xref: /openbmc/linux/drivers/tty/serial/imx.c (revision e5242c5f)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Driver for Motorola/Freescale IMX serial ports
4  *
5  * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6  *
7  * Author: Sascha Hauer <sascha@saschahauer.de>
8  * Copyright (C) 2004 Pengutronix
9  */
10 
11 #include <linux/module.h>
12 #include <linux/ioport.h>
13 #include <linux/init.h>
14 #include <linux/console.h>
15 #include <linux/sysrq.h>
16 #include <linux/platform_device.h>
17 #include <linux/tty.h>
18 #include <linux/tty_flip.h>
19 #include <linux/serial_core.h>
20 #include <linux/serial.h>
21 #include <linux/clk.h>
22 #include <linux/delay.h>
23 #include <linux/ktime.h>
24 #include <linux/pinctrl/consumer.h>
25 #include <linux/rational.h>
26 #include <linux/slab.h>
27 #include <linux/of.h>
28 #include <linux/io.h>
29 #include <linux/iopoll.h>
30 #include <linux/dma-mapping.h>
31 
32 #include <asm/irq.h>
33 #include <linux/dma/imx-dma.h>
34 
35 #include "serial_mctrl_gpio.h"
36 
37 /* Register definitions */
38 #define URXD0 0x0  /* Receiver Register */
39 #define URTX0 0x40 /* Transmitter Register */
40 #define UCR1  0x80 /* Control Register 1 */
41 #define UCR2  0x84 /* Control Register 2 */
42 #define UCR3  0x88 /* Control Register 3 */
43 #define UCR4  0x8c /* Control Register 4 */
44 #define UFCR  0x90 /* FIFO Control Register */
45 #define USR1  0x94 /* Status Register 1 */
46 #define USR2  0x98 /* Status Register 2 */
47 #define UESC  0x9c /* Escape Character Register */
48 #define UTIM  0xa0 /* Escape Timer Register */
49 #define UBIR  0xa4 /* BRM Incremental Register */
50 #define UBMR  0xa8 /* BRM Modulator Register */
51 #define UBRC  0xac /* Baud Rate Count Register */
52 #define IMX21_ONEMS 0xb0 /* One Millisecond register */
53 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */
54 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/
55 
56 /* UART Control Register Bit Fields.*/
57 #define URXD_DUMMY_READ (1<<16)
58 #define URXD_CHARRDY	(1<<15)
59 #define URXD_ERR	(1<<14)
60 #define URXD_OVRRUN	(1<<13)
61 #define URXD_FRMERR	(1<<12)
62 #define URXD_BRK	(1<<11)
63 #define URXD_PRERR	(1<<10)
64 #define URXD_RX_DATA	(0xFF<<0)
65 #define UCR1_ADEN	(1<<15) /* Auto detect interrupt */
66 #define UCR1_ADBR	(1<<14) /* Auto detect baud rate */
67 #define UCR1_TRDYEN	(1<<13) /* Transmitter ready interrupt enable */
68 #define UCR1_IDEN	(1<<12) /* Idle condition interrupt */
69 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */
70 #define UCR1_RRDYEN	(1<<9)	/* Recv ready interrupt enable */
71 #define UCR1_RXDMAEN	(1<<8)	/* Recv ready DMA enable */
72 #define UCR1_IREN	(1<<7)	/* Infrared interface enable */
73 #define UCR1_TXMPTYEN	(1<<6)	/* Transimitter empty interrupt enable */
74 #define UCR1_RTSDEN	(1<<5)	/* RTS delta interrupt enable */
75 #define UCR1_SNDBRK	(1<<4)	/* Send break */
76 #define UCR1_TXDMAEN	(1<<3)	/* Transmitter ready DMA enable */
77 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */
78 #define UCR1_ATDMAEN    (1<<2)  /* Aging DMA Timer Enable */
79 #define UCR1_DOZE	(1<<1)	/* Doze */
80 #define UCR1_UARTEN	(1<<0)	/* UART enabled */
81 #define UCR2_ESCI	(1<<15)	/* Escape seq interrupt enable */
82 #define UCR2_IRTS	(1<<14)	/* Ignore RTS pin */
83 #define UCR2_CTSC	(1<<13)	/* CTS pin control */
84 #define UCR2_CTS	(1<<12)	/* Clear to send */
85 #define UCR2_ESCEN	(1<<11)	/* Escape enable */
86 #define UCR2_PREN	(1<<8)	/* Parity enable */
87 #define UCR2_PROE	(1<<7)	/* Parity odd/even */
88 #define UCR2_STPB	(1<<6)	/* Stop */
89 #define UCR2_WS		(1<<5)	/* Word size */
90 #define UCR2_RTSEN	(1<<4)	/* Request to send interrupt enable */
91 #define UCR2_ATEN	(1<<3)	/* Aging Timer Enable */
92 #define UCR2_TXEN	(1<<2)	/* Transmitter enabled */
93 #define UCR2_RXEN	(1<<1)	/* Receiver enabled */
94 #define UCR2_SRST	(1<<0)	/* SW reset */
95 #define UCR3_DTREN	(1<<13) /* DTR interrupt enable */
96 #define UCR3_PARERREN	(1<<12) /* Parity enable */
97 #define UCR3_FRAERREN	(1<<11) /* Frame error interrupt enable */
98 #define UCR3_DSR	(1<<10) /* Data set ready */
99 #define UCR3_DCD	(1<<9)	/* Data carrier detect */
100 #define UCR3_RI		(1<<8)	/* Ring indicator */
101 #define UCR3_ADNIMP	(1<<7)	/* Autobaud Detection Not Improved */
102 #define UCR3_RXDSEN	(1<<6)	/* Receive status interrupt enable */
103 #define UCR3_AIRINTEN	(1<<5)	/* Async IR wake interrupt enable */
104 #define UCR3_AWAKEN	(1<<4)	/* Async wake interrupt enable */
105 #define UCR3_DTRDEN	(1<<3)	/* Data Terminal Ready Delta Enable. */
106 #define IMX21_UCR3_RXDMUXSEL	(1<<2)	/* RXD Muxed Input Select */
107 #define UCR3_INVT	(1<<1)	/* Inverted Infrared transmission */
108 #define UCR3_BPEN	(1<<0)	/* Preset registers enable */
109 #define UCR4_CTSTL_SHF	10	/* CTS trigger level shift */
110 #define UCR4_CTSTL_MASK	0x3F	/* CTS trigger is 6 bits wide */
111 #define UCR4_INVR	(1<<9)	/* Inverted infrared reception */
112 #define UCR4_ENIRI	(1<<8)	/* Serial infrared interrupt enable */
113 #define UCR4_WKEN	(1<<7)	/* Wake interrupt enable */
114 #define UCR4_REF16	(1<<6)	/* Ref freq 16 MHz */
115 #define UCR4_IDDMAEN    (1<<6)  /* DMA IDLE Condition Detected */
116 #define UCR4_IRSC	(1<<5)	/* IR special case */
117 #define UCR4_TCEN	(1<<3)	/* Transmit complete interrupt enable */
118 #define UCR4_BKEN	(1<<2)	/* Break condition interrupt enable */
119 #define UCR4_OREN	(1<<1)	/* Receiver overrun interrupt enable */
120 #define UCR4_DREN	(1<<0)	/* Recv data ready interrupt enable */
121 #define UFCR_RXTL_SHF	0	/* Receiver trigger level shift */
122 #define UFCR_RXTL_MASK	0x3F	/* Receiver trigger 6 bits wide */
123 #define UFCR_DCEDTE	(1<<6)	/* DCE/DTE mode select */
124 #define UFCR_RFDIV	(7<<7)	/* Reference freq divider mask */
125 #define UFCR_RFDIV_REG(x)	(((x) < 7 ? 6 - (x) : 6) << 7)
126 #define UFCR_TXTL_SHF	10	/* Transmitter trigger level shift */
127 #define USR1_PARITYERR	(1<<15) /* Parity error interrupt flag */
128 #define USR1_RTSS	(1<<14) /* RTS pin status */
129 #define USR1_TRDY	(1<<13) /* Transmitter ready interrupt/dma flag */
130 #define USR1_RTSD	(1<<12) /* RTS delta */
131 #define USR1_ESCF	(1<<11) /* Escape seq interrupt flag */
132 #define USR1_FRAMERR	(1<<10) /* Frame error interrupt flag */
133 #define USR1_RRDY	(1<<9)	 /* Receiver ready interrupt/dma flag */
134 #define USR1_AGTIM	(1<<8)	 /* Ageing timer interrupt flag */
135 #define USR1_DTRD	(1<<7)	 /* DTR Delta */
136 #define USR1_RXDS	 (1<<6)	 /* Receiver idle interrupt flag */
137 #define USR1_AIRINT	 (1<<5)	 /* Async IR wake interrupt flag */
138 #define USR1_AWAKE	 (1<<4)	 /* Aysnc wake interrupt flag */
139 #define USR2_ADET	 (1<<15) /* Auto baud rate detect complete */
140 #define USR2_TXFE	 (1<<14) /* Transmit buffer FIFO empty */
141 #define USR2_DTRF	 (1<<13) /* DTR edge interrupt flag */
142 #define USR2_IDLE	 (1<<12) /* Idle condition */
143 #define USR2_RIDELT	 (1<<10) /* Ring Interrupt Delta */
144 #define USR2_RIIN	 (1<<9)	 /* Ring Indicator Input */
145 #define USR2_IRINT	 (1<<8)	 /* Serial infrared interrupt flag */
146 #define USR2_WAKE	 (1<<7)	 /* Wake */
147 #define USR2_DCDIN	 (1<<5)	 /* Data Carrier Detect Input */
148 #define USR2_RTSF	 (1<<4)	 /* RTS edge interrupt flag */
149 #define USR2_TXDC	 (1<<3)	 /* Transmitter complete */
150 #define USR2_BRCD	 (1<<2)	 /* Break condition */
151 #define USR2_ORE	(1<<1)	 /* Overrun error */
152 #define USR2_RDR	(1<<0)	 /* Recv data ready */
153 #define UTS_FRCPERR	(1<<13) /* Force parity error */
154 #define UTS_LOOP	(1<<12)	 /* Loop tx and rx */
155 #define UTS_TXEMPTY	 (1<<6)	 /* TxFIFO empty */
156 #define UTS_RXEMPTY	 (1<<5)	 /* RxFIFO empty */
157 #define UTS_TXFULL	 (1<<4)	 /* TxFIFO full */
158 #define UTS_RXFULL	 (1<<3)	 /* RxFIFO full */
159 #define UTS_SOFTRST	 (1<<0)	 /* Software reset */
160 
161 /* We've been assigned a range on the "Low-density serial ports" major */
162 #define SERIAL_IMX_MAJOR	207
163 #define MINOR_START		16
164 #define DEV_NAME		"ttymxc"
165 
166 /*
167  * This determines how often we check the modem status signals
168  * for any change.  They generally aren't connected to an IRQ
169  * so we have to poll them.  We also check immediately before
170  * filling the TX fifo incase CTS has been dropped.
171  */
172 #define MCTRL_TIMEOUT	(250*HZ/1000)
173 
174 #define DRIVER_NAME "IMX-uart"
175 
176 #define UART_NR 8
177 
178 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */
179 enum imx_uart_type {
180 	IMX1_UART,
181 	IMX21_UART,
182 	IMX53_UART,
183 	IMX6Q_UART,
184 };
185 
186 /* device type dependent stuff */
187 struct imx_uart_data {
188 	unsigned uts_reg;
189 	enum imx_uart_type devtype;
190 };
191 
192 enum imx_tx_state {
193 	OFF,
194 	WAIT_AFTER_RTS,
195 	SEND,
196 	WAIT_AFTER_SEND,
197 };
198 
199 struct imx_port {
200 	struct uart_port	port;
201 	struct timer_list	timer;
202 	unsigned int		old_status;
203 	unsigned int		have_rtscts:1;
204 	unsigned int		have_rtsgpio:1;
205 	unsigned int		dte_mode:1;
206 	unsigned int		inverted_tx:1;
207 	unsigned int		inverted_rx:1;
208 	struct clk		*clk_ipg;
209 	struct clk		*clk_per;
210 	const struct imx_uart_data *devdata;
211 
212 	struct mctrl_gpios *gpios;
213 
214 	/* counter to stop 0xff flood */
215 	int idle_counter;
216 
217 	/* DMA fields */
218 	unsigned int		dma_is_enabled:1;
219 	unsigned int		dma_is_rxing:1;
220 	unsigned int		dma_is_txing:1;
221 	struct dma_chan		*dma_chan_rx, *dma_chan_tx;
222 	struct scatterlist	rx_sgl, tx_sgl[2];
223 	void			*rx_buf;
224 	struct circ_buf		rx_ring;
225 	unsigned int		rx_buf_size;
226 	unsigned int		rx_period_length;
227 	unsigned int		rx_periods;
228 	dma_cookie_t		rx_cookie;
229 	unsigned int		tx_bytes;
230 	unsigned int		dma_tx_nents;
231 	unsigned int            saved_reg[10];
232 	bool			context_saved;
233 
234 	enum imx_tx_state	tx_state;
235 	struct hrtimer		trigger_start_tx;
236 	struct hrtimer		trigger_stop_tx;
237 };
238 
239 struct imx_port_ucrs {
240 	unsigned int	ucr1;
241 	unsigned int	ucr2;
242 	unsigned int	ucr3;
243 };
244 
245 static struct imx_uart_data imx_uart_devdata[] = {
246 	[IMX1_UART] = {
247 		.uts_reg = IMX1_UTS,
248 		.devtype = IMX1_UART,
249 	},
250 	[IMX21_UART] = {
251 		.uts_reg = IMX21_UTS,
252 		.devtype = IMX21_UART,
253 	},
254 	[IMX53_UART] = {
255 		.uts_reg = IMX21_UTS,
256 		.devtype = IMX53_UART,
257 	},
258 	[IMX6Q_UART] = {
259 		.uts_reg = IMX21_UTS,
260 		.devtype = IMX6Q_UART,
261 	},
262 };
263 
264 static const struct of_device_id imx_uart_dt_ids[] = {
265 	{ .compatible = "fsl,imx6q-uart", .data = &imx_uart_devdata[IMX6Q_UART], },
266 	{ .compatible = "fsl,imx53-uart", .data = &imx_uart_devdata[IMX53_UART], },
267 	{ .compatible = "fsl,imx1-uart", .data = &imx_uart_devdata[IMX1_UART], },
268 	{ .compatible = "fsl,imx21-uart", .data = &imx_uart_devdata[IMX21_UART], },
269 	{ /* sentinel */ }
270 };
271 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids);
272 
273 static inline void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset)
274 {
275 	writel(val, sport->port.membase + offset);
276 }
277 
278 static inline u32 imx_uart_readl(struct imx_port *sport, u32 offset)
279 {
280 	return readl(sport->port.membase + offset);
281 }
282 
283 static inline unsigned imx_uart_uts_reg(struct imx_port *sport)
284 {
285 	return sport->devdata->uts_reg;
286 }
287 
288 static inline int imx_uart_is_imx1(struct imx_port *sport)
289 {
290 	return sport->devdata->devtype == IMX1_UART;
291 }
292 
293 /*
294  * Save and restore functions for UCR1, UCR2 and UCR3 registers
295  */
296 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE)
297 static void imx_uart_ucrs_save(struct imx_port *sport,
298 			       struct imx_port_ucrs *ucr)
299 {
300 	/* save control registers */
301 	ucr->ucr1 = imx_uart_readl(sport, UCR1);
302 	ucr->ucr2 = imx_uart_readl(sport, UCR2);
303 	ucr->ucr3 = imx_uart_readl(sport, UCR3);
304 }
305 
306 static void imx_uart_ucrs_restore(struct imx_port *sport,
307 				  struct imx_port_ucrs *ucr)
308 {
309 	/* restore control registers */
310 	imx_uart_writel(sport, ucr->ucr1, UCR1);
311 	imx_uart_writel(sport, ucr->ucr2, UCR2);
312 	imx_uart_writel(sport, ucr->ucr3, UCR3);
313 }
314 #endif
315 
316 /* called with port.lock taken and irqs caller dependent */
317 static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2)
318 {
319 	*ucr2 &= ~(UCR2_CTSC | UCR2_CTS);
320 
321 	mctrl_gpio_set(sport->gpios, sport->port.mctrl | TIOCM_RTS);
322 }
323 
324 /* called with port.lock taken and irqs caller dependent */
325 static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2)
326 {
327 	*ucr2 &= ~UCR2_CTSC;
328 	*ucr2 |= UCR2_CTS;
329 
330 	mctrl_gpio_set(sport->gpios, sport->port.mctrl & ~TIOCM_RTS);
331 }
332 
333 static void start_hrtimer_ms(struct hrtimer *hrt, unsigned long msec)
334 {
335        hrtimer_start(hrt, ms_to_ktime(msec), HRTIMER_MODE_REL);
336 }
337 
338 /* called with port.lock taken and irqs off */
339 static void imx_uart_soft_reset(struct imx_port *sport)
340 {
341 	int i = 10;
342 	u32 ucr2, ubir, ubmr, uts;
343 
344 	/*
345 	 * According to the Reference Manual description of the UART SRST bit:
346 	 *
347 	 * "Reset the transmit and receive state machines,
348 	 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD
349 	 * and UTS[6-3]".
350 	 *
351 	 * We don't need to restore the old values from USR1, USR2, URXD and
352 	 * UTXD. UBRC is read only, so only save/restore the other three
353 	 * registers.
354 	 */
355 	ubir = imx_uart_readl(sport, UBIR);
356 	ubmr = imx_uart_readl(sport, UBMR);
357 	uts = imx_uart_readl(sport, IMX21_UTS);
358 
359 	ucr2 = imx_uart_readl(sport, UCR2);
360 	imx_uart_writel(sport, ucr2 & ~UCR2_SRST, UCR2);
361 
362 	while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0))
363 		udelay(1);
364 
365 	/* Restore the registers */
366 	imx_uart_writel(sport, ubir, UBIR);
367 	imx_uart_writel(sport, ubmr, UBMR);
368 	imx_uart_writel(sport, uts, IMX21_UTS);
369 
370 	sport->idle_counter = 0;
371 }
372 
373 static void imx_uart_disable_loopback_rs485(struct imx_port *sport)
374 {
375 	unsigned int uts;
376 
377 	/* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */
378 	uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
379 	uts &= ~UTS_LOOP;
380 	imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
381 }
382 
383 /* called with port.lock taken and irqs off */
384 static void imx_uart_start_rx(struct uart_port *port)
385 {
386 	struct imx_port *sport = (struct imx_port *)port;
387 	unsigned int ucr1, ucr2;
388 
389 	ucr1 = imx_uart_readl(sport, UCR1);
390 	ucr2 = imx_uart_readl(sport, UCR2);
391 
392 	ucr2 |= UCR2_RXEN;
393 
394 	if (sport->dma_is_enabled) {
395 		ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN;
396 	} else {
397 		ucr1 |= UCR1_RRDYEN;
398 		ucr2 |= UCR2_ATEN;
399 	}
400 
401 	/* Write UCR2 first as it includes RXEN */
402 	imx_uart_writel(sport, ucr2, UCR2);
403 	imx_uart_writel(sport, ucr1, UCR1);
404 	imx_uart_disable_loopback_rs485(sport);
405 }
406 
407 /* called with port.lock taken and irqs off */
408 static void imx_uart_stop_tx(struct uart_port *port)
409 {
410 	struct imx_port *sport = (struct imx_port *)port;
411 	u32 ucr1, ucr4, usr2;
412 
413 	if (sport->tx_state == OFF)
414 		return;
415 
416 	/*
417 	 * We are maybe in the SMP context, so if the DMA TX thread is running
418 	 * on other cpu, we have to wait for it to finish.
419 	 */
420 	if (sport->dma_is_txing)
421 		return;
422 
423 	ucr1 = imx_uart_readl(sport, UCR1);
424 	imx_uart_writel(sport, ucr1 & ~UCR1_TRDYEN, UCR1);
425 
426 	ucr4 = imx_uart_readl(sport, UCR4);
427 	usr2 = imx_uart_readl(sport, USR2);
428 	if ((!(usr2 & USR2_TXDC)) && (ucr4 & UCR4_TCEN)) {
429 		/* The shifter is still busy, so retry once TC triggers */
430 		return;
431 	}
432 
433 	ucr4 &= ~UCR4_TCEN;
434 	imx_uart_writel(sport, ucr4, UCR4);
435 
436 	/* in rs485 mode disable transmitter */
437 	if (port->rs485.flags & SER_RS485_ENABLED) {
438 		if (sport->tx_state == SEND) {
439 			sport->tx_state = WAIT_AFTER_SEND;
440 
441 			if (port->rs485.delay_rts_after_send > 0) {
442 				start_hrtimer_ms(&sport->trigger_stop_tx,
443 					 port->rs485.delay_rts_after_send);
444 				return;
445 			}
446 
447 			/* continue without any delay */
448 		}
449 
450 		if (sport->tx_state == WAIT_AFTER_RTS ||
451 		    sport->tx_state == WAIT_AFTER_SEND) {
452 			u32 ucr2;
453 
454 			hrtimer_try_to_cancel(&sport->trigger_start_tx);
455 
456 			ucr2 = imx_uart_readl(sport, UCR2);
457 			if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
458 				imx_uart_rts_active(sport, &ucr2);
459 			else
460 				imx_uart_rts_inactive(sport, &ucr2);
461 			imx_uart_writel(sport, ucr2, UCR2);
462 
463 			if (!port->rs485_rx_during_tx_gpio)
464 				imx_uart_start_rx(port);
465 
466 			sport->tx_state = OFF;
467 		}
468 	} else {
469 		sport->tx_state = OFF;
470 	}
471 }
472 
473 static void imx_uart_stop_rx_with_loopback_ctrl(struct uart_port *port, bool loopback)
474 {
475 	struct imx_port *sport = (struct imx_port *)port;
476 	u32 ucr1, ucr2, ucr4, uts;
477 
478 	ucr1 = imx_uart_readl(sport, UCR1);
479 	ucr2 = imx_uart_readl(sport, UCR2);
480 	ucr4 = imx_uart_readl(sport, UCR4);
481 
482 	if (sport->dma_is_enabled) {
483 		ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN);
484 	} else {
485 		ucr1 &= ~UCR1_RRDYEN;
486 		ucr2 &= ~UCR2_ATEN;
487 		ucr4 &= ~UCR4_OREN;
488 	}
489 	imx_uart_writel(sport, ucr1, UCR1);
490 	imx_uart_writel(sport, ucr4, UCR4);
491 
492 	/* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */
493 	if (port->rs485.flags & SER_RS485_ENABLED &&
494 	    port->rs485.flags & SER_RS485_RTS_ON_SEND &&
495 	    sport->have_rtscts && !sport->have_rtsgpio && loopback) {
496 		uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
497 		uts |= UTS_LOOP;
498 		imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
499 		ucr2 |= UCR2_RXEN;
500 	} else {
501 		ucr2 &= ~UCR2_RXEN;
502 	}
503 
504 	imx_uart_writel(sport, ucr2, UCR2);
505 }
506 
507 /* called with port.lock taken and irqs off */
508 static void imx_uart_stop_rx(struct uart_port *port)
509 {
510 	/*
511 	 * Stop RX and enable loopback in order to make sure RS485 bus
512 	 * is not blocked. Se comment in imx_uart_probe().
513 	 */
514 	imx_uart_stop_rx_with_loopback_ctrl(port, true);
515 }
516 
517 /* called with port.lock taken and irqs off */
518 static void imx_uart_enable_ms(struct uart_port *port)
519 {
520 	struct imx_port *sport = (struct imx_port *)port;
521 
522 	mod_timer(&sport->timer, jiffies);
523 
524 	mctrl_gpio_enable_ms(sport->gpios);
525 }
526 
527 static void imx_uart_dma_tx(struct imx_port *sport);
528 
529 /* called with port.lock taken and irqs off */
530 static inline void imx_uart_transmit_buffer(struct imx_port *sport)
531 {
532 	struct circ_buf *xmit = &sport->port.state->xmit;
533 
534 	if (sport->port.x_char) {
535 		/* Send next char */
536 		imx_uart_writel(sport, sport->port.x_char, URTX0);
537 		sport->port.icount.tx++;
538 		sport->port.x_char = 0;
539 		return;
540 	}
541 
542 	if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) {
543 		imx_uart_stop_tx(&sport->port);
544 		return;
545 	}
546 
547 	if (sport->dma_is_enabled) {
548 		u32 ucr1;
549 		/*
550 		 * We've just sent a X-char Ensure the TX DMA is enabled
551 		 * and the TX IRQ is disabled.
552 		 **/
553 		ucr1 = imx_uart_readl(sport, UCR1);
554 		ucr1 &= ~UCR1_TRDYEN;
555 		if (sport->dma_is_txing) {
556 			ucr1 |= UCR1_TXDMAEN;
557 			imx_uart_writel(sport, ucr1, UCR1);
558 		} else {
559 			imx_uart_writel(sport, ucr1, UCR1);
560 			imx_uart_dma_tx(sport);
561 		}
562 
563 		return;
564 	}
565 
566 	while (!uart_circ_empty(xmit) &&
567 	       !(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)) {
568 		/* send xmit->buf[xmit->tail]
569 		 * out the port here */
570 		imx_uart_writel(sport, xmit->buf[xmit->tail], URTX0);
571 		uart_xmit_advance(&sport->port, 1);
572 	}
573 
574 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
575 		uart_write_wakeup(&sport->port);
576 
577 	if (uart_circ_empty(xmit))
578 		imx_uart_stop_tx(&sport->port);
579 }
580 
581 static void imx_uart_dma_tx_callback(void *data)
582 {
583 	struct imx_port *sport = data;
584 	struct scatterlist *sgl = &sport->tx_sgl[0];
585 	struct circ_buf *xmit = &sport->port.state->xmit;
586 	unsigned long flags;
587 	u32 ucr1;
588 
589 	spin_lock_irqsave(&sport->port.lock, flags);
590 
591 	dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
592 
593 	ucr1 = imx_uart_readl(sport, UCR1);
594 	ucr1 &= ~UCR1_TXDMAEN;
595 	imx_uart_writel(sport, ucr1, UCR1);
596 
597 	uart_xmit_advance(&sport->port, sport->tx_bytes);
598 
599 	dev_dbg(sport->port.dev, "we finish the TX DMA.\n");
600 
601 	sport->dma_is_txing = 0;
602 
603 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
604 		uart_write_wakeup(&sport->port);
605 
606 	if (!uart_circ_empty(xmit) && !uart_tx_stopped(&sport->port))
607 		imx_uart_dma_tx(sport);
608 	else if (sport->port.rs485.flags & SER_RS485_ENABLED) {
609 		u32 ucr4 = imx_uart_readl(sport, UCR4);
610 		ucr4 |= UCR4_TCEN;
611 		imx_uart_writel(sport, ucr4, UCR4);
612 	}
613 
614 	spin_unlock_irqrestore(&sport->port.lock, flags);
615 }
616 
617 /* called with port.lock taken and irqs off */
618 static void imx_uart_dma_tx(struct imx_port *sport)
619 {
620 	struct circ_buf *xmit = &sport->port.state->xmit;
621 	struct scatterlist *sgl = sport->tx_sgl;
622 	struct dma_async_tx_descriptor *desc;
623 	struct dma_chan	*chan = sport->dma_chan_tx;
624 	struct device *dev = sport->port.dev;
625 	u32 ucr1, ucr4;
626 	int ret;
627 
628 	if (sport->dma_is_txing)
629 		return;
630 
631 	ucr4 = imx_uart_readl(sport, UCR4);
632 	ucr4 &= ~UCR4_TCEN;
633 	imx_uart_writel(sport, ucr4, UCR4);
634 
635 	sport->tx_bytes = uart_circ_chars_pending(xmit);
636 
637 	if (xmit->tail < xmit->head || xmit->head == 0) {
638 		sport->dma_tx_nents = 1;
639 		sg_init_one(sgl, xmit->buf + xmit->tail, sport->tx_bytes);
640 	} else {
641 		sport->dma_tx_nents = 2;
642 		sg_init_table(sgl, 2);
643 		sg_set_buf(sgl, xmit->buf + xmit->tail,
644 				UART_XMIT_SIZE - xmit->tail);
645 		sg_set_buf(sgl + 1, xmit->buf, xmit->head);
646 	}
647 
648 	ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
649 	if (ret == 0) {
650 		dev_err(dev, "DMA mapping error for TX.\n");
651 		return;
652 	}
653 	desc = dmaengine_prep_slave_sg(chan, sgl, ret,
654 					DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);
655 	if (!desc) {
656 		dma_unmap_sg(dev, sgl, sport->dma_tx_nents,
657 			     DMA_TO_DEVICE);
658 		dev_err(dev, "We cannot prepare for the TX slave dma!\n");
659 		return;
660 	}
661 	desc->callback = imx_uart_dma_tx_callback;
662 	desc->callback_param = sport;
663 
664 	dev_dbg(dev, "TX: prepare to send %lu bytes by DMA.\n",
665 			uart_circ_chars_pending(xmit));
666 
667 	ucr1 = imx_uart_readl(sport, UCR1);
668 	ucr1 |= UCR1_TXDMAEN;
669 	imx_uart_writel(sport, ucr1, UCR1);
670 
671 	/* fire it */
672 	sport->dma_is_txing = 1;
673 	dmaengine_submit(desc);
674 	dma_async_issue_pending(chan);
675 	return;
676 }
677 
678 /* called with port.lock taken and irqs off */
679 static void imx_uart_start_tx(struct uart_port *port)
680 {
681 	struct imx_port *sport = (struct imx_port *)port;
682 	u32 ucr1;
683 
684 	if (!sport->port.x_char && uart_circ_empty(&port->state->xmit))
685 		return;
686 
687 	/*
688 	 * We cannot simply do nothing here if sport->tx_state == SEND already
689 	 * because UCR1_TXMPTYEN might already have been cleared in
690 	 * imx_uart_stop_tx(), but tx_state is still SEND.
691 	 */
692 
693 	if (port->rs485.flags & SER_RS485_ENABLED) {
694 		if (sport->tx_state == OFF) {
695 			u32 ucr2 = imx_uart_readl(sport, UCR2);
696 			if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
697 				imx_uart_rts_active(sport, &ucr2);
698 			else
699 				imx_uart_rts_inactive(sport, &ucr2);
700 			imx_uart_writel(sport, ucr2, UCR2);
701 
702 			/*
703 			 * Since we are about to transmit we can not stop RX
704 			 * with loopback enabled because that will make our
705 			 * transmitted data being just looped to RX.
706 			 */
707 			if (!(port->rs485.flags & SER_RS485_RX_DURING_TX) &&
708 			    !port->rs485_rx_during_tx_gpio)
709 				imx_uart_stop_rx_with_loopback_ctrl(port, false);
710 
711 			sport->tx_state = WAIT_AFTER_RTS;
712 
713 			if (port->rs485.delay_rts_before_send > 0) {
714 				start_hrtimer_ms(&sport->trigger_start_tx,
715 					 port->rs485.delay_rts_before_send);
716 				return;
717 			}
718 
719 			/* continue without any delay */
720 		}
721 
722 		if (sport->tx_state == WAIT_AFTER_SEND
723 		    || sport->tx_state == WAIT_AFTER_RTS) {
724 
725 			hrtimer_try_to_cancel(&sport->trigger_stop_tx);
726 
727 			/*
728 			 * Enable transmitter and shifter empty irq only if DMA
729 			 * is off.  In the DMA case this is done in the
730 			 * tx-callback.
731 			 */
732 			if (!sport->dma_is_enabled) {
733 				u32 ucr4 = imx_uart_readl(sport, UCR4);
734 				ucr4 |= UCR4_TCEN;
735 				imx_uart_writel(sport, ucr4, UCR4);
736 			}
737 
738 			sport->tx_state = SEND;
739 		}
740 	} else {
741 		sport->tx_state = SEND;
742 	}
743 
744 	if (!sport->dma_is_enabled) {
745 		ucr1 = imx_uart_readl(sport, UCR1);
746 		imx_uart_writel(sport, ucr1 | UCR1_TRDYEN, UCR1);
747 	}
748 
749 	if (sport->dma_is_enabled) {
750 		if (sport->port.x_char) {
751 			/* We have X-char to send, so enable TX IRQ and
752 			 * disable TX DMA to let TX interrupt to send X-char */
753 			ucr1 = imx_uart_readl(sport, UCR1);
754 			ucr1 &= ~UCR1_TXDMAEN;
755 			ucr1 |= UCR1_TRDYEN;
756 			imx_uart_writel(sport, ucr1, UCR1);
757 			return;
758 		}
759 
760 		if (!uart_circ_empty(&port->state->xmit) &&
761 		    !uart_tx_stopped(port))
762 			imx_uart_dma_tx(sport);
763 		return;
764 	}
765 }
766 
767 static irqreturn_t __imx_uart_rtsint(int irq, void *dev_id)
768 {
769 	struct imx_port *sport = dev_id;
770 	u32 usr1;
771 
772 	imx_uart_writel(sport, USR1_RTSD, USR1);
773 	usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS;
774 	/*
775 	 * Update sport->old_status here, so any follow-up calls to
776 	 * imx_uart_mctrl_check() will be able to recognize that RTS
777 	 * state changed since last imx_uart_mctrl_check() call.
778 	 *
779 	 * In case RTS has been detected as asserted here and later on
780 	 * deasserted by the time imx_uart_mctrl_check() was called,
781 	 * imx_uart_mctrl_check() can detect the RTS state change and
782 	 * trigger uart_handle_cts_change() to unblock the port for
783 	 * further TX transfers.
784 	 */
785 	if (usr1 & USR1_RTSS)
786 		sport->old_status |= TIOCM_CTS;
787 	else
788 		sport->old_status &= ~TIOCM_CTS;
789 	uart_handle_cts_change(&sport->port, usr1);
790 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
791 
792 	return IRQ_HANDLED;
793 }
794 
795 static irqreturn_t imx_uart_rtsint(int irq, void *dev_id)
796 {
797 	struct imx_port *sport = dev_id;
798 	irqreturn_t ret;
799 
800 	spin_lock(&sport->port.lock);
801 
802 	ret = __imx_uart_rtsint(irq, dev_id);
803 
804 	spin_unlock(&sport->port.lock);
805 
806 	return ret;
807 }
808 
809 static irqreturn_t imx_uart_txint(int irq, void *dev_id)
810 {
811 	struct imx_port *sport = dev_id;
812 
813 	spin_lock(&sport->port.lock);
814 	imx_uart_transmit_buffer(sport);
815 	spin_unlock(&sport->port.lock);
816 	return IRQ_HANDLED;
817 }
818 
819 /* Check if hardware Rx flood is in progress, and issue soft reset to stop it.
820  * This is to be called from Rx ISRs only when some bytes were actually
821  * received.
822  *
823  * A way to reproduce the flood (checked on iMX6SX) is: open iMX UART at 9600
824  * 8N1, and from external source send 0xf0 char at 115200 8N1. In about 90% of
825  * cases this starts a flood of "receiving" of 0xff characters by the iMX6 UART
826  * that is terminated by any activity on RxD line, or could be stopped by
827  * issuing soft reset to the UART (just stop/start of RX does not help). Note
828  * that what we do here is sending isolated start bit about 2.4 times shorter
829  * than it is to be on UART configured baud rate.
830  */
831 static void imx_uart_check_flood(struct imx_port *sport, u32 usr2)
832 {
833 	/* To detect hardware 0xff flood we monitor RxD line between RX
834 	 * interrupts to isolate "receiving" of char(s) with no activity
835 	 * on RxD line, that'd never happen on actual data transfers.
836 	 *
837 	 * We use USR2_WAKE bit to check for activity on RxD line, but we have a
838 	 * race here if we clear USR2_WAKE when receiving of a char is in
839 	 * progress, so we might get RX interrupt later with USR2_WAKE bit
840 	 * cleared. Note though that as we don't try to clear USR2_WAKE when we
841 	 * detected no activity, this race may hide actual activity only once.
842 	 *
843 	 * Yet another case where receive interrupt may occur without RxD
844 	 * activity is expiration of aging timer, so we consider this as well.
845 	 *
846 	 * We use 'idle_counter' to ensure that we got at least so many RX
847 	 * interrupts without any detected activity on RxD line. 2 cases
848 	 * described plus 1 to be on the safe side gives us a margin of 3,
849 	 * below. In practice I was not able to produce a false positive to
850 	 * induce soft reset at regular data transfers even using 1 as the
851 	 * margin, so 3 is actually very strong.
852 	 *
853 	 * We count interrupts, not chars in 'idle-counter' for simplicity.
854 	 */
855 
856 	if (usr2 & USR2_WAKE) {
857 		imx_uart_writel(sport, USR2_WAKE, USR2);
858 		sport->idle_counter = 0;
859 	} else if (++sport->idle_counter > 3) {
860 		dev_warn(sport->port.dev, "RX flood detected: soft reset.");
861 		imx_uart_soft_reset(sport); /* also clears 'sport->idle_counter' */
862 	}
863 }
864 
865 static irqreturn_t __imx_uart_rxint(int irq, void *dev_id)
866 {
867 	struct imx_port *sport = dev_id;
868 	struct tty_port *port = &sport->port.state->port;
869 	u32 usr2, rx;
870 
871 	/* If we received something, check for 0xff flood */
872 	usr2 = imx_uart_readl(sport, USR2);
873 	if (usr2 & USR2_RDR)
874 		imx_uart_check_flood(sport, usr2);
875 
876 	while ((rx = imx_uart_readl(sport, URXD0)) & URXD_CHARRDY) {
877 		unsigned int flg = TTY_NORMAL;
878 		sport->port.icount.rx++;
879 
880 		if (unlikely(rx & URXD_ERR)) {
881 			if (rx & URXD_BRK) {
882 				sport->port.icount.brk++;
883 				if (uart_handle_break(&sport->port))
884 					continue;
885 			}
886 			else if (rx & URXD_PRERR)
887 				sport->port.icount.parity++;
888 			else if (rx & URXD_FRMERR)
889 				sport->port.icount.frame++;
890 			if (rx & URXD_OVRRUN)
891 				sport->port.icount.overrun++;
892 
893 			if (rx & sport->port.ignore_status_mask)
894 				continue;
895 
896 			rx &= (sport->port.read_status_mask | 0xFF);
897 
898 			if (rx & URXD_BRK)
899 				flg = TTY_BREAK;
900 			else if (rx & URXD_PRERR)
901 				flg = TTY_PARITY;
902 			else if (rx & URXD_FRMERR)
903 				flg = TTY_FRAME;
904 			if (rx & URXD_OVRRUN)
905 				flg = TTY_OVERRUN;
906 
907 			sport->port.sysrq = 0;
908 		} else if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx)) {
909 			continue;
910 		}
911 
912 		if (sport->port.ignore_status_mask & URXD_DUMMY_READ)
913 			continue;
914 
915 		if (tty_insert_flip_char(port, rx, flg) == 0)
916 			sport->port.icount.buf_overrun++;
917 	}
918 
919 	tty_flip_buffer_push(port);
920 
921 	return IRQ_HANDLED;
922 }
923 
924 static irqreturn_t imx_uart_rxint(int irq, void *dev_id)
925 {
926 	struct imx_port *sport = dev_id;
927 	irqreturn_t ret;
928 
929 	spin_lock(&sport->port.lock);
930 
931 	ret = __imx_uart_rxint(irq, dev_id);
932 
933 	spin_unlock(&sport->port.lock);
934 
935 	return ret;
936 }
937 
938 static void imx_uart_clear_rx_errors(struct imx_port *sport);
939 
940 /*
941  * We have a modem side uart, so the meanings of RTS and CTS are inverted.
942  */
943 static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport)
944 {
945 	unsigned int tmp = TIOCM_DSR;
946 	unsigned usr1 = imx_uart_readl(sport, USR1);
947 	unsigned usr2 = imx_uart_readl(sport, USR2);
948 
949 	if (usr1 & USR1_RTSS)
950 		tmp |= TIOCM_CTS;
951 
952 	/* in DCE mode DCDIN is always 0 */
953 	if (!(usr2 & USR2_DCDIN))
954 		tmp |= TIOCM_CAR;
955 
956 	if (sport->dte_mode)
957 		if (!(imx_uart_readl(sport, USR2) & USR2_RIIN))
958 			tmp |= TIOCM_RI;
959 
960 	return tmp;
961 }
962 
963 /*
964  * Handle any change of modem status signal since we were last called.
965  */
966 static void imx_uart_mctrl_check(struct imx_port *sport)
967 {
968 	unsigned int status, changed;
969 
970 	status = imx_uart_get_hwmctrl(sport);
971 	changed = status ^ sport->old_status;
972 
973 	if (changed == 0)
974 		return;
975 
976 	sport->old_status = status;
977 
978 	if (changed & TIOCM_RI && status & TIOCM_RI)
979 		sport->port.icount.rng++;
980 	if (changed & TIOCM_DSR)
981 		sport->port.icount.dsr++;
982 	if (changed & TIOCM_CAR)
983 		uart_handle_dcd_change(&sport->port, status & TIOCM_CAR);
984 	if (changed & TIOCM_CTS)
985 		uart_handle_cts_change(&sport->port, status & TIOCM_CTS);
986 
987 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
988 }
989 
990 static irqreturn_t imx_uart_int(int irq, void *dev_id)
991 {
992 	struct imx_port *sport = dev_id;
993 	unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4;
994 	irqreturn_t ret = IRQ_NONE;
995 
996 	spin_lock(&sport->port.lock);
997 
998 	usr1 = imx_uart_readl(sport, USR1);
999 	usr2 = imx_uart_readl(sport, USR2);
1000 	ucr1 = imx_uart_readl(sport, UCR1);
1001 	ucr2 = imx_uart_readl(sport, UCR2);
1002 	ucr3 = imx_uart_readl(sport, UCR3);
1003 	ucr4 = imx_uart_readl(sport, UCR4);
1004 
1005 	/*
1006 	 * Even if a condition is true that can trigger an irq only handle it if
1007 	 * the respective irq source is enabled. This prevents some undesired
1008 	 * actions, for example if a character that sits in the RX FIFO and that
1009 	 * should be fetched via DMA is tried to be fetched using PIO. Or the
1010 	 * receiver is currently off and so reading from URXD0 results in an
1011 	 * exception. So just mask the (raw) status bits for disabled irqs.
1012 	 */
1013 	if ((ucr1 & UCR1_RRDYEN) == 0)
1014 		usr1 &= ~USR1_RRDY;
1015 	if ((ucr2 & UCR2_ATEN) == 0)
1016 		usr1 &= ~USR1_AGTIM;
1017 	if ((ucr1 & UCR1_TRDYEN) == 0)
1018 		usr1 &= ~USR1_TRDY;
1019 	if ((ucr4 & UCR4_TCEN) == 0)
1020 		usr2 &= ~USR2_TXDC;
1021 	if ((ucr3 & UCR3_DTRDEN) == 0)
1022 		usr1 &= ~USR1_DTRD;
1023 	if ((ucr1 & UCR1_RTSDEN) == 0)
1024 		usr1 &= ~USR1_RTSD;
1025 	if ((ucr3 & UCR3_AWAKEN) == 0)
1026 		usr1 &= ~USR1_AWAKE;
1027 	if ((ucr4 & UCR4_OREN) == 0)
1028 		usr2 &= ~USR2_ORE;
1029 
1030 	if (usr1 & (USR1_RRDY | USR1_AGTIM)) {
1031 		imx_uart_writel(sport, USR1_AGTIM, USR1);
1032 
1033 		__imx_uart_rxint(irq, dev_id);
1034 		ret = IRQ_HANDLED;
1035 	}
1036 
1037 	if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) {
1038 		imx_uart_transmit_buffer(sport);
1039 		ret = IRQ_HANDLED;
1040 	}
1041 
1042 	if (usr1 & USR1_DTRD) {
1043 		imx_uart_writel(sport, USR1_DTRD, USR1);
1044 
1045 		imx_uart_mctrl_check(sport);
1046 
1047 		ret = IRQ_HANDLED;
1048 	}
1049 
1050 	if (usr1 & USR1_RTSD) {
1051 		__imx_uart_rtsint(irq, dev_id);
1052 		ret = IRQ_HANDLED;
1053 	}
1054 
1055 	if (usr1 & USR1_AWAKE) {
1056 		imx_uart_writel(sport, USR1_AWAKE, USR1);
1057 		ret = IRQ_HANDLED;
1058 	}
1059 
1060 	if (usr2 & USR2_ORE) {
1061 		sport->port.icount.overrun++;
1062 		imx_uart_writel(sport, USR2_ORE, USR2);
1063 		ret = IRQ_HANDLED;
1064 	}
1065 
1066 	spin_unlock(&sport->port.lock);
1067 
1068 	return ret;
1069 }
1070 
1071 /*
1072  * Return TIOCSER_TEMT when transmitter is not busy.
1073  */
1074 static unsigned int imx_uart_tx_empty(struct uart_port *port)
1075 {
1076 	struct imx_port *sport = (struct imx_port *)port;
1077 	unsigned int ret;
1078 
1079 	ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ?  TIOCSER_TEMT : 0;
1080 
1081 	/* If the TX DMA is working, return 0. */
1082 	if (sport->dma_is_txing)
1083 		ret = 0;
1084 
1085 	return ret;
1086 }
1087 
1088 /* called with port.lock taken and irqs off */
1089 static unsigned int imx_uart_get_mctrl(struct uart_port *port)
1090 {
1091 	struct imx_port *sport = (struct imx_port *)port;
1092 	unsigned int ret = imx_uart_get_hwmctrl(sport);
1093 
1094 	mctrl_gpio_get(sport->gpios, &ret);
1095 
1096 	return ret;
1097 }
1098 
1099 /* called with port.lock taken and irqs off */
1100 static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
1101 {
1102 	struct imx_port *sport = (struct imx_port *)port;
1103 	u32 ucr3, uts;
1104 
1105 	if (!(port->rs485.flags & SER_RS485_ENABLED)) {
1106 		u32 ucr2;
1107 
1108 		/*
1109 		 * Turn off autoRTS if RTS is lowered and restore autoRTS
1110 		 * setting if RTS is raised.
1111 		 */
1112 		ucr2 = imx_uart_readl(sport, UCR2);
1113 		ucr2 &= ~(UCR2_CTS | UCR2_CTSC);
1114 		if (mctrl & TIOCM_RTS) {
1115 			ucr2 |= UCR2_CTS;
1116 			/*
1117 			 * UCR2_IRTS is unset if and only if the port is
1118 			 * configured for CRTSCTS, so we use inverted UCR2_IRTS
1119 			 * to get the state to restore to.
1120 			 */
1121 			if (!(ucr2 & UCR2_IRTS))
1122 				ucr2 |= UCR2_CTSC;
1123 		}
1124 		imx_uart_writel(sport, ucr2, UCR2);
1125 	}
1126 
1127 	ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR;
1128 	if (!(mctrl & TIOCM_DTR))
1129 		ucr3 |= UCR3_DSR;
1130 	imx_uart_writel(sport, ucr3, UCR3);
1131 
1132 	uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP;
1133 	if (mctrl & TIOCM_LOOP)
1134 		uts |= UTS_LOOP;
1135 	imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
1136 
1137 	mctrl_gpio_set(sport->gpios, mctrl);
1138 }
1139 
1140 /*
1141  * Interrupts always disabled.
1142  */
1143 static void imx_uart_break_ctl(struct uart_port *port, int break_state)
1144 {
1145 	struct imx_port *sport = (struct imx_port *)port;
1146 	unsigned long flags;
1147 	u32 ucr1;
1148 
1149 	spin_lock_irqsave(&sport->port.lock, flags);
1150 
1151 	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK;
1152 
1153 	if (break_state != 0)
1154 		ucr1 |= UCR1_SNDBRK;
1155 
1156 	imx_uart_writel(sport, ucr1, UCR1);
1157 
1158 	spin_unlock_irqrestore(&sport->port.lock, flags);
1159 }
1160 
1161 /*
1162  * This is our per-port timeout handler, for checking the
1163  * modem status signals.
1164  */
1165 static void imx_uart_timeout(struct timer_list *t)
1166 {
1167 	struct imx_port *sport = from_timer(sport, t, timer);
1168 	unsigned long flags;
1169 
1170 	if (sport->port.state) {
1171 		spin_lock_irqsave(&sport->port.lock, flags);
1172 		imx_uart_mctrl_check(sport);
1173 		spin_unlock_irqrestore(&sport->port.lock, flags);
1174 
1175 		mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT);
1176 	}
1177 }
1178 
1179 /*
1180  * There are two kinds of RX DMA interrupts(such as in the MX6Q):
1181  *   [1] the RX DMA buffer is full.
1182  *   [2] the aging timer expires
1183  *
1184  * Condition [2] is triggered when a character has been sitting in the FIFO
1185  * for at least 8 byte durations.
1186  */
1187 static void imx_uart_dma_rx_callback(void *data)
1188 {
1189 	struct imx_port *sport = data;
1190 	struct dma_chan	*chan = sport->dma_chan_rx;
1191 	struct scatterlist *sgl = &sport->rx_sgl;
1192 	struct tty_port *port = &sport->port.state->port;
1193 	struct dma_tx_state state;
1194 	struct circ_buf *rx_ring = &sport->rx_ring;
1195 	enum dma_status status;
1196 	unsigned int w_bytes = 0;
1197 	unsigned int r_bytes;
1198 	unsigned int bd_size;
1199 
1200 	status = dmaengine_tx_status(chan, sport->rx_cookie, &state);
1201 
1202 	if (status == DMA_ERROR) {
1203 		spin_lock(&sport->port.lock);
1204 		imx_uart_clear_rx_errors(sport);
1205 		spin_unlock(&sport->port.lock);
1206 		return;
1207 	}
1208 
1209 	/*
1210 	 * The state-residue variable represents the empty space
1211 	 * relative to the entire buffer. Taking this in consideration
1212 	 * the head is always calculated base on the buffer total
1213 	 * length - DMA transaction residue. The UART script from the
1214 	 * SDMA firmware will jump to the next buffer descriptor,
1215 	 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4).
1216 	 * Taking this in consideration the tail is always at the
1217 	 * beginning of the buffer descriptor that contains the head.
1218 	 */
1219 
1220 	/* Calculate the head */
1221 	rx_ring->head = sg_dma_len(sgl) - state.residue;
1222 
1223 	/* Calculate the tail. */
1224 	bd_size = sg_dma_len(sgl) / sport->rx_periods;
1225 	rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size;
1226 
1227 	if (rx_ring->head <= sg_dma_len(sgl) &&
1228 	    rx_ring->head > rx_ring->tail) {
1229 
1230 		/* Move data from tail to head */
1231 		r_bytes = rx_ring->head - rx_ring->tail;
1232 
1233 		/* If we received something, check for 0xff flood */
1234 		spin_lock(&sport->port.lock);
1235 		imx_uart_check_flood(sport, imx_uart_readl(sport, USR2));
1236 		spin_unlock(&sport->port.lock);
1237 
1238 		if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) {
1239 
1240 			/* CPU claims ownership of RX DMA buffer */
1241 			dma_sync_sg_for_cpu(sport->port.dev, sgl, 1,
1242 					    DMA_FROM_DEVICE);
1243 
1244 			w_bytes = tty_insert_flip_string(port,
1245 							 sport->rx_buf + rx_ring->tail, r_bytes);
1246 
1247 			/* UART retrieves ownership of RX DMA buffer */
1248 			dma_sync_sg_for_device(sport->port.dev, sgl, 1,
1249 					       DMA_FROM_DEVICE);
1250 
1251 			if (w_bytes != r_bytes)
1252 				sport->port.icount.buf_overrun++;
1253 
1254 			sport->port.icount.rx += w_bytes;
1255 		}
1256 	} else	{
1257 		WARN_ON(rx_ring->head > sg_dma_len(sgl));
1258 		WARN_ON(rx_ring->head <= rx_ring->tail);
1259 	}
1260 
1261 	if (w_bytes) {
1262 		tty_flip_buffer_push(port);
1263 		dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes);
1264 	}
1265 }
1266 
1267 static int imx_uart_start_rx_dma(struct imx_port *sport)
1268 {
1269 	struct scatterlist *sgl = &sport->rx_sgl;
1270 	struct dma_chan	*chan = sport->dma_chan_rx;
1271 	struct device *dev = sport->port.dev;
1272 	struct dma_async_tx_descriptor *desc;
1273 	int ret;
1274 
1275 	sport->rx_ring.head = 0;
1276 	sport->rx_ring.tail = 0;
1277 
1278 	sg_init_one(sgl, sport->rx_buf, sport->rx_buf_size);
1279 	ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1280 	if (ret == 0) {
1281 		dev_err(dev, "DMA mapping error for RX.\n");
1282 		return -EINVAL;
1283 	}
1284 
1285 	desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl),
1286 		sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods,
1287 		DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
1288 
1289 	if (!desc) {
1290 		dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1291 		dev_err(dev, "We cannot prepare for the RX slave dma!\n");
1292 		return -EINVAL;
1293 	}
1294 	desc->callback = imx_uart_dma_rx_callback;
1295 	desc->callback_param = sport;
1296 
1297 	dev_dbg(dev, "RX: prepare for the DMA.\n");
1298 	sport->dma_is_rxing = 1;
1299 	sport->rx_cookie = dmaengine_submit(desc);
1300 	dma_async_issue_pending(chan);
1301 	return 0;
1302 }
1303 
1304 static void imx_uart_clear_rx_errors(struct imx_port *sport)
1305 {
1306 	struct tty_port *port = &sport->port.state->port;
1307 	u32 usr1, usr2;
1308 
1309 	usr1 = imx_uart_readl(sport, USR1);
1310 	usr2 = imx_uart_readl(sport, USR2);
1311 
1312 	if (usr2 & USR2_BRCD) {
1313 		sport->port.icount.brk++;
1314 		imx_uart_writel(sport, USR2_BRCD, USR2);
1315 		uart_handle_break(&sport->port);
1316 		if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0)
1317 			sport->port.icount.buf_overrun++;
1318 		tty_flip_buffer_push(port);
1319 	} else {
1320 		if (usr1 & USR1_FRAMERR) {
1321 			sport->port.icount.frame++;
1322 			imx_uart_writel(sport, USR1_FRAMERR, USR1);
1323 		} else if (usr1 & USR1_PARITYERR) {
1324 			sport->port.icount.parity++;
1325 			imx_uart_writel(sport, USR1_PARITYERR, USR1);
1326 		}
1327 	}
1328 
1329 	if (usr2 & USR2_ORE) {
1330 		sport->port.icount.overrun++;
1331 		imx_uart_writel(sport, USR2_ORE, USR2);
1332 	}
1333 
1334 	sport->idle_counter = 0;
1335 
1336 }
1337 
1338 #define TXTL_DEFAULT 8
1339 #define RXTL_DEFAULT 8 /* 8 characters or aging timer */
1340 #define TXTL_DMA 8 /* DMA burst setting */
1341 #define RXTL_DMA 9 /* DMA burst setting */
1342 
1343 static void imx_uart_setup_ufcr(struct imx_port *sport,
1344 				unsigned char txwl, unsigned char rxwl)
1345 {
1346 	unsigned int val;
1347 
1348 	/* set receiver / transmitter trigger level */
1349 	val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE);
1350 	val |= txwl << UFCR_TXTL_SHF | rxwl;
1351 	imx_uart_writel(sport, val, UFCR);
1352 }
1353 
1354 static void imx_uart_dma_exit(struct imx_port *sport)
1355 {
1356 	if (sport->dma_chan_rx) {
1357 		dmaengine_terminate_sync(sport->dma_chan_rx);
1358 		dma_release_channel(sport->dma_chan_rx);
1359 		sport->dma_chan_rx = NULL;
1360 		sport->rx_cookie = -EINVAL;
1361 		kfree(sport->rx_buf);
1362 		sport->rx_buf = NULL;
1363 	}
1364 
1365 	if (sport->dma_chan_tx) {
1366 		dmaengine_terminate_sync(sport->dma_chan_tx);
1367 		dma_release_channel(sport->dma_chan_tx);
1368 		sport->dma_chan_tx = NULL;
1369 	}
1370 }
1371 
1372 static int imx_uart_dma_init(struct imx_port *sport)
1373 {
1374 	struct dma_slave_config slave_config = {};
1375 	struct device *dev = sport->port.dev;
1376 	int ret;
1377 
1378 	/* Prepare for RX : */
1379 	sport->dma_chan_rx = dma_request_slave_channel(dev, "rx");
1380 	if (!sport->dma_chan_rx) {
1381 		dev_dbg(dev, "cannot get the DMA channel.\n");
1382 		ret = -EINVAL;
1383 		goto err;
1384 	}
1385 
1386 	slave_config.direction = DMA_DEV_TO_MEM;
1387 	slave_config.src_addr = sport->port.mapbase + URXD0;
1388 	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1389 	/* one byte less than the watermark level to enable the aging timer */
1390 	slave_config.src_maxburst = RXTL_DMA - 1;
1391 	ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config);
1392 	if (ret) {
1393 		dev_err(dev, "error in RX dma configuration.\n");
1394 		goto err;
1395 	}
1396 
1397 	sport->rx_buf_size = sport->rx_period_length * sport->rx_periods;
1398 	sport->rx_buf = kzalloc(sport->rx_buf_size, GFP_KERNEL);
1399 	if (!sport->rx_buf) {
1400 		ret = -ENOMEM;
1401 		goto err;
1402 	}
1403 	sport->rx_ring.buf = sport->rx_buf;
1404 
1405 	/* Prepare for TX : */
1406 	sport->dma_chan_tx = dma_request_slave_channel(dev, "tx");
1407 	if (!sport->dma_chan_tx) {
1408 		dev_err(dev, "cannot get the TX DMA channel!\n");
1409 		ret = -EINVAL;
1410 		goto err;
1411 	}
1412 
1413 	slave_config.direction = DMA_MEM_TO_DEV;
1414 	slave_config.dst_addr = sport->port.mapbase + URTX0;
1415 	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1416 	slave_config.dst_maxburst = TXTL_DMA;
1417 	ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config);
1418 	if (ret) {
1419 		dev_err(dev, "error in TX dma configuration.");
1420 		goto err;
1421 	}
1422 
1423 	return 0;
1424 err:
1425 	imx_uart_dma_exit(sport);
1426 	return ret;
1427 }
1428 
1429 static void imx_uart_enable_dma(struct imx_port *sport)
1430 {
1431 	u32 ucr1;
1432 
1433 	imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA);
1434 
1435 	/* set UCR1 */
1436 	ucr1 = imx_uart_readl(sport, UCR1);
1437 	ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN;
1438 	imx_uart_writel(sport, ucr1, UCR1);
1439 
1440 	sport->dma_is_enabled = 1;
1441 }
1442 
1443 static void imx_uart_disable_dma(struct imx_port *sport)
1444 {
1445 	u32 ucr1;
1446 
1447 	/* clear UCR1 */
1448 	ucr1 = imx_uart_readl(sport, UCR1);
1449 	ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN);
1450 	imx_uart_writel(sport, ucr1, UCR1);
1451 
1452 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1453 
1454 	sport->dma_is_enabled = 0;
1455 }
1456 
1457 /* half the RX buffer size */
1458 #define CTSTL 16
1459 
1460 static int imx_uart_startup(struct uart_port *port)
1461 {
1462 	struct imx_port *sport = (struct imx_port *)port;
1463 	int retval;
1464 	unsigned long flags;
1465 	int dma_is_inited = 0;
1466 	u32 ucr1, ucr2, ucr3, ucr4;
1467 
1468 	retval = clk_prepare_enable(sport->clk_per);
1469 	if (retval)
1470 		return retval;
1471 	retval = clk_prepare_enable(sport->clk_ipg);
1472 	if (retval) {
1473 		clk_disable_unprepare(sport->clk_per);
1474 		return retval;
1475 	}
1476 
1477 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1478 
1479 	/* disable the DREN bit (Data Ready interrupt enable) before
1480 	 * requesting IRQs
1481 	 */
1482 	ucr4 = imx_uart_readl(sport, UCR4);
1483 
1484 	/* set the trigger level for CTS */
1485 	ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF);
1486 	ucr4 |= CTSTL << UCR4_CTSTL_SHF;
1487 
1488 	imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4);
1489 
1490 	/* Can we enable the DMA support? */
1491 	if (!uart_console(port) && imx_uart_dma_init(sport) == 0)
1492 		dma_is_inited = 1;
1493 
1494 	spin_lock_irqsave(&sport->port.lock, flags);
1495 
1496 	/* Reset fifo's and state machines */
1497 	imx_uart_soft_reset(sport);
1498 
1499 	/*
1500 	 * Finally, clear and enable interrupts
1501 	 */
1502 	imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1);
1503 	imx_uart_writel(sport, USR2_ORE, USR2);
1504 
1505 	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN;
1506 	ucr1 |= UCR1_UARTEN;
1507 	if (sport->have_rtscts)
1508 		ucr1 |= UCR1_RTSDEN;
1509 
1510 	imx_uart_writel(sport, ucr1, UCR1);
1511 
1512 	ucr4 = imx_uart_readl(sport, UCR4) & ~(UCR4_OREN | UCR4_INVR);
1513 	if (!dma_is_inited)
1514 		ucr4 |= UCR4_OREN;
1515 	if (sport->inverted_rx)
1516 		ucr4 |= UCR4_INVR;
1517 	imx_uart_writel(sport, ucr4, UCR4);
1518 
1519 	ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_INVT;
1520 	/*
1521 	 * configure tx polarity before enabling tx
1522 	 */
1523 	if (sport->inverted_tx)
1524 		ucr3 |= UCR3_INVT;
1525 
1526 	if (!imx_uart_is_imx1(sport)) {
1527 		ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD;
1528 
1529 		if (sport->dte_mode)
1530 			/* disable broken interrupts */
1531 			ucr3 &= ~(UCR3_RI | UCR3_DCD);
1532 	}
1533 	imx_uart_writel(sport, ucr3, UCR3);
1534 
1535 	ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN;
1536 	ucr2 |= (UCR2_RXEN | UCR2_TXEN);
1537 	if (!sport->have_rtscts)
1538 		ucr2 |= UCR2_IRTS;
1539 	/*
1540 	 * make sure the edge sensitive RTS-irq is disabled,
1541 	 * we're using RTSD instead.
1542 	 */
1543 	if (!imx_uart_is_imx1(sport))
1544 		ucr2 &= ~UCR2_RTSEN;
1545 	imx_uart_writel(sport, ucr2, UCR2);
1546 
1547 	/*
1548 	 * Enable modem status interrupts
1549 	 */
1550 	imx_uart_enable_ms(&sport->port);
1551 
1552 	if (dma_is_inited) {
1553 		imx_uart_enable_dma(sport);
1554 		imx_uart_start_rx_dma(sport);
1555 	} else {
1556 		ucr1 = imx_uart_readl(sport, UCR1);
1557 		ucr1 |= UCR1_RRDYEN;
1558 		imx_uart_writel(sport, ucr1, UCR1);
1559 
1560 		ucr2 = imx_uart_readl(sport, UCR2);
1561 		ucr2 |= UCR2_ATEN;
1562 		imx_uart_writel(sport, ucr2, UCR2);
1563 	}
1564 
1565 	imx_uart_disable_loopback_rs485(sport);
1566 
1567 	spin_unlock_irqrestore(&sport->port.lock, flags);
1568 
1569 	return 0;
1570 }
1571 
1572 static void imx_uart_shutdown(struct uart_port *port)
1573 {
1574 	struct imx_port *sport = (struct imx_port *)port;
1575 	unsigned long flags;
1576 	u32 ucr1, ucr2, ucr4, uts;
1577 
1578 	if (sport->dma_is_enabled) {
1579 		dmaengine_terminate_sync(sport->dma_chan_tx);
1580 		if (sport->dma_is_txing) {
1581 			dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0],
1582 				     sport->dma_tx_nents, DMA_TO_DEVICE);
1583 			sport->dma_is_txing = 0;
1584 		}
1585 		dmaengine_terminate_sync(sport->dma_chan_rx);
1586 		if (sport->dma_is_rxing) {
1587 			dma_unmap_sg(sport->port.dev, &sport->rx_sgl,
1588 				     1, DMA_FROM_DEVICE);
1589 			sport->dma_is_rxing = 0;
1590 		}
1591 
1592 		spin_lock_irqsave(&sport->port.lock, flags);
1593 		imx_uart_stop_tx(port);
1594 		imx_uart_stop_rx(port);
1595 		imx_uart_disable_dma(sport);
1596 		spin_unlock_irqrestore(&sport->port.lock, flags);
1597 		imx_uart_dma_exit(sport);
1598 	}
1599 
1600 	mctrl_gpio_disable_ms(sport->gpios);
1601 
1602 	spin_lock_irqsave(&sport->port.lock, flags);
1603 	ucr2 = imx_uart_readl(sport, UCR2);
1604 	ucr2 &= ~(UCR2_TXEN | UCR2_ATEN);
1605 	imx_uart_writel(sport, ucr2, UCR2);
1606 	spin_unlock_irqrestore(&sport->port.lock, flags);
1607 
1608 	/*
1609 	 * Stop our timer.
1610 	 */
1611 	del_timer_sync(&sport->timer);
1612 
1613 	/*
1614 	 * Disable all interrupts, port and break condition.
1615 	 */
1616 
1617 	spin_lock_irqsave(&sport->port.lock, flags);
1618 
1619 	ucr1 = imx_uart_readl(sport, UCR1);
1620 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_RXDMAEN |
1621 		  UCR1_ATDMAEN | UCR1_SNDBRK);
1622 	/* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */
1623 	if (port->rs485.flags & SER_RS485_ENABLED &&
1624 	    port->rs485.flags & SER_RS485_RTS_ON_SEND &&
1625 	    sport->have_rtscts && !sport->have_rtsgpio) {
1626 		uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
1627 		uts |= UTS_LOOP;
1628 		imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
1629 		ucr1 |= UCR1_UARTEN;
1630 	} else {
1631 		ucr1 &= ~UCR1_UARTEN;
1632 	}
1633 	imx_uart_writel(sport, ucr1, UCR1);
1634 
1635 	ucr4 = imx_uart_readl(sport, UCR4);
1636 	ucr4 &= ~UCR4_TCEN;
1637 	imx_uart_writel(sport, ucr4, UCR4);
1638 
1639 	spin_unlock_irqrestore(&sport->port.lock, flags);
1640 
1641 	clk_disable_unprepare(sport->clk_per);
1642 	clk_disable_unprepare(sport->clk_ipg);
1643 }
1644 
1645 /* called with port.lock taken and irqs off */
1646 static void imx_uart_flush_buffer(struct uart_port *port)
1647 {
1648 	struct imx_port *sport = (struct imx_port *)port;
1649 	struct scatterlist *sgl = &sport->tx_sgl[0];
1650 
1651 	if (!sport->dma_chan_tx)
1652 		return;
1653 
1654 	sport->tx_bytes = 0;
1655 	dmaengine_terminate_all(sport->dma_chan_tx);
1656 	if (sport->dma_is_txing) {
1657 		u32 ucr1;
1658 
1659 		dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents,
1660 			     DMA_TO_DEVICE);
1661 		ucr1 = imx_uart_readl(sport, UCR1);
1662 		ucr1 &= ~UCR1_TXDMAEN;
1663 		imx_uart_writel(sport, ucr1, UCR1);
1664 		sport->dma_is_txing = 0;
1665 	}
1666 
1667 	imx_uart_soft_reset(sport);
1668 
1669 }
1670 
1671 static void
1672 imx_uart_set_termios(struct uart_port *port, struct ktermios *termios,
1673 		     const struct ktermios *old)
1674 {
1675 	struct imx_port *sport = (struct imx_port *)port;
1676 	unsigned long flags;
1677 	u32 ucr2, old_ucr2, ufcr;
1678 	unsigned int baud, quot;
1679 	unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8;
1680 	unsigned long div;
1681 	unsigned long num, denom, old_ubir, old_ubmr;
1682 	uint64_t tdiv64;
1683 
1684 	/*
1685 	 * We only support CS7 and CS8.
1686 	 */
1687 	while ((termios->c_cflag & CSIZE) != CS7 &&
1688 	       (termios->c_cflag & CSIZE) != CS8) {
1689 		termios->c_cflag &= ~CSIZE;
1690 		termios->c_cflag |= old_csize;
1691 		old_csize = CS8;
1692 	}
1693 
1694 	del_timer_sync(&sport->timer);
1695 
1696 	/*
1697 	 * Ask the core to calculate the divisor for us.
1698 	 */
1699 	baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16);
1700 	quot = uart_get_divisor(port, baud);
1701 
1702 	spin_lock_irqsave(&sport->port.lock, flags);
1703 
1704 	/*
1705 	 * Read current UCR2 and save it for future use, then clear all the bits
1706 	 * except those we will or may need to preserve.
1707 	 */
1708 	old_ucr2 = imx_uart_readl(sport, UCR2);
1709 	ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS);
1710 
1711 	ucr2 |= UCR2_SRST | UCR2_IRTS;
1712 	if ((termios->c_cflag & CSIZE) == CS8)
1713 		ucr2 |= UCR2_WS;
1714 
1715 	if (!sport->have_rtscts)
1716 		termios->c_cflag &= ~CRTSCTS;
1717 
1718 	if (port->rs485.flags & SER_RS485_ENABLED) {
1719 		/*
1720 		 * RTS is mandatory for rs485 operation, so keep
1721 		 * it under manual control and keep transmitter
1722 		 * disabled.
1723 		 */
1724 		if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1725 			imx_uart_rts_active(sport, &ucr2);
1726 		else
1727 			imx_uart_rts_inactive(sport, &ucr2);
1728 
1729 	} else if (termios->c_cflag & CRTSCTS) {
1730 		/*
1731 		 * Only let receiver control RTS output if we were not requested
1732 		 * to have RTS inactive (which then should take precedence).
1733 		 */
1734 		if (ucr2 & UCR2_CTS)
1735 			ucr2 |= UCR2_CTSC;
1736 	}
1737 
1738 	if (termios->c_cflag & CRTSCTS)
1739 		ucr2 &= ~UCR2_IRTS;
1740 	if (termios->c_cflag & CSTOPB)
1741 		ucr2 |= UCR2_STPB;
1742 	if (termios->c_cflag & PARENB) {
1743 		ucr2 |= UCR2_PREN;
1744 		if (termios->c_cflag & PARODD)
1745 			ucr2 |= UCR2_PROE;
1746 	}
1747 
1748 	sport->port.read_status_mask = 0;
1749 	if (termios->c_iflag & INPCK)
1750 		sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR);
1751 	if (termios->c_iflag & (BRKINT | PARMRK))
1752 		sport->port.read_status_mask |= URXD_BRK;
1753 
1754 	/*
1755 	 * Characters to ignore
1756 	 */
1757 	sport->port.ignore_status_mask = 0;
1758 	if (termios->c_iflag & IGNPAR)
1759 		sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR;
1760 	if (termios->c_iflag & IGNBRK) {
1761 		sport->port.ignore_status_mask |= URXD_BRK;
1762 		/*
1763 		 * If we're ignoring parity and break indicators,
1764 		 * ignore overruns too (for real raw support).
1765 		 */
1766 		if (termios->c_iflag & IGNPAR)
1767 			sport->port.ignore_status_mask |= URXD_OVRRUN;
1768 	}
1769 
1770 	if ((termios->c_cflag & CREAD) == 0)
1771 		sport->port.ignore_status_mask |= URXD_DUMMY_READ;
1772 
1773 	/*
1774 	 * Update the per-port timeout.
1775 	 */
1776 	uart_update_timeout(port, termios->c_cflag, baud);
1777 
1778 	/* custom-baudrate handling */
1779 	div = sport->port.uartclk / (baud * 16);
1780 	if (baud == 38400 && quot != div)
1781 		baud = sport->port.uartclk / (quot * 16);
1782 
1783 	div = sport->port.uartclk / (baud * 16);
1784 	if (div > 7)
1785 		div = 7;
1786 	if (!div)
1787 		div = 1;
1788 
1789 	rational_best_approximation(16 * div * baud, sport->port.uartclk,
1790 		1 << 16, 1 << 16, &num, &denom);
1791 
1792 	tdiv64 = sport->port.uartclk;
1793 	tdiv64 *= num;
1794 	do_div(tdiv64, denom * 16 * div);
1795 	tty_termios_encode_baud_rate(termios,
1796 				(speed_t)tdiv64, (speed_t)tdiv64);
1797 
1798 	num -= 1;
1799 	denom -= 1;
1800 
1801 	ufcr = imx_uart_readl(sport, UFCR);
1802 	ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div);
1803 	imx_uart_writel(sport, ufcr, UFCR);
1804 
1805 	/*
1806 	 *  Two registers below should always be written both and in this
1807 	 *  particular order. One consequence is that we need to check if any of
1808 	 *  them changes and then update both. We do need the check for change
1809 	 *  as even writing the same values seem to "restart"
1810 	 *  transmission/receiving logic in the hardware, that leads to data
1811 	 *  breakage even when rate doesn't in fact change. E.g., user switches
1812 	 *  RTS/CTS handshake and suddenly gets broken bytes.
1813 	 */
1814 	old_ubir = imx_uart_readl(sport, UBIR);
1815 	old_ubmr = imx_uart_readl(sport, UBMR);
1816 	if (old_ubir != num || old_ubmr != denom) {
1817 		imx_uart_writel(sport, num, UBIR);
1818 		imx_uart_writel(sport, denom, UBMR);
1819 	}
1820 
1821 	if (!imx_uart_is_imx1(sport))
1822 		imx_uart_writel(sport, sport->port.uartclk / div / 1000,
1823 				IMX21_ONEMS);
1824 
1825 	imx_uart_writel(sport, ucr2, UCR2);
1826 
1827 	if (UART_ENABLE_MS(&sport->port, termios->c_cflag))
1828 		imx_uart_enable_ms(&sport->port);
1829 
1830 	spin_unlock_irqrestore(&sport->port.lock, flags);
1831 }
1832 
1833 static const char *imx_uart_type(struct uart_port *port)
1834 {
1835 	return port->type == PORT_IMX ? "IMX" : NULL;
1836 }
1837 
1838 /*
1839  * Configure/autoconfigure the port.
1840  */
1841 static void imx_uart_config_port(struct uart_port *port, int flags)
1842 {
1843 	if (flags & UART_CONFIG_TYPE)
1844 		port->type = PORT_IMX;
1845 }
1846 
1847 /*
1848  * Verify the new serial_struct (for TIOCSSERIAL).
1849  * The only change we allow are to the flags and type, and
1850  * even then only between PORT_IMX and PORT_UNKNOWN
1851  */
1852 static int
1853 imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser)
1854 {
1855 	int ret = 0;
1856 
1857 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX)
1858 		ret = -EINVAL;
1859 	if (port->irq != ser->irq)
1860 		ret = -EINVAL;
1861 	if (ser->io_type != UPIO_MEM)
1862 		ret = -EINVAL;
1863 	if (port->uartclk / 16 != ser->baud_base)
1864 		ret = -EINVAL;
1865 	if (port->mapbase != (unsigned long)ser->iomem_base)
1866 		ret = -EINVAL;
1867 	if (port->iobase != ser->port)
1868 		ret = -EINVAL;
1869 	if (ser->hub6 != 0)
1870 		ret = -EINVAL;
1871 	return ret;
1872 }
1873 
1874 #if defined(CONFIG_CONSOLE_POLL)
1875 
1876 static int imx_uart_poll_init(struct uart_port *port)
1877 {
1878 	struct imx_port *sport = (struct imx_port *)port;
1879 	unsigned long flags;
1880 	u32 ucr1, ucr2;
1881 	int retval;
1882 
1883 	retval = clk_prepare_enable(sport->clk_ipg);
1884 	if (retval)
1885 		return retval;
1886 	retval = clk_prepare_enable(sport->clk_per);
1887 	if (retval)
1888 		clk_disable_unprepare(sport->clk_ipg);
1889 
1890 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1891 
1892 	spin_lock_irqsave(&sport->port.lock, flags);
1893 
1894 	/*
1895 	 * Be careful about the order of enabling bits here. First enable the
1896 	 * receiver (UARTEN + RXEN) and only then the corresponding irqs.
1897 	 * This prevents that a character that already sits in the RX fifo is
1898 	 * triggering an irq but the try to fetch it from there results in an
1899 	 * exception because UARTEN or RXEN is still off.
1900 	 */
1901 	ucr1 = imx_uart_readl(sport, UCR1);
1902 	ucr2 = imx_uart_readl(sport, UCR2);
1903 
1904 	if (imx_uart_is_imx1(sport))
1905 		ucr1 |= IMX1_UCR1_UARTCLKEN;
1906 
1907 	ucr1 |= UCR1_UARTEN;
1908 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RTSDEN | UCR1_RRDYEN);
1909 
1910 	ucr2 |= UCR2_RXEN | UCR2_TXEN;
1911 	ucr2 &= ~UCR2_ATEN;
1912 
1913 	imx_uart_writel(sport, ucr1, UCR1);
1914 	imx_uart_writel(sport, ucr2, UCR2);
1915 
1916 	/* now enable irqs */
1917 	imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1);
1918 	imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2);
1919 
1920 	spin_unlock_irqrestore(&sport->port.lock, flags);
1921 
1922 	return 0;
1923 }
1924 
1925 static int imx_uart_poll_get_char(struct uart_port *port)
1926 {
1927 	struct imx_port *sport = (struct imx_port *)port;
1928 	if (!(imx_uart_readl(sport, USR2) & USR2_RDR))
1929 		return NO_POLL_CHAR;
1930 
1931 	return imx_uart_readl(sport, URXD0) & URXD_RX_DATA;
1932 }
1933 
1934 static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c)
1935 {
1936 	struct imx_port *sport = (struct imx_port *)port;
1937 	unsigned int status;
1938 
1939 	/* drain */
1940 	do {
1941 		status = imx_uart_readl(sport, USR1);
1942 	} while (~status & USR1_TRDY);
1943 
1944 	/* write */
1945 	imx_uart_writel(sport, c, URTX0);
1946 
1947 	/* flush */
1948 	do {
1949 		status = imx_uart_readl(sport, USR2);
1950 	} while (~status & USR2_TXDC);
1951 }
1952 #endif
1953 
1954 /* called with port.lock taken and irqs off or from .probe without locking */
1955 static int imx_uart_rs485_config(struct uart_port *port, struct ktermios *termios,
1956 				 struct serial_rs485 *rs485conf)
1957 {
1958 	struct imx_port *sport = (struct imx_port *)port;
1959 	u32 ucr2, ufcr;
1960 
1961 	if (rs485conf->flags & SER_RS485_ENABLED) {
1962 		/* Enable receiver if low-active RTS signal is requested */
1963 		if (sport->have_rtscts &&  !sport->have_rtsgpio &&
1964 		    !(rs485conf->flags & SER_RS485_RTS_ON_SEND))
1965 			rs485conf->flags |= SER_RS485_RX_DURING_TX;
1966 
1967 		/* disable transmitter */
1968 		ucr2 = imx_uart_readl(sport, UCR2);
1969 		if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND)
1970 			imx_uart_rts_active(sport, &ucr2);
1971 		else
1972 			imx_uart_rts_inactive(sport, &ucr2);
1973 		imx_uart_writel(sport, ucr2, UCR2);
1974 	}
1975 
1976 	/* Make sure Rx is enabled in case Tx is active with Rx disabled */
1977 	if (!(rs485conf->flags & SER_RS485_ENABLED) ||
1978 	    rs485conf->flags & SER_RS485_RX_DURING_TX) {
1979 		/* If the receiver trigger is 0, set it to a default value */
1980 		ufcr = imx_uart_readl(sport, UFCR);
1981 		if ((ufcr & UFCR_RXTL_MASK) == 0)
1982 			imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1983 		imx_uart_start_rx(port);
1984 	}
1985 
1986 	return 0;
1987 }
1988 
1989 static const struct uart_ops imx_uart_pops = {
1990 	.tx_empty	= imx_uart_tx_empty,
1991 	.set_mctrl	= imx_uart_set_mctrl,
1992 	.get_mctrl	= imx_uart_get_mctrl,
1993 	.stop_tx	= imx_uart_stop_tx,
1994 	.start_tx	= imx_uart_start_tx,
1995 	.stop_rx	= imx_uart_stop_rx,
1996 	.enable_ms	= imx_uart_enable_ms,
1997 	.break_ctl	= imx_uart_break_ctl,
1998 	.startup	= imx_uart_startup,
1999 	.shutdown	= imx_uart_shutdown,
2000 	.flush_buffer	= imx_uart_flush_buffer,
2001 	.set_termios	= imx_uart_set_termios,
2002 	.type		= imx_uart_type,
2003 	.config_port	= imx_uart_config_port,
2004 	.verify_port	= imx_uart_verify_port,
2005 #if defined(CONFIG_CONSOLE_POLL)
2006 	.poll_init      = imx_uart_poll_init,
2007 	.poll_get_char  = imx_uart_poll_get_char,
2008 	.poll_put_char  = imx_uart_poll_put_char,
2009 #endif
2010 };
2011 
2012 static struct imx_port *imx_uart_ports[UART_NR];
2013 
2014 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE)
2015 static void imx_uart_console_putchar(struct uart_port *port, unsigned char ch)
2016 {
2017 	struct imx_port *sport = (struct imx_port *)port;
2018 
2019 	while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)
2020 		barrier();
2021 
2022 	imx_uart_writel(sport, ch, URTX0);
2023 }
2024 
2025 /*
2026  * Interrupts are disabled on entering
2027  */
2028 static void
2029 imx_uart_console_write(struct console *co, const char *s, unsigned int count)
2030 {
2031 	struct imx_port *sport = imx_uart_ports[co->index];
2032 	struct imx_port_ucrs old_ucr;
2033 	unsigned long flags;
2034 	unsigned int ucr1, usr2;
2035 	int locked = 1;
2036 
2037 	if (sport->port.sysrq)
2038 		locked = 0;
2039 	else if (oops_in_progress)
2040 		locked = spin_trylock_irqsave(&sport->port.lock, flags);
2041 	else
2042 		spin_lock_irqsave(&sport->port.lock, flags);
2043 
2044 	/*
2045 	 *	First, save UCR1/2/3 and then disable interrupts
2046 	 */
2047 	imx_uart_ucrs_save(sport, &old_ucr);
2048 	ucr1 = old_ucr.ucr1;
2049 
2050 	if (imx_uart_is_imx1(sport))
2051 		ucr1 |= IMX1_UCR1_UARTCLKEN;
2052 	ucr1 |= UCR1_UARTEN;
2053 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN);
2054 
2055 	imx_uart_writel(sport, ucr1, UCR1);
2056 
2057 	imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2);
2058 
2059 	uart_console_write(&sport->port, s, count, imx_uart_console_putchar);
2060 
2061 	/*
2062 	 *	Finally, wait for transmitter to become empty
2063 	 *	and restore UCR1/2/3
2064 	 */
2065 	read_poll_timeout_atomic(imx_uart_readl, usr2, usr2 & USR2_TXDC,
2066 				 0, USEC_PER_SEC, false, sport, USR2);
2067 	imx_uart_ucrs_restore(sport, &old_ucr);
2068 
2069 	if (locked)
2070 		spin_unlock_irqrestore(&sport->port.lock, flags);
2071 }
2072 
2073 /*
2074  * If the port was already initialised (eg, by a boot loader),
2075  * try to determine the current setup.
2076  */
2077 static void
2078 imx_uart_console_get_options(struct imx_port *sport, int *baud,
2079 			     int *parity, int *bits)
2080 {
2081 
2082 	if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) {
2083 		/* ok, the port was enabled */
2084 		unsigned int ucr2, ubir, ubmr, uartclk;
2085 		unsigned int baud_raw;
2086 		unsigned int ucfr_rfdiv;
2087 
2088 		ucr2 = imx_uart_readl(sport, UCR2);
2089 
2090 		*parity = 'n';
2091 		if (ucr2 & UCR2_PREN) {
2092 			if (ucr2 & UCR2_PROE)
2093 				*parity = 'o';
2094 			else
2095 				*parity = 'e';
2096 		}
2097 
2098 		if (ucr2 & UCR2_WS)
2099 			*bits = 8;
2100 		else
2101 			*bits = 7;
2102 
2103 		ubir = imx_uart_readl(sport, UBIR) & 0xffff;
2104 		ubmr = imx_uart_readl(sport, UBMR) & 0xffff;
2105 
2106 		ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7;
2107 		if (ucfr_rfdiv == 6)
2108 			ucfr_rfdiv = 7;
2109 		else
2110 			ucfr_rfdiv = 6 - ucfr_rfdiv;
2111 
2112 		uartclk = clk_get_rate(sport->clk_per);
2113 		uartclk /= ucfr_rfdiv;
2114 
2115 		{	/*
2116 			 * The next code provides exact computation of
2117 			 *   baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1))
2118 			 * without need of float support or long long division,
2119 			 * which would be required to prevent 32bit arithmetic overflow
2120 			 */
2121 			unsigned int mul = ubir + 1;
2122 			unsigned int div = 16 * (ubmr + 1);
2123 			unsigned int rem = uartclk % div;
2124 
2125 			baud_raw = (uartclk / div) * mul;
2126 			baud_raw += (rem * mul + div / 2) / div;
2127 			*baud = (baud_raw + 50) / 100 * 100;
2128 		}
2129 
2130 		if (*baud != baud_raw)
2131 			dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n",
2132 				baud_raw, *baud);
2133 	}
2134 }
2135 
2136 static int
2137 imx_uart_console_setup(struct console *co, char *options)
2138 {
2139 	struct imx_port *sport;
2140 	int baud = 9600;
2141 	int bits = 8;
2142 	int parity = 'n';
2143 	int flow = 'n';
2144 	int retval;
2145 
2146 	/*
2147 	 * Check whether an invalid uart number has been specified, and
2148 	 * if so, search for the first available port that does have
2149 	 * console support.
2150 	 */
2151 	if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports))
2152 		co->index = 0;
2153 	sport = imx_uart_ports[co->index];
2154 	if (sport == NULL)
2155 		return -ENODEV;
2156 
2157 	/* For setting the registers, we only need to enable the ipg clock. */
2158 	retval = clk_prepare_enable(sport->clk_ipg);
2159 	if (retval)
2160 		goto error_console;
2161 
2162 	if (options)
2163 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2164 	else
2165 		imx_uart_console_get_options(sport, &baud, &parity, &bits);
2166 
2167 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
2168 
2169 	retval = uart_set_options(&sport->port, co, baud, parity, bits, flow);
2170 
2171 	if (retval) {
2172 		clk_disable_unprepare(sport->clk_ipg);
2173 		goto error_console;
2174 	}
2175 
2176 	retval = clk_prepare_enable(sport->clk_per);
2177 	if (retval)
2178 		clk_disable_unprepare(sport->clk_ipg);
2179 
2180 error_console:
2181 	return retval;
2182 }
2183 
2184 static int
2185 imx_uart_console_exit(struct console *co)
2186 {
2187 	struct imx_port *sport = imx_uart_ports[co->index];
2188 
2189 	clk_disable_unprepare(sport->clk_per);
2190 	clk_disable_unprepare(sport->clk_ipg);
2191 
2192 	return 0;
2193 }
2194 
2195 static struct uart_driver imx_uart_uart_driver;
2196 static struct console imx_uart_console = {
2197 	.name		= DEV_NAME,
2198 	.write		= imx_uart_console_write,
2199 	.device		= uart_console_device,
2200 	.setup		= imx_uart_console_setup,
2201 	.exit		= imx_uart_console_exit,
2202 	.flags		= CON_PRINTBUFFER,
2203 	.index		= -1,
2204 	.data		= &imx_uart_uart_driver,
2205 };
2206 
2207 #define IMX_CONSOLE	&imx_uart_console
2208 
2209 #else
2210 #define IMX_CONSOLE	NULL
2211 #endif
2212 
2213 static struct uart_driver imx_uart_uart_driver = {
2214 	.owner          = THIS_MODULE,
2215 	.driver_name    = DRIVER_NAME,
2216 	.dev_name       = DEV_NAME,
2217 	.major          = SERIAL_IMX_MAJOR,
2218 	.minor          = MINOR_START,
2219 	.nr             = ARRAY_SIZE(imx_uart_ports),
2220 	.cons           = IMX_CONSOLE,
2221 };
2222 
2223 static enum hrtimer_restart imx_trigger_start_tx(struct hrtimer *t)
2224 {
2225 	struct imx_port *sport = container_of(t, struct imx_port, trigger_start_tx);
2226 	unsigned long flags;
2227 
2228 	spin_lock_irqsave(&sport->port.lock, flags);
2229 	if (sport->tx_state == WAIT_AFTER_RTS)
2230 		imx_uart_start_tx(&sport->port);
2231 	spin_unlock_irqrestore(&sport->port.lock, flags);
2232 
2233 	return HRTIMER_NORESTART;
2234 }
2235 
2236 static enum hrtimer_restart imx_trigger_stop_tx(struct hrtimer *t)
2237 {
2238 	struct imx_port *sport = container_of(t, struct imx_port, trigger_stop_tx);
2239 	unsigned long flags;
2240 
2241 	spin_lock_irqsave(&sport->port.lock, flags);
2242 	if (sport->tx_state == WAIT_AFTER_SEND)
2243 		imx_uart_stop_tx(&sport->port);
2244 	spin_unlock_irqrestore(&sport->port.lock, flags);
2245 
2246 	return HRTIMER_NORESTART;
2247 }
2248 
2249 static const struct serial_rs485 imx_rs485_supported = {
2250 	.flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND |
2251 		 SER_RS485_RX_DURING_TX,
2252 	.delay_rts_before_send = 1,
2253 	.delay_rts_after_send = 1,
2254 };
2255 
2256 /* Default RX DMA buffer configuration */
2257 #define RX_DMA_PERIODS		16
2258 #define RX_DMA_PERIOD_LEN	(PAGE_SIZE / 4)
2259 
2260 static int imx_uart_probe(struct platform_device *pdev)
2261 {
2262 	struct device_node *np = pdev->dev.of_node;
2263 	struct imx_port *sport;
2264 	void __iomem *base;
2265 	u32 dma_buf_conf[2];
2266 	int ret = 0;
2267 	u32 ucr1, ucr2, uts;
2268 	struct resource *res;
2269 	int txirq, rxirq, rtsirq;
2270 
2271 	sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL);
2272 	if (!sport)
2273 		return -ENOMEM;
2274 
2275 	sport->devdata = of_device_get_match_data(&pdev->dev);
2276 
2277 	ret = of_alias_get_id(np, "serial");
2278 	if (ret < 0) {
2279 		dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret);
2280 		return ret;
2281 	}
2282 	sport->port.line = ret;
2283 
2284 	sport->have_rtscts = of_property_read_bool(np, "uart-has-rtscts") ||
2285 		of_property_read_bool(np, "fsl,uart-has-rtscts"); /* deprecated */
2286 
2287 	sport->dte_mode = of_property_read_bool(np, "fsl,dte-mode");
2288 
2289 	sport->have_rtsgpio = of_property_present(np, "rts-gpios");
2290 
2291 	sport->inverted_tx = of_property_read_bool(np, "fsl,inverted-tx");
2292 
2293 	sport->inverted_rx = of_property_read_bool(np, "fsl,inverted-rx");
2294 
2295 	if (!of_property_read_u32_array(np, "fsl,dma-info", dma_buf_conf, 2)) {
2296 		sport->rx_period_length = dma_buf_conf[0];
2297 		sport->rx_periods = dma_buf_conf[1];
2298 	} else {
2299 		sport->rx_period_length = RX_DMA_PERIOD_LEN;
2300 		sport->rx_periods = RX_DMA_PERIODS;
2301 	}
2302 
2303 	if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) {
2304 		dev_err(&pdev->dev, "serial%d out of range\n",
2305 			sport->port.line);
2306 		return -EINVAL;
2307 	}
2308 
2309 	base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2310 	if (IS_ERR(base))
2311 		return PTR_ERR(base);
2312 
2313 	rxirq = platform_get_irq(pdev, 0);
2314 	if (rxirq < 0)
2315 		return rxirq;
2316 	txirq = platform_get_irq_optional(pdev, 1);
2317 	rtsirq = platform_get_irq_optional(pdev, 2);
2318 
2319 	sport->port.dev = &pdev->dev;
2320 	sport->port.mapbase = res->start;
2321 	sport->port.membase = base;
2322 	sport->port.type = PORT_IMX;
2323 	sport->port.iotype = UPIO_MEM;
2324 	sport->port.irq = rxirq;
2325 	sport->port.fifosize = 32;
2326 	sport->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE);
2327 	sport->port.ops = &imx_uart_pops;
2328 	sport->port.rs485_config = imx_uart_rs485_config;
2329 	/* RTS is required to control the RS485 transmitter */
2330 	if (sport->have_rtscts || sport->have_rtsgpio)
2331 		sport->port.rs485_supported = imx_rs485_supported;
2332 	sport->port.flags = UPF_BOOT_AUTOCONF;
2333 	timer_setup(&sport->timer, imx_uart_timeout, 0);
2334 
2335 	sport->gpios = mctrl_gpio_init(&sport->port, 0);
2336 	if (IS_ERR(sport->gpios))
2337 		return PTR_ERR(sport->gpios);
2338 
2339 	sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2340 	if (IS_ERR(sport->clk_ipg)) {
2341 		ret = PTR_ERR(sport->clk_ipg);
2342 		dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret);
2343 		return ret;
2344 	}
2345 
2346 	sport->clk_per = devm_clk_get(&pdev->dev, "per");
2347 	if (IS_ERR(sport->clk_per)) {
2348 		ret = PTR_ERR(sport->clk_per);
2349 		dev_err(&pdev->dev, "failed to get per clk: %d\n", ret);
2350 		return ret;
2351 	}
2352 
2353 	sport->port.uartclk = clk_get_rate(sport->clk_per);
2354 
2355 	/* For register access, we only need to enable the ipg clock. */
2356 	ret = clk_prepare_enable(sport->clk_ipg);
2357 	if (ret) {
2358 		dev_err(&pdev->dev, "failed to enable ipg clk: %d\n", ret);
2359 		return ret;
2360 	}
2361 
2362 	ret = uart_get_rs485_mode(&sport->port);
2363 	if (ret)
2364 		goto err_clk;
2365 
2366 	/*
2367 	 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B)
2368 	 * signal cannot be set low during transmission in case the
2369 	 * receiver is off (limitation of the i.MX UART IP).
2370 	 */
2371 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2372 	    sport->have_rtscts && !sport->have_rtsgpio &&
2373 	    (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) &&
2374 	     !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX)))
2375 		dev_err(&pdev->dev,
2376 			"low-active RTS not possible when receiver is off, enabling receiver\n");
2377 
2378 	/* Disable interrupts before requesting them */
2379 	ucr1 = imx_uart_readl(sport, UCR1);
2380 	ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN | UCR1_RTSDEN);
2381 	imx_uart_writel(sport, ucr1, UCR1);
2382 
2383 	/* Disable Ageing Timer interrupt */
2384 	ucr2 = imx_uart_readl(sport, UCR2);
2385 	ucr2 &= ~UCR2_ATEN;
2386 	imx_uart_writel(sport, ucr2, UCR2);
2387 
2388 	/*
2389 	 * In case RS485 is enabled without GPIO RTS control, the UART IP
2390 	 * is used to control CTS signal. Keep both the UART and Receiver
2391 	 * enabled, otherwise the UART IP pulls CTS signal always HIGH no
2392 	 * matter how the UCR2 CTSC and CTS bits are set. To prevent any
2393 	 * data from being fed into the RX FIFO, enable loopback mode in
2394 	 * UTS register, which disconnects the RX path from external RXD
2395 	 * pin and connects it to the Transceiver, which is disabled, so
2396 	 * no data can be fed to the RX FIFO that way.
2397 	 */
2398 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2399 	    sport->have_rtscts && !sport->have_rtsgpio) {
2400 		uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
2401 		uts |= UTS_LOOP;
2402 		imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
2403 
2404 		ucr1 = imx_uart_readl(sport, UCR1);
2405 		ucr1 |= UCR1_UARTEN;
2406 		imx_uart_writel(sport, ucr1, UCR1);
2407 
2408 		ucr2 = imx_uart_readl(sport, UCR2);
2409 		ucr2 |= UCR2_RXEN;
2410 		imx_uart_writel(sport, ucr2, UCR2);
2411 	}
2412 
2413 	if (!imx_uart_is_imx1(sport) && sport->dte_mode) {
2414 		/*
2415 		 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI
2416 		 * and influences if UCR3_RI and UCR3_DCD changes the level of RI
2417 		 * and DCD (when they are outputs) or enables the respective
2418 		 * irqs. So set this bit early, i.e. before requesting irqs.
2419 		 */
2420 		u32 ufcr = imx_uart_readl(sport, UFCR);
2421 		if (!(ufcr & UFCR_DCEDTE))
2422 			imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR);
2423 
2424 		/*
2425 		 * Disable UCR3_RI and UCR3_DCD irqs. They are also not
2426 		 * enabled later because they cannot be cleared
2427 		 * (confirmed on i.MX25) which makes them unusable.
2428 		 */
2429 		imx_uart_writel(sport,
2430 				IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR,
2431 				UCR3);
2432 
2433 	} else {
2434 		u32 ucr3 = UCR3_DSR;
2435 		u32 ufcr = imx_uart_readl(sport, UFCR);
2436 		if (ufcr & UFCR_DCEDTE)
2437 			imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR);
2438 
2439 		if (!imx_uart_is_imx1(sport))
2440 			ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP;
2441 		imx_uart_writel(sport, ucr3, UCR3);
2442 	}
2443 
2444 	hrtimer_init(&sport->trigger_start_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2445 	hrtimer_init(&sport->trigger_stop_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2446 	sport->trigger_start_tx.function = imx_trigger_start_tx;
2447 	sport->trigger_stop_tx.function = imx_trigger_stop_tx;
2448 
2449 	/*
2450 	 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later
2451 	 * chips only have one interrupt.
2452 	 */
2453 	if (txirq > 0) {
2454 		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0,
2455 				       dev_name(&pdev->dev), sport);
2456 		if (ret) {
2457 			dev_err(&pdev->dev, "failed to request rx irq: %d\n",
2458 				ret);
2459 			goto err_clk;
2460 		}
2461 
2462 		ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0,
2463 				       dev_name(&pdev->dev), sport);
2464 		if (ret) {
2465 			dev_err(&pdev->dev, "failed to request tx irq: %d\n",
2466 				ret);
2467 			goto err_clk;
2468 		}
2469 
2470 		ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0,
2471 				       dev_name(&pdev->dev), sport);
2472 		if (ret) {
2473 			dev_err(&pdev->dev, "failed to request rts irq: %d\n",
2474 				ret);
2475 			goto err_clk;
2476 		}
2477 	} else {
2478 		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0,
2479 				       dev_name(&pdev->dev), sport);
2480 		if (ret) {
2481 			dev_err(&pdev->dev, "failed to request irq: %d\n", ret);
2482 			goto err_clk;
2483 		}
2484 	}
2485 
2486 	imx_uart_ports[sport->port.line] = sport;
2487 
2488 	platform_set_drvdata(pdev, sport);
2489 
2490 	ret = uart_add_one_port(&imx_uart_uart_driver, &sport->port);
2491 
2492 err_clk:
2493 	clk_disable_unprepare(sport->clk_ipg);
2494 
2495 	return ret;
2496 }
2497 
2498 static int imx_uart_remove(struct platform_device *pdev)
2499 {
2500 	struct imx_port *sport = platform_get_drvdata(pdev);
2501 
2502 	uart_remove_one_port(&imx_uart_uart_driver, &sport->port);
2503 
2504 	return 0;
2505 }
2506 
2507 static void imx_uart_restore_context(struct imx_port *sport)
2508 {
2509 	unsigned long flags;
2510 
2511 	spin_lock_irqsave(&sport->port.lock, flags);
2512 	if (!sport->context_saved) {
2513 		spin_unlock_irqrestore(&sport->port.lock, flags);
2514 		return;
2515 	}
2516 
2517 	imx_uart_writel(sport, sport->saved_reg[4], UFCR);
2518 	imx_uart_writel(sport, sport->saved_reg[5], UESC);
2519 	imx_uart_writel(sport, sport->saved_reg[6], UTIM);
2520 	imx_uart_writel(sport, sport->saved_reg[7], UBIR);
2521 	imx_uart_writel(sport, sport->saved_reg[8], UBMR);
2522 	imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS);
2523 	imx_uart_writel(sport, sport->saved_reg[0], UCR1);
2524 	imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2);
2525 	imx_uart_writel(sport, sport->saved_reg[2], UCR3);
2526 	imx_uart_writel(sport, sport->saved_reg[3], UCR4);
2527 	sport->context_saved = false;
2528 	spin_unlock_irqrestore(&sport->port.lock, flags);
2529 }
2530 
2531 static void imx_uart_save_context(struct imx_port *sport)
2532 {
2533 	unsigned long flags;
2534 
2535 	/* Save necessary regs */
2536 	spin_lock_irqsave(&sport->port.lock, flags);
2537 	sport->saved_reg[0] = imx_uart_readl(sport, UCR1);
2538 	sport->saved_reg[1] = imx_uart_readl(sport, UCR2);
2539 	sport->saved_reg[2] = imx_uart_readl(sport, UCR3);
2540 	sport->saved_reg[3] = imx_uart_readl(sport, UCR4);
2541 	sport->saved_reg[4] = imx_uart_readl(sport, UFCR);
2542 	sport->saved_reg[5] = imx_uart_readl(sport, UESC);
2543 	sport->saved_reg[6] = imx_uart_readl(sport, UTIM);
2544 	sport->saved_reg[7] = imx_uart_readl(sport, UBIR);
2545 	sport->saved_reg[8] = imx_uart_readl(sport, UBMR);
2546 	sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS);
2547 	sport->context_saved = true;
2548 	spin_unlock_irqrestore(&sport->port.lock, flags);
2549 }
2550 
2551 static void imx_uart_enable_wakeup(struct imx_port *sport, bool on)
2552 {
2553 	u32 ucr3;
2554 
2555 	ucr3 = imx_uart_readl(sport, UCR3);
2556 	if (on) {
2557 		imx_uart_writel(sport, USR1_AWAKE, USR1);
2558 		ucr3 |= UCR3_AWAKEN;
2559 	} else {
2560 		ucr3 &= ~UCR3_AWAKEN;
2561 	}
2562 	imx_uart_writel(sport, ucr3, UCR3);
2563 
2564 	if (sport->have_rtscts) {
2565 		u32 ucr1 = imx_uart_readl(sport, UCR1);
2566 		if (on) {
2567 			imx_uart_writel(sport, USR1_RTSD, USR1);
2568 			ucr1 |= UCR1_RTSDEN;
2569 		} else {
2570 			ucr1 &= ~UCR1_RTSDEN;
2571 		}
2572 		imx_uart_writel(sport, ucr1, UCR1);
2573 	}
2574 }
2575 
2576 static int imx_uart_suspend_noirq(struct device *dev)
2577 {
2578 	struct imx_port *sport = dev_get_drvdata(dev);
2579 
2580 	imx_uart_save_context(sport);
2581 
2582 	clk_disable(sport->clk_ipg);
2583 
2584 	pinctrl_pm_select_sleep_state(dev);
2585 
2586 	return 0;
2587 }
2588 
2589 static int imx_uart_resume_noirq(struct device *dev)
2590 {
2591 	struct imx_port *sport = dev_get_drvdata(dev);
2592 	int ret;
2593 
2594 	pinctrl_pm_select_default_state(dev);
2595 
2596 	ret = clk_enable(sport->clk_ipg);
2597 	if (ret)
2598 		return ret;
2599 
2600 	imx_uart_restore_context(sport);
2601 
2602 	return 0;
2603 }
2604 
2605 static int imx_uart_suspend(struct device *dev)
2606 {
2607 	struct imx_port *sport = dev_get_drvdata(dev);
2608 	int ret;
2609 
2610 	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2611 	disable_irq(sport->port.irq);
2612 
2613 	ret = clk_prepare_enable(sport->clk_ipg);
2614 	if (ret)
2615 		return ret;
2616 
2617 	/* enable wakeup from i.MX UART */
2618 	imx_uart_enable_wakeup(sport, true);
2619 
2620 	return 0;
2621 }
2622 
2623 static int imx_uart_resume(struct device *dev)
2624 {
2625 	struct imx_port *sport = dev_get_drvdata(dev);
2626 
2627 	/* disable wakeup from i.MX UART */
2628 	imx_uart_enable_wakeup(sport, false);
2629 
2630 	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2631 	enable_irq(sport->port.irq);
2632 
2633 	clk_disable_unprepare(sport->clk_ipg);
2634 
2635 	return 0;
2636 }
2637 
2638 static int imx_uart_freeze(struct device *dev)
2639 {
2640 	struct imx_port *sport = dev_get_drvdata(dev);
2641 
2642 	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2643 
2644 	return clk_prepare_enable(sport->clk_ipg);
2645 }
2646 
2647 static int imx_uart_thaw(struct device *dev)
2648 {
2649 	struct imx_port *sport = dev_get_drvdata(dev);
2650 
2651 	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2652 
2653 	clk_disable_unprepare(sport->clk_ipg);
2654 
2655 	return 0;
2656 }
2657 
2658 static const struct dev_pm_ops imx_uart_pm_ops = {
2659 	.suspend_noirq = imx_uart_suspend_noirq,
2660 	.resume_noirq = imx_uart_resume_noirq,
2661 	.freeze_noirq = imx_uart_suspend_noirq,
2662 	.thaw_noirq = imx_uart_resume_noirq,
2663 	.restore_noirq = imx_uart_resume_noirq,
2664 	.suspend = imx_uart_suspend,
2665 	.resume = imx_uart_resume,
2666 	.freeze = imx_uart_freeze,
2667 	.thaw = imx_uart_thaw,
2668 	.restore = imx_uart_thaw,
2669 };
2670 
2671 static struct platform_driver imx_uart_platform_driver = {
2672 	.probe = imx_uart_probe,
2673 	.remove = imx_uart_remove,
2674 
2675 	.driver = {
2676 		.name = "imx-uart",
2677 		.of_match_table = imx_uart_dt_ids,
2678 		.pm = &imx_uart_pm_ops,
2679 	},
2680 };
2681 
2682 static int __init imx_uart_init(void)
2683 {
2684 	int ret = uart_register_driver(&imx_uart_uart_driver);
2685 
2686 	if (ret)
2687 		return ret;
2688 
2689 	ret = platform_driver_register(&imx_uart_platform_driver);
2690 	if (ret != 0)
2691 		uart_unregister_driver(&imx_uart_uart_driver);
2692 
2693 	return ret;
2694 }
2695 
2696 static void __exit imx_uart_exit(void)
2697 {
2698 	platform_driver_unregister(&imx_uart_platform_driver);
2699 	uart_unregister_driver(&imx_uart_uart_driver);
2700 }
2701 
2702 module_init(imx_uart_init);
2703 module_exit(imx_uart_exit);
2704 
2705 MODULE_AUTHOR("Sascha Hauer");
2706 MODULE_DESCRIPTION("IMX generic serial port driver");
2707 MODULE_LICENSE("GPL");
2708 MODULE_ALIAS("platform:imx-uart");
2709