2305 		return PTR_ERR(sport->gpios);
2306 
2307 	sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2308 	if (IS_ERR(sport->clk_ipg)) {
2309 		ret = PTR_ERR(sport->clk_ipg);
2310 		dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret);
2311 		return ret;
2312 	}
2313 
2314 	sport->clk_per = devm_clk_get(&pdev->dev, "per");
2315 	if (IS_ERR(sport->clk_per)) {
2316 		ret = PTR_ERR(sport->clk_per);
2317 		dev_err(&pdev->dev, "failed to get per clk: %d\n", ret);
2318 		return ret;
2319 	}
2320 
2321 	sport->port.uartclk = clk_get_rate(sport->clk_per);
2322 
2323 	/* For register access, we only need to enable the ipg clock. */
2324 	ret = clk_prepare_enable(sport->clk_ipg);
2325 	if (ret) {
2326 		dev_err(&pdev->dev, "failed to enable per clk: %d\n", ret);
2327 		return ret;
2328 	}
2329 
2330 	ret = uart_get_rs485_mode(&sport->port);
2331 	if (ret)
2332 		goto err_clk;
2333 
2334 	/*
2335 	 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B)
2336 	 * signal cannot be set low during transmission in case the
2337 	 * receiver is off (limitation of the i.MX UART IP).
2338 	 */
2339 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2340 	    sport->have_rtscts && !sport->have_rtsgpio &&
2341 	    (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) &&
2342 	     !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX)))
2343 		dev_err(&pdev->dev,
2344 			"low-active RTS not possible when receiver is off, enabling receiver\n");
2345 
2346 	/* Disable interrupts before requesting them */
2347 	ucr1 = imx_uart_readl(sport, UCR1);
2348 	ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN | UCR1_RTSDEN);
2349 	imx_uart_writel(sport, ucr1, UCR1);
2350 
2351 	/* Disable Ageing Timer interrupt */
2352 	ucr2 = imx_uart_readl(sport, UCR2);
2353 	ucr2 &= ~UCR2_ATEN;
2354 	imx_uart_writel(sport, ucr2, UCR2);
2355 
2356 	/*
2357 	 * In case RS485 is enabled without GPIO RTS control, the UART IP
2358 	 * is used to control CTS signal. Keep both the UART and Receiver
2359 	 * enabled, otherwise the UART IP pulls CTS signal always HIGH no
2360 	 * matter how the UCR2 CTSC and CTS bits are set. To prevent any
2361 	 * data from being fed into the RX FIFO, enable loopback mode in
2362 	 * UTS register, which disconnects the RX path from external RXD
2363 	 * pin and connects it to the Transceiver, which is disabled, so
2364 	 * no data can be fed to the RX FIFO that way.
2365 	 */
2366 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2367 	    sport->have_rtscts && !sport->have_rtsgpio) {
2368 		uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
2369 		uts |= UTS_LOOP;
2370 		imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
2371 
2372 		ucr1 = imx_uart_readl(sport, UCR1);
2373 		ucr1 |= UCR1_UARTEN;
2374 		imx_uart_writel(sport, ucr1, UCR1);
2375 
2376 		ucr2 = imx_uart_readl(sport, UCR2);
2377 		ucr2 |= UCR2_RXEN;
2378 		imx_uart_writel(sport, ucr2, UCR2);
2379 	}
2380 
2381 	if (!imx_uart_is_imx1(sport) && sport->dte_mode) {
2382 		/*
2383 		 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI
2384 		 * and influences if UCR3_RI and UCR3_DCD changes the level of RI
2385 		 * and DCD (when they are outputs) or enables the respective
2386 		 * irqs. So set this bit early, i.e. before requesting irqs.
2387 		 */
2388 		u32 ufcr = imx_uart_readl(sport, UFCR);
2389 		if (!(ufcr & UFCR_DCEDTE))
2390 			imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR);
2391 
2392 		/*
2393 		 * Disable UCR3_RI and UCR3_DCD irqs. They are also not
2394 		 * enabled later because they cannot be cleared
2395 		 * (confirmed on i.MX25) which makes them unusable.
2396 		 */
2397 		imx_uart_writel(sport,
2398 				IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR,
2399 				UCR3);
2400 
2401 	} else {
2402 		u32 ucr3 = UCR3_DSR;
2403 		u32 ufcr = imx_uart_readl(sport, UFCR);
2404 		if (ufcr & UFCR_DCEDTE)
2405 			imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR);
2406 
2407 		if (!imx_uart_is_imx1(sport))
2408 			ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP;
2409 		imx_uart_writel(sport, ucr3, UCR3);
2410 	}
2411 
2412 	hrtimer_init(&sport->trigger_start_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2413 	hrtimer_init(&sport->trigger_stop_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2414 	sport->trigger_start_tx.function = imx_trigger_start_tx;
2415 	sport->trigger_stop_tx.function = imx_trigger_stop_tx;
2416 
2417 	/*
2418 	 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later
2419 	 * chips only have one interrupt.
2420 	 */
2421 	if (txirq > 0) {
2422 		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0,
2423 				       dev_name(&pdev->dev), sport);
2424 		if (ret) {
2425 			dev_err(&pdev->dev, "failed to request rx irq: %d\n",
2426 				ret);
2427 			goto err_clk;
2428 		}
2429 
2430 		ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0,
2431 				       dev_name(&pdev->dev), sport);
2432 		if (ret) {
2433 			dev_err(&pdev->dev, "failed to request tx irq: %d\n",
2434 				ret);
2435 			goto err_clk;
2436 		}
2437 
2438 		ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0,
2439 				       dev_name(&pdev->dev), sport);
2440 		if (ret) {
2441 			dev_err(&pdev->dev, "failed to request rts irq: %d\n",
2442 				ret);
2443 			goto err_clk;
2444 		}
2445 	} else {
2446 		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0,
2447 				       dev_name(&pdev->dev), sport);
2448 		if (ret) {
2449 			dev_err(&pdev->dev, "failed to request irq: %d\n", ret);
2450 			goto err_clk;
2451 		}
2452 	}
2453 
2454 	imx_uart_ports[sport->port.line] = sport;
2455 
2456 	platform_set_drvdata(pdev, sport);
2457 
2458 	ret = uart_add_one_port(&imx_uart_uart_driver, &sport->port);
2459 
2460 err_clk:
2461 	clk_disable_unprepare(sport->clk_ipg);
2462 
2463 	return ret;
2464 }
2465 
2466 static int imx_uart_remove(struct platform_device *pdev)
2467 {
2468 	struct imx_port *sport = platform_get_drvdata(pdev);
2469 
2470 	uart_remove_one_port(&imx_uart_uart_driver, &sport->port);
2471 
2472 	return 0;
2473 }
2474 
2475 static void imx_uart_restore_context(struct imx_port *sport)
2476 {
2477 	unsigned long flags;
2478 
2479 	spin_lock_irqsave(&sport->port.lock, flags);
2480 	if (!sport->context_saved) {
2481 		spin_unlock_irqrestore(&sport->port.lock, flags);
2482 		return;
2483 	}
2484 
2485 	imx_uart_writel(sport, sport->saved_reg[4], UFCR);
2486 	imx_uart_writel(sport, sport->saved_reg[5], UESC);
2487 	imx_uart_writel(sport, sport->saved_reg[6], UTIM);
2488 	imx_uart_writel(sport, sport->saved_reg[7], UBIR);
2489 	imx_uart_writel(sport, sport->saved_reg[8], UBMR);
2490 	imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS);
2491 	imx_uart_writel(sport, sport->saved_reg[0], UCR1);
2492 	imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2);
2493 	imx_uart_writel(sport, sport->saved_reg[2], UCR3);
2494 	imx_uart_writel(sport, sport->saved_reg[3], UCR4);
2495 	sport->context_saved = false;
2496 	spin_unlock_irqrestore(&sport->port.lock, flags);
2497 }
2498 
2499 static void imx_uart_save_context(struct imx_port *sport)
2500 {
2501 	unsigned long flags;
2502 
2503 	/* Save necessary regs */
2504 	spin_lock_irqsave(&sport->port.lock, flags);
2505 	sport->saved_reg[0] = imx_uart_readl(sport, UCR1);
2506 	sport->saved_reg[1] = imx_uart_readl(sport, UCR2);
2507 	sport->saved_reg[2] = imx_uart_readl(sport, UCR3);
2508 	sport->saved_reg[3] = imx_uart_readl(sport, UCR4);
2509 	sport->saved_reg[4] = imx_uart_readl(sport, UFCR);
2510 	sport->saved_reg[5] = imx_uart_readl(sport, UESC);
2511 	sport->saved_reg[6] = imx_uart_readl(sport, UTIM);
2512 	sport->saved_reg[7] = imx_uart_readl(sport, UBIR);
2513 	sport->saved_reg[8] = imx_uart_readl(sport, UBMR);
2514 	sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS);
2515 	sport->context_saved = true;
2516 	spin_unlock_irqrestore(&sport->port.lock, flags);
2517 }
2518 
2519 static void imx_uart_enable_wakeup(struct imx_port *sport, bool on)
2520 {
2521 	u32 ucr3;
2522 
2523 	ucr3 = imx_uart_readl(sport, UCR3);
2524 	if (on) {
2525 		imx_uart_writel(sport, USR1_AWAKE, USR1);
2526 		ucr3 |= UCR3_AWAKEN;
2527 	} else {
2528 		ucr3 &= ~UCR3_AWAKEN;
2529 	}
2530 	imx_uart_writel(sport, ucr3, UCR3);
2531 
2532 	if (sport->have_rtscts) {
2533 		u32 ucr1 = imx_uart_readl(sport, UCR1);
2534 		if (on) {
2535 			imx_uart_writel(sport, USR1_RTSD, USR1);
2536 			ucr1 |= UCR1_RTSDEN;
2537 		} else {
2538 			ucr1 &= ~UCR1_RTSDEN;
2539 		}
2540 		imx_uart_writel(sport, ucr1, UCR1);
2541 	}
2542 }
2543 
2544 static int imx_uart_suspend_noirq(struct device *dev)
2545 {
2546 	struct imx_port *sport = dev_get_drvdata(dev);
2547 
2548 	imx_uart_save_context(sport);
2549 
2550 	clk_disable(sport->clk_ipg);
2551 
2552 	pinctrl_pm_select_sleep_state(dev);
2553 
2554 	return 0;
2555 }
2556 
2557 static int imx_uart_resume_noirq(struct device *dev)
2558 {
2559 	struct imx_port *sport = dev_get_drvdata(dev);
2560 	int ret;
2561 
2562 	pinctrl_pm_select_default_state(dev);
2563 
2564 	ret = clk_enable(sport->clk_ipg);
2565 	if (ret)
2566 		return ret;
2567 
2568 	imx_uart_restore_context(sport);
2569 
2570 	return 0;
2571 }
2572 
2573 static int imx_uart_suspend(struct device *dev)
2574 {
2575 	struct imx_port *sport = dev_get_drvdata(dev);
2576 	int ret;
2577 
2578 	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2579 	disable_irq(sport->port.irq);
2580 
2581 	ret = clk_prepare_enable(sport->clk_ipg);
2582 	if (ret)
2583 		return ret;
2584 
2585 	/* enable wakeup from i.MX UART */
2586 	imx_uart_enable_wakeup(sport, true);
2587 
2588 	return 0;
2589 }
2590 
2591 static int imx_uart_resume(struct device *dev)
2592 {
2593 	struct imx_port *sport = dev_get_drvdata(dev);
2594 
2595 	/* disable wakeup from i.MX UART */
2596 	imx_uart_enable_wakeup(sport, false);
2597 
2598 	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2599 	enable_irq(sport->port.irq);
2600 
2601 	clk_disable_unprepare(sport->clk_ipg);
2602 
2603 	return 0;
2604 }
2605 
2606 static int imx_uart_freeze(struct device *dev)
2607 {
2608 	struct imx_port *sport = dev_get_drvdata(dev);
2609 
2610 	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2611 
2612 	return clk_prepare_enable(sport->clk_ipg);
2613 }
2614 
2615 static int imx_uart_thaw(struct device *dev)
2616 {
2617 	struct imx_port *sport = dev_get_drvdata(dev);
2618 
2619 	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2620 
2621 	clk_disable_unprepare(sport->clk_ipg);
2622 
2623 	return 0;
2624 }
2625 
2626 static const struct dev_pm_ops imx_uart_pm_ops = {
2627 	.suspend_noirq = imx_uart_suspend_noirq,
2628 	.resume_noirq = imx_uart_resume_noirq,
2629 	.freeze_noirq = imx_uart_suspend_noirq,
2630 	.thaw_noirq = imx_uart_resume_noirq,
2631 	.restore_noirq = imx_uart_resume_noirq,
2632 	.suspend = imx_uart_suspend,
2633 	.resume = imx_uart_resume,
2634 	.freeze = imx_uart_freeze,
2635 	.thaw = imx_uart_thaw,
2636 	.restore = imx_uart_thaw,
2637 };
2638 
2639 static struct platform_driver imx_uart_platform_driver = {
2640 	.probe = imx_uart_probe,
2641 	.remove = imx_uart_remove,
2642 
2643 	.driver = {
2644 		.name = "imx-uart",
2645 		.of_match_table = imx_uart_dt_ids,
2646 		.pm = &imx_uart_pm_ops,
2647 	},
2648 };
2649 
2650 static int __init imx_uart_init(void)
2651 {
2652 	int ret = uart_register_driver(&imx_uart_uart_driver);
2653 
2654 	if (ret)
2655 		return ret;
2656 
2657 	ret = platform_driver_register(&imx_uart_platform_driver);
2658 	if (ret != 0)
2659 		uart_unregister_driver(&imx_uart_uart_driver);
2660 
2661 	return ret;
2662 }
2663 
2664 static void __exit imx_uart_exit(void)
2665 {
2666 	platform_driver_unregister(&imx_uart_platform_driver);
2667 	uart_unregister_driver(&imx_uart_uart_driver);
2668 }
2669 
2670 module_init(imx_uart_init);
2671 module_exit(imx_uart_exit);
2672 
2673 MODULE_AUTHOR("Sascha Hauer");
2674 MODULE_DESCRIPTION("IMX generic serial port driver");
2675 MODULE_LICENSE("GPL");
2676 MODULE_ALIAS("platform:imx-uart");
2677