1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Driver for Motorola/Freescale IMX serial ports 4 * 5 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. 6 * 7 * Author: Sascha Hauer <sascha@saschahauer.de> 8 * Copyright (C) 2004 Pengutronix 9 */ 10 11 #include <linux/module.h> 12 #include <linux/ioport.h> 13 #include <linux/init.h> 14 #include <linux/console.h> 15 #include <linux/sysrq.h> 16 #include <linux/platform_device.h> 17 #include <linux/tty.h> 18 #include <linux/tty_flip.h> 19 #include <linux/serial_core.h> 20 #include <linux/serial.h> 21 #include <linux/clk.h> 22 #include <linux/delay.h> 23 #include <linux/ktime.h> 24 #include <linux/pinctrl/consumer.h> 25 #include <linux/rational.h> 26 #include <linux/slab.h> 27 #include <linux/of.h> 28 #include <linux/io.h> 29 #include <linux/iopoll.h> 30 #include <linux/dma-mapping.h> 31 32 #include <asm/irq.h> 33 #include <linux/dma/imx-dma.h> 34 35 #include "serial_mctrl_gpio.h" 36 37 /* Register definitions */ 38 #define URXD0 0x0 /* Receiver Register */ 39 #define URTX0 0x40 /* Transmitter Register */ 40 #define UCR1 0x80 /* Control Register 1 */ 41 #define UCR2 0x84 /* Control Register 2 */ 42 #define UCR3 0x88 /* Control Register 3 */ 43 #define UCR4 0x8c /* Control Register 4 */ 44 #define UFCR 0x90 /* FIFO Control Register */ 45 #define USR1 0x94 /* Status Register 1 */ 46 #define USR2 0x98 /* Status Register 2 */ 47 #define UESC 0x9c /* Escape Character Register */ 48 #define UTIM 0xa0 /* Escape Timer Register */ 49 #define UBIR 0xa4 /* BRM Incremental Register */ 50 #define UBMR 0xa8 /* BRM Modulator Register */ 51 #define UBRC 0xac /* Baud Rate Count Register */ 52 #define IMX21_ONEMS 0xb0 /* One Millisecond register */ 53 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */ 54 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/ 55 56 /* UART Control Register Bit Fields.*/ 57 #define URXD_DUMMY_READ (1<<16) 58 #define URXD_CHARRDY (1<<15) 59 #define URXD_ERR (1<<14) 60 #define URXD_OVRRUN (1<<13) 61 #define URXD_FRMERR (1<<12) 62 #define URXD_BRK (1<<11) 63 #define URXD_PRERR (1<<10) 64 #define URXD_RX_DATA (0xFF<<0) 65 #define UCR1_ADEN (1<<15) /* Auto detect interrupt */ 66 #define UCR1_ADBR (1<<14) /* Auto detect baud rate */ 67 #define UCR1_TRDYEN (1<<13) /* Transmitter ready interrupt enable */ 68 #define UCR1_IDEN (1<<12) /* Idle condition interrupt */ 69 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */ 70 #define UCR1_RRDYEN (1<<9) /* Recv ready interrupt enable */ 71 #define UCR1_RXDMAEN (1<<8) /* Recv ready DMA enable */ 72 #define UCR1_IREN (1<<7) /* Infrared interface enable */ 73 #define UCR1_TXMPTYEN (1<<6) /* Transimitter empty interrupt enable */ 74 #define UCR1_RTSDEN (1<<5) /* RTS delta interrupt enable */ 75 #define UCR1_SNDBRK (1<<4) /* Send break */ 76 #define UCR1_TXDMAEN (1<<3) /* Transmitter ready DMA enable */ 77 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */ 78 #define UCR1_ATDMAEN (1<<2) /* Aging DMA Timer Enable */ 79 #define UCR1_DOZE (1<<1) /* Doze */ 80 #define UCR1_UARTEN (1<<0) /* UART enabled */ 81 #define UCR2_ESCI (1<<15) /* Escape seq interrupt enable */ 82 #define UCR2_IRTS (1<<14) /* Ignore RTS pin */ 83 #define UCR2_CTSC (1<<13) /* CTS pin control */ 84 #define UCR2_CTS (1<<12) /* Clear to send */ 85 #define UCR2_ESCEN (1<<11) /* Escape enable */ 86 #define UCR2_PREN (1<<8) /* Parity enable */ 87 #define UCR2_PROE (1<<7) /* Parity odd/even */ 88 #define UCR2_STPB (1<<6) /* Stop */ 89 #define UCR2_WS (1<<5) /* Word size */ 90 #define UCR2_RTSEN (1<<4) /* Request to send interrupt enable */ 91 #define UCR2_ATEN (1<<3) /* Aging Timer Enable */ 92 #define UCR2_TXEN (1<<2) /* Transmitter enabled */ 93 #define UCR2_RXEN (1<<1) /* Receiver enabled */ 94 #define UCR2_SRST (1<<0) /* SW reset */ 95 #define UCR3_DTREN (1<<13) /* DTR interrupt enable */ 96 #define UCR3_PARERREN (1<<12) /* Parity enable */ 97 #define UCR3_FRAERREN (1<<11) /* Frame error interrupt enable */ 98 #define UCR3_DSR (1<<10) /* Data set ready */ 99 #define UCR3_DCD (1<<9) /* Data carrier detect */ 100 #define UCR3_RI (1<<8) /* Ring indicator */ 101 #define UCR3_ADNIMP (1<<7) /* Autobaud Detection Not Improved */ 102 #define UCR3_RXDSEN (1<<6) /* Receive status interrupt enable */ 103 #define UCR3_AIRINTEN (1<<5) /* Async IR wake interrupt enable */ 104 #define UCR3_AWAKEN (1<<4) /* Async wake interrupt enable */ 105 #define UCR3_DTRDEN (1<<3) /* Data Terminal Ready Delta Enable. */ 106 #define IMX21_UCR3_RXDMUXSEL (1<<2) /* RXD Muxed Input Select */ 107 #define UCR3_INVT (1<<1) /* Inverted Infrared transmission */ 108 #define UCR3_BPEN (1<<0) /* Preset registers enable */ 109 #define UCR4_CTSTL_SHF 10 /* CTS trigger level shift */ 110 #define UCR4_CTSTL_MASK 0x3F /* CTS trigger is 6 bits wide */ 111 #define UCR4_INVR (1<<9) /* Inverted infrared reception */ 112 #define UCR4_ENIRI (1<<8) /* Serial infrared interrupt enable */ 113 #define UCR4_WKEN (1<<7) /* Wake interrupt enable */ 114 #define UCR4_REF16 (1<<6) /* Ref freq 16 MHz */ 115 #define UCR4_IDDMAEN (1<<6) /* DMA IDLE Condition Detected */ 116 #define UCR4_IRSC (1<<5) /* IR special case */ 117 #define UCR4_TCEN (1<<3) /* Transmit complete interrupt enable */ 118 #define UCR4_BKEN (1<<2) /* Break condition interrupt enable */ 119 #define UCR4_OREN (1<<1) /* Receiver overrun interrupt enable */ 120 #define UCR4_DREN (1<<0) /* Recv data ready interrupt enable */ 121 #define UFCR_RXTL_SHF 0 /* Receiver trigger level shift */ 122 #define UFCR_RXTL_MASK 0x3F /* Receiver trigger 6 bits wide */ 123 #define UFCR_DCEDTE (1<<6) /* DCE/DTE mode select */ 124 #define UFCR_RFDIV (7<<7) /* Reference freq divider mask */ 125 #define UFCR_RFDIV_REG(x) (((x) < 7 ? 6 - (x) : 6) << 7) 126 #define UFCR_TXTL_SHF 10 /* Transmitter trigger level shift */ 127 #define USR1_PARITYERR (1<<15) /* Parity error interrupt flag */ 128 #define USR1_RTSS (1<<14) /* RTS pin status */ 129 #define USR1_TRDY (1<<13) /* Transmitter ready interrupt/dma flag */ 130 #define USR1_RTSD (1<<12) /* RTS delta */ 131 #define USR1_ESCF (1<<11) /* Escape seq interrupt flag */ 132 #define USR1_FRAMERR (1<<10) /* Frame error interrupt flag */ 133 #define USR1_RRDY (1<<9) /* Receiver ready interrupt/dma flag */ 134 #define USR1_AGTIM (1<<8) /* Ageing timer interrupt flag */ 135 #define USR1_DTRD (1<<7) /* DTR Delta */ 136 #define USR1_RXDS (1<<6) /* Receiver idle interrupt flag */ 137 #define USR1_AIRINT (1<<5) /* Async IR wake interrupt flag */ 138 #define USR1_AWAKE (1<<4) /* Aysnc wake interrupt flag */ 139 #define USR2_ADET (1<<15) /* Auto baud rate detect complete */ 140 #define USR2_TXFE (1<<14) /* Transmit buffer FIFO empty */ 141 #define USR2_DTRF (1<<13) /* DTR edge interrupt flag */ 142 #define USR2_IDLE (1<<12) /* Idle condition */ 143 #define USR2_RIDELT (1<<10) /* Ring Interrupt Delta */ 144 #define USR2_RIIN (1<<9) /* Ring Indicator Input */ 145 #define USR2_IRINT (1<<8) /* Serial infrared interrupt flag */ 146 #define USR2_WAKE (1<<7) /* Wake */ 147 #define USR2_DCDIN (1<<5) /* Data Carrier Detect Input */ 148 #define USR2_RTSF (1<<4) /* RTS edge interrupt flag */ 149 #define USR2_TXDC (1<<3) /* Transmitter complete */ 150 #define USR2_BRCD (1<<2) /* Break condition */ 151 #define USR2_ORE (1<<1) /* Overrun error */ 152 #define USR2_RDR (1<<0) /* Recv data ready */ 153 #define UTS_FRCPERR (1<<13) /* Force parity error */ 154 #define UTS_LOOP (1<<12) /* Loop tx and rx */ 155 #define UTS_TXEMPTY (1<<6) /* TxFIFO empty */ 156 #define UTS_RXEMPTY (1<<5) /* RxFIFO empty */ 157 #define UTS_TXFULL (1<<4) /* TxFIFO full */ 158 #define UTS_RXFULL (1<<3) /* RxFIFO full */ 159 #define UTS_SOFTRST (1<<0) /* Software reset */ 160 161 /* We've been assigned a range on the "Low-density serial ports" major */ 162 #define SERIAL_IMX_MAJOR 207 163 #define MINOR_START 16 164 #define DEV_NAME "ttymxc" 165 166 /* 167 * This determines how often we check the modem status signals 168 * for any change. They generally aren't connected to an IRQ 169 * so we have to poll them. We also check immediately before 170 * filling the TX fifo incase CTS has been dropped. 171 */ 172 #define MCTRL_TIMEOUT (250*HZ/1000) 173 174 #define DRIVER_NAME "IMX-uart" 175 176 #define UART_NR 8 177 178 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */ 179 enum imx_uart_type { 180 IMX1_UART, 181 IMX21_UART, 182 IMX53_UART, 183 IMX6Q_UART, 184 }; 185 186 /* device type dependent stuff */ 187 struct imx_uart_data { 188 unsigned uts_reg; 189 enum imx_uart_type devtype; 190 }; 191 192 enum imx_tx_state { 193 OFF, 194 WAIT_AFTER_RTS, 195 SEND, 196 WAIT_AFTER_SEND, 197 }; 198 199 struct imx_port { 200 struct uart_port port; 201 struct timer_list timer; 202 unsigned int old_status; 203 unsigned int have_rtscts:1; 204 unsigned int have_rtsgpio:1; 205 unsigned int dte_mode:1; 206 unsigned int inverted_tx:1; 207 unsigned int inverted_rx:1; 208 struct clk *clk_ipg; 209 struct clk *clk_per; 210 const struct imx_uart_data *devdata; 211 212 struct mctrl_gpios *gpios; 213 214 /* counter to stop 0xff flood */ 215 int idle_counter; 216 217 /* DMA fields */ 218 unsigned int dma_is_enabled:1; 219 unsigned int dma_is_rxing:1; 220 unsigned int dma_is_txing:1; 221 struct dma_chan *dma_chan_rx, *dma_chan_tx; 222 struct scatterlist rx_sgl, tx_sgl[2]; 223 void *rx_buf; 224 struct circ_buf rx_ring; 225 unsigned int rx_buf_size; 226 unsigned int rx_period_length; 227 unsigned int rx_periods; 228 dma_cookie_t rx_cookie; 229 unsigned int tx_bytes; 230 unsigned int dma_tx_nents; 231 unsigned int saved_reg[10]; 232 bool context_saved; 233 234 enum imx_tx_state tx_state; 235 struct hrtimer trigger_start_tx; 236 struct hrtimer trigger_stop_tx; 237 }; 238 239 struct imx_port_ucrs { 240 unsigned int ucr1; 241 unsigned int ucr2; 242 unsigned int ucr3; 243 }; 244 245 static struct imx_uart_data imx_uart_devdata[] = { 246 [IMX1_UART] = { 247 .uts_reg = IMX1_UTS, 248 .devtype = IMX1_UART, 249 }, 250 [IMX21_UART] = { 251 .uts_reg = IMX21_UTS, 252 .devtype = IMX21_UART, 253 }, 254 [IMX53_UART] = { 255 .uts_reg = IMX21_UTS, 256 .devtype = IMX53_UART, 257 }, 258 [IMX6Q_UART] = { 259 .uts_reg = IMX21_UTS, 260 .devtype = IMX6Q_UART, 261 }, 262 }; 263 264 static const struct of_device_id imx_uart_dt_ids[] = { 265 { .compatible = "fsl,imx6q-uart", .data = &imx_uart_devdata[IMX6Q_UART], }, 266 { .compatible = "fsl,imx53-uart", .data = &imx_uart_devdata[IMX53_UART], }, 267 { .compatible = "fsl,imx1-uart", .data = &imx_uart_devdata[IMX1_UART], }, 268 { .compatible = "fsl,imx21-uart", .data = &imx_uart_devdata[IMX21_UART], }, 269 { /* sentinel */ } 270 }; 271 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids); 272 273 static inline void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset) 274 { 275 writel(val, sport->port.membase + offset); 276 } 277 278 static inline u32 imx_uart_readl(struct imx_port *sport, u32 offset) 279 { 280 return readl(sport->port.membase + offset); 281 } 282 283 static inline unsigned imx_uart_uts_reg(struct imx_port *sport) 284 { 285 return sport->devdata->uts_reg; 286 } 287 288 static inline int imx_uart_is_imx1(struct imx_port *sport) 289 { 290 return sport->devdata->devtype == IMX1_UART; 291 } 292 293 /* 294 * Save and restore functions for UCR1, UCR2 and UCR3 registers 295 */ 296 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE) 297 static void imx_uart_ucrs_save(struct imx_port *sport, 298 struct imx_port_ucrs *ucr) 299 { 300 /* save control registers */ 301 ucr->ucr1 = imx_uart_readl(sport, UCR1); 302 ucr->ucr2 = imx_uart_readl(sport, UCR2); 303 ucr->ucr3 = imx_uart_readl(sport, UCR3); 304 } 305 306 static void imx_uart_ucrs_restore(struct imx_port *sport, 307 struct imx_port_ucrs *ucr) 308 { 309 /* restore control registers */ 310 imx_uart_writel(sport, ucr->ucr1, UCR1); 311 imx_uart_writel(sport, ucr->ucr2, UCR2); 312 imx_uart_writel(sport, ucr->ucr3, UCR3); 313 } 314 #endif 315 316 /* called with port.lock taken and irqs caller dependent */ 317 static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2) 318 { 319 *ucr2 &= ~(UCR2_CTSC | UCR2_CTS); 320 321 mctrl_gpio_set(sport->gpios, sport->port.mctrl | TIOCM_RTS); 322 } 323 324 /* called with port.lock taken and irqs caller dependent */ 325 static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2) 326 { 327 *ucr2 &= ~UCR2_CTSC; 328 *ucr2 |= UCR2_CTS; 329 330 mctrl_gpio_set(sport->gpios, sport->port.mctrl & ~TIOCM_RTS); 331 } 332 333 static void start_hrtimer_ms(struct hrtimer *hrt, unsigned long msec) 334 { 335 hrtimer_start(hrt, ms_to_ktime(msec), HRTIMER_MODE_REL); 336 } 337 338 /* called with port.lock taken and irqs off */ 339 static void imx_uart_soft_reset(struct imx_port *sport) 340 { 341 int i = 10; 342 u32 ucr2, ubir, ubmr, uts; 343 344 /* 345 * According to the Reference Manual description of the UART SRST bit: 346 * 347 * "Reset the transmit and receive state machines, 348 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD 349 * and UTS[6-3]". 350 * 351 * We don't need to restore the old values from USR1, USR2, URXD and 352 * UTXD. UBRC is read only, so only save/restore the other three 353 * registers. 354 */ 355 ubir = imx_uart_readl(sport, UBIR); 356 ubmr = imx_uart_readl(sport, UBMR); 357 uts = imx_uart_readl(sport, IMX21_UTS); 358 359 ucr2 = imx_uart_readl(sport, UCR2); 360 imx_uart_writel(sport, ucr2 & ~UCR2_SRST, UCR2); 361 362 while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0)) 363 udelay(1); 364 365 /* Restore the registers */ 366 imx_uart_writel(sport, ubir, UBIR); 367 imx_uart_writel(sport, ubmr, UBMR); 368 imx_uart_writel(sport, uts, IMX21_UTS); 369 370 sport->idle_counter = 0; 371 } 372 373 static void imx_uart_disable_loopback_rs485(struct imx_port *sport) 374 { 375 unsigned int uts; 376 377 /* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */ 378 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 379 uts &= ~UTS_LOOP; 380 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 381 } 382 383 /* called with port.lock taken and irqs off */ 384 static void imx_uart_start_rx(struct uart_port *port) 385 { 386 struct imx_port *sport = (struct imx_port *)port; 387 unsigned int ucr1, ucr2; 388 389 ucr1 = imx_uart_readl(sport, UCR1); 390 ucr2 = imx_uart_readl(sport, UCR2); 391 392 ucr2 |= UCR2_RXEN; 393 394 if (sport->dma_is_enabled) { 395 ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN; 396 } else { 397 ucr1 |= UCR1_RRDYEN; 398 ucr2 |= UCR2_ATEN; 399 } 400 401 /* Write UCR2 first as it includes RXEN */ 402 imx_uart_writel(sport, ucr2, UCR2); 403 imx_uart_writel(sport, ucr1, UCR1); 404 imx_uart_disable_loopback_rs485(sport); 405 } 406 407 /* called with port.lock taken and irqs off */ 408 static void imx_uart_stop_tx(struct uart_port *port) 409 { 410 struct imx_port *sport = (struct imx_port *)port; 411 u32 ucr1, ucr4, usr2; 412 413 if (sport->tx_state == OFF) 414 return; 415 416 /* 417 * We are maybe in the SMP context, so if the DMA TX thread is running 418 * on other cpu, we have to wait for it to finish. 419 */ 420 if (sport->dma_is_txing) 421 return; 422 423 ucr1 = imx_uart_readl(sport, UCR1); 424 imx_uart_writel(sport, ucr1 & ~UCR1_TRDYEN, UCR1); 425 426 ucr4 = imx_uart_readl(sport, UCR4); 427 usr2 = imx_uart_readl(sport, USR2); 428 if ((!(usr2 & USR2_TXDC)) && (ucr4 & UCR4_TCEN)) { 429 /* The shifter is still busy, so retry once TC triggers */ 430 return; 431 } 432 433 ucr4 &= ~UCR4_TCEN; 434 imx_uart_writel(sport, ucr4, UCR4); 435 436 /* in rs485 mode disable transmitter */ 437 if (port->rs485.flags & SER_RS485_ENABLED) { 438 if (sport->tx_state == SEND) { 439 sport->tx_state = WAIT_AFTER_SEND; 440 441 if (port->rs485.delay_rts_after_send > 0) { 442 start_hrtimer_ms(&sport->trigger_stop_tx, 443 port->rs485.delay_rts_after_send); 444 return; 445 } 446 447 /* continue without any delay */ 448 } 449 450 if (sport->tx_state == WAIT_AFTER_RTS || 451 sport->tx_state == WAIT_AFTER_SEND) { 452 u32 ucr2; 453 454 hrtimer_try_to_cancel(&sport->trigger_start_tx); 455 456 ucr2 = imx_uart_readl(sport, UCR2); 457 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 458 imx_uart_rts_active(sport, &ucr2); 459 else 460 imx_uart_rts_inactive(sport, &ucr2); 461 imx_uart_writel(sport, ucr2, UCR2); 462 463 if (!port->rs485_rx_during_tx_gpio) 464 imx_uart_start_rx(port); 465 466 sport->tx_state = OFF; 467 } 468 } else { 469 sport->tx_state = OFF; 470 } 471 } 472 473 static void imx_uart_stop_rx_with_loopback_ctrl(struct uart_port *port, bool loopback) 474 { 475 struct imx_port *sport = (struct imx_port *)port; 476 u32 ucr1, ucr2, ucr4, uts; 477 478 ucr1 = imx_uart_readl(sport, UCR1); 479 ucr2 = imx_uart_readl(sport, UCR2); 480 ucr4 = imx_uart_readl(sport, UCR4); 481 482 if (sport->dma_is_enabled) { 483 ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN); 484 } else { 485 ucr1 &= ~UCR1_RRDYEN; 486 ucr2 &= ~UCR2_ATEN; 487 ucr4 &= ~UCR4_OREN; 488 } 489 imx_uart_writel(sport, ucr1, UCR1); 490 imx_uart_writel(sport, ucr4, UCR4); 491 492 /* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */ 493 if (port->rs485.flags & SER_RS485_ENABLED && 494 port->rs485.flags & SER_RS485_RTS_ON_SEND && 495 sport->have_rtscts && !sport->have_rtsgpio && loopback) { 496 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 497 uts |= UTS_LOOP; 498 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 499 ucr2 |= UCR2_RXEN; 500 } else { 501 ucr2 &= ~UCR2_RXEN; 502 } 503 504 imx_uart_writel(sport, ucr2, UCR2); 505 } 506 507 /* called with port.lock taken and irqs off */ 508 static void imx_uart_stop_rx(struct uart_port *port) 509 { 510 /* 511 * Stop RX and enable loopback in order to make sure RS485 bus 512 * is not blocked. Se comment in imx_uart_probe(). 513 */ 514 imx_uart_stop_rx_with_loopback_ctrl(port, true); 515 } 516 517 /* called with port.lock taken and irqs off */ 518 static void imx_uart_enable_ms(struct uart_port *port) 519 { 520 struct imx_port *sport = (struct imx_port *)port; 521 522 mod_timer(&sport->timer, jiffies); 523 524 mctrl_gpio_enable_ms(sport->gpios); 525 } 526 527 static void imx_uart_dma_tx(struct imx_port *sport); 528 529 /* called with port.lock taken and irqs off */ 530 static inline void imx_uart_transmit_buffer(struct imx_port *sport) 531 { 532 struct circ_buf *xmit = &sport->port.state->xmit; 533 534 if (sport->port.x_char) { 535 /* Send next char */ 536 imx_uart_writel(sport, sport->port.x_char, URTX0); 537 sport->port.icount.tx++; 538 sport->port.x_char = 0; 539 return; 540 } 541 542 if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) { 543 imx_uart_stop_tx(&sport->port); 544 return; 545 } 546 547 if (sport->dma_is_enabled) { 548 u32 ucr1; 549 /* 550 * We've just sent a X-char Ensure the TX DMA is enabled 551 * and the TX IRQ is disabled. 552 **/ 553 ucr1 = imx_uart_readl(sport, UCR1); 554 ucr1 &= ~UCR1_TRDYEN; 555 if (sport->dma_is_txing) { 556 ucr1 |= UCR1_TXDMAEN; 557 imx_uart_writel(sport, ucr1, UCR1); 558 } else { 559 imx_uart_writel(sport, ucr1, UCR1); 560 imx_uart_dma_tx(sport); 561 } 562 563 return; 564 } 565 566 while (!uart_circ_empty(xmit) && 567 !(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)) { 568 /* send xmit->buf[xmit->tail] 569 * out the port here */ 570 imx_uart_writel(sport, xmit->buf[xmit->tail], URTX0); 571 uart_xmit_advance(&sport->port, 1); 572 } 573 574 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 575 uart_write_wakeup(&sport->port); 576 577 if (uart_circ_empty(xmit)) 578 imx_uart_stop_tx(&sport->port); 579 } 580 581 static void imx_uart_dma_tx_callback(void *data) 582 { 583 struct imx_port *sport = data; 584 struct scatterlist *sgl = &sport->tx_sgl[0]; 585 struct circ_buf *xmit = &sport->port.state->xmit; 586 unsigned long flags; 587 u32 ucr1; 588 589 spin_lock_irqsave(&sport->port.lock, flags); 590 591 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); 592 593 ucr1 = imx_uart_readl(sport, UCR1); 594 ucr1 &= ~UCR1_TXDMAEN; 595 imx_uart_writel(sport, ucr1, UCR1); 596 597 uart_xmit_advance(&sport->port, sport->tx_bytes); 598 599 dev_dbg(sport->port.dev, "we finish the TX DMA.\n"); 600 601 sport->dma_is_txing = 0; 602 603 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 604 uart_write_wakeup(&sport->port); 605 606 if (!uart_circ_empty(xmit) && !uart_tx_stopped(&sport->port)) 607 imx_uart_dma_tx(sport); 608 else if (sport->port.rs485.flags & SER_RS485_ENABLED) { 609 u32 ucr4 = imx_uart_readl(sport, UCR4); 610 ucr4 |= UCR4_TCEN; 611 imx_uart_writel(sport, ucr4, UCR4); 612 } 613 614 spin_unlock_irqrestore(&sport->port.lock, flags); 615 } 616 617 /* called with port.lock taken and irqs off */ 618 static void imx_uart_dma_tx(struct imx_port *sport) 619 { 620 struct circ_buf *xmit = &sport->port.state->xmit; 621 struct scatterlist *sgl = sport->tx_sgl; 622 struct dma_async_tx_descriptor *desc; 623 struct dma_chan *chan = sport->dma_chan_tx; 624 struct device *dev = sport->port.dev; 625 u32 ucr1, ucr4; 626 int ret; 627 628 if (sport->dma_is_txing) 629 return; 630 631 ucr4 = imx_uart_readl(sport, UCR4); 632 ucr4 &= ~UCR4_TCEN; 633 imx_uart_writel(sport, ucr4, UCR4); 634 635 sport->tx_bytes = uart_circ_chars_pending(xmit); 636 637 if (xmit->tail < xmit->head || xmit->head == 0) { 638 sport->dma_tx_nents = 1; 639 sg_init_one(sgl, xmit->buf + xmit->tail, sport->tx_bytes); 640 } else { 641 sport->dma_tx_nents = 2; 642 sg_init_table(sgl, 2); 643 sg_set_buf(sgl, xmit->buf + xmit->tail, 644 UART_XMIT_SIZE - xmit->tail); 645 sg_set_buf(sgl + 1, xmit->buf, xmit->head); 646 } 647 648 ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); 649 if (ret == 0) { 650 dev_err(dev, "DMA mapping error for TX.\n"); 651 return; 652 } 653 desc = dmaengine_prep_slave_sg(chan, sgl, ret, 654 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT); 655 if (!desc) { 656 dma_unmap_sg(dev, sgl, sport->dma_tx_nents, 657 DMA_TO_DEVICE); 658 dev_err(dev, "We cannot prepare for the TX slave dma!\n"); 659 return; 660 } 661 desc->callback = imx_uart_dma_tx_callback; 662 desc->callback_param = sport; 663 664 dev_dbg(dev, "TX: prepare to send %lu bytes by DMA.\n", 665 uart_circ_chars_pending(xmit)); 666 667 ucr1 = imx_uart_readl(sport, UCR1); 668 ucr1 |= UCR1_TXDMAEN; 669 imx_uart_writel(sport, ucr1, UCR1); 670 671 /* fire it */ 672 sport->dma_is_txing = 1; 673 dmaengine_submit(desc); 674 dma_async_issue_pending(chan); 675 return; 676 } 677 678 /* called with port.lock taken and irqs off */ 679 static void imx_uart_start_tx(struct uart_port *port) 680 { 681 struct imx_port *sport = (struct imx_port *)port; 682 u32 ucr1; 683 684 if (!sport->port.x_char && uart_circ_empty(&port->state->xmit)) 685 return; 686 687 /* 688 * We cannot simply do nothing here if sport->tx_state == SEND already 689 * because UCR1_TXMPTYEN might already have been cleared in 690 * imx_uart_stop_tx(), but tx_state is still SEND. 691 */ 692 693 if (port->rs485.flags & SER_RS485_ENABLED) { 694 if (sport->tx_state == OFF) { 695 u32 ucr2 = imx_uart_readl(sport, UCR2); 696 if (port->rs485.flags & SER_RS485_RTS_ON_SEND) 697 imx_uart_rts_active(sport, &ucr2); 698 else 699 imx_uart_rts_inactive(sport, &ucr2); 700 imx_uart_writel(sport, ucr2, UCR2); 701 702 /* 703 * Since we are about to transmit we can not stop RX 704 * with loopback enabled because that will make our 705 * transmitted data being just looped to RX. 706 */ 707 if (!(port->rs485.flags & SER_RS485_RX_DURING_TX) && 708 !port->rs485_rx_during_tx_gpio) 709 imx_uart_stop_rx_with_loopback_ctrl(port, false); 710 711 sport->tx_state = WAIT_AFTER_RTS; 712 713 if (port->rs485.delay_rts_before_send > 0) { 714 start_hrtimer_ms(&sport->trigger_start_tx, 715 port->rs485.delay_rts_before_send); 716 return; 717 } 718 719 /* continue without any delay */ 720 } 721 722 if (sport->tx_state == WAIT_AFTER_SEND 723 || sport->tx_state == WAIT_AFTER_RTS) { 724 725 hrtimer_try_to_cancel(&sport->trigger_stop_tx); 726 727 /* 728 * Enable transmitter and shifter empty irq only if DMA 729 * is off. In the DMA case this is done in the 730 * tx-callback. 731 */ 732 if (!sport->dma_is_enabled) { 733 u32 ucr4 = imx_uart_readl(sport, UCR4); 734 ucr4 |= UCR4_TCEN; 735 imx_uart_writel(sport, ucr4, UCR4); 736 } 737 738 sport->tx_state = SEND; 739 } 740 } else { 741 sport->tx_state = SEND; 742 } 743 744 if (!sport->dma_is_enabled) { 745 ucr1 = imx_uart_readl(sport, UCR1); 746 imx_uart_writel(sport, ucr1 | UCR1_TRDYEN, UCR1); 747 } 748 749 if (sport->dma_is_enabled) { 750 if (sport->port.x_char) { 751 /* We have X-char to send, so enable TX IRQ and 752 * disable TX DMA to let TX interrupt to send X-char */ 753 ucr1 = imx_uart_readl(sport, UCR1); 754 ucr1 &= ~UCR1_TXDMAEN; 755 ucr1 |= UCR1_TRDYEN; 756 imx_uart_writel(sport, ucr1, UCR1); 757 return; 758 } 759 760 if (!uart_circ_empty(&port->state->xmit) && 761 !uart_tx_stopped(port)) 762 imx_uart_dma_tx(sport); 763 return; 764 } 765 } 766 767 static irqreturn_t __imx_uart_rtsint(int irq, void *dev_id) 768 { 769 struct imx_port *sport = dev_id; 770 u32 usr1; 771 772 imx_uart_writel(sport, USR1_RTSD, USR1); 773 usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS; 774 /* 775 * Update sport->old_status here, so any follow-up calls to 776 * imx_uart_mctrl_check() will be able to recognize that RTS 777 * state changed since last imx_uart_mctrl_check() call. 778 * 779 * In case RTS has been detected as asserted here and later on 780 * deasserted by the time imx_uart_mctrl_check() was called, 781 * imx_uart_mctrl_check() can detect the RTS state change and 782 * trigger uart_handle_cts_change() to unblock the port for 783 * further TX transfers. 784 */ 785 if (usr1 & USR1_RTSS) 786 sport->old_status |= TIOCM_CTS; 787 else 788 sport->old_status &= ~TIOCM_CTS; 789 uart_handle_cts_change(&sport->port, usr1); 790 wake_up_interruptible(&sport->port.state->port.delta_msr_wait); 791 792 return IRQ_HANDLED; 793 } 794 795 static irqreturn_t imx_uart_rtsint(int irq, void *dev_id) 796 { 797 struct imx_port *sport = dev_id; 798 irqreturn_t ret; 799 800 spin_lock(&sport->port.lock); 801 802 ret = __imx_uart_rtsint(irq, dev_id); 803 804 spin_unlock(&sport->port.lock); 805 806 return ret; 807 } 808 809 static irqreturn_t imx_uart_txint(int irq, void *dev_id) 810 { 811 struct imx_port *sport = dev_id; 812 813 spin_lock(&sport->port.lock); 814 imx_uart_transmit_buffer(sport); 815 spin_unlock(&sport->port.lock); 816 return IRQ_HANDLED; 817 } 818 819 /* Check if hardware Rx flood is in progress, and issue soft reset to stop it. 820 * This is to be called from Rx ISRs only when some bytes were actually 821 * received. 822 * 823 * A way to reproduce the flood (checked on iMX6SX) is: open iMX UART at 9600 824 * 8N1, and from external source send 0xf0 char at 115200 8N1. In about 90% of 825 * cases this starts a flood of "receiving" of 0xff characters by the iMX6 UART 826 * that is terminated by any activity on RxD line, or could be stopped by 827 * issuing soft reset to the UART (just stop/start of RX does not help). Note 828 * that what we do here is sending isolated start bit about 2.4 times shorter 829 * than it is to be on UART configured baud rate. 830 */ 831 static void imx_uart_check_flood(struct imx_port *sport, u32 usr2) 832 { 833 /* To detect hardware 0xff flood we monitor RxD line between RX 834 * interrupts to isolate "receiving" of char(s) with no activity 835 * on RxD line, that'd never happen on actual data transfers. 836 * 837 * We use USR2_WAKE bit to check for activity on RxD line, but we have a 838 * race here if we clear USR2_WAKE when receiving of a char is in 839 * progress, so we might get RX interrupt later with USR2_WAKE bit 840 * cleared. Note though that as we don't try to clear USR2_WAKE when we 841 * detected no activity, this race may hide actual activity only once. 842 * 843 * Yet another case where receive interrupt may occur without RxD 844 * activity is expiration of aging timer, so we consider this as well. 845 * 846 * We use 'idle_counter' to ensure that we got at least so many RX 847 * interrupts without any detected activity on RxD line. 2 cases 848 * described plus 1 to be on the safe side gives us a margin of 3, 849 * below. In practice I was not able to produce a false positive to 850 * induce soft reset at regular data transfers even using 1 as the 851 * margin, so 3 is actually very strong. 852 * 853 * We count interrupts, not chars in 'idle-counter' for simplicity. 854 */ 855 856 if (usr2 & USR2_WAKE) { 857 imx_uart_writel(sport, USR2_WAKE, USR2); 858 sport->idle_counter = 0; 859 } else if (++sport->idle_counter > 3) { 860 dev_warn(sport->port.dev, "RX flood detected: soft reset."); 861 imx_uart_soft_reset(sport); /* also clears 'sport->idle_counter' */ 862 } 863 } 864 865 static irqreturn_t __imx_uart_rxint(int irq, void *dev_id) 866 { 867 struct imx_port *sport = dev_id; 868 struct tty_port *port = &sport->port.state->port; 869 u32 usr2, rx; 870 871 /* If we received something, check for 0xff flood */ 872 usr2 = imx_uart_readl(sport, USR2); 873 if (usr2 & USR2_RDR) 874 imx_uart_check_flood(sport, usr2); 875 876 while ((rx = imx_uart_readl(sport, URXD0)) & URXD_CHARRDY) { 877 unsigned int flg = TTY_NORMAL; 878 sport->port.icount.rx++; 879 880 if (unlikely(rx & URXD_ERR)) { 881 if (rx & URXD_BRK) { 882 sport->port.icount.brk++; 883 if (uart_handle_break(&sport->port)) 884 continue; 885 } 886 else if (rx & URXD_PRERR) 887 sport->port.icount.parity++; 888 else if (rx & URXD_FRMERR) 889 sport->port.icount.frame++; 890 if (rx & URXD_OVRRUN) 891 sport->port.icount.overrun++; 892 893 if (rx & sport->port.ignore_status_mask) 894 continue; 895 896 rx &= (sport->port.read_status_mask | 0xFF); 897 898 if (rx & URXD_BRK) 899 flg = TTY_BREAK; 900 else if (rx & URXD_PRERR) 901 flg = TTY_PARITY; 902 else if (rx & URXD_FRMERR) 903 flg = TTY_FRAME; 904 if (rx & URXD_OVRRUN) 905 flg = TTY_OVERRUN; 906 907 sport->port.sysrq = 0; 908 } else if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx)) { 909 continue; 910 } 911 912 if (sport->port.ignore_status_mask & URXD_DUMMY_READ) 913 continue; 914 915 if (tty_insert_flip_char(port, rx, flg) == 0) 916 sport->port.icount.buf_overrun++; 917 } 918 919 tty_flip_buffer_push(port); 920 921 return IRQ_HANDLED; 922 } 923 924 static irqreturn_t imx_uart_rxint(int irq, void *dev_id) 925 { 926 struct imx_port *sport = dev_id; 927 irqreturn_t ret; 928 929 spin_lock(&sport->port.lock); 930 931 ret = __imx_uart_rxint(irq, dev_id); 932 933 spin_unlock(&sport->port.lock); 934 935 return ret; 936 } 937 938 static void imx_uart_clear_rx_errors(struct imx_port *sport); 939 940 /* 941 * We have a modem side uart, so the meanings of RTS and CTS are inverted. 942 */ 943 static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport) 944 { 945 unsigned int tmp = TIOCM_DSR; 946 unsigned usr1 = imx_uart_readl(sport, USR1); 947 unsigned usr2 = imx_uart_readl(sport, USR2); 948 949 if (usr1 & USR1_RTSS) 950 tmp |= TIOCM_CTS; 951 952 /* in DCE mode DCDIN is always 0 */ 953 if (!(usr2 & USR2_DCDIN)) 954 tmp |= TIOCM_CAR; 955 956 if (sport->dte_mode) 957 if (!(imx_uart_readl(sport, USR2) & USR2_RIIN)) 958 tmp |= TIOCM_RI; 959 960 return tmp; 961 } 962 963 /* 964 * Handle any change of modem status signal since we were last called. 965 */ 966 static void imx_uart_mctrl_check(struct imx_port *sport) 967 { 968 unsigned int status, changed; 969 970 status = imx_uart_get_hwmctrl(sport); 971 changed = status ^ sport->old_status; 972 973 if (changed == 0) 974 return; 975 976 sport->old_status = status; 977 978 if (changed & TIOCM_RI && status & TIOCM_RI) 979 sport->port.icount.rng++; 980 if (changed & TIOCM_DSR) 981 sport->port.icount.dsr++; 982 if (changed & TIOCM_CAR) 983 uart_handle_dcd_change(&sport->port, status & TIOCM_CAR); 984 if (changed & TIOCM_CTS) 985 uart_handle_cts_change(&sport->port, status & TIOCM_CTS); 986 987 wake_up_interruptible(&sport->port.state->port.delta_msr_wait); 988 } 989 990 static irqreturn_t imx_uart_int(int irq, void *dev_id) 991 { 992 struct imx_port *sport = dev_id; 993 unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4; 994 irqreturn_t ret = IRQ_NONE; 995 996 spin_lock(&sport->port.lock); 997 998 usr1 = imx_uart_readl(sport, USR1); 999 usr2 = imx_uart_readl(sport, USR2); 1000 ucr1 = imx_uart_readl(sport, UCR1); 1001 ucr2 = imx_uart_readl(sport, UCR2); 1002 ucr3 = imx_uart_readl(sport, UCR3); 1003 ucr4 = imx_uart_readl(sport, UCR4); 1004 1005 /* 1006 * Even if a condition is true that can trigger an irq only handle it if 1007 * the respective irq source is enabled. This prevents some undesired 1008 * actions, for example if a character that sits in the RX FIFO and that 1009 * should be fetched via DMA is tried to be fetched using PIO. Or the 1010 * receiver is currently off and so reading from URXD0 results in an 1011 * exception. So just mask the (raw) status bits for disabled irqs. 1012 */ 1013 if ((ucr1 & UCR1_RRDYEN) == 0) 1014 usr1 &= ~USR1_RRDY; 1015 if ((ucr2 & UCR2_ATEN) == 0) 1016 usr1 &= ~USR1_AGTIM; 1017 if ((ucr1 & UCR1_TRDYEN) == 0) 1018 usr1 &= ~USR1_TRDY; 1019 if ((ucr4 & UCR4_TCEN) == 0) 1020 usr2 &= ~USR2_TXDC; 1021 if ((ucr3 & UCR3_DTRDEN) == 0) 1022 usr1 &= ~USR1_DTRD; 1023 if ((ucr1 & UCR1_RTSDEN) == 0) 1024 usr1 &= ~USR1_RTSD; 1025 if ((ucr3 & UCR3_AWAKEN) == 0) 1026 usr1 &= ~USR1_AWAKE; 1027 if ((ucr4 & UCR4_OREN) == 0) 1028 usr2 &= ~USR2_ORE; 1029 1030 if (usr1 & (USR1_RRDY | USR1_AGTIM)) { 1031 imx_uart_writel(sport, USR1_AGTIM, USR1); 1032 1033 __imx_uart_rxint(irq, dev_id); 1034 ret = IRQ_HANDLED; 1035 } 1036 1037 if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) { 1038 imx_uart_transmit_buffer(sport); 1039 ret = IRQ_HANDLED; 1040 } 1041 1042 if (usr1 & USR1_DTRD) { 1043 imx_uart_writel(sport, USR1_DTRD, USR1); 1044 1045 imx_uart_mctrl_check(sport); 1046 1047 ret = IRQ_HANDLED; 1048 } 1049 1050 if (usr1 & USR1_RTSD) { 1051 __imx_uart_rtsint(irq, dev_id); 1052 ret = IRQ_HANDLED; 1053 } 1054 1055 if (usr1 & USR1_AWAKE) { 1056 imx_uart_writel(sport, USR1_AWAKE, USR1); 1057 ret = IRQ_HANDLED; 1058 } 1059 1060 if (usr2 & USR2_ORE) { 1061 sport->port.icount.overrun++; 1062 imx_uart_writel(sport, USR2_ORE, USR2); 1063 ret = IRQ_HANDLED; 1064 } 1065 1066 spin_unlock(&sport->port.lock); 1067 1068 return ret; 1069 } 1070 1071 /* 1072 * Return TIOCSER_TEMT when transmitter is not busy. 1073 */ 1074 static unsigned int imx_uart_tx_empty(struct uart_port *port) 1075 { 1076 struct imx_port *sport = (struct imx_port *)port; 1077 unsigned int ret; 1078 1079 ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ? TIOCSER_TEMT : 0; 1080 1081 /* If the TX DMA is working, return 0. */ 1082 if (sport->dma_is_txing) 1083 ret = 0; 1084 1085 return ret; 1086 } 1087 1088 /* called with port.lock taken and irqs off */ 1089 static unsigned int imx_uart_get_mctrl(struct uart_port *port) 1090 { 1091 struct imx_port *sport = (struct imx_port *)port; 1092 unsigned int ret = imx_uart_get_hwmctrl(sport); 1093 1094 mctrl_gpio_get(sport->gpios, &ret); 1095 1096 return ret; 1097 } 1098 1099 /* called with port.lock taken and irqs off */ 1100 static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl) 1101 { 1102 struct imx_port *sport = (struct imx_port *)port; 1103 u32 ucr3, uts; 1104 1105 if (!(port->rs485.flags & SER_RS485_ENABLED)) { 1106 u32 ucr2; 1107 1108 /* 1109 * Turn off autoRTS if RTS is lowered and restore autoRTS 1110 * setting if RTS is raised. 1111 */ 1112 ucr2 = imx_uart_readl(sport, UCR2); 1113 ucr2 &= ~(UCR2_CTS | UCR2_CTSC); 1114 if (mctrl & TIOCM_RTS) { 1115 ucr2 |= UCR2_CTS; 1116 /* 1117 * UCR2_IRTS is unset if and only if the port is 1118 * configured for CRTSCTS, so we use inverted UCR2_IRTS 1119 * to get the state to restore to. 1120 */ 1121 if (!(ucr2 & UCR2_IRTS)) 1122 ucr2 |= UCR2_CTSC; 1123 } 1124 imx_uart_writel(sport, ucr2, UCR2); 1125 } 1126 1127 ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR; 1128 if (!(mctrl & TIOCM_DTR)) 1129 ucr3 |= UCR3_DSR; 1130 imx_uart_writel(sport, ucr3, UCR3); 1131 1132 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP; 1133 if (mctrl & TIOCM_LOOP) 1134 uts |= UTS_LOOP; 1135 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 1136 1137 mctrl_gpio_set(sport->gpios, mctrl); 1138 } 1139 1140 /* 1141 * Interrupts always disabled. 1142 */ 1143 static void imx_uart_break_ctl(struct uart_port *port, int break_state) 1144 { 1145 struct imx_port *sport = (struct imx_port *)port; 1146 unsigned long flags; 1147 u32 ucr1; 1148 1149 spin_lock_irqsave(&sport->port.lock, flags); 1150 1151 ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK; 1152 1153 if (break_state != 0) 1154 ucr1 |= UCR1_SNDBRK; 1155 1156 imx_uart_writel(sport, ucr1, UCR1); 1157 1158 spin_unlock_irqrestore(&sport->port.lock, flags); 1159 } 1160 1161 /* 1162 * This is our per-port timeout handler, for checking the 1163 * modem status signals. 1164 */ 1165 static void imx_uart_timeout(struct timer_list *t) 1166 { 1167 struct imx_port *sport = from_timer(sport, t, timer); 1168 unsigned long flags; 1169 1170 if (sport->port.state) { 1171 spin_lock_irqsave(&sport->port.lock, flags); 1172 imx_uart_mctrl_check(sport); 1173 spin_unlock_irqrestore(&sport->port.lock, flags); 1174 1175 mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT); 1176 } 1177 } 1178 1179 /* 1180 * There are two kinds of RX DMA interrupts(such as in the MX6Q): 1181 * [1] the RX DMA buffer is full. 1182 * [2] the aging timer expires 1183 * 1184 * Condition [2] is triggered when a character has been sitting in the FIFO 1185 * for at least 8 byte durations. 1186 */ 1187 static void imx_uart_dma_rx_callback(void *data) 1188 { 1189 struct imx_port *sport = data; 1190 struct dma_chan *chan = sport->dma_chan_rx; 1191 struct scatterlist *sgl = &sport->rx_sgl; 1192 struct tty_port *port = &sport->port.state->port; 1193 struct dma_tx_state state; 1194 struct circ_buf *rx_ring = &sport->rx_ring; 1195 enum dma_status status; 1196 unsigned int w_bytes = 0; 1197 unsigned int r_bytes; 1198 unsigned int bd_size; 1199 1200 status = dmaengine_tx_status(chan, sport->rx_cookie, &state); 1201 1202 if (status == DMA_ERROR) { 1203 spin_lock(&sport->port.lock); 1204 imx_uart_clear_rx_errors(sport); 1205 spin_unlock(&sport->port.lock); 1206 return; 1207 } 1208 1209 /* 1210 * The state-residue variable represents the empty space 1211 * relative to the entire buffer. Taking this in consideration 1212 * the head is always calculated base on the buffer total 1213 * length - DMA transaction residue. The UART script from the 1214 * SDMA firmware will jump to the next buffer descriptor, 1215 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4). 1216 * Taking this in consideration the tail is always at the 1217 * beginning of the buffer descriptor that contains the head. 1218 */ 1219 1220 /* Calculate the head */ 1221 rx_ring->head = sg_dma_len(sgl) - state.residue; 1222 1223 /* Calculate the tail. */ 1224 bd_size = sg_dma_len(sgl) / sport->rx_periods; 1225 rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size; 1226 1227 if (rx_ring->head <= sg_dma_len(sgl) && 1228 rx_ring->head > rx_ring->tail) { 1229 1230 /* Move data from tail to head */ 1231 r_bytes = rx_ring->head - rx_ring->tail; 1232 1233 /* If we received something, check for 0xff flood */ 1234 spin_lock(&sport->port.lock); 1235 imx_uart_check_flood(sport, imx_uart_readl(sport, USR2)); 1236 spin_unlock(&sport->port.lock); 1237 1238 if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) { 1239 1240 /* CPU claims ownership of RX DMA buffer */ 1241 dma_sync_sg_for_cpu(sport->port.dev, sgl, 1, 1242 DMA_FROM_DEVICE); 1243 1244 w_bytes = tty_insert_flip_string(port, 1245 sport->rx_buf + rx_ring->tail, r_bytes); 1246 1247 /* UART retrieves ownership of RX DMA buffer */ 1248 dma_sync_sg_for_device(sport->port.dev, sgl, 1, 1249 DMA_FROM_DEVICE); 1250 1251 if (w_bytes != r_bytes) 1252 sport->port.icount.buf_overrun++; 1253 1254 sport->port.icount.rx += w_bytes; 1255 } 1256 } else { 1257 WARN_ON(rx_ring->head > sg_dma_len(sgl)); 1258 WARN_ON(rx_ring->head <= rx_ring->tail); 1259 } 1260 1261 if (w_bytes) { 1262 tty_flip_buffer_push(port); 1263 dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes); 1264 } 1265 } 1266 1267 static int imx_uart_start_rx_dma(struct imx_port *sport) 1268 { 1269 struct scatterlist *sgl = &sport->rx_sgl; 1270 struct dma_chan *chan = sport->dma_chan_rx; 1271 struct device *dev = sport->port.dev; 1272 struct dma_async_tx_descriptor *desc; 1273 int ret; 1274 1275 sport->rx_ring.head = 0; 1276 sport->rx_ring.tail = 0; 1277 1278 sg_init_one(sgl, sport->rx_buf, sport->rx_buf_size); 1279 ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE); 1280 if (ret == 0) { 1281 dev_err(dev, "DMA mapping error for RX.\n"); 1282 return -EINVAL; 1283 } 1284 1285 desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl), 1286 sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods, 1287 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT); 1288 1289 if (!desc) { 1290 dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE); 1291 dev_err(dev, "We cannot prepare for the RX slave dma!\n"); 1292 return -EINVAL; 1293 } 1294 desc->callback = imx_uart_dma_rx_callback; 1295 desc->callback_param = sport; 1296 1297 dev_dbg(dev, "RX: prepare for the DMA.\n"); 1298 sport->dma_is_rxing = 1; 1299 sport->rx_cookie = dmaengine_submit(desc); 1300 dma_async_issue_pending(chan); 1301 return 0; 1302 } 1303 1304 static void imx_uart_clear_rx_errors(struct imx_port *sport) 1305 { 1306 struct tty_port *port = &sport->port.state->port; 1307 u32 usr1, usr2; 1308 1309 usr1 = imx_uart_readl(sport, USR1); 1310 usr2 = imx_uart_readl(sport, USR2); 1311 1312 if (usr2 & USR2_BRCD) { 1313 sport->port.icount.brk++; 1314 imx_uart_writel(sport, USR2_BRCD, USR2); 1315 uart_handle_break(&sport->port); 1316 if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0) 1317 sport->port.icount.buf_overrun++; 1318 tty_flip_buffer_push(port); 1319 } else { 1320 if (usr1 & USR1_FRAMERR) { 1321 sport->port.icount.frame++; 1322 imx_uart_writel(sport, USR1_FRAMERR, USR1); 1323 } else if (usr1 & USR1_PARITYERR) { 1324 sport->port.icount.parity++; 1325 imx_uart_writel(sport, USR1_PARITYERR, USR1); 1326 } 1327 } 1328 1329 if (usr2 & USR2_ORE) { 1330 sport->port.icount.overrun++; 1331 imx_uart_writel(sport, USR2_ORE, USR2); 1332 } 1333 1334 sport->idle_counter = 0; 1335 1336 } 1337 1338 #define TXTL_DEFAULT 8 1339 #define RXTL_DEFAULT 8 /* 8 characters or aging timer */ 1340 #define TXTL_DMA 8 /* DMA burst setting */ 1341 #define RXTL_DMA 9 /* DMA burst setting */ 1342 1343 static void imx_uart_setup_ufcr(struct imx_port *sport, 1344 unsigned char txwl, unsigned char rxwl) 1345 { 1346 unsigned int val; 1347 1348 /* set receiver / transmitter trigger level */ 1349 val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE); 1350 val |= txwl << UFCR_TXTL_SHF | rxwl; 1351 imx_uart_writel(sport, val, UFCR); 1352 } 1353 1354 static void imx_uart_dma_exit(struct imx_port *sport) 1355 { 1356 if (sport->dma_chan_rx) { 1357 dmaengine_terminate_sync(sport->dma_chan_rx); 1358 dma_release_channel(sport->dma_chan_rx); 1359 sport->dma_chan_rx = NULL; 1360 sport->rx_cookie = -EINVAL; 1361 kfree(sport->rx_buf); 1362 sport->rx_buf = NULL; 1363 } 1364 1365 if (sport->dma_chan_tx) { 1366 dmaengine_terminate_sync(sport->dma_chan_tx); 1367 dma_release_channel(sport->dma_chan_tx); 1368 sport->dma_chan_tx = NULL; 1369 } 1370 } 1371 1372 static int imx_uart_dma_init(struct imx_port *sport) 1373 { 1374 struct dma_slave_config slave_config = {}; 1375 struct device *dev = sport->port.dev; 1376 int ret; 1377 1378 /* Prepare for RX : */ 1379 sport->dma_chan_rx = dma_request_slave_channel(dev, "rx"); 1380 if (!sport->dma_chan_rx) { 1381 dev_dbg(dev, "cannot get the DMA channel.\n"); 1382 ret = -EINVAL; 1383 goto err; 1384 } 1385 1386 slave_config.direction = DMA_DEV_TO_MEM; 1387 slave_config.src_addr = sport->port.mapbase + URXD0; 1388 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1389 /* one byte less than the watermark level to enable the aging timer */ 1390 slave_config.src_maxburst = RXTL_DMA - 1; 1391 ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config); 1392 if (ret) { 1393 dev_err(dev, "error in RX dma configuration.\n"); 1394 goto err; 1395 } 1396 1397 sport->rx_buf_size = sport->rx_period_length * sport->rx_periods; 1398 sport->rx_buf = kzalloc(sport->rx_buf_size, GFP_KERNEL); 1399 if (!sport->rx_buf) { 1400 ret = -ENOMEM; 1401 goto err; 1402 } 1403 sport->rx_ring.buf = sport->rx_buf; 1404 1405 /* Prepare for TX : */ 1406 sport->dma_chan_tx = dma_request_slave_channel(dev, "tx"); 1407 if (!sport->dma_chan_tx) { 1408 dev_err(dev, "cannot get the TX DMA channel!\n"); 1409 ret = -EINVAL; 1410 goto err; 1411 } 1412 1413 slave_config.direction = DMA_MEM_TO_DEV; 1414 slave_config.dst_addr = sport->port.mapbase + URTX0; 1415 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1416 slave_config.dst_maxburst = TXTL_DMA; 1417 ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config); 1418 if (ret) { 1419 dev_err(dev, "error in TX dma configuration."); 1420 goto err; 1421 } 1422 1423 return 0; 1424 err: 1425 imx_uart_dma_exit(sport); 1426 return ret; 1427 } 1428 1429 static void imx_uart_enable_dma(struct imx_port *sport) 1430 { 1431 u32 ucr1; 1432 1433 imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA); 1434 1435 /* set UCR1 */ 1436 ucr1 = imx_uart_readl(sport, UCR1); 1437 ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN; 1438 imx_uart_writel(sport, ucr1, UCR1); 1439 1440 sport->dma_is_enabled = 1; 1441 } 1442 1443 static void imx_uart_disable_dma(struct imx_port *sport) 1444 { 1445 u32 ucr1; 1446 1447 /* clear UCR1 */ 1448 ucr1 = imx_uart_readl(sport, UCR1); 1449 ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN); 1450 imx_uart_writel(sport, ucr1, UCR1); 1451 1452 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1453 1454 sport->dma_is_enabled = 0; 1455 } 1456 1457 /* half the RX buffer size */ 1458 #define CTSTL 16 1459 1460 static int imx_uart_startup(struct uart_port *port) 1461 { 1462 struct imx_port *sport = (struct imx_port *)port; 1463 int retval; 1464 unsigned long flags; 1465 int dma_is_inited = 0; 1466 u32 ucr1, ucr2, ucr3, ucr4; 1467 1468 retval = clk_prepare_enable(sport->clk_per); 1469 if (retval) 1470 return retval; 1471 retval = clk_prepare_enable(sport->clk_ipg); 1472 if (retval) { 1473 clk_disable_unprepare(sport->clk_per); 1474 return retval; 1475 } 1476 1477 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1478 1479 /* disable the DREN bit (Data Ready interrupt enable) before 1480 * requesting IRQs 1481 */ 1482 ucr4 = imx_uart_readl(sport, UCR4); 1483 1484 /* set the trigger level for CTS */ 1485 ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF); 1486 ucr4 |= CTSTL << UCR4_CTSTL_SHF; 1487 1488 imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4); 1489 1490 /* Can we enable the DMA support? */ 1491 if (!uart_console(port) && imx_uart_dma_init(sport) == 0) 1492 dma_is_inited = 1; 1493 1494 spin_lock_irqsave(&sport->port.lock, flags); 1495 1496 /* Reset fifo's and state machines */ 1497 imx_uart_soft_reset(sport); 1498 1499 /* 1500 * Finally, clear and enable interrupts 1501 */ 1502 imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1); 1503 imx_uart_writel(sport, USR2_ORE, USR2); 1504 1505 ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN; 1506 ucr1 |= UCR1_UARTEN; 1507 if (sport->have_rtscts) 1508 ucr1 |= UCR1_RTSDEN; 1509 1510 imx_uart_writel(sport, ucr1, UCR1); 1511 1512 ucr4 = imx_uart_readl(sport, UCR4) & ~(UCR4_OREN | UCR4_INVR); 1513 if (!dma_is_inited) 1514 ucr4 |= UCR4_OREN; 1515 if (sport->inverted_rx) 1516 ucr4 |= UCR4_INVR; 1517 imx_uart_writel(sport, ucr4, UCR4); 1518 1519 ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_INVT; 1520 /* 1521 * configure tx polarity before enabling tx 1522 */ 1523 if (sport->inverted_tx) 1524 ucr3 |= UCR3_INVT; 1525 1526 if (!imx_uart_is_imx1(sport)) { 1527 ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD; 1528 1529 if (sport->dte_mode) 1530 /* disable broken interrupts */ 1531 ucr3 &= ~(UCR3_RI | UCR3_DCD); 1532 } 1533 imx_uart_writel(sport, ucr3, UCR3); 1534 1535 ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN; 1536 ucr2 |= (UCR2_RXEN | UCR2_TXEN); 1537 if (!sport->have_rtscts) 1538 ucr2 |= UCR2_IRTS; 1539 /* 1540 * make sure the edge sensitive RTS-irq is disabled, 1541 * we're using RTSD instead. 1542 */ 1543 if (!imx_uart_is_imx1(sport)) 1544 ucr2 &= ~UCR2_RTSEN; 1545 imx_uart_writel(sport, ucr2, UCR2); 1546 1547 /* 1548 * Enable modem status interrupts 1549 */ 1550 imx_uart_enable_ms(&sport->port); 1551 1552 if (dma_is_inited) { 1553 imx_uart_enable_dma(sport); 1554 imx_uart_start_rx_dma(sport); 1555 } else { 1556 ucr1 = imx_uart_readl(sport, UCR1); 1557 ucr1 |= UCR1_RRDYEN; 1558 imx_uart_writel(sport, ucr1, UCR1); 1559 1560 ucr2 = imx_uart_readl(sport, UCR2); 1561 ucr2 |= UCR2_ATEN; 1562 imx_uart_writel(sport, ucr2, UCR2); 1563 } 1564 1565 imx_uart_disable_loopback_rs485(sport); 1566 1567 spin_unlock_irqrestore(&sport->port.lock, flags); 1568 1569 return 0; 1570 } 1571 1572 static void imx_uart_shutdown(struct uart_port *port) 1573 { 1574 struct imx_port *sport = (struct imx_port *)port; 1575 unsigned long flags; 1576 u32 ucr1, ucr2, ucr4, uts; 1577 1578 if (sport->dma_is_enabled) { 1579 dmaengine_terminate_sync(sport->dma_chan_tx); 1580 if (sport->dma_is_txing) { 1581 dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0], 1582 sport->dma_tx_nents, DMA_TO_DEVICE); 1583 sport->dma_is_txing = 0; 1584 } 1585 dmaengine_terminate_sync(sport->dma_chan_rx); 1586 if (sport->dma_is_rxing) { 1587 dma_unmap_sg(sport->port.dev, &sport->rx_sgl, 1588 1, DMA_FROM_DEVICE); 1589 sport->dma_is_rxing = 0; 1590 } 1591 1592 spin_lock_irqsave(&sport->port.lock, flags); 1593 imx_uart_stop_tx(port); 1594 imx_uart_stop_rx(port); 1595 imx_uart_disable_dma(sport); 1596 spin_unlock_irqrestore(&sport->port.lock, flags); 1597 imx_uart_dma_exit(sport); 1598 } 1599 1600 mctrl_gpio_disable_ms(sport->gpios); 1601 1602 spin_lock_irqsave(&sport->port.lock, flags); 1603 ucr2 = imx_uart_readl(sport, UCR2); 1604 ucr2 &= ~(UCR2_TXEN | UCR2_ATEN); 1605 imx_uart_writel(sport, ucr2, UCR2); 1606 spin_unlock_irqrestore(&sport->port.lock, flags); 1607 1608 /* 1609 * Stop our timer. 1610 */ 1611 del_timer_sync(&sport->timer); 1612 1613 /* 1614 * Disable all interrupts, port and break condition. 1615 */ 1616 1617 spin_lock_irqsave(&sport->port.lock, flags); 1618 1619 ucr1 = imx_uart_readl(sport, UCR1); 1620 ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_RXDMAEN | 1621 UCR1_ATDMAEN | UCR1_SNDBRK); 1622 /* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */ 1623 if (port->rs485.flags & SER_RS485_ENABLED && 1624 port->rs485.flags & SER_RS485_RTS_ON_SEND && 1625 sport->have_rtscts && !sport->have_rtsgpio) { 1626 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 1627 uts |= UTS_LOOP; 1628 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 1629 ucr1 |= UCR1_UARTEN; 1630 } else { 1631 ucr1 &= ~UCR1_UARTEN; 1632 } 1633 imx_uart_writel(sport, ucr1, UCR1); 1634 1635 ucr4 = imx_uart_readl(sport, UCR4); 1636 ucr4 &= ~UCR4_TCEN; 1637 imx_uart_writel(sport, ucr4, UCR4); 1638 1639 spin_unlock_irqrestore(&sport->port.lock, flags); 1640 1641 clk_disable_unprepare(sport->clk_per); 1642 clk_disable_unprepare(sport->clk_ipg); 1643 } 1644 1645 /* called with port.lock taken and irqs off */ 1646 static void imx_uart_flush_buffer(struct uart_port *port) 1647 { 1648 struct imx_port *sport = (struct imx_port *)port; 1649 struct scatterlist *sgl = &sport->tx_sgl[0]; 1650 1651 if (!sport->dma_chan_tx) 1652 return; 1653 1654 sport->tx_bytes = 0; 1655 dmaengine_terminate_all(sport->dma_chan_tx); 1656 if (sport->dma_is_txing) { 1657 u32 ucr1; 1658 1659 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, 1660 DMA_TO_DEVICE); 1661 ucr1 = imx_uart_readl(sport, UCR1); 1662 ucr1 &= ~UCR1_TXDMAEN; 1663 imx_uart_writel(sport, ucr1, UCR1); 1664 sport->dma_is_txing = 0; 1665 } 1666 1667 imx_uart_soft_reset(sport); 1668 1669 } 1670 1671 static void 1672 imx_uart_set_termios(struct uart_port *port, struct ktermios *termios, 1673 const struct ktermios *old) 1674 { 1675 struct imx_port *sport = (struct imx_port *)port; 1676 unsigned long flags; 1677 u32 ucr2, old_ucr2, ufcr; 1678 unsigned int baud, quot; 1679 unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8; 1680 unsigned long div; 1681 unsigned long num, denom, old_ubir, old_ubmr; 1682 uint64_t tdiv64; 1683 1684 /* 1685 * We only support CS7 and CS8. 1686 */ 1687 while ((termios->c_cflag & CSIZE) != CS7 && 1688 (termios->c_cflag & CSIZE) != CS8) { 1689 termios->c_cflag &= ~CSIZE; 1690 termios->c_cflag |= old_csize; 1691 old_csize = CS8; 1692 } 1693 1694 del_timer_sync(&sport->timer); 1695 1696 /* 1697 * Ask the core to calculate the divisor for us. 1698 */ 1699 baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16); 1700 quot = uart_get_divisor(port, baud); 1701 1702 spin_lock_irqsave(&sport->port.lock, flags); 1703 1704 /* 1705 * Read current UCR2 and save it for future use, then clear all the bits 1706 * except those we will or may need to preserve. 1707 */ 1708 old_ucr2 = imx_uart_readl(sport, UCR2); 1709 ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS); 1710 1711 ucr2 |= UCR2_SRST | UCR2_IRTS; 1712 if ((termios->c_cflag & CSIZE) == CS8) 1713 ucr2 |= UCR2_WS; 1714 1715 if (!sport->have_rtscts) 1716 termios->c_cflag &= ~CRTSCTS; 1717 1718 if (port->rs485.flags & SER_RS485_ENABLED) { 1719 /* 1720 * RTS is mandatory for rs485 operation, so keep 1721 * it under manual control and keep transmitter 1722 * disabled. 1723 */ 1724 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 1725 imx_uart_rts_active(sport, &ucr2); 1726 else 1727 imx_uart_rts_inactive(sport, &ucr2); 1728 1729 } else if (termios->c_cflag & CRTSCTS) { 1730 /* 1731 * Only let receiver control RTS output if we were not requested 1732 * to have RTS inactive (which then should take precedence). 1733 */ 1734 if (ucr2 & UCR2_CTS) 1735 ucr2 |= UCR2_CTSC; 1736 } 1737 1738 if (termios->c_cflag & CRTSCTS) 1739 ucr2 &= ~UCR2_IRTS; 1740 if (termios->c_cflag & CSTOPB) 1741 ucr2 |= UCR2_STPB; 1742 if (termios->c_cflag & PARENB) { 1743 ucr2 |= UCR2_PREN; 1744 if (termios->c_cflag & PARODD) 1745 ucr2 |= UCR2_PROE; 1746 } 1747 1748 sport->port.read_status_mask = 0; 1749 if (termios->c_iflag & INPCK) 1750 sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR); 1751 if (termios->c_iflag & (BRKINT | PARMRK)) 1752 sport->port.read_status_mask |= URXD_BRK; 1753 1754 /* 1755 * Characters to ignore 1756 */ 1757 sport->port.ignore_status_mask = 0; 1758 if (termios->c_iflag & IGNPAR) 1759 sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR; 1760 if (termios->c_iflag & IGNBRK) { 1761 sport->port.ignore_status_mask |= URXD_BRK; 1762 /* 1763 * If we're ignoring parity and break indicators, 1764 * ignore overruns too (for real raw support). 1765 */ 1766 if (termios->c_iflag & IGNPAR) 1767 sport->port.ignore_status_mask |= URXD_OVRRUN; 1768 } 1769 1770 if ((termios->c_cflag & CREAD) == 0) 1771 sport->port.ignore_status_mask |= URXD_DUMMY_READ; 1772 1773 /* 1774 * Update the per-port timeout. 1775 */ 1776 uart_update_timeout(port, termios->c_cflag, baud); 1777 1778 /* custom-baudrate handling */ 1779 div = sport->port.uartclk / (baud * 16); 1780 if (baud == 38400 && quot != div) 1781 baud = sport->port.uartclk / (quot * 16); 1782 1783 div = sport->port.uartclk / (baud * 16); 1784 if (div > 7) 1785 div = 7; 1786 if (!div) 1787 div = 1; 1788 1789 rational_best_approximation(16 * div * baud, sport->port.uartclk, 1790 1 << 16, 1 << 16, &num, &denom); 1791 1792 tdiv64 = sport->port.uartclk; 1793 tdiv64 *= num; 1794 do_div(tdiv64, denom * 16 * div); 1795 tty_termios_encode_baud_rate(termios, 1796 (speed_t)tdiv64, (speed_t)tdiv64); 1797 1798 num -= 1; 1799 denom -= 1; 1800 1801 ufcr = imx_uart_readl(sport, UFCR); 1802 ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div); 1803 imx_uart_writel(sport, ufcr, UFCR); 1804 1805 /* 1806 * Two registers below should always be written both and in this 1807 * particular order. One consequence is that we need to check if any of 1808 * them changes and then update both. We do need the check for change 1809 * as even writing the same values seem to "restart" 1810 * transmission/receiving logic in the hardware, that leads to data 1811 * breakage even when rate doesn't in fact change. E.g., user switches 1812 * RTS/CTS handshake and suddenly gets broken bytes. 1813 */ 1814 old_ubir = imx_uart_readl(sport, UBIR); 1815 old_ubmr = imx_uart_readl(sport, UBMR); 1816 if (old_ubir != num || old_ubmr != denom) { 1817 imx_uart_writel(sport, num, UBIR); 1818 imx_uart_writel(sport, denom, UBMR); 1819 } 1820 1821 if (!imx_uart_is_imx1(sport)) 1822 imx_uart_writel(sport, sport->port.uartclk / div / 1000, 1823 IMX21_ONEMS); 1824 1825 imx_uart_writel(sport, ucr2, UCR2); 1826 1827 if (UART_ENABLE_MS(&sport->port, termios->c_cflag)) 1828 imx_uart_enable_ms(&sport->port); 1829 1830 spin_unlock_irqrestore(&sport->port.lock, flags); 1831 } 1832 1833 static const char *imx_uart_type(struct uart_port *port) 1834 { 1835 return port->type == PORT_IMX ? "IMX" : NULL; 1836 } 1837 1838 /* 1839 * Configure/autoconfigure the port. 1840 */ 1841 static void imx_uart_config_port(struct uart_port *port, int flags) 1842 { 1843 if (flags & UART_CONFIG_TYPE) 1844 port->type = PORT_IMX; 1845 } 1846 1847 /* 1848 * Verify the new serial_struct (for TIOCSSERIAL). 1849 * The only change we allow are to the flags and type, and 1850 * even then only between PORT_IMX and PORT_UNKNOWN 1851 */ 1852 static int 1853 imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser) 1854 { 1855 int ret = 0; 1856 1857 if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX) 1858 ret = -EINVAL; 1859 if (port->irq != ser->irq) 1860 ret = -EINVAL; 1861 if (ser->io_type != UPIO_MEM) 1862 ret = -EINVAL; 1863 if (port->uartclk / 16 != ser->baud_base) 1864 ret = -EINVAL; 1865 if (port->mapbase != (unsigned long)ser->iomem_base) 1866 ret = -EINVAL; 1867 if (port->iobase != ser->port) 1868 ret = -EINVAL; 1869 if (ser->hub6 != 0) 1870 ret = -EINVAL; 1871 return ret; 1872 } 1873 1874 #if defined(CONFIG_CONSOLE_POLL) 1875 1876 static int imx_uart_poll_init(struct uart_port *port) 1877 { 1878 struct imx_port *sport = (struct imx_port *)port; 1879 unsigned long flags; 1880 u32 ucr1, ucr2; 1881 int retval; 1882 1883 retval = clk_prepare_enable(sport->clk_ipg); 1884 if (retval) 1885 return retval; 1886 retval = clk_prepare_enable(sport->clk_per); 1887 if (retval) 1888 clk_disable_unprepare(sport->clk_ipg); 1889 1890 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1891 1892 spin_lock_irqsave(&sport->port.lock, flags); 1893 1894 /* 1895 * Be careful about the order of enabling bits here. First enable the 1896 * receiver (UARTEN + RXEN) and only then the corresponding irqs. 1897 * This prevents that a character that already sits in the RX fifo is 1898 * triggering an irq but the try to fetch it from there results in an 1899 * exception because UARTEN or RXEN is still off. 1900 */ 1901 ucr1 = imx_uart_readl(sport, UCR1); 1902 ucr2 = imx_uart_readl(sport, UCR2); 1903 1904 if (imx_uart_is_imx1(sport)) 1905 ucr1 |= IMX1_UCR1_UARTCLKEN; 1906 1907 ucr1 |= UCR1_UARTEN; 1908 ucr1 &= ~(UCR1_TRDYEN | UCR1_RTSDEN | UCR1_RRDYEN); 1909 1910 ucr2 |= UCR2_RXEN | UCR2_TXEN; 1911 ucr2 &= ~UCR2_ATEN; 1912 1913 imx_uart_writel(sport, ucr1, UCR1); 1914 imx_uart_writel(sport, ucr2, UCR2); 1915 1916 /* now enable irqs */ 1917 imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1); 1918 imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2); 1919 1920 spin_unlock_irqrestore(&sport->port.lock, flags); 1921 1922 return 0; 1923 } 1924 1925 static int imx_uart_poll_get_char(struct uart_port *port) 1926 { 1927 struct imx_port *sport = (struct imx_port *)port; 1928 if (!(imx_uart_readl(sport, USR2) & USR2_RDR)) 1929 return NO_POLL_CHAR; 1930 1931 return imx_uart_readl(sport, URXD0) & URXD_RX_DATA; 1932 } 1933 1934 static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c) 1935 { 1936 struct imx_port *sport = (struct imx_port *)port; 1937 unsigned int status; 1938 1939 /* drain */ 1940 do { 1941 status = imx_uart_readl(sport, USR1); 1942 } while (~status & USR1_TRDY); 1943 1944 /* write */ 1945 imx_uart_writel(sport, c, URTX0); 1946 1947 /* flush */ 1948 do { 1949 status = imx_uart_readl(sport, USR2); 1950 } while (~status & USR2_TXDC); 1951 } 1952 #endif 1953 1954 /* called with port.lock taken and irqs off or from .probe without locking */ 1955 static int imx_uart_rs485_config(struct uart_port *port, struct ktermios *termios, 1956 struct serial_rs485 *rs485conf) 1957 { 1958 struct imx_port *sport = (struct imx_port *)port; 1959 u32 ucr2, ufcr; 1960 1961 if (rs485conf->flags & SER_RS485_ENABLED) { 1962 /* Enable receiver if low-active RTS signal is requested */ 1963 if (sport->have_rtscts && !sport->have_rtsgpio && 1964 !(rs485conf->flags & SER_RS485_RTS_ON_SEND)) 1965 rs485conf->flags |= SER_RS485_RX_DURING_TX; 1966 1967 /* disable transmitter */ 1968 ucr2 = imx_uart_readl(sport, UCR2); 1969 if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND) 1970 imx_uart_rts_active(sport, &ucr2); 1971 else 1972 imx_uart_rts_inactive(sport, &ucr2); 1973 imx_uart_writel(sport, ucr2, UCR2); 1974 } 1975 1976 /* Make sure Rx is enabled in case Tx is active with Rx disabled */ 1977 if (!(rs485conf->flags & SER_RS485_ENABLED) || 1978 rs485conf->flags & SER_RS485_RX_DURING_TX) { 1979 /* If the receiver trigger is 0, set it to a default value */ 1980 ufcr = imx_uart_readl(sport, UFCR); 1981 if ((ufcr & UFCR_RXTL_MASK) == 0) 1982 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1983 imx_uart_start_rx(port); 1984 } 1985 1986 return 0; 1987 } 1988 1989 static const struct uart_ops imx_uart_pops = { 1990 .tx_empty = imx_uart_tx_empty, 1991 .set_mctrl = imx_uart_set_mctrl, 1992 .get_mctrl = imx_uart_get_mctrl, 1993 .stop_tx = imx_uart_stop_tx, 1994 .start_tx = imx_uart_start_tx, 1995 .stop_rx = imx_uart_stop_rx, 1996 .enable_ms = imx_uart_enable_ms, 1997 .break_ctl = imx_uart_break_ctl, 1998 .startup = imx_uart_startup, 1999 .shutdown = imx_uart_shutdown, 2000 .flush_buffer = imx_uart_flush_buffer, 2001 .set_termios = imx_uart_set_termios, 2002 .type = imx_uart_type, 2003 .config_port = imx_uart_config_port, 2004 .verify_port = imx_uart_verify_port, 2005 #if defined(CONFIG_CONSOLE_POLL) 2006 .poll_init = imx_uart_poll_init, 2007 .poll_get_char = imx_uart_poll_get_char, 2008 .poll_put_char = imx_uart_poll_put_char, 2009 #endif 2010 }; 2011 2012 static struct imx_port *imx_uart_ports[UART_NR]; 2013 2014 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE) 2015 static void imx_uart_console_putchar(struct uart_port *port, unsigned char ch) 2016 { 2017 struct imx_port *sport = (struct imx_port *)port; 2018 2019 while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL) 2020 barrier(); 2021 2022 imx_uart_writel(sport, ch, URTX0); 2023 } 2024 2025 /* 2026 * Interrupts are disabled on entering 2027 */ 2028 static void 2029 imx_uart_console_write(struct console *co, const char *s, unsigned int count) 2030 { 2031 struct imx_port *sport = imx_uart_ports[co->index]; 2032 struct imx_port_ucrs old_ucr; 2033 unsigned long flags; 2034 unsigned int ucr1, usr2; 2035 int locked = 1; 2036 2037 if (sport->port.sysrq) 2038 locked = 0; 2039 else if (oops_in_progress) 2040 locked = spin_trylock_irqsave(&sport->port.lock, flags); 2041 else 2042 spin_lock_irqsave(&sport->port.lock, flags); 2043 2044 /* 2045 * First, save UCR1/2/3 and then disable interrupts 2046 */ 2047 imx_uart_ucrs_save(sport, &old_ucr); 2048 ucr1 = old_ucr.ucr1; 2049 2050 if (imx_uart_is_imx1(sport)) 2051 ucr1 |= IMX1_UCR1_UARTCLKEN; 2052 ucr1 |= UCR1_UARTEN; 2053 ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN); 2054 2055 imx_uart_writel(sport, ucr1, UCR1); 2056 2057 imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2); 2058 2059 uart_console_write(&sport->port, s, count, imx_uart_console_putchar); 2060 2061 /* 2062 * Finally, wait for transmitter to become empty 2063 * and restore UCR1/2/3 2064 */ 2065 read_poll_timeout_atomic(imx_uart_readl, usr2, usr2 & USR2_TXDC, 2066 0, USEC_PER_SEC, false, sport, USR2); 2067 imx_uart_ucrs_restore(sport, &old_ucr); 2068 2069 if (locked) 2070 spin_unlock_irqrestore(&sport->port.lock, flags); 2071 } 2072 2073 /* 2074 * If the port was already initialised (eg, by a boot loader), 2075 * try to determine the current setup. 2076 */ 2077 static void 2078 imx_uart_console_get_options(struct imx_port *sport, int *baud, 2079 int *parity, int *bits) 2080 { 2081 2082 if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) { 2083 /* ok, the port was enabled */ 2084 unsigned int ucr2, ubir, ubmr, uartclk; 2085 unsigned int baud_raw; 2086 unsigned int ucfr_rfdiv; 2087 2088 ucr2 = imx_uart_readl(sport, UCR2); 2089 2090 *parity = 'n'; 2091 if (ucr2 & UCR2_PREN) { 2092 if (ucr2 & UCR2_PROE) 2093 *parity = 'o'; 2094 else 2095 *parity = 'e'; 2096 } 2097 2098 if (ucr2 & UCR2_WS) 2099 *bits = 8; 2100 else 2101 *bits = 7; 2102 2103 ubir = imx_uart_readl(sport, UBIR) & 0xffff; 2104 ubmr = imx_uart_readl(sport, UBMR) & 0xffff; 2105 2106 ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7; 2107 if (ucfr_rfdiv == 6) 2108 ucfr_rfdiv = 7; 2109 else 2110 ucfr_rfdiv = 6 - ucfr_rfdiv; 2111 2112 uartclk = clk_get_rate(sport->clk_per); 2113 uartclk /= ucfr_rfdiv; 2114 2115 { /* 2116 * The next code provides exact computation of 2117 * baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1)) 2118 * without need of float support or long long division, 2119 * which would be required to prevent 32bit arithmetic overflow 2120 */ 2121 unsigned int mul = ubir + 1; 2122 unsigned int div = 16 * (ubmr + 1); 2123 unsigned int rem = uartclk % div; 2124 2125 baud_raw = (uartclk / div) * mul; 2126 baud_raw += (rem * mul + div / 2) / div; 2127 *baud = (baud_raw + 50) / 100 * 100; 2128 } 2129 2130 if (*baud != baud_raw) 2131 dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n", 2132 baud_raw, *baud); 2133 } 2134 } 2135 2136 static int 2137 imx_uart_console_setup(struct console *co, char *options) 2138 { 2139 struct imx_port *sport; 2140 int baud = 9600; 2141 int bits = 8; 2142 int parity = 'n'; 2143 int flow = 'n'; 2144 int retval; 2145 2146 /* 2147 * Check whether an invalid uart number has been specified, and 2148 * if so, search for the first available port that does have 2149 * console support. 2150 */ 2151 if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports)) 2152 co->index = 0; 2153 sport = imx_uart_ports[co->index]; 2154 if (sport == NULL) 2155 return -ENODEV; 2156 2157 /* For setting the registers, we only need to enable the ipg clock. */ 2158 retval = clk_prepare_enable(sport->clk_ipg); 2159 if (retval) 2160 goto error_console; 2161 2162 if (options) 2163 uart_parse_options(options, &baud, &parity, &bits, &flow); 2164 else 2165 imx_uart_console_get_options(sport, &baud, &parity, &bits); 2166 2167 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 2168 2169 retval = uart_set_options(&sport->port, co, baud, parity, bits, flow); 2170 2171 if (retval) { 2172 clk_disable_unprepare(sport->clk_ipg); 2173 goto error_console; 2174 } 2175 2176 retval = clk_prepare_enable(sport->clk_per); 2177 if (retval) 2178 clk_disable_unprepare(sport->clk_ipg); 2179 2180 error_console: 2181 return retval; 2182 } 2183 2184 static int 2185 imx_uart_console_exit(struct console *co) 2186 { 2187 struct imx_port *sport = imx_uart_ports[co->index]; 2188 2189 clk_disable_unprepare(sport->clk_per); 2190 clk_disable_unprepare(sport->clk_ipg); 2191 2192 return 0; 2193 } 2194 2195 static struct uart_driver imx_uart_uart_driver; 2196 static struct console imx_uart_console = { 2197 .name = DEV_NAME, 2198 .write = imx_uart_console_write, 2199 .device = uart_console_device, 2200 .setup = imx_uart_console_setup, 2201 .exit = imx_uart_console_exit, 2202 .flags = CON_PRINTBUFFER, 2203 .index = -1, 2204 .data = &imx_uart_uart_driver, 2205 }; 2206 2207 #define IMX_CONSOLE &imx_uart_console 2208 2209 #else 2210 #define IMX_CONSOLE NULL 2211 #endif 2212 2213 static struct uart_driver imx_uart_uart_driver = { 2214 .owner = THIS_MODULE, 2215 .driver_name = DRIVER_NAME, 2216 .dev_name = DEV_NAME, 2217 .major = SERIAL_IMX_MAJOR, 2218 .minor = MINOR_START, 2219 .nr = ARRAY_SIZE(imx_uart_ports), 2220 .cons = IMX_CONSOLE, 2221 }; 2222 2223 static enum hrtimer_restart imx_trigger_start_tx(struct hrtimer *t) 2224 { 2225 struct imx_port *sport = container_of(t, struct imx_port, trigger_start_tx); 2226 unsigned long flags; 2227 2228 spin_lock_irqsave(&sport->port.lock, flags); 2229 if (sport->tx_state == WAIT_AFTER_RTS) 2230 imx_uart_start_tx(&sport->port); 2231 spin_unlock_irqrestore(&sport->port.lock, flags); 2232 2233 return HRTIMER_NORESTART; 2234 } 2235 2236 static enum hrtimer_restart imx_trigger_stop_tx(struct hrtimer *t) 2237 { 2238 struct imx_port *sport = container_of(t, struct imx_port, trigger_stop_tx); 2239 unsigned long flags; 2240 2241 spin_lock_irqsave(&sport->port.lock, flags); 2242 if (sport->tx_state == WAIT_AFTER_SEND) 2243 imx_uart_stop_tx(&sport->port); 2244 spin_unlock_irqrestore(&sport->port.lock, flags); 2245 2246 return HRTIMER_NORESTART; 2247 } 2248 2249 static const struct serial_rs485 imx_rs485_supported = { 2250 .flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND | 2251 SER_RS485_RX_DURING_TX, 2252 .delay_rts_before_send = 1, 2253 .delay_rts_after_send = 1, 2254 }; 2255 2256 /* Default RX DMA buffer configuration */ 2257 #define RX_DMA_PERIODS 16 2258 #define RX_DMA_PERIOD_LEN (PAGE_SIZE / 4) 2259 2260 static int imx_uart_probe(struct platform_device *pdev) 2261 { 2262 struct device_node *np = pdev->dev.of_node; 2263 struct imx_port *sport; 2264 void __iomem *base; 2265 u32 dma_buf_conf[2]; 2266 int ret = 0; 2267 u32 ucr1, ucr2, uts; 2268 struct resource *res; 2269 int txirq, rxirq, rtsirq; 2270 2271 sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL); 2272 if (!sport) 2273 return -ENOMEM; 2274 2275 sport->devdata = of_device_get_match_data(&pdev->dev); 2276 2277 ret = of_alias_get_id(np, "serial"); 2278 if (ret < 0) { 2279 dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret); 2280 return ret; 2281 } 2282 sport->port.line = ret; 2283 2284 sport->have_rtscts = of_property_read_bool(np, "uart-has-rtscts") || 2285 of_property_read_bool(np, "fsl,uart-has-rtscts"); /* deprecated */ 2286 2287 sport->dte_mode = of_property_read_bool(np, "fsl,dte-mode"); 2288 2289 sport->have_rtsgpio = of_property_present(np, "rts-gpios"); 2290 2291 sport->inverted_tx = of_property_read_bool(np, "fsl,inverted-tx"); 2292 2293 sport->inverted_rx = of_property_read_bool(np, "fsl,inverted-rx"); 2294 2295 if (!of_property_read_u32_array(np, "fsl,dma-info", dma_buf_conf, 2)) { 2296 sport->rx_period_length = dma_buf_conf[0]; 2297 sport->rx_periods = dma_buf_conf[1]; 2298 } else { 2299 sport->rx_period_length = RX_DMA_PERIOD_LEN; 2300 sport->rx_periods = RX_DMA_PERIODS; 2301 } 2302 2303 if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) { 2304 dev_err(&pdev->dev, "serial%d out of range\n", 2305 sport->port.line); 2306 return -EINVAL; 2307 } 2308 2309 base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 2310 if (IS_ERR(base)) 2311 return PTR_ERR(base); 2312 2313 rxirq = platform_get_irq(pdev, 0); 2314 if (rxirq < 0) 2315 return rxirq; 2316 txirq = platform_get_irq_optional(pdev, 1); 2317 rtsirq = platform_get_irq_optional(pdev, 2); 2318 2319 sport->port.dev = &pdev->dev; 2320 sport->port.mapbase = res->start; 2321 sport->port.membase = base; 2322 sport->port.type = PORT_IMX; 2323 sport->port.iotype = UPIO_MEM; 2324 sport->port.irq = rxirq; 2325 sport->port.fifosize = 32; 2326 sport->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE); 2327 sport->port.ops = &imx_uart_pops; 2328 sport->port.rs485_config = imx_uart_rs485_config; 2329 /* RTS is required to control the RS485 transmitter */ 2330 if (sport->have_rtscts || sport->have_rtsgpio) 2331 sport->port.rs485_supported = imx_rs485_supported; 2332 sport->port.flags = UPF_BOOT_AUTOCONF; 2333 timer_setup(&sport->timer, imx_uart_timeout, 0); 2334 2335 sport->gpios = mctrl_gpio_init(&sport->port, 0); 2336 if (IS_ERR(sport->gpios)) 2337 return PTR_ERR(sport->gpios); 2338 2339 sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 2340 if (IS_ERR(sport->clk_ipg)) { 2341 ret = PTR_ERR(sport->clk_ipg); 2342 dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret); 2343 return ret; 2344 } 2345 2346 sport->clk_per = devm_clk_get(&pdev->dev, "per"); 2347 if (IS_ERR(sport->clk_per)) { 2348 ret = PTR_ERR(sport->clk_per); 2349 dev_err(&pdev->dev, "failed to get per clk: %d\n", ret); 2350 return ret; 2351 } 2352 2353 sport->port.uartclk = clk_get_rate(sport->clk_per); 2354 2355 /* For register access, we only need to enable the ipg clock. */ 2356 ret = clk_prepare_enable(sport->clk_ipg); 2357 if (ret) { 2358 dev_err(&pdev->dev, "failed to enable ipg clk: %d\n", ret); 2359 return ret; 2360 } 2361 2362 ret = uart_get_rs485_mode(&sport->port); 2363 if (ret) 2364 goto err_clk; 2365 2366 /* 2367 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B) 2368 * signal cannot be set low during transmission in case the 2369 * receiver is off (limitation of the i.MX UART IP). 2370 */ 2371 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2372 sport->have_rtscts && !sport->have_rtsgpio && 2373 (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) && 2374 !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX))) 2375 dev_err(&pdev->dev, 2376 "low-active RTS not possible when receiver is off, enabling receiver\n"); 2377 2378 /* Disable interrupts before requesting them */ 2379 ucr1 = imx_uart_readl(sport, UCR1); 2380 ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN | UCR1_RTSDEN); 2381 imx_uart_writel(sport, ucr1, UCR1); 2382 2383 /* Disable Ageing Timer interrupt */ 2384 ucr2 = imx_uart_readl(sport, UCR2); 2385 ucr2 &= ~UCR2_ATEN; 2386 imx_uart_writel(sport, ucr2, UCR2); 2387 2388 /* 2389 * In case RS485 is enabled without GPIO RTS control, the UART IP 2390 * is used to control CTS signal. Keep both the UART and Receiver 2391 * enabled, otherwise the UART IP pulls CTS signal always HIGH no 2392 * matter how the UCR2 CTSC and CTS bits are set. To prevent any 2393 * data from being fed into the RX FIFO, enable loopback mode in 2394 * UTS register, which disconnects the RX path from external RXD 2395 * pin and connects it to the Transceiver, which is disabled, so 2396 * no data can be fed to the RX FIFO that way. 2397 */ 2398 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2399 sport->have_rtscts && !sport->have_rtsgpio) { 2400 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 2401 uts |= UTS_LOOP; 2402 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 2403 2404 ucr1 = imx_uart_readl(sport, UCR1); 2405 ucr1 |= UCR1_UARTEN; 2406 imx_uart_writel(sport, ucr1, UCR1); 2407 2408 ucr2 = imx_uart_readl(sport, UCR2); 2409 ucr2 |= UCR2_RXEN; 2410 imx_uart_writel(sport, ucr2, UCR2); 2411 } 2412 2413 if (!imx_uart_is_imx1(sport) && sport->dte_mode) { 2414 /* 2415 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI 2416 * and influences if UCR3_RI and UCR3_DCD changes the level of RI 2417 * and DCD (when they are outputs) or enables the respective 2418 * irqs. So set this bit early, i.e. before requesting irqs. 2419 */ 2420 u32 ufcr = imx_uart_readl(sport, UFCR); 2421 if (!(ufcr & UFCR_DCEDTE)) 2422 imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR); 2423 2424 /* 2425 * Disable UCR3_RI and UCR3_DCD irqs. They are also not 2426 * enabled later because they cannot be cleared 2427 * (confirmed on i.MX25) which makes them unusable. 2428 */ 2429 imx_uart_writel(sport, 2430 IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR, 2431 UCR3); 2432 2433 } else { 2434 u32 ucr3 = UCR3_DSR; 2435 u32 ufcr = imx_uart_readl(sport, UFCR); 2436 if (ufcr & UFCR_DCEDTE) 2437 imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR); 2438 2439 if (!imx_uart_is_imx1(sport)) 2440 ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP; 2441 imx_uart_writel(sport, ucr3, UCR3); 2442 } 2443 2444 hrtimer_init(&sport->trigger_start_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2445 hrtimer_init(&sport->trigger_stop_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2446 sport->trigger_start_tx.function = imx_trigger_start_tx; 2447 sport->trigger_stop_tx.function = imx_trigger_stop_tx; 2448 2449 /* 2450 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later 2451 * chips only have one interrupt. 2452 */ 2453 if (txirq > 0) { 2454 ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0, 2455 dev_name(&pdev->dev), sport); 2456 if (ret) { 2457 dev_err(&pdev->dev, "failed to request rx irq: %d\n", 2458 ret); 2459 goto err_clk; 2460 } 2461 2462 ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0, 2463 dev_name(&pdev->dev), sport); 2464 if (ret) { 2465 dev_err(&pdev->dev, "failed to request tx irq: %d\n", 2466 ret); 2467 goto err_clk; 2468 } 2469 2470 ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0, 2471 dev_name(&pdev->dev), sport); 2472 if (ret) { 2473 dev_err(&pdev->dev, "failed to request rts irq: %d\n", 2474 ret); 2475 goto err_clk; 2476 } 2477 } else { 2478 ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0, 2479 dev_name(&pdev->dev), sport); 2480 if (ret) { 2481 dev_err(&pdev->dev, "failed to request irq: %d\n", ret); 2482 goto err_clk; 2483 } 2484 } 2485 2486 imx_uart_ports[sport->port.line] = sport; 2487 2488 platform_set_drvdata(pdev, sport); 2489 2490 ret = uart_add_one_port(&imx_uart_uart_driver, &sport->port); 2491 2492 err_clk: 2493 clk_disable_unprepare(sport->clk_ipg); 2494 2495 return ret; 2496 } 2497 2498 static int imx_uart_remove(struct platform_device *pdev) 2499 { 2500 struct imx_port *sport = platform_get_drvdata(pdev); 2501 2502 uart_remove_one_port(&imx_uart_uart_driver, &sport->port); 2503 2504 return 0; 2505 } 2506 2507 static void imx_uart_restore_context(struct imx_port *sport) 2508 { 2509 unsigned long flags; 2510 2511 spin_lock_irqsave(&sport->port.lock, flags); 2512 if (!sport->context_saved) { 2513 spin_unlock_irqrestore(&sport->port.lock, flags); 2514 return; 2515 } 2516 2517 imx_uart_writel(sport, sport->saved_reg[4], UFCR); 2518 imx_uart_writel(sport, sport->saved_reg[5], UESC); 2519 imx_uart_writel(sport, sport->saved_reg[6], UTIM); 2520 imx_uart_writel(sport, sport->saved_reg[7], UBIR); 2521 imx_uart_writel(sport, sport->saved_reg[8], UBMR); 2522 imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS); 2523 imx_uart_writel(sport, sport->saved_reg[0], UCR1); 2524 imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2); 2525 imx_uart_writel(sport, sport->saved_reg[2], UCR3); 2526 imx_uart_writel(sport, sport->saved_reg[3], UCR4); 2527 sport->context_saved = false; 2528 spin_unlock_irqrestore(&sport->port.lock, flags); 2529 } 2530 2531 static void imx_uart_save_context(struct imx_port *sport) 2532 { 2533 unsigned long flags; 2534 2535 /* Save necessary regs */ 2536 spin_lock_irqsave(&sport->port.lock, flags); 2537 sport->saved_reg[0] = imx_uart_readl(sport, UCR1); 2538 sport->saved_reg[1] = imx_uart_readl(sport, UCR2); 2539 sport->saved_reg[2] = imx_uart_readl(sport, UCR3); 2540 sport->saved_reg[3] = imx_uart_readl(sport, UCR4); 2541 sport->saved_reg[4] = imx_uart_readl(sport, UFCR); 2542 sport->saved_reg[5] = imx_uart_readl(sport, UESC); 2543 sport->saved_reg[6] = imx_uart_readl(sport, UTIM); 2544 sport->saved_reg[7] = imx_uart_readl(sport, UBIR); 2545 sport->saved_reg[8] = imx_uart_readl(sport, UBMR); 2546 sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS); 2547 sport->context_saved = true; 2548 spin_unlock_irqrestore(&sport->port.lock, flags); 2549 } 2550 2551 static void imx_uart_enable_wakeup(struct imx_port *sport, bool on) 2552 { 2553 u32 ucr3; 2554 2555 ucr3 = imx_uart_readl(sport, UCR3); 2556 if (on) { 2557 imx_uart_writel(sport, USR1_AWAKE, USR1); 2558 ucr3 |= UCR3_AWAKEN; 2559 } else { 2560 ucr3 &= ~UCR3_AWAKEN; 2561 } 2562 imx_uart_writel(sport, ucr3, UCR3); 2563 2564 if (sport->have_rtscts) { 2565 u32 ucr1 = imx_uart_readl(sport, UCR1); 2566 if (on) { 2567 imx_uart_writel(sport, USR1_RTSD, USR1); 2568 ucr1 |= UCR1_RTSDEN; 2569 } else { 2570 ucr1 &= ~UCR1_RTSDEN; 2571 } 2572 imx_uart_writel(sport, ucr1, UCR1); 2573 } 2574 } 2575 2576 static int imx_uart_suspend_noirq(struct device *dev) 2577 { 2578 struct imx_port *sport = dev_get_drvdata(dev); 2579 2580 imx_uart_save_context(sport); 2581 2582 clk_disable(sport->clk_ipg); 2583 2584 pinctrl_pm_select_sleep_state(dev); 2585 2586 return 0; 2587 } 2588 2589 static int imx_uart_resume_noirq(struct device *dev) 2590 { 2591 struct imx_port *sport = dev_get_drvdata(dev); 2592 int ret; 2593 2594 pinctrl_pm_select_default_state(dev); 2595 2596 ret = clk_enable(sport->clk_ipg); 2597 if (ret) 2598 return ret; 2599 2600 imx_uart_restore_context(sport); 2601 2602 return 0; 2603 } 2604 2605 static int imx_uart_suspend(struct device *dev) 2606 { 2607 struct imx_port *sport = dev_get_drvdata(dev); 2608 int ret; 2609 2610 uart_suspend_port(&imx_uart_uart_driver, &sport->port); 2611 disable_irq(sport->port.irq); 2612 2613 ret = clk_prepare_enable(sport->clk_ipg); 2614 if (ret) 2615 return ret; 2616 2617 /* enable wakeup from i.MX UART */ 2618 imx_uart_enable_wakeup(sport, true); 2619 2620 return 0; 2621 } 2622 2623 static int imx_uart_resume(struct device *dev) 2624 { 2625 struct imx_port *sport = dev_get_drvdata(dev); 2626 2627 /* disable wakeup from i.MX UART */ 2628 imx_uart_enable_wakeup(sport, false); 2629 2630 uart_resume_port(&imx_uart_uart_driver, &sport->port); 2631 enable_irq(sport->port.irq); 2632 2633 clk_disable_unprepare(sport->clk_ipg); 2634 2635 return 0; 2636 } 2637 2638 static int imx_uart_freeze(struct device *dev) 2639 { 2640 struct imx_port *sport = dev_get_drvdata(dev); 2641 2642 uart_suspend_port(&imx_uart_uart_driver, &sport->port); 2643 2644 return clk_prepare_enable(sport->clk_ipg); 2645 } 2646 2647 static int imx_uart_thaw(struct device *dev) 2648 { 2649 struct imx_port *sport = dev_get_drvdata(dev); 2650 2651 uart_resume_port(&imx_uart_uart_driver, &sport->port); 2652 2653 clk_disable_unprepare(sport->clk_ipg); 2654 2655 return 0; 2656 } 2657 2658 static const struct dev_pm_ops imx_uart_pm_ops = { 2659 .suspend_noirq = imx_uart_suspend_noirq, 2660 .resume_noirq = imx_uart_resume_noirq, 2661 .freeze_noirq = imx_uart_suspend_noirq, 2662 .thaw_noirq = imx_uart_resume_noirq, 2663 .restore_noirq = imx_uart_resume_noirq, 2664 .suspend = imx_uart_suspend, 2665 .resume = imx_uart_resume, 2666 .freeze = imx_uart_freeze, 2667 .thaw = imx_uart_thaw, 2668 .restore = imx_uart_thaw, 2669 }; 2670 2671 static struct platform_driver imx_uart_platform_driver = { 2672 .probe = imx_uart_probe, 2673 .remove = imx_uart_remove, 2674 2675 .driver = { 2676 .name = "imx-uart", 2677 .of_match_table = imx_uart_dt_ids, 2678 .pm = &imx_uart_pm_ops, 2679 }, 2680 }; 2681 2682 static int __init imx_uart_init(void) 2683 { 2684 int ret = uart_register_driver(&imx_uart_uart_driver); 2685 2686 if (ret) 2687 return ret; 2688 2689 ret = platform_driver_register(&imx_uart_platform_driver); 2690 if (ret != 0) 2691 uart_unregister_driver(&imx_uart_uart_driver); 2692 2693 return ret; 2694 } 2695 2696 static void __exit imx_uart_exit(void) 2697 { 2698 platform_driver_unregister(&imx_uart_platform_driver); 2699 uart_unregister_driver(&imx_uart_uart_driver); 2700 } 2701 2702 module_init(imx_uart_init); 2703 module_exit(imx_uart_exit); 2704 2705 MODULE_AUTHOR("Sascha Hauer"); 2706 MODULE_DESCRIPTION("IMX generic serial port driver"); 2707 MODULE_LICENSE("GPL"); 2708 MODULE_ALIAS("platform:imx-uart"); 2709